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SUMMARY

In this thesis we contribute to the outstanding problem of determining the extent to which

the tree property and super tree property can hold simultaneously in the set theoretic universe.

The main results proven in order of appearance are the following:

Theorem. Let τ < κ with τ regular and κ supercompact. Let M be the forcing to make κ = τ++

with ITP holding at κ. In V [M] adding Cohen subsets of τ does not destroy ITP at τ++.

Theorem. Let (κn : n < ω) and (λn : n < ω) be increasing sequences of supercompact cardinals

with supn κn < λ0, and κ0 = κ. There is a forcing extension in which κ is singular strong limit

and the tree property holds simultaneously at κ+n for each natural number n ≥ 1.

Theorem. Let (κn : n < ω) be an increasing sequence of supercompact cardinals and λ be

supercompact cardinal with supn κn < λ. There is a forcing extension in which κ is singular

strong limit and ITP holds simultaneously at κ+ and κ++. In this forcing extension, the Mitchell

forcing is interleaved with a Prikry forcing.

Theorem. Let (κn : n < ω) and (λn : n < ω) be increasing sequences of supercompact cardinals

with supn κn < λ0, and κ0 = κ. There is a forcing extension in which κ is singular strong limit

and ITP holds simultaneously at κ+n for each natural number n ≥ 1.

Theorem. Let (κn : n < ω) be an increasing sequence of supercompact cardinals and λ be

supercompact cardinal with supn κn < λ. There is a forcing extension in which κ is singular

strong limit and ITP holds simultaneously at κ+ and κ++. In this forcing extension, the Mitchell

forcing is not interleaved with a Prikry forcing.

vii



CHAPTER 1

INTRODUCTION

Set theory has taken many forms since its humble beginnings when Cantor proved |R| > |N|.

An important area of research in set theory is the study of large cardinals, which are infinite

cardinals whose existence prove that ZFC is consistent. By Gödel’s Incompleteness Theorem

we know that such cardinals cannot be proven to exist using only the ZFC axioms - provided

that ZFC is consistent - and so it is natural to wonder why anyone would be interested in

studying these cardinals at all. One response is that asserting the existence of certain large

cardinals provide a set-theoretic description of axioms we know must exist from Gödel. Even

further, these large cardinal properties are often generalizations of properties about ω and can

be understood without having formal training in logic.

This thesis concerns itself primarily with the tree property and one of its generalizations.

The tree property is a compactness property that takes inspiration from König’s Lemma that

every finitely branching tree with infinitely many nodes has a branch. The natural extension

of this result – asking whether there is a branch through every tree of height ω1 where each

level has countably many nodes – was proven false by Aronszajn and was described in (Kurepa,

1935). Aronszajn’s original construction involved a tree whose nodes were certain sequences

of rationals, and where a branch through this tree, if it existed, was an increasing sequence of

rationals of length ω1. Counterexamples to this aforementioned statement have become known

as ω1-Aronszajn trees.
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In general, an infinite cardinal κ has the tree property if there is a branch through every tree

of height κ whose levels have size less than κ. Using this terminology we know ω has the tree

property due to König’s Lemma and ℵ1 does not have the tree property due to Aronszajn. What

about for cardinals greater than ℵ1? Interestingly, results of Mitchell and Silver (Mitchell, 1972)

show that it is consistent that ℵ2 has the tree property if and only if it is consistent that there

is a weakly compact cardinal. Given a weakly compact cardinal, Mitchell’s result generalizes

to the consistency of the tree property at τ++ for a regular τ . A general discussion about the

Mitchell forcing may be found later in Section 1.8.

Given that the consistency of large cardinals are required to show that ℵ2 has the tree

property, it is natural to wonder whether or not large cardinals are required to show that any

κ > ℵ1 has the tree property. In the case where κ is singular it is straightforward to argue

that the tree property always fails at κ, and so a more precise question is whether or not large

cardinals are required to show that any regular κ > ℵ1 has the tree property. In the case where

κ is inaccessible, κ is weakly compact exactly when the tree property holds at κ.

Going further, one can ask if it is consistent for the tree property to hold simultaneously at

every regular cardinal κ > ℵ1. This question was originally due to Magidor in the 1970s. A

first attempt would be to iterate Mitchell’s original forcing, but this fails due to interference of

the Cohen parts of these posets (see Section 1.10). Further, by results of Abraham, this would

require large cardinal hypotheses stronger than a weakly compact. Specifically, it is known

that 0# has consistency strength greater than the existence of a weakly compact, and Abraham
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showed that if the tree property holds simultaneously at ℵ2 and ℵ3 then 0# exists (Abraham,

1983).

The results in this thesis work towards this overarching goal of getting the tree property to

hold simultaneously everywhere. More precisely, we are interested in using forcing and large

cardinal hypotheses to construct models of ZFC in which the tree property holds simultaneously

at consecutive cardinals. The first results of this kind came from the paper of Abraham just

mentioned, where he constructed modulo large cardinals a forcing in which the tree property

holds simultaneously at both ℵ2 and ℵ3. Expanding on the work of Abraham, Cummings

and Foreman constructed modulo large cardinals a forcing in which the tree property holds

simultaneously at ℵn for natural numbers n ≥ 2 (Cummings and Foreman, 1998).

One of the obstacles when trying to get the tree property everywhere occurs when trying

to get the tree property at the double successor of a singular κ. More specifically, Specker

proved that if κ<κ = κ then the tree property fails at κ+ (Specker, 1949). So, for the tree

property to hold at the double successor of a singular κ, SCH must fail at κ. This presents a

host of difficulties, but was eventually shown to be possible in (Sinapova, 2016). Sinapova and

Unger later were able to add collapses to show that it was consistent to have the tree property

simultaneously at ℵω2+1 and ℵω2+2 (Sinapova and Unger, 2018).

Instead of working with the tree property, a related area of research involves asking similar

questions about a well-known generalization of the tree property, the super tree property (de-

noted ITP). This was originally studied by Magidor who showed that the super tree property

is a combinatorial charaterization of supercompactness in the same way that the tree property
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is a combinatorial characterization of weak compactness (Magidor, 1974). More specifically, if

κ is inaccessible then κ is supercompact exactly when the super tree property holds at κ.

Similar to the tree property, Magidor additionally proved that, if we start with a supercom-

pact, the super tree property holds at ℵ2 after forcing with Mitchell poset. Recently, Unger

(Unger, 2014) and Fontenella (Fontanella, 2013) independently showed that the super tree

property holds simultaneously at ℵn for each n ≥ 2 after forcing with the Cummings-Foreman

forcing in (Cummings and Foreman, 1998). This past year it was shown that it is consistent to

have a singular strong limit κ with SCH failing at κ and ITP holding at κ+ (Cummings et al.,

2020a). Even further, it was shown that κ could be made to be ℵω2 , although it is unknown at

the time of this thesis whether or not κ can be made to be ℵω. These results are a necessary

building block to argue later that it is consistent to get ITP at κ+ and κ++ with κ singular

strong limit.

The rest of Chapter 1 provides a brief summary of key facts about forcing, the relevant

forcing posets necessary to understand later chapters, as well as a background on trees and

the so-called branch lemmas that are used when arguing that the (super) tree property holds

after forcing. We note that Section 1.7 is original work and provides an abstract framework for

understanding the results in Chapter 4.

1.1 Notation

• P(X) denotes the power set of X

• Pκ(λ) denotes the set of all subsets X ⊆ λ where |X| < κ

• ORD denotes the class of ordinals
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• V [P] denotes the generic extension V [G] where G is some P-generic filter over V

• V [P] ⊆ V [Q] means for each Q-generic H there is a P-generic G such that V [G] ⊆ V [H].

• V P denotes the set of all P-names in V .

• p  ẋ ∈ V means that for each q ≤ p there is an r ≤ q and y such that r  ẋ = y̌.

• Given a poset (P,≤) and A ⊆ P, we write A ↓ to denote the downwards closure of A and

A ↑ to denote the upwards closure of A.

• If s is a sequence, then |s| is the length of the sequence.

• If λ is a cardinal, then Hλ = {x : |tc(x)| < λ}.

1.2 Forcing

We also recall some elementary properties of forcing posets:

Definition 1.1. Let κ be an infinite cardinal and P be a forcing poset.

• P is κ-c.c. if |A| < κ for each antichain A ⊆ P.

• P is κ-Knaster if, whenever A ⊆ P and |A| = κ, then there is a B ⊆ A with |B| = κ where

elements of B are pairwise compatible.

• P is κ-closed if every decreasing (pi : i < θ) with θ < κ has a lower bound.

• P is (canonically) κ-directed closed if every directed set D ⊆ P with |D| < κ has a

(greatest) lower bound. Recall that D is directed if every two elements in D has a

common extension in D.

• P is κ-distributive if, whenever f ∈ V [G] is a function from λ ≤ κ into ORD, then f ∈ V .
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• P is < κ-distributive if P is λ-distributive for each λ < κ.

If we have a forcing notion P which has some chain condition and another Q which is closed,

it is useful to understand the closure and chain condition of these forcings after iterating P

followed by Q or vice versa. This is the content of Easton’s Lemma:

Lemma 1.2 (Easton’s Lemma). Let κ be regular. If P is κ-cc and Q is κ-closed, then

1. Q P is κ-cc.

2. P Q is < κ-distributive.

3. If G is P-generic over V and H is Q-generic over V then G and H are mutually generic

(i.e G is P-generic over V [H] and vice versa).

Proof. We do each in turn:

1. If otherwise, fix a Q-name ḟ for a function from κ̌ into P̌ whose range is an antichain.

Then, in V , use the closure of Q to construct a decreasing sequence (qi : i < κ) and a set

{pi : i < κ} ⊆ P where qi  ḟ(i) = pi. Since the range of ḟ is forced to be an antichain, it

follows that {pi : i < κ} is an antichain of size κ, a contradiction.

2. Assuming (3) is true: Let G be P-generic over V and H be Q-generic over V [G]. Further,

let f ∈ V [G][H] be a function from some τ < κ into ORD. By (3), we have that

V [G][H] = V [H][G]. By (1), P is still κ-cc in V [H] and so we may find a P-name ḟ ∈ V [H]

for f of size < κ. Since Q is κ-closed in V , we have ḟ ∈ V and so f = ḟ [G] ∈ V [G].
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3. It is enough to show that G is P-generic over V [H]. To see this observe that if A ⊆ P is

a maximal antichain in V [H], then it has size < κ by (1). But then A ∈ V because Q is

closed, and so G ∩A 6= ∅ because A is still a maximal antichain in V .

Lemma 1.3 (Easton’s Lemma Variant). Let κ be regular. If P is κ-closed and Q is < κ-

distributive, then

1. Q P is κ-closed.

2. P Q is < κ-distributive.

Proof. Similar to the proof of Easton’s Lemma:

1. If H is Q-generic over V and (pi : i < τ) ∈ V [H] is a sequence with τ < κ, then (pi : i <

τ) ∈ V because Q is τ -distributive and so has a lower bound because P is κ-closed in V .

2. If G is P-generic over V , H is Q-generic over V [G], and f ∈ V [G][H] is a function from

some τ < κ into ORD. By the product lemma we have that V [G][H] = V [H][G] and by

(1) we have that P is still κ-closed in V [H]. This implies that P is < κ-distributive in

V [H] and so f ∈ V [H]. Since Q is < κ-distributive in V it follows that f ∈ V as desired.

Lemma 1.4 (Mixing Lemma). Assume P is a poset and A ⊆ P is an antichain. Then for any

function f : A→ V P there is a P-name σ such that a  f(a) = σ for each a ∈ A.
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Proof. Define a P-name σ as follows:

σ = {(τ, p) : ∃a ∈ A, p ≤ a and p  τ ∈ f(a)}.

Technically σ might not be a set, but this can be remedied by choosing only the (τ, p) where

τ ∈ dom(f(a)). To see that σ works, fix a ∈ A and a P-generic object G such that a ∈ G.

We want to show that f(a)[G] = σ[G]. If x ∈ f(a)[G], then we can find a P-name τ such that

x = τ [G]. Since V [G] |= τ [G] ∈ f(a)[G], it follows that there is a p ≤ a such that p ∈ G and

p  τ ∈ f(a). But then (τ, p) ∈ σ by definition and so x = τ [G] ∈ σ[G]. Conversely, if x ∈ σ[G]

then by definition we can find (τ, p) ∈ σ such that p ∈ G, x = τ [G], p ≤ b for some b ∈ A, and

p  τ ∈ f(b). Since a ∈ G we know that p and a are compatible. Since A is an antichain it

must be that a = b. Therefore p  τ ∈ f(a) and so τ [G] ∈ f(a)[G].

Lemma 1.5 (Maximality of the forcing language). If P is a poset and p ∈ P such that p 

∃xϕ(x), then there is a P-name σ such that p P ϕ(σ).

Proof. Fix p ∈ P with p  ∃xϕ(x), and define D to be the following set:

D = {q ∈ P : there is a P-name τ such that q  ϕ(τ)}.

Given our assumption on p, we have that D is dense below p. Let A ⊆ D be a maximal antichain

in D and for each a ∈ A let τa witness that a ∈ D. By the mixing lemma, there is a P-name

σ such that a  τa = σ for each a ∈ A. To show p  ϕ(σ) we claim that {q ∈ P : q  ϕ(σ)} is
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dense below p. To see this, fix q ≤ p and find d ∈ D such that d ≤ q. Since A is a maximal

antichain in D, there is an a ∈ A and p′ ∈ P such that p′ ≤ a and p′ ≤ d ≤ q. By definition of

σ and τa, we have that a  ϕ(σ). Therefore p′  ϕ(σ) as desired.

Lemma 1.6. Assume σ is a P-name for a subset of an ordinal µ, (p1, p2) ∈ P × P, and

(p1, p2) P×P σ[ΓL] = σ[ΓR], where ΓL/ΓR is the canonical name for the generic of the left/right

coordinate. Then pi  σ ∈ V for i ∈ {1, 2}.

Proof. We just show that p1 P σ ∈ V . To do this we prove the following:

Claim 1.7. For each α < µ, either p1 P α ∈ σ or p1 P α 6∈ σ.

Proof of Claim. Otherwise there would be some α < µ as well as conditions q1, q2 ≤ p1 such

that q1  α ∈ σ and q2  α 6∈ σ. Without loss of generality find q ≤ p2 such that q  α ∈ σ. If

G is P-generic over V containing q2 and H is P-generic over V [G] containing q, the contradiction

follows after observing that V [G][H] |= σ[G] 6= σ[H].

To finish the proof of the lemma, define S = {α < µ : p P α ∈ σ}. It is straightforward to

check that p1 P σ = Š. This implies p1 P σ ∈ V as desired.

1.3 Trees

Let us recall the following notions related to the tree property:

Definition 1.8. Let κ be an infinite cardinal.

• (T,<) is a tree if, for each x ∈ T , pred(x) = {y ∈ T : y < x} is well-ordered.
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• For x ∈ T , the height of x, denoted ht(x), is the order-type of pred(x). The height of T

is ht(T ) = sup
x∈T
{ht(x) + 1}.

• For α < ht(T ), the αth-level of T is defined as Levα(T ) = {x ∈ T : ht(x) = α}.

• A κ-tree T is a tree of height κ where each level of T has size strictly less than κ.

• A branch b through T is a totally ordered subset of T such that b ∩ Levα(T ) is non-empty

for each α < ht(T ).

• The tree property holds at κ, denoted TPκ, if every κ-tree T has a branch. The witness

to the failure of TPκ is called a κ-Aronszajn tree.

This definitions are motivated from (Weiss, 2010) and are found in (Cummings et al., 2020a)

and (Hachtman and Sinapova, 2019):

Definition 1.9. Let κ and µ be cardinals with κ regular.

• A sequence D = (dx : x ∈ Pκ(µ)) is a Pκ(µ)-list if for each x ∈ Pκ(µ), dx ⊆ x.

• A subset b ⊆ µ is a cofinal branch of a Pκ(µ)-list D if for all x ∈ Pκ(µ) there is a y ⊇ x

such that dy ∩ x = b ∩ x.

• A subset b ⊆ µ is an ineffable branch of a Pκ(µ)-listD if there is a stationary set S ⊆ Pκ(µ)

such that dx = b ∩ x for each x ∈ S.

• A Pκ(µ)-list D is thin if for each x ∈ Pκ(µ), |{dy ∩ x : x ⊆ y and y ∈ Pκ(µ)}| < κ.

• STP(κ, µ) holds if every thin Pκ(µ)-list has a cofinal branch.

• The strong tree property holds at κ if STP(κ, µ) holds for each regular µ ≥ κ.
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• ITP(κ, µ) holds if every thin Pκ(µ)-list has an ineffable branch.

• ITP holds at κ if ITP (κ, µ) holds for each regular µ ≥ κ.

The following definitions are critical when arguing that ITP holds after forcing with P.

Definition 1.10. Let κ > ω be regular and W |= ZFC.

• A P-name ḃ for a subset of an ordinal µ is κ-approximated in W if P ḃ∩ x ∈W for each

x ∈ (Pκ(µ))W .

• A P-name ḃ for a subset of an ordinal µ is thinly κ-approximated in W if P ḃ ∩ x ∈ W

and |{y ∈W : (∃p ∈ P) p P y = ḃ ∩ x}| < κ for each x ∈ (Pκ(µ))W .

• A poset P has the (thin) κ-approximation property in W if P ḃ ∈W for each ḃ which is

(thinly) κ-approximated in W .

1.4 Branch Lemmas

In tree property arguments we frequently use that a new branch through a tree T obtained

by forcing must split at unboundedly many levels of the tree. This is crucially used when

showing that certain types of forcings cannot add branches.

Lemma 1.11 (Branch Splitting Lemma). Suppose P is a forcing and ḃ a name for a branch

through some tree T . Further assume that P ḃ 6∈ V . Then for each α < ht(T ) and p ∈ P,

there are p1, p2 ≤ p and β ≥ α such that p1 and p2 decide different values of ḃ ∩ Levβ(T ).



12

Proof. Assume the lemma is false. Fix α < ht(T ) and p ∈ P witnessing this. The contradiction

follows after showing that p  ḃ ∈ V . Towards that end, define

d = {x ∈ T : ∃q ≤ p, q  x̌ ∈ ḃ}.

We claim that p  ḃ = ď. Towards that end, fix a P-generic object G containing p. If

σ[G] ∈ ḃ[G], then we can find an x ∈ T and q ≤ p in G such that x = σ[G] and q  x̌ ∈ ḃ. But

this implies that σ[G] = x ∈ d by definition. Going in the other direction, let x ∈ d and fix

q ≤ p such that q  x̌ ∈ ḃ. Let β = max{α, ht(x)} and find p1 ≤ q and x1 ∈ Levβ(T ) such that

p1  x̌1 ∈ ḃ. Since ḃ[G] is a branch through T there is a x2 ∈ ḃ[G] ∩ Levβ(T ) and p2 ≤ p such

that p2 ∈ G and p2  x̌2 ∈ ḃ. Since the lemma fails at α and p, it must be that x1 = x2. This

implies that p2  x̌ ∈ ḃ and therefore that x ∈ ḃ[G] since p2 ∈ G. Therefore, p  ḃ = ď ∈ V , a

contradiction.

The previous lemma is classical and deals with the splitting that can occur with branches

through trees. For ITP arguments we need a newer type of splitting lemma that deals with

sufficiently approximated subsets of ordinals. The following may be found in (Unger, 2014).

Lemma 1.12 (ITP Splitting Lemma). Suppose P is a forcing and ḃ is a P-name for a subset of

some ordinal µ that is κ-approximated in V . Further assume P ḃ 6∈ V . Then for all x ∈ Pκ(µ)

and p ∈ P, there are p1, p2 ≤ p and y ⊇ x with y ∈ Pκ(µ) such that p1 and p2 decide different

values of ḃ ∩ y.
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Proof. Assume the lemma is false. Fix x ∈ Pκ(µ) and p ∈ P witnessing this. The proof is

similar to the previous lemma. Namely, define

d = {α < µ : ∃q ≤ p, q  α ∈ ḃ}.

We again check that p  ḃ = ď. If G is a generic object and p ∈ G, we just check the trickier

direction that d ⊆ ḃ[G]. Towards that end, let α ∈ d and fix q ≤ p such that q  α ∈ ḃ. Let

y = x ∪ {α} ∈ Pκ(µ). Since ḃ is κ-approximated in V we know that  ḃ ∩ y ∈ V . This implies

that we may find p1 ≤ q, p2 ≤ p, and v1, v2 ∈ Pκ(µ) such that

1. p1  ḃ ∩ y = v1,

2. p2  ḃ ∩ y = v2, and

3. p2 ∈ G.

Note that (1) implies that α ∈ v1. Since we assumed the lemma is false at x and p we have

that v1 = v2 and therefore that α ∈ v2 ⊆ ḃ[G] as desired.

Assume that we have a tree T in our ground model. Of great importance in tree property

arguments is knowing which properties about a poset P allow you to conclude that you do

not add a branch through T after forcing with P. The first noteworthy branch lemma is that

Knaster forcings do not add branches through κ-trees. Normally the result assumes that the

κ-tree is branchless in the ground model (as in (Cummings and Foreman, 1998) and (Unger,

2013)), and Unger says that it “seems like it should be able to be eliminated” (Unger, 2013).
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We note that it can be eliminated and we present the proof below. The following result when

κ = ω1 is proven in (Baumgartner, 1983).

Proposition 1.13. Let κ be a regular cardinal. If P is κ-Knaster, then forcing with P does not

add a new branch through a tree T of height κ.

Proof. Assume otherwise and fix a name ḃ for a branch such that  ḃ 6∈ V . For notation let F

be all t ∈ T forced into ḃ by some element p ∈ P. For each α < κ, find a uα ∈ F and pα ∈ P

such that pα  uα ∈ Levα(T ) ∩ ḃ. Without loss of generality we may assume that each pα is

distinct, and so Knasterness of P implies that there is some unbounded B ⊆ κ such that for

α < β in B, pα and pβ are compatible. Then the set {uα : α ∈ B} induces a branch d in V .

(This is where the usual argument ends, as this would contradict that T is branchless in the

ground model.)

Observe that since  ḃ 6∈ V , for any element t ∈ d there must be incompatible t0, t1 ∈ F

such that t ≤ t0, t1. Further, since d is a branch through T , either t0 6∈ d or t1 6∈ d (or both).

Define F′ ⊆ F as the set of all t ∈ F such that t 6∈ d and s ∈ d for each s <T t. By definition,

distinct elements of F′ are incompatible. Further, since d is unbounded we have that |F′| = κ. If

we enumerate F′ as {tα : α < κ} and let qα witness that tα ∈ F, then we have that {qα : α < κ}

is an antichain of size κ, a contradiction.

The next result is due to Unger and appears as Lemma 2.4 in (Unger, 2014). It is, in fact,

a generalization of Proposition 1.13 because if P is κ-Knaster then P× P is κ-cc. Further, any

branch through a tree of height κ is κ-approximated.
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Lemma 1.14. Let κ be a regular cardinal. If P × P is κ-cc, then P has the κ-approximation

property in V .

Proof. Assume that P does not have the κ-approximation property in V . Let ḃ be a name for

a κ-approximated subset of µ where, without loss of generality,  ḃ 6∈ V . Construct sequences

((pi, qi) : i < κ) in P× P and (xi, yi : i < κ) of elements of Pκ(µ) such that, for each i < κ,

1. pi and qi decide different values of ḃ ∩ xi,

2. pi and qi both force that ḃ ∩
⋃
j<i

xj = yi, and

3. (xi : i < κ) and (yi : i < κ) are both ⊆-increasing.

To do this, assuming we have defined (pi, qi) and xi for i < θ, fix some r ∈ P and yθ such

that r  ḃ ∩
⋃
i<θ

xi = yθ. Next, we finish the construction by appealing to Lemma 1.12 to find

xθ ⊇ yθ and (pθ, qθ) ≤ (r, r) such that pθ and qθ decide different values of ḃ ∩ xθ.

But, then we have that {(pi, qi) : i < κ} is an antichain of size κ. To see this, assume

otherwise that (pi, qi) and (pj , qj) are compatible with i < j. Assume that p ≤ pi, pj and

q ≤ qi, qj . By construction of (pi, qi) there are v1 6= v2 such that p  “ḃ ∩ xi = v1” and

q  “ḃ ∩ xi = v2”. However, by construction of (pj , qj) we have the following:

1. p  v1 = ḃ ∩ xi = ḃ ∩
(⋃

k<j xk

)
∩ xi = yj ∩ xi, and

2. q  v2 = ḃ ∩ xi = ḃ ∩
(⋃

k<j xk

)
∩ xi = yj ∩ xi.

However, this is a contradiction because it follows that v1 = v2.
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The other classical branch lemma involves various situations when P is sufficiently closed,

as opposed to having the right amount of chain condition. A proof may be found in (Abraham,

1983).

Lemma 1.15 (Silver’s Branch Lemma). Let κ be a regular cardinal. Assume that T is a κ-tree

and P is τ+-closed for some cardinal τ < κ such that 2τ ≥ κ. Then forcing with P does not add

new branches through T .

The following generalization appears as Proposition 2.1.12 in (Weiss, 2010). In the same

way that Lemma 1.12 is a generalization of the classical splitting lemma for branches through

a tree, the following is a newer generalization of Silver’s Branch Lemma showing that closed

forcings - in the correct context - cannot add branches through lists.

Lemma 1.16 (Generalized Silver’s Branch Lemma). Let κ be a regular cardinal. Assume that

P is τ+-closed for some cardinal τ < κ such that 2τ ≥ κ. Then P has the thin κ-approximation

property in V .

Proof. Assume that ḃ is a name for a subset of µ and further that ḃ is thinly κ-approximated

in V . Towards a contradiction assume that  ḃ 6∈ V . Let τ be minimal such that 2τ ≥ κ. The

idea is similar to the proof of Silver’s Branch Lemma, where in this scenario we use Lemma 1.12

to decide 2τ distinct values of some ḃ∩x. This would contradict that ḃ is thinly approximated.

Towards that end, we define sequences (pσ, vσ : σ ∈ 2<τ ) and (xα : α < τ) by induction on

the length of σ with the following properties:

1. For each σ ∈ 2<τ , pσ ∈ P and vσ, x|σ| ∈ Pκ(µ)
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2. For each σ ∈ 2<τ with |σ| = α, pσ  vσ = ḃ ∩ xα

3. For each σ ∈ 2<τ , vσ_0 6= vσ_1

4. If σ0 ⊂ σ1 then pσ1 ≤ pσ0 , vσ0 ⊂ vσ1 , and x|σ0| ⊂ x|σ1|.

Base Case: Set p∅ = 1P and x0 = v∅ = ∅.

Successor Case: Assume α < τ is an ordinal and that we have defined pσ and vσ when

|σ| ≤ α and xβ for β ≤ α. For each σ ∈ 2α, use Lemma 1.12 to find yσ ⊃ xα, qσ_0, qσ_1 ≤ pσ,

and distinct wσ_0, wσ_1 such that qσ_i  wσ_i = ḃ ∩ yσ for i < 2. Define xα+1 =
⋃
σ∈2α

yσ.

Since τ is minimal such that 2τ ≥ κ, we have that 2α < κ and therefore xα+1 ∈ Pκ(µ) because

κ is regular. By construction observe that xα ⊂ xα+1. To finish this case, for each i < 2 and

σ ∈ 2α, choose pσ_i ≤ qσ_i and vσ_i such that pσ_i  vσ_i = ḃ ∩ xα+1. This may be done

because ḃ is κ-approximated in V .

Limit Case: Assume that θ < τ is a limit ordinal and that we have defined pσ and vσ when

|σ| < θ and xβ for β < θ. For each σ ∈ 2θ, note that {pσ�α : α < θ} is a decreasing sequence.

Since P is τ+-closed, we may find a lower bound qσ for {pσ�α : α < θ}. Further, set xθ =
⋃
β<θ

xβ.

Then, choose pσ ≤ qσ and vθ such that pσ  vσ = ḃ ∩ xθ. This completes the construction.

To complete the proof, set x =
⋃
α<τ

xα and, for each f ∈ 2τ , use the closure of P to find

a lower bound qf ∈ P for the decreasing sequence {pf�α : α < τ}. Like above, choose pf ≤ qf

and vf such that pf  vf = ḃ ∩ x. For distinct sequences f, g ∈ 2τ , we claim that vf 6= vg. To

see this, let i < τ be least such that f(i) 6= g(i) and set σ = f � i = g � i. Without loss of

generality assume that f(i) = 0 and g(i) = 1. Then we have simultaneously that

1. pf  vf ∩ xi+1 = ḃ ∩ x ∩ xi+1 = ḃ ∩ xi+1 = vσ_0,
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2. pg  vg ∩ xi+1 = ḃ ∩ x ∩ xi+1 = ḃ ∩ xi+1 = vσ_1.

This implies that vf ∩ xi+1 = vσ_0 and vg ∩ xi+1 = vσ_1. By construction we have that

vσ_0 6= vσ_1 and therefore vf 6= vg. However, this implies that we have decided at least 2τ

distinct values of ḃ∩ x. This is a contradiction because 2τ ≥ κ and we assumed that ḃ is thinly

κ-approximated.

We also have the following key branch lemma. Originally appearing in (Unger, 2012), it is

a variant of Silver’s branch lemma after forcing with a poset that has sufficient chain condition.

It will be generalized in a later section to be used in ITP arguments and so the proof is omitted

until then.

Lemma 1.17. Let κ be a regular cardinal. Assume that P is τ+-cc, Q is τ+-closed for some

τ < κ such that 2τ ≥ κ, and T is a κ-tree in V [P]. Then in V [P] forcing with Q does not add

new branches through T .

If ḃ is approximated in V , there is no reason that ḃ must remain approximated after forcing

with some poset. Therefore it it important to keep track of situations in which this does occur.

This form originally appeared in (Unger, 2014).

Lemma 1.18. Assume ḃ is a P ∗ Q̇-name for a subset of µ, which is (thinly) κ-approximated

in V . Further assume that P has κ-cc and G is P-generic over V . Then, ḃ is (thinly) κ-

approximated in V [G]. (Note that in V [G] we are thinking about ḃ as a Q-name.)

Proof. First assume that ḃ is κ-approximated in V . So we have that VP∗Q̇ ḃ ∩ x ∈ V for each

x ∈ Pκ(µ)V . We need to show that V [G]
Q ḃ ∩ x ∈ V [G] for each x ∈ Pκ(µ)V [G]. Since P is κ-cc,
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we may find a y ⊇ x such that y ∈ Pκ(µ)V . This implies that V [G]
Q ḃ ∩ x = (ḃ ∩ y) ∩ x. By

hypothesis we have that V [G]
Q ḃ ∩ y ∈ V . Since x ∈ V [G], we have that V [G]

Q ḃ ∩ y ∈ V [G] as

desired.

Now, assume additionally that ḃ was thinly κ-approximated in V . We have to show Dx =

{v ∈ V [G] : ∃q ∈ Q, q V [G]
Q v = ḃ ∩ x} has size less than κ in V [G]. To do this, let y be from

the previous paragraph and define Cy = {w ∈ V : ∃(p, q̇), (p, q̇) VP∗Q̇ w = ḃ ∩ y}. Notice that

the argument from above implies that each v ∈ Dx has the form w ∩ x for some w ∈ Cy. This

implies that in V [G] the map w 7→ w ∩ x is a surjection of some subset of Cy onto Dx. Since ḃ

is thinly approximated we have that |Cy| < κ and so the result follows.

1.5 Large Cardinals

In this thesis we concern ourselves with a few types of large cardinals, whose properties

are summarized below. Since we are interested in getting the (super) tree property at succes-

sive cardinals, large cardinal hypotheses involving supercompact cardinals will be used most

frequently.

Definition 1.19. A cardinal κ is weakly compact if and only if for each function F : [κ]2 → 2

there is a H ⊆ κ such that F � [H]2 is a constant.

Although this definition of weakly compact is in terms of partitions, the name “weakly

compact” comes from an equivalent formulation asserting that certain infinitary languages

satisfy the Weak Compactness Theorem.
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Definition 1.20. A cardinal κ is measurable if and only if there is an elementary embedding

j : V →M with crit(j) = κ where M ⊆ V is a transitive class such that κM ⊆M .

Lemma 1.21. If κ is measurable, then the tree property holds at κ.

Proof. Fix a κ-tree T ∈ V and an elementary embedding j : V → M witnessing that κ is

measurable. Elementarity implies that j(T ) has height j(κ). Since j(κ) > κ, we can fix

u ∈ Levκ(j(T )). Since T is a κ-tree, it follows that the subtree j(T ) � κ is isomorphic to T ,

and so {x ∈ T : j(x) <j(T ) u} is a branch through T .

Although the previous lemma can also be proven when κ is weakly compact, the proof given

above is illustrative and appears in more involved contexts later in this thesis. The following

definition may be found in (Kanamori, 2003).

Definition 1.22. A cardinal κ is strongly compact if for each µ ≥ κ there is an elementary

embedding j : V → M with crit(j) = κ where M ⊆ V is a transitive class such that for every

X ⊆ M with |X| ≤ µ there is a Y ⊇ X with Y ∈ M and |Y |M < j(κ). Such an embedding j

is called a µ-strong compactness embedding.

Lemma 1.23. If κ is strongly compact, then the strong tree property holds at κ.

Proof. Let D = (dx : x ∈ Pκ(µ)) be a thin Pκ(µ)-list where µ ≥ κ is regular, and let j : V →M

be a µ-strong compactness embedding. By elementarity, we have j(D) =
(
ex : x ∈ Pj(κ)(j(µ))M

)
is a thin j (Pκ(µ))-list in M . Note that j“µ ⊆ M and has size µ, and so there is a Y ⊇ j“µ

with Y ∈ M and |Y |M < j(κ). If we set Z = Y ∩ j(µ) it follows that Z ∈ j(Pκ(µ)). Next,

define b = {α < µ : j(α) ∈ eZ}. We claim that b is a cofinal branch for D. In other words,
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for each x ∈ Pκ(µ) we must show there is a y ⊇ x such that b ∩ x = dy ∩ x. If Lev(x) =

{dy ∩ x : y ⊇ x}, then since D is a thin list we have that |Lev(x)| < κ and so elementarity

implies j(Lev(x)) = j“Lev(x) = {ej(y)∩ j(x) : y ⊇ x}. Now, observe that eZ ∩ j(x) ∈ j(Lev(x))

by definition of j(Lev(x)) and so there is a y ⊇ x such that eZ ∩ j(x) = ej(y) ∩ j(x). This

implies that b ∩ x = dy ∩ x as desired.

Definition 1.24. A cardinal κ is supercompact if for each µ ≥ κ there is an elementary

embedding j : V →M with crit(j) = κ where M ⊆ V is a transitive class such that µM ⊆M .

Such an embedding j is called a µ-supercompactness embedding.

Lemma 1.25. If κ is supercompact, then ITP holds at κ.

Proof. Let D = (dx : x ∈ Pκ(µ)) be a thin Pκ(µ)-list where µ ≥ κ is regular, and let j : V →M

be a µ-supercompactness embedding. By elementarity, we have j(D) =
(
ex : x ∈ Pj(κ)(j(µ))M

)
is a thin j (Pκ(µ))-list in M . Since M is closed under µ-sequences, we have that j“µ ∈

Pj(κ)(j(µ))M . We claim that ej“µ induces an ineffable branch through D. In particular, define

b = {α < µ : j(α) ∈ ej“µ}. We need to show that S = {x ∈ Pκ(µ) : dx = b ∩ x} is stationary.

Recall that measure one sets are stationary and so it is enough to show that S is measure one.

To do this it is enough to check that j“µ ∈ j(S) as then S is in the measure generated by the

seed j”µ. By definition, j“µ ∈ j(S) is equivalent to ej“µ = j(b) ∩ j“µ. This last statement

follows from the definition of b and so the result follows.
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Observe that the previous lemmas all had the form of showing that some version of the tree

property would hold if κ was a certain large cardinal. These results may all be reversed, which

is summarized in the following:

Lemma 1.26. Assume that κ is inaccessible. Then the following hold:

1. (Folklore) κ is weakly compact if and only if the tree property holds at κ.

2. (Jech) κ is strongly compact if and only if the strong tree property holds at κ.

3. (Magidor) κ is supercompact if and only if ITP holds at κ.

Originally appearing in (Laver, 1978), the following result is crucial for lifting arguments

found in later sections by allowing us to correctly guess what happens at the κth-stage of

particular forcing iterations:

Lemma 1.27. Assume that κ is supercompact. Then there is a function F : κ→ Vκ such that if

for each µ and each x ∈ Hµ+ there is a µ-supercompactness embedding j such that j(F )(κ) = x.

The function F is called a Laver function for κ.

Definition 1.28. A supercompact cardinal κ is indestructibly supercompact if for any κ-

directed closed forcing P, κ remains supercompact in V [P].

Importantly, being supercompact is equiconsistent with being indestructibly supercompact.

More specifically, using Laver functions we can force to make any supercompact cardinal inde-

structible. This result also appeared in (Laver, 1978):

Lemma 1.29. Assume κ is supercompact. For each θ < κ there is a κ-cc and θ-directed closed

forcing Pθ such that κ is indestructibly supercompact in V [Pθ].
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1.6 Projections

We summarize some well-known information on projections as they are crucial for analyzing

the various forcings later in this paper.

Definition 1.30. We say that π : P→ Q is a projection1 if the following hold:

1. π(1P) = 1Q

2. for any p, q ∈ P, if p ≤ q then π(p) ≤ π(q),

3. for any q ∈ Q, p ∈ P, if q ≤ π(p), then there is an r ≤ p such that π(r) ≤ q.

Lemma 1.31. If G is P-generic over V , then the upwards closure H = (π“G) ↑ is Q-generic

over V . In particular, V [Q] ⊆ V [P].

Proof. It is not hard to show that H is a filter, so it is enough to show that H is generic. Fix

a dense set D ⊆ Q and define D′ = {p ∈ P : ∃q ∈ D π(p) ≤ q }. Since π is a projection, D′

is readily seen to be dense and so we may fix p ∈ D′ ∩ G. So there is some q ∈ D such that

π(p) ≤ q. But then q ∈ D ∩H by definition of H. This shows that H is Q-generic over V . For

the second part of the lemma, observe that H is definable from (Q,≤), G, and π. So H ∈ V [G]

and so V [H] ⊆ V [G] because the generic extension is minimal.

1Often a slightly weaker notion of projection is used; namely, that there is a projection from P to Q
if, given any P-generic G, we can define a Q-generic H such that V [H] ⊆ V [G]. This implies that there
is a projection (in our sense) from P to RO(Q), where RO(Q) is the complete boolean algebra that Q
densely embeds into.
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Definition 1.32. Let π : P → Q be a projection and H be Q-generic over V . In V [H], define

P/H to be the poset whose underlying set is π−1[H] and whose ordering is induced from P.

Note that P/H is non-empty because π(1P) = 1Q ∈ H.

Lemma 1.33. If G is P/H-generic over V [H], then it is also P-generic over V . Further,

H = (π“G) ↑.

Proof. To show that G is a P-generic filter over V , we have to first check that it is a filter when

viewed as a subset of P. Since G is already a P/H-filter, the only thing that could now fail is

that G is no longer upwards closed with respect to P. However, given g ≤ p with g ∈ G and

p ∈ P, we know that π(g) ≤ π(p) since π is a projection. Since g ∈ G we have that π(g) ∈ H

and therefore π(p) ∈ H as well. This implies that p ∈ P/H. Since G is P/H-upwards closed,

we have that p ∈ G as desired.

To show genericity, fix a dense D ⊆ P in V and define D′ = D ∩ (P/H). Since G is P/H-

generic over V [H], it is enough to show that D′ is a dense subset of P/H. Towards that end,

fix p ∈ P/H, and consider the set D′′ = π[D ∩ (p ↓)].

Claim 1.34. D′′ ⊆ Q is dense below π(p).

Proof of Claim. Given q ≤ π(p) we may find a p′ ≤ p such that π(p′) ≤ q. Since D is dense, let

d ∈ D with π(d) ≤ π(p′) ≤ q. Then π(d) ∈ D′′ as desired.

Since π(p) ∈ H, it follows by genericity of H that H ∩π[D∩ (p ↓)] is nonempty. So, we may

find some π(q) ∈ H with q ≤ p and q ∈ D. But, then by definition we have that q ∈ D′. This

shows that D′ is dense as desired.
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Next we show the second part of the lemma that H = (π“G) ↑. First, the harder direction:

fix h ∈ H. Consider the set D = {p ∈ P : π(p) ≤ h or π(p) ⊥ h}. Using the definition of

projection, it is readily seen that D is a dense subset of P. It follows that there is some

q ∈ G ∩ D. Since G ⊆ P/H, we have π(q) ∈ H. Since h ∈ H, we cannot have π(q) ⊥ h. So,

π(q) ≤ h, or h ∈ (π“G) ↑. Conversely, fix h ∈ Q and q ∈ G such that π(q) ≤ h. Since G ⊆ P/H,

we have that π(q) ∈ H. By upwards closure of H, we have that h ∈ H.

Corollary 1.35. Let π : P → Q be a projection. Given a Q-generic filter H over V , there is

a P-generic filter G over V such that V [H] ⊆ V [G]. Note that this is similar to the statement

V [Q] ⊆ V [P], but here we start with a Q-generic object instead of a P-generic object.

Proof. Given a Q-generic filter H over V , fix any P/H-generic G over V [H]. By the previous

lemma, G is P-generic over V . Further, H is definable from (Q,≤), G, and π. This implies that

H ∈ V [G] and further that V [H] ⊆ V [G].

Lemma 1.36. If P-generic filter G over V and H = (π“G) ↑ is the Q-generic filter induced by

π, then G is a P/H-generic filter over V [H]. Note that this is the converse to Lemma 1.33.

Proof. First observe that G ⊆ P/H. To show genericity, it is enough to show that G meets

every open dense subset of P/H. Towards that end, let D ⊆ P/H be open dense and in V [H].

By the definition of H, we may fix some g ∈ G and Q-name Ḋ such that Ḋ[H] = D and

π(g) Q “Ḋ is open dense in P/Γ”, where Γ is the canonical Q-name for the generic filter.

Consider the set D′ = {p ∈ P : (∃q ∈ Q)(π(p) ≤ q and q Q p ∈ Ḋ)}. Intuitively, p ∈ D′

means that p is forced by a weaker condition to be in D. Note that it is enough to show that D′
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is dense below g, because then by genericity of G we may fix p ∈ D′ ∩G, and q ∈ Q witnessing

this. Since π(p) ≤ q, we have that q ∈ H. By choice of q, we have that p ∈ Ḋ[H] ∩G = D ∩G

as desired.

Towards showing that D′ is dense below g, fix r ≤ g. This implies that π(r) Q “Ḋ is

open dense in P/Γ.” Observe also that π(r) Q r ∈ P/Γ. Fix some Q-generic H0 containing

π(r). Since Ḋ[H0] is an open dense subset of P/H0, we may find some d ≤ r such that

V [H0] |= d ∈ Ḋ[H0] ⊆ P/H0. Observe that π(d) ∈ H0, so we may find some q ≤ π(d) ≤ π(r)

such that q Q d ∈ Ḋ. By the definition of projection, we may find a p ≤ d such that π(p) ≤ q.

Since q Q “Ḋ is open dense and d ∈ Ḋ”, we have finally that q Q p ∈ Ḋ. Since p ≤ d ≤ r

this completes the proof.

Corollary 1.37. Given a P-generic filter G over V , there is a Q-generic H over V such that

V [G] = V [H][G]. In other words, forcing with P is equivalent to first forcing with Q and then

forcing with P/H.

Proof. Fix a P-generic G over V and set H = (π“G) ↑. By the previous lemma we have

that G is P/H-generic over V [H]. It follows that the expression V [H][G] makes sense and

V [G] ⊆ V [H][G] because V ⊆ V [H]. Conversely, since H is definable from G we have that

V [H] ⊆ V [G]. Since V [H][G] is the minimal model of ZFC containing V [H] and G, it follows

that V [H][G] ⊆ V [G].

Projections can also give us a sufficient condition on when we may lift an elementary em-

bedding. For this we first state a result by Silver.
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Lemma 1.38 (Silver’s Lifting Criterion). Let j : V →M be an elementary embedding. Suppose

that G is P-generic over V and G∗ is j(P)-generic over N . If j”G ⊆ G∗, then we may lift j to

an elementary embedding j : V [G]→ M [G∗], where j(G) = G∗. Furthermore, if G∗ ∈ V [G][H]

for some generic extension of V [G], then our lifted embedding is definable in V [G][H].

Lemma 1.39. Assume that j : V → M is an elementary embedding, π : j(P) → P is a projec-

tion, and q ≤j(P) j(π(q)) for any q ∈ j(P). Then, for any P-generic G over V we may find a

j(P)-generic H over M letting us lift our embedding to j : V [G]→M [H].

Proof. Fix some P-generic G over V . By Silver’s Lifting Criterion it is enough to find j(P)-

generic H over M such that j”G ⊆ H. By Lemma 1.33 any j(P)/G-generic filter H over V is

actually j(P)-generic over V (over M) and G = (π”H) ↑. To show j“G ⊆ H, fix p ∈ G and

find q ∈ H such that π(q) ≤P p. By elementarity we have that q ≤j(P) j(π(q)) ≤j(P) j(p). Since

H is a filter we have j”G ⊆ H as desired.

1.7 p-Term Forcing

In this section we generalize term forcing to include an additional parameter. The power of

this analysis is that we create a family of two-step products that approximates the generic for a

two-step iteration. A survey of the classical term forcing may be found in (Cummings, 2009).

Definition 1.40. For a two-step iteration P ∗ Q̇ and p ∈ P, define the p-term forcing Ap(P, Q̇)

to be all P-names for elements of Q̇ with the ordering ḃ ≤p ȧ if and only if p P ḃ ≤ ȧ.

We will also slightly abuse notation by writing (q, ḃ) ≤p (r, ȧ) to abbreviate the product ordering

on P×Ap(P, Q̇).
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Lemma 1.41. If p P “Q̇ is (canonically) κ-(directed) closed”, then Ap(P, Q̇) is (canonically)

κ-(directed) closed.

Proof. For simplicity we do the case when p P “Q̇ is κ-closed.” Let τ < κ and (q̇i : i < τ) be

a sequences of names such that p P “(q̇i : i < τ) is a decreasing sequence.” Since p P “Q̇ is

κ-closed,” it follows that there is a name q̇ such that for all i < τ we have p P q̇ ≤ q̇i. But

then q̇ is a ≤p-lower bound for the sequence (q̇i : i < τ) as desired.

Definition 1.42. For p ∈ P, we define the downwards closures of p as follows:

• (P×Ap(P, Q̇)) ↓p is the subset of P×Ap(P, Q̇) of all conditions below (p, 1).

• (P ∗ Q̇) ↓p is the subset of P ∗ Q̇ of all conditions below (p, 1).

We emphasize that the difference between these two bullet points is the ordering not the

underlying set.

Lemma 1.43. For p ∈ P, the identity map is a projection from (P×Ap(P, Q̇)) ↓p to (P∗ Q̇) ↓p.

Proof. First note that the maximum element of both (P×Ap(P, Q̇)) ↓p and (P ∗ Q̇) ↓p is (p, 1̇).

To check that it is ordering preserving, assume that (a′, ḃ′) ≤p (a, ḃ) and both conditions are in

(P×Ap(P, Q̇)) ↓p. By definition we have that p  ḃ′ ≤ ḃ. Since a′ ≤ p, it follows that a′  ḃ′ ≤ ḃ

and so (a′, ḃ′) ≤P∗Q̇ (a, ḃ) as desired. It is therefore enough to check the third condition of a

projection. Assume that (a′, ḃ′) ≤P∗Q̇ (a, ḃ) where (a, ḃ) is in the downwards closure of p. Our

goal is to find (a′′, ḃ′′) such that (a′′, ḃ′′) ≤p (a, ḃ) and (a′′, ḃ′′) ≤P∗Q̇ (a′, ḃ′). Unwinding the

definitions, this is equivalent to a condition (a′′, ḃ′′) such that
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1. a′′ ≤P a
′ ≤P a,

2. p  ḃ′′ ≤ ḃ, and

3. a′′  ḃ′′ ≤ ḃ′.

We define a′′ = a′ and define ḃ′′ to be the following name:

ḃ′′ = {(σ, r) : Either (1) r ≤ a′ and r  σ ∈ ḃ′ or (2) r⊥a′ and r  σ ∈ ḃ}.

Claim 1.44. a′′  ḃ′′ = ḃ′

Proof of Claim. Assume that G is P-generic and a′ = a′′ ∈ G. We must show that ḃ′′[G] = ḃ′[G].

If x ∈ ḃ′[G], then we can find (σ, r) such that r ∈ G, σ[G] = x, and r  σ ∈ ḃ′. But then

(σ, r) ∈ ḃ′′ and so x ∈ ḃ′′[G]. Conversely, if x ∈ ḃ′′[G], then by definition we may find (σ, r) such

that r ∈ G, σ[G] = x, and either (1) or (2) occur. Since elements of G are compatible, it must

be that (1) occurs. Therefore r  σ ∈ ḃ′ and so x ∈ ḃ′[G].

Claim 1.45. If t incompatible with a′′, then t  ḃ′′ = ḃ.

Proof of Claim. Assume that G is P-generic and t ∈ G. We proceed as in the previous claim.

If x ∈ ḃ[G], then we can find (σ, r) such that r ≤ t, r ∈ G, σ[G] = x, and r  σ ∈ ḃ. Since

r ≤ t, we must have that r is also incompatible with a′ and therefore (σ, r) ∈ ḃ′′. So x ∈ ḃ′′[G].

Conversely, if x ∈ ḃ′′[G], then find (σ, r) such that r ∈ G, σ[G] = x, and either (1) or (2) occur.

Note that (2) must occur as otherwise t and a′ are compatible. It follows that x ∈ ḃ[G].

Claim 1.46. The set {q : q  ḃ′′ ≤ ḃ} is dense.
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Proof of Claim. Fix q ∈ P. If q⊥a′ then q  ḃ′′ = ḃ and the claim follows. If instead q and a′

are compatible, then we may extend q to a condition r witnessing this. Since r ≤ a′, we have

that r  ḃ′′ = ḃ′. Further, since (a′, ḃ′) ≤A (a, ḃ) we also have that r  ḃ′ ≤ ḃ. The conclusion

follows.

The previous claim implies that p  ḃ′′ ≤ ḃ, as desired.

Lemma 1.47. If q ≤ p, then the identity map is a projection from Ap(P, Q̇) onto Aq(P, Q̇).

Proof. The identity is order preserving because we assumed that q ≤ p. It is enough to check

the third condition of a projection. Assume that ḃ ≤q ȧ. Our goal is to construct ċ such that

ċ ≤p ȧ and ċ ≤q ḃ. Towards that end, define

ċ = {(σ, r) : Either (1) r ≤ q and r  σ ∈ ḃ or (2) r⊥q and r  σ ∈ ȧ}.

As in the previous lemma, we may argue that q  ċ = ḃ and t  ċ = ȧ when t⊥q. This implies

that p  ċ ≤ ȧ, as desired.

Corollary 1.48. If q ≤ p, then the identity map is a projection from P × Ap(P, Q̇) onto

P×Aq(P, Q̇).

Lemma 1.49. Assume that G = P ∗ Q is P ∗ Q̇-generic, q ≤ p, and q ∈ P. Then in V [G] the

identity map is a projection from (P×Ap(P, Q̇)) ∩G onto (P×Aq(P, Q̇)) ∩G.

Proof. We check the third condition of a projection. Assume that (a′, ḃ′) ≤q (a, ḃ) where both

are in G. We need (a′′, ḃ′′) ∈ G such that (a′′, ḃ′′) ≤p (a, ḃ) and (a′′, ḃ′′) ≤q (a′, ḃ′). First note
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that since (a′, ḃ′) ∈ G, it follows that there is some (a′′, ċ) ∈ G extending (a′, ḃ′) and (q, 1̇)

with respect to the ordering on P ∗ Q̇. As in the proof of Lemma 1.47, we can find a name ḃ′′

such that q  ḃ′′ = ḃ′ and 1  ḃ′′ ≤ ḃ. Then (a′′, ḃ′′) ≤p (a, ḃ) and (a′′, ḃ′′) ≤q (a′, ḃ′). Finally,

since a′′ ≤ q, we have that a′′  ḃ′′ = ḃ′. This implies that (a′′, ċ) ≤P∗Q̇ (a′′, ḃ′′) and therefore

(a′′, ḃ′′) ∈ G.

The following is the main lemma of the section. It makes precise the claim that the generics

for the p-term forcing products P×Ap(P, Q̇) approximate the generic for P ∗ Q̇.

Lemma 1.50. Assume the following:

• G = P ∗ Q is P ∗ Q̇-generic,

• G∗ is (P×A(P, Q̇))/G-generic,

• For p ∈ P, Gp is (P×Ap(P, Q̇)) ∩G-generic induced from G∗.

Then G =
⋃
p∈P

Gp.

Proof. By definition observe that Gp ⊆ G. Therefore it is enough to show G ⊆
⋃
p∈P

Gp. Towards

that end, fix a ∈ G and define D = {c : c ≤p a for some p ∈ P}.

Claim 1.51. D is dense in (P×A(P, Q̇)) ∩G.

Proof of Claim. Fix b ∈ (P × A(P, Q̇)) ∩ G. Since G is a filter, we may find c ∈ G extending

both a and b with respect to the ordering ≤P∗Q̇. If the left coordinate of c is p ∈ P, then we

have that c ≤p a and c ≤p b. Since (P×A(P, Q̇))∩G projects onto (P×Ap(P, Q̇))∩G, we may

find c′ ∈ G such that c′ ≤1 b and c′ ≤p c. But then c′ ∈ D and c′ ≤1 b as desired.
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Since G∗ is (P × A(P, Q̇))/G-generic over V [G], we may find b ∈ G∗ ∩ D where p ∈ P

witnesses that b ∈ D. By the third hypothesis of the lemma, it follows that b ∈ Gp, which in

turn implies that a ∈ Gp because Gp is a filter.

1.8 Mitchell Forcing

In this section we define a collection of Mitchell’s original forcing M from (Mitchell, 1972)

and present the argument that if κ is supercompact, then ITP holds at ω2 after forcing with M.

Understanding the structure of this argument is critical for understanding the more involved

(super) tree property arguments.

Definition 1.52. For τ < µ < κ with τ and µ regular and κ inaccessible. Let conditions in

M(τ, µ, κ) have the form (p, r) where

1. p ∈ Add(τ, κ),

2. r is a partial function on κ such that |dom(r)| < µ,

3. for each α ∈ dom(r), we have Add(τ,α) r(α) ∈ ˙Add(µ, 1).

Define the ordering on M(τ, µ, κ) by saying (p, r) ≤ (p′, r′) if

1. p ≤ p′,

2. dom(r′) ⊆ dom(r) and for each α ∈ dom(r′), p � α  r(α) ≤ r′(α).

We abbreviate M(τ, τ+, κ) by M(τ, κ). Although the definition is convoluted at first glance,

the motivation for this definition is concrete and gives us the following projections:
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Lemma 1.53. M(τ, µ, κ) projects onto Add(τ, κ).

Proof. The map (p, r) 7→ p is a projection.

Lemma 1.54. For each α < κ, M(τ, µ, κ) projects onto Add(τ, α) ∗ ˙Add(µ, 1).

Proof. The map (p, r) 7→ (p � α, r(α)) is a projection.

Lemma 1.55. There is a µ-closed forcing Q such that Add(τ, κ)×Q projects onto M(τ, µ, κ)

via the identity map.

Proof. Q is defined to be the forcing whose underlying set is (0, r) ∈M(τ, µ, κ) with the ordering

induced from M(τ, µ, κ). Notice that we can think about Q as a product of 1-term forcings, so

the proof is similar to Lemma 1.43.

To determine the chain condition of M(τ, µ, κ) we first recall the ∆-system lemma:

Lemma 1.56 (∆-System Lemma). Let θ < κ where θ is regular and κ is inaccessible. Further,

let F be a collection of sets, each set having size less than θ, where |F| = κ. Then there is a

subcollection F′ ⊆ F of size κ and r where x ∩ y = r for distinct x, y ∈ F′.

Lemma 1.57. M(τ, µ, κ) is κ-Knaster.

Proof. Let ((pα, rα) : α < κ) be a collection of distinct conditions in M(τ, κ). For notation let

FX = {dom(pα) : α ∈ X} and GX = {dom(rα) : α ∈ X} where X ⊆ κ. The idea is to find an

uncountable subset X of κ where pα∪pβ and rα∪rβ are well-defined functions for all α, β ∈ X.

Each element of Fκ has size less than τ , and so the ∆-system lemma with θ = τ implies that

there is an unbounded A ⊆ κ and set a such that dom(pα)∩ dom(pβ) = a for distinct α, β ∈ A.
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Further, each element of GA has size less than µ, and so another application of the ∆-system

lemma implies that there is an unbounded B ⊆ A and set b such that dom(rα) ∩ dom(rβ) = b

for distinct α, β ∈ B.

Next, notice that there are < κ-many p ∈ Add(τ, κ) with domain a. Since B has size κ it

follows that we may find A′ ⊆ B with size κ such that pα � a = pβ � a for each α, β ∈ A′. Finally,

recall that if r is a right coordinate of a condition in M(τ, µ, κ), then Add(τ,α) r(α) ∈ ˙Add(µ, 1)

for each α ∈ dom(r). Since Add(τ,α) ˙Add(µ, 1) ∈ Vκ for each α < κ and b has size less than

µ, there are < κ-many such r with domain b. So we can thin B′ ⊆ A′ with size κ such that

rα � b = rβ � b for α, β ∈ B′. It follows that for α, β ∈ B′, (pα, rα) and (pβ, rβ) are compatible

with lower bound (pα ∪ pβ, rα ∪ rβ).

These lemmas allow for the desired cardinal structure:

Lemma 1.58. Let G be M(τ, µ, κ)-generic. Then in V [G] we have that

1. cardinals outside the interval (µ, κ) are preserved,

2. each α ∈ (µ, κ) is collapsed to µ,

3. 2τ = µ+ = κ.

Proof of 1. Since Add(τ, κ) × Q projects onto M(τ, κ) we can find a generic object A × Q for

Add(τ, κ)×Q such that V [G] ⊆ V [A×Q]. Using Easton’s Lemma notice that a cardinal α ≤ µ

is still a cardinal in V [A × Q] and therefore also in V [G]. Additionally, since M(τ, µ, κ) is

κ-Knaster we preserve all cardinals µ ≥ κ.
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Proof of 2. Recall that Add(τ, α) forces α ≤ 2τ and Add(µ, 1) adds a surjection from µ onto

2τ . Since M(τ, µ, κ) projects onto Add(τ, α) ∗ ˙Add(µ, 1) for α < κ it follows that in V [G] there

is a surjection from µ onto α.

Proof of 3. Using Easton’s Lemma, notice that (2τ )V [A] = (2τ )V [G]. Then Lemma 1.53 implies

V [G] |= 2τ = (2τ )V [A] = κ, and further that V [G] |= κ = µ+ because M(τ, µ, κ) collapses all

ordinals in (µ, κ) to µ.

Before we prove that ITP holds at τ++, we need to show that generics for M(τ, κ) can be

prolonged to generics for j(M(τ, κ)) and further that the quotient forcing j(M(τ, κ))/M(τ, κ)

factors in a similar way to M(τ, κ).

Lemma 1.59. Let j : V → M be an elementary embedding with critical point κ and G be

M(τ, κ)-generic over V . Then

1. In M there is a projection from j(M(τ, κ)) onto M(τ, κ).

2. In M [G] there is a τ+-Knaster forcing P∗ and a τ+-closed forcing Q∗ such that P∗ ×Q∗

projects onto j(M(τ, κ))/G.

3. We can lift the embedding to j : V [G] → M [j(G)] where j(G) is j(M(τ, κ))-generic over

M .

Proposition 1.60. Assume that κ is supercompact and G is M(τ, κ)-generic over V . Then

ITP holds at τ++ in V [G].
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Proof. Let κ be supercompact in V and µ ≥ κ be regular. Let D = (dx : x ∈ Pκ(µ)) be a thin

Pκ(µ)-list in V [G]. Let θ = |D|V [G] and let j : V → M be a λ-supercompactness embedding

with λ = max{µ, θ}. By Lemma 1.59 we can lift this embedding to j : V [G]→M [j(G)].

Claim 1.61. D ∈M [G].

Proof of Claim. By definition of j we know that V |= λM ⊆ M and since M(τ, κ) is κ-cc we

have further that V [G] |= λM [G] ⊆M [G]. For each x ∈ Pκ(µ)V [G] observe that dx ∈ Pκ(µ)V [G]

and so we can think of dx as a function from some α < κ into µ ⊆ M [G]. This implies that

dx ∈M [G] for each x ∈ Pκ(µ)V [G]. Therefore D ∈ λM [G] ⊆M [G] as desired.

Claim 1.62. There is a cofinal branch b for D in M [j(G)].

Proof of Claim. By elementarity j(D) = (ez : z ∈ j(Pκ(µ))) is a thin j(Pκ(µ))-list in M [j(G)].

Because j is a µ-supercompactness embedding we have that j“µ ∈ j(Pκ(µ)). Further, observe

that the function j � µ ∈M and so b = {α < µ : j(α) ∈ ej“µ} ∈M [j(G)]. For each x ∈ Pκ(µ) we

must show there is a y ⊇ x such that b∩x = dy ∩x. For notation set Lev(x) = {dy ∩x : y ⊇ x}.

Since D is a thin list, we have that |Lev(x)| < κ and so elementarity implies that j(Lev(x)) =

j“Lev(x) = {ej(y) ∩ j(x) : y ⊇ x}. Now, observe that ej“µ ∩ j(x) ∈ j(Lev(x)) by definition

of j(Lev(x)) and so there is a y ⊇ x such that ej“µ ∩ j(x) = ej(y) ∩ j(x). This implies that

b ∩ x = dy ∩ x as desired.

Our goal is to show that b ∈M [G] ⊆ V [G] and that b must have been ineffable in this model.

By Lemma 1.59 let H ×K be P∗ × Q∗-generic over M [G] such that M [j(G)] ⊆ M [G][K][H].

We want to show that b remains sufficiently approximated in M [G] and M [G][K].
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Claim 1.63. b is thinly κ-approximated in M [G].

Proof of Claim. We need to show that b∩x ∈M [G] for each x ∈ Pκ(µ)M [G]. Since b is a cofinal

branch through D we may find a y ⊇ x such that b ∩ x = dy ∩ x ∈ M [G]. To show that b is

thinly κ-approximated, observe that since D is a thin list in M [G] there < κ-many choices for

dy ∩ x. So if ḃ is a name for b then we can always force ḃ ∩ x = dy ∩ x for some y. In other

words, there are < κ-many choices for ḃ ∩ x.

Claim 1.64. b is τ+-approximated in M [G][K].

Proof of Claim. Notice that Pτ+(µ)M [G] = Pτ+(µ)M [G][K] because Q∗ is τ+-closed in M [G]. So,

for x ∈ Pτ+(µ)M [G][K] the previous claim implies that b ∩ x ∈M [G] ⊆M [G][K] as desired.

Using these two claims we are able to pull the b back to M [G]:

Claim 1.65. b ∈M [G][K].

Proof of Claim. By Easton’s Lemma we know that P∗ × P∗ is τ+-cc in M [G][K]. This implies

that P∗ has the τ+-approximation property in M [G][K]. Since b is τ+-approximated in M [G][K]

it follows that b ∈M [G][K].

Claim 1.66. b ∈M [G].

Proof of Claim. In M [G] notice that 2τ ≥ κ and Q∗ is τ+-closed. It follows by the generalized

Silver’s Branch Lemma that Q∗ has the thin κ-approximation property in M [G]. Since b is

thinly κ-approximated in M [G] it follows that b ∈M [G].
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We now just have to check that b is ineffable in V [G]. To see this, we need to show that

j“µ ∈ j(S) where S = {x ∈ Pκ(µ) : b∩x = dx}. However, this follows because j(b)∩j“µ = ej“µ.

(Note that j(b) and j(S) only make sense after we have shown b ∈ V [G].)

1.9 Singular Cardinals and Prikry Forcing

First we recall the definition of the Singular Cardinal Hypothesis.

Definition 1.67. For a singular strong limit κ, we say that SCH holds at κ if 2κ = κ+.

If we have any hope of getting the tree property everywhere we have to show that the tree

property holds at the double successor of a singular strong limit cardinal. By a classical result

of Specker, this presents some issues.

Proposition 1.68. (Specker, 1949) If κ<κ = κ then the tree property fails at κ+.

Specker’s result implies something stronger than the failure of the tree property at κ+: the

existence of a special κ+-Aronszajn tree. By work of Jensen, this is known to be equivalent to

�∗κ holding. In any case, if we want to get the tree property to hold at the double successor

of a singular strong limit κ, we must have that SCH fails at κ. This is traditionally done by

blowing up P(κ) of a measurable κ and then singularizing κ with Prikry forcing. So, in order

to get the tree property at κ+ and κ++ simultaneously, we will have to modify the usual left

coordinate of the Mitchell/CF forcing to include a Prikry part. We will be summarizing the

information in Section 3 of (Unger, 2013).

Let (κn : n < ω) be an increasing sequence of regular cardinals, κ = κ0, κω = supn κn,

and µ = κ+ω . Assume that κ is indestructibly supercompact. Further, let λ0 be a measurable
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cardinal above µ and U∗ a normal measure on λ0. Let A = Add(κ, λ0). Since κ is indestructibly

supercompact, in V [A] we may let U be the supercompactness measure on Pκ(µ) and Un be

the projections of U to Pκ(κn). For notation, if x and y are sets of ordinals, let κy denote the

set κ ∩ y and x ≺ y hold when x ⊆ y and and ot(x) < κy. In V [A], define the diagonal Prikry

forcing I, originally developed in (Gitik and Sharon, 2008) and in (Neeman, 2009), as follows:

Definition 1.69. I has conditions of the form

p = (x0, x1, . . . , xn−1, An, An+1, . . .)

where

1. xi ∈ Pκ(κi) and xi ∩ κ ∈ κ for i < n,

2. xi ≺ xi+1 for i < n− 1, and

3. Ai ∈ Ui for i ≥ n.

The string (x0, . . . , xn−1) is the stem of p an denoted stem(p). Given another condition

q = (y0, y1, . . . , ym−1, Bm, Bm+1 . . .),

we say that p ≤ q if

1. m ≤ n,

2. stem(p) � m = stem(q),



40

3. Ai ⊆ Bi for i ≥ n, and

4. xi ∈ Bi for m ≤ i < n.

In other words, extensions of q lengthen the stem of q by choosing elements from the Bi’s while

also shrinking the Bi’s. This forcing adds a generic sequence (xn : n < ω) ∈
∏
n<ω Pκ(κn) such

that
⋃
n<ω xn = κω. This generic sequence singularizes each κn to have cofinality ω and forces

µ = κ+.

Lemma 1.70. Importantly, I sastifies the Prikry property: for any statement ϕ and any p ∈ I,

there is a direct extension q ≤∗ p deciding ϕ.

Definition 1.71. Given a formula ϕ and a stem h, write h ∗ ϕ if there is a condition p ∈ I

with stem h forcing ϕ.

Let U̇ be an A-name for U and for α < λ0, let Aα = Add(κ, α). It is important that we are

able to project our Prikry posets onto smaller Prikry posets, so we show that we can do this on

a measure 1 set. The following is a generalization of work found in (Cummings and Foreman,

1998) and appears as Lemma 3.2 in (Unger, 2013).

Lemma 1.72. There is a B ⊆ λ0 of Mahlo cardinals with B ∈ V such that

1. if g is A-generic over V , then U̇ [G] ∩ V [g � α] ∈ V [g � α] and

2. B ∈ U∗.

More specifically, B is the set of Mahlo cardinals of some club subset of λ0. From this, for

each α ∈ B and each A-generic g over V , we can define supercompactness measures Uα on
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Pκ(λ0) in V [g � α] and the diagonal Prikry forcing Iα obtained from Uα as in Definition 1.69.

The generic object for A ∗ İ induces generic objects for Aα ∗ İα with α ∈ B, so we have the

following relationships between the Prikry posets and their regular open algebras.

Lemma 1.73. The following holds:

1. For all α ∈ B there is a projection πα : A ∗ İ→ RO(Aα ∗ İα)

2. For all α, β ∈ B with α < β there is a projection πα,β : Aβ ∗ İβ → RO(Aα ∗ İα)

3. A ∗ İ is µ-cc and Aα ∗ İα is µ-cc for each α ∈ B.

4. VAα∗İα
((A ∗ İ)/(Aα ∗ İα))2 is µ-cc for α ∈ B.

The final result from this lemma is Lemma 5.3 in (Unger, 2013).

Lemma 1.74. Forcing with A ∗ İ yields the following cardinal structure:

1. κ is singular strong limit with cf(κ) = ω,

2. κ+ = (κ+ω )V = µ, and

3. 2κ = λ0.

1.10 The Tree Property at Successive Cardinals

If we were interested in getting the tree property simultaneously at ω2 and ω3, then a natural

idea would be to use the Mitchell forcings from Section 1.8 and iterate M(ω, ω2) followed by

M(ω1, ω3). In the generic extension, such an iteration would result in the tree property at ω3,

but it would unfortunately destroy the tree property at ω2. The reason for this is that there

is interference between the Cohen posets of M(ω, ω2) and M(ω1, ω3). The definition below was
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first developed in (Abraham, 1983) as a way to deal with this interference. The advantage is

that it allows consideration of Cohen posets from different models of set theory. It was later in

(Cummings and Foreman, 1998) used as the fundamental building block to get the tree property

simultaneously at an ω-sequence of cardinals. The following definition appears as Definition

2.1 in (Unger, 2014).

Definition 1.75. Let V ⊆W be models of set theory. Suppose that τ and κ are cardinals such

that W |= τ is regular and κ is inaccessible. Let P = Add(τ, κ)V and assume that W |= P is

τ+-cc and < τ -distributive. Also, let P � β = Add(τ, β)V for β < κ. Let F ∈ W be a function

from κ to (Vκ)W . Define R = R(τ, κ, V,W, F ) in W by recursion on β ≤ κ and set R = R � κ.

Let R � 0 be the trivial forcing. Otherwise, (p, q, f) is a condition in R � β when the following

hold:

1. p ∈ P � β,

2. q is a partial function on β and |dom(q)| ≤ τ , and if α ∈ dom(q), then

(a) α is a successor ordinal,

(b) q(α) ∈W P�α, and

(c) WP�α q(α) ∈ Add(τ+, 1)W P�α ,

3. f is a partial function on β and |dom(f)| ≤ τ , and if α ∈ dom(f), then

(a) WR�α F (α) is a canonically τ+-directed closed forcing,

(b) α is a limit ordinal,
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(c) f(α) ∈WR�α, and

(d) WR�α f(α) ∈ F (α).

We also define the ordering (p1, q1, f2) ≤ (p2, q2, f2) when the following hold:

1. p1 ≤P�α p2,

2. dom(q2) ⊆ dom(q1) and if α ∈ dom(q2), then p1 � α WP�α q1(α) ≤ q2(α),

3. dom(f2) ⊆ dom(f1) and if α ∈ dom(f2), then (p1, q1, f1) � α WR�α f1(α) ≤ f2(α).

Lemma 1.76. This forcing satisfies the following properties. Each reference is from (Cummings

and Foreman, 1998).

1. (Lemma 3.2) |R| = κ and R is κ-Knaster.

2. (Lemma 3.3) We have that R projects onto R � α ∗ F (α), P � α ∗Add(τ+, 1)W P�α, and P.

3. (From Section 3.3) Let U be all conditions in R of the form (0, q, f) with the ordering

induced from R. Then, U is canonically τ+-directed closed, κ-cc, and the product forcing

P× U projects onto R.

4. (Variant of Lemma 3.6) If θ ≤ τ and P is canonically θ-directed closed in W , then R is

canonically θ-directed closed in W .

5. (Lemma 3.11) U is ≤ τ -distributive in W P.

6. (Corollary 3.16) R is < τ -distributive in W .

7. (Lemma 3.20) Let G be R-generic over W and S be the quotient forcing of P×U defined

in W [G]. It follows that W [G] |= “S is < τ+-distributive, τ -closed, and κ-cc.”
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8. (From Section 3.3) Let G be R-generic over W .

(a) W [G] and W [g] have the same τ -sequences of ordinals, where g is the P-generic

induced by G.

(b) W [G] |= τ+ is preserved and 2τ = κ = τ++.

(c) If X is a set of ordinals in W [G] where |X|W [G] = τ then there is a Y ⊇ X in W

where |Y |W = τ .

9. (Corollary 3.17) WU |= κ = τ++.

10. (From Section 3.5) R projects onto R � α. In WR�α, there are forcings P∗,U∗ such that

P∗ is τ+-cc, U∗ is τ+-closed, and P∗ × U∗ projects onto R/R � α.

By iterating Definition 1.75, we get the main result of (Abraham, 1983). More precisely:

Lemma 1.77. Let κ0 < κ1 where κ0 is supercompact and κ1 is weakly compact. Let F0

be a Laver function for κ0. Define R as R(ω, κ0, V, V, F0). Working in V [R], define R′ as

R(ω1, κ1, V, V [R], id), where id is the identity map on κ1. Then in V [R ∗ Ṙ′] we have the

following:

1. ω1 is preserved, κ0 = ω2, and κ1 = ω3,

2. 2ω = ω2 and 2ω1 = ω3, and

3. the tree property holds at ω2 and ω3.

Finally, we collect some more facts from (Cummings and Foreman, 1998) that will be useful

later. The reference is from the original paper.
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Lemma 1.78 (Lemma 2.6). Let τ < κ, and assume that V |= “τ is regular and κ is inaccessible”.

Let P = Add(τ, η). Let W ⊇ V be a model of ZFC such that

1. κ and τ are cardinals in W ,

2. if X ∈ W is a set of ordinals such that W |= |X| < κ, then there is a Y ⊇ X such that

Y ∈ V and V |= |Y | < κ.

Then P is κ-Knaster in W .

Lemma 1.79 (Lemma 2.13). Let τ be regular and let A = Add(τ, η) for some η. Let κ be

inaccessible with τ < κ. Then

1. If Q is κ-cc and Q is a projection of P×U, where P is τ -cc and U is τ -closed, then V [Q]

believes that A is κ-Knaster and < τ -distributive.

2. Suppose that V [Q] believes that Q∗ is a projection of Add(τ, ζ)V × U∗ and that U∗ is

κ-closed. Then V [Q ∗ Q̇∗] |= A is κ-Knaster.



CHAPTER 2

INDESTRUCTIBILITY OF ITP IN M(τ, κ)

Recall that in Section 1.8 we showed that ITP holds at τ++ after forcing with the Mitchell

forcing M(τ, κ). In this chapter we prove indestructibility results about which posets may be

iterated with the Mitchell model and preserve ITP at τ++. This is generalizing work of (Unger,

2012).

2.1 Generalized Branch Lemma

In this section we generalize Lemma 1.17. All tree property arguments involve appealing

to various types of branch preservation lemmas, and so it is useful to also determine which

could apply to ITP arguments as well. For example, Lemma 1.17 was used in (Neeman, 2014)

to consistently get the tree property at ℵω+1 and ℵn for each n > 1. Further, the proof of

Lemma 1.17 was used in (Sinapova, 2012) in order to prove an important splitting lemma that

allowed for the failure of the tree property at ℵω2+1 with failure of SCH at ℵω2 . We start with

a definition motivated from (Magidor and Shelah, 1996).

Definition 2.1. Let Q be a forcing and ḃ be a Q-name for a subset of an ordinal µ. Assume ḃ

is κ-approximated in V . Say that r1, r2 force contradictory information about ḃ at z ∈ Pκ(µ) if

for each pair (r′1, r
′
2) ≤Q×Q (r1, r2), if r′1 and r′2 each decide values for ḃ∩z, they decide different

values.
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Lemma 2.2. Let Q be a poset and ḃ be a Q-name for a κ-approximated subset of µ. Suppose

r1, r2 force contradictory information about ḃ at x ∈ Pκ(µ). Then

1. For each z ⊇ x, r1, r2 force contradictory information about ḃ at z,

2. For each pair (r′1, r
′
2) ≤Q×Q (r1, r2), r

′
1, r
′
2 force contradictory information about ḃ at x.

Proof. We do each in turn:

1. Assume that (r′1, r
′
2) ≤ (r1, r2), s1, s2 ∈ Pκ(µ), and r′i  si = ḃ ∩ z for i ∈ {1, 2}. This

implies that r′i  si ∩ x = ḃ ∩ x for i ∈ {1, 2} and so s1 ∩ x 6= s2 ∩ x by hypothesis. This

implies s1 6= s2 as desired.

2. This follows immediately from the fact that r1, r2 force contradictory information about

ḃ at x.

Lemma 2.3. Suppose that ḃ is a Q-name for a κ-approximated subset of µ and Q ḃ 6∈ V .

Then for every (r1, r2) ∈ Q×Q there is (r′1, r
′
2) ≤ (r1, r2) and z ∈ Pκ(µ) such that r′1, r

′
2 force

contradictory information about ḃ at z.

Proof. Assume that the lemma is false. Fix (r1, r2) ∈ Q × Q witnessing this. We claim that

(r1, r2) Q×Q ḃ[ΓL] = ḃ[ΓR], where ΓL is generic for the left coordinate and ΓR is generic for

the right coordinate. This is a contradiction because this implies that Q ḃ ∈ V by Lemma 1.6.

Assume instead that (r1, r2) 6 ḃ[ΓL] = ḃ[ΓR]. This implies that we may find (p, q) ≤ (r1, r2)

and x ∈ Pκ(µ) such that (p, q) Q×Q ḃ[ΓL] ∩ x 6= ḃ[ΓR] ∩ x. Because we assumed that the

lemma is false, we may find p′ ≤ p and q′ ≤ q and v ∈ Pκ(µ) such that p′ Q ḃ ∩ x = v and
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q′ Q ḃ ∩ x = v. However, if p′ ∈ GL is Q-generic over V and q′ ∈ GR is Q-generic over V [GL],

this implies that V [GL][GR] |= ḃ[GL] ∩ x = ḃ[GR] ∩ x, a contradiction.

By combining Lemma 2.2 and Lemma 2.3 we have the following variant.

Lemma 2.4. Suppose that ḃ is a Q-name for a κ-approximated subset of µ and Q ḃ 6∈ V .

Then for every (r1, r2) ∈ Q × Q and y ∈ Pκ(µ) there is (r′1, r
′
2) ≤ (r1, r2) and z ⊇ y such that

r′1, r
′
2 force contradictory information about ḃ at z.

We are now in a position to prove the generalized branch lemma.

Lemma 2.5 (Generalized Branch Lemma). Let κ be a regular cardinal. Assume P is τ+-cc,

Q is τ+-closed for some τ < κ such that 2τ ≥ κ. Then in V [P] we have that Q has the thin

κ-approximation property.

Proof. In V [P] let ḃ be a Q-name for a subset of µ that is thinly κ-approximated in V [P].

Assume instead that Q ḃ 6∈ V [P]. Work in V until further notice. Then we have the following

claim:

Claim 2.6. For (r1, r2) ∈ Q × Q define Dr1,r2 ⊆ P to be the set of all conditions p ∈ P such

that there is (r′1, r
′
2) ≤Q×Q (r1, r2) and z ∈ Pκ(µ)V such that

p  “r′1, r
′
2 force contradictory information about ḃ at z.”

Then Dr1,r2 is dense.
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Proof of Claim. Apply Lemma 2.3 in V [P] to show for each q ∈ P that

q P “∃(r′1, r′2) ≤ (r1, r2) ∃z ∈ Pκ(µ) r′1, r
′
2 force contradictory information about ḃ at z.”

Then, choose p′ ≤ q, (r1, r2) ∈ Q×Q, and a P-name σ for an element of Pκ(µ) such that

p′ P “r′1, r
′
2 force contradictory information about ḃ at σ.”

Finally, fix a P-generic G containing p′ and notice that

V [G] |= “r′1, r
′
2 force contradictory information about ḃ at σ[G] ∈ Pκ(µ).”

Since P is κ-cc we may find a z ⊇ σ[G] such that z ∈ Pκ(µ)V . By Lemma 2.2, we have

V [G] |= “r′1, r
′
2 force contradictory information about ḃ at z.”

The claim is proven by choosing any p ≤ p′ forcing this.

We continue with another claim:

Claim 2.7. For each r ∈ Q and x ∈ Pκ(µ) there is a maximal antichain A ⊆ P, conditions

r∗0, r
∗
1 ∈ Q extending r, and x∗ ∈ Pκ(µ)V with x∗ ⊇ x such that for each p ∈ A

p  “r∗0, r
∗
1 force contradictory information about ḃ at x∗.”
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Proof of Claim. Observe that this is not immediate from the first claim because (r′1, r
′
2) and x∗

both depend on p ∈ P. The goal is to remove this. We construct sequences (Aα, xα : α < τ+)

and (rαi : α < τ+) for i < 2 by induction such that the following hold:

1. (Aα : α < τ+) is a ⊆-increasing sequence of antichains of P,

2. (xα : α < τ+) is a ⊆-increasing sequence of elements of Pκ(µ)V , and

3. for each i < 2, (rαi : α < τ+) is a decreasing sequence of elements of Q.

Base Case: Fix p0 ∈ Dr,r, letting (r01, r
0
2) ≤ (r, r) and z witness this. Then set A0 = {p0}

and x0 = z ∪ x.

Successor Case: Assume that we have defined Aα, (rα0 , r
α
1 ), and xα. If Aα is a maximal

antichain, then define Aα+1 = Aα, (rα+1
0 , rα+1

1 ) = (rα0 , r
α
1 ), and xα+1 = xα. Otherwise, let

p ∈ P be some element incompatible with each element of Aα. Next we fix p′ ≤ p such that

p′ ∈ Drα0 ,r
α
1
. Let (rα+1

1 , rα+1
2 ) ≤ (rα0 , r

α
1 ) and z witness this. Then set Aα+1 = Aα ∪ {p′} and

xα+1 = z ∪ xα.

Limit Case: Assume that θ < τ+ is a limit ordinal and we have defined (Aα, xα : α < θ)

and (rαi : α < θ) for i < 2. Then set Aθ =
⋃
α<θ

Aα, (rθ1, r
θ
2) to be a lower bound for the sequence

((rα0 , r
α
1 ) : α < θ), and xθ =

⋃
α<θ

xα. This completes the induction.

Finally, since antichains of P have size at most τ there must be an α < τ+ such that Aα is

a maximal antichain. Define A = Aα, (r∗0, r
∗
1) = (rα0 , r

α
1 ), and x∗ = xα. To see that this works,

assume that p ∈ A. By the definition of A there must have been some β < α such that

p  “rβ+1
0 , rβ+1

1 force contradictory information about ḃ at xβ+1.”
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Since (r∗0, r
∗
1) ≤ (rβ+1

0 , rβ+1
1 ) it follows by Lemma 2.2 that

p  “r∗0, r
∗
1 force contradictory information about ḃ at xβ+1.”

Finally, since x∗ ⊇ x another application of Lemma 2.2 yields as desired that

p  “r∗0, r
∗
1 force contradictory information about ḃ at x∗.”

To finish the proof we proceed in a manner similar to the proof of Lemma 1.16. Assume

that θ is the least cardinal such that 2θ ≥ κ. Note that Q is θ+-closed. We define sequences

(rσ, iσ, jσ, Aσ : σ ∈ 2<θ) and (xα : α < θ) by induction with the following properties:

1. Aσ is a maximal antichain in P,

2. rσ, iσ, jσ ∈ Q, where iσ = rσ_0 and jσ = rσ_1 for each σ ∈ 2<θ,

3. p  “rσ_0, rσ_1 force contradictory information about ḃ at x|σ|” for each p ∈ Aσ,

4. if σ0 ⊂ σ1 then rσ1 ≤ rσ0 , and x|σ0| ⊂ x|σ1|.

Base Case: Set r∅ = 1Q and apply the above claim to get a maximal antichain A∅, condi-

tions (i∅, j∅) ≤ (r∅, r∅), and x0 such that p  “i∅, j∅ force contradictory information about ḃ

at x0” for each p ∈ A∅.

Successor Case: Assume that α < θ is an ordinal and that we have defined rσ, iσ, jσ, Aσ,

and xα for each σ with length α. Set rσ_0 = iσ and rσ_1 = jσ. Apply the above claim twice
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to get maximal antichains Aσ_0 and Aσ_1, pairs of conditions (iσ_0, jσ_0) and (iσ_1, jσ_1),

and sets yσ_0, yσ_1 ⊇ xα such that

1. iσ_0, jσ_0 ≤ rσ_0,

2. iσ_1, jσ_1 ≤ rσ_1,

3. p  “iσ_k, jσ_k force contradictory information about ḃ at yσ_k” for each p ∈ Aσ_k and

each k < 2.

Since θ is least such that 2θ ≥ κ it follows that 2α < κ. We may therefore set xα+1 =⋃
σ∈2α,k<2

yσ_k ∈ Pκ(µ).

Limit Case: Assume λ < θ is a limit ordinal and we have defined rσ, iσ, jσ, Aσ, and

xα for each σ with |σ| = α < λ. For each f ∈ 2λ, observe that (rf�i : i < λ) is a decreasing

sequence. So we may use the closure of Q to find a lower bound rf . Next, for each f ∈ 2λ

define zf =
⋃
α<λ

xf�α. Apply the above claim to get a maximal antichain Af , conditions if and

jf below rf , and a set yf ⊇ zf such that p  “if , jf force contradictory information about ḃ

at yf” for each p ∈ Af . Then set xλ =
⋃
f∈2λ

yf . This completes the construction.

With our sequences (rσ, Aσ : σ ∈ 2<θ) and (xα : α < θ), define x =
⋃
α<θ

xα and let rf be a

lower bound for the sequence (rf�α : α < θ) for each f ∈ 2θ. Let G be P-generic and work in

V [G] for the remainder of the proof. We show that for each distinct pair f and g ∈ 2θ, rf and

rg force contradictory information about ḃ at x. Indeed, if i < θ is least such that f(i) 6= g(i),

then s = f � i = g � i. Since As is a maximal antichain it follows that G ∩ As is nonempty.

This implies that rs_0 and rs_1 force contradictory information about ḃ at x|s|. Lemma 2.2
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implies that rf and rg force contradictory information about ḃ at x. This implies that there are

at least 2θ ≥ κ distinct potential values of ḃ ∩ x contradicting that ḃ is thinly κ-approximated

in V [G].

2.2 Indestructibility

With the work from the previous section we are now in the position to prove some inde-

structibility results about ITP at τ++. In particular we show that forcing with Cohen forcing

after Mitchell forcing over a sufficiently compact ground model does not destroy ITP at τ++.

Recall that M(τ, κ) is the Mitchell poset defined in Section 1.8.

Theorem 2.8. Let κ be supercompact and τ < κ be regular. If M(τ,κ) “Q̇ is a τ+-cc forcing

of size τ+” then M(τ,κ)∗Q̇ “ITP holds at τ++.”

Proof. Let G be M(τ, κ)-generic over V and let Ḋ ∈ V [G] be a Q-name for a Pκ(µ)-list.

Let j : V → M be a µ-supercompactness embedding with critical point κ. Since j(M(τ, κ))

projects onto M(τ, κ) we are allowed to lift this embedding to j : V [G]→M [j(G)] where j(G)

is j(M(τ, κ))-generic over M . Note that this lifted embedding has critical point τ++. Further,

since Q has size τ+ in V [G] we may assume that j(Q) = Q. This implies that we may further

lift the embedding to j : V [G][x]→M [j(G)][x] where x is Q-generic over V [j(G)].

Then arguments similar to the proof of Proposition 1.60 show that D = Ḋ[x] ∈ M [G][x]

and further that D has an ineffable branch b in M [j(G)][x]. We have to pull b back to M [G][x].

To do this recall that by Lemma 1.59 the quotient j(M(τ, κ))/G factors like the Mitchell poset

and so M [j(G)] ⊆M [G][H][K], where H is a generic object for a τ+-Knaster Cohen forcing in
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M [G] and K is a generic object for a τ+-closed forcing in M [G]. Mutual genericity allows us

to say M [j(G)][x] ⊆M [G][x][K][H]. We may argue the following:

Claim 2.9. b is thinly κ-approximated in M [G].

Proof. The same argument as in the proof of Proposition 1.60. We note that we are writing κ

instead of τ++ because the generic object K collapses κ to τ+.

Claim 2.10. b is τ+-approximated in M [G][x] and M [G][x][K].

Proof. By the previous claim we have that b is τ+-approximated in M [G]. Then, Lemma

1.18 implies that b is still τ+-approximated in M [G][x]. Next, Easton’s Lemma implies that

K is generic for a < τ+-distributive forcing in M [G][x], which gives us that Pτ+(µ)M [G][x] =

Pτ+(µ)M [G][x][K]. So if x ∈ Pτ+(µ)M [G][x][K] we get that b ∩ x ∈M [G][x] ⊆M [G][x][K].

We finish the theorem by pulling back the branch:

Claim 2.11. b ∈M [G][x][K]

Proof. This follows because H is generic for a Cohen forcing which is τ+-Knaster and therefore

has the τ+-approximation property in M [G][x][K].

Claim 2.12. b ∈M [G][x]

Proof. Here we use Lemma 2.5 where the ground model is M [G] and Q is the τ+-cc forcing.

This final claim yields the result.
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Theorem 2.13. Let κ be supercompact and τ < κ be regular. If M(τ,κ) “Q = Add(τ, θ) for

some cardinal θ,” then M(τ,κ)∗Q̇ “ITP holds at τ++.”

Proof. The proof is similar to the previous result so we summarize some of the key points. First,

take an appropriate supercompactness embedding and lift it to j : V [G][x]→M [j(G)][x∗] where

x∗ is a generic object for j(Q). We may factor x∗ = x × y, where x is generic for Q and y is

generic for j(Q)/x. Further, observe that j(Q)/x is just a Cohen forcing. So, like before we have

that M [j(G)][x∗] ⊆M [G][x][K][H][y], where H,K are like above. To justify why we can move

around the generic x, we observe that x is generic over M [G][H] since M [j(G)] ⊇ M [G][H].

This implies that x and H are mutually generic. Further, x and K are mutually generic by

Easton’s Lemma. Then we argue that there is a branch b ∈ M [G][x][K][H][y]. Like above we

argue that b is τ+-approximated in M [G][x][K] and use that H × y is generic for a τ+-Knaster

forcing to pull the branch back to M [G][x][K]. Finally, use Lemma 2.5 to pull the branch from

M [G][x][H2] to M [G][x].



CHAPTER 3

TREE PROPERTY AT κ+N FOR N ≥ 1

In this chapter we define a variant of the Cummings-Foreman iteration and show that, in

the generic extension, the tree property holds at κ+n for each n ≥ 1 and κ is singular strong

limit. One of the biggest differences between this forcing and the forcing in (Cummings and

Foreman, 1998) is the first factor defined in the next section. More specifically, we need to

interleave Prikry forcing with forcing defined in Section 1.10 in order to make κ singular.

After defining the first factor Q0, we prove some of its structural properties and define the

Cummings-Foreman variant Rω. The argument to get the tree property at κ+n for n ≥ 2

is similar in spirit to the original argument in (Cummings and Foreman, 1998), the biggest

difference being the case when n = 2. To show the tree property at κ+ we use techniques from

(Sinapova, 2016) and the structural properties of the p-term forcings from Section 1.7.

3.1 The factor Q0

Let (κn : n < ω) be an increasing sequence of indestructibly supercompact cardinals, κ = κ0,

κω = supn κn, and µ = κ+ω . Further, let (λn : n < ω) be another increasing sequence of

supercompact cardinals with µ < λ0. Let λ = sup(λi). Fix Laver functions (Fn : n < ω) for the

λn’s. Using notation from Section 1.9, set P0 = A∗ İ where A = Add(κ, λ0) and I is the diagonal

Prikry forcing. Further recall from this section that P0 projects onto forcings Aβ ∗ İβ where β

comes from a measure one set B. Set P0,β = Aβ ∗ İβ for β ∈ B. If β = λ0, set P0,β := P0.
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Finally, say that β ∈ B is a successor ordinal of B if ot(B∩β) is a successor ordinal. Otherwise,

say that β ∈ B is a limit ordinal of B.

We will begin by defining a modification of the forcing from Section 1.10 to be denoted Q0.

This definition will be by induction, where we define forcings Q0 � β for β ∈ B ∪ {λ0}. We

finally set Q0 := Q0 � λ0.

Definition 3.1. Let Q0 � 0 be the trivial forcing. Otherwise, ((f, ṗ), r, g) is a condition in

Q0 � β when the following hold:

1. (f, ṗ) ∈ P0,β

2. r is a partial function on β with dom(r) consisting of successor ordinals of B, and

|dom(r)| < µ

3. if α ∈ dom(r) then P0,α r(α) ∈ Add(µ, 1)V [P0,α]

4. g is a partial function on β with dom(g) consisting of limit ordinals of B, and |g| < µ,

and dom(g) ⊆ {α : Q0�α F0(α) is a canonically µ-directed closed forcing}

5. if α ∈ dom(g), then Q0�α g(α) ∈ F0(α)

The ordering is defined by (f1, ṗ1, r1, g1) ≤ (f2, ṗ2, r2, g2) exactly when

1. (f1, ṗ1) ≤P0,β
(f2, ṗ2)

2. dom(r1) ⊇ dom(r2) and for every α ∈ dom(r2), we have that

(f1, ṗ1) � α P0,α r1(α) ≤ r2(α)

3. dom(g1) ⊇ dom(g2) and for every α ∈ dom(g2), we have that

(f1, ṗ1, r1, q1) � α Q0�α g1(α) ≤ g2(α).
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In the above, (f1, ṗ1) � α denotes πα(f1, ṗ1), where πα is the projection from P0 to RO(P0,α).

Similarly, (f1, ṗ1, r1, q1) � α is (πα(f1, ṗ1), r1 � α, q1 � α).

3.2 Structural Properties of Q0

Proposition 3.2. |Q0| = λ0 and Q0 has the λ0-Knaster property, and for all β ∈ B, Q0 � β is

β-Knaster.

Proof. |Q0| = λ0 follows since |P0| = λ0, |P0,β| < λ0 for each β ∈ B and for any α, there

are less than λ0 possibilities for q(α) or f(α). This follows since Q0�α g(α), f(α) ∈ Vλ0 .

The Knasterness part of the proposition follows from a ∆-system argument and since Prikry

conditions with the same stem are compatible.

Proposition 3.3. For α ∈ B, Q0 can be projected to P0, Q0 � α ∗F0(α), P0,α ∗Add(µ, 1)V [P0,α]

and Q0 � α.

Proof. The projections are the following:

1. π1 : ((f, ṗ), r, g) 7→ (f, ṗ)

2. π2 : ((f, ṗ), r, g) 7→ ((f, ṗ, r, g) � α, g(α))

3. π3 : ((f, ṗ), r, g) 7→ ((f, ṗ) � α, r(α))

4. π4 : ((f, ṗ), r, g) 7→ (f, ṗ, r, g) � α

We prove that π2 and π4 are projections and leave the rest to the reader. Recall that

(f, ṗ, r, q) � α is (πα(f, ṗ), r � α, q � α). We start with π4 and then deal with π2. To check π4

is order preserving, observe that if (f1, ṗ1, r1, g1) ≤ (f2, ṗ2, r2, g2), then πα(f1, ṗ1) ≤ πα(f2, ṗ2)
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because πα is a projection. We still have that dom(r1) � α ⊇ dom(r2) � α and for every

β ∈ dom(r2), (f1, ṗ1) � β P0,β
r1(β) ≤ r2(β). The similar condition holds for the gi’s and so it

follows that π4(f1, ṗ1, r1, g1) ≤Q0�α π4(f2, ṗ2, r2, g2).

Next we check the other condition for a projection. Assume that (a, ḃ, c, d) ≤Q0�α π4(f2, ṗ2, r2, g2).

It follows that (a, ḃ) ≤ πα(f2, ṗ2), and since πα is a projection we may find a (f1, ṗ1) ≤ (f2, ṗ2)

such that πα(f1, ṗ1) ≤ (a, ḃ). We define r1 by first setting dom(r1) = dom(c) ∪ dom(r2). Then,

we let r1(β) = c(β) when β ∈ dom(c) and r1(β) = r2(β) otherwise.

Finally, define g1 by setting dom(g1) = dom(d) ∪ dom(g2) and letting g1(β) = d(β) when

β ∈ dom(d) and g1(β) = g2(β) otherwise. It follows by construction that (f1, ṗ1, r1, g1) ≤

(f2, ṗ2, r2, g2) and that π4(f1, ṗ1, r1, g1) ≤ (a, ḃ, c, d). So π4 is a projection.

For π2, assume that (f1, ṗ1, r1, g1) ≤ (f2, ṗ2, r2, g2). Since π4 is a projection we know that

(f1, ṗ1, r1, g1) � α ≤ (f2, ṗ2, r2, g2) � α. Further, by definition of the ordering on Q0 we have

that (f1, ṗ1, r1, g1) � α  q1(α) ≤ q2(α). So, π2(f1, ṗ1, r1, g1) ≤ π2(f2, ṗ2, r2, g2) by definition of

a two-step iteration.

Next, assume that ((a, ḃ, c, d), e) ≤Q0�α∗F0(α) ((f2, ṗ2, r2, g2) � α, g2(α)). From the first co-

ordinate, we know that (a, ḃ, c, d) ≤ (f2, ṗ2, r2, g2) � α. Since π4 is a projection, there is some

(f1, ṗ1, r1, g1) ≤Q0 (f2, ṗ2, r2, g2) such that (f1, ṗ1, r1, g1) � α ≤Q0�α (a, ḃ, c, d). The idea is to

modify g1 to g∗1 by setting g∗1 = g1 below α, by setting g∗1(α) = e, and by setting g∗1 = g2 above

α. Since (a, ḃ, c, d) Q0�α e ≤ g2(α), it follows that (f1, ṗ1, r1, g
∗
1) ≤Q0 (f2, ṗ2, r2, g2). But then

we also have that ((f1, ṗ1, r1, g
∗
1) � α, g∗1(α)) ≤Q0�α∗F0(α) ((a, ḃ, c, d), e) as desired.
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Definition 3.4. Let U have conditions of the form (0, 0, q, f) ∈ Q0 with the ordering inherited

from Q0.

Proposition 3.5. U is µ-canonically directed closed and λ0-cc (Knaster).

Proof. The major difference between our new factor and the one from Definition 1.75 is the

leftmost coordinate. Since our definition of U fixes the leftmost coordinate, we observe that

this proposition should be true for the same reason that Lemma 1.76(3) holds. We present the

directed closed argument from (Cummings and Foreman, 1998) for completeness.

Fix a directed set of conditions {(0, 0, qη, fη) : η < θ} for a cardinal θ < µ. We define a lower

bound (0, 0, r, g) as follows. Define A1 =
⋃
η<θ dom(qη). Notice that |A1| < µ. Define a function

q with domain A1. For α ∈ A1 consider {qη(α) : η < θ}. If η, ζ < θ then for some γ < θ we

have that (0, 0, qγ , fγ) ≤ (0, 0, qη, fη), (0, 0, qζ , fζ), and so  qγ(α) ≤ qη(α), qζ(α). Then, there

is a P0,α-name for the directed set {qη(α) : η < θ} ⊆ Add(µ, 1)V [P0,α] and so we may let r(α) be

a name forced to be the greatest lower bound to this directed set.

Next, define A2 =
⋃
η<θ dom(fη) and notice |A2| < µ. Observe that we may define a

function g by induction on α with domain A2 such that (0, 0, r, g) � α  g(α) ≤ fη(α) for any

α and η. The induction step is similar to the previous paragraph, where we say that g(α) is

a name for the greatest lower bound of {fη(α) : η < θ} if that set is directed, and the trivial

condition otherwise. It is not hard to see that (0, 0, r, g) is in fact the greatest lower bound.

Lemma 3.6. Q0 satisfies the following properties and cardinal structure:

1. P0 × U projects onto Q0.
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2. P0 × U is λ0-cc and all < µ-sequences of ordinals in V [P0 × U] are in V [P0].

3. Assume G is Q0-generic over V and g is the P0-generic induced from G. If X ∈ V [G] is

a set of ordinals of size < µ, then X ∈ V [g].

4. Q0 collapses every cardinal between µ and λ0 to µ.

5. Q0 preserves µ and forces 2κ = λ0 = µ+.

Proof. The proofs are similar to those found in Section 1.8 so we summarize the results.

1. The projection is the map ((f, ṗ), (0, 0, r, g)) 7→ (f, ṗ, r, g).

2. The first part follows by Proposition 3.5 and since P0 is µ-cc. The second part follows

from Easton’s Lemma.

3. This follows immediately from the previous bullet point.

4. This follows because Q0 projects onto P0,α∗ ˙Add(µ, 1)V [P0,α] for unboundedly many α < λ0.

5. Q0 preserves µ by the second bullet point and since P0 preserves µ. By the fourth bullet

point we have that λ0 = µ+. Finally, (2κ)V [Q0] = (2κ)V [P0] = λ0 by the third bullet point

and Lemma 1.74.

3.3 Quotients of Q0

We want to show that in V [Q0 � α] the forcing Q0/Q0 � α may be written as a projection of

P0/P0,β × C where C is sufficiently closed. This is motivated by work appearing in (Abraham,
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1983) who showed in a simpler context that this may be done using certain types of projections.

This definition is from (Cummings and Foreman, 1998).

Definition 3.7. A projection π : P → Q is good if for each p ∈ P and q ≤ π(p), there is a

p1 ≤ p such that π(p1) = q and, for all r ≤ p, π(r) ≤ q → r ≤ p1. The element p1 is denoted

Ext(p, q).

This notion of a good projection is to prove Lemma 3.13 below. Since P0-generic objects

induce P0,α-generic objects, we know that RO(P0,α) is isomorphic to a complete subalgebra of

RO(P0). In other words, we have an injective complete homomorphism from RO(P0,α) into

RO(P0). This maps induces a good projection from RO(P0) to RO(P0,α). This follows from

general results about boolean algebras.

Lemma 3.8. Let B and C be complete boolean algebras and assume that i : B→ C is an injective

complete homomorphism. Consider π : C→ B defined by c 7→
∧
{b ∈ B : c ≤ i(b)}. Then π is a

good projection.

We need two very useful facts about the map π:

Claim 3.9. For each b ∈ B and each c ∈ C, we have that π(i(b)) = b and i(π(c)) ≥ c.

Proof of Claim. For the first, notice that

π(i(b)) =
∧
{b′ ∈ B : i(b) ≤ i(b′)} =

∧
{b′ ∈ B : b ≤ b′} = b.
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For the second, notice that

i(π(c)) = i
(∧
{b ∈ B : c ≤ i(b)}

)
=
∧
{i(b) : c ≤ i(b)} ≥ c.

Proof that π is a projection. First, note that π(1C) = π(i(1B)) = 1B by the previous claim.

Next, if c ≤ c′ then π(c) ≤ π(c′) because {b ∈ B : c′ ≤ i(b)} ⊆ {b ∈ B : c ≤ i(b)}. This shows

π is order preserving. The final requirement for a projection follows when we prove that π is

good.

Proof that π is good. Fix c ∈ C and b ≤ π(c). Let Ext(c, b) = c ∧ i(b) ≤ c. To show that

this witnesses that π is good, observe that π(Ext(c, b)) = π(c ∧ i(b)) = π(c) ∧ b = b. Further, if

r ≤ c and π(r) ≤ b, then i(b) ≥ i(π(r)) ≥ r by the above claim.

Now let Q′0 � α be the forcing Q0 � α defined in the previous section where we replace

occurrences of P0,α with RO(P0,α). These two forcings produce the same generic extension

because Q0 � α is a dense subset of Q′0 � α. In what follows we think of conditions in Q0 or Q′0

as triples (p, q, f) where p is a condition of P0 or RO(P0) depending on the context.

Lemma 3.10. For α ∈ B the projections π2 : Q′0 → Q′0 � α ∗ F0(α) and π4 : Q′0 → Q′0 � α are

good. Here π2 is the map (p, q, f) 7→ ((p, q, f) � α, f(α)) and π4 is the map (p, q, f) 7→ (p, q, f) �

α.
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Proof. From the previous section we know that both of these are projections. For π4, as-

sume (p′, q′, f ′) ≤ π4(p, q, f) = (πα(p), q � α, f � α). If s = (p, q, f) and t = (p′, q′, f ′),

then Ext(s, t) = (Ext(p, p′), q′_(q � dom(q) \ α), f ′_(f � dom(f) \ α)). Similarly, for π2, as-

sume (p′, q′, f ′, g′) ≤ π2(p, q, f) = (πα(p), q � α, f � α, f(α)). Note g′ is a Q′0 � α-name

for an element of F0(α). If s = (p, q, f) and t = (p′, q′, f ′, g′), then Ext(s, t) = (Ext(p, p′),

q′_(q � dom(q) \ α), f ′_{(α, g′)}_(f � dom(f) \ (α+ 1))).

One advantage of using good projections is that they allow us to modify the ordering on

the forcing P/H. The following is Lemma 2.10 in (Cummings and Foreman, 1998).

Lemma 3.11. Assume π : P→ Q is a good projection and H is Q-generic. Define the ordering

≤∗ on P/H by

p ≤∗ q if and only if ∃r ≤ π(p) (r ∈ H ∧ Ext(p, r) ≤ q) .

Then (P/H,≤) and (P/H,≤∗) are forcing equivalent over V [H].

As an abbreviation, let Q0 � α+ 1 = Q0 � α ∗ F0(α) and Q′0 � α+ 1 = Q′0 � α ∗ F0(α). Like

above we have that Q0 � α+ 1 and Q′0 � α+ 1 produce the same generic extension.

Definition 3.12. Given α ∈ B and i ∈ {α, α+ 1} let G′i be Q′0 � i-generic over V . Define the

following:

1. R∗i = Q′0/G′i with the ordering ≤∗ defined above. Note that R∗i and Q0/G
′
i are forcing

equivalent.

2. P∗i = {p ∈ P0 : (p, 0, 0) ∈ R∗i } ordered as a suborder of P0. Note that in either case P∗i is

isomorphic to P0/P0,α.
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3. U∗i = {(0, q, f) ∈ Q′0 : (0, q, f) ∈ R∗i } ordered as a suborder of R∗i .

It is not too hard to see that the identity map is a projection from P∗i ×U∗i to R∗i . Further, like

the poset U defined above, we have that U∗i is sufficiently closed.

Lemma 3.13. U∗i is µ-closed in V [Q0 � i].

Proof. The proof is similar to Lemma 2.18 in (Abraham, 1983). Working in V [G′i], let θ < µ

and and τ : θ → U∗i be a decreasing sequence. If gα is the generic for P0,α induced by G′i, we

have that τ ∈ V [gα]. Let τ̇ be a P0,α-name for τ and let t ∈ G′i be such that t Q′0�i τ̇ is

a ≤∗-decreasing sequence in U∗i . It is enough to define a condition (0, q∗, f∗) in V such that

t Q′0�i (0, q∗, f∗) is a ≤∗-lower bound for τ̇ . For notation, let L(0, q, f) = q and R(0, q, f) = f .

Now, define dom(q∗) and dom(f∗) in the following way:

dom(q∗) = {β > i : ∃γ < θ,∃p ∈ P0,α p  β ∈ domL(τ̇(γ))}

dom(f∗) = {β > i : ∃γ < θ,∃p ∈ P0,α p  β ∈ domR(τ̇(γ))}.

Since P0,α is µ-cc, it follows that dom(q∗) and dom(f∗) both have size less than µ. We define

q∗ and f∗ by induction on β ∈ dom(q∗) ∪ dom(f∗) so that the statement †β holds:

†β holds ⇐⇒ Ext((0, q∗, f∗) � β, t) Q′0�β “for each γ < θ, τ̇(γ) � β ∈ Γβ.”

(Note that Γβ is the canonical name for Q′0 � β-generic object.)
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Towards that end, assume that we have defined q∗ � β and f∗ � β and that †β holds. Let

β′ > β be the next element of dom(q∗) ∪ dom(f∗). We need to define q∗(β) and f∗(β), as well

as show that †β′ holds. Arguing as in (Abraham, 1983) we show the following:

Claim 3.14. Ext((0, q∗, f∗) � β, t) Q′0�β (L(τ̇(γ))(β) : γ < θ) is decreasing in Add(µ, 1)V [P0,β ].

Claim 3.15. Ext((0, q∗, f∗) � β, t) Q′0�β (R(τ̇(γ))(β) : γ < θ) is decreasing in F0(β).

Then q∗(β) and f∗(β) are chosen to be names that are forced by Ext((0, q∗, f∗) � β, t) to

be lower bounds.

To show that †β′ holds, fix γ < θ and r ∈ Q′0 � β′ where r ≤ Ext((0, q∗, f∗) � β′, t) and, for

some (0, q, f) ∈ Q′0, r Q′�β′ τ̇(γ) = (0, q, f). Our goal is to show that r ≤ (0, q, f) � β′. Since

†β holds we know that Ext((0, q∗, f∗) � β, t)  τ̇(γ) ∈ Γβ, and since Ext((0, q∗, f∗) � β′, t) � β =

Ext((0, q∗, f∗) � β, t) it follows that r � β ≤ (0, q, f) � β. If we let r = (p′, q′, f ′) then we have

that p′ � β  q′(β) ≤ q∗(β) ≤ q(β) and further that r � β  f ′(β) ≤ f∗(β) ≤ f(β). This implies

r ≤ (0, q, f) � β′ as desired. The induction goes through and so this completes the definition of

(0, q∗, f∗).

Finally, since †β holds for each β ∈ dom(q∗)∪dom(f∗) it follows that Ext((0, q∗, f∗), t) Q′0

τ̇(γ) ∈ Γ for each γ < θ. This implies for each γ < θ that t  (0, q∗, f∗) ≤∗ τ̇(γ), as desired.

As an important consequence, if G is generic for Q0 and Gα+1 is generic for Q0 � α + 1

induced from G, then we may write V [G] ⊆ V [Gα+1][h
∗ × u∗] where h∗ is generic for P0/P0,α

and u∗ is generic for a µ-closed forcing in V [Gα+1].
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3.4 The forcing Rω

Here we define an iteration Rω of the forcing Q0 defined earlier in this chapter with the

forcings defined in Section 1.10.

Definition 3.16. Recalling the forcing R(τ, κ, V,W, F ) from Definition 1.75, we proceed in the

same manner as (Cummings and Foreman, 1998):

1. Let R1 = Q0.

2. Let Ḟ1 be a Q0-name for a function on λ1 such that Q0 Ḟ1(α) = F1(α) when F1(α) is

a Q0-name and Q0 Ḟ1(α) = 0 otherwise. Then define Q̇1 to be the canonical name for

R(µ, λ1, V, V [Q0], F
∗
1 ) where F ∗1 is the interpretation of Ḟ1 in V [Q0]. Let R2 = Q0 ∗ Q̇1.

3. Similarly, for n ≥ 2, let Rn = Q0 ∗ . . .∗Q̇n−1 and let Ḟn be a Rn-name for a function on λn

such that Rn Ḟn(α) = Fn(α) when Fn(α) is a Rn-name and Rn Ḟn(α) = 0 otherwise.

Then define Q̇n to be the canonical name for R(λn−2, λn, V [Rn−1], V [Rn], F ∗n) where F ∗n

is the interpretation of Ḟn in V [Rn].

4. Finally, let Rω be the inverse limit of (Rn : n < ω).

For Definition 3.16 to actually make sense, we have to show that after forcing with Q0 we

satisfy the hypotheses of Definition 1.75 to make R(µ, λ1, V, V [Q0], F
∗
1 ) valid.

Lemma 3.17. Let G be Q0-generic over V and g be the P0-generic induced by G. In V [G] we

have that

1. µ is regular and λ1 is inaccessible,
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2. Add(µ, λ1)V is µ+-cc and < µ-distributive.

Proof. Since |Q0| = λ0 < λ1, it follows that λ1 is still inaccessible in V [G]. To see that µ is

regular in V [G], assume otherwise and fix an unbounded sequence f : τ → µ with τ < µ such

that f ∈ V [G]. Since U is µ-closed, it follows that f ∈ V [g]. This contradicts Lemma 1.74

because µ is regular in V [g].

The second part of this follows from Lemma 1.79(1), where τ = µ, κ = λ0, Q = Q0,

and U as in the previous section. In particular we have that Add(µ, λ1)V is λ0-Knaster and

< µ-distributive in V [G]. Since V [G] |= λ0 = 2κ = µ+, the result follows.

It follows that the definition of R2 makes sense. Since the terms Q̇n for n ≥ 1 are simply

names for the factors in the original Cummings-Foreman paper, a proof by induction using the

results from Section 1.10 and the results from earlier in Chapter 3 show the following:

Lemma 3.18 (Lemma 4.3 in (Cummings and Foreman, 1998)). Let n ≥ 1. Let Rn = Q0 ∗

. . . Q̇n−1, let P1 = Add(µ, λ1)V , and let Pn = Add(λn−2, λn)V [Rn−1] for n ≥ 2. Further, let

U1 = U(µ, λ1, V, V [Q0], F
∗
1 ) and U̇n = Un(λn−2, λn, V [Rn−1], V [Rn], F ∗n) for n ≥ 2, where Un is

the poset U corresponding to Qn defined in Section 1.10. We abuse notation and will occasionally

denote κ = λ−2 and µ = λ−1.

1. In V [Rn], we have 2λi−2 = λi for i < n and the λi’s are still inaccessible for i ≥ n.

2. V [Rn] |= Qn is < λn−2-distributive, λn-Knaster, and |Qn| = λn. If n ≥ 2, then Qn is also

λn−3-closed in V [Rn].

3. All < λn−2-sequences of ordinals from V [Rn ∗ Q̇n] are in V [Rn−1 ∗ Ṗn−1].
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4. In V [Rn ∗ Q̇n], the cardinals κ, µ, and λi for i ≤ n− 2 are preserved.

5. V [Rn] |= “Qn is a projection of Pn×Un,” and we also have that V [Rn∗Ṗn] ⊆ V [Rn∗Q̇n] ⊆

V [Rn ∗ (Ṗn × U̇n)].

6. All λn−2-sequences of ordinals from V [Rn ∗ Q̇n] are in V [Rn ∗ Ṗn].

7. λn−1 is preserved in V [Rn ∗ Q̇n]. In V [Rn ∗ Q̇n], we have 2λi−2 = λi for i ≤ n.

8. Add(λn−2, η)V [Rn−1] is λn−1-Knaster in V [Rn ∗ Q̇n] for any ordinal η.

9. V [Rn ∗ Q̇n] |= “Add(λn−1, η)V [Rn] is < λn−1-distributive and λn-Knaster” for any ordinal

η.

To show that the cardinal arithmetic works out after forcing with Rω, we use the following

lemma.

Lemma 3.19 (Lemma 4.4 in (Cummings and Foreman, 1998)). Let Gω be Rω-generic and

X ∈ V [Gω] is a λn-sequence of ordinals. Then X ∈ V [G0][· · · ][Gn][Gn+1][gn+2], where G0 ∗

· · · ∗Gn ∗Gn+1 ∗ gn+2 is the initial segment of Gω which is V -generic for Q0 ∗ · · · ∗ Q̇n+1 ∗ Ṗn+2.

In the case where X ∈ V [Gω] is a µ-sequence of ordinals, it follows that X ∈ V [G0][g1].

Proof. For clarity, we show the case when n = 0. Since Rω/R4 is λ1-closed, it follows that

X ∈ V [G0][G1][G2][G3]. Since Q3 is < λ1-distributive, it follows X ∈ V [G0][G1][G2]. We

therefore have that X ∈ V [G0][G1][g2] since all λ0-sequences of ordinals in V [G0][G1][G2] are

in V [G0][G1][g2].

From the previous results we have the following:
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Lemma 3.20. After forcing with Rω we have the following cardinal structure:

1. cf(κ) = ω,

2. µ = κ+,

3. λn = κ+n+2 for all n,

4. 2κ = λ0,

5. 2µ = λ1,

6. 2λn = λn+2 for all n.

3.5 Tree property at κ++

In this section we prove that the tree property holds in V [Rω] at λ0 = κ++. Importantly,

we have to account for the presence of Q0. If T is a λ0-tree, it follows by Lemma 3.19 that T ∈

V [G0][G1][g2]. It is therefore enough to show that there is no λ0-Aronszajn tree in V [G0][G1][g2].

3.5.1 Lifting the embedding

Recall that λ = supλn. Fix an elementary embedding j : V → M with crit(j) = λ0 such

that j(λ0) > λ, λM ⊆M , and where j(F0)(λ0) is the canonical Q0-name for P2 ×U1. Observe

that j(F0)(λ0) is a Q0-name for a λ0-directed closed forcing in V [Q0].

Our first task is to lift the embedding from j : V →M to j : V [G0][G1][g2]→M [H0][H1][h2].

This argument is similar to the Six Stages listed in Section 4 of (Cummings and Foreman, 1998),

but is fleshed out for completeness, for clarity, and to emphasize the parts where we are using

the new factor Q0.
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Claim 3.21. There is a V [G0][g2]-generic filter g1 × u1 for P1 × U1 such that g1 × u1 × g2 is

generic for P1 × U1 × P2 over V [G0].

Proof. Since G0 ∗G1 ∗ g2 is V -generic for Q0 ∗Q1 ∗ P2, it follows that G1 and g2 are mutually

generic over V [G0]. So, in V [G0][g2][G1], we may consider the quotient forcing S of P1 × U1

and Q1. If g1 × u1 is generic for S over V [G0][g2][G1], then it’s also generic for P1 × U1 over

V [G0][g2]. The product lemma implies that g2 and g1 × u1 are mutually generic over V [G0],

and so g1 × u1 × g2 is generic for P1 × U1 × P2 over V [G0].

Claim 3.22. There is a H0 such that H0 is V [g1]-generic for j(Q0) with H0 � λ0 + 1 = G0∗(g2×

u1) and H0 collapses λ0 and λ1 to cardinality µ. Further, we may lift to j : V [G0]→M [H0].

Proof. In M , observe that j(Q0) � λ0 = Q0 and that elementarity implies j(Q0) projects onto

Q0 ∗ j(F0)(λ0) = Q0 ∗ (U1 × P2). Now, our choice of j implies P2 and U1 are really the forcings

defined in V [G0] (also using V as a parameter for U1). However, the chain condition of Q0 and

the closure of M imply P2 and U1 are the same in V [G0] as in M [G0] (using M instead of V in

the definition for U1).

Next, the projection given by elementarity is in V [G0][g1×u1× g2], so let H0 be V [G0][g1×

u1 × g2]-generic for j(Q0)/(G0 ∗ (g2 × u1)). Facts about projections tell us that H0 is V [g1]-

generic for j(Q0) and is generated from G0 ∗ (g2 × u1). Also, we get that H0 � λ0 + 1 =

G0 ∗ (g2 × u1).
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Further, we have that H0 � λ0 = G0. Since Q0 is λ0-cc, it follows that we may lift to

j : V [G0] → M [H0]. j(Q0) collapses all ordinals between j(µ) = µ and j(λ0) to µ, and since

λ0, λ1 < j(λ0), we have that H0 collapses λ0 and λ1 to µ.

Claim 3.23. There is a generic object h1 for j(P1) over V [G0][H0] so that j”g1 ⊆ h1. This

allows us to lift to j : V [G0][g1]→M [H0][h1].

Proof. Observe that elementarity and sufficient closure ofM implies that j(P1) = Add(µ, j(λ1))V .

Observe also that there is a projection of j(P1) onto P1. So, we may take an h1 generic for

j(P1)/g1 over V [G0][H0][g1]. This will satisfy j”g1 ⊆ h1 and let us lift the embedding j.

Claim 3.24. There is a generic object x1 for j(U1) over V [G0][H0][h1] such that j”u1 ⊆ x1.

Further, x1 and h1 are mutually generic over M [H0] by Easton’s Lemma, so h1 × x1 generates

a filter H1 generic for j(Q1) over M [H0]. We also have that j”G1 ⊆ H1, allowing us to lift to

j : V [G0][G1]→M [H0][H1].

Proof. Observe that in M [G0][g2 × u1], |u1| ≤ |U1| = λ1 < λ. Since M is closed under

λ sequences and Q0, P2, and U1 have chain conditions smaller than λ (simply by cardinality

considerations), it follows in V [G0][g2×u1] that λM [G0][g2 × u1] ⊆M [G0][g2 × u1]. This implies

that in j”u1 ∈M [H0] by choice of H0.

Now, elementarity implies that, in M [H0], j(U1) is j(µ+)-directed closed, where j(µ+) =

(µ+)M [H0] (note that µ is less than the critical point of j). We observed in Claim 3.22 that λ1

is collapsed to µ in M [H0], and so it follows that there is a lower bound t in j(U1) for j”u1.
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This allows us to fix a V [G0][H0][h0]-generic filter x1 for j(U1) with j”u1 ⊆ x1. The choice

of x1 and the product lemma implies that x1 × h1 is generic over M [H0]. By elementarity, we

have that j(P1) × j(U1) projects onto j(Q1), and so it follows x1 × h1 induces a filter H1 on

j(Q1) over M [H0]. Finally, to lift the embedding to j : V [G0][G1]→M [H0][H1] it is enough to

show that j“G1 ⊆ H1.

To see this, observe that if we fix (p, q, f) ∈ G1 then we may find (p′, q′, f ′) ≤ (p, q, f) such

that p′ ∈ g1 and (0, q′, f ′) ∈ u1. Since x1 × h1 induces the filter H1 it follows that (j(p′), 0, 0)

and (0, j(q′), j(f ′) are both in H1. This implies that (j(p′), j(q′), j(f ′)) = j((p′, q′, f ′)) ∈ H1 as

well. Since (p′, q′, f ′) ≤ (p, q, f) it follows as desired that j“G1 ⊆ H1.

Claim 3.25. There is a generic object h2 for j(P2) over V [G0][H0][h1][x1] such that j”g2 ⊆ h2.

This lets us lift to j : V [G0][G1][g2]→M [H0][H1][h2].

Proof. By elementarity notice that j(P2) = Add(j(λ0), j(λ2))M [H0]. It follows by choice of

j(F0)(λ0) that j“g2 ∈ M [H0]. This implies that there is a lower bound p ∈ j(P2) for j“g2.

Then any generic filter h2 containing the condition p allows us to lift the embedding j.

3.5.2 Pulling back the branch

Let T be a λ0-tree in V [G0][G1][g2]. An argument similar to Lemma 1.21 shows that T has

a branch b in M [H0][H1][h2]. Since M is closed under λ sequences and the Q0, Q1, and P2

have chain conditions smaller than λ (by cardinality considerations), we have in V [G0][G1][g2]

that λM [G0][G1][g2] ⊆M [G0][G1][g2]. It follows then that T ∈ M [G0][G1][g2]. We first start

by making some structural observations about the codomain of our lifted embedding j.
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Fact 3.26. M [H0][h1] = M [G0][g2×u1][H∗0 ][g1×h∗1], where H∗0 is a generic object for j(Q0)/(G0∗

(g2 × u1)) and h∗1 is a generic object for j(P1)/g1.

Proof. Follows since we may factor H0 as G0 ∗ (g2 × u1) ∗H∗0 and h1 as g1 × h∗1.

Fact 3.27. M [G0][g2 × u1][h1] = M [G0][g1 × u1 × g2][h∗1]

Proof. Follows since we may factor h1 as g1 × h∗1.

Fact 3.28. M [H0][h1] ⊆M [G0][h1×u1×g2][h∗0×u∗0], where h∗0 is a generic object for j(P0)/g0

and u∗0 is a generic object for U∗ which is µ-closed in M [G0].

Proof. Follows from Fact 3.26, Fact 3.27, and by Lemma 3.13 since there is a µ-closed forcing

U∗ such that j(P0)/g0 × U∗ projects onto j(Q0)/(G0 ∗ (g2 × u1)).

Next we analyze the forcings required to get from M [G0][G1][g2] to M [H0][h1].

Fact 3.29. In M [G0][G1][g2], the quotient forcing S = (P1 × U1)/Q1 is µ-closed.

Proof. By Lemma 1.76(7) we have that S is µ-closed in M [G0][G1]. Next, P2 is < λ0-distributive

in M [G0][G1] by Lemma 3.18(9), and so by an Easton’s Lemma variant we have that S is still

µ-closed in M [G0][G1][g2].

Fact 3.30. All < µ-sequences of ordinals from M [G0][h1 × u1 × g2] are in M [G0].

Proof. Assume that f ∈ M [G0][h1 × u1 × g2] is a sequence of ordinals of length θ < µ. By

Lemma 3.17 it follows that j(P1) is λ0-cc in M [G0]. Since P2×U1 is λ0-directed closed in M [G0]

it follows by Easton’s Lemma that P2×U1 is < λ0-distributive in M [G0][h1] and so f is in this
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model. By elementarity we have that j(P1) is < µ-distributive in M [G0] and so f ∈ M [G0] as

desired.

Fact 3.31. j(P1)/g1 is λ0-Knaster and < µ-distributive in M [G0][g1 × u1 × g2].

Proof. Fact 3.30 implies the distributivity part of the result, so it is enough to show Knasterness.

Since j(P1)/g1 is just adding Cohen subsets of µ we have by Lemma 1.79(1) that j(P1)/g1 is λ0-

Knaster in M [G0]. We use Lemma 1.78 to check that j(P1)/g1 remains Knaster in M [G0][g1 ×

u1 × g2]. Towards that end assume that X ∈ M [G0][g1 × u1 × g2] is a set of ordinals with

|X| < λ0. This implies that |X| ≤ µ and so X ∈ M [G0][g1]. Since P1 is λ0-cc in M [G0] we

know there is a Y ⊇ X in M [G0] such that |Y | < λ0 in this model. Further since Q0 is λ0-cc

we have that there is a Z ⊇ Y ⊇ X such that |Z| < λ0 in M . The result follows.

Claim 3.32. b ∈M [H0][h1]

Proof. We know that b ∈ M [H0][H1][h2]. Lemma 3.18(9) implies that P2 is < λ0-distributive

in V [G0][G1] and so j(P2) is < j(λ0)-distributive in M [H0][H1]. Since b has length λ0 it follows

that b ∈ M [H0][H1]. By Claim 3.24 we have that b ∈ M [H0][h1 × x1]. By Lemma 1.76(5) we

know U1 is ≤ µ-distributive in V [G0][g1]. Elementarity implies that j(U1) is ≤ µ-distributive

in M [H0][h1]. By elementarity we have that λ0 is collapsed to µ in M [H0][h1] and so it follows

that b ∈M [H0][h1].

Claim 3.33. b ∈M [G0][h1 × u1 × g2][u∗0]

Proof. Let T = j(P0)/g0. We have to argue that T does not add any branches. By Fact 3.28 and

Claim 3.32, we know b ∈M [G0][h1 × u1 × g2][u∗0 × h∗0]. Forcing with U∗ in M [G0][h1 × u1 × g2]
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collapses λ0 to µ, and so by Lemma 1.14 it is enough to argue that M [G0][h1 × u1 × g2][u∗0] |=

T2 is µ-cc. We will work backwards and show that this follows from Lemma 1.73(4). First

observe that U∗ is µ-closed in M [G0][h1 × u1 × g2] because all κ-sequences of elements of

M [G0][h1 × u1 × g2] are in M [G0]. It follows by Easton’s Lemma that it is enough to show

M [G0][h1 × u1 × g2] |= T2 is µ-cc.

Next, because U1×P2 is λ0-directed closed inM [G0] and j(P1) is λ0-cc inM [G0], it follows by

Easton’s Lemma that u1×g2 is generic for a µ-distributive forcing over M [G0][h1]. It is therefore

enough to show that M [G0][h1] |= T2 is µ-cc because an antichain in M [G0][h1× u1× g2] of T2

with size µ will be in M [G0][h1] by distributivity.

Observe that h1 and G0 are mutually generic, and so we have that M [G0][h1] = M [h1][G0].

It is enough then to show that M [h1][g0 × u0] |= T2 is µ-cc because P0 × U projects onto Q0.

Towards this end, observe that Lemma 1.73(4) implies that MP0
T2 is µ-cc. This implies

that M |= P0 ∗ T2 is µ-cc. j(P1) is µ-closed in M , and so M [h1] |= P0 ∗ T2 is µ-cc. Finally,

U is µ-closed in M [h1], so Easton’s Lemma implies that M [h1][u0] |= P0 ∗ T2 is µ-cc. So

M [h1][u0 × g0] |= T2 is µ-cc, completing the claim.

Claim 3.34. b ∈M [G0][h1 × u1 × g2]

Proof. Notice that forcing with U∗ is µ-closed in M [G0][h1×u1×g2] by Fact 3.30 and that 2κ =

λ0 in M [G0][h1×u1×g2]. It follows by Silver’s branch lemma that b ∈M [G0][h1×u1×g2].

Claim 3.35. b ∈M [G0][g1 × u1 × g2]
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Proof. j(P1)/g1 is λ0-Knaster in M [G0][g1 × u1 × g2] by Fact 3.31, and T is a tree of height

λ0 in this model. It follows that forcing with T will not add any new branches, and so b ∈

M [G0][g1 × u1 × g2].

Claim 3.36. b ∈M [G0][G1][g2]

Proof. By Fact 3.29 and since 2κ = λ0 in M [G0][G1][g2], we have by Silver’s branch lemma that

forcing with S to get M [G0][g1×u1× g2] does not add any branches. So b ∈M [G0][G1][g2].

3.6 Tree property at κ+n for n ≥ 3

The argument when n ≥ 3 is almost exactly the same as the argument in (Cummings and

Foreman, 1998). For brevity, let Vn := V [G0][G1] · · · [Gn] and Mn := M [G0][G1] · · · [Gn]. The

main difference between our iteration and the iteration in the Cummings-Foreman paper is

the first factor Q0, and one of the main differences between our argument from the previous

section and their argument was Claim 3.33. When n ≥ 3, though, we may immediately lift our

embedding to j : Vn−3 →Mn−3 because crit(j) = λn and |Rn| = λn−1. This avoids the need for

Claim 3.33 because we no longer have pull a branch from M [· · ·H0 · · · ] back to M [· · ·G0 · · · ],

and so we no longer have to deal with the generic objects h∗0 and u∗0.

3.7 Generalization of Sinapova’s Forcing

In this section and the following section we use the framework developed in (Sinapova, 2016)

to argue that the tree property holds at κ+. Much of the argument is the same, so we aim

to describe the relevant forcing, prove some relevant structural properties about that forcing,

and summarize how the argument in (Sinapova, 2016) is done in this particular circumstance.
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Consider the µ-closed forcing Q = U × P1, where P1 = Add(µ, λ1)V and U are the conditions

of the form (0, 0, q, f) ∈ Q0 with the induced suborder from Q0. One of the main differences

between (Sinapova, 2016) and our situation is the presence of the poset P1.

Definition 3.37. Let ṗ be a name for a condition in İ. Define Rṗ to have underlying set Q0×P1

with the following (modified) ordering:

Declare that (f1, ṗ1, r1, g1, a1) ≤ṗ (f2, ṗ2, r2, g2, a2) exactly when

1. a1 ≤P1 a2

2. (f1, ṗ1) ≤P0 (f2, ṗ2)

3. dom(r1) ⊇ dom(r2) and for every α ∈ dom(r2), we have that

(f1, ṗ) � α P0,α r1(α) ≤ r2(α)

4. dom(g1) ⊇ dom(g2) and for every α ∈ dom(g2), we have that

(f1, ṗ, r1, g1) � α Q0�α g1(α) ≤ g2(α).

Lemma 3.38. P0 ×Q projects to Rṗ, witnessed by the identity.

Proof. It is straightforward to see that the identity map is order preserving. To show the

other requirement, suppose that (f1, ṗ1, r1, g1, a1) ≤ṗ (f2, ṗ2, r2, g2, a2). We define r by setting

dom(r) = dom(r1) and define r(α) by mixing names so that

P0,α r(α) ≤ r2(α) and (f1, ṗ) � α P0,α r(α) = r1(α).
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More specifically, we may let

r(α) = {〈τ, q〉 : q ≤ 〈f1, ṗ〉 � α and q P0,α τ ∈ r1(α)} ∪

{〈τ, q〉 : q ⊥〈f1, ṗ〉 � α and q P0,α τ ∈ r2(α)}.

Next, by induction, we define g(α) by induction so that

(0, 0, r, g) � α Q0�α g(α) ≤ g2(α) and (f1, ṗ, r, g) � α Q0�α g(α) = g1(α).

The construction during the induction step is the similar to the construction of r(α) above.

But then, by definition, we have as desired that

1. (f1, ṗ1, r, g, a1) ≤P0×Q (f2, ṗ2, r2, g2, a2) and

2. (f1, ṗ1, r, g, a1) ≤ṗ (f1, ṗ1, r1, g1, a1).

Lemma 3.39. Let s∗ = (0, ṗ, 0, 0, 0) ∈ Q0 × P1. Then Rṗ/s∗ = {s ∈ Rṗ| s ≤ṗ s∗} projects to

(Q0 × P1)/s
∗ = {s ∈ Q0 × P1| s ≤Q0×P1 s

∗} witnessed by the identity.

Proof. The proof is similar to the previous lemma. Since the last three coordinates of s∗ are

trivial, notice that s ≤ṗ s∗ iff s ≤Q0×P1 s
∗. The identity is order preserving, so it is enough to

check the nontrivial condition for projections:

Suppose (f1, ṗ1, r1, g1, a1) ≤Q0×P1 (f2, ṗ2, r2, g2, a2). Define r(α) and g(α) similar to the

previous lemma so that the following hold:
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• P0,α r(α) ≤ r2(α),

• (f1, ṗ1) � α P0,α r(α) = r1(α),

• (0, 0, r, g) � α Q0�α g(α) ≤ g2(α), and

• (f1, ṗ1, r, g) � α Q0�α g(α) = g1(α).

It follows as desired that

1. (f1, ṗ1, r, g, a1) ≤ṗ (f2, ṗ2, r2, g2, a2) and

2. (f1, ṗ1, r, g, a1) ≤Q0×P1 (f1, ṗ1, r1, g1, a1).

Definition 3.40. Let A be A-generic over V . Let p = ṗA. Define Qp to have underlying set Q

with the ordering (0, 0, q1, f1, p1) ≤Qp (0, 0, q2, f2, p2) exactly when

1. p1 ≤P1 p2

2. dom(q1) ⊇ dom(q2) and dom(f1) ⊇ dom(f2)

3. there is an a ∈ A such that for every α ∈ dom(q2) and for every α ∈ dom(f2), we have

that

(a) (a, ṗ) � α P0,α q1(α) ≤ q2(α)

(b) (a, ṗ, q1, f1) � α Q0�α f1(α) ≤ f2(α)

Lemma 3.41. Qp is κ-closed

Proof. Assume that {(0, 0, qi, fi, pi) : i < θ} is decreasing for θ < κ. For each i < θ there is

an ai ∈ A such that (3) holds in the above definition. Since A is κ-directed closed, it follows
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that a =
⋃
i<θ ai ∈ A. Since P1 is µ-closed, we may let p be a lower bound of the pi’s. Next,

observe that for each α and each i < j < θ, we have (a, ṗ) � α P0,α qj(α) ≤ qi(α). Since

the qi(α)’s are forced to be in a µ-closed forcing, it follows that there is a name q(α) such

that (a, ṗ) � α P0,α q(α) ≤ qi(α) for each i < θ. Finally, define f(α) by induction on α so

that (a, ṗ, q, f) � α Q0�α f(α) ≤ fi(α). This is possible since the fi(α)’s are forced to be in a

µ-closed forcing as well. Then, (0, 0, q, f , p) is a lower bound for the initial decreasing sequence,

as desired.

Lemma 3.42. Rp is isomorphic to A ∗ (İ× Q̇p)

Proof. In V [A], we argue that π : Rp/A→ I×Qp defined by (f1, ṗ1, r1, g1, a1) 7→ (ṗA1 , r1, g1, a1)

is a dense embedding. Since π is onto, it is enough to show that π is order preserving and that

s⊥Rp/As
′ implies π(s)⊥I×Qpπ(s′).

Assume that (f1, ṗ1, r1, g1, a1) ≤Rp/A (f2, ṗ2, r2, g2, a2). Since (f1, ṗ1) ≤P0 (f2, ṗ2) and f1 ∈

A, it follows that ṗA1 ≤I ṗ
A
2 . It follows in turn that (0, 0, r1, g1, a1) ≤Qp (0, 0, r2, g2, a2).

Next, assume that π(f1, ṗ1, r1, g1, a1) and π(f2, ṗ2, r2, g2, a2) were compatible in I × Qp.

Since π is onto, we may let π(f, q̇, r, g, a) witness this. Let a1 ∈ A witness that (0, 0, r, g, a) ≤Qp

(0, 0, r1, g1, a1) and a2 ∈ A witness that (0, 0, r, g, a) ≤Qp (0, 0, r2, g2, a2). Let a ∈ A be such

that a ≤ a1, a2. By further extending a, we may assume that a A q̇ ≤ ṗ1, ṗ2. Finally, let

f ∈ A extend a, f1, and f2. It follows that (f, q̇, r, g, a) witnesses that (f1, ṗ1, r1, g1, a1) and

(f2, ṗ2, r2, g2, a2) are compatible in Rp/A. Therefore, π is a dense embedding.
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3.7.1 Splittings

One of the main technical tasks in (Sinapova, 2016) is proving Proposition 3.4, which is

crucial in defining the branch in the forcing extension by the Mitchell poset. In this section we

give the relevant definitions and summarize the results necessary to prove this result. First we

define the following generic objects:

1. G0 × g1 which is Q0 × P1-generic,

2. A which is A-generic induced from G0 × g1,

3. I which is I-generic over V [A] induced by G0 × g1,

4. G∗ which is (P0 ×Q)/(G0 × g1)-generic,

5. Gq which is Rq̇/(G0 × g1)-generic induced by G∗, where q ∈ I,

6. Q which is Q-generic induced by G∗, and

7. Qp which is Qp-generic over V [A] induced by G∗, where p ∈ I.

Given a µ-tree T in V [G0][g1] we may consider a variety of names for this tree. We let τ ∈

V [A] be an (Q0× P1)/A-name for the tree. Further, this name induces an I-name Ṫ ∈ V [A][Q]

for the tree. By the coherence of these names we know that q V [A][Q]
I u <Ṫ v if and only if

there is an a ∈ A and r ∈ Q where (a, q̇, r) V [A]
(Q0×P1)/A

u <τ v.

Let ḃ ∈ V [A] be a (P0 × Q)/A-name for the branch given by (Neeman, 2009) where we

assume that

1 V [A]
I×Q ḃ is a branch through τ.
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The following are Definitions 3.2 and 3.3 in (Sinapova, 2016), respectively.

Definition 3.43. Let h be a stem. Say there is an h-splitting at a node u if there is a p ∈ I

with stem(p) = h and r ∈ Q such that (p, r) V [A]
I×Q u ∈ ḃ and nodes u1, u2 of higher levels and

conditions r1, r2 such that for k = 1 or 2,

1. rk ≤Q r, rk ∈ Qp,

2. (p, rk) 
V [A]
I×Q uk ∈ ḃ, and

3. p V [A][Q]
I u1⊥Ṫu2.

Definition 3.44. Let h be a stem. Say that †h holds if in V [A][Q] there is an unbounded

J ⊆ µ, an ordinal ξ < κ, and (pα|α ∈ J), where each pα ∈ I is a condition with stem h. Further

by setting uα = (α, ξ) we have:

1. for all α < β from J , pα ∧ pβ I uα <Ṫ uβ;

2. for all α ∈ J , pα I uα ∈ ḃ.

Let αh = sup{α < µ : there is an h-splitting at Levα(T )}. The key lemma involving †h is

the following:

Lemma 3.45. If h is any stem where †h holds then αh < µ.

The proof of this lemma amounts to inductively applying a splitting lemma in V [A][Q] to

construct conditions (pσ, rσ, vσ : σ ∈ κ<ωω ) so that for every σ ∈ κ<ωω ,

1. (pσ, rσ) ∈ I×Q,



84

2. vσ ∈ T ,

3. stem(pσ) = h and rσ ∈ Qpσ ,

4. (pf�n, rf�n : n < ω) is a decreasing sequence for every f ∈ κωω,

5. (pσ_i, rσ_i) I×Q vσ_i ∈ ḃ for every i < κω,

6. pσ_i ∧ pσ_j I vσ_i ⊥Ṫ vσ_j for every i < j.

A proof of Lemma 3.45 and of this splitting lemma is done in detail in Section 4.3 in a more

complicated setting.

3.8 Tree property at κ+

In this section we finish the result by proving the following:

Theorem 3.46. In V [Gω], the tree property holds at κ+.

Proof. Assume that T is a µ-tree in V [Gω]. Working in V [R3], the forcing Rω/R3 is λ0-closed

and so T ∈ V [G0][G1][G2]. Q2 is < λ0-distributive in V [G0][G1], and so T ∈ V [G0][G1]. It

follows that T ∈ V [G0][g1], where g1 is P1-generic over V [G1]. So, it is enough to show that

there is no µ-Aronszajn tree in V [G0][g1]. Assume for the sake of contradiction that T is a

µ-Aronszajn tree in V [G0][g1].

By construction of Q0 we know that Q0 is the projection of P0 × U, where U is µ-directed

closed in V . Since P1 is µ-directed closed in V , we also have that the product Q = U × P1 is

µ-closed. Then, if we let (A ∗ I)×Q be P0×Q-generic, we know from the previous section that

µ has the tree property in V [(A ∗ I)× Q].
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In order to define a branch for T in V [G0][g1], we use Lemma 3.45 to set α = sup{αh| †h

holds}. By counting the number of Prikry stems we have α < µ. Next, fix u ∈ Levα(T ) and

s∗ ∈ G∗ with s∗ (P0×Q)/A u ∈ ḃ. In V [G0][g1], define

d = {v| u <T v and there is an s ∈ G0 × g1 such that s ≤P0×Q s
∗ and s (P0×Q)/A v ∈ ḃ}.

It is enough to show that the downwards closure of d is a branch through T . Since d is

unbounded, this amounts to showing d ∩ Levβ(T ) is a singleton for each β ≥ α. We refer the

reader to Lemma 4.21 for a proof given in a slightly different but more complicated setting.



CHAPTER 4

ITP AT κ+ AND κ++

In this chapter we show that after forcing with the poset R from (Sinapova, 2016), ITP

holds at κ+ and κ++ with κ is singular strong limit. Since the Prikry forcing is interleaved

with the Mitchell forcing, the argument for ITP at κ++ is more straightforward and is similar

the proof of Proposition 1.60 above. The argument for ITP at κ+ is more involved and requires

generalizing an argument from (Sinapova, 2016). In particular we give an analysis of a family

of intermediate models that allow us to define a branch in the model V [R]. This analysis is an

application of the p-term forcing framework developed in Section 1.7.

Regarding large cardinal assumptions, in the original paper Sinapova assumed the existence

of an ω-sequence of supercompact cardinals with a weakly compact above them. Since our goal

is ITP at κ++ we instead will assume that the weakly compact cardinal is in fact supercompact.

We note though that the same hypothesis of an ω-sequence of supercompacts is used to get

ITP at κ+.

4.1 Sinapova’s Forcing

We give the definition of the relevant forcings found in (Sinapova, 2016) that will be used

for the remainder of the chapter.
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Definition 4.1. In V let (κn : n < ω) be an increasing sequence of indestructibly supercompact

cardinals with κω = supn κn, κ = κ0, and µ = κ+ω . Let λ > µ be a supercompact cardinal. Let

P = A ∗ İ and Pα = Aα ∗ İα for α ∈ B. Define R to be of the form (f, ṗ, r) where:

1. (f, ṗ) ∈ P,

2. r is a partial function with dom(r) ⊆ B, |dom(r)| < µ, and

3. for each α ∈ dom(r), r(α) is a Pα-name for a condition in Add(µ, 1)V [Pα]

The ordering on R is the natural one.

From (Sinapova, 2016), (Unger, 2013), and (Cummings and Foreman, 1998) we have the

following:

Theorem 4.2. In V [R] we have that

1. κ is singular strong limit with cf(κ) = ω,

2. κ+ = µ,

3. 2κ = κ++ = λ, and

4. the tree property holds at κ+ and κ++.

4.2 ITP at κ++

In this section we prove the following:

Theorem 4.3. After forcing with R, ITP holds at κ++.

The argument is similar in spirit to the proof of Proposition 1.60 that ITP holds at ℵ2 after

forcing with the Mitchell Forcing assuming a supercompact.
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Proof. Assume that θ ≥ κ++. Our goal is to show that ITP (κ++, θ) holds after forcing with

R. Let G be R-generic over V and let D be a thin Pκ++(θ)-list in V [G]. The plan is to argue

that D has an ineffable branch in some outer model V [G∗] and then pull this back to V [G].

Towards this end, let j : V → M be a θ-supercompactness embedding with crit(j) = λ. Since

j(R) projects onto R, we may lift this to j : V [G]→M [j(G)].

Lemma 4.4. D has an ineffable branch b in M [j(G)].

Proof. As in the proof of Proposition 1.60 above, we technically can only show that D is a

cofinal branch in M [j(G)]. However, this is enough in order to pull back the branch. As before,

after we pull the branch back to M [G] it follows by standard arguments that the branch is

ineffable.

We have that j(R) is a projection of R ∗ (P∗ ×Q∗) where P∗ = j(P)/P and Q∗ is µ-closed.

If b is the branch for D, then we have that b ∈ M [G][P ∗][Q∗] where P ∗ and Q∗ are suitable

generics for P∗ and Q∗, respectively. We pull b back to V [G] by first arguing that it is sufficiently

approximated:

Lemma 4.5. b is thinly κ++-approximated in M [G].

Proof. The proof is the same as the Claim 1.63 from Proposition 1.60.

Lemma 4.6. b is µ-approximated in M [G][Q∗].

Proof. This follows because Q∗ is µ-closed in M [G] and so Pµ(θ)M [G][Q∗] ⊆ Pµ(θ)M [G].

Now we are able to pull back b to V [G]:
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Lemma 4.7. b ∈M [G][Q∗].

Proof. Follows since b is µ-approximated in M [G][Q∗] and since (P∗)2 is µ-cc by Lemma 1.73.

Lemma 4.8. b ∈M [G].

Proof. Since Q∗ is µ-closed and 2κ = λ inM [G], we have that Q∗ has the thin κ++-approximation

property in M [G]. The result follows since b is thinly κ++-approximated in M [G].

Finally, observe that S = {x ∈ Pκ++(θ) : b ∩ x = dx} is defined using b and so S ∈M [G] as

well. So S witnesses that b is an ineffable branch in V [G], as desired.

4.3 ITP at κ+

We need to show that ITP (κ+, θ) holds for θ ≥ κ+ after forcing with R. Adopting notation

similar in spirit to Chapter 3, we define Q as the µ-directed closed forcing of all conditions

(0, 0, r) ∈ R with the induced ordering. From this we define R∗ = P × Q with the product

ordering. Next, given a name ṗ for a condition İ, define Rṗ to be the poset with same underlying

set as R but with the following ordering: (a, ṗ1, b) ≤ṗ (a′, ṗ2, b
′) if and only if

1. (a, ṗ1) ≤ (a′, ṗ2), and

2. dom(b′) ⊇ dom(b) and (a, ṗ) � α Pα r1(α) ≤ r2(α) for each α ∈ dom(b).

Arguments from (Sinapova, 2016) (with appropriate lemma references) show the following:

1. (Lemma 2.3) The identity map is a projection from R∗ to Rṗ.
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2. (Lemma 2.7) For an A-generic filter A, we have that there is a forcing Qṗ such that Rṗ is

isomorphic to A ∗ (İ× Q̇p).

Similar to Subsection 3.7.1 we define the following generic objects:

1. G which is R-generic,

2. A which is A-generic induced from G,

3. I which is I-generic over V [A] induced by G,

4. G∗ which is R∗/G-generic,

5. Gq which is Rq̇/G-generic induced by G∗, where q ∈ I,

6. Q which is Q-generic induced by G∗, and

7. Qp which is Qp-generic over V [A] induced by G∗, where p ∈ I.

Lemma 4.9. Pµ(θ)V [A] = Pµ(θ)V [A][Q]

Proof. Note that Q is µ-closed in V and A is κ+-cc (and therefore µ-cc) in V . Easton’s Lemma

implies that Q is < µ-distributive in V [A], giving the result.

Lemma 4.10. Without loss of generality we may assume that our thin list is indexed by

Pµ(θ)V [A].

Proof. It suffices to show that Pµ(θ)V [A] is stationary in V [G]. To see this, observe first that

Pµ(θ)V [A][Q] is stationary in V [G∗] because I is µ-cc in V [A][Q]. By the previous lemma and

since stationarity is downwards absolute, we have that Pµ(θ)V [A] is stationary in V [G].
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So going forward we will denote Pµ(θ)V [A] as Pµ(θ). Let D = (dx : x ∈ Pµ(θ)) be a thin list

in V [G] and (ḋx : x ∈ Pµ(θ)) be an I-name for the thin list in V [A][Q].

Definition 4.11. For z ∈ Pµ(θ), define Cz = {x | z ⊆ x}.

Now, in (Cummings et al., 2020a) they show that ITP holds at κ+ in V [A ∗ İ]. Since Q is

µ-directed closed, we know that each κn is still supercompact in V [Q] and so the same argument

gives that ITP holds at κ+ in V [Q][A ∗ İ]. This allows us to show something stronger:

Lemma 4.12. In V [A][Q], there is a stationary set T ⊆ Pµ(θ), there are z∗ ∈ Pµ(θ) and

conditions (pz : z ∈ T ∩ Cz∗) with stem h, such that

1. if z∗ ⊆ y ⊆ z with y, z ∈ T , then py ∧ pz I ḋy = ḋz � y, and

2. there is some y ∈ T such that py forces {z : pz ∈ İ} is stationary.

Proof. Working in V [A][Q] let ḃ be an I-name for the ineffable branch. Since ḃ is forced to be

ineffable it follows that S = {x : ∃p ∈ I, p  ḃ � x = ḋx} is stationary. For each x ∈ S fix

some px ∈ I witnessing this. Since there are κω-many stems there is a stationary T ⊆ S and a

stem h such that px has stem h for each x ∈ T . Since conditions in I with the same stem are

compatible we have that (1) holds. Further (2) holds because I is µ-cc in V [A][Q].

In the original paper they actually proved Lemma 4.12 directly in V [A] and used it to define

a branch in V [A ∗ İ]. We therefore note that the existence of an ineffable branch in V [Q][A ∗ İ]

and Lemma 4.12 are equivalent.

In what follows, we use the following conventions. Throughout the remainder of the section,

 may refer to either A
I×Q or A×Q

I or A×Qp
I .
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• For x ∈ Pµ(θ), say that p  x ∈ ḃ if and only if p  ḃ � x = ḋx.

• For x, y ∈ Pµ(θ), say that p  x⊥y if and only if p  “there is no z ⊇ x, y such that ḋz �

x = ḋx and ḋz � y = ḋy.”

Let b be the ineffable branch in V [G∗] given by Lemma 4.12. Let ḃ ∈ V [A] be an R∗/A-name

for the ineffable branch. In particular, assume that

1 V [A]
I×Q “ḃ is an ineffable branch witnessed by Ṫ .”

Definition 4.13. Given a stem h, †h holds if in V [A][Q], there is a stationary set T , there are

z∗ ∈ Pµ(θ) and conditions (pz : z ∈ T ∩ Cz∗) with stem h, such that

1. if z∗ ⊆ y ⊆ z with y, z ∈ T , then py ∧ pz I ḋy = ḋz � y, and

2. there is some y ∈ T such that py forces {z : pz ∈ İ} is stationary.

More precisely, it is shown in (Cummings et al., 2020a) that the following holds:

Lemma 4.14. By density, any stem can be extended to a stem h for which †h holds.

Definition 4.15. Given a stem h, there is an h-splitting at x ∈ Pµ(θ) if there are (p, r) ∈ I×Q,

x0, x1 ⊃ x, and r0, r1 extending r so that for i < 2,

1. stem(p) = h,

2. (p, r) V [A]
I×Q x ∈ ḃ,

3. ri ∈ Qp,
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4. (p, ri) 
V [A]
I×Q xi ∈ ḃ,

5. p V [A][Q]
I x0⊥x1.

Definition 4.16. In V [A][Q], given a stem h such that †h holds, define Eh to be all x ∈ Pµ(θ)

such that (p, r) V [A]
I×Q x ∈ ḃ for some (p, r) ∈ I× Q with stem(p) = h.

The following lemma is a generalization of Proposition 3.4 in (Sinapova, 2016). The proof

is similar in spirit, although the conventions x ∈ ḃ and x⊥y have different meanings here.

Lemma 4.17. For a stem h, define Bh = {x | there is an h-splitting at x}. Then, in V [A][Q],

†h implies there is some z such that Bh ∩ Cz is empty.

Proof. Fix your favorite stem h and assume the lemma is false. Then we may find r ∈ Q forcing

Bh∩Cz 6= ∅ for each z, and that Ṫ and (ṗz : z ∈ Ṫ ) are Q-names in V [A] witnessing †h. (Note:

technically the definition of †h requires an additional z∗, but we omit this for simplicity.) Our

first goal is to prove the following Splitting Lemma:

Lemma 4.18 (Splitting). Assume stem(q) = h and r ≤Q r with r ∈ Qq. Then there is a

sequence (pi, ri, xi : i < κω) where (pi : i < κω) are conditions with stem h, and for i < κω,

1. xi ∈ Pµ(θ),

2. (pi, ri) ≤I×Q (q, r),

3. ri ∈ Qpi,

4. (pi, ri) 
V [A]
I×Q xi ∈ ḃ, and

5. for j 6= i, pi ∧ pj V [A][Q]
I xi⊥xj.
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Proof of Lemma 4.18. Start by letting Q′ be Q/Qq-generic over V [A][Qq] where r ∈ Q′. We

continue in V [A][Q′] where Eh, T , and (pz : z ∈ T ) denote the interpretations of these names in

V [A][Q′]. We need to prove the following:

Claim 4.19. For x ∈ Eh there are p ≤ q with stem h, r0, r1 ∈ Qp, and x0, x1 ⊃ x such that for

i < 2,

1. (p, ri) 
V [A]
I×Q xi ∈ ḃ, and

2. p V [A][Q′]
I “x0⊥x1 and ḋx0 � x = ḋx = ḋx1 � x.”

Proof of claim. Let (p, t) ∈ I × Q′ witnessing that x ∈ Eh. In other words, stem(p) = h and

(p, t) V [A]
I×Q x ∈ ḃ. By our hypothesis, we know that there is some y ∈ Bh ∩ Cx. By definition,

we may find some (p′, t′) ∈ I × Q′ where stem(p′) = h witnessing this, along with conditions

r0, r1 extending t′, and x0, x1 ⊃ y such that for i < 2,

• ri ∈ Qp′ ,

• (p′, ri) 
V [A]
I×Q xi ∈ ḃ,

• p′ V [A][Q′]
I “x0⊥x1 and ḋx0 � y = ḋy = ḋx1 � y.”

We may assume that p′ extends p and q because they have the same stem. Observe that

p V [A][Q′]
I ḋy � x = ḋx, and so it follows readily that p′, x0, and x1 are as required.

Continuing with the proof of the lemma, first assume without loss of generality that r

satisfies the conclusion of the claim. It follows in V [A][Qq] that there is some club C ⊆ Pµ(θ)
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where, for x ∈ C and u ⊂ x, if u is forced into Ėh by a condition extending r, then there are

u ⊂ v0, v1 ⊂ x witnessing the conclusion of the claim for u.

Working in V [A][Q′] construct terms (pi, zi, xi, ti : i < κω) such that for each i < κω:

1. zi ∈ T ,

2. xi ∈ C and zi ⊂ xi ⊆ zi+1.

3. ti ∈ Q′, ti ≤Q r, and ti 
V [A]
Q “zi ∈ Ṫ and pi = ṗzi .”

This sequence is in V [A] by Easton’s Lemma. Further we have that

1. pi ∧ pj I ḋzi = ḋzj � zi for i < j, and

2. (pi, ti) I×Q zi ∈ ḃ and so ti Q zi ∈ Ėh for i < κω.

Working in V [A][Qq], for each i < κω, find qi extending q and pi where stem(qi) = h, and sets

vi0, v
i
1 ⊂ xi ⊆ zi+1 such that for some ri0, r

i
1 ∈ Qqi :

1. (qi, r
i
0) 

V [A]
I×Q vi0 ∈ ḃ,

2. (qi, r
i
1) 

V [A]
I×Q vi1 ∈ ḃ, and

3. qi I “vi0⊥vi1 and ḋvi1
� zi = ḋzi = ḋvi2

� zi”.

To do this we have to have that zi ⊂ xi ⊆ zi+1 and xi ∈ C. Using the Prikry property, fix

pi ≤∗ qi ∧ pi+1 deciding both “ḋzi+1 � vi0 = ḋvi0
” and “ḋzi+1 � vi1 = ḋvi1

”. Since pi forces vi0⊥vi1,

without loss of generality assume that “ḋzi+1 � vi0 = ḋvi0
” is decided to be false. Let ri = ri0 and

vi = vi0. Finally, for i < j < κω, it follows that

pi ∧ pj I ḋvj � vi 6= ḋvi .



96

By construction we know that vi ⊆ vj , and so this implies that pi ∧ pj I vi⊥vj . The

sequence (pi, ri, vi : i < κω) yields the splitting lemma.

Going forward, we work in V [A][Q] and repeatedly apply the splitting lemma to construct

a sequence (pσ, rσ, xσ : σ ∈ κ<ωω ) so that for every σ ∈ κ<ωω ,

1. (pσ, rσ) ∈ I×Q and xσ ∈ Pµ(θ),

2. stem(pσ) = h, rσ ∈ Qpσ , and rσ ≤ r,

3. ((pf�n, rf�n) : n < ω) is a ≤I×Q-decreasing sequence for f ∈ κωω,

4. (pσ, rσ) V [A]
I×Q xσ ∈ ḃ,

5. pσ_i ∧ pσ_j V [A][Q]
I xσ_i⊥xσ_j for distinct i, j < κω.

Now, define x =
⋃

σ∈κ<ωω

xσ ∈ Pµ(θ) and fix some x∗ ⊇ x with 1 V [A][Q]
I x∗ ∈ ḃ. For each

f ∈ κωω define pf =
∧
n<ω

pf�n ∈ I. (Note that pf has stem h.) Further, find rf ∈ Qpf with

(pf , rf ) ≤I×Q (pf�n, rf�n) for n < ω. Using this, find (p∗f , r
∗
f ) ≤I×Q (pf , rf ) and sf ∈ Pµ(θ) such

that r∗f ∈ Qpf and (p∗f , r
∗
f ) V [A]

I×Q ḋx∗ = sf = ḃ � x∗. Since our list is thin, it follows that there

are distinct f, g ∈ κωω such that s = sf = sg and stem(p∗f ) = stem(p∗g). Let n be the least value

such that i = f(n) 6= g(n) = j.

Finally, set p = p∗f ∧ p∗g and observe that r∗f , r
∗
g ∈ Qp. Then, if I∗ is I-generic over V [A][Qp]

with p ∈ I∗, we have in V [A][Qp][I
∗] that

• r∗f Q/Qp ḋx∗ = s and xσ_i ∈ ḃ,

• r∗g Q/Qp ḋx∗ = s and xσ_j ∈ ḃ, and
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• xσ_i⊥xσ_j .

However, this is a contradiction; indeed, the first bullet point implies that dxσ_i = dx∗ ∩ xσ_i,

the second bullet point implies that dxσ_j = dx∗ ∩ xσ_j , and both of these combined together

imply that the third bullet point is false.

For each h such that †h holds, let zh be such that Bh ∩Czh is empty. Define a =
⋃
{zh : †h

holds} ∈ Pµ(θ). Find s∗ ∈ G∗ and z ⊃ a such that z ∈ Pµ(θ) and s∗ R∗/A ḃ � z = ḋz. In

V [G], define

d =
⋃
{dv ∈ Pµ(θ) : v ⊃ z and (∃t ∈ G) t ≤R∗ s

∗, t R∗/A v ∈ ḃ}.

Lemma 4.20. If s ∈ R∗/G, then there is p ∈ I such that s ∈ Gp.

Proof. This is Lemma 3.8 in (Sinapova, 2016) and is similar to the proof of Lemma 1.50.

Lemma 4.21. d is an ineffable branch in V [G].

Proof. In V [G∗], we have that A = {x ∈ T : px ∈ I} stationary and that A ⊆ {x : b � x = dx}.

Observe that it is enough to show that A ∩ {x : z ⊆ x} ⊆ {x : d � x = dx}. Indeed, this would

imply that d is ineffable in V [G∗]. But then {x : d � x = dx} ∈ V [G] because it is definable from

d and further is stationary in V [G] by downwards absoluteness. Towards this end, let x ∈ A

with z ⊆ x. We must show that d � x = dx.
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If α ∈ dx, then since x ∈ A we know that dx = b � x. So we may find some t ∈ G∗ ⊆ G

with t ≤R∗ s
∗ forcing this. But then by definition of d it follows that dx ⊆ d, implying that

α ∈ d � x.

Going the other direction, assume towards a contradiction that α ∈ d � x but α 6∈ dx.

Working in V [G], fix some v ⊇ z and s1 ≤R∗ s
∗, s1 ∈ G, such that α ∈ dv and that s1 R∗/A

v ∈ ḃ. We can also find s2 ≤ s∗ in G∗ ⊆ G such that s2 R∗/A x ∈ ḃ. Denote s1 = (a1, p1, r1)

and s2 = (a2, p2, r2). By the above lemma, we may find q ∈ I such that s1, s2 ∈ Gq. Since

α 6∈ dx and α ∈ dv, it follows that p1 ∧ p2 
V [A][Qq ]
I x⊥v.

We use this to show that there must have been an h-splitting that occurred at z. This

contradiction yields the result. Without loss of generality we may assume that q ≤ p1, q ≤ p2,

and †h holds where h = stem(q). Since q ∈ I, we may also assume s∗ forces z ∈ Eh by sufficiently

extending the Prikry part of s∗. Then, if s′1 = (a1, q, r1) and s′2 = (a2, q, r2), it follows that

q, s′1, s
′
2, x, v witness an h-splitting at z. However, this is a contradiction because z ⊃ a.



CHAPTER 5

ITP AT κ+N FOR N ≥ 1

In this chapter we show that ITP holds at κ+n for each n ≥ 1 after forcing with Rω defined

in Chapter 3. This extends the work of (Unger, 2014) and (Fontanella, 2013) where it was

shown that ITP holds at ℵn for each n ≥ 2 after forcing with the Cummings-Foreman iteration.

As before, two of the biggest differences in the argument occur when showing that ITP holds

at κ+ and κ++ because we use a Prikry poset to make κ singular strong limit.

Although ITP at κ++ will be similar to the argument from Subsection 3.5.1, we will now

be required to lift our embedding to j : V [Rω] → M [j(Rω)]. The reason for this is that ITP

involves consideration of Pλ(θ)-lists with arbitrarily large θ, whereas arguing that the tree

property holds involves trees with a fixed height. The argument for ITP at κ+ will be similar

to the arguments from Section 3.8 and Chapter 4 where we use the p-term forcing framework

from Section 1.7 to define an ineffable branch in V [Rω] for a given thin Pκ+(θ)-list.

5.1 ITP at κ++

Assume that (κn : n < ω) is an increasing sequence of indestructibly supercompact cardinals,

with κ = κ0, κω = supn κn, and µ = κ+ω . Further assume that (λn : n < ω) is increasing sequence

of supercompact cardinals with λ0 > µ, and set λ = supn λn. In this section we prove the ITP

holds in V [Rω] at λ0 = κ++.
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5.1.1 Lifting the embedding

Let Gω be Rω-generic. Fix an elementary embedding j : V → M with crit(j) = λ0 such

that j(λ0) > λ+, λ+M ⊆M , and where j(F0)(λ0) is a Q0-name for U1 × P2 × UT2 × A, where

1. P2 is the forcing Add(λ0, λ2)V [G0],

2. U1 is the forcing U corresponding to Q1 defined in Section 1.10,

3. UT2 is the forcing A(Q1, U̇2),

4. A is the forcing A(Q1 ∗ Q̇2,Rω/R3).

Here A(·) denotes the 1-term forcing given by Definition 1.40. Notice that the j(F0)(λ0)

chosen here includes the factor UT2 × A which does not appear in Chapter 3. As mentioned at

the beginning of the chapter, our goal is to lift the embedding to j : V [Gω] → M [j(Gω)]. The

lifting is a combination of work from Chapter 3 and an additional argument appearing in the

work of Unger and Fontanella. More specifically, we perform the argument from Subsection

3.5.1 to lift our embedding to j : V [G0][G1]→M [H0][H1]. Further, let h2 be the generic object

for j(P2) given by Claim 3.25. Before we continue we include a reference to the following fact

about j(Q0).

Fact 5.1. j(Q0) collapses all ordinals between µ and j(λ0) to µ.

Claim 5.2. There is a generic object x2 for j(U2) over M [H0][H1] such that h2 × x2 gen-

erates a generic filter H2 for j(Q2) over M [H0][H1]. Further, this filter allows us to lift to

j : V [G0][G1][G2]→M [H0][H1][H2].
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Proof. If uT2 is the generic for UT2 induced by Gω, then uT2 and j“uT2 have size µ in M [H0]. This

follows by Fact 5.1 and by the size of UT2 . Elementarity and Lemma 1.41 imply that j(UT2 ) is

j(λ1)-directed closed in M [H0] and so we may find a lower bound p ∈ j(UT2 ) for j“uT2 . Then

let xT2 be generic for j(UT2 ) containing p. By construction we have that j“uT2 ⊆ xT2 . Recall that

each condition of UT2 is a Q1-name in V [G0] for an element of U̇2, and so it follows that that

u2 = {τ [G1] : τ ∈ uT2 } and x2 = {τ [H1] : τ ∈ xT2 } are generic for U2 and j(U2) over V [G0][G1]

and M [H0][H1], respectively, and further that j“u2 ⊆ x2.

Let H2 be the generic filter for j(Q2) generated by h2 × x2. To see that we may lift to

j : V [G0][G1][G2] → M [H0][H1][H2] it is enough to show that j“G2 ⊆ H2. Towards that end,

if (p, q, f) ∈ G2 then we may find (p′, q′, f ′) ≤ (p, q, f) such that p′ ∈ g2 and (0, q′, f ′) ∈ u2.

Since x2×h2 induces the filter H2 it follows that (j(p′), 0, 0) and (0, j(q′), j(f ′) are both in H2.

This implies that (j(p′), j(q′), j(f ′)) = j((p′, q′, f ′)) ∈ H2 as well. Since (p′, q′, f ′) ≤ (p, q, f) it

follows as desired that j“G2 ⊆ H2.

Claim 5.3. There is a generic object H∞ for j(Rω)/(H0 ∗H1 ∗H2) over M [H0][H1][H2] that

allows us to lift the embedding to j : V [Gω]→M [j(Gω)].

Proof. The proof is similar to Claim 5.2. If GT∞ is the generic for A induced by Gω, then Fact

5.1 implies that j“GT∞ has size µ in M [H0]. Elementarity implies that j(A) is j(λ0)-directed

closed in M [H0] and so we may find a lower bound p ∈ j(A) for j“GT∞. If HT
∞ is generic for

j(A) containing p, then we have that j“GT∞ ⊆ HT
∞. As before this induces a generic object H∞

for j(Rω)/(H0 ∗H1 ∗H2) allowing us to lift to j : V [Gω]→M [j(Gω)].
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5.1.2 Pulling back the branch

Let D = (dx : x ∈ Pλ0(θ)) ∈ V [Gω] be a thin Pλ0(θ)-list and assume that θ ≥ λ0. Without

loss of generality we may assume that lifted elementary embedding j from the previous section

has the further property that j(λ0) > θ. Our goal is to show that D has an ineffable branch in

V [Gω]. As usual, the plan is to argue that D has an ineffable branch in some outer model and

then pull this back to V [Gω]. Towards that end we have the following:

Lemma 5.4. D has an ineffable branch b in M [j(Gω)].

Proof. As in Proposition 1.60 or Lemma 4.4, we define b = {α < µ : j(α) ∈ j(d)j“µ}. Then, we

argue that b is a cofinal branch for D. This will be enough to pull the branch b back to M [Gω].

Afterwards we check that b is ineffable by showing that the set S = {x ∈ Pλ0(θ) : b ∩ x = dx}

is measure one (and therefore stationary).

Next, we use the closure of j to show that b is actually in an initial segment of M [j(Gω)].

Lemma 5.5. All < j(λ0)-sequences in M [j(Gω)] are in M [H0][h1]. In particular, b ∈M [H0][h1].

Proof. The proof is similar to Claim 3.32 where instead we use that j(Rω)/(H0∗H1) is < j(λ0)-

distributive in M [H0][H1]. Then b ∈ M [H0][h1] because b has size θ < j(λ0) and M is closed

under θ-sequences.

With this in mind, we now want to analyze the forcings to get from M [Gω] to M [H0][h1].

We start with some remarks about the codomain of our lifted embedding. They are analogous

to the results in Subsection 3.5.2 so we sketch the proofs.
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Fact 5.6. M [H0][h1] = M [G0][g2 × u1 × uT2 ×GT∞][H∗0 ][g1 × h∗1], where H∗0 is a generic object

for j(Q0)/(Q0 ∗ j(F0)(λ0)) and h∗1 is a generic object for j(P1)/g1.

Proof. Follows from the definitions of H0 and h1.

Fact 5.7. M [G0][g2 × u1 × uT2 ×GT∞][h1] = M [G0][g1 × u1 × g2 × uT2 ×GT∞][h∗1]

Proof. Follows from the definition of h1.

Fact 5.8. M [H0][h1] ⊆M [G0][h1 × u1 × g2 × uT2 ×GT∞][h∗0 × u∗0], where h∗0 is a generic object

for j(P0)/g0 and u∗0 is a generic object for U∗ which is µ-closed in M [G0].

Proof. Follows from Fact 5.6, Fact 5.7, and Lemma 3.13.

Fact 5.9. The forcing S to go from M [Gω] to M [G0][u1 × g2 × uT2 ×GT∞ × g1] is µ-closed and

≤ µ-distributive in M [Gω].

Proof. Similar to Fact 3.29, the forcing S comprises of a product of the quotient forcings defined

in Lemma 1.76(7). This forcing remains closed in M [Gω] because the forcing Rω/R2 does not

add any < µ-sequences. The distributivity follows by an argument similar to Fact 3.30 that all

µ-sequences from M [G0][u1 × g2 × uT2 ×GT∞ × g1] are actually in M [G0][g1].

Fact 5.10. j(P1)/g1 is λ0-Knaster and < µ-distributive in M [G0][u1 × g2 × uT2 ×GT∞ × g1].

Proof. Similar to the proof of Fact 3.31.

As in the proof of Proposition 1.60, we show that b is sufficiently approximated in the models

to get from M [Gω] to M [H0][h1] and use this to pull back the branch.
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Lemma 5.11. b is thinly λ0-approximated in M [Gω].

Proof. Follows from the same argument as Claim 1.63.

Lemma 5.12. b is thinly λ0-approximated in M [G0][u1 × g2 × uT2 ×GT∞ × g1],

Proof. Follows from Fact 5.9 and Lemma 5.11.

Lemma 5.13. b is thinly λ0-approximated in M [G0][u1 × g2 × uT2 ×GT∞ × h1].

Proof. Fact 5.10 implies j(P1)/g1 is λ0-cc in M [G0][u1 × g2 × uT2 × GT∞ × g1]. So by Lemma

1.18 we have that b is still thinly λ0-approximated after forcing with j(P1)/g1.

Lemma 5.14. b is µ-approximated in M [G0][u1 × g2 × uT2 ×GT∞ × h1][u∗0].

Proof. Follows from the same argument as Claim 1.64.

We are now in the position to pull the branch back to M [Gω].

Lemma 5.15. b ∈M [G0][u1 × g2 × uT2 ×GT∞ × h1][u∗0]

Proof. We know that b ∈M [G0][u1 × g2 × uT2 ×GT∞ × h1][u∗0][g∗0] where g∗0 is j(P0)/g0-generic.

By an argument similar to Claim 3.33 we have that (j(P0)/g0)
2 is µ-cc in M [G0][u1× g2×uT2 ×

GT∞ × h1][u∗0]. The result follows by Lemma 5.14 since b is µ-approximated in this model.

Lemma 5.16. b ∈M [G0][u1 × g2 × uT2 ×GT∞ × h1]

Proof. U∗ has the thin λ0-approximation property in this model since 2κ = λ0 and U∗ is µ-

closed in M [G0][u1 × g2 × uT2 × GT∞ × h1]. The result follows by Lemma 5.13 since b is thinly

λ0-approximated in this model.
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Lemma 5.17. b ∈M [G0][u1 × g2 × uT2 ×GT∞ × g1]

Proof. j(P1)/g1 has the λ0-approximation in M [G0][u1× g2×uT2 ×GT∞× g1] by Fact 5.10. The

result follows by Lemma 5.12 since b is λ0-approximated in this model.

Lemma 5.18. b ∈M [Gω]

Proof. S has the thin λ0-approximation property in M [Gω] by Fact 5.9 and since 2κ = λ0. The

result follows by Lemma 5.11 since b is thinly λ0-approximated in this model.

5.2 ITP at κ+n for n ≥ 3

The argument when n ≥ 3 is almost exactly the same as the argument in (Unger, 2014).

Similar to Chapter 3, the main difference between our iteration and the iteration in the paper

by Unger is the first factor Q0. Further, one of the main differences in the argument here is

dealing with the generic objects h∗0 and u∗0. When showing that ITP holds at λi for i ≥ 1, in

the process of lifting our embedding to j : V [Rω] → M [j(Rω)] we may start by immediately

lifting our embedding to j : V [Ri]→ M [Ri] because crit(j) = λi and |Ri| = λi−1. So, since we

no longer have to pull a branch from M [· · ·H0 · · · ] back to M [· · ·G0 · · · ] we avoid interaction

with the generic objects h∗0 and u∗0.

5.3 ITP at κ+

When we argued that the tree property holds at κ+ after forcing with Rω, recall that we

reduced this to showing that the there are no κ+-Aronszajn trees in V [G0][g1]. In this section

we need to argue slightly differently because we are working with Pµ(θ)-lists where θ can be
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arbitrarily large. We first argue that Rω is the projection of a Prikry poset and a closed forcing.

This allows us to mimic the arguments found in Section 3.8 and Chapter 4.

Lemma 5.19. There is a forcing T which is a µ-closed forcing in V such that Rω is the

projection of P0 × U × P1 × T. Further, we may assume without loss of generality that the

projection is the identity map.

Proof. We may write Rω = Q0 ∗ Q̇1 ∗ ˙(Rω/R2). Since V [Q0 ∗ Q̇1] |= (Rω/R2) is µ-closed, Lemma

1.41 implies that T1 = A(Q0 ∗ Q̇1, ˙(Rω/R2)) is µ-closed in V . Further, facts about term forcing

imply that the identity map is a projection from (Q0 ∗ Q̇1)× T1 to Rω.

Next, recall that, in V [Q0], the identity map is a projection from P1 × U1 to Q1, where

P1 = Add(µ, λ1)V . Identifying Q0 ∗ (P̌1× U̇1) with (Q0×P1) ∗ U̇1, this implies that the identity

map is a projection from (Q0 × P1) ∗ U̇1 to Q0 ∗ Q̇1.

Claim 5.20. V [Q0 × P1] |= U1 is µ-closed.

Proof. We have by definition that V [Q0] |= U1 is µ+-closed. Further, we have in V [Q0] that P1

is < µ-distributive. By the Easton’s Lemma Variant (Lemma 1.3) using V [Q0] as the ground

model we have that V [Q0 × P1] |= U1 is µ-closed.

Again, Lemma 1.41 implies that T0 = A(Q0×P1, U̇1) is µ-closed in V and we have that the

identity map is a projection from Q0 × P1 × T0 to (Q0 × P1) ∗ U̇1.

Finally, since there is a projection from P0 ×U to Q0, by setting T = T0 ×T1 we have that

Rω is the projection of P0×U×P1×T. Note that T is µ-closed in V since each term is µ-closed

in V .
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This factoring allows us to define variants of the forcings R∗, Q, Rṗ, and Qp from Chapter 4.

Definition 5.21. Define Q = U × P1 × T from the previous lemma and set R∗ = (A ∗ İ) × Q

with the product ordering. Note that R∗ has the same underlying set as Rω but has a different

ordering.

Definition 5.22. Let ṗ be a name for a condition in İ. Define Rṗ to have the same underlying

set as R∗ with the following ordering: Declare that (f1, ṗ1, r1, g1, a1, b1) ≤ṗ (f2, ṗ2, r2, g2, a2, b2)

exactly when

1. a1 ≤P1 a2

2. b1 ≤T b2

3. (f1, ṗ1) ≤P0 (f2, ṗ2)

4. dom(r1) ⊇ dom(r2) and for every α ∈ dom(r2), we have that

(f1, ṗ) � α P0,α r1(α) ≤ r2(α)

5. dom(g1) ⊇ dom(g2) and for every α ∈ dom(g2), we have that

(f1, ṗ, r1, g1) � α Q0�α g1(α) ≤ g2(α).

Definition 5.23. Let A be A-generic over V . Let p = ṗA. Define Qp to have the same

underlying set as Q with the ordering (0, 0, q1, f1, a1, b1) ≤Qp (0, 0, q2, f2, a2, b2) exactly when

1. a1 ≤P1 a2

2. b1 ≤T b2

3. dom(q1) ⊇ dom(q2) and dom(f1) ⊇ dom(f2)
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4. there is an a ∈ A such that for every α ∈ dom(q2) and for every α ∈ dom(f2), we have

that

(a) (a, ṗ) � α P0,α q1(α) ≤ q2(α)

(b) (a, ṗ, q1, f1) � α Q0�α f1(α) ≤ f2(α)

Lemma 5.24 (Structural Lemma). The following relationships hold between Rω, R∗, Rṗ, Q,

and Qp:

1. The identity map is a projection from R∗ to Rṗ.

2. If s∗ = (0, ṗ, 0, 0, 0, 0) ∈ Rω, then the identity map is a projection from Rṗ/s∗ to Rω/s∗,

where Rṗ/s∗ = {s ∈ Rṗ | s ≤ṗ s∗} and Rω/s∗ = {s ∈ Rω | s ≤Rω s
∗}

3. Qp is κ-closed.

4. Rṗ is isomorphic to A ∗ (İ× Q̇p)

5. Q projects onto Qp and if q ≤ p then Qp projects to Qq.

Theorem 5.25. After forcing with Rω, ITP holds at κ+.

Proof. The goal is to perform the argument from Chapter 4 showing that ITP holds at κ+. In

other words, take an I-name Ḋ ∈ V [Gω] ⊆ V [A × Q] for a Pµ(θ)-list where A is generic for A

and Q is generic for Q. We have that there is an ineffable branch in V [A × Q][I] where I is

generic for the Diagonal Prikry forcing in V [A × Q]. It follows by Lemma 5.24 that we are in

exactly the same situation as in Chapter 4. So, the same arguments allow us to pull the branch

back to V [Gω]. Importantly, in the proof of Lemma 4.17 it is necessary that Q is µ-closed in V

and that Q is < µ-distributive and countably closed in V [A].



CHAPTER 6

ITP AT κ+ AND κ++ WITH A FORCING SUITABLE FOR COLLAPSES

In this chapter we show - with a forcing different from Chapter 4 - that we can force to

get ITP at κ+ and κ++. In particular this forcing no longer interleaves the Prikry forcing with

the Mitchell forcing. One of the advantages of this approach is that it can be more suitable to

making κ small. The reason is that it is easier to add collapses between the Prikry points after

the gap between κ and 2κ becomes accessible.

Additionally, we give an alternative argument to get the strong tree property at κ++. Al-

though this is weaker than ITP at κ++, the author thinks that this approach will be more

suitable to add collapses to get the ITP simultaneously at an ω-sequence of cardinals. This

argument is similar in spirit to (Cummings et al., 2020b), avoiding the use of a technical branch

preservation lemma presented in the next section.

As before assume in V that (κn : n < ω) is an increasing sequence of (indestructibly)

supercompact cardinals with κω = supn κn, κ = κ0, and µ = κ+ω . Assume that λ > µ is

supercompact. Let M(κ, µ, λ) be the Mitchell forcing from Section 1.8 and G be a generic

object for M(κ, µ, λ). Further, in V [G] assume P is the diagonal Prikry forcing from Section

1.9 and H is P-generic over V [G].

109
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6.1 Strong Tree Property at κ++

In this section we give an argument to show that the strong tree property holds at κ++.

Towards that end, note that since P is µ-cc it is enough to assume that Pλ(θ) = Pλ(θ)V [G]. So,

working in V [G] let (ḋx : x ∈ Pλ(θ)) be a P-name for a thin Pλ(θ)-list and for each x ∈ Pλ(θ)

let (σ̇xα : α < µ) be a P-name for the set {dy ∩ x : y ⊇ x}.

Let j : V →M be a θ-supercompactness embedding and lift this to j : V [G]→M [G∗]. We

assume that j is defined in V [G][K ×A] for a Q× A-generic filter K ×A. Here the poset Q is

the usual µ-closed forcing and A is the κ+-Knaster Cohen forcing.

Lemma 6.1. In V [G] there is a cofinal J ⊆ Pλ(θ), a function f : J → µ, and a stem h such

that for x ⊆ y in J ,

h ∗ σ̇xf(x) = σ̇yf(y) � x.

Proof. Note that j“θ ∈ j(Pλ(θ)) and so elementarity implies that for each x ∈ Pλ(θ) there is

a px ∈ j(P) and ξx < µ such that px  j(ḋ)j“θ � j(x) = j(σ̇)
j(x)
ξx

. Notice that in M [G∗] we

have that µ is preserved and both λ and θ are collapsed to have cofinality µ. Since there are

κω-many stems it follows there is a cofinal J ⊆ Pλ(θ) and stem h such that x ∈ J if and only

if h ∗ j(ḋ)j“θ � j(x) = j(σ̇)
j(x)
ξx

. Further, define f : J → µ by f(x) = ξx.

Claim 6.2. J, f ∈ V [G][K]

Proof of Claim. Assume that d ⊆ Pλ(θ) with |d| < µ in V [G]. Set d′ = J ∩ d. We need to show

that f � d′ ∈ V [G]. To see this is enough, notice that A has the µ-approximation property in

V [G][K] and so we would have f ∈ V [G][K] and further that dom(f) = J ∈ V [G][K]. Now,
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µ is regular in V [G] and so
⋃
d ∈ Pλ(θ)V [G]. Since J is a cofinal subset of Pλ(θ), there is a

z ⊇
⋃
d with z ∈ J . Then elementarity implies that (f � d′)(x) = ξ if and only if x ∈ d and

h ∗ σ̇xξ = σ̇zf(z) � x. So f � d′ is definable from d, f(z), h ∈ V [G] and the relation ∗ and so

f � d′ ∈ V [G].

Claim 6.3. For each x ∈ Pλ(θ), if Dx = {y : y ⊆ x}, then J � Dx, f � Dx ∈ V [G].

Proof of Claim. Since J ⊆ Pλ(θ) is cofinal, fix z ⊇ x with z ∈ J . For y ⊆ x, we have that

y ∈ J if and only if there is (a unique) ξ < µ such that h ∗ σ̇yξ = σ̇zf(z) � y. This implies that

J � Dx, f � Dx ∈ V [G] as desired.

Working in V [G][K][A], define Jh = {x ∈ J : ∃ξ < µ, h ∗ j(ḋ)j“θ � j(x) = j(σ̇)
j(x)
ξ } for

each stem h w h. Similarly, for x ∈ Jh, define fh(x) to be the unique ξ witnessing this. Like

above, if Jh is a cofinal subset of Pλ(θ) then both Jh, fh ∈ V [G][K]. Since there are κω-many

stems, we may find a z ∈ Pλ(θ) such that if Jh is not cofinal then there is no z ∈ Jh such that

z ⊆ z. In V [G][K] let J̇h and ḟh be A-names for Jh and fh. If Ch is all the possible values for

J̇h, then it follows that |Ch| ≤ κ. For each cofinal Jh, let (Ch,i : i < κ) be an enumeration of

Ch. Further, for each h and i < κ let ah,i ∈ A force that Ch,i = J̇h and define fh,i : Ch,i → µ by

letting fh,i(x) be the unique ξ such that ah,i 
V [G][K]
A

(
h ∗ j(ḋ)j“θ � j(x) = j(σ̇)

j(x)
ξ

)
.

In V [G], for each stem h let Ċh be Q-names for the Ch. For each h such that Ċh 6= ∅, fix Q-

names Ċh,i and ḟh,i for each i < κ. Assume towards a contradiction that Q (Ċh,i, ḟh,i) 6∈ V [G]

for each h and i < κ.
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Write q1, q2 force contradictory information about ḟh,i(x) if they decide x ∈ Ċh,i, one of the

conditions forces that the statement is true, and (q1, q2) Q×Q ḟh,i[ΓL](x) 6= ḟh,i[ΓR](x).

Claim 6.4 (Splitting). In V [G], if q1, q2 ∈ Q, h w h, i < κ, and x ∈ Pλ(θ), then there are

y ⊇ x and (q′1, q
′
2) ≤ (q1, q2) such that q′1, q

′
2 force contradictory information about ḟh,i(y).

Proof of Claim. Assume that (q1, q2), ḟh,i, and x witness that the claim is false. We claim

that (q1, q2)  ḟh,i[ΓL] = ḟh,i[ΓR]. If not, find a y and (q′1, q
′
2) ≤ (q1, q2) such that (q′1, q

′
2) 

ḟh,i[ΓL](y) 6= ḟh,i[ΓR](y). By hypothesis, we may find (q′′1 , q
′′
2) ≤ (q′1, q

′
2), z ⊇ x ∪ y, and

ξ1y , ξ
2
y , ξz < µ such that both q′′1 , q

′′
2 decide z ∈ Ċh,i, (q′′1 , q

′′
2) Q×Q ḟh,i[ΓL](z) = ξz = ḟh,i[ΓR](z),

and (q′′1 , q
′′
2) Q×Q ḟh,i[ΓL](y) = ξ1y 6= ξ2y = ḟh,i[ΓR](y). For j ∈ {1, 2}, since y ⊆ z we have

that q′′j  ḟh,i(y) = δ if and only if h ∗ σyδ = σzξz � y. However, this implies that ξ1y = ξ2y , a

contradiction.

In V [G], for each h w h and i < κ, use the splitting to construct ((qσ, xσ,h,i) : σ ∈ 2<κ, h w

h, i < κ) where qσ_0 and qσ_1 force contradictory information about ḟh,i(xσ,h,i). Set x∗ =⋃
σ,h,i xσ,h,i ∈ Pλ(θ). For g ∈ 2κ, use the closure of Q to find a lower bound pg ≤ qg�i for each

i < κ. Then choose q′g ≤ pg, hg w h, ig < κ, and ξg < µ such that

1. q′g  x∗ ∈ Ċhg ,ig ,

2. for x ⊆ x∗, q′g  ḟhg ,ig(x) = δ if and only if hg ∗ σxδ = σx
∗
ξg

� x.

Since 2κ > µ, the contradiction comes after observing that there are distinct f, g ∈ 2κ such that

hf = hg, if = ig, and ξf = ξg.
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Fix J , f , and the stem h from the previous lemma. Assume that |h| = n. Arguments found

in (Neeman, 2009) or (Cummings et al., 2020a) give us the following two results:

Lemma 6.5. In V [G] there are z ∈ Pλ(θ) and Un-measure one sets Ax for x ∈ J ∩ {y : y ⊇ z}

such that for z ⊆ x ⊆ y, both x, y ∈ J , and for all s ∈ Ax ∩Ay,

h_s ∗ σ̇xf(x) = σ̇yf(y) � x.

Lemma 6.6. In V [G] there are z∗ ∈ Pλ(θ) and conditions px for x ∈ J ∩ {y : y ⊇ z∗} with

stem h such that for z∗ ⊆ x ⊆ y, both x, y ∈ J ,

px ∧ py  σ̇xf(x) = σ̇yf(y) � x.

Lemma 6.7. In V [G][H] if I = {x : px ∈ H} is cofinal subset of Pλ(θ), then there is a cofinal

branch through our list.

Proof. Working in V [G][H], for each x ∈ I let g(x) ⊇ x be such that σ̇xf(x)[H] = dg(x) ∩ x

and define b =
⋃
x∈I(dg(x) ∩ x). To see that this is a cofinal branch, fix y ∈ Pλ(θ) and use

the hypothesis to find z ⊇ y such that z ∈ I. It is enough to show that b ∩ z = dg(z) ∩ z as

this implies that b ∩ y = (b ∩ z) ∩ y = dg(z) ∩ y. By definition dg(z) ∩ z ⊆ b ∩ z. Conversely,

if α ∈ b ∩ z, fix some x ∈ I such that α ∈ dg(x) ∩ x. Since I is cofinal, fix w ∈ I such that

w ⊇ g(x) ∪ g(z) ⊇ x ∪ z. By the previous lemma, we have that (dg(w) ∩ w) ∩ x = dg(x) ∩ x and
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(dg(w) ∩ w) ∩ z = dg(z) ∩ z. The first equality implies that α ∈ dg(w). Since α ∈ z, then second

equality implies that α ∈ dg(z) ∩ z as desired.

Lemma 6.8. In V [G][H] the list (dx : x ∈ Pλ(θ)) has a cofinal branch.

Proof. Assume otherwise and fix q ∈ H forcing this. Without loss of generality we may assume

that the stem of q is h. By the previous lemma we have that q  “İ = {x : px ∈ Γ} is not

cofinal.” Since P is µ-cc, we may find a z ∈ Pλ(θ) such that q  “z 6⊆ x for each x ∈ İ.” Since

J ∩ {y : y ⊇ z∗} is cofinal, we may find an x ∈ J ∩ {y : y ⊇ z∗} such that x ⊇ z. Since q and

px both have stem h, we know that q ∧ px exists. However, q ∧ px  px 6∈ Γ because q  x 6∈ İ,

whereas q ∧ px  px ∈ Γ because px  px ∈ Γ. This contradiction yields the result.

6.2 ITP at κ++

In this section we prove that ITP holds at λ in V [G][H]. Similar to Proposition 1.60 we will

take an elementary embedding, lift it to j : V [M(κ, µ, λ) ∗ Ṗ] → M [j(M(κ, µ, λ) ∗ Ṗ)] and then

pull the branch back to V [G][H].

Towards that end, working in V [G][H] let θ ≥ λ and let D be a thin Pλ(θ)-list. Let j : V →

M be a θ-supercompactness embedding with critical point λ. Since the forcing M(κ, µ, λ) ∗ Ṗ is

λ-cc we may lift the embedding to j : V [G][H]→M [G∗][H∗] for some j(M(κ, µ, λ) ∗ Ṗ)-generic

object G∗ ∗H∗.

Lemma 6.9. D has an ineffable branch b ∈M [G∗][H∗].

Proof. The same argument as Claim 1.62.
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Lemma 6.10. b is λ-approximated in M [G].

Proof. The same argument as Claim 1.63.

Lemma 6.11. b is λ-approximated in M [G][H].

Proof. Since P is µ-cc in M [G] the result follows from Lemma 1.18 and the previous result.

The difficulty here is that the quotient forcing j(M(κ, µ, λ) ∗ Ṗ)/G ∗ H does not factor

as nicely as the quotient of the Mitchell forcing. However, we can show that the forcing

j(M(κ, µ, λ) ∗ Ṗ)/G ∗ H is λ-approximated. By Lemma 6.11 this shows that b ∈ M [G][H] as

desired. The following argument is originally from (Sinapova and Unger, 2018) and is presented

for completeness. We start two definitions this paper that will help decide whether a condition

may be forced into the quotient.

Definition 6.12. Assume that s′ is a stem. We say s′ is compatible with r ∈ P if there is a

r′ ≤ r with stem(r′) = s′.

Definition 6.13. Assume that r ∈ P, stem(r) = s, and s′ is a stem with s′ w s. Then we say

points in s′ above s are constrained by r if r′ ≤ r for some r′ ∈ P with stem(r′) = s′.

The following originally appeared in (Sinapova and Unger, 2018).

Lemma 6.14. In M [G] assume that r ∈ P, m ∈ j(M(κ, µ, λ))/G, and ṙ is forced into j(P).

Further, assume

1. m decides stem(ṙ),
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2. stem(r) w stem(ṙ), and

3. m  “points in stem(r) above stem(ṙ) are constrained by ṙ.

Then there is a r′ ≤∗ r such that r′ forces (m, ṙ) ∈ j(M(κ, µ, λ) ∗ Ṗ)/G ∗H.

We now are in a position to prove the following:

Lemma 6.15. j(M(κ, µ, λ) ∗ Ṗ)/G ∗H is λ-approximated in M [G][H].

Proof. Assume that d ∈ Pλ(θ)M [G∗][H∗] and that d ∩ x ∈ M [G][H] for each x ∈ Pλ(θ)M [G][H].

Assume instead that  ḋ 6∈ M [G][H], where ḋ is a name for d. Recall that M(κ, µ, λ) has the

underlying set A×Q where A = Add(κ, λ) and Q is µ-closed in V . In M [G] let Q∗ be µ-closed

forcing given by Lemma 1.59.

We start with a modification of Lemma 6.14.

Claim 6.16. In M [G] assume that r ∈ P and (p, f, ṙ) ∈ j(M(κ, µ, λ))/G. Further, assume that

1. (p, f) decides stem(ṙ),

2. stem(r) w stem(ṙ),

3. r  (p, f, ṙ) ∈ j(M(κ, µ, λ) ∗ Ṗ)/G ∗ Ḣ, and

4. (p, f)  “points in stem(r) above stem(ṙ) are constrained by ṙ.”

Then there is a r′ ≤∗ r and f ′ ≤j(Q) f such that

1. r′  (p, f ′, ṙ) ∈ j(M(κ, µ, λ) ∗ Ṗ)/G ∗ Ḣ,

2. for each h compatible with r′, we may find a p′ ∈ A with p′ ≤ p and (p′, f ′)  “points in

h above stem(ṙ) are constrained by ṙ.”



117

Proof of Claim. Let (hi : i < κω) be an enumeration of the stems extending stem(r). We

construct a decreasing sequence (fi : i < κω) below f of elements of Q∗ in the following way:

given (fi : i < α) for α < κω, use that Q∗ is µ-closed to find a lower bound f ′ for this sequence.

If (p, f ′)  hα is incompatible with ṙ, then let fα = f ′. Otherwise, we may find a fα ∈ Q∗ and

p′ ≤ p such that (p′, fα)  hα is compatible with ṙ. Note that this implies that (p′, fα)  “points

in hα above stem(ṙ) are constrained by ṙ.” This completes the construction.

Now let f ′ ∈ Q∗ be a lower bound for the sequence (fi : i < κω). By hypothesis and by

Lemma 6.14 we may find a r′ ≤∗ r forcing (p, f ′, ṙ) into the quotient. The second part of the

conclusion of the claim follows by the construction of the sequence (fi : i < κω).

Using this we prove the following key claim:

Claim 6.17. In M [G][H] there is (p, f, ṙ) ∈ j(M(κ, µ, λ) ∗ Ṗ)/G ∗H such that, for each

1. x ∈ Pλ(θ)M [G][H],

2. y ⊆ x also in M [G][H], and

3. (p′, f ′, ṙ′) extending (p, f, ṙ) in j(M(κ, µ, λ) ∗ Ṗ)/G ∗H,

if

1. f ′ ≤ f and

2. (p′, f ′, ṙ′)  ḋ ∩ x = y,

then we can find f ′′ ≤ f ′ where (p, f ′′, ṙ) ∈ j(M(κ, µ, λ) ∗ Ṗ)/G ∗H and (p, f ′′, ṙ)  ḋ ∩ x = y

as well.
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Proof of Claim. Assume the claim is false. The idea is to recursively define a sequence of terms.

This will be done by repeatedly applying the following subclaim:

Subclaim 6.18. In M [G] suppose that r forces that Claim 6.17 is false. Further assume r

forces (p, f, ṙ) ∈ j(M(κ, µ, λ) ∗ Ṗ)/G ∗ Ḣ. Then for i < 2 there are terms r∗ ≤ r, pi, f∗, ṙi, ẋ, ẏi

such that

1. f∗ ≤j(Q) f
′,

2. stem(r∗) = stem(ṙ1) w stem(ṙ0),

3. (p0, f
∗)  “points in stem(r∗) above stem(ṙ0) are constrained by ṙ0,”

4. (pi, f
∗, ṙi) extends (p, f∗, ṙ) for each i,

5. r∗ forces

(a) (pi, f
∗, ṙi) ∈ j(M(κ, µ, λ) ∗ Ṗ)/G ∗ Ḣ for each i,

(b) (pi, f
∗, ṙi)  ḋ ∩ ẋ = ẏi for each i,

(c) ẏ0 6= ẏ1.

Proof of Subclaim. Since we assume that Claim 6.17 is false, there is a condition (p′, f ′, ṙ0),

f ′ ≤ f , names ẋ, ẏ0, and r′ extending r such that r′ forces

1. (p′, f ′, ṙ0) ∈ j(M(κ, µ, λ) ∗ Ṗ)/G ∗ Ḣ and extends (p, f, ṙ),

2. (p′, f ′, ṙ0)  ḋ ∩ ẋ = ẏ0, and

3. for any f∗ ≤ f ′, if (p, f∗, ṙ) ∈ j(M(κ, µ, λ) ∗ Ṗ)/G ∗ Ḣ then (p, f∗, ṙ) does not force

ḋ ∩ ẋ = ẏ0.
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Without loss of generality we can assume stem(r′) w stem(ṙ0). Then, let (p0, f0) ≤ (p′, f ′)

where (p0, f0)  “points in stem(r) above stem(ṙ0) are constrained by ṙ0.” Lemma 6.14 implies

that we can find r′′ ≤∗ r′ where r′′  (p0, f0, ṙ0) ∈ j(M(κ, µ, λ) ∗ Ṗ)/G ∗ Ḣ. Applying Claim

6.16 to r′′ and (p, f0, ṙ), we can find r′′′ ≤∗ r′′ and f ′′ ≤ f0 such that

1. r′′′  (p, f ′′, ṙ0) ∈ j(M(κ, µ, λ) ∗ Ṗ)/G ∗ Ḣ, and

2. for each h compatible with r′′′, we may find a p′ ∈ A with p′ ≤ p and (p′, f ′′)  “points

in h above stem(ṙ0) are constrained by ṙ0.”

Then, let r∗ ≤ r′′′, p1, f∗ ≤ f ′′, and ẏ1 be such that r∗ forces

1. (p1, f
∗, ṙ1) ∈ j(M(κ, µ, λ) ∗ Ṗ)/G ∗ Ḣ and extends (p, f ′′, ṙ),

2. (p1, f
∗, ṙ1)  ḋ ∩ ẋ = ẏ1,

3. ẏ0 6= ẏ1.

It is not difficult to check that r∗, pi, f
∗, ṙi, ẋ, and ẏi are as desired.

Now, working in M [G] we may fix r ∈ P forcing that Claim 6.17 is false. Using our subclaim,

we define by recursion a sequence of terms (rα, pα,i, fα, ṙα,i, ẋα, ẏα,i, ẏα, : α < µ, i < 2) so that

(fα : α < µ) is a decreasing sequence of conditions in j(Q), and rα ∈ P forces the following:

1. if β < γ < α, then ẋβ ∈ Pλ(θ) and ẋβ ⊆ ẋγ ,

2. (pα,i, fα, ṙα,i) ∈ j(M(κ, µ, λ) ∗ Ṗ)/G ∗ Ḣ,

3. (pα,i, fα, ṙα,i)  ḋ ∩
⋃
β<α ẋβ = ẏα,

4. (pα,i, fα, ṙα,i)  ḋ ∩ ẋα = ẏα,i,
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5. ẏα,0 6= ẏα,1,

6. (pα,i, fα) decides stem(ṙα,i) and stem(rα) extends stem(ṙα,i).

Since A2 is µ-cc, it follows that we can find α < α′ < µ such that

1. stem(rα) = stem(rα′)

2. stem(ṙα,0) = stem(ṙα′,0) and stem(ṙα,1) = stem(ṙα′,1)

3. pα,i is compatible with pα′,i for i < 2.

Next, for i < 2 let qi ≤ pα,i, pα′,i witness this and let ṙi name the weakest extension of ṙα,i and

ṙα′,i. Using this we may directly extend rα and rα′ to a condition r forcing that (qi, fα′ , ṙi) ∈

j(M(κ, µ, λ) ∗ Ṗ)/G ∗ Ḣ for i < 2. Finally, fix a generic H ′ containing r. In M [G][H ′], for each

i < 2 we have that yα′,i∩xα = yα,i. However, we also have for i < 2 that yα′,i∩
⋃
β<α′ xβ = yα′ .

This implies that yα,0 = yα,1, a contradiction.

Now back to the proof of Lemma 6.15. Given our assumptions about d, we know the set D of

pairs in
[
j(M(κ, µ, λ) ∗ Ṗ)/G ∗H

]2
deciding different values of ḋ∩ x for some x ∈ Pλ(θ)M [G][H]

is dense. Let (p, f, ṙ) ∈M be given by Claim 6.17. It follows that, not only is the set D below

(p, f, ṙ) dense, but we may find a condition in D by only extending the second coordinate. We

further note that any such extension also satisfies Claim 6.17.

Working in M [G] let r ∈ P such that r M [G]
P “(p, f, ṙ) satisfies Claim 6.17.” Construct a

sequence (fs, As : s ∈ 2<κ) such that the following holds:

1. fs ∈ j(Q) for each s,
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2. As is a maximal antichain below r,

3. if σ0 ⊂ σ1 then fσ1 ≤ fσ0 , and

4. for each r′ ∈ As, there is a xr′,s ∈ Pλ(θ) such that r′  “(p, fs_0, ṙ) and (p, fs_1, ṙ) decide

different values of ḋ ∩ xr′,s.”

Then, let x =
⋃
{xr′,s : s ∈ 2<κ, r′ ∈ As} ∈ Pλ(θ). Recall that the quotient j(M(κ, µ, λ))/G

projects onto Add(κ, 1) and so we may take a name ċ for this Cohen subset of κ added by

j(M(κ, µ, λ))/G. (We view ċ as a function from κ to 2.) By definition of the fs’s we know

that (fċ�i : i < κ) is a decreasing sequence in M [G][Add(κ, 1)]. Using the chain condition of

Add(κ, 1) we may define f∗ ∈ M [G] so that (p, f∗, ṙ) is forced into j(M(κ, µ, λ) ∗ Ṗ)/G ∗ H,

and f∗ is forced to be a lower bound of (fċ�i : i < κ). However, this leads to a contradiction.

In particular, working in M [G][H], if we extend (p, f∗, ṙ) to a condition deciding the value of

ḋ ∩ x, then since f∗ ≤ fc�i for each i < κ we may define c in M [G][H].

6.3 ITP at κ+

The argument is similar to Chapter 4 that ITP at κ+ holds after forcing with the Sinapova

forcing. More specifically, if Ḋ ∈ V [G] is a P-name for a thin Pµ(θ)-list, then we can write

V [G] ⊆ V [A × Q] where A is a generic object for Add(κ, λ) and Q is a generic object for term

forcing that is µ-closed in V . Just as in Chapter 4 we may define the posets Qp and get the same

structural relationships between models V [G][I] and V [A× Q][I] with the intermediate models

V [A × Qp][I]. Similar arguments give Lemma 4.18 and this allows us to define an ineffable

branch in V [G][I] like Lemma 4.21.



CHAPTER 7

CONCLUSION

This thesis makes progress towards getting the tree property and the super tree property

to hold everywhere simultaneously. There are a few natural directions one can go for further

research. First would be the following:

Question 7.1. Is it possible to add collapses to get the tree property to hold simultaneously at

ℵω2+n for n ≥ 1 while ℵω2 is singular strong limit?

Part of the difficulty is that when adding collapses to get the tree property at ℵω2+1 and

ℵω2+2, one crucially uses that the guiding generic is a generic object for a forcing with closure

greater than the size of the tree. So if we plan to add collapses to a Cummings-Foreman variant

we need to give a different argument (or use a different method) to get around this. More

ambitiously, we can ask the following:

Question 7.2. Is it possible for any of the results in this thesis to hold at ℵω when ℵω is

singular strong limit?

At the moment it is not known if it is consistent that ℵω+1 has the tree property but SCH

fails at ℵω.

Another line of research one could take is an analysis of the arguments to get the (super)

tree property at κ+ when κ is singular strong limit found in Chapters 3 or 4. Recall that the

flavor of these arguments are different than the case with the double successor because κ+ was
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not formerly a large cardinal - so we have no access to an embedding j to lift. Instead we rely

on an analysis of the intermediate models between V [M] and V [P×Q], done in a more abstract

setting with p-term forcings in Section 1.7. As a question, one may ask the following:

Question 7.3. Which properties of P are required in order to define a branch in V [M]?

Regarding the ITP we may ask if would be to extend the results of Chapter 4 or Chapter

6 in the following way:

Question 7.4. Is it possible to add collapses to have ℵω2 singular strong limit with ITP holding

simultaneously at ℵω2+1 and ℵω2+2?

More ambitiously, we may ask the following:

Question 7.5. Is it possible to add collapses to have ITP to hold simultaneously at ℵω2+n for

n ≥ 1?

Approaching Question 7.4 would most likely involve a variant of the forcing from Chapter 6

where the Prikry forcing is outside the Mitchell forcing. We also note that answering Question

7.5 would have to solve the difficulty with the guiding generic mentioned after Question 7.1.
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