
Cost-Effective Protocols for Enforcing Causal Consistency in

Geo-Replicated Data Store Systems

by

Ta-Yuan Hsu
B.A. (National Central University)

M.S. (Illinois Institute of Technology)

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Chicago, 2021

Chicago, Illinois

Defense Committee:
Prof. Ajay D. Kshemkalyani, Chair and Advisor
Prof. Chris Kanich, Computer Science
Prof. Balajee Vamanan, Computer Science
Prof. Zhao Zhang
Prof. Zhichun Zhu

Copyright by

Ta-Yuan Hsu

2021

ACKNOWLEDGMENTS

I want to thank my advisor Prof. Ajay Kshemkalyani for guiding and supporting me over

the years. His mentorship has gone a long way towards providing me with an engaging and

scientifically enriching experience. His patient guidance and insightful advice have lighted the

path for me to accomplish my research goals. I would like to express my deepest gratitude to

my advisor for his continuous support, motivation, and immense knowledge throughout my life

at UIC. I would like to also thank my other committee members, Prof. Balajee Vamanan, Prof.

Chris Kanich, Prof. Zhao Zhang, and Prof. Zhichun Zhu for their support and insights towards

my research.

Finally, I also want to thank my parents and my roommates for all of the support through

this journey during the most difficult time. Their support is what makes this thesis possible.

.

iii

CONTRIBUTION OF AUTHORS

Chapter 1 presents the background of the study, statement of the problem, objectives of the

study, and organization of the thesis.

Chapter 2 surveys previous studies which are related to my research.

Chapter 3 is published in (1) having co-authors of my advisor, Prof. Ajay D. Kshemkalyani,

and Dr. Min Shen. I am the first author and responsible for all the figures, calculations, and

writings in Chapter 3. Prof. Ajay D. Kshemkalyani contributed to the writing of the papers, in

addition to the planning and structure of the work. The JAVA peer-to-peer emulation platform

was designed and performed by me. Min Shen contributed to the design of the framework and

the implementation of the illustrative example.

Chapter 4 is published in (2) having co-author of Prof. Ajay D. Kshemkalyani. I am the

first author and responsible for all the figures, calculations, and writings in Chapter 4. Prof.

Ajay D. Kshemkalyani contributed to the writing of the papers, in addition to the planning and

structure of the work. The JAVA peer-to-peer emulation platform was designed and performed

by me.

Chapter 5 is published in (3) having co-author of Prof. Ajay D. Kshemkalyani. I am the first

author and responsible for all the figures, algorithm design, and writings in Chapter 5. Prof.

Ajay D. Kshemkalyani contributed to the writing of the papers, in addition to the planning

and structure of the work. The JAVA CloudSim platform was designed and performed by me.

I also contributed to the realistic data workload crawling from Twitter.

iv

CONTRIBUTION OF AUTHORS (Continued)

Chapter 6 presents CaDRoP, Causal consistency in Dynamic Replication Optimized Pro-

tocol. I am responsible for algorithm design, simulation implementation, and performance

evaluation. The JAVA CloudSim platform was designed and performed by me.

Chapter 7 concludes this thesis work and proposes future work.

v

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Problem Motivation . 2

1.1.1 Causal Consistency Algorithms For Partially Replicated Sys-
tems . 2

1.1.2 Approximate Causal Consistency Algorithm 4
1.1.3 Cost Optimized Replication Protocol 4
1.1.4 Causal+ Consistency for Posts/Comments in Social Net-

working Platforms . 5
1.2 Contributions . 6

1.2.1 Causal Consistency Algorithms For Partially Replicated Sys-
tems . 6

1.2.2 Approximate Causal Consistency Algorithm 8
1.2.3 Cost Optimized Replication Protocol 9
1.2.4 Causal+ Consistency for Posts/Comments in Social Net-

working Platforms . 10
1.3 Thesis Outline . 11

2 RELATED WORK . 12

3 CAUSAL CONSISTENCY PROTOCOLS FOR PARTIALLY/FULLY
REPLICATED SYSTEMS . 18
3.1 Causally Consistent Memory . 18
3.2 Underlying Distributed Communication System 20
3.3 Activation Predicate . 23

3.3.1 The →co relation . 23
3.3.2 Safety . 26
3.3.3 Optimal Activation Predicate 26

3.4 Causal Consistency Algorithms 27
3.4.1 Full-Track Algorithm . 27

3.4.1.1 Data Structure . 28
3.4.1.2 Correctness and Optimality Outlines 29
3.4.1.3 Liveness . 31
3.4.1.4 Optimality of the Activation Predicate 31

3.4.2 Opt-Track Algorithm . 31
3.4.2.1 Data Structure . 37
3.4.2.2 Correctness and Optimality Outlines 40
3.4.2.3 Liveness . 41

vi

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

3.4.2.4 Optimality of the Activation Predicate 41
3.4.2.5 Optimality of Log Space and Message Overhead Space . 41

3.4.3 Opt-Track-CRP: Adapting Opt-Track Algorithm to Fully-
Replicated Systems . 42

3.4.3.1 Formula . 44
3.4.4 Complexity . 45

3.4.4.1 Full-Track Algorithm . 48
3.4.4.1.1 Message Count Complexity . 48
3.4.4.1.2 Message Space Complexity . 48
3.4.4.1.3 Time Complexity . 49
3.4.4.1.4 Space Complexity . 49

3.4.4.2 Opt-Track Algorithm . 49
3.4.4.2.1 Message Count Complexity . 49
3.4.4.2.2 Message Space Complexity . 50
3.4.4.2.3 Time Complexity . 51
3.4.4.2.4 Space Complexity . 51

3.4.4.3 Opt-Track-CRP Algorithm 52
3.4.4.3.1 Message Count Complexity . 52
3.4.4.3.2 Message Space Complexity . 52
3.4.4.3.3 Time Complexity . 52
3.4.4.3.4 Space Complexity . 53

3.4.5 Experiments . 53
3.4.5.1 Partial Replication Protocols: Meta-data size 54

3.4.5.1.1 Scalability as a Function of n . 54
3.4.5.1.2 Impact of Write Rate wrate . 55

3.4.5.2 Full Replication Protocols: Meta-data size 59
3.4.5.2.1 Scalability as a Function of n . 60
3.4.5.2.2 Impact of Write Rate wrate . 62

3.4.5.3 Partial Replication vs. Full Replication: Message Count 64
3.4.5.4 Partial Replication vs. Full Replication: Message Space

Overhead . 64

4 APPROXIMATE CAUSAL CONSISTENCY 69
4.1 Basic Idea of Approx-Opt-Track 69
4.2 Approx-Opt-Track . 71
4.3 Credit Instantiations . 75
4.4 Simulation System Model . 77

4.4.1 Process Model . 77
4.4.2 Simulation Parameters . 78
4.4.3 Process Execution . 79
4.4.4 Causal Consistency Verification 81

4.5 Simulation Results . 81

vii

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4.5.1 Violation Error Rate (Re) . 83
4.5.2 Average Message Meta-Data Size (mave) 85
4.5.3 Message Meta-Data Size Saving Rate (Rs) 90

4.6 Simulation Evaluation . 90
4.6.1 Impact of initial cr on Re . 91
4.6.2 Impact of wrate on Re . 91
4.6.3 Impact of initial cr on mave 92
4.6.4 Impact of initial cr on Rs . 93
4.6.5 Impact of replica factor rate rf on crc 95

4.7 Discussions . 96

5 A PROACTIVE, COST-AWARE, OPTIMIZED DATA REPLI-
CATION STRATEGY IN GEO-DISTRIBUTED CLOUD DATA-
STORES . 99
5.1 System Cost Model . 99

5.1.1 Adaptive Cloud Data Provider Architecture 99
5.1.2 ARIMA Configuration . 105
5.1.3 Prediction Complexity . 106

5.2 Cost Optimization Replica Placement (CORP) 107
5.2.1 CORP Algorithm . 107
5.2.2 Cost Optimization Problem 115
5.2.3 CORP + cache. 120

5.3 Performance Evaluation . 121
5.3.1 Experimental Setting . 121
5.3.2 Results and Discussion . 122

5.3.2.0.1 Cost Improvement . 127
5.3.2.0.2 Accuracy Analysis . 128
5.3.2.0.3 CORP+cache VS. CORP . 129
5.3.2.0.4 CORP+cache evaluation . 130

6 CADROP: COST OPTIMIZED CONVERGENT CAUSAL CON-
SISTENCY IN SOCIAL NETWORK SYSTEMS 133
6.1 Definitions and System Model 133

6.1.1 Causal Consistency . 133
6.2 System Design . 134

6.2.1 Convergent Conflict Handling 137
6.3 Algorithm: CaDRoP . 139

6.3.1 The Client Layer . 139
6.3.2 The Storage Layer . 140
6.3.3 Dynamic Replication Model 143

6.4 Performance Evaluation . 149
6.4.1 Results and Discussion . 151

viii

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

6.4.1.1 CaS VS. CaS+cache . 151
6.4.1.2 CaS+cache VS. CaDRoP+cache 152

6.4.1.2.1 CaDRoP+cache VS. CaDRoP 153
6.4.1.2.2 CaDRoP+cache evaluation . 153

6.4.1.3 CoCaCo VS. CaDRoP+cache 154

7 CONCLUSIONS AND FUTURE WORK 162

APPENDICES . 165
Appendix A . 166
Appendix B . 168
Appendix C . 170

CITED LITERATURE . 174

ix

LIST OF TABLES

TABLE PAGE

I Complexity measures of causal memory algorithms. 47

II Average SM and RM space overhead for Full-Track and Opt-Track
(KB) . 57

III Average SM space overhead for Opt-Track-CRP (byte) 61

IV Total message count for partial replication (Opt-Track) VS. full repli-
cation (Opt-Track-CRP) . 67

V Total message overheads for full replication (Opt-Track-CRP) and
partial replication (Opt-Track), when n=40, p=12, wrate=0.5, in the
worst case. 67

VI Total message overheads for full replication (Opt-Track-CRP) and
partial replication (Opt-Track), when n=40, p=12, wrate=0.5, in
practice. 68

VII Message meta-data structures in partial replication protocols 68

VIII Critical initial credits for the replica factor rate = 0.3. 83

IX Critical average message meta-data size mave (KB). 85

X Message meta-data size saving rates Rs when Re is close to or equal
to zero. 89

XI Critical initial credits for the replica factor rate of 0.5. 89

XII Critical initial credits for the replica factor rate of 0.2. 95

XIII Impacts of failures/partitions compared to the“no failure” case. . . . 96

XIV Definition of symbols and parameters used in the model. 119

XV Cost improvement rates of different replication modes with respect
to the standalone cache mode for different Put rates. 128

x

LIST OF TABLES (Continued)

TABLE PAGE

XVI Access number prediction accuracy by various error metrics. 129

XVII ∆saving: The cost improvement results for different Put rates show
that caching has taken an important step to improve the total system
costs. 130

XVIII ∆inc: The performance evaluation of CORP+cache compared to
OPT+cache. 131

XIX ∆inc′ : The performance evaluation of CORP compared to OPT in
steady states. 131

XX Definition of symbols and parameters used in the model. 138

XXI Cost improvement rates in different Put rates and RF values. . . . 158

XXII ∆saving: The cost improvement results for different Put rates show
that caching has taken an important step to improve the total sys-
tem costs. ∆inc: The performance evaluation of CaDRoP+cache
compared to OPT+cache. ∆inc′ : The performance evaluation of
CaDRoP compared to OPT in steady states. 159

XXIII The price cost comparisons between CoCaCo and CaDRoP+cache in
different Put rates and RF models. 161

xi

LIST OF FIGURES

FIGURE PAGE

1 False causality. 25

2 Illustration of the two conditions for destination information to be re-
dundant. 32

3 Illustration of why it is important to keep a record even if its destination
list becomes empty. For clarity, the apply and return events after each
message delivery are omitted. 37

4 In fully replicated systems, the local log will be reset after each write
operation. Also, when a write operation is applied, only the write op-
eration itself needs to be remembered. For clarity, the apply events are
omitted in this figure. 43

5 Total message meta-data space overhead as a function of n and wrate in
partial replication protocols. 55

6 Average message meta-data space overhead as a function of n with lower
wrate (0.2) in partial replication protocols. 56

7 Average message meta-data space overhead as a function of n with
medium wrate (0.5) in partial replication protocols. 57

8 Average message meta-data space overhead as a function of n with higher
wrate (0.8) in partial replication protocols. 58

9 Total message meta-data space overhead as a function of n and wrate in
full replication protocols. 60

10 Average message meta-data space overhead as a function of n with lower
wrate (0.2) in full replication protocols. 61

11 Average message meta-data space overhead as a function of n with
medium wrate (0.5) in full replication protocols. 62

12 Average message meta-data space overhead as a function of n with higher
wrate (0.8) in full replication protocols. 63

xii

LIST OF FIGURES (Continued)

FIGURE PAGE

13 Illustration of causal consistency violation if credits are exhausted. . . . 71

14 Illustration of meta-data reduction when credits are exhausted. 71

15 The Violation Error Rate for wrate = 0.2. 84

16 The Violation Error Rate for wrate = 0.5. 84

17 The Violation Error Rate for wrate = 0.8. 85

18 The Average Meta-Data Size (mave) for wrate = 0.2. 86

19 The Average Meta-Data Size (mave) for wrate = 0.5. 86

20 The Average Meta-Data Size (mave) for wrate = 0.8. 87

21 The Meta-Data Size Saving Rate (Rs) for wrate = 0.2. 87

22 The Meta-Data Size Saving Rate (Rs) for wrate = 0.5. 88

23 The Meta-Data Size Saving Rate (Rs) for wrate = 0.8. 88

24 Examples of failures (a) partition (b) message loss. 96

25 System architecture. 100

26 Architecture for adaptive cloud data provider. 103

27 Diagram for ARIMA workload-based predictor. 105

28 The Transaction Cost . 124

29 The Network Transmission Cost . 125

30 The Storage Space Cost . 126

31 The total system cost. 127

32 The system architecture. 135

33 An example with the convergence property. 156

xiii

LIST OF FIGURES (Continued)

FIGURE PAGE

34 The Transaction Cost . 156

35 The Network Transmission Cost . 158

36 The Storage Space Cost . 159

37 The Total System Cost . 160

xiv

LIST OF ABBREVIATIONS

Opt Optimal

IC Incomplete Causality

ARIMA Autoregressive Integrated Moving Average

CORP Cost Optimized Replication Protocol

cr credits

CaDRoP Causal consistency in Dynamic Replicated Opti-

mized Protocol.

xv

SUMMARY

In geo-replicated cloud computing systems, it is essential to maintain high data availability,

low latency, and fault-tolerance. In order to meet these requirements, replication mechanisms

are necessary. Therefore, the cost of replication is one of the most important factors in designing

such a system. Theoretically, the more the number of replicas for a data file, the higher the

data access availability should be. But, the cost of replication becomes greater at the same

time. It is a challenge to develop a solution to achieve the optimal trade-off between the cost

of replication and data access availability.

Causal consistency in geo-replicated systems is an interesting consistency model. Most ex-

isting works with causal consistency have focused on the full replication for the data. This

greatly simplifies the design of the algorithms to implement causal consistency. This is because

full replication protocols do not need to track transitive causal dependencies between each

pair of processes. However, partial replication protocols have several advantages, such as each

write/update operation leads to fewer messages being multicast and smaller storage overheads.

Although partial replication can avoid unnecessary network traffic and prevent decreased re-

sponsiveness, it poses big challenges to realize partial replication against full replication. This

is primarily due to the higher complexity of tracking causal consistency, resulting in additional

communication cost and larger dependency meta-data overheads. In this thesis we develop

cost-effective protocols for high performance causally consistent geo-replicated key-value data

stores in different settings.

xvi

SUMMARY (Continued)

First, we propose an optimal partial replication protocol-Opt-Track-for causal consistency

in an one-level framework. We also give a special case algorithm-Opt-Track-CRP-for causal

consistency in the full-replication case. This work provides the first evidence that explores causal

consistency for partially replicated distributed systems. Opt-Track shows better performance

on network capacity than full replication.

Next, we propose an algorithm Approx-Opt-Track which provides approximate causal con-

sistency whereby we can reduce the meta-data at the cost of some violations of causal con-

sistency. The amount of violations can be made arbitrarily small by controlling a tunable

parameter, that we call credits. We show that in return for the potential benefit, Approx-Opt-

Track provides almost the same guarantees as causal consistency, at a smaller cost.

Then, we address the problem of determining suitable replica placement on-the-fly to in-

crease the availability of data resources and maximize the system utilization. Specifically, it is

essential to load the appropriate number of replicas for different data resources at each geo-data

cluster in a particular time interval. We propose Cost Optimization Replica Placement (CORP)

algorithms to enable state-of-art proactive provisioning of data resources based on an one-step

look-ahead workload behavior pattern forecast over the distributed data storage infrastructure

using statistical techniques.

Finally, we propose a causal+ consistency protocol, CaDRoP(+cache), to support dynamic

replication, and ensure the convergence property for all comments following a post and the

causal ordering between posts with explicit causality. We evaluate CaDRoP(+cache) protocol

with realistic workloads by different PUT rates in terms of the practical price of Amazon AWS.

xvii

SUMMARY (Continued)

The results show that CaDRoP(+cache) incurs much lower cost than the statically replicated

data store in another causal+ algorithm. We further evaluate CaDRoP by comparing it with a

clairvoyant optimal replication solution.

xviii

CHAPTER 1

INTRODUCTION

Reliable distributed shared services are growing in popularity since they can improve the

availability and direct services closer to end customers so as to lower access time and drive up

customer engagement. Data replication is a critical infrastructure component commonly used

in such distributed shared repositories. By replicating data resources across different geographic

sites, this model can protect the data to ensure availability in the event of a disaster resulting

from correlated failures (4). Furthermore, an effective replication protocol must not only provide

efficient access to huge amounts of data, but also reduce access latency in large-scale cloud and

geo-replicated distributed systems. With data replication, consistency of data in the face of

concurrent reads and updates becomes an essential requirement. Recently, consistency models

have widely been utilized in the context of cloud computing with data centers and geo-replicated

storages, with product designs from industry, e.g., Google, Amazon, Microsoft, LinkedIn, and

Facebook.

There exists a spectrum of consistency models in distributed shared systems (5): linearizabil-

ity (the strongest), sequential consistency, causal consistency, pipelined RAM, slow memory,

and eventual consistency (the weakest). These consistency models represent a fundamental

trade-off between cost and convenient semantics for the application programmer. It is well

understood between having guaranteed low access latency and making sure that every client

sees a single ordering of all operations in the system (strong consistency) (6). This trade-off can

1

2

be pretty formalized in the famous CAP theorem. The CAP Theorem introduced by Brewer

(7) asserts that for a replicated, distributed data store, it is possible to provide at most two of

the three features: Consistency of replicas (C), Availability of Writes (A), and Partition toler-

ance (P). This theorem supports the major reason behind the increasing prevalence of eventual

consistency, popularized by Amazon’s Dynamo (8). This consistency model guarantees the

availability to return local results quickly if other remote replicas are unavailable. It states that

eventually, all copies of each data item converge to the same value. However, what eventual

consistency sacrifices is consistency: replicas hosted at different datacenters may have different

results with different order.

What can provide something better than eventual consistency without sacrificing low latency

or availability is causal consistency. It has been proved that causal consistency is the strongest

form of consistency that satisfies low latency, defined as the latency less than the maximum

(round-trip) wide-area delay between replicas (9). It specifies that two events that are causally

related must appear in the same order. Consider, for example, a user U posts a new photo to

his profile in a social network. Then, he comments on the photo on his timeline wall. Without

causal consistency, his friends might observe the comment but could not see this photo. It

requires extra programming efforts to prevent the inconsistent scenario at the application level.

1.1 Problem Motivation

1.1.1 Causal Consistency Algorithms For Partially Replicated Systems

There has been much research implemented and conducted in the field of causal consistency

in the context of large geo-replicated cloud storage in recent years. However, most of studies

3

assume Complete Replication and Propagation (CRP) based protocols. These protocols assume

full replication across all the sites and do not consider the case of partial replication. This is

primarily because partial replication makes it difficult to implement causal consistency, due to

having to track transitive causal dependencies between each pair of processes. Partial replication

protocols have several advantages. Specially, each write operation results in fewer messages

being multicast for savings in bandwidth, and the protocols use lesser storage for fewer system-

wide replicas for savings in system resources.

A number of algorithms for achieving causal message ordering have been previously proposed

in distributed shared memory (DSM) systems (10; 11; 12). Compared to the causal consistency

algorithms, these algorithms are for message-passing systems where application processes com-

municate with each other via sending and receiving messages. None of these causal message

ordering algorithms assume that messages get broadcast each time application processes com-

municate with each other. This is similar to partially replicated distributed shared memory

systems, where an individual application process writing a variable does not write to all sites in

the system. In both cases, the changes in one application process do not get propagated to the

entire system. These algorithms provide a good starting point for the design of our algorithms.

Furthermore, there is no study analytically comparing partial replication with full replication

in message space overheads and message counts for causal consistency.

Our goal is to devise an optimal protocol for achieving causal consistency in such systems

where the data is only partially replicated to achieve optimality in terms of the activation pred-

icate and optimizing the space overheads of dependency meta-data.

4

1.1.2 Approximate Causal Consistency Algorithm

In the real world, the characteristics of causal consistency and partial replication are highly

useful for modern social networking applications. Data replication costs are an important factor

in overall storage system performance. Partial replication can effectively reduce the replication

costs, especially in multimedia-oriented social networks (e.g., Instagram). Causal consistency

improves social user experience since actions appear to everyone in the correct order. For

large-sized files being written, the net meta-data overhead is negligible in terms of the net

meta-data overhead as a fraction of the total message size. However, we recognize that for

some applications where the data size is very small, such as text posts in Facebook or Twitter,

the size of the meta-data can be a problem.

The second problem is to consider the text type of data in social networks. We aims to

further reduce the size of the meta-data for maintaining causal consistency in partially replicated

systems, based on the solution to the previous problem.

1.1.3 Cost Optimized Replication Protocol

The delivery of cloud computing resources as a utility provides users with flexible services

in a transparent manner, with cheap costs and more customized operations. One may pay

for such demand resources to cloud data providers (CDPs) as per their usage like a utility. As

outsourcing continues to rise in popularity, the widespread adoption of cloud-based data services

raises the challenges of provisioning appropriate replicas of data resources situated at different

geographical locations. As the number of replicas of a target data item increases, the overheads

of loading and maintaining these replicas become higher and expensive. Thus, a fine balance

5

of the advantages and overheads of replication is needed. However, static replication of data

resources in dynamic environments having time-varying workloads is ineffective for optimizing

system utilization. For example, the operating behaviors of social media applications vary based

on different time intervals (e.g., Monday vs. Sunday). Adaptive data replication strategies

could potentially resolve the above issue by enabling dynamic provisioning of data resources

to applications based upon the patterns of workload traces. The challenge of dynamic replica

provisioning is the determination of the following three aspects. The first is to select which

data items need to be replicated. The second is to select how many replicas should be loaded

in the whole cloud system. The third is to decide the locations where the replicas should be

placed.

The third problem is to design a proactive provisioning replication scheme across multiple

cloud data providers (CDP). CDP can dynamically deploy required data replicas in suitable

geo-locations for serving the predicted requests in the near future.

1.1.4 Causal+ Consistency for Posts/Comments in Social Networking Platforms

Causal consistency preserves intuitive causal ascription. This feature is crucial in social

networks (e.g., privacy policies). It improves user experience, because, with it, events appear

to each user in the correct order. However, the ordinary causal consistency does not support

the convergence property on concurrent updating operations. Thus, updating conflicts may

result in replicas having different values for the same key in key-value store systems. Casual+

consistency requires that data replicas converge to the same state under concurrent updates

6

from different clients. Additionally, dynamic replication and placement can enhance the system

availability in time-varying environments. A number of causal+ consistency protocols have been

proposed for partially replicated key-value store systems. They are all based on static replication

strategies. None of them can simultaneously satisfy the following requirements in social media

systems. 1) All the reply comments (values) under a post (a key) follow causal consistency. 2)

Each individual post may be replicated to other different data storage nodes. When concurrent

updates to a post are made in different replicas, the comments of each replica-post (with the

same key) can be ordered in the same sequence. 3) Each post would be dynamically replicated to

geographically-diverse data store nodes in different time periods according to user requirements.

The fourth problem is to devise a cost-optimized protocol that ensures causal+ consistency

within a datacenter or across datacenters for posts and comments in a partially geo-replicated

storage and satisfies the above three requirements.

1.2 Contributions

The contributions in this work are as follows.

1.2.1 Causal Consistency Algorithms For Partially Replicated Systems

We devise causal consistency protocols in partially replicated store systems to make the

following contributions:

1. Full-Track protocol is optimal in the sense defined by Baldoni et al. (13), viz., It can

update the local copy as soon as possible while respecting causal consistency. This reduces

the false causality in the system.

7

2. Full-Track can be made further optimal in terms of the size of the local logs maintained

and the amount of control information piggybacked on the update messages, by achieving

minimality. The resulting algorithm which optimally minimizes the size of meta-data is

Algorithm Opt-Track.

3. As a special case of protocol Opt-Track, we present Opt-Track-CRP, that is optimal in

a fully replicated distributed shared memory system. This algorithm is optimal not only

in the sense of Baldoni et al. but also in the amount of control information used in local

logs and on update messages, which is considerably less than for algorithm Opt-Track,

making it highly scalable. The algorithm is significantly more efficient than the Baldoni

et al. protocol optP (13) for the complete replication case.

We first simulate the Opt-Track and Full-Track protocols within partially replicated sys-

tems to compare their performance. We present that Opt-Track outperforms Full-Track in

network capacity and shows the advantage in write-intensive workloads. Then, we simulate

Opt-Track-CRP and optP (13) within fully replicated systems to compare their efficiency. We

present that Opt-Track-CRP also significantly outperforms OptP in scalability and network ca-

pacity utilization. we also explore the trade-off between partial replication and full replication

analytically. We show the advantage of partial replication over full replication. Opt-Track is

applicable to large-scale DSM systems, and in particular to those accommodating replications

of medium or large-sized data files (> 100 KB). An example of a real world network which can

benefit from our results is the multimedia object oriented social network ‘Instagram’ which is

a photo-sharing social community where the average file size is 2 MB.

8

1.2.2 Approximate Causal Consistency Algorithm

To solve the problem of reducing the dependency meta-data overheads with small payload

data sizes, we make the following contributions:

1. We propose the concept of approximate causal consistency whereby we can reduce the

meta-data at the cost of some possible violations of causal consistency. The amount of

violations can be made arbitrarily small by controlling a tunable parameter, which we

call credits.

2. We integrate the notion of credits into the Opt-Track protocol, to give a protocol Approx-

Opt-Track that can fine-tune the amount of causal consistency by trading off the size of

meta-data overhead.

3. For the hop-count instantiation, we quantitatively evaluate the performance of Approx-

Opt-Track for implementing causal consistency under partial replication. By controlling

initial credits, we use simulations to analytically examine the trade-off between initial

credits and the size of meta-data. We also study the impacts of varying the number of

processes, the replica factor, and the write rate.

With an initial credits small enough, Approx-Opt-Track is seen to show significant gains over

Opt-Track. The imply that : a) Approx-Opt-Track is capable of further reducing the meta-

data of Opt-Track. b) Approx-Opt-Track can significantly lower the meta-data by sacrificing

causal consistency slightly. It appeals for some social network applications, which do not require

completely strict causal consistency. For example, in Instagram, most of the comments/replies

9

(update operations) correspond to the image (object creation) poster. Very few replies that

do not appear in the correct order do not make the readers misunderstand the context of the

comments. Approx-Opt-Track can be expected to improve total replication cost especially for

multimedia social network applications.

1.2.3 Cost Optimized Replication Protocol

To solve the problem of the replica placement decision strategy, we make the following

contributions:

1. We propose Cost Optimization Replica Placement (CORP) algorithm and design a proac-

tive provisioning replication scheme across multiple CDPs. According to current data re-

source allocation and historical changes in workload patterns, our replication framework,

composed of CDPs, is designed to employ the autoregressive integrated moving average

(ARIMA) model to concretely predict how many data access requests are made in the

near future. CDP can dynamically deploy required data replicas in suitable geo-locations

for serving the predicted requests.

2. Since caching has potential for performance benefits, we also extend CORP as CORP

(+cache) for different data-intensive workloads.

3. We further propose the optimal placement solution to evaluate CORP (+cache) in steady

states.

We conduct an evaluation of cost-effectiveness of our CORP algorithms via trace-driven

CloudSim simulator toolkit and realistic workload traces from Twitter. Results show that

10

CORP with cache mechanism can highly reduce the total system cost in comparison to the

stand-alone caching strategy and static partial replication.

1.2.4 Causal+ Consistency for Posts/Comments in Social Networking Platforms

To solve the problem of enforcing causal+ consistency for the comments under each post

and between posts on social network applications, we make the following contributions:

1. We propose a new cost-optimized protocol that ensures causal+ for all replying comments

corresponding to an object (a post) with a unique key or for different objects with explicit

happens-before relationships in social applications by a key-values store system.

2. Because of the potential of dynamic replication strategies for system cost savings, we

adapt the consistency protocol CaDRoP for our proposed replication algorithm CORP in

optimizing the total system costs.

3. Due to the potential of caching in performance benefits, we also extend CaDRoP as

CaDRoP+cache to reduce network transmission costs.

We conduct an evaluation of cost-effectiveness of CaDRoP(+cache) algorithms via trace-

driven CloudSim simulator toolkit and realistic workload traces from Twitter in terms of the

prices set on Amazon Web Service (AWS) as of 2019. Results show that the total system cost

can be highly reduced by CaDRoP+cache in a dynamic replication strategy (3) in comparison

to the same protocol and CoCaCo(14) in different static replication models. We further eval-

uate CaDRoP by comparing it with a clairvoyant optimal replication solution. The findings

11

indicate that with cache, CaDRoP only incurs around 8% extra cost on average. Without cache,

CaDRoP brings less than 5% extra cost in steady states.

1.3 Thesis Outline

Chapter 1 introduces the background and presents the overall problem statements and

hypotheses of this research, and outlines the research contributions. Chapter 2 provides the

related work for the thesis. Chapter 3 discusses the problem of implementing causal consistency

protocols in partially replicated distributed shared memory systems and presents the algorithms

to do so. Chapter 4 discusses the problem of the dependency meta-data overheads with small

payload data sizes and presents the algorithms to do so. Chapter 5 discusses the problem of the

replica placement decision strategy and give the corresponding algorithm. Chapter 6 discusses

the problem of implementing causal+ consistency protocols in geo-replicated data stores for

social network applications. The conclusion and future directions of this work are given in

Chapter 7.

Portions of Chapter 3 have been previously published in Elsevier Journal of Future Gener-

ation Computer Systems (1). Portions of Chapter 4 have been previously published in IEEE

Transactions on Parallel and Distributed Systems (2). Portions of Chapter 5 have been previ-

ously published in the proceedings of IEEE/ACM 12th International Conference on Utility and

Cloud Computing (3). Portions of Chapter 6 have been submitted under reviewing.

CHAPTER 2

RELATED WORK

Causal consistency in distributed shared memory systems was proposed by Ahamad et al.

(15) and studied by Petersen et al. (16) and Belaramani et al. (17). Later, Baldoni et al.

(13) gave an improved broadcast based protocol OptP to implement causal memory. Their

implementation is optimal in the sense that the protocol can update the local copy as soon as

possible, while respecting causal consistency. Specifically, additional delays due to the inability

of Lamport’s “happened before” relation (18) to map in a one-to-one way, cause-effect relations

at the application level into relations at the implementation level (a phenomenon called false

causality) are eliminated. False causality was identified by Lamport (18). It has been proved

that causal consistency is the strongest form of consistency that satisfies low latency, defined as

the latency less than the maximum (round-trip) wide-area delay between replicas by Mahajan

et al. (19).

Lazy replication (20) is a client-server framework to provide causal consistency using vector

clocks, where the size of the vector is equal to the number of replicas. A client can issue updates

and queries to any replica, and replicas exchange gossip messages to keep their data up-to-date.

Causal+ consistency (CC+) has gained interest as a highly attractive consistency model. The

vast majority of existing CC+ protocols assume full replication. They are outlined next. COPS

(6) implements a causally consistent key-value store system. It computes a list of dependencies

whenever an update occurs, and the update operation is not performed until updates in the

12

13

dependencies are applied. The transitivity rule of the causality relationship is used to prune the

size of the dependency list. Eiger (21), an improvement over COPS, provides scalable causal

consistency for the complex column-family data model, as well as non-blocking algorithms for

read-only and write-only transactions. The Orbe (22) key-value storage system provides two

different protocols to provide causal consistency – the DM protocol uses two-dimensional ma-

trices to track the dependencies, and the DM-Clock protocol uses loosely synchronized physical

clocks to support read-only transactions. The GentleRain (23) causally consistent key-value

store uses a periodic aggregation protocol to determine whether updates can be made visible in

accordance with causal consistency. Rather than using explicit dependency check messages, it

tracks causal consistency by attaching to updates, scalar timestamps derived from loosely syn-

chronized physical clocks. Cure (24) uses a stabilization approach for making update operations

visible while respecting causal consistency. ChainReaction (25) achieves causal consistency on

top of chain replication. In order to track the state of every access at the client side, it exploits

a global sequencer service at each datacenter to order update operations and read-only transac-

tions. However, the sequencer service is a potential performance bottleneck, because it increases

the latency of update operations by one round-trip network delay within the datacenter. Bolt-

on (26) provides causal consistency on top of eventually consistent data stores. A shim-layer

is inserted between the data store layer and the application layer to ensure causal ordering.

Bolt-on relies on the application semantics to track explicit causality relationships but requires

the application developer to handle causal relationships among application operations. Other

CC+ protocols include OCCULT (27), OCC (28), Rots (29), Spartan (30), CSNOW (31), and

14

Eunomia (32). Those protocols support one-shot read-only transactions. OCCULT(27) can

block reads on a data node when waiting for a snapshot to be installed.

A few CC+ protocols support partial replication, such as Saturn (33), C3 (34), Karma

(35), CoCaCo (14), LazyP (20), and the one by Xiang et al. (36). These CC+ protocols realize

single-object read and write operations. SwiftSwiftcloud (37) provides efficient reads and writes

using an occasionally stale but causally consistent client-side local cache mechanism. The size

of the meta-data is proportional to the number of data centers used to store data. Paris (38)

provides fresher data to the clients and tolerate some degree of data staleness. However, those

protocols implement CC+ for the single value associated with the requesting object. Crain

et al. (39) outlined a causally consistent protocol for geo-distributed partial replication with

dependency vectors. The main idea used is that the sender, instead of the receiver, checks the

dependencies when propagating updates among data centers. However, it does not support the

convergence property and still considers imprecise representation of dependencies, which can

result in false dependencies.

Replication mechanisms have been particularly influential in distributed data storage sys-

tems. Cost optimization of cloud storage services has seen growing importance of pricing

differences. In this section, we investigate the related work in the above two broad areas. The

challenge of dynamic resource management and allocation in distributed systems and cloud envi-

ronments has been dealt with via several reactive approaches. Evaluated from different kinds of

users’ access patterns, six replication strategies are proposed for hierarchically distributed data

grids in an initial work on dynamic data replication (40). The users’ dynamic and distributed

15

nature has been used in (41) to design suitable replica placement strategies in the grid envi-

ronment. A dynamic data replication mechanism called Latest Access Largest Weight (LALW)

is proposed in (42). LALW calculates the access frequency of each file requested divided by

average access frequency of all files. Each data file is assigned different weights at different

times in its lifetime. The most recently requested data files are given higher weights. In this

way, the overload of the network can be reduced effectively. A dynamic distributed cloud data

replication algorithm CDRM is proposed in (43). CDRM is a cost-effective framework for repli-

cation designed on the HDFS platform in a cloud storage system. Based on node capacity and

workload changes to calculate the popularity of a data file, CDRM can dynamically determine

the replica placement in the cloud environment. Dynamic data replication strategy (D2RS) in

hierarchical cloud environments to improve system availability is proposed in (44). Combined

with a checkpoint strategy, the above algorithm is extended as a new algorithm called Dynamic

Adaptive Fault-tolerance (DAFT) in (45). It can dynamically provision and deliver computing

resources in a transparent manner to achieve higher availability, performance, and reliability.

Based on D2RS, the concept of knapsack has been used in (46) to optimize the cost of data

replication between data centers without impacting the data availability. Because of pricing

differences among different resources across cloud data stores, a lightweight heuristic solution

to minimize monetary cost of the application in hot-spot or cold-spot objects is proposed in

(47). It utilizes dynamic and linear programming techniques to identify object replica location,

migration time, and remote access request redirection. Based on the scale of applications, and

dynamic workloads, the models proposed in (48) optimize request response time during normal

16

operations to meet SLA (scalability, latency, and availability) requirements. A hierarchical

data replication strategy (HDRS) proposed in (49) can dynamically store replicas, based on the

access load and labeling technique, to offer high data availability and low bandwidth consump-

tion, while satisfying QoS requirements and storage capacity constraints. A two-way replication

strategy (TWR) with P2P-like features, where a multi-tier sibling-tree architecture is used, is

proposed in (50). TWR intends to place the replicas of more popular data files near the users,

and that of less popular data files away from the users. The data files with higher-than-average

access frequency are replicated at the parent node of the client node generating the most re-

quests, and the data files with lower access frequency are migrated to the grandparent node. A

distributed traffic-based replication strategy RFH (resilient, fault-tolerant and high efficient) for

high availability of data stored in the cloud is proposed in (51). Based on the access traffic load

of data nodes, the replicas of a data file are placed at the place facing maximum traffic to access

this data file and the least blocking probability to meet end-user requirements. A list-based

replication strategy in data grid systems that introduces the concept of priority list to specify

the forwarding policies is proposed in (52). A dynamic reliability-driven instantaneous fault-

tolerant scheduling scheme (DRFACS) with active replication mechanism to handle enormous

resource failures is proposed in (53). DRFACS intends to increase reliability by dynamically

scheduling non-periodic and non-preemptive real-time tasks to enhance the QoS throughout

the scheduling process. Similarly, in (54), a dynamic self-organized, fault-tolerant and scalable

replication strategy is proposed for the resource allocation optimization decision in order to

reduce the query processing overheads and to meet the availability for different query rates

17

and storage space requirements in a cost-effective manner. The framework of Differentiated

Replication (DiR) to select suitable replication strategies on the basis of users’ requirements

and system resource utilization is used in (55).

The weakness of reactive replication approaches is their inability to anticipate the unex-

pected changes in workload. Since the workload changes in cloud environments follow patterns

that may vary time to time, proactive methods can overcome the above deficiency by pre-

deciding the correct amount of resources before the expected increase or decrease of demand.

An approach to the problem of workload prediction based on identifying similar past occur-

rences of the current short-term workload history in public clouds is proposed in (56). An

event-aware strategy to more effectively predict workload bursts by exploiting prior knowledge

associated with scheduled events is proposed in (57). Artificial neural networks (ANN) and

linear regression were used to develop prediction-based resource measurement and provision-

ing strategies in (58). A cloud workload prediction module for SaaS providers based on the

ARIMA model is proposed in (59). This model can meet the QoS with a cost-effective amount

of resources by estimating the future requirements.

CHAPTER 3

CAUSAL CONSISTENCY PROTOCOLS FOR PARTIALLY/FULLY

REPLICATED SYSTEMS

This chapter is based on our previous publications (60; 61; 1). In this chapter, we discuss

the problem of implementing causal consistency in partially replicated data stores, presenting

the algorithms, and illustrating the experimental results. The rest of this chapter is organized

as follows. Section 3.1 presents the fundamental definition of our causally consistent memory

model. Section 3.2 presents the underlying communication system. Section 3.3 describes the

activation predicate determination. Section 3.4 shows three causal consistency algorithms we

proposed for partial replication data stores.

3.1 Causally Consistent Memory

The system model is based on that proposed by Ahamad et al. (15) and Baldoni et al. (13).

We consider a system which consists of n application processes ap1, ap2, . . . , apn interacting

through a shared memory Q composed of q variables x1, x2, . . . , xq. Each application process

api can perform either a read or a write operation on any of the q variables. A read operation

performed by api on variable xj which returns value v is denoted as ri(xj)v. Similarly, a write

operation performed by api on variable xj which writes the value u is denoted as wi(xj)u. Each

variable has an initial value ⊥.

18

19

By performing a series of read and write operations, an application process api generates a

local history hi. If a local operation o1 precedes another operation o2, we say o1 precedes o2

under program order, denoted as o1 ≺po o2. The set of local histories hi from all n application

processes form the global history H. Operations performed at distinct processes can also be

related using the read-from order, denoted as ≺ro. Two operations o1 and o2 from distinct

processes api and apj respectively have the relationship o1 ≺ro o2 if there are variable x and

value v such that o1 = w(x)v and o2 = r(x)v, meaning that read operation o2 retrieves the

value written by the write operation o1. It is shown in (15) that

• for any operation o2, there is at most one operation o1 such that o1 ≺ro o2;

• if o2 = r(x)v for some x and there is no operation o1 such that o1 ≺ro o2, then v =⊥,

meaning that a read with no preceding write must read the initial value.

With both the program order and read-from order, the causality order, denoted as ≺co, can

be defined on the set of operations OH in a history H. The causality order is the transitive

closure of the union of local histories’ program order and the read-from order. Formally, for

two operations o1 and o2 in OH , o1 ≺co o2 if and only if one of the following conditions holds:

1. ∃api s.t. o1 ≺po o2 (program order)

2. ∃api, apj s.t. o1 and o2 are performed by api and apj respectively, and o1 ≺ro o2 (read-

from order)

3. ∃o3 ∈ OH s.t. o1 ≺co o3 and o3 ≺co o2 (transitive closure)

20

Essentially, the causality order defines a partial order on the set of operations OH . For a shared

memory to be causal memory, all the write operations that can be related by the causality

order have to be seen by each application process in the order defined by the causality order.

More formally, we state as follows.

Given a history H, S is a serialization of H if S is a sequence containing exactly the

operations of H such that each read operation of a variable x returns the value written by the

most recent precedent write on x in S. A serialization respects a given order if, for any two

operations o1 and o2 in S, o1 precedes o2 in that order implies that o1 precedes o2 in S. Let

Hi+w be the history containing all the operations in hi and all write operations of H.

Definition 1. (Causally consistent history) A history is causally consistent if for each appli-

cation process api, there is a serialization Si of Hi+w that respects the causality order ≺co.

Definition 2. (Causal memory) A memory is causal if it admits only causally consistent his-

tories.

3.2 Underlying Distributed Communication System

The DSM abstraction and its causal consistency model is implemented by a memory con-

sistency system (MCS) on top of the underlying distributed message passing system which also

consists of n sites connected by FIFO channels. The distributed system is asynchronous. We

assume that all messaging primitives are reliable. Message transfer delay is arbitrary but finite,

and there is no bound on the relative process speeds. Each site si hosts an application process

api. The local MCS process at si is denoted mpi.

21

Since we assume a partially replicated system, each site holds only a subset of variables

xh ∈ Q. For application process api, we denote the subset of variables kept on the site si as Xi.

We assume the replication factor of the DSM system is p and the variables are evenly replicated

on all the sites. This assumption is justified from a statistical viewpoint. It follows that the

average size of Xi is pq
n .

If a variable xh is not locally replicated, then a read operation fetches the value from one

of the replica sites of xh. The replica site could be chosen randomly from one of the sites that

replicate xh. (Alternatively, a policy decision could be made to fetch the variable from the

closest replica.) For this, we assume a static system and that complete knowledge about the

partial replication scheme is known to all systems/replicas. Thus, for both a read and a write

operation on a variable, each site is assumed to know the replica set of that variable.

To facilitate the read and write operations in the DSM abstraction, the underlying message

passing system provides several primitives to enable the reliable communication between differ-

ent sites. For the write operation, each time an application process api performs w(x1)v, the

local MCS process invokes the Multicast(m) primitive to deliver the message m containing

w(x1)v to all sites that replicate the variable x1. For the read operation, there is a possibility

that an application process api performing read operation r(x2)u needs to read x2’s value from

a remote site since x2 is not locally replicated. In such a case, the local MCS process invokes

the RemoteFetch(m) primitive to deliver the message m containing r(x2)u to a random site

replicating x2 to fetch its value u. This is a synchronous primitive, meaning that it will block

22

until returning the variable’s value. If the variable to be read is locally replicated, then the

application process is simply returned the local value.

The read and write operations performed by the application processes cause events to be

generated in the underlying message passing system. More specifically, each MCS process mpi

generates a set of events Ei. E = 〈Ei, . . . , En〉 is the global set of events, ordered by Lamport’s

“happened before” relation→ (18). The distributed computation Ê is the partial order induced

on E by →. The set of messages in Ê is denoted M
Ê

.

The following types of events are generated at each site:

• Send event. The invocation of Multicast(m) primitive by MCS process mpi generates

event sendi(m).

• Fetch event. The invocation of RemoteFetch(m) primitive by MCS process mpi generates

event fetchi(f(x)). Here, f(x) denotes the variable being fetched.

• Message receipt event. The receipt of a message m at site si generates event receipti(m).

The message m can correspond to either a sendj(m) event or a fetchj(f(x)) event.

• Apply event. When applying the value written by the operation wj(xh)v to variable xh’s

local replica at site si, an event applyi(wj(xh)v) is generated.

• Remote return event. After the occurrence of event receipti(m) corresponding to the

remote read operation rj(xh)u performed by apj , an event remote returni(rj(xh)u) is

generated which transmits xh’s value u to site sj .

23

• Return event. Event returni(xh, v) corresponds to the return of xh’s value v either fetched

remotely through a previous fetchi(f(x)) event or read from the local replica.

To implement the causal memory in the DSM abstraction, each time an update message

m corresponding to a write operation wj(xh)v is received at site si, a new thread is spawned

to check when to locally apply the update. The condition that the update is ready to be

applied locally is called, as in (13), the activation predicate. This predicate, A(mwj(xh)v, e), is

initially set to false and becomes true only when the update mwj(xh)v can be applied after the

occurrence of local event e. The thread handling the local application of the update will be

blocked until the activation predicate becomes true, at which time the thread writes value v to

variable xh’s local replica. This will generate the applyi(wj(xh)v) event locally. Thus, the key

to implement the causal memory is the activation predicate.

3.3 Activation Predicate

3.3.1 The →co relation

To formulate the activation predicate, Baldoni et al. (13) defined a new relation, →co,

on send events in Ê generated in the underlying message passing system. We modify their

definition by adding condition (3) to accommodate the partial replication scenario.

Definition 3. (→co on send events) Let w(x)a and w(y)b be two write operations in OH . Then,

for their corresponding send events in the underlying message passing system, sendi(mw(x)a)

→co sendj(mw(y)b) iff one of the following conditions holds:

1. i = j and sendi(mw(x)a) locally precedes sendj(mw(y)b)

24

2. i 6= j and returnj(x, a) locally precedes sendj(mw(y)b)

3. i 6= j and applyl(w(x)a) locally precedes remote returnl(rj(x)a) which precedes (as per

Lamport’s → relation) returnj(x, a) which locally precedes sendj(mw(y)b)

4. ∃sendk(mw(z)c), such that sendi(mw(x)a)→co sendk(mw(z)c)→co sendj(mw(y)b)

Notice that the relation defined by →co is actually a subset of Lamport’s “happened be-

fore” relation (18), denoted by →. If two send events are related by →co, then they are also

related by →. However, the other way is not necessarily true. Even though sendi(mw(x)a) →

sendj(mw(y)b), if there is no return event that occurred and i 6= j, these two send events are

concurrent under the →co relation. The difference between these two relations is essential un-

der the context of causal memory. The →co relation better represents the causality order in

the DSM abstraction as it prunes the “false causality” introduced in the underlying message

passing system, where message receipt events may causally relate two send events while their

corresponding write operations in the shared memory abstraction are concurrent under the

≺co relation. In simple terms, false causality arises under the → relation when a remotely

generated value has arrived but not been read, before a new value is generated locally. This

is illustrated in Figure 1. Consider the computation in a partial replication system. Assume

that there is no read2(x2) operation and no corresponding return2(x2) event. When s3 re-

ceives m(w(x3)v3) at time t31, by using the→ relation, the apply event cannot be applied until

t33. This is because there is another message m(w(x1)v1), which has not yet been received at

s3 such that send1(m(w(x1)v1)) → send2(m(w(x3)v3)). However, this is not optimal because

send1(m(w(x1)v1)) 6→co send2(m(w(x3)v3)). At t31, Aopt(m(w(x3)v3)) will become true accord-

25

Figure 1. False causality.

ing to the →co relation (unless the return2(x2) event corresponding to a read2(x2) operation

exists). Apply event apply(m(w(x3)v3)) can be immediately applied without any delay. Using

the → relation introduces this delay phenomenon, called false causality. This false causality is

removed by using the →co relation.

Actually, it is easy to show the following property, along the lines of (13).

Property 1. sendi(mw(x)a)→co sendj(mw(y)b)⇔ w(x)a ≺co w(y)b.

26

3.3.2 Safety

By Property 1, a protocol is safe with respect to ≺co if and only if the order on local update

applications at each MCS process is compliant with the order induced by →co on send events

of updates. Thus,

Definition 4. (Safety) Let Ê be a distributed computation generated by a protocol P . P is

safe if and only if: ∀mw,mw′ ∈ MÊ
, sendj(mw) →co sendk(mw′) implies that at all common

destinations si of the two updates, applyi(w) locally precedes applyi(w
′).

An activation predicate of a safe protocol has to stop the application of any update message

mw that arrives out of order with respect to →co.

3.3.3 Optimal Activation Predicate

With the →co relation defined, Baldoni et al. gave an optimal activation predicate in (13)

as follows:

Definition 5. (Optimal Activation predicate)

AOPT (mw, e) ≡ @mw′ : (sendj(mw′) →co sendk(mw) ∧ applyi(w
′) 6∈ Ei|e)

where Ei|e is the set of events that happened at the site si up until e (excluding e).

A protocol is optimal in terms of the activation predicate if its activation predicate is false

only if there exists an update message mw′ such that sendj(mw′)→co sendk(mw) and mw′ has

not yet been applied locally at si. The key to design the optimal activation predicate is to track

dependencies under the →co relation and not the Lamport’s → relation.

27

This activation predicate cleanly represents the causal memory’s requirement: a write oper-

ation shall not be seen by an application process before any causally preceding write operations.

It is optimal because the moment this activation predicate AOPT (mw, e) becomes true is the

earliest instant that the update mw can be applied. The activation predicate used in the

original paper describing causal memory (15) uses the happened before relation. This activa-

tion predicate is given below as AORG. As shown by Baldoni et al. (13), it does not achieve

optimality.

AORG(mw, e) ≡ @mw′ : (sendj(mw′) → sendk(mw) ∧ applyi(w
′) 6∈ Ei|e)

3.4 Causal Consistency Algorithms

In this section, we present two algorithms — Full-Track and Opt-Track — implementing

causal memories in a partially replicated distributed shared memory system, both of which

adopt the optimal activation predicate AOPT . Opt-Track is a message and space optimal

algorithm for a partially replicated system. Subsequently, as a special case of this algorithm, we

derive an optimal algorithm — Opt-Track-CRP — for the fully replicated case, that is optimal

and has lower message size, time, and space complexities than the Baldoni et al. algorithm

(13).

3.4.1 Full-Track Algorithm

Since the system is partially replicated, each application process performing a write opera-

tion will only write to a subset of all the sites in the system. Thus, for an application api and

28

a site sj , not all write operations performed by api will be seen by sj . This makes it necessary

to distinguish the destinations of api’s write operations. The activation predicate AOPT can be

implemented by tracking the number of updates received that causally happened before under

the →co relation. In order to do so in a partially replicated scenario, it is necessary for each

site si to track the number of write operations performed by every application process apj to

every site sk. We denote this value as Writei[j][k]. Application processes also piggyback this

clock value on every outgoing message generated by the Multicast(m) primitive. The Write

matrix clock tracks the causal relation under the →co relation, rather than the causal relation

under the → relation.

Another implication of tracking under the →co relation is that the way to merge the piggy-

backed clock with the local clock needs to be changed. In Lamport’s happened before relation

→, a message transmission generates a causal relationship between two processes. However,

under the →co relation, it is reading the value that was written previously by another applica-

tion process that generates a causal relationship between two processes. Thus, the Write clock

piggybacked on messages generated by the Multicast(m) primitives should not be merged with

the local Write clock at the message reception or at the apply event. It should be delayed until

a later read operation which reads the value that comes with the message and generates the

corresponding return event.

3.4.1.1 Data Structure

We now give the formal descriptions in Algorithm 1. At each site si, the following data

structures are maintained:

29

1. Writei[1 . . . n, 1 . . . n]: the Write clock (initially set to 0s). Writei[j, k] = a means that

the number of updates sent by application process apj to site sk that causally happened

before under the →co relation is a.

2. Applyi[1 . . . n]: an array of integers (initially set to 0s). Applyi[j] = a means that a total

number of a updates written by application process apj have been applied at site si.

3. LastWriteOni〈variable id,Write〉: a hash map of Write clocks. LastWriteOni〈h〉 stores

the Write clock value associated with the last write operation on variable xh which is

locally replicated at site si.

3.4.1.2 Correctness and Optimality Outlines

Let sendj(mw) →co sendk(mw′) and both messages be sent to site si. By Definition 4, it

needs to be shown that applyi(w) locally precedes applyi(w
′).

Let mw update variable x. We apply the 4 cases of the →co relation (Definition 3) to our

scenario.

1. If j = k, Writek[k, i] at sendj(mw) is less than Writek[k, i] at sendk(mw′) due to line (2).

2. If j 6= k and condition (2) holds (corresponding to a local read at sk), LastWriteOnk〈x〉.

Write[j, i] gets copied into Writek[j, i] in line (12) using the max operation. This value

is less than or equal to Writek[j, i] at sendk(mw′).

3. If j 6= k and condition (3) holds (corresponding to a remote read from sl), LastWriteOnl〈x〉.

Write[j, i] is fetched to k and gets copied into Writek[j, i] in line (10) using the max op-

eration. This value is less than or equal to Writek[j, i] at sendk(mw′).

30

Algorithm 1: Full-Track Algorithm (Code at site si)

WRITE(xh, v):

1 for all sites sj that replicate xh do
2 Writei[i, j] + +;

3 Multicast[m(xh, v,Writei)] to all sites sj (j 6= i) that replicate xh;
4 if xh is locally replicated then
5 xh := v;
6 Applyi[i] + +;
7 LastWriteOni〈h〉 := Writei;

READ(xh):

8 if xh is not locally replicated then
9 RemoteFetch[f(xh)] from any site sj that replicates xh to get xh and LastWriteOnj〈h〉;

10 ∀k, l ∈ [1 . . . n],Writei[k, l] := max(Writei[k, l], LastWriteOnj〈h〉.Write[k, l]);

11 else
12 ∀k, l ∈ [1 . . . n],Writei[k, l] := max(Writei[k, l], LastWriteOni〈h〉.Write[k, l]);

13 return xh;

On receiving m(xh, v,W) from site sj :

14 wait until (∀k 6= j, Applyi[k] ≥W [k, i] ∧Applyi[j] = W [j, i]− 1);
15 xh := v;
16 Applyi[j] + +;
17 LastWriteOni〈h〉 := W ;

On receiving f(xh) from site sj :

18 return xh and LastWriteOni〈h〉 to sj ;

4. By applying transitivity involving any combination of the above three cases, Writej [j, i]

at sendj(mw) is less than or equal to Writek[j, i] at sendk(mw′).

In all cases, Writej [j, i] at sendj(mw) is less than or equal to Writek[j, i] at sendk(mw′). The

activation predicate implemented at line (14) and FIFO channels ensure that applyi(w) locally

precedes applyi(w
′) at si.

31

3.4.1.3 Liveness

It is easy to see that all write operations wi(x)a invoked by an application process api are

eventually applied at all replicas of x. When the write update arrives at a replica site sj , sj can

delay it only until the activation predicate in line (14) is satisfied. Assuming reliable channels,

processes executing a step in a finite time, and the OS scheduler being fair, the update will be

applied in a finite number of steps.

3.4.1.4 Optimality of the Activation Predicate

We need to show that the activation predicate becomes true at the earliest possible instant

for each message update received. We can see from this algorithm that, instead of merging

the piggybacked Write clock at message reception, it is delayed until a later read operation

at line (10) (remote read) and (12) (local read). This implements tracking causality under the

→co relation, which is the key to implementing the activation predicate optimally. Thus, for

any update m, the duration from event receipti(m) to applyi(m) is minimal because only those

dependencies that are essential to be satisfied under →co are guaranteed to be satisfied before

the activation predicate becomes true. The activation predicate AOPT is implemented at line

(14).

3.4.2 Opt-Track Algorithm

Algorithm Full-Track achieves optimality in terms of the activation predicate. However, in

other aspects, it can still be further optimized. We notice that, each message corresponding to

a write operation piggybacks an O(n2) matrix, and the same storage cost is also incurred at

each site si. Kshemkalyani and Singhal proposed the necessary and sufficient conditions on the

32

Figure 2. Illustration of the two conditions for destination information to be redundant. (a)
For causal message ordering algorithms, the information is “s2 is a destination of M”. The

causal future of the relevant message delivery events are shown in dotted lines. (b) For causal
memory algorithms, the information is “s2 is a destination of m”. The causal future of the
relevant apply events and the causal future (under the →co relation) of the relevant return

events are shown in dotted lines.

information for causal message ordering and designed an algorithm implementing these opti-

mality conditions (11; 12) (hereafter referred to as the KS algorithm). The KS algorithm aims

at reducing the message size and storage cost for causal message ordering algorithms in message

passing systems. The ideas behind the KS algorithm exploit the transitive dependency of causal

deliveries of messages and encode the information being tracked. In the KS algorithm, each site

keeps a record of recently received messages from each other site. The list of destinations of a

message is also kept in each record (the KS algorithm assumes multicast communication) and

is progressively pruned, as described below. With each outgoing message, these records are also

piggybacked. The KS algorithm achieves another optimality, in the sense that no redundant

33

destination information is recorded. There are two situations when the destination information

can become redundant. These are illustrated in Figure 2(a).

1. When message M is delivered at site s2 (we denote this event as e), then the information

that s2 is part of message M ’s destination no longer needs to be remembered in the causal

future of e. This is because the delivery of M at s2 is guaranteed at events in the causal

future of e.

In addition, we implicitly remember in the causal future of e that M has been delivered

to s2, to clean the logs at other sites.

2. Consider two messages M and M ′ such that M ′ is sent in the causal future of sending

M and both messages have site s2 as the receiver. Then the information that s2 is part

of message M ’s destinations no longer needs to be remembered in the causal future of

the delivery events (denoted as e′) of message M ′ at all recipient sites sk. (In fact, the

information need not even be transmitted on M ′ sent to sites sk, other than to site s2.)

This is because by ensuring message M ′ is causally delivered at s2 with respect to any

message M ′′ that is also sent to s2 in the causal future of sending M ′, it can be inferred

using a transitive argument that message M should have already been delivered at s2

before M ′′ is delivered.

In addition, we implicitly remember in the causal future of events of type e′ that M is

transitively guaranteed to be delivered to s2, to clean the logs at other sites.

34

Remembering implicitly means inferring that information from other later or more up to

date log entries, without storing that information.

Although the KS algorithm is for message passing systems, its ideas of deleting unnecessary

dependency information still apply to distributed shared memory systems. We can adapt the KS

algorithm to a partially replicated DSM system to implement causal memory there. Now, each

site si will maintain a record of the most recent updates received from every site, that causally

happened before under the →co relation. Each such record also keeps a list of destinations

representing the set of replicas receiving the corresponding update. When performing a write

operation, the outgoing update messages will piggyback the currently stored records. When

receiving an update message, the optimal activation predicate AOPT is used to determine when

to apply the update. Once the update is applied, the piggybacked records will be associated

with the updated variable. When a later read operation is performed on the updated variable,

the records associated with the variable will be merged into the locally stored records to reflect

the causal dependency between the read and write operations. Similar to the KS algorithm,

we can prune redundant destination information using the following conditions. These are

illustrated in Figure 2(b).

• Propagation Condition 1: When an update m corresponding to write operation w(x)v

is applied at site s2, then the information that s2 is part of the update m’s destinations

no longer needs to be remembered in the causal future of the event apply2(w).

35

• Pruning Condition 1: In addition, we implicitly remember in the causal future (under

the →co relation) of event return2(x, v) (and events remote return2(r∗(x)v)) that m has

been delivered to s2, to clean the logs at other sites.

• Propagation Condition 2: For two updates mw(x)v and m′w′(y)v′ such that send(m)→co

send(m′) and both updates are sent to site s2, the information that s2 is part of update

m’s destinations is irrelevant in the causal future of the event apply(w′) at all sites sk

receiving update m′. (In fact, it is redundant in the causal future of send(m′), other than

m′ sent to s2.) This is because, by transitivity, applying update m′ at s2 in causal order

with respect to a message m′′ sent causally later to s2 will infer the update m has already

been applied at s2.

• Pruning Condition 2: In addition, we implicitly remember in the causal future (under

the→co relation) of events returnk(y, v
′) (and events remote returnk(r∗(y)v′)) that m is

transitively guaranteed to be delivered to s2, to clean the logs at other sites.

The logs at the sites are cleaned as follows. The algorithm explicitly tracks (source, times-

tamp, Dests) per multicast message M in the log and on the message overhead. The shorthand

we use for this information is Mi,a.Dests to indicate source i and local timestamp a. Log entries

are denoted by l and message overhead entries are denoted by o. The algorithm implicitly tracks

messages that are delivered (Pruning Condition 1) or transitively guaranteed to be delivered in

causal order (Pruning Condition 2) as follows.

• Implicit Tracking 1: ∃d ∈ Mi,a.Dests such that d ∈ li,a.Dests
∧
d 6∈ oi,a.Dests. Then

d can be deleted from li,a.Dests because it can be inferred that Mi,a is delivered to d or is

36

transitively guaranteed to be delivered in causal order. (Likewise with the roles of l and o

reversed.) When li,a.Dests = ∅, it can be inferred that Mi,a is delivered or is transitively

guaranteed to be delivered in causal order, to all its destinations. Observe that entries

of such format will accumulate. Such entries can be discarded and implicitly inferred as

follows.

• Implicit Tracking 2: If a1 < a2 and li,a2 ∈ LOGj , then li,a1 is implicitly or explicitly

in LOGj . Entries of the form li,a1 .Dests = ∅ can be inferred by their absence and should

not be stored.

Implicit Tracking 1 and Implicit Tracking 2 in a combined form implement Pruning Condition 1

and Pruning Condition 2. When doing Implicit Tracking 1 and Implicit Tracking 2, if explicitly

stored information is encountered, it must be deleted as soon as it comes into the causal future

of the implicitly tracked information.

Notice that even if the destination list in a message M ’s record becomes ∅ at a certain

event e in site si, that record still needs to be kept until a later message from message M ’s

sender is delivered at si. This is because although M ’s destination list becomes ∅ at si, it

might still be non-empty at other sites. Thus, by piggybacking M ’s record with an empty

destination list, we can prune M ’s destination list at other sites in the causal future of event e

(using Implicit Tracking 1). This is illustrated in Figure 3. Notice that, after the deliveries of

message M2 and M3, the destination list in the message M1’s record at site s4 becomes empty.

If we delete M1’s record at this time, then when message M4 is later sent to site s3, there is no

way for s3 to know that it can delete site s2 from its local record of message M1’s destination

37

Figure 3. Illustration of why it is important to keep a record even if its destination list
becomes empty. For clarity, the apply and return events after each message delivery are

omitted.

list. M1’s record can be deleted at site s4 after another message from s1 is delivered at s4.

This technique is important for achieving optimality of no redundant destination information

of already delivered messages (Pruning Condition 1) and of messages transitively guaranteed

to be delivered in causal order (Pruning Condition 2). However, note that such records with ∅

destination lists may accumulate. Only the latest such record per sender needs to be maintained;

the presence of other such records can be implicitly inferred (using Implicit Tracking 2).

3.4.2.1 Data Structure

We give the formal algorithm in Algorithm 2. The following data structures are maintained

at each site:

1. clocki: local counter at site si for write operations performed by application process api.

38

2. Applyi[1 . . . n]: an array of integers (initially set to 0s). Applyi[j] = a means that a total

number of a updates written by application process apj have been applied at site si.

3. LOGi = {〈j, clockj , Dests〉}: the local log (initially set to empty). Each entry indicates

a write operation initiated by site sj at time clockj in the causal past. Dests is the

destination list for that write operation. Only necessary destination information is stored.

4. LastWriteOni〈variable id, LOG〉: a hash map of LOGs. LastWriteOni〈h〉 stores the

piggybacked LOG from the most recent update applied at site si for locally replicated

variable xh.

In a write operation, rather than multicast the same message to all replica sites, the meta-

data per replica site is tailored in lines (2)-(9) to minimize its space overhead. Lw is the working

variable used to modify the local LOGi to send to each replica site.

Notice that lines (4)-(6) and lines (10)-(11) prune the destination information using Propa-

gation Condition 2, while lines (29)-(30) use Propagation Condition 1 to prune the redundant

information. Also, in lines (7)-(8) and in the PURGE function (see Algorithm 3), entries with

empty destination list are kept as long as and only as long as they are the most recent update

from the sender. This implements the optimality techniques of Implicit Tracking 2, described

before. The optimal activation predicate AOPT is implemented in lines (24)-(25).

Algorithm 3 gives the procedures used by Algorithm Opt-Track (Algorithm 2). Function

PURGE removes old records with ∅ destination lists, per sender process (Implicit Tracking 2). On

a read operation of variable xh, function MERGE merges the piggybacked log of the corresponding

write to xh with the local log LOGi. In this function, new dependencies get added to LOGi

39

Algorithm 2: Opt-Track Algorithm (Code at site si)

WRITE(xh, v):

1 clocki + +;
2 for all sites sj(j 6= i) that replicate xh do
3 Lw := LOGi;
4 for all o ∈ Lw do
5 if sj 6∈ o.Dests then o.Dests := o.Dests \ xh.replicas;
6 else o.Dests := o.Dests \ xh.replicas ∪ {sj};
7 for all oz,clockz

∈ Lw do
8 if oz,clockz .Dests = ∅ ∧ (∃o′z,clock′

z
∈ Lw|clockz < clock′z) then remove oz,clockz from Lw;

9 send m(xh, v, i, clocki, xh.replicas, Lw) to site sj ;

10 for all l ∈ LOGi do
11 l.Dests := l.Dests \ xh.replicas;
12 PURGE;
13 LOGi := LOGi ∪ {〈i, clocki, xh.replicas \ {si}〉};
14 if xh is locally replicated then
15 xh := v;
16 Applyi[i] + +;
17 LastWriteOni〈h〉 := LOGi;

READ(xh):

18 if xh is not locally replicated then
19 RemoteFetch[f(xh)] from any site sj that replicates xh to get xh and LastWriteOnj〈h〉;
20 MERGE(LOGi, LastWriteOnj〈h〉);
21 else MERGE(LOGi, LastWriteOni〈h〉);
22 PURGE;
23 return xh;

On receiving m(xh, v, j, clockj , xh.replicas, Lw) from site sj :

24 for all oz,clockz
∈ Lw do

25 if si ∈ oz,clockz
.Dests then wait until clockz ≤ Applyi[z];

26 xh := v;
27 Applyi[j] := clockj ;
28 Lw := Lw ∪ {〈j, clockj , xh.replicas〉};
29 for all oz,clockz

∈ Lw do
30 oz,clockz

.Dests := oz,clockz
.Dests \ {si};

31 LastWriteOni〈h〉 := Lw;

On receiving f(xh) from site sj :

32 return xh and LastWriteOni〈h〉 to sj ;

40

Algorithm 3: Procedures used in Algorithm 2, Opt-Track Algorithm (Code at site
si)
PURGE:

1 for all lz,tz ∈ LOGi do
2 if lz,tz .Dests = ∅ ∧ (∃l′z,t′z ∈ LOGi|tz < t′z) then

3 remove lz,tz from LOGi;

MERGE(LOGi, Lw):

4 for all oz,t ∈ Lw and ls,t′ ∈ LOGi such that s = z do
5 if t < t′ ∧ ls,t 6∈ LOGi then mark oz,t for deletion;
6 if t′ < t ∧ oz,t′ 6∈ Lw then mark ls,t′ for deletion;
7 delete marked entries;
8 if t = t′ then
9 ls,t′ .Dests := ls,t′ .Dests ∩ oz,t.Dests;

10 delete oz,t from Lw;

11 LOGi := LOGi ∪ Lw;

and existing dependencies in LOGi are pruned, based on the information in the piggybacked

data Lw. The merging implements the optimality techniques of Implicit Tracking 1, described

before.

3.4.2.2 Correctness and Optimality Outlines

Let sendj(mw) →co sendk(mw′) and both messages be sent to site si. By Definition 4, it

needs to be shown that applyi(w) locally precedes applyi(w
′).

On event sendj(mw), the entry that si is a destination is added in the local LOGj (line

13) as well as in the logs of all other replicas except si (lines (28)-(30)). This information gets

propagated in the various local logs and the message overheads until Propagation Conditions

1 and 2 become applicable, viz., until mw is delivered to si or is transitively guaranteed to be

delivered in causal order to si. In the latter case, there is a causally more recent entry in the

41

logs with destination si. If LOGk contains information about this more recent entry or about

mw itself at event sendk(mw′), that information will be piggybacked on mw′ sent to si. The

activation predicate at lines (24)-(25) ensures that the update due to mw or due to this more

recent entry (as the case might be) is applied before applyi(w
′).

3.4.2.3 Liveness

This proof is similar to that for the Full-Track algorithm.

3.4.2.4 Optimality of the Activation Predicate

This proof is similar to that for the Full-Track algorithm.

3.4.2.5 Optimality of Log Space and Message Overhead Space

The log sizes are the minimal possible at any point in time. This is because the Propagation

Conditions 1 and 2 are implemented in conjunction with the Pruning Conditions 1 and 2 to

enforce pruning of all information that is not necessary for safety. Pruning Conditions 1 and 2

are implemented by Implicit Tracking 1 and 2 to remove entries from the logs. Implicit Tracking

1 and 2 are implemented by procedure MERGE, and procedure PURGE deletes the old records with

null destination lists to maintain logs of minimal size.

The local log gets piggybacked as the message overhead. In addition, when preparing the

message overhead before sending the message, lines (4)-(6) and lines (7)-(8) ensure that by

removing transitive dependencies and null entries, respectively, the message overhead space is

minimal.

At the expense of slightly larger message overhead, we can distribute the Write processing

in lines (3)-(8) of Algorithm 2 to the receivers’ sites after line (27). Instead of the loop in

42

line (4), send the LOG; and on its receipt, for each entry o in Lw, subtract xh.replicas from

o.Dests. This reduces the time complexity of a write operation from O(n2p) to O(n2).

3.4.3 Opt-Track-CRP: Adapting Opt-Track Algorithm to Fully-Replicated Systems

Algorithm Opt-Track can be directly applied to fully replicated DSM systems. Furthermore,

since in the full replication case, every write operation will be sent to exactly the same set of

sites, namely all of them, there is no need to keep a list of the destination information with each

write operation. Each time a write operation is sent, all the write operations it piggybacks as its

dependencies will share the same set of destinations as the one being sent, and their destination

list will be pruned by Propagation Condition 2. Also, when a write operation is received, all

the write operations it piggybacks also have the receiver as part of their destinations. So, when

checking for the activation predicate at lines (24)-(25) in Algorithm 2, all piggybacked write

operations need to be checked. With these additional properties in the full replication scenario,

we can represent each individual write operation using only a pair 〈i, clocki〉, where i is the site

id and clocki is the local write operation counter at site si when the write operation is issued.

In this way, we bring the cost of representing a write operation from potentially O(n) down to

O(1). This improves the algorithm’s scalability when the shared memory is fully replicated.

In fact, Algorithm 2’s scalability can be further improved in the fully replicated scenario. In

the partially replicated case, keeping entries with empty destination list as long as they represent

the most recent applied updates from some site is important, as it ensures the optimality that

no redundant destination information is transmitted. However, this will also require each site

43

to almost always maintain a total of n entries. In the fully replicated case, we can also decrease

this cost. We observe that, once a site s3 issues a write operation w′(x2)u, it no longer needs to

remember any previous write operations, such as w(x1)v, stored in the local log. This is because

all the write operations stored in the local log share the same destination list as w′. Thus, by

making sure the most recent write operation is applied in causal order, all the previous write

operations sent to all sites are guaranteed to be also applied in causal order. Similarly, after

the activation predicate becomes true and the write operation w′ is applied at site s1, only w′

itself needs to be remembered in LastWriteOn1〈2〉. This is illustrated in Figure 4.

Figure 4. In fully replicated systems, the local log will be reset after each write operation.
Also, when a write operation is applied, only the write operation itself needs to be

remembered. For clarity, the apply events are omitted in this figure.

44

This way of maintaining local logs essentially means that each site si now only needs to

maintain d+ 1 entries at any time with each entry incurring only an O(1) cost. Here, d is the

number of read operations performed locally since the most recent local write operation (and

is equal to the number of write operations stored in the local log). This is because the local

log always gets reset after each write operation, and each read operation will add at most 1

new entry into the local log. Furthermore, if some of these read operations read variables that

are updated by the same application process, only the entry associated with the very last read

operation needs to be maintained in the local log. Thus, the number of entries to be maintained

in the full replication scenario will be at most n.

Furthermore, if the application running on top of the DSM system is write-intensive, then

the local log will be reset at the frequency of write operations issued at each site. This means,

each site simply cannot perform enough read operations to build up the local log to reach a

number of n entries. Even if the application is read-intensive, this is still the case because read-

intensive applications usually only have a limited subset of all the sites whose write operations

are read. Thus, in practice, the number of entries that need to be maintained in the full

replication scenario is much less than n.

3.4.3.1 Formula

We give the formal algorithm of a special case of Algorithm 2, optimized for the fully

replicated DSMs. The algorithm is listed in Algorithm 4. Each site still maintains the same

data structures as in Algorithm 2, the only difference lies in that there is no need to maintain

the destination list for each write operation in the local log, and hence the format of the log

45

entries becomes the pair 〈i, clocki〉. Algorithm 4 assumes a highly simplified form. However, it

is very systematically derived by adapting Algorithm 2 to the fully replicated case. Algorithm

4 is significantly better than the algorithm in (13) in multiple respects.

Function MERGE works similarly to that in Opt-Track. There are two merge cases in Opt-

Track-CRP. First, when any log entry ls,t with clock time t for site s = j in LOG is older than

the piggybacked log entry 〈j, clockj〉 (i.e., t < clockj), it implies that this entry information

is out of date compared with 〈j, clockj〉. It also means that there is no entry in LOG whose

time clock is greater than clockj . If so, this entry ls,t will be removed from LOG and entry

〈j, clockj〉 needs to be united with LOG. Note that, in full replication, it is impossible that

there are multiple entries with the same site id and different clock time marks (i.e., LOG =

{〈j, clockj〉, 〈j, clock′j〉 . . . }). Second, if there is no log entry ls,t in which site id s is equal to j,

then, the piggybacked log entry 〈j, clockj〉 will also be merged with LOG.

3.4.4 Complexity

In this section, we analyse the complexity of the algorithms proposed. Four metrics are

used in the complexity analysis:

• message count: count of the total number of messages generated by the algorithm.

• message size: the total size of all the messages generated by the algorithm. It can be

formalized as
∑

i(# type i messages * size of type i messages).

• time complexity: the time complexity at each site si for performing the write and read

operations.

46

Algorithm 4: Opt-Track-CRP Algorithm (Code at site si)

WRITE(xh, v):

1 clocki + +;
2 send m(xh, v, i, clocki, LOGi) to all sites other than si;
3 LOGi := {〈i, clocki〉};
4 xh := v;
5 Applyi[i] := clocki;
6 LastWriteOni〈h〉 := 〈i, clocki〉;

READ(xh):

7 MERGE(LOGi, LastWriteOni〈h〉);
8 return xh;

On receiving m(xh, v, j, clockj , Lw) from site sj :

9 for all oz,clockz ∈ Lw do
10 wait until clockz ≤ Applyi[z];
11 xh := v;
12 Applyi[j] := clockj ;
13 LastWriteOni〈h〉 := 〈j, clockj〉;

MERGE(LOGi, 〈j, clockj〉):
14 unionflag := 1;
15 for all ls,t ∈ LOGi such that s = j do
16 if t < clockj then
17 delete ls,t from LOGi;

18 else
19 unionflag := 0;

20 if unionflag then LOGi := LOGi ∪ {〈j, clockj〉};

• space complexity: the space complexity at each site si for storing local logs and the

LastWriteOn log.

The following parameters are used in the analysis:

• n: the number of sites in the system

• q: the number of variables in the DSM system

47

T
A

B
L

E
I.

C
om

p
le

x
it

y
m

ea
su

re
s

of
ca

u
sa

l
m

em
or

y
al

go
ri

th
m

s.
M
et
ri
c

F
u
ll
-T
ra
ck

O
p
t-
T
ra
ck

O
p
t-
T
ra
ck
-C

R
P

o
p
tP

(1
3
)

M
es
sa
g
e
co
u
n
t

((
p
−

1
)
+

n
−
p

n
)w

+
2
r
(n
−
p
)

n
((
p
−

1
)
+

n
−
p

n
)w

+
2
r
(n
−
p
)

n
(n
−

1
)w

(n
−

1
)w

M
es
sa
g
e
si
ze

O
(n

2
p
w
+

n
r(
n
−

p
))

O
(n

2
p
w
+

n
r(
n
−

p
))

O
(n

w
d
)

O
(n

2
w
)

a
m
o
rt
iz
ed

O
(n

p
w
+

r(
n
−

p
))

T
im

e
C
o
m
p
le
x
it
y

w
ri
te

O
(n

2
)

w
ri
te

O
(n

2
p
)

w
ri
te

O
(d
)

w
ri
te

O
(n

)
re
a
d
O
(n

2
)

re
a
d
O
(n

2
)

re
a
d
O
(1
)

re
a
d
O
(n

)

S
p
a
ce

C
o
m
p
le
x
it
y

O
(m

a
x
(n

2
,n

p
q)
)

O
(m

a
x
(n

2
,n

p
q)
)

O
(m

a
x
(d
,q
))

O
(n

q)
a
m
o
rt
iz
ed

O
(m

a
x
(n

,p
q)
)

48

• p: the replication factor, i.e., the number of sites at which each variable is replicated

• w: the number of write operations performed in the DSM system

• r: the number of read operations performed in the DSM system

• d: the number of write operations stored in local log (used only in the analysis of Opt-

Track-CRP algorithm). Note that d ≤ n.

Table I summarizes the results.

3.4.4.1 Full-Track Algorithm

3.4.4.1.1 Message Count Complexity

The Full-Track algorithm assumes partial replication, thus each write operation will only

incur (p−1)+ n−p
n number of messages, accumulating ((p−1)+ n−p

n)w number of messages across

all write operations. However, since now read operations might need to read from remote site,

assuming the variables are evenly replicated across the entire system and the read operations

read variables in a truly random manner, then an additional 2r(n−p)
n number of messages will

be generated by the read operations. In total, the message count complexity of the Full-Track

algorithm is ((p− 1) + n−p
n)w + 2r(n−p)

n .

3.4.4.1.2 Message Space Complexity

The Full-Track algorithm maintains a local Write clock which is a matrix of size n2. Since

this clock is piggybacked with each message containing a write operation and each message that

returns a variable’s value to a remote site on a remote read operation, each message generated

by a send event and the remote return event in the Full-Track algorithm has a size of O(n2),

49

(whereas each message generated by a fetch event has a small and contant byte count). Thus,

the total message size complexity of the Full-Track algorithm is npw(n− 1) + nr(n− p), which

is O(n2pw + nr(n− p)).

3.4.4.1.3 Time Complexity

Each write operation updates the local Write clock for each of the p replicas before invoking

the Multicast primitive. This incurs an O(p) time complexity. There is an added cost of O(n2)

for copying the Writei matrix into the LastWriteOni log.

For the read operation, merging the Write clock associated with the variable to be read

with the local clock incurs an O(n2) time complexity.

3.4.4.1.4 Space Complexity

This is composed of the cost to maintain the local Write clock and the cost to maintain the

LastWriteOn log. The local Write clock takes O(n2) space. Each entry in the LastWriteOn

log that is associated with a locally replicated variable is of size O(n2). Assuming the variables

are evenly distributed across the entire system, each site will replicate a total of pq
n variables.

Thus, the LastWriteOn log incurs an O(npq) space complexity. The Full-Track algorithm’s

space complexity is O(max(n2, npq)).

3.4.4.2 Opt-Track Algorithm

3.4.4.2.1 Message Count Complexity

As the Opt-Track algorithm produces the same message pattern for both the read and write

operations as the Full-Track algorithm, its message count complexity is also the same, being

((p− 1) + n−p
n)w + 2r(n−p)

n .

50

3.4.4.2.2 Message Space Complexity

Different from the Full-Track algorithm, the Opt-Track algorithm does not maintain a ma-

trix at each site. Instead, it keeps a log of only the necessary write operations from all that

happened in the causal past, as in the KS algorithm. Each record of a write operation also

maintains its destination list, which contains up to p sites. The optimality of the Opt-Track

algorithm guarantees that only the necessary write operations and destination information are

kept, and piggybacked. Similar to the Full-Track algorithm, each message generated by a send

event and a remote return event contributes to the main meta-data overhead. The messages

generated by a fetch event are small and of constant btye size.

In the KS algorithm, the upper bound on the size of the log and the message overhead is

O(n2) (12). This has also been shown using an adversarial argument (62), viz., if you cannot

decide the distribution of replicas, then partial replication incurs the same costs as does full

replication as each process has to manage information on all the replicas. However, Chandra

et al. (63; 64) showed through extensive simulations that the amortized log size and message

overhead size of the KS algorithm is approximately O(n). This is because the optimality

conditions implemented ensure that only necessary destination information is kept in the log

and purged as soon as possible. This also applies to the Opt-Track algorithm because the same

optimization techniques are used. Since the log is piggybacked with each message containing

a write operation and each message that returns a variable’s value to a remote site, the total

message size complexity of the Opt-Track algorithm is O(n2pw + nr(n− p)). However, this is

51

only the asymptotic upper bound. The amortized message size complexity of the Opt-Track

algorithm is approximately O(npw + r(n− p)).

3.4.4.2.3 Time Complexity

For a write operation, for each replica the algorithm prunes the destination information

stored in the local log accordingly before piggybacking it with the message. This will incur an

O(n2p) time complexity. This subsumes the O(n2) time complexity incurred when a message

is received. In Section 3.4.2.5, we pointed out a way to bring down the O(n2p) complexity to

O(n2), at the expense of slightly larger message overhead.

For the read operation, the MERGE operation will merge the log associated with the variable

to be read with the local log. If the local logs are maintained in such a way that all the entries

lj,tj ∈ LOGi are stored in the ascending order of j and tj , then the MERGE operation can be

completed with only one pass through both logs. Thus, the incurred time complexity of a read

operation is O(n2).

3.4.4.2.4 Space Complexity

This is composed of the cost to maintain the local log (corresponding to the Write clock) and

the cost to maintain the LastWriteOn log. The local log (LOGi) takes O(n2) space. Since for

each of the qp
n locally replicated variables, the Opt-Track algorithm needs to store the log (of size

O(n2)) piggybacked with the most recent write operation updating that particular variable, the

size of the LastWriteOn log is O(npq). Thus, the space complexity is O(max(n2, npq)). Still,

this is only the asymptotic upper bound. The amortized space complexity will be approximately

52

O(max(n, pq)), since the amortized size of the local log is approximately O(n) on average,

instead of O(n2) (63; 64).

3.4.4.3 Opt-Track-CRP Algorithm

3.4.4.3.1 Message Count Complexity

Each write operation incurs a total of n−1 messages, however the read operation will always

read from the local copy and thus generate no messages. In total, the message count complexity

of the Opt-Track-CRP algorithm is (n− 1)w.

3.4.4.3.2 Message Space Complexity

Being a special case of the Opt-Track algorithm, the Opt-Track-CRP algorithm does not

keep the destination list for each record of a write operation, nor does it always maintain n

entries in the local log at each site (as discussed in Section 3.4.3). This means the size of a

write operation’s record is only O(1) and the size of the local log is only determined by the

number of entries in the local log, which is denoted as d in this section. As discussed in Section

3.4.3, in practice d is only a small constant number. Thus the size of the log piggybacked with

each message containing a write operation is O(d) and the total message size complexity of the

Opt-Track-CRP algorithm is O(nwd).

3.4.4.3.3 Time Complexity

The Opt-Track-CRP algorithm also has a very small time complexity, because the size of

the local log is very small.

53

For the write operation, the algorithm rewrites the local log and thus incurs only an O(1)

time complexity. The processing on receiving a write broadcast checks for each piggybacked

log entry, which is the size of the sender’s log, and takes O(d) time.

For the read operation, the MERGE operation merges the log associated with the variable to

be read with the local log. As the logs stored in the LastWriteOn log always contains only

one write operation, the MERGE operation can be completed within O(1) time.

3.4.4.3.4 Space Complexity

This is composed of the size of the LastWriteOn log and the size of the local log. The

LastWriteOn log contains q logs, each containing a single write operation; thus its size is O(q).

For the local log, it contains d entries of write operations, thus having a size of O(d). The space

complexity of the Opt-Track-CRP algorithm is thus O(max(d, q)).

3.4.5 Experiments

The implementations of the four causal consistency replicated protocols – Full-Track, Opt-

Track, Opt-Track-CRP, and optP (13) – were realized. The performance metrics used are as

follows:

• The ratio of the total message cost for Full-Track vs. Opt-Track and Opt-Track-CRP vs.

optP.

• the average size of the messages transmitted in different causal consistency replicated

protocols.

54

We report two experiments for each protocol, in each of which we vary one of the two parameters

n and wrate, respectively. For each combination of parameters in each experiment, multiple runs

were performed for each protocol. The experimental results of all the runs did not have more

than one percent variation. Thus, only the mean of the multiple runs is represented for each

combination.

Each simulation execution runs 600n operation events totally. Experimental data was stored

after the first 15 % operation events to eliminate the side effect in startup.

3.4.5.1 Partial Replication Protocols: Meta-data size

As analyzed on Section 3.4.4.1.2 and 3.4.4.2.2, in the Full-Track and Opt-Track protocols,

SM and RM messages contribute to the meta-data overheads, whereas FM messages are of

small and constant byte size.

3.4.5.1.1 Scalability as a Function of n

The number of processes was varied from 5 up to 40. The wrate is set to be 0.2 (lower

write rate), 0.5 (medium write rate), and 0.8 (higher write rate), respectively. The results for

the ratio of message space overhead (meta-data size) of Opt-Track to Full-Track are shown in

Figure 5. With increasing n, the space overhead ratio rapidly decreases. For the case of 40

processes, for all the simulations of Opt-Track, the overheads are only around 10 ∼ 20 percent

those of Full-Track on different write rates. For the case of 5 processes, the overheads reported

for Opt-Track for different write rates are around 90 percent of the ones of Full-Track, but

the overhead of Full-Track itself is low for such a parameter setting. It can also be seen from

55

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

R
a
ti

o
 o

f
M

es
sa

g
e

O
ve

rh
ea

d
 o

f
 O

p
t-

T
ra

ck
 t

o
 F

u
ll

-T
ra

ck

Processes

write rate: .2
write rate: .5
write rate: .8

Figure 5. Total message meta-data space overhead as a function of n and wrate in partial
replication protocols.

Figure 5 that a higher write rate magnifies the difference of the message space overhead between

Opt-Track and Full-Track.

3.4.5.1.2 Impact of Write Rate wrate

The results for the average message space overhead are shown in Figure 6, Figure 7, and Fig-

ure 8 according to different write rates, respectively. As discussed before, the average message

overheads of FM in Opt-Track and Full-Track protocols are constant, very small, and the same,

regardless of write rates. In Full-Track protocol, the average message space overheads of SM

and RM quadratically increase with n based on our previous discussion. However, the increas-

ingly lower overheads of SM and RM in Opt-Track protocol can be seen from the results. Their

56

 0

 2

 4

 6

 8

 10

 12

 14

 16

5 10 20 30 40

A
ve

ra
g

e
M

es
sa

g
e

S
iz

e
(K

B
)

Processes

SM(Full-Track)
FM(Full-Track)
RM(Full-Track)
SM(Opt-Track)
FM(Opt-Track)
RM(Opt-Track)

Figure 6. Average message meta-data space overhead as a function of n with lower wrate (0.2)
in partial replication protocols.

overheads appear almost linear in n. This observation can be explained as follows: Although

more explicit information of type “si is a destination of message m” needs to be maintained

in the logs, each log also involves more implicit information. Additional implicit information

provides incentive for the Propagation Constraints to merge and prune the logs when SM or RM

messages are received. The observation from Figure 6 to Figure 8 demonstrates the scalability

of Opt-Track under partial replication.

Furthermore, under the same number of processes, we also compare the average SM and RM

message sizes in different write rates. (The FM message size is an invariant constant count that is

independent of n and wrate. In Full-Track and Opt-Track, their FM sizes are the same since they

57

 0

 2

 4

 6

 8

 10

 12

 14

 16

5 10 20 30 40

A
ve

ra
g

e
M

es
sa

g
e

S
iz

e
(K

B
)

Processes

SM(Full-Track)
FM(Full-Track)
RM(Full-Track)
SM(Opt-Track)
FM(Opt-Track)
RM(Opt-Track)

Figure 7. Average message meta-data space overhead as a function of n with medium wrate
(0.5) in partial replication protocols.

TABLE II. Average SM and RM space overhead for Full-Track and Opt-Track (KB)
wrate the number of processes, n

5 10 20 30 40

Opt-Track

SM
0.2 0.489 0.828 1.512 2.241 2.783
0.5 0.464 0.715 1.125 1.442 1.976
0.8 0.450 0.627 0.914 1.194 1.475

RM
0.2 0.432 0.774 1.530 2.351 3.184
0.5 0.436 0.702 1.235 1.656 2.197
0.8 0.555 0.632 0.948 1.288 1.599

Full-Track

SM
0.2 0.518 1.252 3.870 8.028 13.547
0.5 0.522 1.271 3.975 8.127 14.033
0.8 0.524 1.275 3.988 8.410 14.157

RM
0.2 0.493 1.220 3.817 7.959 13.461
0.5 0.497 1.205 3.941 8.117 13.983
0.8 0.499 1.250 3.966 8.369 14.099

58

 0

 2

 4

 6

 8

 10

 12

 14

 16

5 10 20 30 40

A
ve

ra
g

e
M

es
sa

g
e

S
iz

e
(K

B
)

Processes

SM(Full-Track)
FM(Full-Track)
RM(Full-Track)
SM(Opt-Track)
FM(Opt-Track)
RM(Opt-Track)

Figure 8. Average message meta-data space overhead as a function of n with higher wrate
(0.8) in partial replication protocols.

use the same data structure for FM message.) The analytic data is listed in Table II according

to Figure 6 to Figure 8. The average SM and RM overheads decrease as the write rate increases

in Opt-Track Protocol. The reason can be explained as follows. A read operation will invoke

a MERGE function to merge the piggybacked log of the corresponding write to that variable

with the local log LOG. Thus, a higher read rate may increase the likelihood that the size of

LOG is enlarged. Furthermore, although a write operation results in the increase of explicit

information, it comes with a PURGE function to prune the redundant information, so that the

size of LOG could be decreased. Therefore, a higher write rate with a corresponding lower read

rate results in fewer MERGE and more PURGE operations generated. The simulation results

59

show that Opt-Track has a better utilization of network capacity in write-intensive workloads

than in read-intensive ones. On the other hand, in Full-Track, although the average SM and

RM overheads increase as the write rate does, the increase percentage is only 3% ∼ 1%.

From the above analysis, it can be concluded that the implementation of the Opt-Track

protocol has a better network capacity utilization and better scalability than Full-Track. These

improvements increase in a higher write-intensive workload.

Note that our simulating numerical data obtained for Opt-Track protocol does not com-

pletely follow the data structures defined in Section 3.4.2. In partial replication protocols, we

use a matrix clock (Write) in Full-Track and a linked list log (LOG) in Opt-Track to track the

causal relation. These two data structures occupy the majority of their corresponding meta-

data respectively. Thus, they dictate the trade-off between Full-Track and Opt-Track. Our

simulation platform is based on JAVA program. Write clock can be realized by a primitive

JAVA integer class matrix. On the other hand, if one wants to realize LOG log format as

shown in Section 3.4.2, it is necessary to create a user-defined JAVA class list. However, a

user-defined class has some additional overhead against a primitive class in JAVA. Instead of

using a user-defined list where each entry contains 〈j, clockj , Dests〉, we used three primitive

class lists to maintain 〈j〉, 〈clockj〉, 〈Dests〉 in our simulation.

3.4.5.2 Full Replication Protocols: Meta-data size

The Opt-Track-CRP protocol and the optP protocol both use only SM messages, and no

FM or RM messages.

60

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

R
a
ti

o
 o

f
M

es
sa

g
e

O
ve

rh
ea

d
 o

f
 O

p
t-

T
ra

ck
-C

R
P

 t
o
 o

p
tP

Processes

write rate: .2
write rate: .5
write rate: .8

Figure 9. Total message meta-data space overhead as a function of n and wrate in full
replication protocols.

3.4.5.2.1 Scalability as a Function of n

The results for the ratio of message space overhead of Opt-Track-CRP to optP are shown

in Figure 9. With increasing n, the ratio of total SM space overhead of Opt-Track-CRP vs.

optP decreases. For the case of 5 processes, the total SM overheads for Opt-Track-CRP are

consistently higher than around 10% of those for optP on a variety of write rates. For the case

of 10 processes, the SM space overhead for Opt-Track-CRP is still close to that for optP in a

lower write rate 0.2. But their space overhead ratio is down to 90 percent in a higher write rate

0.8. When the number of processes is up to 40, the SM space overheads for Opt-Track-CRP

are around 50% to 55% for different write rates.

61

 0

 100

 200

 300

 400

 500

 600

 700

5 10 20 30 35 40

A
ve

ra
g

e
M

es
sa

g
e

S
iz

e
(B

yt
e)

Processes

SM(optP)
SM(Opt-Track-CRP)

Figure 10. Average message meta-data space overhead as a function of n with lower wrate
(0.2) in full replication protocols.

TABLE III. Average SM space overhead for Opt-Track-CRP (byte)
n wrate=.2 wrate=.5 wrate=.8 optP

5 287.3 277.5 272.9 259

10 300.3 284.3 278.2 309

20 315.5 294.9 288.3 409

30 327.1 305.2 298.4 509

35 332.8 310.1 303.4 559

40 338.4 315.3 308.4 609

62

 0

 100

 200

 300

 400

 500

 600

 700

5 10 20 30 35 40

A
ve

ra
g

e
M

es
sa

g
e

S
iz

e
(B

yt
e)

Processes

SM(optP)
SM(Opt-Track-CRP)

Figure 11. Average message meta-data space overhead as a function of n with medium wrate
(0.5) in full replication protocols.

3.4.5.2.2 Impact of Write Rate wrate

As with partial replication protocols, a higher write rate makes the total message space

overhead ratio of Opt-Track-CRP vs. optP smaller. The results for the average SM space

overhead are shown in Figure 10, Figure 11, and Figure 12 in terms of different write rates.

As mentioned before, the average SM space complexity of Opt-Track-CRP is O(d) but that

of optP is O(n). According to Figure 10 to Figure 12, Table III presents the analytic data.

Obviously, the average SM space overhead of optP only depends on the number of processes n,

irrespective of wrate. However, under the same number of processes, the SM space overheads

of Opt-Track-CRP decrease slightly with increasing wrate. This can be explained as follows: In

63

 0

 100

 200

 300

 400

 500

 600

 700

5 10 20 30 35 40

A
ve

ra
g

e
M

es
sa

g
e

S
iz

e
(B

yt
e)

Processes

SM(optP)
SM(Opt-Track-CRP)

Figure 12. Average message meta-data space overhead as a function of n with higher wrate
(0.8) in full replication protocols.

Opt-Track-CRP protocol, a write operation does not make the local log size larger than one

and change the remote log size at a receiving site. But a read operation might incur a growth

in the local log size when it often reads different variables updated via other remote sites.

Therefore, lower write rate (corresponding to higher read rate) would cause higher meta-data

overhead than higher write rate (corresponding to lower read rate). In other words, Opt-Track-

CRP protocol has a better utilization of network capacity in write-intensive workloads than in

read-intensive ones.

64

From the experimental analysis in full replication, we can conclude that Opt-Track-CRP

protocol has a better scalability and utilization than optP, especially in write-intensive work-

loads.

3.4.5.3 Partial Replication vs. Full Replication: Message Count

Compared with the existing causal distributed shared memory protocols, our suite of pro-

tocols (60) has the additional ability to implement causal consistency in partially replicated

distributed shared memory systems. Further, the protocols in (17; 65; 16) do not provide

scalability as they use a form of log serialization and exchange to implement causal consistency.

Table IV shows the results of running the same operation event scheduling using Opt-

Track-CRP and Opt-Track, respectively. It presents the total message counts with different

write rates in full replication and partial replication. Except for when n=5 and wrate=0.2, the

message counts for partial replication are always less than the ones for full replication.

3.4.5.4 Partial Replication vs. Full Replication: Message Space Overhead

Let f be the size of an image/data being written and let b be the number of bytes in an

integer.

Under full replication, the net message payload size for the write multicast is (n − 1) × f ,

and n× b× (n− 1) for the message meta-data overheads in the worst case of Opt-Track-CRP

protocol (61). In practice, the size of a write operation’s record is only O(1) and the size of the

local log is determined only by the number of entries in the local log, denoted as d, as shown

in the definition before; practically, d is only a small constant number. The read cost is zero.

65

Thus, the message size cost introduced by one write operation in full replication is (n-1)f +

nb(n-1).

Under partial replication using Opt-Track, the net message payload size is ((p-1) + (n−p)
n)f

for the write multicast. The read cost is (rw) (n−p)n f because there are r
w reads per write, and

n−p
n of the reads fetch the file from a remote location. The corresponding message meta-data

overheads are ((p-1) + (n−p)
n)n2b + (rw) (n−p)n (n2 +1)b in the worst case. However, it was shown

in (66) through extensive simulations that the amortized log size and message overhead size

is approximately O(n), not O(n2). The amortized message meta-data overheads are ((p-1) +

(n−p)
n)nb + (rw) (n−p)n (n+ 1)b.

Thus, partial replication has lower message (payload + meta-data) size in the worst case if

(n− 1)f + nb(n− 1) >

((p− 1) +
(n− p)
n

)f + (
r

w
)
(n− p)
n

f+

((p− 1) +
(n− p)
n

)n2b+ (
r

w
)
(n− p)
n

(n2 + 1)b

(3.1)

or, in practice, if

(n− 1)f + db(n− 1) >

((p− 1) +
(n− p)
n

)f + (
r

w
)
(n− p)
n

f+

((p− 1) +
(n− p)
n

)nb+ (
r

w
)
(n− p)
n

(n+ 1)b

(3.2)

The above analysis was for r reads and w writes of the image/data. Consider such a

system with n=40, p=12 and wrate = 0.5. A large/medium/small data of 10KB/1KB/0.1KB,

66

respectively, has to be stored and transmitted in a write operation. Assume that one word

holds 4 bytes (b=4B).

Table V summarizes the total message space overheads in the worst cases. Although full

replication has lower meta-data overheads, partial replication has smaller total message space

size for the larger image/data f .

Table VI shows the total message space overheads in the practical amortized sense. Note

that d < n. As per the experiments in (66), the average meta-data overhead is 315B for Opt-

Track-CRP; therefore d = 2. For Opt-Track, there are three types of control messages. Their

structures are as shown in Table VII. SM corresponds to a multicast message arising from send

event to deliver the information of updating variable’s value. FM is a fetch message caused by

a fetch event. RM represents a remote return message to respond to a remote read operation.

Among the three types of control messages, SM and RM contribute mainly to the meta-data

overhead: messages to write remotely, which take 1.976KB, and messages to remotely return

a non-local value, which take 2.197KB. FM, to request a remote fetch of a non-local value,

contributes very little to the meta-data overhead. The numerical values of the above quantities

are shown in Table II. In sum, the average meta-data overhead for Opt-Track is around 2.08KB.

Thus, the experimental results closely corroborate the above theoretical analysis. Appar-

ently, partial replication, in practice, has lower total message space overhead than full repli-

cation, no matter what size of f . This makes partial replication a viable alternative to full

replication in DSM systems. Although the meta-data size of full replication is still less than

67

TABLE IV. Total message count for partial replication (Opt-Track) VS. full replication
(Opt-Track-CRP)

n Full Replication Partial Replication

(0.2) (0.5) (0.8) (0.2) (0.5) (0.8)

5 2,036 4,960 8,004 3,208 3,463 3,764

10 8,910 22,266 35,892 8,297 10,234 12,156

20 38,057 95,114 151,905 22,808 35,668 48,128

30 86,826 217,181 347,304 42,600 75,679 108,810

40 156,156 390,039 624,390 69,405 130,572 192,883

TABLE V. Total message overheads for full replication (Opt-Track-CRP) and partial
replication (Opt-Track), when n=40, p=12, wrate=0.5, in the worst case.

f=10KB f=1KB f=0.1KB

Full
390KB+6.09KB 39KB+6.09KB 3.9KB+6.09KB

Replication

Partial
124KB+77.503KB 12.4KB+77.503KB 1.24KB+77.503KB

Replication

that of partial replication, the difference is far less than the message payload size variation

between full replication and partial replication.

68

TABLE VI. Total message overheads for full replication (Opt-Track-CRP) and partial
replication (Opt-Track), when n=40, p=12, wrate=0.5, in practice.

f=10KB f=1KB f=0.1KB

Full
390KB+0.15d KB 39KB+0.15d KB 3.9KB+0.15d KB

Replication

Partial
124KB+1.9402 KB 12.4KB+1.9402 KB 1.24KB+1.9402 KB

Replication

TABLE VII. Message meta-data structures in partial replication protocols
Full − Track Opt− Track

SM (Multicast) xh,v,Write xh,v,Siteid,clock,Lw
FM (Fetch) xh,v xh,v

RM (Remote Return) v,LastWriteOn〈h〉 v,LastWriteOn〈h〉

CHAPTER 4

APPROXIMATE CAUSAL CONSISTENCY

This chapter is based on our previous publications (67; 68; 2). In this chapter, we focus on

the relationship between adequate credit (no causal violation) and n (the number of processes)

and discuss the problem of the trade-off between adequate credit and how much meta-data

can be reduced further. The underlying system architecture is the same as the one provided in

Chapter 2. The rest of this chapter is organized as follows. Section 4.1 presents the basic idea

of approximate causal consistency. Section 4.2 presents the details of algorithm Approximate-

Opt-Track. Section 4.3 describes some notes about the hop count instantiation of algorithm

Approximate-Opt-Track. Section 4.4 shows the experimental system model. Section 4.5 demon-

strates the experimental results in different settings. Section 4.6 illustrates the experimental

evaluation.

4.1 Basic Idea of Approx-Opt-Track

Based on Opt-Track protocol, we can further reduce the size of meta-data by deleting

older dependencies rather than carry them around and store them in logs. With very high

probability, the older the dependencies are, the more they are likely to be immediately satisfied

as the corresponding messages are more likely to be delivered. We introduce the notion of

credits associated with each meta-data unit of information. When a dependency is created, it is

allocated a certain number of initial credits. For every read and write operation, we decrement

69

70

the available credits by some used-up credits, and when the available number of credits reaches

zero, the dependency becomes “old enough” and can be deleted. By setting the initial credits

to ∞, we get the original Opt-Track algorithm. By setting them to a smaller finite value, we

can prune meta-data information about older dependencies by risking that those dependencies

might not be satisfied, rather than wait for the pruning mechanisms of Opt-Track to prune them.

Credits is a parameter that lets us approximate causal consistency to the accuracy desired.

Consider the timing diagram in Figure 13. The messages shown indicate those sent due to

write operations to update the remote replica. The causality chain induced by write operations

corresponding to M1, M2, and M3, and the intervening apply and return events, ends in M3

being sent to site s1. Normally in Opt-Track, the meta-data on M3 contains the dependency

that “M is sent to s1”, and will prevent M3 from being delivered to s1 before M is delivered.

However, if the credits get expired along this causality chain, then M3 will not carry the meta-

data dependency that “M is sent to s1” and hence M3 will be delivered by violating causal

consistency at s1. If credits are decremented slowly enough, then with very high probability,

M3 will carry the meta-data information about M and causal consistency is not violated.

In another scenario, consider the timing diagram in Figure 14. It is the same as in Figure 13,

with the exception that message M is delivered to s1 within a reasonable (i.e., an expected)

amount of time. Assume that the credits about the dependency “M is sent to s1” get exhausted

when M2 is delivered to s4 along the causality chain 〈M1,M2〉. The dependency is thus deleted

at s4 and is not carried in the meta-data sent along with message M3. This results in reduced

71

return event

s

s

s

s

1

2

3

4

M

M2

M1 M3

apply event

Figure 13. Illustration of causal consistency violation if credits are exhausted.

M

s

s

s

s

1

2

3

4

M2

M1 M3

apply event return event

Figure 14. Illustration of meta-data reduction when credits are exhausted.

meta-data on M3. This does not cause any violation of causal consistency when the reduced

meta-data is delivered to s1, because M has been delivered to s1.

4.2 Approx-Opt-Track

Algorithm 5 shows the steps performed by Approx-Opt-Track. The following data structures

are needed for each site.

1. clocki: local counter for write operations performed at site si by application process api.

72

2. Applyi[1 . . . n]: an integer array (initially set to 0s). Applyi[j] = y means that y updates

written by application process apj have been applied at site si.

3. LOGi = {〈j, clockj , Dests, cr〉}: the local log (initially set to empty). Each entry 〈•〉

specifies a write operation, for which Dests is the destination set, in the causal past.

Only necessary destination information is stored. cr is the remaining amount of credits

allowed before the entry ages out.

4. LastWriteOni〈variable id, LOG〉: a hash map of LOGs. LastWriteOni〈h〉 contains the

piggybacked LOG for the most recent update applied at site si to locally replicated

variable xh.

The data structures are the same as in algorithm Opt-Track, with the addition of the credits

parameter cr in each entry in LOGi. Algorithm 5 implements the optimality mechanisms

described in algorithm Opt-Track (61).

For a write operation, it will send different log meta-data Lw to different replica sites.

Lines (6)-(13) formulate the meta-data for each replica site and minimize its space overhead.

Lines (8)-(10) and lines (14)-(15) can prune the destination sets by Propagation and Pruning

Condition 2. Lines (36)-(37) prune the redundant information by Propagation and Pruning

Condition 1. Lines (28)-(29) are used to implement the optimal activation predicate AOPT .

Algorithm 6 shows two functions used in Algorithm Approx-Opt-Track (Algorithm 5). Func-

tion PURGE removes the records with ∅ destination sets, per sender process. When reading

variable xh, function MERGE combines the piggybacked log of the corresponding write to xh and

the local log LOGi. In this function, new dependencies are added to LOGi and old dependen-

73

Algorithm 5: Approx-Opt-Track Algorithm, which is a modification of Algorithm
Opt-Track (61) (Code at site si)

WRITE(xh, v):

1 clocki + +;
2 cr := initial credits;
3 for all l ∈ LOGi do
4 l.cr := l.cr− used credits;
5 if l.cr ≤ 0 ∧ l.Dests 6= ∅ then delete l;

6 for all sites sj(j 6= i) that replicate xh do
7 Lw := LOGi;
8 for all o ∈ Lw do
9 if sj 6∈ o.Dests then o.Dests := o.Dests \ xh.replicas;

10 else o.Dests := o.Dests \ xh.replicas ∪ {sj};
11 for all oz,clockz

∈ Lw do
12 if oz,clockz

.Dests = ∅ ∧ (∃o′z,clock′
z
∈ Lw|clockz < clock′z) then remove oz,clockz

from Lw;

13 Send m(xh, v, i, clocki, xh.replicas, cr, Lw) to site sj ;

14 for all l ∈ LOGi do
15 l.Dests := l.Dests \ xh.replicas;
16 PURGE;
17 LOGi := LOGi ∪ {〈i, clocki, xh.replicas \ {si}, cr〉};
18 if xh is locally replicated then
19 xh := v;
20 Applyi[i] + +;
21 LastWriteOni〈h〉 := LOGi;

READ(xh):

22 if xh is not locally replicated then
23 RemoteFetch[f(xh)] from randomly selected site sj that replicates xh to get xh and

LastWriteOnj〈h〉;
24 MERGE(LOGi, LastWriteOnj〈h〉);
25 else MERGE(LOGi, LastWriteOni〈h〉);
26 PURGE;
27 return xh;

On receiving m(xh, v, j, clockj , xh.replicas, c, Lw) from site sj :

28 for all oz,clockz ∈ Lw do
29 if si ∈ oz,clockz

.Dests then wait until clockz ≤ Applyi[z];
30 for all o ∈ Lw do
31 o.cr := o.cr− used credits;
32 if o.cr ≤ 0 ∧ o.Dests 6= ∅ then delete o;

33 xh := v;
34 Applyi[j] := clockj ;
35 Lw := Lw ∪ {〈j, clockj , xh.replicas, c− used credits〉};
36 for all oz,clockz

∈ Lw do
37 oz,clockz

.Dests := oz,clockz
.Dests \ {si};

38 LastWriteOni〈h〉 := Lw;

On receiving f(xh) from site sj :

39 return xh and LastWriteOni〈h〉 to sj ;

74

Algorithm 6: Procedures used in Algorithm 5, Approx-Opt-Track algorithm (code at
site si)
PURGE:

1 for all lz,tz ∈ LOGi do
2 if lz,tz .Dests = ∅ ∧ (∃l′z,t′z ∈ LOGi|tz < t′z) then

3 remove lz,tz from LOGi;

MERGE(LOGi, Lw):

4 for all l ∈ LOGi do
5 l.cr := l.cr− used credits;

6 for all o ∈ Lw do
7 o.cr := o.cr− used credits;

8 for all oz,t ∈ Lw and ls,t′ ∈ LOGi such that s = z do
9 if t < t′ ∧ ls,t 6∈ LOGi then mark oz,t for deletion;

10 if t′ < t ∧ oz,t′ 6∈ Lw then mark ls,t′ for deletion;
11 delete marked entries;
12 if t = t′ then
13 ls,t′ .Dests := ls,t′ .Dests ∩ oz,t.Dests;
14 ls,t′ .cr := min(ls,t′ .cr, oz,t.cr);
15 delete oz,t from Lw;

16 LOGi := LOGi ∪ Lw;
17 for all l ∈ LOGi do
18 if l.cr ≤ 0 ∧ l.Dests 6= ∅ then delete l;

75

cies in LOGi are pruned, based on the information in the piggybacked data Lw. The merging

procedure realizes the optimality techniques of Implicit Tracking1.

Notice that in the PURGE function, and in lines (11)-(12) of the WRITE procedure, entries

with empty destination list are kept as long as and only as long as they are the most recent

update from the sender. This is required for implicit tracking of messages delivered and guar-

anteed to be delivered in causal order using Implicit Tracking 2, as explained in (11; 12; 61).

Such entries should not be deleted even if their credits allocation becomes zero. Thus in line

5, line 32, of the main algorithm, and in line 18 of MERGE, we delete an entry with exhausted

credits only if its destination list is non-empty.

4.3 Credit Instantiations

Using the hop count instantiation, credits of a meta-data entry denote the hop count avail-

able before the entry ages out and is deleted. A message is said to traverse one hop when it

traverses along a logical channel between any pair of processes (sites). We make some notes

about this instantiation of Algorithm Approx-Opt-Track.

1. Line 2: initial assignment of the hop count for a new dependency created by a write

operation.

2. Lines (3)-(5): These lines are no-ops because there is no message transfer.

3. Lines (30)-(32): In line 31, the hop count is decremented by one for each entry in the

piggybacked meta-data received.

4. Line 35: The hop count is decremented by one for the new dependency just formed by

the received message.

76

5. Lines (4)-(7) in MERGE: The entries in LOGi do not experience any decrease in hop count,

while the entries in Lw have the hop count decremented if the data was remotely fetched

by the read operation that triggered the MERGE.

6. Line 14 in MERGE: The hop count is set to the minimum of the hop counts of the entries

being merged.

7. Lines (17)-(18) in MERGE: LOGi entries whose hop count is zero are deleted.

Example: We illustrate Approx-Opt-Track with hop count credits by using Figure 13 and

Figure 14, and quantitatively show how much improvement one can gain in running Approx-

Opt-Track against Opt-Track. Initially, a hop count credit x is assigned to the meta-data

“M is sent to s1” (denoted md). After receiving and applying M1 at s2, the credits will be

decremented by one. When M2 is delivered to and applied at s4, if the credit value x− 2 is not

greater than zero, md will be removed from the corresponding record. Thus, if x was initialized

to 2, when M3 is delivered to s1 without piggybacking md, applying M3 at s1 violates causal

consistency in Figure 13, but not in Figure 14. By controlling x, Approx-Opt-Track can carry

less amount of dependency meta-data. We expect that if the initial allocation of x is made as

a high single-digit, by the time x reaches zero and the meta-data entry is deleted, the message

about which the meta-data is deleted would already have reached its destination (with very

high probability). Consider Figure 14. In Opt-Track, there are 6 dependency records delivered

(1(M1)+2(M2)+3(M3)) and 5 dependency records (2(s3)+3(s4)) saved in local storages by

the two apply events. In Approx-Opt-Track, when x is set to 2, there are 5 dependency

records delivered (1(M1)+2(M2)+2(M3)) and 4 dependency records (2(s3)+2(s4)) saved in local

77

storages by the two apply events. Approx-Opt-Track can not only reduce transmitted data and

storage overheads as compared to Opt-Track but can also maintain causal consistency. Our

simulation results focus on the relationship between adequate x (no causal violation) and n

(the number of processes) and the trade-off between adequate x and how much meta-data can

be reduced further.

‘Physical time lapse’ and ‘metric distance traversed’ can be used as instantiations of credits.

Note that we assume that the network is symmetric and homogeneous. In this case, the TTL

and physical distance are not good metrics or they need to be modified to reflect the real trade-

off between causal violation and credits. For simplicity, we consider the metric of the hop count

credits.

4.4 Simulation System Model

We describe the experimental methodology used to evaluate the performance of the pro-

posed Approx-Opt-Track algorithm in an asynchronous distributed system, with respect to the

instantiation of credits, by hop count. The system is composed of a finite number of intercon-

nected sites. Each site has only one asynchronous process with a local memory, for simplicity.

All the processes can communicate by asynchronous message passing through TCP channels

of the underlying network, where messages are delivered in FIFO order with no omissions or

duplications.

4.4.1 Process Model

Two major subsystems in a process are the application subsystem and the message receipt

subsystem. The purpose of the application subsystem (AS) is to facilitate scheduling operation

78

events (write/read). AS not only maintains a floating point local clock to generate event

patterns based on a temporal schedule, but also is responsible for handling Write and Read

functions. The message receipt subsystem (MRS) takes charge of responding to remote request

service. MRS mainly consists of ApplyingMulticast and RespondingFetch services.

The simulation system core is based on Approx-Opt-Track. For a write operation w(xh)v,

AS invokes a send event to deliver the message m(w(xh)v) with the corresponding meta-data

– local log Lw and hop count credits to other replicas. For a read operation r(xh), AS returns

the local value of variable xh or invokes a fetch event to deliver the message fetch(xh) to

a predesignated site to retrieve the remote variable xh’s value as well as the corresponding

meta-data LastWriteOn〈h〉 and hop count credit. MRS can recognize and allow the receipt

of two distinct types of incoming messages. First, if the incoming message m contains a write

operation w(xh)v, MRS will determine when to apply the new value v to the variable xh under

causal consistency and then update the meta-data log LastWriteOn〈h〉 and hop count credits.

Second, on receiving a remote fetch message m(fetch(xh)), it invokes a remote return event to

reply with the local value of the variable xh, the corresponding meta-data log LastWriteOn〈h〉,

and hop count credits to the requesting site.

4.4.2 Simulation Parameters

The system parameters whose effects we examine on the performance of Approx-Opt-Track

are as follows:

• Number of Processes (n): The performance of every DSM implementation highly depends

on the node count, or core count, and the underlying hardware running the simulation

79

(i.e., memory allocation of the benchmark device). It is hence necessary to simulate a

DSM system over a wide range of n. On an Intel Core 2 Duo workstation with a JDK8

virtual machine, we can simulate up to 40 processes.

• Number of Variables (q): q is usually unbound in a real system. Subject to the memory

limitation, q in the benchmark experiment is one hundred.

• Replica Factor Rate (rf): The ratio of the number of replicas to n.

• Write Rate (wrate): It is defined as the ratio of the number of write operations to the total

number of operations. Binding by a variety of write rates, we can study performance for

read-intensive and write-intensive application workloads.

• Hop Count Credits (cr): Credits of a meta-data entry denote the hop count available

before the entry ages out and is removed.

• Message Count (mc): The total number of messages generated by all the processes.

• Message Meta-Data Size (ms): The total size of all the meta-data transmitted over all

the processes.

4.4.3 Process Execution

For simplicity, we consider a homogeneous and fully connected network, in which all the

processes are symmetric. The operation events are triggered based on a event schedule ran-

domly generated in advance. Subject to the underlying hardware, the time interval Te between

two events at a process is given from 5ms to 2005ms. The propagation time Tt is from 100ms

to 3000ms. Consider the real-world network communication situation. Tt is initially given as

80

5ms ∼ 300ms and Te is set to be 10ms ∼ 200ms. We simulated multi-processes on a stan-

dalone workstation. They use the TCP protocol to transmit messages, where each transmission

establishes a TCP ”short” connection, getting closed after delivering the message. This TCP

port cannot be used immediately. It is released after some delay. If Tt and Te are so short as

to cause sockets to be leaked, with time, this exhausts all available TCP ports. A compromise

solution is to increase the number of ephemeral network ports and make sure the rate at which

the connections are created does not throttle the kernel memory. There are no formally doc-

umented approaches available to increase non-paged kernel memory in a standalone machine.

With not enough hop count credits, causal violation would depend on the combination of Te

and Tt. In order to avoid connection exceptions, we need to lower the connection rate in our

simulation. To seek the next-best thing, we formulate isomorphic communication patterns with

the above larger Te and Tt. The range of Te is finally set from 5ms through 2005ms and that

of Tt from 100ms through 3000ms. The simulation results of these two different time ranges in

smaller numbers of processes are not obviously distinct.

The processes in the distributed system execute concurrently. Simulating each process as

an independent process at a site invoked inter-process communication. When a process gets

initialized, it first invokes the MRS. Then, the system executes Scheduled−ExecutorService

in JDK to drive the AS which extends TimerTask class – a JDK scheduling service to dispose

of the scheduling operation events. In the simulation, the system relies on TCP channels to

deliver messages. An AS stops generating operation events once it runs out of all the scheduling

81

events and flags its status as finished. The simulation is done when all the ASs have their status

set to ’finished’.

4.4.4 Causal Consistency Verification

In this model, we undertake a comprehensive study of the trade-off relations among the

initial allocation of credits, the dependency meta-data size, and the causal consistency correct-

ness. It is a critical issue to detect how many receiving operations violate causal consistency in

a simulation. In Algorithm 5, theoretically, when the hop count reaches zero, the dependency

meta-data entry is deleted. It means that not all the meta-data entries (explicit information

of destinations) are kept before the destination information becomes redundant. Thus, while

AOPT in lines (28)-(29) (Algorithm 5) becomes true, the instant that an update mw is applied

may violate causal consistency. Practically, the meta-data entry whose cr is equal to zero would

be marked rather than deleted in line 32 (Algorithm 5) and line 18 (MERGE, Algorithm 6). If

AOPT (clockz ≤ Applyi[z]) becomes true and at least one o.cr ≤ 0 (the meta-entry is marked),

this receiving operation applied would violate causal consistency. We realize this verification

mechanism at the application level by counting the number of messages applied by the remote

replicated sites with a violation of causal consistency, denoted as ne.

4.5 Simulation Results

We present results of simulations performed to study the trade-off among initial credits cr,

message meta-data size ms, and causal consistency accuracy rate in the empirical evaluation.

The performance metrics used are as follows:

• The causal consistency violation error rate, Re.

82

• The average size of the message meta-data transmitted for different initial credits and

write rates, mave.

• The message meta-data size saving rate, Rs.

In order to clarify the relative contribution of these metrics, multivariate analyses were

conducted. Choosing a different set of parameters (rf , wrate, n, and cr) will result in a different

evaluation. Our evaluations realize four evaluation loops, each of which corresponds to one

parameter. The loop structure is as follows: First, we select a rf . It was set to be 0.3, 0.2,

and 0.5. The first loop evaluates the impact of rf . Second, the wrate was set to be 0.2 (lower

write rate), 0.5 (medium write rate), and 0.8 (higher write rate), respectively. The second loop

evaluates the impact of different wrate. Third, n was varied from 5 up to 40. This tests the

scalability of Approx-Opt-Track. Finally, the innermost loop varied the initial hop count credit

cr. It was specified from one to a critical value cr0, with which there is no message transmission

violating causal consistency in the corresponding simulation. Not only does this illustrate how

Approx-Opt-Track further reduces the meta-data overheads but it also verifies the trade-off

between meta-data saving rates and causal violation degrees.

Before running an evaluation (corresponding to a set of parameters), we randomly generate

a task schedule set Ts.

Because this is a simulation-based study, randomness is introduced in the readings. For each

experimental evaluation, three runs were performed over the same Ts. The variations for all

the simulation results are less than 2%. The mean of numerical results performed from three

runs is represented for each combination of the four parameters. Each simulation execution

83

TABLE VIII. Critical initial credits for the replica factor rate = 0.3.
wrate the number of processes

5 10 20 30 40

Re ∼ 0.5%
0.2 3 3 3 4 4
0.5 3 3 3 3 3
0.8 3 3 4 4 4

Re = 0
0.2 5 6 7 8 8
0.5 3 5 7 7 9
0.8 4 5 7 8 8

runs 600n operation events totally. Experimental data was stored after the first 15% operation

events to eliminate the side effect of startup.

4.5.1 Violation Error Rate (Re)

In Section 4.4.4, we defined ne as the number of messages applied by the remote replicated

sites with a violation of causal consistency. We define Re as the ratio of ne to the total number

of transmitted messages mc. The results for Re versus different initial hop count credits are

shown in Figure 15 ∼ Figure 17. Each of them corresponds to a different wrate.

With increasing cr (less than 4), Re rapidly decreases. For the same initial cr and wrate, the

larger the n, the higher the Re. The larger the wrate, the lower the Re. Table VIII highlights

the results for two types of critical initial credits (crc) when Re is around 0.5% (exactly, 0.4%

∼ 0.6%) and Re = 0 (no causal consistency violation). When n is larger, the critical initial cr

is basically also larger.

84

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1 2 3 4 5 6 7 8 9

V
io

la
ti

o
n

 E
r
r
o

r
 R

a
te

Initial Credits

5 Peers

10 Peers

20 Peers

30 Peers

40 Peers

Figure 15. The Violation Error Rate for wrate = 0.2.

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3 4 5 6 7 8 9

V
io

la
ti

o
n

 E
r
r
o

r
 R

a
te

Initial Credits

5 Peers

10 Peers

20 Peers

30 Peers

40 Peers

Figure 16. The Violation Error Rate for wrate = 0.5.

85

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 1 2 3 4 5 6 7 8 9

V
io

la
ti

o
n

 E
r
r
o

r
 R

a
te

Initial Credits

5 Peers

10 Peers

20 Peers

30 Peers

40 Peers

Figure 17. The Violation Error Rate for wrate = 0.8.

TABLE IX. Critical average message meta-data size mave (KB).
Re wrate the number of processes

5 10 20 30 40

∼0.5%
0.2 0.277 0.330 0.430 0.820 1.037
0.5 0.345 0.425 0.495 0.562 0.720
0.8 0.401 0.445 0.640 0.759 0.840

0
0.2 0.312 0.481 0.927 1.566 2.146
0.5 0.345 0.524 0.899 1.190 1.572
0.8 0.426 0.558 0.864 1.140 1.361

4.5.2 Average Message Meta-Data Size (mave)

Figure 18, Figure 19, and Figure 20 visualize the experimental data of mave. With increasing

initial credit cr, mave linearly increases. The findings also indicate that mave becomes smaller

with a higher wrate in more peers. Table IX lists the critical mave corresponding to the numerical

data in Table VIII.

86

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

1 2 3 4 5 6 7 8

A
ve

ra
g

e
M

et
a

-D
a

ta
 S

iz
e

(K
B

)

Initial Credits

5Peers

10Peers

20Peers

30Peers

40Peers

Figure 18. The Average Meta-Data Size (mave) for wrate = 0.2.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 3 4 5 6 7 8

A
ve

ra
g

e
M

et
a

-D
a

ta
 S

iz
e

(K
B

)

Initial Credits

5Peers

10Peers

20Peers

30Peers

40Peers

Figure 19. The Average Meta-Data Size (mave) for wrate = 0.5.

87

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 3 4 5 6 7 8

A
ve

ra
g

e
M

et
a

-D
a

ta
 S

iz
e

(K
B

)

Initial Credits

5Peers

10Peers

20Peers

30Peers

40Peers

Figure 20. The Average Meta-Data Size (mave) for wrate = 0.8.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9

M
et

a
-D

a
ta

 S
iz

e
S

a
vi

n
g

 R
a

te

Initial Credits

5 Peers
10 Peers
20 Peers
30 Peers
40 Peers

Figure 21. The Meta-Data Size Saving Rate (Rs) for wrate = 0.2.

88

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8 9

M
et

a
-D

a
ta

 S
iz

e
S

a
vi

n
g

 R
a

te

Initial Credits

5 Peers
10 Peers
20 Peers
30 Peers
40 Peers

Figure 22. The Meta-Data Size Saving Rate (Rs) for wrate = 0.5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8 9

M
et

a
-D

a
ta

 S
iz

e
S

a
vi

n
g

 R
a

te

Initial Credits

5 Peers
10 Peers
20 Peers
30 Peers
40 Peers

Figure 23. The Meta-Data Size Saving Rate (Rs) for wrate = 0.8.

89

TABLE X. Message meta-data size saving rates Rs when Re is close to or equal to zero.
Re wrate the number of processes

5 10 20 30 40

∼0.5%
0.2 0.287 0.521 0.672 0.582 0.613
0.5 0.187 0.352 0.534 0.608 0.628
0.8 0.073 0.289 0.282 0.348 0.412

0
0.2 0.194 0.303 0.294 0.203 0.198
0.5 0.187 0.202 0.154 0.171 0.145
0.8 0.016 0.108 0.029 0.021 0.047

TABLE XI. Critical initial credits for the replica factor rate of 0.5.
wrate the number of processes

5 10 20 30 40

Re ∼ 0.5%
0.2 3 3 3 4 4
0.5 3 3 3 3 3
0.8 2 2 3 3 4

Re = 0
0.2 4 5 6 7 7
0.5 3 5 6 7 7
0.8 3 4 5 6 7

90

4.5.3 Message Meta-Data Size Saving Rate (Rs)

Note that Approx-Opt-Track with cr = ∞ is equivalent to Opt-Track in (61). We define

Rs as follows.

Rs = 1− ms(cr 6=∞)

ms(Opt− Track)
(4.1)

Figure 21, Figure 22, and Figure 23 reflect the results for Rs versus different initial credits in

different (low, medium, and high) write rates, respectively. Note that although cr is unbounded

in Approx-Opt-Track, it does not make sense for simulation with cr > crc, in which cases, there

is no message delivery violating causal consistency.

With increasing n, Rs increases. Corresponding to the same n and initial credit cr, the

higher the wrate, the lower the Rs seems to be. Table X lists the critical Rs corresponding to

the numerical data in Table VIII. It can be seen that Rs is significantly negatively related to

wrate.

4.6 Simulation Evaluation

We expect that if the initial allocation of hop count cr is a small finite value but enough,

it not only reduces message meta-data size, but also maintains the desired causal consistency

accuracy. In other words, it is expected with very high probability that when cr reaches zero so

as to delete the corresponding entry, the message associated with it has reached its destination.

91

4.6.1 Impact of initial cr on Re

With increasing the initial cr, Re rapidly decreases especially when cr < 4. The smaller

the initial cr, the earlier the meta-data entry is deleted. Thus, when an entry is removed

earlier, it is more likely that the message associated with the deleted entry might not reach

its destination. It causes that the corresponding dependency may not be satisfied, resulting in

higher Re. Table VIII shows the major and minor critical initial credits – cr0 (Re = 0) and

cr∼0.5% (Re = 0.4% ∼ 0.6%) – for different numbers of processes.

For the minor critical initial credits, cr∼0.5% seems not to significantly increase as the

number of processes n. It implies that by setting initial credits to a small finite value but

enough value, most of the dependencies associated with the meta-data will become aged and

can be removed without risking causal violations after being transmitted across a few hops,

even in a large number of processes. On the other hand, in Re = 0 (no causal violations),

the resulting correlation coefficients of cr0 and n for different wrate are around 0.94 ∼ 0.95.

It means that the more the number of processes n, the larger the initial cr is to avoid causal

violations.

4.6.2 Impact of wrate on Re

This section evaluates how different write rates influence the violation error rates Re across

a variety of process numbers and initial credits. Figure 15 ∼ Figure 17 show the results of Re

among different wrate in smaller initial credits over different process numbers. We observe that

wrate does not have an apparent impact on Re when cr > 4. However, we can see the variation

of Re with wrate when initial cr < 4. For cr > 1, the higher the wrate, the lower the Re. Causal

92

consistency follows read-from order ≺ro. Two operations o1 and o2 have the relationship o1

≺ro o2 if there exists o1 = w(x)v (write a value v into variable x) and o2 = r(x) (read the value

from variable x) such that operation o2 retrieves the value stored by operation o1. When the

initial cr is a smaller value, dependencies might not be satisfied with higher probability. The

higher the read rate rrate (i.e., the lower the wrate), the more likely read-from relation occurs

and higher the Re. Table VIII summarizes the critical values of cr0 and cr∼0.5% from the results

of Re in Figure 15 ∼ Figure 17.

4.6.3 Impact of initial cr on mave

Figure 18 ∼ Figure 20, each of which corresponds to a certain write rate, illustrate exper-

imental results for average message meta-data size mave for different initial credits by varying

n. We can see that ms is linearly proportional to initial cr. That is because we only carried out

the experiments under initial credits ≤ critical cr0. We call this situation Incomplete causality

(IC). Note that we only run the simulations in IC with initial credits ≤ cr0. For example, in

Figure 18, the bars start with five variants and end up, for the credits 8, with only 2 (for n

= 30 and 40). ’8’ is larger than the critical credits for n = 5 ∼ 20. In other words, when the

initial credits is up to 8, it guarantees that there is no message apply event violating causal

consistency. It does not make sense to run the simulation in this situation.

For any combination of n and initial cr, ms decreases as wrate increases. This is due to

fewer MERGE and more PURGE operations in Opt-Track (61) or Approx-Opt-Track. A read

operation will invoke the MERGE function to merge the piggybacked log of the corresponding

write to that variable with the local log LOG. Thus, a higher read rate may increase the

93

likelihood that the size of explicit information becomes larger. Furthermore, although a write

operation results in the increase of explicit information, it comes with the PURGE function

to prune the redundant information, so that the size of LOG could be decreased. Therefore,

a higher write rate with a corresponding lower read rate causes fewer MERGE and more

PURGE operations generated.

Table IX lists the analytic data about mave in cr0 and cr∼0.5%. For the case of 10 processes,

ms(10) is around 0.48KB ∼ 0.56KB for Re = 0. For the case of 20 processes, ms(20) is around

0.86KB ∼ 0.93KB for Re = 0. For the case of 40 processes, ms(40) is around 1.36KB ∼ 2.15KB

for Re = 0. Consider wrate = 0.5 and wrate = 0.8. Using cross-comparison analyses, ms(40)/

ms(20)/ ms(40) is less than ms(10)×4/ ms(10)×2/ ms(20)×2. The results reflect the better

scalability of Approx-Opt-Track for higher wrate under no risk of violating causal consistency.

4.6.4 Impact of initial cr on Rs

This section reports the effectiveness of Approx-Opt-Track to reduce the meta-data over-

heads under causal consistency. As mentioned before, the meta-data for dependencies could be

reduced at the cost of some violations of causal consistency. We intend to study the exact na-

ture of the trade-off between Rs and Re in IC. We expect to find a separation point, where the

initial credits = cr0, with a finite initial cr small enough to separate IC from CC – Complete

Causality. It can not only reduce the meta-data size, but also have the system fully follow

causal consistency.

According to Equation 4.1, Rs depends onms. Rs decreases asms increases, which positively

depends on initial credits cr. Figure 21 ∼ Figure 23 present the linear relationships between

94

Rs and initial cr for different wrate. Consistent with the results in Figure 18 ∼ Figure 20, with

larger initial credits, ms will increase (i.e., Rs will decrease). Furthermore, the larger the value

of n, the higher the Rs would be. For example, when n = 5 with cr being 2, the values of Rs are

around 0.2 ∼ 0.4 corresponding to different wrate. As n increases, Rs increases, too. When n =

40 with cr still being 2, the values of Rs are close to 0.7 ∼ 0.9. It shows that Approx-Opt-Track

can reduce more meta-data overheads in a larger n under the IC state.

For the same number of processes, the curves of Rs versus cr shift downward as wrate

increases. It implies that, in the IC state, ms increases more slowly than ms (cr = ∞) does as

rrate rises. This is because there are more MERGE operations to delete meta-data entries in

higher rrate (lower wrate).

Table X summarizes the details of numerical data about Rs in the major and minor critical

initial credits. For the case of 40 processes, Rs is around 40% ∼ 60% at a very slight cost of

violation of causal consistency (Re ∼ 0.5%). Rs reaches around 5% ∼ 20% without violating

causality order in terms of different write rates. This evidence proves that if the initial allocation

of cr is made as a small digit, the message about which the corresponding meta-data entry is

deleted would already have reached its destination with very high probability. On the other

hand, the simulation results of Rs for Re being zero in Table X reflect the effect of Approx-Opt-

Track in the real world on causal consistency. Although it reduces 4.7% of the total meta-data

in a higher wrate, when n = 40, the values of Rs are around 14.5% and 19.8% in the lower and

medium wrate. From the above comprehensive analyses, it can be concluded that Approx-Opt-

95

TABLE XII. Critical initial credits for the replica factor rate of 0.2.
wrate the number of processes

5 10 20 30 40

Re ∼ 0.5%
0.2 1 3 4 4 4
0.5 3 3 3 4 4
0.8 3 3 3 3 3

Re = 0
0.2 5 6 8 9 9
0.5 5 6 7 8 8
0.8 4 6 7 8 9

Track provides a better network capacity utilization than Opt-Track without causing additional

causal violations.

4.6.5 Impact of replica factor rate rf on crc

This section illustrates the impact of different replica factor rates on cr0 and cr∼0.5%. Ta-

ble XI and Table XII present the results of cr0 and cr∼0.5% for different numbers of processes

on the higher replica factor rate (rf = 0.5) and the lower replica factor rate (rf = 0.2). The

values of cr∼0.5% for the lower rf and the higher rf seem to be almost consistent with that of

cr∼0.5% with rf being 0.3 for each process number for different wrate. Again, as stated above,

most of the dependencies will become aged after transmitting the associated meta-data across

a few hops. Comparing among the values of cr0 for the three rf rates varied from 0.2 to 0.5, it

is found that the larger the rf rate, the smaller the value of cr0. We believe that the reason is

similar to that of the impact of wrate on Re, as described in Section 4.6.2. The lower the value

of rf , the fewer the write operations, which means that the read rate is higher. This makes

96

TABLE XIII. Impacts of failures/partitions compared to the“no failure” case.
Without Fault Tolerance With Fault Tolerance

enough (A); Re is the same (B); Re is the same
credits as no failures as no failures

(Re = 0; system hangs) (Re = 0; no system hangs)

not enough (C); Re decreases (D); Re increases
credits compared to no failures compared to no failures

Figure 24. Examples of failures (a) partition (b) message loss.

Re higher. It implies that it requires a slightly larger cr to maintain causal consistency with a

lower rf .

4.7 Discussions

In real systems, failures may happen often. Failures/partitions would result in different

impacts on violation errors for Approx-Opt-Track in different conditions compared to the ”no

failure” situations. Table Table XIII summarizes the impacts of failures/partitions for four

different cases for Approx-Opt-Track. First, cases (A) and (B) illustrate the impacts when the

initial hop count credits are enough (i.e., Approx-Opt-Track is identical to Opt-Track here).

Second, cases (C) and (D) clarify the impacts when the initial hop count credits are not enough.

97

Case (A): Figure Figure 24 (a) shows a partition failure under which S2 splits into an iso-

lated subnetwork from t to t′. A multicast message M2 cannot be delivered to the destinations.

When S1 receives M3, M3 can be immediately applied at S1 without a causal violation for

Approx-Opt-Track (because send2(M1) and send3(M3) become concurrent). Figure Figure 24

(b) presents a message loss case where S1 fails to receive M2 from S2. Even if S1 receives

M3, M3 will not be applied at S1 until M2 is received and applied at S1 (because sending M2

causally happens before sending M3, applying M3 should causally happen after applying M2).

However, without fault tolerance, S1 does not receive M2. Thus, M3 cannot be applied in S1

(forever). In case (A), Re will be zero (i.e., failures will not lead to higher violation errors,

compared to the same situation without failure). However, some scenarios cause system hangs.

Case (B): With fault tolerance, if any message loss occurs, it will be resent. In Figure

Figure 24 (a), S2 will resend the multicast message M2 after t′. Based on when M2 is received at

S3, Approx-Opt-Track can guarantee that there is no violation error for applying M3 at S1, by

using activation predicate. In Figure Figure 24 (b), M3 will be applied causally after receiving

M2 for the same reason as in Figure Figure 24 (a). In case (B), Re is still zero (i.e., failures

will not lead to higher violation errors, compared to the same situation without failure).

Case (C): Without fault tolerance, Re may decrease. In Figure Figure 24 (b), if the credits

of the meta-data ”M2 is sent to S1” (md) become zero, md will be removed at S3. Thus, M3

does not piggyback md. Because S1 does not receive M2 and M3 will be applied when receiving

M3, this will not lead to a violation error. However, if no failure, the above violation error

might be possible. Therefore, case (C) causes Re to decrease.

98

Case (D): With fault tolerance, Re may increase. In Figure Figure 24 (b), if M2 sent to

S1 at t fails, it will be resent at t′′. Because M3 does not piggyback the meta-data md, M3 will

be applied immediately when receiving M3. The condition of violating causal consistency for

applying M3 depends on whether apply1(M3) happens causally before apply1(M2). Without

loss of generality, sending M2 at t′′ to S1 has a higher probability of receiving it causally after

applying M3 compared to sending M2 at t. Thus, fault tolerance may cause Re to increase.

Our final discussion studies the characteristics of violation errors when a node becomes

partitioned ‘forever’ after sending messages to a subset of destinations. See Fig. Figure 24 (b),

S2 becomes partitioned forever after sending M2 to (S1 and) S3. In case (B), M3 cannot be

applied after receiving M3, although M2 sent to S1 is missed, and M2 will not be resent in

future. This does not lead to a violation error. Because S2 becomes partitioned forever, ‘with

fault tolerance’ is equivalent to ‘without fault tolerance’. Therefore, case (B) degenerates to

case (A). In case (D), M3 will be applied when receiving M3, since the dependency on M2 sent

to S1 is forgotten. This does not lead to a violation error, either. Based on the same reason

above, case (D) degenerates to case (C). Although they both do not lead to violation errors in

this partition issue, case (A) is not fully equivalent to case (C). In case (A), it is impossible

to apply M3 after receiving M3. The thread for applying M3 will hang. However, M3 will

be applied after receiving M3 (no thread hangs) in case (C). Therefore, long-lasting network

partitions make case (B) and (D) degenerate to case (A) and case (C), respectively.

CHAPTER 5

A PROACTIVE, COST-AWARE, OPTIMIZED DATA REPLICATION

STRATEGY IN GEO-DISTRIBUTED CLOUD DATASTORES

This chapter is based on our previous publication (3). In this chapter, we focus on how to

determine the suitable replica placement on-the-fly to increase the availability of data resources

and maximize the system utilization in a time slot system.

The rest of this chapter is organized as follows. Section 5.1 presents the fundamental

framework of our system cost model. Section 5.2 presents the details of CORP algorithm.

Section 5.3 shows the experimental results in different settings and illustrates the experimental

evaluation.

5.1 System Cost Model

5.1.1 Adaptive Cloud Data Provider Architecture

Our intention is to design a system architecture that can support modern social web storage

services. The whole framework is a hierarchical geo-distributed cloud data store system com-

posed of multiple geographically distributed store servers (see Figure 25). They are deployed

in different zones dispersed across the world. (e.g., TX state is one zone). For simplicity, each

zone employs only one store server (ZS). Multiple ZSs, which are connected with lower network

access cost, constitute a Geo-Data Cluster (GDC). Multiple GDCs are fully connected by

WANs with higher network access cost. Each cloud data object is replicated in a subset of

99

100

CDP

CDP CDP

CDP

GDC

GDC

GDC

GDC

GDC

GDC

Figure 25. System architecture.

these ZSs. Since we focus on geo-replication, each zone hosts at most one replica (this may

be straightforwardly extended as multiple replicas). Each ZS hosts one Cloud Data Provider

(CDP) to manage cloud data replication for end-user access services. The top layer of CDP

receives access requests, which are processed by the middleware layer. The system architec-

ture model of CDP is schematized in Figure 26, where it presents the key components of our

approach. This is patterned along (59; 69).

101

The target applications are social media applications, such as Instagram or Twitter. When

a user creates a data object (e.g., a post, a tweet, or a photo) on his connecting ZS, this ZS

and its binding GDC are referred to as the master ZS (MZS) and the master GDC (MGDC)

of that data object, respectively. The MZS in the MGDC always stores this object until it

is deleted by its creating user. A data object may be replicated across different zones in the

same GDC or different GDCs. If a zone replicates an object to store it locally, this zone is

called a replica zone of this object (the corresponding ZS is a replica ZS). Otherwise, it is a

nonreplica zone. We denote a replica ZS h by δ[h] = 1. Thus, if ZS h is a nonreplica ZS, δ[h]

= 0. When there exists at least one replica zone for an object in a GDC, this GDC is called a

replica GDC of this object. For an object, the master zone and the master GDC are always

a replica zone and a replica GDC, respectively. We also denote a replica GDC d by α[d] = 1;

for a nonreplica GDC d, α[d] = 0.

User access requests are passed to the local ZS. If that ZS does not store a replica, it invokes

a remote access request to retrieve the data object from other ZSs with replicas in the same

GDC or different GDCs. Apparently, as the number of replicas of a data object increases, the

data availability and utilization become higher; but the operational cost of maintaining and

creating more replicas also increases. Furthermore, if the number and placement of replicas

are inappropriate, the problem of poor QoS arises. Our approach is based on access request

workload prediction. The major components of CDP, shown in Figure 26, are explained:

• Workload−based Predictor (WP) : Performs an estimation of future access demand

to the local ZS for the target data object. The prediction approach utilizes the auto-

102

regressive integrated moving average model (ARIMA). For the MZS, the future demand

estimate is directly passed to the local CORP, specified in the next step. For other ZSs,

the demand estimate information will be transferred to the CORP of the MZS.

• CORP Algorithm (CORP) : We propose the CORP algorithm that performs cost

optimization to determine the replica placement locations of the target data object based

on the predicted future access demand from WP. CORP returns an optimal replica

allocation pattern for the next time interval to minimize the total system cost (details in

Section 5.2.1). For a target data object, CORP runs only in the corresponding MZS.

• Cloud Data Provisioner : 1) It receives access requests from Access Control and for-

wards them to the local ZS. 2) For the MZS of a target data object, it accepts an updated

replica allocation pattern from CORP to figure out the migration process and to deploy

suitable replicas on a periodic basis.

The function of WP designed in this paper realizes access workload prediction using the

universal ARIMA time series forecasting approach (70) for the next time interval. ARIMA

has been applied to the underlying workload fitting models in (71; 72), where the web-based

workloads present strong autocorrelation.

At the end of each time interval, the data of historical workload traces during that time

interval will be retrieved and transferred as the number of access requests by the Workload-

based Predictor. The numbers of observed access requests for a sequence of time intervals

compose a time series to fit the ARIMA model estimator. It is implemented as a cyclic shift

operation, where the actual number of access requests at the last prediction cycle is added

103

Cloud Data Provider (CDP)

Workload-based
Predictor

Access Control

Predicted Access
Request Rate

Cloud Data
Provisioner

Accepted
user

access
requests

Estimated number &
locations of Replicas

M
id

d
le

w
a

re

Historical
Workload Traces

Replica
Deployment

CDP

CDP

CDP

Accepted Remote
 Workload Traces R1

R2

CORP Algorithm

Figure 26. Architecture for adaptive cloud data provider.

104

to the time series while the oldest value is discarded. Once the access requested time series is

completed, the ARIMA model-fitting process is performed with the Box-Jenkins approach (70).

Based on this approach, the time series can be made to be stationary by differencing d times

but remains nonstationary after differencing d − 1 times (called ”integrated process”).

Lags of the stationarized series in the forecasting model are called autoregressive terms. An

autoregressive model (AR) is a linear regression of the current value of the series against one or

more prior values of the series. The value of p lags in AR is called the order of the AR model.

Lags of the forecasting errors are called moving-average terms. A moving average (MA) model

is a linear regression of the current value of the series against the white noise or random shocks

of one or more prior values of the series. The value of q lags in MA is called the order of the MA

model. The Box-Jenkins ARIMA(p,d,q) model is a combination of the integrated AR and MA

models For selecting the suitable predictors in ARIMA, Akaike’s Information Criterion (AIC)

is used to determine the orders of p and q. AIC is defined as

AIC = −2Log(L) + 2(p+ q + k + 1) (5.1)

where L is the likelihood of the data, k may be one or zero (k = 1 if c 6= 0 and k = 0 if c = 0).

The value of c is the average of the changes between consecutive observations. The corrected

AIC with n parameters for ARIMA can be written as

AICc = AIC +
2(p+ q + k + 1)(p+ q + k + 2)

T − p− q − k − 2
(5.2)

105

By minimizing AICc, p and q can be obtained. Using the above method to determine the orders

of p, d, and q for the ARIMA model, the historical workload data is fit to the model to be used

in WP, of which the output outcome is the predicted access requested rate for the next coming

time interval. The length of the time interval can be flexibly adjusted for different applications.

According to the evaluation in (73), an interval of 10 minutes could suit the selected cloud

provider well.

WorkloadEngine

ARIMAWorkload
Predictor

Forecasting
Modeler

DataLoadingGate

CyclicQueue

Figure 27. Diagram for ARIMA workload-based predictor.

5.1.2 ARIMA Configuration

Figure 27 presents the diagram of the WP function. The WokloadEngine is the key com-

ponent in the WP. The DataLoadingGate is responsible for adding workload data into the

CyclicQueue and to trigger the change of the most recent workload traces. The CyclicQueue,

106

which is composed of a queue object, is used to store the received workload data, which is mod-

eled as a time series with a finite length. The length of the CyclicQueue is equal to the number of

past time intervals influencing the prediction result. After ARIMAWorkloadPredictor creates

a suitable ARIMA model, the workload prediction is accomplished by ForecastingModeler.

ARIMAWorkloadPredictor and ForecastingModeler are realized by R packages (74), which

is a statistical analysis program kit. They are not only capable of training a fitting model for

a time series, but output a predicted value (the predicted number of access requests in the

next time interval) fed back into the WorkloadEngine. The predicted value will be used in

CORP algorithm we proposed to allocate replicas with the cost optimization. This procedure

is discussed in the later subsections.

5.1.3 Prediction Complexity

Several approaches can be applied for ARIMA model fitting. The fitting process used in

this paper is based on the Hyndman-Khandakar algorithm (74). It contains three major steps:

(i) determine the order of differencing needed for stationarity; (ii) apply differentiation to the

time series d times; (iii) decide the best fit model. The first step implements Kwiatkowski-

Phillips-Schmidt-shin tests (75) used by R package. The time complexity of step (i) is O(n2)

(where n is the number of training time series instances from the workload data). The second

step requires O(n) to perform d differentiations to the original time series values. The complete

fitting process in the third step can be implemented with O(kn2) for k iterations. Because k

is a finite value (independent of n), the total time complexity in (iii) can be counted as O(n2).

Once the ARIMA model is ready, the prediction process for the next one time interval can

107

be accomplished with O(max(p,q)), where p and q are the orders of AR and MA components,

respectively.

5.2 Cost Optimization Replica Placement (CORP)

5.2.1 CORP Algorithm

We consider a time-slotted system, where the time is divided into slots with equal length

time interval ∆t and slot k ∈ [1. . . T] is referred to as the discrete time period [k∆t,(k +

1)∆t]. Let GDCi = {h1,h2,. . .,hni} be a data storage cluster composed of ni zones. Let B =

{obj1,obj2,. . .,objl } be the replicated data object set of a zone h. The costs incurred in time

slot k include the following five components in each zone h. (i) storage cost S defines the cost of

maintaining a data object replica per unit size per unit time. (ii) network cost Ogdc(h) defines

the data object transfer cost between different GDCs per unit size. (iii) network cost Oin(h)

defines the data object transfer cost within the same GDC per unit size. (iv) Get transaction

cost tg denotes the cost of issuing an object Get request. (v) Put transaction cost tp denotes

the cost of issuing an object Put request.

After creating an object z in time slot k, each zone maintains a detailed access record for

this object. The access record is represented as 3-tuple 〈 GNk[z][h], PNk[z][h], Vk[z] 〉. These

are the number of Gets and Puts, and the size for the requests for object z in zone h in time

slot k in the system. Let ANk[z][h] be the sum of GNk[z][h] and PNk[z][h]. ANk[z] means the

108

total access number of requesting object z in time slot k. ANk(z, d) denotes the total access

request number in GDC d for an object in time slot k.

ANk(z, d) =
∑

zone h in d

ANk[z][h] (5.3)

Let Rk[z] be the replica factor for object z in time slot k (the replica factor represents

how many replicas of object z will be made). It hinges on the object access request traces

per time slot for each zone. In order to determine the optimal placement of deploying object

replicas so as to minimize the overall system costs, we introduce the following cost functions

for a replicated data object/ or a comment (z) created in zone h of GDC d with size of V in

time slot k. For ease of notation and without loss of generality, we ignore the indices k and z

in the following.

• Replication Cost. Since we consider modern social media services, there are two types

of data − objects (e.g., a photo) and comment messages (e.g., a replying comment) − that

should be replicated. Once a user creates an object or replies a comment, the system may need

to replicate this object or comment to other zones in the same GDC d or in other GDCs.

Thus, the replication cost contains two different network transfer costs. The first is the cost of

replicating an object between different zones, which reside in different GDCs. We define r[d]

as the number of replica zones for an object z in GDC d.

r[d] =
∑

ZS l in d

δ[l] (5.4)

109

, where δ[l] = 1 if a zone l is a replica zone; otherwise, δ[l] = 0. Each ZS stores a Boolean

vector δ[] for each object to track the registry of the object replicas distributed over the replica

ZSs. By this bookkeeping implementation, the framework (each ZS) knows exactly which ZSs

store which objects. The network transfer cost per unit data size for replicating object z from

ZS h to these replica zones in GDC d′ 6= d is α[d′] (Ogdc + (r[d′]− 1)× Oin). Note that here if

r[d′] > 0, α[d′] = 1; otherwise, α[d′] = 0. We define the First Network Transfer Cost per unit

data size as

FNTC =
∑
d′ 6=d

α[d′]{Ogdc + (r[d′]− 1)×Oin} (5.5)

, where α[d′] = 1 if GDC d′ includes at least one replica zone; otherwise, α[d′] = 0.

The second cost is the cost of replicating an object between zones within the same GDC d.

Thus, the Second Network Transfer Cost per unit data size equals to

SNTC = (r[d]− 1)×Oin (5.6)

Since the data size of object z replicated is V , the total replication cost for creating this object

(or replying to this comment) equals to

V × (FNTC + SNTC) (5.7)

110

• Storage Cost. The storage cost of an object z in zone h in time slot k with data size V

equals to

SC(h) = S × V ×∆t× δ[h] (5.8)

• Get Cost. In our system, there are three different sub-cases for an object Get request,

each of which corresponds to a Get cost function. Consider zone h issues GN [h] Get requests

for object z in time slot k. First, zone h stores a replica of object z. The Get cost equals to

GN [h]× tg (5.9)

Second, zone h does not store a replica of object z, but some other ZSs store this object z in

the same GDC d. The Get cost equals to

GN [h]× (2tg + V ×Oin) (5.10)

Third, zone h does not store a replica of object z and no other zones store this object z in the

same GDC d. The Get cost equals to

GN [h]× (2tg + V ×Ogdc) (5.11)

• Put Cost. Similar to Get cost functions, there are also three Put cost functions, each of

which corresponds to one of the above sub-cases. Consider zone h issues PN [h] Put requests

111

for object z in time slot k, each of which needs to retrieve object z and replicate comment

message M with size of m. First, ZS h stores a replica of object z. The Put cost equals to

PN [h]× (tp +m× (FNTC + SNTC)) (5.12)

Second, ZS h does not store a replica of object z, but some other ZSs store this object z in the

same GDC d. The Put cost equals to

PN [h]× (tp + tg + V ×Oin +m× (FNTC + SNTC)) (5.13)

Third, ZS h does not store a replica of object z and no other zones store this object z in the

same GDC d. The Put cost equals to

PN [h]× (tp + tg + V ×Ogdc +m× FNTC) (5.14)

Besides, when ZS h in GDC d is a replica ZS of object z, it leads to additional Put cost

due to comment update messages from other remote ZS.

RUM =

(tp +m× (β[d′]×Ogdc + ¬β[d′]×Oin))×
∑
d′ 6=d

∑
zs i in d′

PN [i]

+(tp +m×Oin)
∑

zs i 6=h in d

PN [i]

(5.15)

112

, where β[d′] = 0, if r[d′] ¿ 1. Otherwise, if r[d′] = 1, β[d′] = 1. Note that RUM is counted based

on the point of view of incoming transmission. Therefore, RUM cannot be directly expressed

by FNTC and SNTC.

• Other Costs. The cost of Delete to remove objects is free. Post transactions are con-

sidered as Put transactions. The Post cost is equal to the Put cost. Copy requests are

implemented for replicating objects or object migration. A Copy request is composed of a Get

transaction and a Put transaction. The cost of Copy equals to Put cost + Get cost.

Based on the above cost definitions, we can introduce three different cost functions as to an

object z for a zone h in time slot k. First, zone h stores a replica of object z. The total zone

cost for accessing the replica stored locally, defined as SLC(h), is equal to

SLC(h) = S × V ×∆t+GN [h]× tg

+PN [h]× (tp +m× (FNTC + SNTC)) +RUM

(5.16)

Second, zone h does not store a replica of object z, but some other ZSs store this object z in

the same GDC d. The total zone cost for accessing a remote replica stored in a different ZS,

defined as RLC(h), is equal to

RLC(h) = GN [h]× (2tg + V ×Oin) + PN [h]×

(tp + tg + V ×Oin +m× (FNTC + SNTC))

(5.17)

113

Third, zone h does not store a replica of object z and no other zones store this object z in the

same GDC d. The total zone cost for accessing a remote replica stored in a different GDC,

defined as RC(h), is equal to

RC(h) = GN [h]× (2tg + V ×Ogdc) + PN [h]×

(tp + tg + V ×Ogdc +m× FNTC)

(5.18)

Therefore, the fundamental zone cost function ZCz,k of object z for ZS h in time slot k

can be summed up with Storage Cost (SC), Transaction Cost (TC), and Network Transmission

Cost (NTC). (For simplicity, we do not specify the subscripts z and k for SC, TC, NTC, and

ZC.)

ZC(h) = SC(h) + TC(h) +NTC(h) (5.19)

The transaction cost of ZS h can be represented as

TC(h) = GN [h]× tg + PN [h]× tp + δ[h]
∑
d

∑
zs i

PN [i]× tp+

¬δ[h]× (GN [h] + PN [h])× tg

(5.20)

114

The network transmission cost of ZS h can be represented as

NTC(h) = GN [h]× (¬δ[h]× V × (α[d]×Oin + ¬α[d]×Ogdc))

+PN [h]× (¬δ[h]× V × (α[d]×Oin + ¬α[d]×Ogdc)

+m× (FNTC + α[d]× SNTC))

+(m× (Oin +Ogdc))×
∑
d′ 6=d

∑
zs i

PN [i] + (m×Oin)
∑

zs i 6=h in d

PN [i]

(5.21)

For object z in time slot k, if zone h stores a replica of the object (i.e., δ[h] = 1), SC(h)

equals to SLC(h) in (Equation 5.16). If h is not a replica zone but its binding GDC d is a

replica GDC (i.e., δ[h] = 0 and α[d] = 1), SC(h) equals to RLC(h) in (Equation 5.17). If h’s

binding GDC d is not a replica GDC (i.e., δ[h] = 0 and α[d] = 0), SC(h) equals to RC(h) in

(Equation 5.18).

When the system assumes full replication, where all the data objects are replicated in all

the zones, the total system cost for one object in a time slot equals to

∑
d

∑
zone h in d

SLC(h) (5.22)

Although such full replication can reduce user access latency and maximize data availability,

it is infeasible because of the immense size of the data stores and the large number of zones.

115

Consider the system under partial replication. Assume that there are r zones with replicas of

an object z in time slot k. The total system cost TSC for object z in time slot k is equal to

TSC =
∑
d

∑
zone h in d

ZC(h) (5.23)

, where
∑

d

∑
zone h in d δ[h] = r.

5.2.2 Cost Optimization Problem

Given the above system cost model, our goal is to determine the optimal distribution of

replica placement for objects so as to minimize the overall TSC for each time slot. This problem

is defined as follows.

∀h, δ[h]opt ←δ[h],∀h TSC (5.24)

s.t. (repeated for ∀ k ∈ [1. . . T])

(a) δ[h = master] ← 1

(b)
∑
d

∑
zone h in d

1 = N (i.e., there are totally N zones in the system.)

In this cost optimization problem, GN , PN , V , and m for each object in a time slot are

known and the argmin is over the set of δ[h] (h=1,· · · ,N), for which TSC attains the minimum

value. Since Ogdc is much higher than Oin, it is required to determine whether each GDC is

a replica GDC in the system. If a GDC is not selected as a replica GDC, none of the zones

of this GDC will store replicas of the object. On the other hand, if a GDC is assigned as a

replica GDC, then, the system needs to determine whether each ZS h in this replica GDC is

116

required to store a replica of the object. Intuitively, this hinges on the comparison between

SLC(h) and RLC(h), which is defined as

DIF (h) = SLC(h)−RLC(h) (5.25)

Apparently, the value of DIF (h) can specify whether it is optimal for a zone to store a replica

of the object. However, when a zone is selected as a replica zone, the cost of replying comments

to the associated object would increase. More precisely, DIF (h) should be defined as

DIF (h) = S × V ×∆t−AN [h]× (V ×Oin + tg)

+(m×Oin + tp)×
∑
d

∑
zone i 6=h

PN [i]
(5.26)

Equation (Equation 5.26) reflects how a replica of the object in a zone affects the system

cost. Without a replica, one zone will increase the network transfer cost AN [h] × V × Oin.

With a replica, one zone will additionally bring the storage cost and the comment update cost.

Formally, based on DIF (h) in equation (Equation 5.26), one can determine whether zone h

is required to store a replica for an object. In a replica GDC, if DIF (h) is negative, zone h

will be a replica zone. Otherwise, it is unnecessary to store a replica of the object in zone h.

Similarly, we define a global DIFg(d) in the following equation to determine whether a GDC

d is a replica GDC by comparing the cost with one replica to that without any replica. In

addition to the cost of transferring update comments within a GDC, DIFg(d) considers that

of updating comments between GDCs.

117

DIFg(d) = S × V ×∆t−AN(d)× (V ×Ogdc + tg)+

(m×Ogdc + tp)×
∑
d′ 6=d

∑
zone i in d′

PN [i]+

(m×Oin + tp)×
∑

zone i6=h in d

PN [i]

(5.27)

In equation (Equation 5.27), the zone h having the maximum PN in GDC d is selected as

a replica zone. Similar to DIF (h), if DIFg(d) is negative, GDC d will be a replica GDC.

Otherwise, it is not required to store a replica of the object in GDC d in order to lower the

system cost.

On the above grounds, we propose Cost Optimization Replica Placement Algorithm (CORP),

as Algorithm 7, which calculates the optimized cost of the object replicas in each time slot k ∈

[1 . . . T]. The replication strategy of CORP (run at the end of time slot k − 1) is summarized

as follows. First, determine the replica placement in the master GDC. The master ZS must

be a replica ZS. Then, one can determine whether each of the other zones in the master GDC

is required to store a replica of object z. Second, the system needs to determine whether each

of the other GDCs is a replica GDC. Then, the system will determine whether each zone in

every replica GDC is a replica zone based on equation (Equation 5.26). We make some notes

about this instantiation of CORP. Lines (2)-(3) specify the replica placement for the object

in the master GDC. Lines (4)-(21) determine the replica placement for the object in the other

GDCs. When GDC d is a replica GDC in time slot k − 1 and it is determined that d is still

required to be a replica GDC in time slot k, lines (8)-(10) will specify the replica placement

118

Algorithm 7: CORP Algorithm based on the functions DIF (h) and DIFg(d)

Input : ∀h, δk−1[h], GNk[h], PNk[h], master ZS Hh, and master GDC Hd

Output: ∀h, δk[h]
1 Initialize: δk ← δk−1;
2 for each zone i ∈ Hd ∧ i 6= Hh do
3 SetRep(i);

4 for each GDC d 6= Hd do
5 Select h with the maximum ANk[h] in d;
6 Calculate DIFg(d);
7 if DIFg(d) < 0 ∧ IsReplicaGDC(k−1,d) then
8 δk[h] = 1;
9 for each host i 6= h ∈ d do

10 SetRep(i);

11 else if DIFg(d) < 0 ∧ ¬IsReplicaGDC(k−1,d) then
12 Migrate a new replica to site host h from another replica GDC;
13 δk[h] = 1;
14 for each host i 6= h ∈ d do
15 SetRep(i);

16 else if DIFg(d) > 0 ∧ IsReplicaGDC(k−1,d) then
17 for each host i∈ d do
18 δk[i]=0

19 if DIFg(d) − Ogdc×V < 0 then
20 Select h with the maximum ANk[h] in d;
21 δk[h]=1

SetRep(i)

22 Calculate DIF (i);
23 if DIF(i) > 0 ∧ δk−1[i] = 1 then δk[i] = 0;
24 if DIF(i) < 0 ∧ δk−1[i] = 0
∧ DIF(i)+V× Oin < 0 then δk[i] = 1 ;
AN(k,d):

25 return
∑

host i in d (GNk[i] + PNk[i])
IsReplicaGDC(k, d)

26 if ∃ host i ∈ d: δk[i] is true then
return true

27 else
return false

119

TABLE XIV. Definition of symbols and parameters used in the model.
Term Meaning

D A set of GDCs
S The storage cost per unit size per unit time
V (z) Size of data item z
∆t Time slot interval
Ogdc Out-network price between GDCs
Oin Out-network price within a GDC
GNk[z][h] Number of Gets for object z from zone h in time slot k
PNk[z][h] Number of Puts for object z from zone h in time slot k
Vk[z] Size of object z in time slot k
ANk[z][h] The sum of GNk[z][h] and PNk[z][h]
Rk[z] The number of replicas of object z in time slot k
tg Get transaction cost
tp Put transaction cost
m Comment message size

δ[h] Binary replication factor for zone h
α[d] Binary replication factor for GDC d
r[d] Number of replicas for an object in GDC d
β[d] Binary factor for GDC d. If r > 1, β=0; if r = 1, β=1.

in GDC d. Lines (12)-(15) specify the case almost similar to the above one. However, GDC

d is not a replica GDC in time slot k − 1. It needs to migrate a new replica from another

GDC. The output of CORP is the replica placement distribution δk[h] for each ZS h. When

there exists at least one ZS h such that δk[h] 6= δk−1[h], Cloud Data Provisioner in the MZS

would implement the migration process. Otherwise, no replica needs to be migrated or deleted.

Table XX summarizes parameters and inputs to the model.

120

5.2.3 CORP + cache.

The regular CORP runs the ARIMA migration process by an equal time interval. Caching

is commonly used to decrease network traffic and reduce network link utilization. In addition,

for a target data object z, there is only home ZS that stores it in the first time interval,

during which there are much more access requests from other ZSs over network. This leads to

ineffective network utilization. We extend CORP to CORP + cache, which could save object z

temporarily in ZS h after retrieving it from a replica ZS of object z. This replica ZS is called

the source ZS of the client cache ZS h. As with the replica bookkeeping mechanism in CORP,

a source ZS hosts a Boolean vector to record its own client cache ZSs in + cache. Thus, source

ZSs for an object can know exactly where cache ZSs are. Accordingly, ZS h does not need

to retrieve it each time an access request is issued, even if ZS h is not a replica ZS. ZS h is

called a caching ZS for object z. When a replica zone issues an update to object z, the update

request is applied to not only all replica ZSs, but also the ZSs with the cache data of object

z. However, the caching data of object z in ZS h can only be accessed by users connecting to

ZS h. It cannot be retrieved by other ZSs. CORP + cache runs the same algorithm as CORP.

However, the migration process of CORP + cache differs from that of CORP. Assume that ZS

h is a caching ZS for object z in GDC d in time slot k − 1. If ZS h is determined as a replica

ZS, ZS h can straightforwardly become a replica zone. Then, if there exists other ZSs in GDC

d that do not store a replica of object z in time slot k − 1 and these ZSs are determined as

replica ZSs in time slot k, ZS h will replicate object z to these ZSs. On the other hand, assume

that ZS h caching object z in time slot k − 1 does not need to be a replica ZS in time slot k.

121

If there is no other replica ZS in time slot k − 1 in the same GDC and some ZSs in the same

GDC, which do not store object z, become replica ZS, then, ZS h needs to replicate object z

to them. After that, the caching data of object z in ZS h is deleted.

5.3 Performance Evaluation

5.3.1 Experimental Setting

We evaluate the proposed CORP algorithms for replica placement of the data objects

across GDCs with real traces of requests to the zone web servers from Twitter workload (76)

and the CloudSim discrete event simulator (77). These realistic traces contain a mixture of

temporal and spatial information for each http request. The number of http requests received

for each of the target data objects (e.g., photo images) is aggregated in 1000-secs intervals. By

implementing our approaches on the Amazon cloud provider, it allows us to evaluate the cost-

effectiveness of request transaction, data store, and network transmission, and to explore the

impact of workload characteristics. We also propose a clairvoyant Optimal Placement Solution,

based on the time slot system and object access patterns known in advance to evaluate CORP

and CORP+cache.

Data Object Workload: Our work focuses on the data store framework on image-based

sharing in social media networks, where applications have geographically dispersed users who

put and get data, and fit straightforwardly into a key-value model. We use actual Twitter

traces as a representation of the real world. Put to a timeline occurs when users post a tweet,

retweet, or reply messages. We crawl the real Twitter traces as the evaluation input data. Since

the Twitter traces do not contain information of reading the tweets (i.e., the records of Gets),

122

we set five different ratios of Put/Get (Prate: Put rate), where the patterns of Gets on the

workloads follow Longtail distribution model (78). The simulation workload contains several

Tweet objects. The volumne of each target tweet in the workload is 2 MB. The simulation is

performed for a period of 20 days. The results for each objects show that they have similar

tendency.

The experiment has been performed via simulation using the CloudSim toolkit (77) to

evaluate the proposed system. CloudSim is a JAVA-based toolkit that contains a discrete event

simulator and classes that allow users to model distributed cloud environments, from providers

and their system resources (e.g., physical machines and networking) to customers and access

requests. CloudSim can be easily developed by extending the classes, with customized changes

to the CloudSim core. We figure out our own classes for simulation of the proposed framework

and model 9 GDCs in CloudSim simulator. Each GDC is composed of 4 zones. Each zone has

only one ZS associated with 50GB storage space and corresponds to one (or a few) states in

US or one country in Asia and in Europe. The price of the storage classes and network services

are set for each GDC and each ZS based on Amazon Web Service (AWS) as of 2018.

5.3.2 Results and Discussion

The performance metrics we use are the performance in terms of cost and the cost improve-

ment rates under varying Prate of the proposed CORP and CORP+cache. In order to evaluate

our proposed approach, we compare it to two different replication strategies. The first one

is the standalone cache mode (+cache), where the home ZS is the only one replica ZS. The

second one is the replication model with different numbers of replica GDC, where they are

123

randomly pre-selected and each GDC includes at most one replica ZS. Cost is represented by

the total system cost, which is composed of TC (Equation 5.20), NTC (Equation 5.21), and SC

(Equation 5.19).

First, we use the term ‘transaction’ to denote both a Put transaction or a Get query

transaction. Active and aggressive replication has the potential to provide a reduction in the

number of distributed Get transactions at the cost of Put transactions. Lowering the number of

transactions to find a data placement increases throughput significantly in cloud environments,

while an increased number of transactions would lead to an over-utilization of the underlying

systems. Thus, the total transaction cost (TC) is totally subject to the number of transactions.

In our evaluations, we set different Put rates to generate different evaluation workloads. The

lower the Put rate, the more the number of Get transactions should be included (i.e., the total

number of transactions increases). Figure 28 presents the TCs of various replication strategies

in different Put rates. Since CORP brings additional migration process, TC for CORP+cache

is slightly higher than the standalone cache model or 2 pre-selected replicas+cache but much

lower that others’ TCs.

Second, Figure 29 presents the NTC of CORP+cache in comparison with various replication

strategies in different put rates. According to Eq. (Equation 5.21), NTC highly depends on

the amount of data transmitted over the network. Thus, the smaller the NTC, the lower the

network bandwidth consumption. Although NTC of CORP+cache is slightly higher that of the

full GDC replication, it is much lower than others’ NTCs.

124

 0

 10

 20

 30

 40

 50

 60

0.05 0.1 0.2 0.5 0.8

T
o
ta

l
T
ra

n
sa

ct
io

n
 C

o
st

 (
U

S
D

)

The rate of Put (Prate)

9replicas+cache
5replicas+cache
2Replicas+cache

cache
CORP+cache

Figure 28. The Transaction Cost

Finally, the capacity of replica servers has a major impact on the performance of data

replication strategy. Different data objects or applications require different storage services.

Storage providers have to place large quantities of storage devices in order to offer uses good

data storage services. Therefore, maximizing storage space utilization (SSU: the total available

storage space in the entire system) becomes more and more important. The larger the available

storage space, the more data objects the system can hold. Lower storage space occupation

(SSO: the space size occupied by data objects) for a data object would increase SSU. The total

125

 0

 20

 40

 60

 80

 100

0.05 0.1 0.2 0.5 0.8

T
o
ta

l
T
ra

n
sa

ct
io

n
 C

o
st

 (
U

S
D

)

The rate of Put (Prate)

9replicas+cache
5replicas+cache
2Replicas+cache

cache
CORP+cache

Figure 29. The Network Transmission Cost

storage space cost (SSC), which fully depends on Equation 5.8, is highly proportional to SSO.

Figure 30 shows the results of storage cost (SC) of CORP+cache in comparison with other

alternatives. We notice that the SC of CORP+cache falls in between the SC of full GDC

replication and the SC of standalone cache mode. This implies that CORP+cache is able to

determine the proper number of replicas to decrease TC and NTC.

Figure 31 presents the total system costs (TSC) for different replication approaches. With

caching, the more the number of replica GDCs, the lower the TSC. CORP+cache can further

126

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

0.05 0.1 0.2 0.5 0.8

T
o
ta

l
S
to

ra
g
e
 S

p
a
ce

 C
o
st

 (
U

S
D

)

The rate of Put (Prate)

9replicas+cache
5replicas+cache
2Replicas+cache

cache
CORP+cache

Figure 30. The Storage Space Cost

reduce TSC for all the workloads. Although CORP brings more migration costs for replica

placement step, it can reduce the storage cost and network cost by proactively placing data

objects at proper locations.

127

 0

 20

 40

 60

 80

 100

0.05 0.1 0.2 0.5 0.8

T
o
ta

l
S
y
st

e
m

 C
o
st

 o
f

C
lo

u
d
 D

a
ta

 S
to

ri
n
g
 (

U
S
D

)

The rate of Put (Prate)

9replicas+cache
5replicas+cache
2Replicas+cache

cache
CORP+cache

Figure 31. The total system cost.

5.3.2.0.1 Cost Improvement

We now investigate the effect of CORP+cache on cost improvement rate with respect to

different replication modes, which is defined as.

cost(+cache)− CostofReplicationMode

cost(+cache)
(5.28)

128

TABLE XV. Cost improvement rates of different replication modes with respect to the
standalone cache mode for different Put rates. (a) 2 static replicas with cache control (b) 5

static replicas with cache control (c) 9 static replicas with cache control (i.e., full GDC
replication) (d) CORP+cache.

Prate 0.05 0.1 0.2 0.5 0.8

(a) 8.24% 7.10% 6.96% 7.44% 7.81%
(b) 31.94% 27.96% 27.11% 28.17% 29.93%
(c) 56.16% 48.64% 46.70% 49.08% 50.44%
(d) 74.37% 70.46% 70.03% 67.39% 68.75%

, where cost(+cache) means the total system cost of the standalone cache model. Table XV

shows the cost improvement rates of different replication modes with respect to the +cache

mode for different Put rates. The cost improvement rate against +cache increases as more

replica GDCs are loaded. As Put rate decreases, the cost improvement of CORP+cache be-

comes higher. It shows that CORP + cache is cost-effective for Get-intensive (lower Put rates)

workloads like most social networks or cloud computing environments, due to efficient utilization

of network communication resources.

5.3.2.0.2 Accuracy Analysis

The proposed method, ordinary CORP, runs on a time slot system. At runtime, CORP is

constantly updated. When new access requests arrive in the current time slot, they are getting

involved into the time series and the data in the oldest time slot is removed from the time series.

However, when a data object is created, there is not enough data in the time series initially

(i.e., the number of time slots is zero initially for each data object). Based on the training

dataset, the demand for each time slot per ZS is predicted. The output of the prediction model

129

TABLE XVI. Access number prediction accuracy by various error metrics. RMSD : root mean
square deviation. NRMSD : normalized root mean square deviation. MAD : mean absolute

deviation. MAPE : mean absolute percentage error
Accuracy Predicted Low High Low High

metric 80% 80% 95% 95%

RMSD 346.71 476.12 571.42 800.01 931.14
NRMSD 0.16 0.31 0.33 0.37 0.41

MAD 131.4 379.81 450.11 534.66 794.52
MAPE 0.13 0.15 0.19 0.18 0.24

is an integer value, which represents the access requests in the next time slot at a ZS. The

predicted value is accompanied with two confidence ranges across the 80 and 95 percent bands.

The accuracy of the prediction model is evaluated by different types of error metrics, namely,

root mean square deviation (RMSD), normalized root mean square deviation (NRMSD), mean

absolute deviation (MAD), and mean absolute percentage error (MAPE). The low 80% and

high 80% indicate the limits for the 80% confidence interval for the prediction. The results

for the 80% and 95% confidence intervals are given in Table XVI with Prate = 0.05, where

the average prediction accuracy (APA) is around 87 percent. With different Put rates, the

corresponding APA values are approximately consistent with that of Prate = 0.05.

5.3.2.0.3 CORP+cache VS. CORP

We propose CORP+cache to improve the system costs. Thus, in this section we present

experiments aimed at evaluating how the total costs are improved by CORP+cache against

130

TABLE XVII. ∆saving: The cost improvement results for different Put rates show that
caching has taken an important step to improve the total system costs.

Prate 0.05 0.1 0.2 0.5 0.8

∆saving 91.33% 84.67% 74.93% 57.18% 48.70%

CORP. Table XXII presents the results of comparing CORP+cache to CORP for different put

rates. ∆saving is defined as

cost(CORP)− cost(CORP + cache)

cost(CORP)
(5.29)

Since the evaluation data come from the social network, each individual data object brings a

lot of requests in the initial time slots. It can be observed that the results indicate that the

lower the Prate (Get-intensive), the better the cost saving rate (∆saving) is.

5.3.2.0.4 CORP+cache evaluation

In order to evaluate the effectiveness of our proposed approach, we also implemented the

Optimal Placement Solution (OPT) based on the same time slot system. OPT knows the

exact temporal and spatial data object access patterns. OPT can figure out the optimal object

placement for each time slot. The cost effectiveness of CORP(+cache) is highly related to how

precise the predicted access number is. OPT(+cache) totally follows up CORP(+cache) model

and uses the real object access (Put and Get) numbers as the inputs in different time slots.

∆inc is defined as

cost(CORP + cache)− cost(OPT + cache)

cost(CORP + cache)
(5.30)

131

TABLE XVIII. ∆inc: The performance evaluation of CORP+cache compared to OPT+cache.
Prate 0.05 0.1 0.2 0.5 0.8

∆inc 16.77% 13.84% 10.74% 9.66% 6.23%

TABLE XIX. ∆inc′ : The performance evaluation of CORP compared to OPT in steady states.
Prate 0.05 0.1 0.2 0.5 0.8

∆inc′ 1.89% 2.83% 1.53% 4.95% 3.26%

Table XVIII shows the comparisons between CORP+cache and OPT+cache for different Put

rates. It is evident that CORP+cache only increases 6% ∼ 16% of total system cost compared

to OPT+cache.

In order to measure the cost effectiveness of CORP in steady states (including enough

training time slots), we also compare the cost of CORP to that of OPT without caching in

steady states. Table XIX presents the cost increase rates (∆inc′) of CORP compared to OPT

for different Put rates. We notice that ∆inc′ rates are around 2% ∼ 5%. ∆inc′ is defined as

cost(CORP)− cost(OPT)

cost(CORP)
(5.31)

For simplicity, we ignore the cost of the bookkeeping process based on the following. The

size of a Boolean vector δ is O(N) bits, where N is the total number of zones in the system.

The numbers of availability zones in most current modern cloud storage systems are from

132

several dozens to several hundreds (i.e., AWS is composed of 69 zones globally). Compared to

a common data object’s size or a text comment’s size in most social media applications, the

storage cost of keeping δ is much smaller than them. In addition, Get bucket is not supported

in CORP (+cache) to retrieve multiple objects by one access request. Therefore, we do not

consider the cost of List requests.

CHAPTER 6

CADROP: COST OPTIMIZED CONVERGENT CAUSAL

CONSISTENCY IN SOCIAL NETWORK SYSTEMS

In this chapter, we formally develop a cost-effective protocol that ensures causal+ consis-

tency in a partially geo-replicated data storage on social network platforms, where the causal+

order would be maintained for all replying comments corresponding to a post with a unique

key or for different objects with explicit causal ordering. Consider the cost advantage of partial

replication and the potential of dynamic replication in time-varying environments. We extend

the ideas in Chapter 3 and Chapter 5 to a client-server architecture. The rest of this chapter

is organized as follows. Section 6.1 presents the fundamental framework of our system cost

model and the system definitions. Section 6.2 presents the details of the system design. Section

6.3 illustrates the overall algorithms. Section 6.4 shows the experimental results in different

settings and illustrates the experimental evaluation.

6.1 Definitions and System Model

6.1.1 Causal Consistency

A causal consistency system requires that clients observe the results returned from the

data repository servers, consistent with the causality order. Causality is the happen-before

relationship between two events(15; 18). The two events must be visible to all clients in the

same order, when they are causally related. In other words, when users in client A observe

133

134

that event M1 happens before M2, other users in client B can perceive that the effects of M1

occurring are visible to M2. Otherwise, a (potential) causality violation has occurred. When a

series of access operations occur on a single thread, they are serialized as a local history h. The

set of local histories from all threads form the global history H. For potential causality (15), if

there are two operations o1 and o2 in OH , we say that o1 causally depends on o2, denoted as

o1 ≺co o2, if and only if one of the following conditions holds:

1. o1 precedes another local operation o2 in a single thread of execution (program order).

2. o1 is a write operation and o2 is a read operation that returns a value written by o1, even

if o1 and o2 are performed at distinct threads (read-from order).

3. there is some other operation o3 in OH such that o1 ≺co o3 and o3 ≺co o2 (transitive

closure).

Especially, the causality order defines a strict partial order on the set of operations OH . For a

causal consistency system, all the write operations that can be related by the potential causality

have to be observed by each thread in the order defined by the causality order.

6.2 System Design

CaDRoP runs in a distributed key-[values] data store that manages a set of data objects in

social networks. [values] is a list of values corresponding to an item key. In our system, one

post, such as a picture on Instagram, is viewed as an object item and is assigned a global unique

number as the item key. A post object is always saved in the head of [values] as v0. Afterwards,

when a comment (e.g., a list of strings) is posted out under a post, this comment text, denoted

135

Web
Server

Data Node Server

Data Node Server Data Node Server

Web Server

Web
Server

Datacenter

Datacenter

Datacenter

Client Program

(host)

Figure 32. The system architecture.

as vi (i > 0; i is the index of [values]), will be inserted to [values]. Thus, CaDRoP implements a

multiversion data store system and treats the value of each update operation as an immutable

version of the access object. When users request access to a data object, [values] (i.e., a list

of version values) is the result returned. Each entry in [values] corresponds to one update

operation. In order to track causality, each version value needs to be associated with some

metadata. [values] is also a causal list. For example, consider two entries vi and vj in [values]

and i < j. Assume that vi and vj are created by update operations oa and ob, respectively.

CaDRoP can guarantee that ob ⊀co oa. Although the potential causality allows to prevent

any causal anomalies, it increases higher costs to maintain many dependencies among different

posts without any semantic coherency in social networks. For example, there is a cute dog

photo posted in the morning and a blue sky image uploaded at noon. Tracking explicit causal

order offers a more flexible solution. Under explicit causality, each application can have its

own happens-before relationships between operations (26). Because it tracks only customized

relevant dependencies, explicit causality decreases the number of dependencies per modification

136

and lowers metadata overhead. We have modeled a hybrid causality based on a column-based

model. Our system maintains two types of columns:

• key columns: they are used to store data item keys.

• value columns: each value column contain a [values] corresponding to a data item key.

CaDRoP supports the explicit causality in key columns and implements the potential causality

for each value column. Explicit causality can be captured through application user interface.

For example, user Bob can click @ symbol on Facebook to post an image content to reply a post

done by user Alice before. Thus the client program can capture the causal dependency between

the two posts, even if they are realized by different users. Otherwise, the causal relationship

between different object keys will be ignored in CaDRoP. The whole framework is a hierarchical

geo-distributed cloud store system composed of multiple geographical DCs (see Fig. Figure 32).

All the DCs are fully connected by WANs with higher network access cost. They are deployed

and dispersed across the world. In each DC, there are multiple web servers, each of which

serves the data access demands from one geographical region and connects to its own data node

server, which is called the host server of that connected web server. Data can be replicated

asynchronously between different data servers within the same DC or in different DCs. When

a data server sr stores an object with key k, sr is called a replica server of object ok. Otherwise,

sr is a non-replica server. When a DCr includes at least one replica server of object ok, DCr

is called a replica DC of object ok. Otherwise, DCr is a non-replica DC. CaDRoP supports

partial replication of data. Each data object is replicated in a subset of DCs.

137

CaDRoP consists of the client layer and the data store layer. They communicate with each

other through the client library. The client layer implemented in web servers is responsible for

storing or retrieving information to or from data node servers and presenting information to

the application users. Note that the client layer has to wait for the corresponding response to

the current request before sending the next access request. The underlying store layer controls

the physical storage in data store servers and the data propagation between them. CaDRoP

provides the following operations to the clients:

• POST(key, object): A POST operation assigns an object item ok (e.g., a picture or a

clip) with an item key.

• PUT(key, value): A PUT operation assigns a text value (strings) to an item key. Then,

a new version value will be created. Note that if an object is visible to clients, the

corresponding key always exists, unless the data object of an item key is removed from

the whole system.

• [values] ← GET(key): The GET operation returns [values] corresponding to an item key

in causality order.

6.2.1 Convergent Conflict Handling

Causal consistency does not establish a global order for operations in OH . Therefore, there

exist some causally independent operations, which are characterized as concurrent. Formally,

two operations o1 and o2 in OH are concurrent if o1 ⊀co o2 and o2 ⊀co o1. Concurrent write

operations applied to the same data object very likely lead to inconsistent data states. Those are

138

TABLE XX. Definition of symbols and parameters used in the model.
Term Meaning

D The set of datacenters (DCs)
L The set of all the data server nodes
dmc Dependency meta-data depm set at client c
ok An object with a unique key k
cvl〈k〉 A causal version list of data object k (ok)
IOset The invisible object set
TS the local Lamport timestamp for update operations
si the data node server i
d An item tuple 〈 k, v, dm 〉
V Vi The version vector of data node si
V (k) The size of data object k
∆t Time slot interval
th The h-th time slot
GNth [k][i] Number of Gets for ok from si in time slot th
PNth [k][i] Number of Puts for ok from si in time slot th
ANth [k][i] The sum of GNth [k][i] and PNth [k][i]
m Comment message size

said to be in “conflict”. Essentially, conflicts do not result in causal violation. However, when

different concurrent versions of a data object are replicated to remote stores, this potentially

leads to divergent undesired results to clients. Multiple concurrent versions of an object could

be present in the system at the same time. In this work, CaDRoP uses the timestamp and

the local data node identification to order the list of version values. This can achieve a global

consistent state for different data replica nodes. Thus, CaDRoP can provide causal consistency

with the convergence property.

139

6.3 Algorithm: CaDRoP

CaDRoP is adapted from Opt-Track protocol (1; 61), which aims at reducing the dependency

metadata size and storage cost for causal ordering in a partially replicated shared system. We

now give the formal CaDRoP algorithm in Algorithm 8 ∼ 12.

6.3.1 The Client Layer

The client library maintains for its session a dependency metadata, denoted as dmc. dmc

consists of a set of 〈rid,TS,Dests〉 tuples, each of which indicates an update operation (POST

or PUT) initiated by data node server rid at clock time TS in the causal past. Dests includes

replica data node servers for that update operation. Only necessary replica node information

is stored.

When PUT() or POST() is invoked, the client library retrieves the local dmc and assigns

POSTREQ or PUTREQ attribute to propagate a new object or a new value with dmc to its

host data node server. The host server is in charge of distributing requests to other replica node

servers, handling responses from others, and returning feedbacks to the client. When GET() is

invoked, the client library assigns GETREQ attribute to propagate an access request to its host

data node. Function MERGE() in Algorithm 8 and 11 merges the piggybacked dependency

metadata of the corresponding updates to an object key with the local client dmc. Function

PURGE() in Algorithm 8 and 11 removes old records with empty Dests, based on Implicit

Tracking in Opt-Track protocol (1; 61). In this function, some new additional dependencies

get added to dmc and some old existing dependencies in dmc are deleted. The merging process

implements the optimality techniques in terms of Implicit Tracking in Opt-Track protocol and

140

makes the client aware of the necessary causal dependency information of update operations.

When the client receives f(k), it updates the object booking table to make users aware of what

posts exist in a social network.

Algorithm 8: Client operations at client ci
POST(object key k, object ok, dep dmc):

1 send 〈POSTREQ k, ok, dmc〉 to host data server si;
2 receive 〈POSTREPLY dmr〉;
3 dmc ← dmr;
4 insert k into object name list;

PUT(object key k, text v, dep dmc):

5 send 〈PUTREQ k, v, dmc〉 to data server si;
6 receive 〈PUTREPLY dmr〉;
7 dmc ← dmr;

GET(object name k):

8 send 〈GETREQ k〉 to host data server si;
9 receive 〈GETREPLY cvl〈k〉〉;

10 for each d ∈ cvl〈k〉 do
11 MERGE(DMc, d.dmd);

12 DMc ← PURGE(DMc);
13 return cvl〈k〉.values;

Upon receive f(k):

14 insert k into the object booking table;

6.3.2 The Storage Layer

The data storage layer is composed of multiple data node servers. Each data object can

be replicated to one or more data node servers. As mentioned before, the CaDRoP data store

layer exposes three main functions to the client library:

141

• 〈POSTREPLY dmr〉 ← 〈POSTREQ k, ok, dmc〉.

• 〈PUTREPLY dmr〉 ← 〈PUTREQ k, v, dmc〉

• 〈GETREPLY cvl〈k〉〉 ← 〈GETREQ k〉

Note that dm denotes a dependency meatadata set and dmr indicates a returned dm. In

Algorithm 9, for a POSTREQ operation in a host data node server, it needs to update the

local Lamport timestamp TS (line 1). Then, the metadata per data node server is tailored by

REDUCE() in line 3 to minimize its space overhead. It is denoted as dms. If sj is a replica

node server, four elements (dms, the set of replicas, TS, ok) are encapsulated into a package d.

Line 4 propagates d to each other replica server sj . If sj is not a replica server, ok is replaced

with the key id k. The four elements are encapsulated into a package f . Line 5 propagates f

to each non-replica server.

Lines 12-13 prune the Dests information, based on the propagation condition in Opt-Track

protocol. In the PURGE(), entries with empty Dests are kept as long as they are the most

recent update from the source node server. In CaDRoP, we assume that the host server for the

client initiating a post ok is always a replica of object ok. Lines 14-16 store the source server

(rid) and the timestamp(TS) of a POST operation as an entry (denoted as dm(h)) at the head

of dm and create a data element d to save ok and the associated metadata dm. Then, d is

inserted to the head of cvl〈k〉. Line 18 updates the version vector for the host server si. Line

19 updates the booking information for object ok.

Compared with general key-value database systems, social network systems have access to

data objects with much larger space overheads. Thus, CaDRoP implements a relay mechanism

142

to reduce the data communication cost across different DCs. If there are multiple replica

servers in a remote datacenter DCx, lines 7-9 will select a relay replica server sr and propagate

a package d to sr. Once sr receives d, it invokes REDUCE() to modify the dmc from the source

data node and, then, relays an updated d to other data nodes servers in the same DCx. If there

is no replica server in a remote datacenter DCy, line 10-11 implements the similar process as

line 5,8-9 to propagate a package f to a non-replica server snr.

Lines 37-48 handle the process, when d for a POST operation is received by a replica server.

The determination ATP realizes an activation predicate of a safe protocol to stop the visibility

of any update operation that arrives out of order with respect to ≺co. Lines 49-55 deal with

the process, when f for a POST operation is received by a non-replica server. After receiving

d in a replica server, a copy of the object posted and the replica placement list (replicas) are

stored. When receiving f in a non-replica server, it only needs to save replicas. Line 50 is

required to maintain a explicit dependency between two POST operations.

The function for a PUTREQ operation is similar to that for a POST operation. Instead of

replicating an object, PUTREQ propagates a text value in the package d. Note that when a

data node server implementing function PUTREQ is a nor-replica server, d would not be saved.

In Algorithm 10, lines 1-17 run in the case when a replica server in a remote DCx receives

a package d for a POST operation. Lines 18-28 handle the process when a non-replica server

in a remote DCy receives a package f for a POST operation. Lines 29-37 or 38-50 deal with

the case when a replica server within the same DC or in a remote DCx receives a package d

for a PUT operation. When a data server si receives a d (for an object ok or a text value v) or

143

a f (for an object notification), ATP() is used to check if the d or f is visible to clients. If the

received item is not visible, it will be temporarily stored in IOset until the ATP() test becomes

true.

For a GETREQ operation to a key k in si, if si is a replica server of object ok, cvl〈k〉 returns

to the client. If si is a non-replica server of object ok, si needs to fetch cvl〈k〉 from a replica

server. However, if cvl〈k〉 is fetched from a different data server, CaDRoP uses ATP() to check

if each value is causally visible.

In CaDRoP, LINK() is used to insert a d with an updated value into cvl〈k〉 in causality

order, when an update value is visible. Since cvl〈k〉 is a causal list of values, the following

condition must be satisfied:

∀d′ ∈ cvl〈 k〉 :

(d′.dm(h).rid, d′.dm(h).TS) 6= (d.dm(h).rid, d.dm(h).TS)

(6.1)

However, some entries in cvl〈 k〉 are concurrent with d. CaDRoP can sort those concurrent

entries by their TS and rid, in ascending order. Thus, the text values of cvl〈k〉 saved in

different data servers can be present in the same convergent order. As shown in Figure 33,

when two users retrieve the cvl〈k〉 from s1 and s2, respectively, they can obtain a consistent

result in causality order.

6.3.3 Dynamic Replication Model

Most of the existing causal consistency protocols are based on static replication models in

geo-replicated data stores. In other words, the numbers of replicas for a variety of data ob-

144

Algorithm 9: Operations at data node si in DCi (part1)
Upon receive〈POSTREQ ok, dmc〉

1 TS ← LamportTimestamp.increaseAndGet();
2 for each data node sj in the local DCi do
3 dms ← REDUCE(dmc.clone, L, sj);
4 if sj ∈ k.replicas then

send d(ok, k.replicas, TS, dms) to sj ;
5 else send f(k, k.replicas, TS, dms) to sj ;

6 for each DCj 6= DCi do
7 if DCj is a replica DC of ok then
8 select a replica server sr in DCj ;
9 send d(ok, k.replicas, TS, dmc) to sr;

10 else
select a data node snr in DCj ;

11 send f(k, k.replicas, TS, dmc) to snr;

12 for each o ∈ dmc do
13 o.Dests := \L;
14 dmc := ∪{〈rid = si, TS, L\{si}〉};
15 dm← PURGE(dmc);
16 create d(ok, dm) and cvl〈k〉;
17 LINK(cvl〈k〉,d) : insert d to cvl〈k〉;
18 V Vi[i].increment;
19 OBJTABLEUPDATE(k,replicas);
20 return 〈POSTREPLY dmr = dm〉 to the request client;

Upon receive〈PUTREQ k, v, dmc〉
21 TS ← LamportTimestamp.increaseAndGet();
22 for each sj ∈ k.replicas, in the local DCi do
23 dms ← REDUCE(dmc.clone, ok.replicas, sj);
24 send d(k = v, rid = si, TS, dms) to sj ;

25 for each replica DCj 6= DCi do
26 select a replica server sr in DCj ;
27 send d(k = v, rid = si, TS, dmc) to sr;

28 for each o ∈ dmc do
29 o.Dests := \k.replicas;
30 dmc := ∪{〈rid = si, TS, k.replicas\{si}〉};
31 dm← PURGE(dmc);
32 if si ∈ ok.replicas then
33 create d(k = v, dm);
34 LINK(cvl〈k〉,d) : insert d to cvl〈k〉;
35 V Vi[i].increment;

36 return 〈PUTREPLY dmr = dm〉 to the request client;
Upon receive d(ok, replicas, TS, dms) from DCi

37 rid ← replicas.getF irst();
38 if ATP(dms,V Vi,si)=true then
39 dms := ∪{〈 rid, TS, replicas〉};
40 for each o ∈ dms do
41 o.Dests := \si;
42 create d′(ok, dms) and cvl〈k〉;
43 insert d′ to cvl〈k〉;
44 V Vi[rid] ← TS;
45 update IOset;
46 send f(k) to the local client ci;

47 else insert d into IOset;
48 OBJTABLEUPDATE(k,replicas);

Upon receive f(k, replicas, TS, dms) from DCi

49 rid ← replicas.getF irst();
50 if ATP(dms, V Vi, si)=true then
51 V Vi[rid] ← TS;
52 update IOset;
53 send f(k) to the local client ci;

54 else insert d into IOset;
55 OBJTABLEUPDATE(k,replicas);

145

Algorithm 10: Operations at data node si in DCi (part2)
Upon receive d(ok, replicas, TS, dmc) from DCs 6= DCi

1 for each data node sj(6= si) in DCi do
2 dms ← REDUCE(dmc.clone, replicas, sj);
3 if sj is a replica node of ok then send d(ok, k.replicas, TS, dms) to sj ;
4 else send f(k, k.replicas, TS, dms) to sj ;

5 REDUCE(dmc, replicas, si);
6 rid ← replicas.getF irst();
7 if ATP(dmc,V Vi,si)=true then
8 dmc := ∪{〈 rid, TS, replicas〉};
9 for each o ∈ dmc do

10 o.Dests := \si;
11 create d′(ok, dmc) and cvl〈k〉;
12 insert d′ to cvl〈k〉;
13 V Vi[rid] ← TS;
14 update IOset;
15 send f(k) to the local client ci;

16 else insert d into IOset;
17 OBJTABLEUPDATE(k,replicas);

Upon receive f(k, replicas, TS, dmc) from DCs 6= DCi

18 for each data node sj(6= si) in DCi do
19 dms ← REDUCE(dmc.clone, replicas, sj);
20 send f(k = v, replicas,TS, dms) to sj ;

21 REDUCE(dmc, L, si);
22 rid ← replicas.getF irst();
23 if ATP(dmc, V Vi, si)=true then
24 V Vi[rid] ← TS;
25 update IOset;
26 send f(k) to the local client ci;

27 else insert d into invisible object list;
28 OBJTABLEUPDATE(k,replicas);

Upon receive d(k = v, rid = sj , TS, dms) from DCi

29 if ATP(dms, V Vi, si)=true then
30 dms := ∪{〈 rid, TS, replicas〉};
31 for each o ∈ dms do
32 o.Dests := \si;
33 create d′(k = v, dms);
34 insert d′ to cvl〈k〉;
35 V Vi[rid] ← TS;
36 update IOset;

37 else insert d into IOset;

Upon receive d(k = v, rid, TS, dmc) from DCs 6= DCi

38 for each replica data node sj(6= si) in DCi do
39 dms ←REDUCE(dmc.clone, replicas, sj);
40 send d(ok, k.replicas, TS, dms) to sj ;

41 REDUCE(dmc, replicas, si);
42 if ATP(dmc, si)=true then
43 dmc := ∪{〈 rid, TS, replicas〉};
44 for each o ∈ dmc do
45 o.Dests := \si;
46 create d′(k = v, dmc);
47 insert d′ to cvl〈k〉;
48 V Vi[rid] ← TS;
49 update IOset;

50 else insert d into IOset;

Upon receive〈GETREQ k〉
51 if si /∈ k.replicas then
52 send〈REQUEST k〉 to a replica node in DCi or a remote DC;
53 receive 〈RREQ cvl〈k〉〉;
54 for each d ∈ cvl〈k〉 do
55 if (ATP (dmd, V Vi, si)=false) then
56 remove d from cvl〈k〉 ;

57 else fetch cvl〈k〉;
58 send〈GETREPLY cvl〈k〉〉;

Upon receive〈REQUEST k〉
59 fetch cvl〈k〉 and return 〈PREQ cvl〈k〉〉;

146

Algorithm 11: Functions used in Algorithm 8, 9, and 10
boolean ATP(depm dm, int[] V Vsi , node si):

1 for each o ∈ dm do
2 if si ∈ oz,ts.Dests then
3 if ts > V Vi[z] then return false;

4 return true;

REDUCE(depm dm,node list replicas, node sn):

5 for each o ∈ dm do
6 if sn ∈ o.Dests then o.Dests = \replicas;
7 else o.Dests := \replicas ∪ sn;
8 if oz.Dests = ∅ ∧ (∃o′z ∈ dm|oz.ts < o′z.ts) then dm \ oz;
9 return dm;

PURGE(dm):

10 for each o ∈ dm do
11 if oz.Dests = ∅ ∧ (∃o′z ∈ dm|oz.ts < o′z.ts) then dm \ oz;
12 return dmc;

MERGE(dmc, dmd):

13 for all oz,tz ∈ dmd and os,ts ∈ dmc and s = z do
14 if tz < ts ∧ os,tz 6∈ dmc then mark oz,tz ;
15 if ts < tz ∧ oz,ts 6∈ dmd then mark os,ts ;
16 delete marked entries;
17 if tz = ts then
18 os,ts.Dests := ∩oz,ts.Dests;
19 delete oz,t from dmd;

20 dmc := dmc ∪ dmd;

OBJTABLEUPDATE(object id k, node list replicas):

21 ObjectTable〈k〉 = replicas;

147

Algorithm 12: Cache operations at data server si
Upon receive〈PUTREQ k, v, dmc〉 in a replica master node

1 for each slave caching node sa of object ok do
2 fetch seq by object key k and node id sa;
3 seq.increase();
4 send 〈CACHE d(k = v, seq, dmr)〉 to sa;

Upon receive〈CACHE d(k = v, seq, dmr)〉 in a cache node

5 wait until (d.seq = k.seq + 1);
6 k.seq.increase();
7 insert d(k = v, dmr) to cvl〈k〉;

Upon receive〈REQUEST k〉 from a non-replica node sj

8 insert 〈sj ,seq=0〉 to a cache seq map for object key k;
9 fetch cvl〈k〉 and return 〈PREQ cvl〈k〉〉;

Upon receive〈GETREQ k〉 in a non-replica node

10 send〈REQUEST k〉 to a replica node in DCi or a remote DC;
11 receive 〈RREQ cvl〈k〉〉;
12 for each d ∈ cvl〈k〉 do
13 if ATP (dmd, V Vi, si)=false then
14 move d from cvl〈k〉 to invisible list of object k;

15 save cvl〈k〉 in si and set k.seq to ‘O’;
16 send〈GETREPLY cvl〈k〉〉;

jects are predetermined. All replication decisions are made before the system is operational

and replica configuration is not changed during operation. However, static replication of data

resources in dynamic environments hosting time-varying workloads is obviously ineffective for

optimizing system utilization, especially in social network systems. Dynamic replication strate-

gies have been widely used as means of increasing the data availability of large-scale cloud store

systems. CORP model, a proactive dynamic data replication strategy, has been proposed in

(3) to effectively improve the total system cost in a social network system. According to the

current data resource allocation and historical changes in workload patterns, CORP employs

the autoregressive integrated moving average (ARIMA) model to predict data object access

148

frequency in the near future. In order to optimize system cost, we incorporate CORP model

as the underlying replication mechanism into CaDRoP protocol. Based on the requirement

of CORP, a time slot system is required to realize the data migration process in CaDRoP.

Each data server is equipped with a physical clock, which generates monotonically increasing

timestamps. Physical clocks are synchronized by a time synchronization protocol, such as NTP.

The correctness of the CaDRoP is independent of the synchronization precision.

CORP strategy runs at the end of each time slot and outputs a set of replicas for each data

object. Then, the home server for that object triggers the migration process, based on the

replica placement at the current time slot and that at the next time slot. It is noted that the

regular CORP runs the ARIMA prediction model by an equal time interval. At runtime, the

prediction is constantly updated. When new access requests arrive in the current time slot, they

are getting involved into the time series and the information in the oldest time slot is removed

from the time series. However, when a data object is created, there is not sufficient data in

the time series initially (i.e., the training data set is not enough). Thus, we extend CaDRoP as

CaDRoP (+cache), which is based on a PUSH model, to reduce the network transmission cost,

especially in the initial time slot(s). Algorithm 12 presents the cache functions used in CaDRoP

(+cache). When a non-replica si receives a requesting data package with key k by fetching cvl

from another replica server sr, cvl〈 k〉 may be cached in si (line 16) with a sequence number seq

assigned by sr. For object ok, si becomes a slave server of sr. Afterwards, whenever sr receives

an update value (lines 1-4), then, sr relays the update value to si with a seq (increasing by one

per PUT). Based on the seq, si can maintain a visible cvl〈 k〉 in causality order. Algorithm 13

149

presents the migration processes in CaDRoP (+cache). When the migration process initiates,

CORP outputs a new set of replicas of a key k (denoted as k.replicas′) for the next time slot th

to the home server si. Based on different replica distributions, si will send the replicas′ (lines

2-7) or replicate cvl〈 k〉 + replicas′ (line 8) to the other servers within the same DC. Similar

to POST or PUT operations, the migration process utilizes the relay mechanism to reduce the

network transmission cost across different DCs. The home si may just send k.replicas′ to DCj

in the following three cases: 1) DCj is not a replica DC in th (lines 10-12). 2) DCj was a replica

DC or included a cache server in th−1, and is a replica DC in th (lines 13-18). 3) DCj was not

a replica DC in th−1, but will be a replica DC in th (line2 19-21). After receiving k.replicas′

or k.replicas + cvl〈k〉 from other DCs, it is required not only to update the replica placement

and store cvl〈k〉 (if received), but also to relay them to other servers within the same DC (lines

25-32 and 37-43).

6.4 Performance Evaluation

We evaluate the proposed CaDRoP protocols by real traces of requests to the web servers

from Twitter workload (76) and the CloudSim discrete event simulator (77). These realistic

traces contain a mixture of temporal and spatial information for each http request. The number

of http requests received for each of the target data objects (e.g., photo images) is aggregated

in 1000-secs intervals. By implementing our approaches on the Amazon cloud provider, it

allows us to evaluate the cost-effectiveness of request transaction, data store, and network

transmission, and to explore the impact of workload characteristics. We also evaluate CaDRoP

150

and CaDRoP(+cache) by a clairvoyant Optimal Placement (OPT) Solution, proposed in (3),

based on the time slot system and object access patterns known in advance.

Data Object Workload: Our work focuses on the data store framework on image-based

sharing in social media networks, where applications have geographically dispersed users who

PUT and GET data, and fit straightforwardly into a key-[values] model. We use actual Twitter

traces as a representation of the real world. PUT or POST , denoted as Put, to a timeline

occurs when users post a tweet, retweet, or reply messages. We crawl the real Twitter traces as

the evaluation input data. Since the Twitter traces do not contain information of reading the

tweets (i.e., the records of Gets), we set five different ratios of Put/Get (Prate: Put rate), where

the patterns of Gets on the workloads follow Longtail distribution model (78). The simulation

workload contains several Tweet objects. The volume V of each target tweet in the workload

is 2 MB. The simulation is performed for a period of 20 days. The results for each object show

that they have similar tendency.

The experiment has been performed via simulation using the CloudSim toolkit (77) to

evaluate the proposed system. CloudSim is a JAVA-based toolkit that contains a discrete event

simulator and classes that allow users to model distributed cloud environments, from providers

and their system resources (e.g., physical machines and networking) to customers and access

requests. CloudSim can be easily developed by extending the classes, with customized changes

to the CloudSim core. We figure out our own classes for simulation of the proposed framework

and model 9 DCs in CloudSim simulator. Each DC is composed of 4 pairs of web servers and

data servers. Each data server incorporates a 50GB storage space and each web server is in

151

charge of user’s query processing from one (or a few) states in US or one country in Asia and

in Europe. The price of the storage classes and network services are set in terms of Amazon

Web Service (AWS) as of 2019.

6.4.1 Results and Discussion

The performance metrics we use are the performance in terms of cost and the cost improve-

ment rates under varying Prate of the proposed CaDRoP(+cache). In order to evaluate our

proposed algorithm, we compare it to different replication factors (RF). RF is the number

of replica DC, where it is randomly pre-selected and each replica DC includes one replica

data server. More specifically, when RF is constant and the replica placement for each key

is predetermined, the simulation proceeds only by Algorithm8 ∼ 11 (we denote this strategy

as ‘CaS’). Cost is represented by the total system cost, which is composed of transaction cost

(TC), network transmission cost (NTC), and storage cost (SC). We use the term ‘transaction’

to denote data query operations, such as Put or Get. NTC depends on the size of the packet

(e.g., a d packet) transmitted. SC includes the costs of storing data items (including the dm

data) and the bookkeeping management of data replication information.

6.4.1.1 CaS VS. CaS+cache

To evaluate the effectiveness of the cache component, we examine the system performance

with the comparisons between CaS and CaS+cache on cost improvement rate with respect to

different RF, which is defined as:

cost(CaS)− cost(CaS + cache)

cost(CaS)
(6.2)

152

Table XXI shows the cache effectiveness of different RF modes for different Put rates increases

as RF decreases. As Put rate decreases, the cost improvement of CaS+cache becomes higher

except for full DC replication (RF=9).

6.4.1.2 CaS+cache VS. CaDRoP+cache

We now evaluate the cost effectiveness of CaDRoP by comparing CaDRoP+cache with

CaS+cache. By running the same workloads as before, Figure 34 presents the TCs of various

RF models in different Put rates. Lowering the number of transactions to fetch objects from

remote data servers increases throughput in cloud environments, while an increased number of

transactions would lead to an over-utilization of the underlying systems. Thus, the total TC is

completely subject to the number of transactions. The results show that CaDRoP can achieve

the best performance for TC under the same cache capacity, although it needs to bring addi-

tional transactions for the migration process. Figure 35 presents the NTC of CaDRoP+cahce

in comparison with various RF models in different Put rates. The smaller the NTC, the lower

the network bandwidth consumption. Although NTC of CaDRoP+cache is slightly higher than

that of the full DC replication, it is much lower than others’ NTCs. Figure 36 shows the results

of SC of CaDRoP+cache in comparison with other alternatives. It is noteworthy that the SC

of CaDRoP+cache falls in between the SCs of the replication models with RF=9 and RF=2.

This implies that the proper number of replicas for CaDRoP+cache is able to decrease TC and

NTC. Figure 37 presents the total system costs (TSC) for CaDRoP+cache and CaS+cache in

different RF values. It illustrates that CaDRoP+cache can reduce TC and NTC at the slight

cost of SC.

153

6.4.1.2.1 CaDRoP+cache VS. CaDRoP

We propose CaDRoP+cache to improve the system costs. Thus, in this section we present

experiments aimed at evaluating how the total costs are improved by CaDRoP+cache against

CaDRoP. Table XXII presents the results of the cost saving ratio (∆saving) for different Put

rates. ∆saving is defined as

cost(CaDRoP)− cost(CaDRoP + cache)

cost(CaDRoP)
(6.3)

Since the evaluation data come from the social network, each individual data object brings a

lot of requests in the initial time slots. It can be observed that the results indicate that the

lower the Prate (Get-intensive), the better the ∆saving is.

6.4.1.2.2 CaDRoP+cache evaluation

In order to evaluate the effectiveness of our proposed approach, we also implemented the

Optimal Placement Solution (OPT) proposed in (3) as the clairvoyant replication strategy.

OPT knows the exact temporal and spatial data object access patterns. OPT can figure out

the optimal object placement for each time slot. The cost effectiveness of CaDRoP+cache is

highly related to how precise the predicted access number is. OPT+cache totally follows up

CaDRoP+cache model and uses the real object access (Put and Get) numbers as the inputs in

different time slots. ∆inc is defined as

cost(CaDRoP + cache)− cost(OPT + cache)

cost(CaDRoP + cache)
(6.4)

154

∆inc in Table XXII presents the comparisons between CaDRoP+cache and OPT+cache for

different Put rates. It is evident that CaDRoP+cache only increases 6% ∼ 16% of total system

cost compared to OPT+cache.

In order to measure the cost effectiveness of CaDRoP in steady states (including enough

training time slots), we also compare the cost of CaDRoP to that of OPT without caching in

steady states. ∆inc′ in Table XXII gives the cost increase ratios (∆inc′) of CORP compared to

OPT for different Put rates. We notice that ∆inc′ rates are around 2% ∼ 4.5%. ∆inc′ is defined

as

cost(CaDRoP)− cost(OPT)

cost(CaDRoP)
(6.5)

6.4.1.3 CoCaCo VS. CaDRoP+cache

In order to empirically evaluate the effectiveness of our approach, we compare it to another

causal+ consistency protocol, CoCaCo proposed in (14), for the following reasons. First, Co-

CaCo implements causal consistency both within and across datacenters. Second, it can be

applied to partially replicated systems across datacenters. Third, it also realizes multi-version

storage systems to preserve all the updated values for convergent conflict handling. Fourth, the

architecture of CoCaCo is highly similar to that of CaDRoP. In order to achieve the potential

causal consistency for all the text values with the same key, each update operation (PUT or

POST) needs to specify a unique id and to assign it to the corresponding text value. 6.4.1.3

demonstrates the simulation results for CoCaCo and CaDRoP+cache by running the workloads

used in the above experiments in various Put rates. As the RF value decreases, the overheads

155

of storing dm decrease in terms of the SC results, but the volume of transmitting dm over net-

works increases in terms of the NTC results. For CoCaCo, the TC costs are apparently higher

that those of CaDRoP+cache, since CoCaCo invokes more acknowledgement messages and im-

plements access requests. The SC costs of CoCaCo are lower than those of CaDRoP+cache in

the lower RF values, while CoCaCo’s SC is higher in the higher RF value.

156

POST(O
x
) PUT(x=1)

PUT(x=2)

[rid=1,TS=1] [rid=1,TS=2]

[rid=2,TS=1]

cvl_x ={Ox - 2 - 1}

cvl_x ={Ox - 2 - 1}

s1

s2

Figure 33. An example with the convergence property.

 0

 5

 10

 15

 20

 25

 30

 35

 40

0.05 0.1 0.2 0.5 0.8

T
o
ta

l
T
ra

n
sa

ct
io

n
 C

o
st

 (
U

S
D

)

The rate of Put (Prate)

CaS+cache(9r)
CaS+cache(5r)
CaS+cache(2r)
CaDRoP+cache

Figure 34. The Transaction Cost

157

Algorithm 13: Migration operations at si for ok in DCi at th−1
Upon receive 〈MIG k, k.replicas′〉 in a home si

1 for each sj(6= si) in DCi do
2 if sj /∈ k.replicas′ then
3 send f(k, k.replicas′) to sj ;

4 else if sj ∈ k.replicas′ and sj ∈ k.replicas then
5 send f(k, k.replicas′) to sj ;
6 else if sj ∈ k.replicas′ and sj is a caching server then
7 send f(k, k.replicas′) to sj ;
8 else send〈MIGR k, k.replicas′, cvl〈 k〉〉 to sj ;

9 for each DCj 6= DCi do
10 if R(DCj) = false in th then
11 select sj with the largest ANth from DCj ;
12 send f(k, k.replicas′) to sj ;

13 else if R(DCj) = true in th−1 then
14 select a replica sj from DCj ;
15 send f(k, k.replicas′) to sj ;

16 else if DCj includes one caching server in th−1 then
17 select a caching server sj from DCj ;
18 send f(k, k.replicas′) to sj ;

19 else
20 select sj with the largest AN from DCj ;
21 send〈MIGRB k, k.replicas′, cvl〈 k〉〉 to sj ;

Upon receive f(k, k.replicas′) from DCi

22 if si /∈ k.replicas′ & si ∈ k.replicas then
23 remove cvl〈 k〉;
24 OBJTABLEUPDATE(k,replicas′);

Upon receive f(k, k.replicas′) from DCj (j 6= i)

25 for each sj(6= si) in DCi do
26 if sj /∈ k.replicas′ then
27 send f(k, k.replicas′) to sj ;

28 else
fetch cvl〈 k〉〉;

29 send〈MIGR k, k.replicas′, cvl〈 k〉〉 to sj

30 if si /∈ k.replicas′ & si ∈ k.replicas then
31 remove cvl〈 k〉;
32 OBJTABLEUPDATE(k,replicas′);

Upon receive 〈MIGR k, k.replicas′, cvl〈 k〉〉
33 for each d ∈ cvl〈k〉 do
34 if (ATP (dmd, V Vi, si)=false) then
35 move d from cvl〈k〉 to the invisible list of ok;

36 OBJTABLEUPDATE(k,replicas′);

Upon receive 〈MIGRB k, k.replicas′, cvl〈 k〉〉 from DCj (j 6= i)

37 for each sj(6= si) in DCi do
38 if sj ∈ k.replicas′ then
39 send〈MIGR k, k.replicas′, cvl〈 k〉〉 to sj

40 for each d ∈ cvl〈k〉 do
41 if (ATP (dmd, V Vi, si)=false) then
42 move d from cvl〈k〉 to the invisible list of ok;

43 OBJTABLEUPDATE(k,replicas′);

158

TABLE XXI. Cost improvement rates in different Put rates and RF values.
Prate 0.05 0.1 0.2 0.5 0.8

RF=9 3.46% 2.87% 5.24% 4.41% 4.16%
RF=5 72.62% 58.88% 55.05% 21.35% 6.74%
RF=2 79.46% 69.49% 56.33% 29.08% 11.95%

 0

 5

 10

 15

 20

 25

 30

 35

 40

0.05 0.1 0.2 0.5 0.8T
o
ta

l
N

e
tw

o
rk

 T
ra

n
sm

is
si

o
n
 C

o
st

 (
U

S
D

)

The rate of Put (Prate)

CaS+cache(9r)
CaS+cache(5r)
CaS+cache(2r)
CaDRoP+cache

Figure 35. The Network Transmission Cost

159

 0

 0.05

 0.1

 0.15

 0.2

 0.25

0.05 0.1 0.2 0.5 0.8

T
o
ta

l
D

a
ta

 S
to

ra
g
e
 C

o
st

 (
U

S
D

)

The rate of Put (Prate)

CaS+cache(9r)
CaS+cache(5r)
CaS+cache(2r)
CaDRoP+cache

Figure 36. The Storage Space Cost

TABLE XXII. ∆saving: The cost improvement results for different Put rates show that
caching has taken an important step to improve the total system costs. ∆inc: The

performance evaluation of CaDRoP+cache compared to OPT+cache. ∆inc′ : The performance
evaluation of CaDRoP compared to OPT in steady states.
Prate 0.05 0.1 0.2 0.5 0.8

∆saving 91.95% 85.01% 75.14% 57.84% 49.02%

∆inc 16.08% 13.17% 10.21% 9.02% 6.17%

∆inc′ 1.72% 2.62% 1.6% 4.51% 3.31%

160

 0

 10

 20

 30

 40

 50

 60

0.05 0.1 0.2 0.5 0.8

T
o
ta

l
S
y
st

e
m

 C
o
st

 (
U

S
D

)

The rate of Put (Prate)

CaS+cache(9r)
CaS+cache(5r)
CaS+cache(2r)
CaDRoP+cache

Figure 37. The Total System Cost

161

T
A

B
L

E
X

X
II

I.
T

h
e

p
ri

ce
co

st
co

m
p

a
ri

so
n

s
b

et
w

ee
n

C
oC

aC
o

an
d

C
aD

R
oP

+
ca

ch
e

in
d

iff
er

en
t
P
u
t

ra
te

s
an

d
R

F
m

o
d

el
s.

‘S
C

’
in

cl
u

d
es

tw
o

co
st

s:
(i

)
st

or
in

g
d

at
a

ob
je

ct
s

+
(i

i)
st

or
in

g
d
m

d
at

a.
S

im
il

ar
ly

,
‘N

T
C

’
in

cl
u
d

es
tw

o
co

st
s:

(i
)

tr
an

sm
it

ti
n

g
d
at

a
ob

je
ct

s
+

(i
i)

tr
an

sm
it

ti
n

g
d
m

d
at

a.
C

oC
aC

o
C

aD
R

oP
+

ca
ch

e
S

C
T

C
N

T
C

T
S

C
S

C
T

C
N

T
C

T
S

C

P
r
a
te

=
0.

05
R

F
=

9
0
.1

5
5+

0.
02

9
19

.5
7

1.
3+

0.
25

6
21

.3
0.

09
9+

0.
00

2
13

.9
7

2.
27

3+
0.

06
16

.4
R

F
=

5
0
.0

8
6+

0.
01

8
27

.5
25

18
6.

1+
14

.2
3

22
8

R
F

=
2

0
.0

3
5+

0.
00

7
25

.0
7

32
9.

7+
24

.7
7

38
0

P
r
a
te

=
0
.1

R
F

=
9

0
.1

5
5+

0.
02

8
18

.5
94

1.
3+

0.
25

0
20

.3
0.

09
4+

0.
00

2
13

.3
6

2.
11

2+
0.

05
1

15
.6

2
R

F
=

5
0
.0

8
6+

0.
01

7
25

.5
03

97
.3

3+
6.

80
5

13
0

R
F

=
2

0
.0

3
5+

0.
00

7
24

.0
72

16
0.

2+
12

.4
7

19
6

P
r
a
te

=
0
.2

R
F

=
9

0
.1

5
5+

0.
02

6
18

.2
79

1.
3+

0.
24

6
20

0.
03

9+
0.

00
2

10
.9

3
2.

60
7+

0.
08

5
13

.6
7

R
F

=
5

0
.0

8
6+

0.
01

7
25

.0
91

78
.0

02
+

4.
36

2
10

7
R

F
=

2
0
.0

3
5+

0.
00

6
22

.6
83

90
.6

2+
6.

13
6

11
9

P
r
a
te

=
0
.5

R
F

=
9

0
.1

5
5+

0.
02

6
17

.7
97

1.
3+

0.
24

5
19

.5
0.

06
1+

0.
00

1
10

.8
6

2.
11

3+
0.

07
13

.1
1

R
F

=
5

0
.0

8
6+

0.
01

7
24

.7
04

26
.8

37
+

2.
19

7
54

R
F

=
2

0
.0

3
5+

0.
00

6
22

.2
90

42
.1

0+
3.

02
4

67

P
r
a
te

=
0
.8

R
F

=
9

0
.1

5
5+

0.
02

5
17

.7
31

1.
3+

0.
23

5
19

.4
0.

05
5+

0.
00

2
10

.3
3

2.
11

2+
0.

07
8

12
.5

8
R

F
=

5
0
.0

8
6+

0.
01

6
22

.6
28

19
.5

16
+

1.
89

0
44

R
F

=
2

0
.0

3
5+

0.
00

6
20

.2
16

29
.2

96
+

2.
60

2
52

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In Chapter 3, we considered the problem of providing causal consistency in large-scale DSM

systems under partial replication and proposed two algorithms. The first algorithm, Full-Track,

is optimal in the sense that that each update is applied at the earliest instant while removing

false causality in the system. The second algorithm, Opt-Track, is additionally optimal in the

sense that it minimizes the size of meta-information carried on messages and stored in local

logs. In addition, as a derivative of the second algorithm, we proposed an optimized algorithm,

Opt-Track-CRP, that reduces the message overhead, the processing time, and the local storage

cost at each site in the fully replicated scenario. We also conducted a performance analysis of

the message space and message count complexity of the algorithms under a wide range of system

conditions. Experimental results indicated that Opt-Track was seen to show significant gains

over Full-Track in partial replication and highly successful in trimming the size of meta-data.

In full replication, the results also supported that Opt-Track-CRP performed better than optP

in scalability and network capacity utilization.

In Chapter 4, we introduced the concepts of credits (cr) and proposed algorithm Approx-

Opt-Track to further improve the meta-data size of Opt-Track. By controlling a parameter

called cr, we can trade-off the level of potential inaccuracy by the size of meta-data. We then

considered the performance of the instantiation of the credits by hop count, in detail. There

is a trade-off between ms (or initial cr) and Re. The experimental results indicated that by

162

163

controlling initial cr, we can leverage the potential causal consistency inaccuracy to further

improve the meta-data overhead. By setting a small finite initial cr, most of the dependencies

turn out to be aged after being transmitted across a few hops. In other words, if the initial

allocation of cr is made as a finite single-digit, by the time the cr reaches zero, the message

corresponding to the meta-data would reach its destination with very high probability.

In Chapter 5, we proposed the CORP(+cache) algorithms to realize a proactive provisioning

replication model by using ARIMA for cloud datastores. Our approach employed a mixture

of ARIMA and analytic schemes to analyze data access workload patterns in a predefined

window length to predict workload distribution for the next time interval. The CDP can

dynamically deploy required data replicas in the distributed storage system in responding to the

predicted data access requests for the next interval. Simulations indicated that, with caching,

as the number of replica GDCs increases, the TSC decreases. CORP+cache is capable of

further reducing the TSC against the static replication mode with caching. Compared to the

optimal placement solution (OPT+cache), CORP+cache increases only 6% ∼ 16% of TSC of

OPT+cache. Without caching, the TSC of CORP is highly close to that of OPT for the time

slot system in a steady state.

In Chapter 6, we considered the problem of ensuring causal+ consistency between posts and

for the comments under each post in social network systems. By extending Opt-Track into a

client-server topology, we proposed algorithm CaDRoP+cache that is adapted to the proposed

CORP strategy in in geo-replicated datastores. Simulations showed that, with caching, as RF

increases, the TSC decreases. CaDRoP+cache is around 55% ∼ %70 lower than CaS+cache

164

in different predetermined RF models. The simulation results also showed that the TSC of

CaDRoP+cache is usually improved better in lower Prate. It implies that CaDRoP+cache is

cost-effective for most social applications with Get-intensive workloads.

These algorithms we designed in this work provide a suite of protocols for enforcing causal

consistency in large-scale geo-replicated data store systems. As for the future work, this work

can be further explored in the following directions.

• Extend the cost optimized replication protocol so that it is adapted to dynamic ring-

binding within each datacenter and compare its cost-effectiveness with other alternative

replication strategies.

• Extend Approx-Opt-Track algorithm to the client-server topology architecture with fault-

tolerance support and perform realistic workloads to test its performances in more depth.

• Extend the CaDRoP algorithm to provide fault-tolerance and support data sharding

within each datacenter. We would like to explore partition fault-tolerance mechanisms to

design highly reliable high performance systems in the case a partition goes down in a

datacenter.

APPENDICES

165

166

Appendix A

IEEE LICENSE DOCUMENTS

Home Help Email Support Sign in Create Account

© 2020 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Terms and Conditions

RightsLink

Performance of Causal Consistency Algorithms for Partially Replicated
Systems
Conference Proceedings:
2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

Author: Ta-Yuan Hsu; Ajay D. Kshemkalyani

Publisher: IEEE

Date: 23-27 May 2016

Copyright © 2016, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., �gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted �gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Micro�lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

167

Appendix A (Continued)

Home Help Email Support Sign in Create Account

© 2020 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Terms and Conditions

RightsLink

Value the Recent Past: Approximate Causal Consistency for Partially
Replicated Systems
Author: Ta-Yuan Hsu

Publication: Parallel and Distributed Systems, IEEE Transactions on

Publisher: IEEE

Date: 1 Jan. 2018

Copyright © 2018, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., �gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted �gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Micro�lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

168

Appendix B

ELSEVIER PERMISSIONS

Home Help Email Support TAYUAN HSU

© 2020 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Terms and Conditions

RightsLink

Causal consistency algorithms for partially replicated and fully
replicated systems
Author: Ta-Yuan Hsu,Ajay D. Kshemkalyani,Min Shen

Publication: Future Generation Computer Systems

Publisher: Elsevier

Date: September 2018

© 2017 Elsevier B.V. All rights reserved.

Please note that, as the author of this Elsevier article, you retain the right to include it in a thesis or dissertation,
provided it is not published commercially. Permission is not required, but please ensure that you reference the
journal as the original source. For more information on this and on your other retained rights, please
visit: https://www.elsevier.com/about/our-business/policies/copyright#Author-rights

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

The following document is obtained from the ELSEVIER official author web page available at

https://www.elsevier.com/about/policies/copyrightAuthor-rights. It clearly states that, as far

as full acknowledgement is given, the author can reuse all or part of a previously published

article through Elsevier to be included in a thesis or dissertation.

169

Appendix B (Continued)

170

Appendix C

ACM LICENSE DOCUMENTS

ACM (Association for Computing Machinery) - License Terms and Conditions

This is a License Agreement between Ta-Yuan Hsu ("You") and ACM (Association for Computing Machinery) ("Publisher") provided by Copyright Clearance Center ("CCC"). The license
consists of your order details, the terms and conditions provided by ACM (Association for Computing Machinery), and the CCC terms and conditions.

All payments must be made in full to CCC.

LICENSED CONTENT

REQUEST DETAILS

NEW WORK DETAILS

ADDITIONAL DETAILS

REUSE CONTENT DETAILS

Order Date 21-Oct-2020
Order license ID 1071939-1
ISBN-13 978-1-4503-6894-0

Type of Use Republish in a thesis/dissertation
Portion Chapter/article

Publication Title Proceedings of the 12th IEEE/ACM
International Conference on Utility and
Cloud Computing

Article Title A Proactive, Cost-aware, Optimized Data
Replication Strategy in Geo-distributed
Cloud Datastores

Date 12/31/2018

Language English

Rightsholder ACM (Association for Computing
Machinery)

Publication Type Conference Proceeding

Start Page 143

End Page 153

Portion Type Chapter/article

Page range(s) 143-153

Total number of pages 10

Format (select all that apply) Print, Electronic

Who will republish the content? Academic institution

Duration of Use Life of current and all future editions

Lifetime Unit Quantity Up to 9,999

Rights Requested Main product

Distribution Worldwide

Translation Original language of publication

Copies for the disabled? No

Minor editing privileges? No

Incidental promotional use? No

Currency USD

Title Cost-E�ective Protocols for Enforcing
Causal Consistency in Geo-Replicated Data
Store Systems

Instructor name Ajay D. Kshemkalyani

Institution name University of Illinois at Chicago

Expected presentation date 2020-12-31

Order reference number N/A The requesting person / organization to
appear on the license

Ta-Yuan Hsu

Title, description or numeric reference of
the portion(s)

Chapter 4, pages 93-127

Editor of portion(s) Hsu, Ta-Yuan; Kshemkalyani, Ajay D.

Volume of serial or monograph N/A

Page or page range of portion 143-153

Title of the article/chapter the portion is
from

A Proactive, Cost-aware, Optimized Data
Replication Strategy in Geo-distributed
Cloud Datastores

Author of portion(s) Hsu, Ta-Yuan; Kshemkalyani, Ajay D.

Issue, if republishing an article from a
serial

N/A

Publication date of portion 2019-12-01

171

Appendix C (Continued)

ACM (Association for Computing Machinery) - License Terms and Conditions

This is a License Agreement between Ta-Yuan Hsu ("You") and ACM (Association for Computing Machinery) ("Publisher") provided by Copyright Clearance Center ("CCC"). The license
consists of your order details, the terms and conditions provided by ACM (Association for Computing Machinery), and the CCC terms and conditions.

All payments must be made in full to CCC.

LICENSED CONTENT

REQUEST DETAILS

NEW WORK DETAILS

ADDITIONAL DETAILS

REUSE CONTENT DETAILS

Order Date 21-Oct-2020
Order license ID 1071941-1
ISBN-13 978-1-4503-4227-8

Type of Use Republish in a thesis/dissertation
Publisher ACM
Portion Chapter/article

Publication Title Proceedings of the Third International
Workshop on Adaptive Resource
Management and Scheduling for Cloud
Computing

Article Title Performance of Approximate Causal
Consistency for Partially Replicated
Systems

Date 12/31/2015

Language English

Country United States of America

Rightsholder ACM (Association for Computing
Machinery)

Publication Type Conference Proceeding

Start Page 7

End Page 13

Portion Type Chapter/article

Page range(s) 7-13

Total number of pages 6

Format (select all that apply) Print, Electronic

Who will republish the content? Academic institution

Duration of Use Life of current and all future editions

Lifetime Unit Quantity Up to 9,999

Rights Requested Main product

Distribution Worldwide

Translation Original language of publication

Copies for the disabled? No

Minor editing privileges? No

Incidental promotional use? No

Currency USD

Title Cost-E�ective Protocols for Enforcing
Causal Consistency in Geo-Replicated Data
Store Systems

Instructor name Ajay D. Kshemkalyani

Institution name University of Illinois at Chicago

Expected presentation date 2020-12-31

Order reference number N/A The requesting person / organization to
appear on the license

Ta-Yuan Hsu

Title, description or numeric reference of
the portion(s)

Chapter 3, pages 66-92

Editor of portion(s) Kshemkalyani, Ajay D.; Hsu, Ta-yuan

Volume of serial or monograph N/A

Page or page range of portion 7-13

Title of the article/chapter the portion is
from

Performance of Approximate Causal
Consistency for Partially Replicated
Systems

Author of portion(s) Kshemkalyani, Ajay D.; Hsu, Ta-yuan

Issue, if republishing an article from a
serial

N/A

Publication date of portion 2015-12-31

172

Appendix C (Continued)

ACM (Association for Computing Machinery) - License Terms and Conditions

This is a License Agreement between Ta-Yuan Hsu ("You") and ACM (Association for Computing Machinery) ("Publisher") provided by Copyright Clearance Center ("CCC"). The license
consists of your order details, the terms and conditions provided by ACM (Association for Computing Machinery), and the CCC terms and conditions.

All payments must be made in full to CCC.

LICENSED CONTENT

REQUEST DETAILS

NEW WORK DETAILS

ADDITIONAL DETAILS

REUSE CONTENT DETAILS

Order Date 22-Oct-2020
Order license ID 1071947-1
ISBN-13 978-1-4503-2928-6

Type of Use Republish in a thesis/dissertation
Publisher ACM
Portion Chapter/article

Publication Title Proceedings of the 2015 International
Conference on Distributed Computing and
Networking

Article Title OPCAM : Optimal Algorithms Implementing
Causal Memories in Shared Memory
Systems

Date 12/31/2014

Language English

Country United States of America

Rightsholder ACM (Association for Computing
Machinery)

Publication Type Conference Proceeding

Start Page 1

End Page 4

Portion Type Chapter/article

Page range(s) 1-4

Total number of pages 4

Format (select all that apply) Print, Electronic

Who will republish the content? Academic institution

Duration of Use Life of current and all future editions

Lifetime Unit Quantity Up to 9,999

Rights Requested Main product

Distribution Worldwide

Translation Original language of publication

Copies for the disabled? No

Minor editing privileges? No

Incidental promotional use? No

Currency USD

Title Cost-E�ective Protocols for Enforcing
Causal Consistency in Geo-Replicated Data
Store Systems

Instructor name Ajay D. Kshemkalyani

Institution name University of Illinois at Chicago

Expected presentation date 2020-12-31

Order reference number N/A The requesting person / organization to
appear on the license

Ta-Yuan Hsu

Title, description or numeric reference of
the portion(s)

Chapter 2, pages 15-65

Editor of portion(s) Hsu, Ta-yuan; Kshemkalyani, Ajay D.; Shen,
Min

Volume of serial or monograph N/A

Page or page range of portion 1-4

Title of the article/chapter the portion is
from

OPCAM : Optimal Algorithms Implementing
Causal Memories in Shared Memory
Systems

Author of portion(s) Hsu, Ta-yuan; Kshemkalyani, Ajay D.; Shen,
Min

Issue, if republishing an article from a
serial

N/A

Publication date of portion 2014-12-31

173

Appendix C (Continued)

ACM (Association for Computing Machinery) - License Terms and Conditions

This is a License Agreement between Ta-Yuan Hsu ("You") and ACM (Association for Computing Machinery) ("Publisher") provided by Copyright Clearance Center ("CCC"). The license
consists of your order details, the terms and conditions provided by ACM (Association for Computing Machinery), and the CCC terms and conditions.

All payments must be made in full to CCC.

LICENSED CONTENT

REQUEST DETAILS

NEW WORK DETAILS

ADDITIONAL DETAILS

REUSE CONTENT DETAILS

Order Date 22-Oct-2020
Order license ID 1071959-1
ISBN-13 978-1-4503-4037-3

Type of Use Republish in a thesis/dissertation
Publisher ACM
Portion Chapter/article

Publication Title Proceedings of the Fifth International
Workshop on Network-Aware Data
Management

Article Title Approximate causal consistency for
partially replicated geo-replicated cloud
storage

Date 12/31/2014

Language English

Country United States of America

Rightsholder ACM (Association for Computing
Machinery)

Publication Type Conference Proceeding

Start Page 1

End Page 8

Portion Type Chapter/article

Page range(s) 1-8

Total number of pages 8

Format (select all that apply) Print, Electronic

Who will republish the content? Academic institution

Duration of Use Life of current and all future editions

Lifetime Unit Quantity Up to 9,999

Rights Requested Main product

Distribution Worldwide

Translation Original language of publication

Copies for the disabled? No

Minor editing privileges? No

Incidental promotional use? No

Currency USD

Title Cost-E�ective Protocols for Enforcing
Causal Consistency in Geo-Replicated Data
Store Systems

Instructor name Ajay D. Kshemkalyani

Institution name University of Illinois at Chicago

Expected presentation date 2020-12-31

Order reference number N/A The requesting person / organization to
appear on the license

Ta-Yuan Hsu

Title, description or numeric reference of
the portion(s)

Chapter 3, pages 66-92

Editor of portion(s) Hsu, Ta-yuan; Kshemkalyani, Ajay D.

Volume of serial or monograph N/A

Page or page range of portion 1-8

Title of the article/chapter the portion is
from

Approximate causal consistency for
partially replicated geo-replicated cloud
storage

Author of portion(s) Hsu, Ta-yuan; Kshemkalyani, Ajay D.

Issue, if republishing an article from a
serial

N/A

Publication date of portion 2014-12-31

174

CITED LITERATURE

1. Hsu, T.-Y., Kshemkalyani, A., and Shen, M.: Causal consistency algorithms for partially
replicated and fully replicated systems. Future Generation Computer Systems ,
86:1118 – 1133, 2018.

2. Hsu, T. and Kshemkalyani, A. D.: Value the recent past: Approximate causal consistency
for partially replicated systems. IEEE Transactions on Parallel and Distributed
Systems , 29(1):212–225, 2018.

3. Hsu, T.-Y. and Kshemkalyani, A. D.: A proactive, cost-aware, optimized data replication
strategy in geo-distributed cloud datastores. In Proceedings of the 12th IEEE/ACM
International Conference on Utility and Cloud Computing , UCC’19, page 143–153,
New York, NY, USA, 2019. Association for Computing Machinery.

4. Iliadis, I., Sotnikov, D., Ta-Shma, P., and Venkatesan, V.: Reliability of geo-replicated
cloud storage systems. In Dependable Computing (PRDC), 2014 IEEE 20th Pacific
Rim International Symposium on , pages 169–179, Nov 2014.

5. Kshemkalyani, A. D. and Singhal, M.: Distributed Computing: Principles, Algorithms, and
Systems . New York, NY, USA, Cambridge University Press, 1 edition, 2011.

6. Lloyd, W., Freedman, M. J., Kaminsky, M., and Andersen, D. G.: Don’t settle for eventual:
Scalable causal consistency for wide-area storage with cops. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles , SOSP ’11, pages
401–416, New York, NY, USA, 2011. ACM.

7. Gilbert, S. and Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News , 33(2):51–59, June 2002.

8. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., and Vogels, W.: Dynamo: Amazon’s highly
available key-value store. SIGOPS Oper. Syst. Rev. , 41(6):205–220, October 2007.

9. Mahajan, P., Alvisi, L., and Dahlin, M.: Consistency, Availability, and Convergence.
University of Texas at Austin TR-11-22, 2011.

175

10. Raynal, M., Schiper, A., and Toueg, S.: The causal ordering abstraction and a simple way
to implement it. Inf. Process. Lett. , 39(6):343–350, October 1991.

11. Kshemkalyani, A. D. and Singhal, M.: An optimal algorithm for generalized causal message
ordering. In Proceedings of the Fifteenth Annual ACM Symposium on Principles of
Distributed Computing , PODC ’96, pages 87–, New York, NY, USA, 1996. ACM.

12. Kshemkalyani, A. D. and Singhal, M.: Necessary and sufficient conditions on informa-
tion for causal message ordering and their optimal implementation. Distributed
Computing , 11(2):91–111, 1998.

13. Baldoni, R., Milani, A., and Piergiovanni, S. T.: Optimal propagation-based protocols
implementing causal memories. Distributed Computing , 18(6):461–474, 2006.

14. Tang, Y., Sun, H., Wang, X., and Liu, X.: Achieving convergent causal consistency and
high availability for cloud storage. Future Generation Computer Systems , 74:20 –
31, 2017.

15. Ahamad, M., Neiger, G., Burns, J., Kohli, P., and Hutto, P.: Causal memory: Definitions,
implementation and programming. Distributed Computing , 9(1):37–49, 1995.

16. Petersen, K., Spreitzer, M., Terry, D. B., Theimer, M., and Demers, A. J.: Flexible update
propagation for weakly consistent replication. In Proceedings of the Sixteenth ACM
Symposium on Operating System Principles, SOSP 1997, St. Malo, France, October
5-8, 1997 , pages 288–301, 1997.

17. Belaramani, N., Dahlin, M., Gao, L., Nayate, A., Venkataramani, A., Yalagandula, P., and
Zheng, J.: Practi replication. In Proceedings of the 3rd Conference on Networked
Systems Design & Implementation - Volume 3 , NSDI’06, pages 5–5, Berkeley, CA,
USA, 2006. USENIX Association.

18. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM , 21(7):558–565, July 1978.

19. Mahajan, P., Alvisi, L., and Dahlin, M.: Consistency, availability, and convergence. Techni-
cal Report UTCS TR-11-22, Dept. of Comp. Sc., The U. of Texas at Austin, Austin,
TX, USA, 2011.

20. Ladin, R., Liskov, B., Shrira, L., and Ghemawat, S.: Providing high availability using lazy
replication. ACM. Trans. Comput. Syst. , 10(4):360–391, November 1992.

176

21. Lloyd, W., Freedman, M. J., Kaminsky, M., and Andersen, D. G.: Stronger semantics
for low-latency geo-replicated storage. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 13) , pages
313–328, Lombard, IL, 2013. USENIX.

22. Du, J., Elnikety, S., Roy, A., and Zwaenepoel, W.: Orbe: Scalable causal consistency
using dependency matrices and physical clocks. In Proceedings of the 4th Annual
Symposium on Cloud Computing , SOCC ’13, pages 11:1–11:14, New York, NY,
USA, 2013. ACM.

23. Du, J., Iorgulescu, C., Roy, A., and Zwaenepoel, W.: Gentlerain: Cheap and scalable causal
consistency with physical clocks. In Proceedings of the ACM Symposium on Cloud
Computing, Seattle, WA, USA, November 03 - 05, 2014 , pages 4:1–4:13, 2014.

24. Akkoorath, D. D., Tomsic, A. Z., Bravo, M., Li, Z., Crain, T., Bieniusa, A., Preguiça, N.,
and Shapiro, M.: Cure: Strong semantics meets high availability and low latency.
In 2016 IEEE 36th International Conference on Distributed Computing Systems
(ICDCS) , pages 405–414, 2016.

25. Almeida, S., Leitão, J. a., and Rodrigues, L.: Chainreaction: A causal+ consistent datastore
based on chain replication. In Proceedings of the 8th ACM European Conference on
Computer Systems , EuroSys ’13, pages 85–98, New York, NY, USA, 2013. ACM.

26. Bailis, P., Ghodsi, A., Hellerstein, J. M., and Stoica, I.: Bolt-on causal consistency. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data , SIGMOD ’13, pages 761–772, New York, NY, USA, 2013. ACM.

27. Mehdi, S. A., Littley, C., Crooks, N., Alvisi, L., Bronson, N., and Lloyd, W.: I can’t
believe it’s not causal! scalable causal consistency with no slowdown cascades.
In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17) , pages 453–468,

28. Spirovska, K., Didona, D., and Zwaenepoel, W.: Optimistic causal consistency for geo-
replicated key-value stores. In 2017 IEEE 37th International Conference on Dis-
tributed Computing Systems (ICDCS) , pages 2626–2629, 2017.

29. Didona, D., Guerraoui, R., Wang, J., and Zwaenepoel, W.: Causal consistency and latency
optimality: Friend or foe? Proc. VLDB Endow. , 11(11):1618–1632, July 2018.

177

30. Roohitavaf, M., Demirbas, M., and Kulkarni, S.: Causalspartan: Causal consistency for
distributed data stores using hybrid logical clocks. In 2017 IEEE 36th Symposium
on Reliable Distributed Systems (SRDS) , pages 184–193, 2017.

31. Lu, H., Hodsdon, C., Ngo, K., Mu, S., and Lloyd, W.: The snow theorem and latency-
optimal read-only transactions. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation , OSDI’16, page 135–150, USA,
2016. USENIX Association.

32. Gunawardhana, C., Bravo, M., and Rodrigues, L.: Unobtrusive deferred update stabiliza-
tion for efficient geo-replication. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17) , pages 83–95, Santa Clara, CA, July 2017. USENIX Associa-
tion.

33. Bravo, M., Rodrigues, L., and Van Roy, P.: Saturn: A distributed metadata service for
causal consistency. In Proceedings of the Twelfth European Conference on Computer
Systems , EuroSys ’17, page 111–126, New York, NY, USA, 2017. Association for
Computing Machinery.

34. Fouto, P., Leitão, J., and Preguiça, N.: Practical and fast causal consistent partial geo-
replication. In 2018 IEEE 17th International Symposium on Network Computing
and Applications (NCA) , pages 1–10, 2018.

35. Mahmood, T., PN, S., Rao, S., Vijaykumar, T., and Thottethodi, M.: Karma: Cost-
effective geo-replicated cloud storage with dynamic enforcement of causal consis-
tency. IEEE Transactions on Cloud Computing , pages 1–1, 06 2018.

36. Xiang, Z. and Vaidya, N. H.: Global stabilization for causally consistent partial replication.
CoRR , abs/1803.05575, 2018.

37. Zawirski, M., Preguiça, N., Duarte, S., Bieniusa, A., Balegas, V., and Shapiro, M.: Write
fast, read in the past: Causal consistency for client-side applications. In Proceedings
of the 16th Annual Middleware Conference , Middleware ’15, page 75–87, New York,
NY, USA, 2015. Association for Computing Machinery.

38. Spirovska, K., Didona, D., and Zwaenepoel, W.: Paris: Causally consistent transactions
with non-blocking reads and partial replication. In 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS) , pages 304–316, July 2019.

178

39. Crain, T. and Shapiro, M.: Designing a causally consistent protocol for geo-distributed
partial replication. In Proceedings of the First Workshop on Principles and Practice
of Consistency for Distributed Data , PaPoC ’15, pages 6:1–6:4, New York, NY,
USA, 2015. ACM.

40. Ranganathan, K. and Foster, I.: Identifying dynamic replication strategies for a high-
performance data grid. In Grid Computing — GRID 2001 , ed. C. A. Lee, pages
75–86, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

41. Rahman, R. M., Barker, K., and Alhajj, R.: Replica placement in data grid: considering
utility and risk. International Conference on Information Technology: Coding and
Computing (ITCC’05) - Volume II , 1:354–359 Vol. 1, 2005.

42. Chang, R.-S., Chang, H.-P., and Wang, Y.-T.: A dynamic weighted data replication
strategy in data grids. In 2008 IEEE/ACS International Conference on Computer
Systems and Applications , pages 414–421, March 2008.

43. Wei, Q., Veeravalli, B., Gong, B., Zeng, L., and Feng, D.: Cdrm: A cost-effective dynamic
replication management scheme for cloud storage cluster. In 2010 IEEE Interna-
tional Conference on Cluster Computing , pages 188–196, Sep. 2010.

44. Sun, D.-W., Chang, G.-R., Gao, S., Jin, L.-Z., and Wang, X.-W.: Modeling a dynamic data
replication strategy to increase system availability in cloud computing environments.
Journal of Computer Science and Technology , 27, 03 2012.

45. Sun, D., Chang, G., Miao, C., and Wang, X.: Analyzing, modeling and evaluating dynamic
adaptive fault tolerance strategies in cloud computing environments. The Journal
of Supercomputing , 66(1):193–228, Oct 2013.

46. Gill, N. K. and Singh, S.: A dynamic, cost-aware, optimized data replication strategy
for heterogeneous cloud data centers. Future Gener. Comput. Syst. , 65(C):10–32,
December 2016.

47. Mansouri, Y. and Buyya, R.: Dynamic replication and migration of data objects with
hot-spot and cold-spot statuses across storage data centers. Journal of Parallel and
Distributed Computing , 12 2018.

48. Shankaranarayanan, P. N., Sivakumar, A., Rao, S., and Tawarmalani, M.: Performance
sensitive replication in geo-distributed cloud datastores. In 2014 44th Annual

179

IEEE/IFIP International Conference on Dependable Systems and Networks , pages
240–251, June 2014.

49. Mansouri, N. and Javidi, M. M.: A new prefetching-aware data replication to decrease
access latency in cloud environment. Journal of Systems and Software , 144:197–
215, 2018.

50. Rasool, Q., Li, J., and Zhang, S.: Replica placement in multi-tier data grid. In 2009 Eighth
IEEE International Conference on Dependable, Autonomic and Secure Computing
, pages 103–108, Dec 2009.

51. Qu, Y. and Xiong, N.: Rfh: A resilient, fault-tolerant and high-efficient replication al-
gorithm for distributed cloud storage. In 2012 41st International Conference on
Parallel Processing , pages 520–529, Sep. 2012.

52. Lin, Y., Wu, J., and Liu, P.: A list-based strategy for optimal replica placement in data
grid systems. In 2008 37th International Conference on Parallel Processing , pages
198–205, Sep. 2008.

53. Ling, Y., Ouyang, Y., and Luo, Z.: A novel fault-tolerant scheduling algorithm with
high reliability in cloud computing systems. Journal of Convergence Information
Technology , 7:107–115, 08 2012.

54. Bonvin, N., Papaioannou, T. G., and Aberer, K.: A self-organized, fault-tolerant and scal-
able replication scheme for cloud storage. In Proceedings of the 1st ACM Symposium
on Cloud Computing , SoCC ’10, pages 205–216, New York, NY, USA, 2010. ACM.

55. Nguyen, T., Cutway, A., and Shi, W.: Differentiated replication strategy in data centers.
In Network and Parallel Computing , eds. C. Ding, Z. Shao, and R. Zheng, pages
277–288, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

56. Caron, E., Desprez, F., and Muresan, A.: Forecasting for grid and cloud computing on-
demand resources based on pattern matching. In 2010 IEEE Second International
Conference on Cloud Computing Technology and Science , pages 456–463, Nov 2010.

57. Sladescu, M., Fekete, A., Lee, K., and Liu, A.: Event aware workload prediction: A study
using auction events. In Web Information Systems Engineering - WISE 2012 , pages
368–381, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

180

58. Islam, S., Keung, J., Lee, K., and Liu, A.: Empirical prediction models for adaptive
resource provisioning in the cloud. Future Gener. Comput. Syst. , 28(1):155–162,
January 2012.

59. Calheiros, R. N., Masoumi, E., Ranjan, R., and Buyya, R.: Workload prediction using
arima model and its impact on cloud applications’ qos. IEEE Transactions on
Cloud Computing , 3(4):449–458, Oct 2015.

60. Shen, M., Kshemkalyani, A. D., and Hsu, T. Y.: OPCAM: optimal algorithms implementing
causal memories in shared memory systems. In Proceedings of the 2015 International
Conference on Distributed Computing and Networking, ICDCN 2015, Goa, India,
January 4-7, 2015 , pages 16:1–16:4, 2015.

61. Shen, M., Kshemkalyani, A. D., and Hsu, T. Y.: Causal consistency for geo-replicated
cloud storage under partial replication. In IPDPS Workshops , pages 509–518.
IEEE, 2015.

62. Hélary, J. and Milani, A.: About the efficiency of partial replication to implement dis-
tributed shared memory. In 2006 International Conference on Parallel Processing
(ICPP 2006), 14-18 August 2006, Columbus, Ohio, USA , pages 263–270, 2006.

63. Chandra, P., Gambhire, P., and Kshemkalyani, A. D.: Performance of the optimal causal
multicast algorithm: A statistical analysis. IEEE Trans. Parallel Distrib. Syst. ,
15(1):40–52, 2004.

64. Chandra, P. and Kshemkalyani, A. D.: Causal multicast in mobile networks. In 12th
International Workshop on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS 2004), 4-8 October 2004, Vollendam, The
Netherlands , pages 213–220, 2004.

65. Padhye, V., Rajappan, G., and Tripathi, A. R.: Transaction management using causal
snapshot isolation in partially replicated databases. In 33rd IEEE International
Symposium on Reliable Distributed Systems, SRDS 2014, Nara, Japan, October
6-9, 2014 , pages 105–114, 2014.

66. Hsu, T. Y. and Kshemkalyani, A. D.: Performance of causal consistency algorithms for
partially replicated systems. In IPDPS Workshops , pages 525–534. IEEE, 2016.

67. Kshemkalyani, A. D. and Hsu, T.-Y.: Approximate causal consistency for partially repli-
cated geo-replicated cloud storage. In Proceedings of the Fifth International Work-

181

shop on Network-Aware Data Management , NDM ’15, pages 3:1–3:8, New York,
NY, USA, 2015. ACM.

68. Hsu, T. Y. and Kshemkalyani, A. D.: Performance of approximate causal consistency for
partially replicated systems. In Workshop on Adaptive Resource Management and
Scheduling for Cloud Computing (ARMS-CC) , pages 7–13. ACM, 2016.

69. Calheiros, R. N., Ranjan, R., and Buyya, R.: Virtual machine provisioning based on analyt-
ical performance and qos in cloud computing environments. In 2011 International
Conference on Parallel Processing , pages 295–304, Sep. 2011.

70. E. P. Box, G., M. Jenkins, G., C. Reinsel, G., and Ljung, G.: Time Series Analysis:
Forecasting and Control . Hoboken NJ, Wiley, 5 edition, 2016.

71. Urdaneta, G., Pierre, G., and van Steen, M.: Wikipedia workload analysis for decentralized
hosting. Comput. Netw. , 53(11):1830–1845, July 2009.

72. Arlitt, M. and Jin, T.: A workload characterization study of the 1998 world cup web site.
Netwrk. Mag. of Global Internetwkg. , 14(3):30–37, May 2000.

73. Mao, M., Li, J., and Humphrey, M.: Cloud auto-scaling with deadline and budget con-
straints. In 2010 11th IEEE/ACM International Conference on Grid Computing ,
pages 41–48, Oct 2010.

74. Hyndman, R. and Khandakar, Y.: Automatic time series forecasting: The forecast package
for r. Journal of Statistical Software, Articles , 27(3):1–22, 2008.

75. Kwiatkowski, D., Phillips, P., Schmidt, P., and Shin, Y.: Testing the null hypothesis of
stationarity against the alternative of a unit root. how sure are we that economic
time series have unit root? Journal of Econometrics , 54:159–178, 10 1992.

76. Li, R., Wang, S., Deng, H., Wang, R., and Chang, K. C.-C.: Towards social user profiling:
unified and discriminative influence model for inferring home locations. In Proceed-
ings of the 18th ACM SIGKDD international conference on Knowledge discovery
and data mining - KDD ’12 , pages 1023–1031, 2012.

77. Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F., and Buyya, R.: Cloudsim:
A toolkit for modeling and simulation of cloud computing environments and evalua-
tion of resource provisioning algorithms. Softw. Pract. Exper. , 41(1):23–50, January
2011.

182

78. Beaver, D., Kumar, S., Li, H. C., Sobel, J., and Vajgel, P.: Finding a needle in haystack:
Facebook’s photo storage. In Proceedings of the 9th USENIX Conference on Oper-
ating Systems Design and Implementation , OSDI’10, pages 47–60, 2010.

79. Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J. M., and Stoica, I.: The potential dangers
of causal consistency and an explicit solution. In Proceedings of the Third ACM
Symposium on Cloud Computing , SoCC ’12, pages 22:1–22:7, New York, NY, USA,
2012. ACM.

80. Birman, K. P.: A response to cheriton and skeen’s criticism of causal and totally ordered
communication. Operating Systems Review , 28(1):11–21, 1994.

81. Birman, K., Schiper, A., and Stephenson, P.: Lightweight causal and atomic group multi-
cast. ACM Trans. Comput. Syst. , 9(3):272–314, August 1991.

82. Cheriton, D. R. and Skeen, D.: Understanding the limitations of causally and totally
ordered communication. SIGOPS Oper. Syst. Rev. , 27(5):44–57, December 1993.

83. Gambhire, P. and Kshemkalyani, A. D.: Reducing false causality in causal message ordering.
In HiPC , eds. M. Valero, V. K. Prasanna, and S. Vajapeyam, volume 1970 of Lecture
Notes in Computer Science , pages 61–72. Springer, 2000.

84. Lady, K., Kim, M., and Noble, B. D.: Declared causality in wide-area replicated storage. In
33rd IEEE International Symposium on Reliable Distributed Systems Workshops,
SRDS Workshops 2014, Nara, Japan, October 6-9, 2014 , pages 2–7, 2014.

85. Lloyd, W., Freedman, M. J., Kaminsky, M., and Andersen, D. G.: Don’t settle for eventual
consistency. Commun. ACM , 57(5):61–68, 2014.

86. Lloyd, W., Freedman, M. J., Kaminsky, M., and Andersen, D. G.: Stronger semantics
for low-latency geo-replicated storage. In Proceedings of the 10th USENIX Confer-
ence on Networked Systems Design and Implementation , nsdi’13, pages 313–328,
Berkeley, CA, USA, 2013. USENIX Association.

VITA

NAME

EDUCATION

EXPERIENCE

PUBLICATIONS

Ta-Yuan Hsu

Ph.D., Electrical and Computer Engineering, University of Illinois
at Chicago, Chicago, Illinois, United States, 2020

M.Sc., Computer Science, Illinois Institute of Technology,
Chicago, Illinois, United States, 2010

B.Sc., Physics, National Central University, Taoyuan, R.O.C.,
2003

IT Intern, USAIRCN, Taipei, R.O.C.

IT analyst, CMP Complex Security Center, Taoyuan, R.O.C.

Graduate Research Assistant, University of Illinois at Chicago

Teaching Assistant, University of Illinois at Chicago

Ta-Yuan Hsu and Ajay D. Kshemkalyani: A proactive, cost-
aware, optimized data replication strategy in geo-distributed cloud
datastores. In Proceedings of the 12th IEEE/ACM International
Conference on Utility and Cloud Computing, UCC’19, page 143–
153, New York, NY, USA, 2019. Association for Computing
Machinery.

Ta-Yuan Hsu and Ajay D. Kshemkalyani: Value the recent past:
Approximate causal consistency for partially replicated systems.
IEEE Transactions on Parallel and Distributed Systems,
29(1):212–225, 2018.

Ta-Yuan Hsu, Ajay D. Kshemkalyani, and Min Shen: Causal
consistency algorithms for partially replicated and fully replicated
systems. Future Generation Computer Systems, 86:1118 – 1133,
2018.

Ta-Yuan Hsu and Ajay D. Kshemkalyani: Performance of
approximate causal consistency for partially replicated systems.
In Workshop on Adaptive Resource Management and Scheduling
for Cloud Computing (ARMS-CC), pages 7–13. ACM, 2016.

183

184

 Ta-Yuan Hsu and Ajay D. Kshemkalyani: Performance of causal
consistency algorithms for partially replicated systems. In IPDPS
Workshops, pages 525–534. IEEE, 2016.

 Ajay D. Kshemkalyani and Ta-Yuan Hsu: Approximate causal
consistency for partially replicated geo-replicated cloud storage.
In Proceedings of the Fifth International Workshop on Network-
Aware Data Management, NDM ’15, pages 3:1–3:8, New York,
NY, USA, 2015. ACM.

 Min Shen, Ajay D. Kshemkalyani, and Ta-Yuan Hsu: Causal
consistency for geo-replicated cloud storage under partial
replication. In IPDPS Workshops, pages 509–518.IEEE, 2015.

 Min Shen, Ajay D. Kshemkalyani, and Ta-Yuan Hsu: OPCAM:
optimal algorithms implementing causal memories in shared
memory systems. In Proceedings of the 2015 International
Conference on Distributed Computing and Networking, ICDCN
2015, Goa, India, January 4-7, 2015, pages 16:1–16:4, 2015.

 Ta-Yuan Hsu, Ajay D. Kshemkalyani, Modeling Social Network
Topology with Variable Social Vector Clocks, In 2015 IEEE/ACM
International Conference on Advances in Social Networks
Analysis and Mining (ASONAM) 2015: 584-589

 Ta-Yuan Hsu, A. D. Kshemkalyani, Variable social vector clocks
for exploring user interactions in social communication networks.
In International Journal of Space-Based and Situated Computing
(IJSSC) 5(1)): 39-52 (2015)

 Ta-Yuan Hsu, A. D. Kshemkalyani, M. Shen, Modeling User
Interactions in Social Communication Networks with Variable
Social Vector Clocks. In 2014 IEEE 28th International
Conference on Advanced Information Networking and
Applications Workshops, Victoria, BC, 2014, pp. 96-101.

HONORS The Fifty for the Future Award from the Illinois Technology
Foundation. (2018)

