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Abstract—Time series classification models have been garnering significant importance in the research community. However, not
much research has been done on generating adversarial samples for these models. These adversarial samples can become a security
concern. In this paper, we propose utilizing an adversarial transformation network (ATN) on a distilled model to attack various time
series classification models. The proposed attack on the classification model utilizes a distilled model as a surrogate that mimics the
behavior of the attacked classical time series classification models. Our proposed methodology is applied onto 1-Nearest Neighbor
Dynamic Time Warping (1-NN DTW) and a Fully Convolutional Network (FCN), all of which are trained on 42 University of California
Riverside (UCR) datasets. In this paper, we show both models were susceptible to attacks on all 42 datasets. When compared to Fast
Gradient Sign Method, the proposed attack generates a larger faction of successful adversarial black-box attacks. A simple defense
mechanism is successfully devised to reduce the fraction of successful adversarial samples. Finally, we recommend future researchers
that develop time series classification models to incorporating adversarial data samples into their training data sets to improve
resilience on adversarial samples.

Index Terms—Time series classification, Adversarial machine learning, Perturbation methods, Deep learning
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1 INTRODUCTION

Over the past decade, machine learning and deep learn-
ing have been powering several aspects of society [1]. Ma-
chine learning and deep learning are being used in some
areas such as web searches [2], recommendation systems
[3], and wearables [4]. With the advent of smart sensors,
advancements in data collection and storage at vast scales,
ease of data analytics and predictive modeling, time series
data being collected from various sensors can be analyzed
to determine regular patterns that are interpretable and
exploitable. Classifying these time series data has been an
area of interest by several researchers [5]–[8]. Time series
classification models are being used in health care, where
ECG data are used to detect patients with severe cognitive
defects, in audio, where words are categorized into different
phenomes, and in gesture recognition, where motion data
is used to categorize actions being made. Sensor data for
resource and safety-critical applications such as manufactur-
ing plants, industrial engineering, and chemical compound
synthesis, when augmented by on-device analytics would
allow automated response to avert significant issues in
normal operation [9]. A successful time series classification
model is able to capture and generalize the pattern of time
series signals such that it is able to classify unseen data.
Similarly, computer vision classification models exploit the
spatial structure intrinsic to images obtained in the real
world. However, computer vision models have been shown
to make incorrect predictions on the seemingly correct in-
put, which is termed as an adversarial attack. Utilizing a
variety of adversarial attacks, complex models are tricked
to incorrectly predict the wrong class label. This is a serious
security issue in neural networks widely used for vision-
based tasks where adding slight perturbations or carefully
crafted noise on an input image can mislead the image
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classification algorithm to make highly confident, yet wildly
inaccurate predictions [10, 11]. This has been a growing
concern in the Computer Vision field, where Deep Neural
Networks (DNN) have been shown to be particularly sus-
ceptible to attacks [12, 13]. While DNNs are state-of-the-
art models for a variety of classification tasks in several
fields, including time series classification [14]–[16], these
vulnerabilities harmfully impact real-world applicability in
domains where secure and dependable predictions are of
paramount importance [10, 17]. Compounding the severity
of this issue, recent work by Papernot et al. has shown that
adversarial attacks on a particular computer vision classifier
can easily be transferred into other similar classifiers [18].
Only recently has the focus of attacks been shifted to Time
Series classification models based on deep neural networks
and classical models [12].

Several adversarial sample crafting techniques have
been proposed to trick various image classification models
that rely on DNN (state-of-the-art models for computer vi-
sion). Most of these techniques target the gradient informa-
tion from the DNNs, which make them susceptible to these
attacks [19]–[21]. Currently, new research is being done in
generating natural language adversarial samples [22, 23].
This is extremely difficult due to the semantic-preserving
perturbations. Even though time series classification models
and natural language processing (NLP) models use simi-
lar deep learning modules (1D CNN, LSTM) the domains
are completely different. Further, NLP models work better
than time series classification models on discrete input
data because they model different patterns and structures.
While adversarial attacks on NLP models which accept
discrete tokens as input has been well studied, there has
been relatively little study on adversarial attacks on time
series models, which accept real values time series sequence
as input. Generating adversarial samples for time series
classification model has not been studied as much, in spite
of the potentially large security risk they may possess. One
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major security concern exists in voice recognition tasks that
convert speech-to-text. Carlini and Wagner [24] show how
speech-to-text classifiers can be attacked. In addition, they
provide various audio clips where a speech-to-text classifier,
DeepSpeech, is not able to correctly detect the speech.Other
security concerns can exist in healthcare devices that use
time series classification algorithms, where it can be tricked
into misdiagnosing patients that can affect the diagnosis
of their ailment. Time series classification algorithms used
to detect and monitor seismic activity can be manipulated
to create fear and hysteria in our society. Wearables that
use time series data to classify activity of the wearer can
be fooled into convincing the users they are doing other
actions. Most of the current state-of-the-art time series clas-
sification algorithms are classical approaches, such as 1
Nearest Neighbor - Dynamic Time Warping (1-NN DTW)
[25], Kernel SVMs [26], or sophisticated methods such as
Weasel [27], COTE [28], and Fast-Shapelet [29]. However,
DNNs are fast becoming excellent time series classifiers due
to their simplicity and effectiveness. The traditional time
series classification models are harder to attack as it can
be considered a black-box model with a non-differentiable
internal computation. As such, no gradient information can
be exploited. However, DNN models are more susceptible
to white-box attacks as their gradient information can easily
be exploited. A white-box attack is where the adversary is
“given access to all elements of the training procedure” [21]
- which includes the training dataset, training algorithm,
the parameters and weights of the model, and the model
architecture itself [21]. In other words, during a white-
box attack, the attacker has full knowledge about the time
series classification model (parameters, hyper-parameters,
architecture, etc). Conversely, a black-box attack only has
access to the target model’s training procedure and model
architecture [21]. During a black-box attack, the attacker has
almost no knowledge of the time series classification model.
In some cases, the only knowledge known when performing
black-box attacks is the length of the input time series data.
In this paper, we propose a black-box and a white-box attack
that can attack both classical and deep learning time series
classification state-of-the-art models.

In this work, we propose a proxy attack strategy on a
target classifier via a student model, trained using standard
model distillation techniques to mimic the behavior of the
target classical time series classification models. The “stu-
dent” network is the neural network distilled from another
time series classification model, called the “teacher” model,
that learns to approximate the output of the teacher model.
Once the student model has been trained, our proposed ad-
versarial transformation network (ATN) can then be trained
to attack this student model. We apply our methodologies
onto 1-NN DTW, Fully Connected Network and Fully Con-
volutional Network (FCN) that are trained on 42 University
of California Riverside (UCR) datasets [9]. When compared
to a Baseline adversarial attack (Fast Gradient Sign Method),
our proposed attack is able to generate a larger fraction of
successful adversarial black-box attacks. Further, a simple
defense mechanism is devised to reduce the fraction of
successful adversarial samples on various time series clas-
sification attacks. Finally, we recommend future researchers
that develop time series classification models to consider

model robustness as an evaluative metric and incorporate
adversarial data samples into their training data sets in
order to further improve resilience to adversarial attacks.

The remainder of this paper is structured as follows:
Section 2 provides a brief background on a couple time
series classification models and background information on
a few adversarial crafting techniques used on computer
vision problems. Section 3 details our proposed method-
ologies and Section 4 presents and explains the results of
our proposed methodologies on a couple of time series
classification models. Section 5 concludes the paper and
proposes future work.

2 BACKGROUND & RELATED WORKS

2.1 Time Series Classification Models

2.1.1 1-NN Dynamic Time Warping

The equations and definitions below are obtained from Kate
et al. [30] and Xi et al. [8]. Dynamic Time Warping is a
measure of similarity between 2 time series, Q and C , which
is detected by finding their best alignment. Time series Q
and C are defined as:

Q = q1, q2, q3, ..., qi, ..., qn (1)
C = c1, c2, c3, ..., ci, ..., cm. (2)

To align both the time series data, the distance between
each timestep ofQ andC is calculated, (qi−cj)2, to generate
a n-by-m matrix. In other words, the ith and jth of the
matrix is the qi and cj . The optimal alignment between
Q and C is considered the warping path, W , such that
W = w1, w2, w3, ..., wk, ..., wK . The warping path is com-
puted such that,

1) w1 = (1, 1),
2) wk = (n,m)k,
3) given wk = (a, b) then wk−1 = (a′, b′) where 0 ≤

a− a′ ≤ 1 and 0 ≤ b− b′ ≤ 1.

The optimal alignment is the warping path that mini-
mizes the total distance between the aligning points,

DTW (Q,C) = argmin
W=w1,w2,...,wK

√√√√√ k∑
k=1,wk=(i,j)

(qi − cj)2.

(3)

2.1.2 Fully Convolutional Network

The Fully Convolutional Network (FCN) is one of the ear-
liest deep learning time series classifier [31]. It contains 3
convolutional layers, with convolution kernels of size 8, 5
and 3 respectively, and emitting 128, 256 and 128 filters
respectively. Each convolution layer is followed by a batch
normalization [32] layer that is applied with a ReLU activa-
tion layer. A global average pooling layer is employed after
the last ReLU activation layer. Finally, softmax is applied to
determine the class probability vector.
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2.2 Adversarial Transformation Network
Several methods have been proposed to generate adversar-
ial samples that attack deep neural networks that are trained
for computer vision tasks. Most of these methods use the
gradient with respect to the image pixels of these neu-
ral networks. Baluja and Fischer [33] propose Adversarial
Transformation Networks (ATNs) to efficiently generate an
adversarial sample that attacks various networks by training
a feed-forward neural network in a self-supervised method.
Given the original input sample, ATNs modify the classifier
outputs slightly to match the adversarial target. ATN works
similarly to the generator model in the Generative Adver-
sarial Training framework.

According to Baluja and Fischer et al. [33], an ATN can be
parametrized as a neural network gf (x) : x→ x̂, where f is
the target model (either a classical model or another neural
network) which outputs either a probability distribution
across class labels or a sparse class label, and x̂ ∼ x, but
argmax f(x) 6= argmax f(x̂). To find gf , we minimize the
following loss function :

L = β ∗ Lx(gf (xi), xi) + Ly(f(gf (xi)), f(xi)) (4)

where Lx is a loss function on the input space (e.g. L2 loss
function), Ly is the specially constructed loss function on the
output space of f to avoid learning the identity function, xi
is the i-th sample in the dataset and β is the weighing term
between the two loss functions.

It is necessary to carefully select the loss function Ly on
the output space to successfully avoid learning the iden-
tity function. Baluja and Fischer et al. [33] define the loss
function Ly as Ly(y′, y) = L2(y′, r(y, t)), where y = f(x),
y′ = f(gf (x)), t is the index of the target class such that
t ∈ [1 . . . C], where C is the number of classes and r(·) is a
reranking function that modifies y such that yk < yt,∀k 6= t.
This reranking function r(y, t) can either be the simple
one hot encoding function onehot(t) or be formulated to
take advantage of the already present y to encourage better
reconstruction. We therefore utilize the reranking function
proposed by Baluja and Fischer et al. [33], which can be
formulated as:

rα(y, t) = norm

{
α ∗max y, if k = t

yk, otherwise

}
k∈y

 (5)

where α > 1 is an additional hyperparameter which defines
how much larger yt should be than the current max classi-
fication and norm is a normalizing function that rescales its
input to be a valid probability distribution

2.3 Transferability Property
Papernot et al. [18] propose a black-box attack by training a
local substitute network, s, to replicate or approximate the
target DNN model, f . The local substitute model is trained
using synthetically generated samples and the output of
these samples are labels from f . Subsequently, s is used
to generate adversarial samples that it misclassifies. Gen-
erating adversarial samples for s is much easier, as its full
knowledge/parameters are available, making it susceptible
to various attacks. The key criteria to successfully generate
adversarial samples of f is the transferability property,

where adversarial samples that misclassify s will also mis-
classify f .

2.4 Knowledge Distilation

Knowledge distillation, first proposed by Bucila et al. [34],
is a model compression technique where a small model, s,
is trained to mimic a pre-trained model, f . This process
is also known as the model distillation training where the
teacher is f and the student is s. The knowledge that is
distilled from the teacher model to the student model is
done by minimizing a loss function, where the objective of
the student model is to imitate the distribution of the class
probabilities of the teacher model. Hinton et al. [35] note that
there are several instances where the probability distribution
is skewed such that the correct class probability would have
a probability close to 1 and the remaining classes would
have a probability closer to 0. Hence, Hinton et al. [35]
recommend computing the probabilities qi from the pre-
normalized logits zi, such that:

qi = σ(z;T ) =
exp (zi/T )∑
j exp (zj/T )

(6)

where T is a temperature factor normally set to 1. Higher
values of T produce softer probability distributions over
classes. The loss that is minimized is the model distillation
loss, further explained in Section 3.3.

3 METHODOLOGY

3.1 Gradient Adversarial Transformation Network

In this work, we employ distinct methodologies for white-
box and black-box attacks, in order to adhere to a strictly
realistic set of limitations in black-box attacks. For both
methodologies, we incorporate Adversarial Transformation
Networks (ATN) [33] as a generative neural network that
accepts an input time series sample x and transforms it to
an adversarial sample x̂.

An Adversarial Transformation Network can be formu-
lated as a neural network gf (x) : x → x̂, where f is
the model that will be attacked. We further augment the
information available to the ATN with the gradient of the
input sample x with respect to the softmax scaled logits of
the target class predicted by the attacked classifier. We can
therefore formally define a Gradient Adversarial Transfor-
mation Network (GATN) as a neural network parametrized
as gf (x, x̃) : [x; x̃]→ x̂, where:

x̃ =
∂ ft
∂ x

(7)

such that x ∈ RT is an input time series of maximum
length T , ft represents the probability of the input time
series being classified as the target class, t, and [ ; ] represents
the concatenation operation of two vectors. GATN computes
the gradient of the input with respect to the output as the
objective of an adversarial network is to learn the pertur-
bations necessary to alter the input in order to affect the
classification outcome. Hence, with the availability of the
input gradient x̃, the Gradient Adversarial Transformation
Network can better construct adversarial samples that can
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affect the targeted model while reducing the overall pertur-
bation added to the sample. Therefore we utilize the GATN
model for all of our attacks.

A significant issue with the above formulation of
the GATN is the non-differentiability of classical models.
Distance-based models such as 1-NN Dynamic Time Warp-
ing do not have the notion of gradients during either train-
ing or evaluation. Therefore, we cannot directly compute
the gradient of the input (x̃) with respect to the 1-NN DTW
model f . We discuss the solution to this issue in Section 3.3,
by building a student neural network s which approximates
the predictions of the non-differentiable classical classifier f .

Fig. 1: The top diagram shows the methodology of training
the model distillation used in the white-box and black-box
attacks. The bottom diagram is the methodology utilized to
attack a time series classifier.

3.2 Black-box & White-box Restrictions

While this formulation of the GATN is sufficient for white-
box attacks where we have access to the attacked model f
or the student model s, this assumption is unrealistic in the
case of black-box attacks. For a black-box, we are not per-
mitted access to either the internal model (a neural network
or a classical model) or to the dataset that the model was
trained on. Furthermore, for black-box attacks, we impose a
restriction on the predicted labels, such that we utilize only
the class label predicted, and not the probability distribution
produced after softmax scaling (for neural networks), or
the scaled probabilistic approximations of classical model
predictions.

To further restrict ourselves to realistic attack vectors, we
stratify the available dataset D, which will be used to train
the GATN, into two halves, such that we train the GATN
on one subset, Deval, and are able to perform evaluations
on both this train set and the wholly unseen test set, Dtest.
Note that this available datasetD is not the dataset on which
the attacked model f was trained on. As such, we never
utilize the train set available to the attacked classifier to

either train or evaluate the GATN model. In order to satisfy
these constraints on available data, we define our available
dataset D as the test set of the UCR Archive [9]. As the
test set was never used to train any attacked model f , it is
sufficient to utilize it as an unseen dataset. We then split the
test dataset into two class-balanced halves, Deval and Dtest.
Another convenience is the availability of test set labels,
which can be harnessed as a strict check when evaluating
adversarial generators.

When we evaluate under the constraints of black-boxes,
we further limit ourselves to “unlabeled” train sets, where
we assume the available dataset is unlabeled, and thereby
utilize only the predicted label from the attacked classifier
f to label the dataset prior to attacks. We state this as an
important restriction, considering that it is far more difficult
to freely obtain or create datasets for time series than for
images which are easily understood and interpreted. For
time series, significant expertise may be required to distin-
guish one sample amongst multiple classes, whereas natural
images can be coarsely labeled with relative ease without
sophisticated equipment or expertise.

3.3 Training Methodology

A chief consideration during training of ATN or GATN is
the loss formulation on the prediction space (Ly) is heavily
influenced by the reranking function r(·) chosen. If we opt
for the one hot encoding of the target class, we lose the
ability to maintain class ordering and the ability to adjust the
ranking weight (α) to obtain adversaries with less distortion.
However, to utilize the appropriate reranking function, we
must have access to the class probability distribution, which
is unavailable to black-box attacks. It may not even be pos-
sible to compute for certain classical models such as 1-NN
DTW which uses distance-based computations to determine
the nearest neighbor.

To overcome this limitation, we employ knowledge dis-
tillation as a mechanism to train a student neural network s,
which is trained to replicate the predictions of the attacked
model f . As such, we are required to compute the predic-
tions of the attacked model on the dataset we possess just
one time, which can be either class labels or probability
distribution over all classes. We then utilize these labels
as the ground truth labels that the student s is trained to
imitate. In case the predictions are class labels, we utilize
one hot encoding scheme to compute the cross entropy
loss, otherwise, we try to imitate the probability distribution
directly. It is to be noted that the student model shares the
training dataset Deval with the GATN model.

As suggested by Hinton et al. [35], we describe the
training scheme of the student as shown in Figure 1. We
scale the logits of the student s and teacher f (iff the teacher
provides probabilities and it is a white-box attack) by a
temperature scaling parameter τ , which is kept constant at
10 for all experiments. When training the student model, we
minimize the loss function defined as:

Ltransfer = γ ∗ Ldistillation + (1− γ) ∗ Lstudent (8)
Ldistillation = H(σ(zf ;T = τ), σ(zs;T = τ)) (9)

Lstudent = H(y, σ(zs;T = 1)) (10)
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where H is the standard cross entropy loss function, zs
and zf are the un-normalized logits of the student (s) and
teacher (f ) models respectively, σ(·) is the scaled-softmax
operation described in Equation (6), y is the ground truth
labels, and γ is a gating parameter between the two losses
and is used to maintain a balance between how much the
student s imitates the teacher f versus how much it learns
from the hard label loss. When training a student as a white-
box attack, we set γ to be 0.5, allowing the equal weight to
both losses, whereas for a black-box attack, we set γ to be
1. Therefore for black-box attacks, we force the student s
to only mimic the teacher f to the limit of its capacity. In
setting this restriction, we limit the amount of information
that may be made available to the GATN.

Once we have a student model s which is capable of
simulating the predictions of the attacked model f , we then
train the GATN using this student model. Figure 1 shows
the methodology of training such a model. Since the GATN
requires not just the original sample x but also the gradient
of that sample x̃ with respect to the predictions for the
targetted class, we require two forward passes from the
student model. The first forward pass is simply to obtain the
gradient of the input x̃, as well as the predicted probability
distribution of the student y′. The adversarial sample crafted
(X̂) is then used in a second forward pass to compute
the predicted probability distribution of the student with
respect to the adversarial sample, ŷ′. We minimize the
weighted loss measure L defined in Section 2.2 in order to
train the GATN model.

3.4 Evaluation Methodology

Due to the different restrictions imposed between available
information depending on whether the attack is a white-box
or black-box attack, we train the GATN on one of two mod-
els. We assert that we train the GATN by attacking the target
neural network f directly only when we perform a white-
box attack on a neural network. In all other cases, whether
the attack is a white-box or black-box attack, and whether
the attacked model is a neural network or a classical model,
we select the student model s as the model which is attacked
to train the GATN, and then use the GATN’s predictions
(x̂) to check if the teacher model f is also attacked when
provided the predicted adversarial input (x̂) as a sample.

During evaluation of the trained GATN, we compute the
number of adversaries of the attacked model f that have
been obtained on the training set Deval. During the evalua-
tion, we can measure any metric under two circumstances.
Provided a labeled dataset which was split, we can perform
a two-fold verification of whether an adversary was found
or not. First, we check that the ground truth label matches
the predicted label of the classifier when provided with an
unmodified input (y = y′ when input x is provided to
f ), and then check whether this predicted label is different
from the predicted label when provided with the adversarial
input (y′ 6= ŷ′ when input x̂ is provided to f ). This ensures
that we do not count an incorrect prediction from a random
classifier as an attack.

Another circumstance is that we do not have any labeled
samples prior to splitting the dataset. This training set is an
unseen set for the attacked model f , therefore we consider

that the dataset is “unlabeled”, and assume that the label
predicted by the base classifier is the ground truth (y = y′

by default, when sample x is provided to f ). This is done
prior to any attack by the GATN and is computed just once.
We then define an adversarial sample as a sample x̂ whose
predicted class label is different than the predicted ground
truth label (y′ 6= ŷ′, when sample x̂ is provided to f ). A
drawback of this approach is that it is overly optimistic
and rewards sensitive classifiers that misclassify due to very
minor alterations.

In order to adhere to an unbiased evaluation, we chose
the first option, and utilize the provided labels that we know
from the test set to properly evaluate the adversarial inputs.
In doing so, we acknowledge the necessity of a labeled test
set, but as shown above, it is not strictly necessary to follow
this approach.

4 EXPERIMENTS AND RESULTS

All methodologies were tested on 42 benchmark datasets for
time series classification found in the UCR repository. The 42
datasets selected were all from the types “Sensor”, “ECG”,
“EOG”, and “Hemodynamics”, where an adversarial attack
is a potential security concern. The 42 datasets contain data
with application varying from classifying chlorine concen-
tration to earthquakes. The ECG datasets contain a few time
series classification problems that require classification of
humans with heart conditions or Myocardial Infarctions.
A couple of the EOG and Hemodynamics datasets require
the classification of Japanese Katakana strokes and heart air
pressure of pigs respectively. Further detailed information
on these datasets can be found online [9]. These 42 datasets
are all the datasets in all the domains in the repository that
possess a security concern. With the exception of images and
motion, we believe the remaining domains do not possess
a serious security concern realistically. Adversarial attacks
in the domain of images and motion is well studied and
is the reason why the proposed time series classification
adversarial methodologies are not used upon it.

We evaluate based on two criterion, the mean squared er-
ror between the training dataset and the generated samples
(lower is better) and the fraction of successful adversaries
(higher is better). For all experiments, we keep α, the rerank-
ing weight, set to 1.5, the target class set to 1, and perform a
grid search over 5 possible values of β, the reconstruction
weight term, such that β = 10−b; b ∈ {1, 2, 3, 4, 5}. In
addition, all student models are trained only using Deval.
The codes and weights of all models are available at
https://github.com/houshd/TS Adv

4.1 Experiments
We select both neural networks as well as traditional models
as the attacked model f . For the attacked neural network,
we utilize a Fully Convolutional Network, whereas for
the base traditional model, 1NN-Dynamic Time Warping
Classifier is utilized.

To maintain the strictest definition of the black and
white-box attacks, we utilize only the discrete class label
of the attacked model for black-box attacks and utilize the
probability distribution predicted by the classifier for white-
box attacks. The only exception where a student-teacher
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network is not used is when performing a white-box attack
on a FCN time series model, as the gradient information of a
neural network can be directly exploited by an Adversarial
Transformation Network (ATN). The performance of the
adversarial model is evaluated on the original time series
classification “teacher” model.

For every student model we train, we utilize the LeNet-5
architecture [36]. The student models are trained only using
Deval. We define a LeNet-5 time series classifier as a classical
Convolutional Neural network following the structure :
Conv (6 filters, 5x5, valid padding) - Max Pooling - Conv (16
filters, 5x5, valid padding) - Max Pooling - Fully Connected
(120 units, relu) - Fully Connected (84 units, relu) - Fully
Connected (number of classes, softmax).

The fully convolutional network is based on the FCN
model proposed by Wang et al. [31]. It is comprised of 3
blocks, each comprised of a sequence of Convolution layer
- Batch Normalization - ReLU activations. All convolutional
kernels are initialized using the uniform he initialization
proposed by He et al. [37]. We utilize [128, 256, 128] filters
and kernel sizes of [8, 5, 3] to be consistent.

A strong determinisitic baseline model to classifiy time
series is 1-NN DTW with 100% warping window. Due to its
reliance on a distance matrix as a means of its classification,
it cannot easily be used to compute an equivalent soft prob-
abilistic representation. Since white-box attacks have access
to the probability distribution predicted for each sample,
we utilize this distance matrix in the computation of an
equivalent soft probabilistic representation. The equivalent
representation is such that if we compute the top class (class
with highest probability score) on this representation, we
get the exact same result as selecting the 1-nearest neighbor
on the actual distance matrix.

To compute this soft probabilistic representation, con-
sider a distance matrix V computed using a distance mea-
sure such as DTW between all possible pairs of samples
between the two datasets being compared.

Algorithm 1 is an intermediate normalization algorithm
which accepts a distance matrix V and the class labels of
the training set y as inputs and computes an equivalent
probabilistic representation that can directly be utilized
to compute the 1-nearest neighbor. The Soft−1NN algo-
rithm selects all samples that belong to a class ci, where
i ∈ {1, . . . , C} as vc, computes the maximum over all train
samples for that class and appends the vector vc max to the
list Vc. The concatenation of all of these lists of vectors in Vc
then represents the matrix V ′, on which we then apply the
softmax function, as shown in Equation 6 with T set to 1,
to represent this matrix V ′ as a probabilistic equivalent of
the original distance matrix V .

An implicit restriction placed on Algorithm 1 is that
the representation is equivalent only when computing the
1-nearest neighbor. It cannot be used to to represent the
K-nearest neighbors and therefore cannot be used for K-
nearest neighbor classification. However, in time series clas-
sification, the general consensus is on the use of 1-nearest
neighbor classifiers and its variants to classify time series
[6, 7, 25, 28, 38]. While the above algorithm has currently
been applied to convert the 1NN-DTW distance matrix, it
can also be applied to normalize any distance matrix utilized
for 1-NN classification algorithms.

Algorithm 1: Equivalent probabilistic representa-
tion of the distance matrix for 1-nearest neighbor
classification
1 Algorithm: Soft-1NN (V, y)

Data: V is a distance matrix of shape [Ntest, Ntrain]
and y is the train set label vector of length
Ntrain

Result: Softmax normalized predictions p of shape
[Ntest, C] and the discrete label vector q of
length Ntest

2 begin
3 V ←− (−V )

4 uniqueClasses = Unique(y) //class labels
5 Vc = []

6 for ci in uniqueClasses do
7 vc = V(y=ci) //[Ntest, Ntrain(y = ci)]
8 vc max = max(vc) //[Ntest]
9 Vc.append(vc max)

10 end

11 V’ = concatenate(Vc) // [Ntest,number of classes]
12 p = softmax(V’) // [Ntest,number of classes]
13 q = argmax(p) // [Ntest]

14 return (p, q)
15 end

4.2 Results

Figures 2 and 3 depict the results from white-box attacks on
1-NN DTW and FCN that is applied on 42 UCR datasets.
Further, Figures 4 and 5 represent the results from black-
box attacks on 1-NN DTW and FCN classifiers that are
trained on the same 42 UCR datasets. The detailed results
can be found in Appendix A. The proposed methodology
is successfully in capturing adversaries on all datasets. An
example of an adversarial attack on the dataset “FordB” is
shown in Figure 6.

4.2.1 Fraction of Successful Adversaries

The fraction of successful adversaries (the number of suc-
cessful adversaries divided by the total number of correctly
classified samples by the original classifier) and amount
of perturbation per sample in each dataset can increase or
decrease depending on the hyper-parameters that are tested
on. For example, the dataset “Trace” has 0 adversaries for
most of the attacks (black-box attack on 1-NN DTW, white-
box attack on 1-NN DTW, black-box attack on FCN) when
the Target Class is set to 1. However, if the target class is
changed to 2, the number of adversaries generated increases
to 9,3,1,37 for a black-box attack on 1-NN DTW, white-
box attack on 1-NN DTW, black-box attack on FCN and
white-box attack on FCN, respectively. These numbers can
be higher if the hyper-parameters are changed. In addition,
due to the loss function of the ATN, the target class has a
significant impact on the adversary being generated. It is
easier to generate adversaries for time series classes that are
similar to each other.

A Wilcoxson signed-rank test is utilized to compare the
fraction of successful adversaries generated by white-box
and black-box attacks on FCN and 1-NN classifiers that
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Fig. 2: White-box attack on 1-NN DTW that is trained on all 42 datasets

Fig. 3: White-box attack on FCN that is trained on all 42 datasets
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Fig. 4: Black-box attack on 1-NN DTW that is trained on all 42 datasets

Fig. 5: Black-box attack on FCN that is trained on all 42 datasets
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Fig. 6: A sample black-box and white-box attack on an FCN and 1-NN DTW classifier that is trained on the dataset “FordB”.
The last row of the figure depicts the nearest neighbor of the original and adversarial time series.

are trained on the 42 datasets, summarized in Table 1. Our
results indicate that the FCN classifier is more susceptible
to a white-box attack compared to a white-box attack on
1-NN DTW. It is to be noted that the white-box attack on
the FCN classifier generates significantly more fraction of
successful adversaries than its counterparts. This is because
the white-box attack is directly on the FCN model and
not on a student model that approximates the classifier
behavior. We observe that the fraction of successful ad-
versarial samples obtained from black-box attacks on FCN
classifiers are approximately the same as the fraction of
successful adversarial samples from either white-box or
black-box attacks on DTW classifiers. A Wilcoxson signed-
rank test confirms this observation by showing no statistical
difference in the fraction of successful adversarial samples
detected due to the black-box or white-box attacks on 1-
NN DTW classifiers versus the fraction of successful adver-
sarial samples obtained via black-box attacks on the FCN
classifiers. In summary, we observe the largest fraction of
successful adversarial samples for the FCN model when
under a white-box attack. We also detect that 1-NN DTW

classifiers under either attack and FCN classifiers under a
black-box attack have approximately the same number of
adversarial samples. These observations are important for
future researchers who develop time series classifiers, as the
fraction of successful adversarial samples generated under
each methodology can be used as an evaluative metric to
measure the robustness of a model.

TABLE 1: Wilcoxson signed-rank test comparing the fraction
of successful adversarial between the different attacks

White-box 1-NN DTW Black-box FCN White-box FCN
Black-box 1-NN DTW 2.278E-01 9.850E-02 5.949E-08
White-box 1-NN DTW 1.345E-01 2.731E-07

Black-box FCN 3..198E-03

4.2.2 Comparison to a Baseline Model
The proposed architectures are compared to a baseline ad-
versarial attack, Fast Gradient Sign Method (FGSM) [39].
FGSM requires the gradient of each model. The black-box
attacks and attacks on classical time series classification
models is difficult when using it as it does not have access
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TABLE 2: Wilcoxson signed-rank test comparing GATN
with FGSM

FGSM Instead of GATN
GATN Black-box 1-NN DTW 2.973E-03
GATN White-box 1-NN DTW 1.039E-01

GATN Black-box FCN 1.961E-07
GATN White-box FCN 2.664E-05

to its gradient. However, this is mitigated when applying
it on the student network. We apply a Wilcoxson signed-
rank test to compare the fraction of successful adversaries
generated by FGSM to the fraction of successful adversaries
generated by the respective black-box or white-box attack
on FCN or 1-NN DTW using GATN. This is summarized in
Table 2. The black-box attack on FCN and 1-NN DTW using
GATN generates significantly more adversaries than when
applying FGSM. However, FGSM generates significantly
more adversaries than GATN when performing a white-box
attack on FCN. A white-box attack on FCN using GATN
performs statistically the same as a white-box attack on
1-NN DTW classifiers using FGSM. This indicates FGSM
works better when the actual gradients of the classifier are
accessible. GATN works better on black-box attacks.

4.2.3 Mean Squared Error (MSE)
We use MSE as a metric to depict how much perturbation is
required for each dataset. Since, each dataset is normalized
with a mean of 0 and a variance of 1, a lower MSE is
better as each sample requires a lesser amount of pertur-
bation. Hence, the optimal scenario would be when the
MSE is closer to 0. The average MSE of adversarial samples
after black-box attacks on FCN classifiers is significantly
lower than the average MSE of the adversarial samples
obtained via black-box and white-box attacks on 1-NN DTW
classifiers, as observed in Table 5. A lower MSE indicates
the black-box attack on FCN classifiers requires minimal
perturbations per time series sample in comparison to the
attacks on 1-NN DTW classifiers.

4.2.4 Defense

TABLE 3: Wilcoxson signed-rank test comparing testing
accuracy of various adversarial attacks on initial time series
classifiers and time series classifiers trained with adversarial
samples

After Defense
Black-box 1-NN DTW 7.656E-01
White-box 1-NN DTW 1

Black-box FCN 7.498E-01
White-box FCN 2.187E-03

TABLE 4: Wilcoxson signed-rank test comparing various
adversarial attacks on initial time series classifiers and time
series classifiers trained with adversarial samples

After Defense
Black-box 1-NN DTW 3.394E-02
White-box 1-NN DTW 5.197E-01

Black-box FCN 1.546E-03
White-box FCN 4.016E-06

Defending against these adversarial attacks is important.
We apply a simple defense to provide a starting point to
prevent these attacks for future researchers.

Initially, a time series classification model is trained on
the original training data. Subsequently, a black-box and
white-box attack is performed on this model is using the
original training data. We append the successful adversaries
onto the training data and retrain the original time series
classification model. Finally, a white-box and black-box at-
tack is done on the new time series model.

Let us consider the testing accuracy (Deval and Dtest)
of a model that has not undergone adversarial training (an
undefended model that has not been trained on adversarial
samples from a white box attack but has adversaries) as
the baseline of comparison. After adversarial training of the
above model, we find that the accuracy on the testing sets is
better. However, as the defense strategy is not particularly
strong, we also find that the increase in accuracy is not
substantial. A summary of the Wilcoxon signed-rank test
comparing the testing accuracy of all the attacks on both the
classifiers using the defense mechanism are shown in Table
3. In addition, the fraction of successful adversarial samples
generated by the white-box attack on 1-NN DTW classifiers
does not significantly decrease after the defense mechanism
(summarized in Table 4). The defense mechanism was able
to make FCN classifiers more robust towards black-box and
white-box attacks.

TABLE 5: Wilcoxson signed-rank test comparing the MSE
between the different attacks

White-box 1-NN DTW Black-box FCN White-box FCN
Black-box 1-NN DTW 7.362E-01 3.567E-02 1.240E-01
White-box 1-NN DTW 2.085E-03 6.856E-02

Black-box FCN 3.713E-01

4.2.5 Generalization
Finally, we test how well GATN generalizes onto an unseen
dataset, Dtest, such that GATN does not require any addi-
tional training. This is beneficial in situations where the time
series adversarial samples are generated in constant time of
a single forward pass of the GATN model without requir-
ing further training. Such a generalization is uncommon
to adversarial methodologies (Fast Gradient Sign Method
or Jacobian-based Saliency Map Attack [39]) because they
require retraining to generate adversarial samples. Our
proposed methodology is robust, successfully generating
adversarial samples on data that is unseen to both the GATN
and the student models, for the respective targeted time
series classification models. Figure 7 depicts the fraction
of successful adversarial samples detected, on an unseen
dataset, with a white-box and black-box attack on the 1-NN
DTW classifiers and FCN classifiers. The white-box attack
on the FCN classifier obtains the most adversarial samples
per dataset. This is followed by a white-box and black-box
attack on the 1-NN DTW, which show similar number of
adversarial samples constructed. Finally, we find that the
FCN classifier is the least susceptible to black-box attacks.

The unique consequence of this generalization is the
application of trained GATN models for attacks that are
feasible on real world devices, even for black box attacks.
The deployment of a trained GATN with the paired student
model affords a near constant-time cost of generating a
reasonable number of adversarial samples. As the forward
pass of the GATN requires few resources, and the student
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Fig. 7: Black-box and white-box attacks on FCN and 1-NN DTW classifiers that are tested on Dtest without any retraining.

model is small enough to compute the input gradient (x̃)
in reasonable time, these attacks can be constructed without
significant computation on small, portable devices. There-
fore, the fact that certain classifiers that are trained on certain
datasets can be attacked without requiring any additional
on-device training is concerning.

5 CONCLUSION & FUTURE WORK

In this paper, we extend [18] by proposing a model dis-
tillation technique to mimic the behavior of the various
classical time series classification models and an adversar-
ial transformation network to attack various time series
datasets. We also tackle the issue of non differentiable target
models (widely used in the time series domain) and propose
the student-teacher framework as a general solution to
perform a proxy attack on the target model, differentiable
or not. In addition, we study the generalization capability
of adversarial models on samples that have never before
been seen before by the adversarial model. The proposed
methodology is applied onto 1-NN DTW and Fully Con-
nected Network (FCN) that are trained on 42 University of
California Riverside (UCR) datasets. All 42 datasets were
susceptible to not-targeted attacks. The FCN model is more
prone to GATN white-box attacks than its counterparts.
GATN is able to generate a larger fraction of successful
adversarial attacks on black-box attacks than FGSM. We also
show how a simple defense mechanism is able to reduce the
fraction of successful adversarial samples on various GATN
attacks. We recommend future researchers that develop time
series classification models to consider model robustness as
an evaluative metric and to incorporate adversarial data
samples into their training data sets in order to further
improve resilience to adversarial attacks. Further research
should be done in developing models that can generate
targeted adversaries on time series classification models.
The goal of these targeted adversarial models is to gener-
ate adversaries where time series classification models will

miss-classify the adversaries into a particular label. Finally,
In all our experiments the scale of the time series data was
known to the attacker. Additional research can be done in
generating time series adversaries where the scale of the
time series data is unknown to the attacker.
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APPENDIX
DETAILED RESULTS

Dataset
Black-Box Attack
on DTW Models

White-Box Attack
on DTW Models

Black-Box Attack
on FCN Models

White-Box Attack
on FCN Models

Fraction of
Success Adv. MSE Fraction of

Success Adv. MSE Fraction of
Success Adv. MSE Fraction of

Success Adv. MSE

AllGestureWiimoteX 0.12 0.123 0.12 0.126 0.679 0.12 0.68 0.119
AllGestureWiimoteY 0.14 0.128 0.111 0.121 0.65 0.122 0.333 0.006
AllGestureWiimoteZ 0.232 0.14 0.219 0.137 0.972 0.109 0.481 0.015

Car 0.45 0.058 0.45 0.316 0.13 0.113 0.917 0.073
ChlorineConcentration 0.463 0.16 0.383 0.156 0.349 0.269 0.873 0.092

CinCECGTorso 0.111 0.048 0.125 0.051 0.281 0.049 0.843 0.067
DodgerLoopDay 0.556 0.193 0.556 0.188 0.238 0.095 0.75 0.177

DodgerLoopGame 0.073 0.164 0.109 0.157 0.265 0.026 0.5 0.172
DodgerLoopWeekend 0.046 0.141 0.062 0.143 0.032 0.137 0.766 0.12

Earthquakes 0.187 0.113 0.165 0.123 0.024 0.122 0.476 0.118
ECG200 0.216 0.141 0.216 0.226 0.222 0.138 0.543 0.254
ECG5000 0.05 0.183 0.048 0.196 1 0.153 0.949 0.146

ECGFiveDays 0.155 0.172 0.176 0.231 0.121 0.083 0.173 0.19
EOGHorizontalSignal 0.288 0.064 0.28 0.068 0.016 0.058 0.889 0.049

EOGVerticalSignal 0.297 0.065 0.297 0.063 1 0.064 0.462 0.063
FordA 0.233 0.117 0.231 0.131 0.1 0.113 0.455 0.091
FordB 0.207 0.112 0.194 0.122 1 0.119 0.532 0.113

FreezerRegularTrain 0.443 0.185 0.448 0.163 0.245 0.149 0.977 0.029
FreezerSmallTrain 0.117 0.15 0.114 0.131 0.994 0.131 0.506 0.128

Fungi 0.452 0.172 0.479 0.158 0.096 0.205 1 0.22
GesturePebbleZ1 0.239 0.134 0.224 0.125 0.161 0.129 0.385 0.159
GesturePebbleZ2 0.2 0.127 0.18 0.133 0.357 0.13 0.3 0.108

InsectWingbeatSound 0.605 0.181 0.608 0.167 0.979 0.158 0.663 0.068
ItalyPowerDemand 0.342 0.145 0.252 0.161 0.122 0.08 0.3 0.208

Lightning2 0.125 0.095 0.125 0.099 0.714 0.133 0.438 0.124
Lightning7 0.308 0.185 0.269 0.136 0.833 0.132 0.714 0.123
MoteStrain 0.084 0.334 0.083 0.134 0.168 0.143 0.12 0.264

NonInvasiveFetalECGThorax1 0.927 0.101 0.929 0.092 1 0.084 1 0.021
NonInvasiveFetalECGThorax2 0.078 0.002 0.863 0.097 0.708 0.087 1 0.008

Phoneme 0.263 0.074 0.255 0.074 0.231 0.075 0.737 0.068
PickupGestureWiimoteZ 0.357 0.15 0.286 0.144 0.091 0.135 0.909 0.107

PigAirwayPressure 0.714 0.038 0.429 0.039 0.111 0.04 0.556 0.039
PigArtPressure 0.333 0.043 0.167 0.044 0.011 0.038 0.989 0.037

PigCVP 0.273 0.044 0.273 0.042 0.043 0.041 0.955 0.039
Plane 0.353 0.201 0.373 0.207 0.157 0.273 0.863 0.243

ShakeGestureWiimoteZ 0.111 0.142 0.111 0.144 0.125 0.122 0.813 0.125
SonyAIBORobotSurface1 0.058 0.137 0.079 0.132 0.436 0.168 0.451 0.155
SonyAIBORobotSurface2 0.1 0.151 0.118 0.184 0.16 0.179 0.02 0.042

StarLightCurves 0.196 0.313 0.154 0.449 0.889 0.064 0.588 0.059
Trace 0 0.136 0 0.111 0 0.078 1 0.117

TwoLeadECG 0.307 0.194 0.378 0.201 0.497 0.108 0.575 0.29
Wafer 0.589 0.204 0.414 0.182 1 0.133 0.991 0.42


