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SUMMARY 

 

Due to the spatio-temporal complexity in energy consumption profiles of multiple consumers at 

different regions, it is expected that more cost savings and higher resiliency to power disruptions can be 

achieved using a network of mobile prosumers, defined as entities that can both provide and consume 

energy. In this dissertation, the prosumer is assumed to be an autonomous vehicle equipped with different 

distributed energy resources (e.g., solar panel, battery). In addition, the demand on energy is uncertain and 

subject to change with time due to several factors including the emergence of new technology, 

entertainment, divergence of people’s consumption habits, changing weather conditions, etc. Moreover, 

increases in energy demand are growing every day due to increases in world population and growth of the 

global economy, which substantially increase the chances of disruptions in power supply. This makes the 

security of power supply a more challenging task especially during peak usage seasons (e.g., summer and 

winter). Furthermore, the majority of the applications of smart grids in the existing literature include a large 

number of agents (e.g., electric vehicles), and each agent interacts with other agents and affects their 

decisions (i.e., mobility and scheduling). This causes the operational complexity of smart grids to increase 

exponentially.  

To date, most of the existing research in energy management in smart grids aims to find efficient 

controlling schemes that seek renewable energy resources and dispatch energy to shift energy peaks 

between different daily periods. However, there are limitations and gaps in the current state-of-art in the 

field of energy management in smart grid including: (i) most of the literature focuses on energy 

transactions between EV's and power grids while the benefits of mobility in EV to mitigate the impact of 

spatio-temporal complexity in energy load and production are not maximally exploited; (ii) the existing 

solution approaches (e.g., mixed integer programming, dynamic programming, etc.) are not 

computationally efficient to handle system dynamics with the uncertainty inherent in energy problems; 

(iii) traditional/exact optimization tools are computationally expensive and are not efficient in solving 

high dimensional energy problems.  
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Thus, the aim of this dissertation is to thus advance the state-of-the-art in energy management of smart 

grids to contribute to reducing energy costs, dependency of the main power grid, computational time, and 

carbon emissions. This is done in several stages. First, an integrated vehicle routing and energy 

scheduling decision model is proposed to adaptively dispatch vehicles to balance the temporally and 

spatially distributed energy requests subject to vehicle mobility constraints, and thus to maximally exploit 

the potential of a mobile prosumer network for cost savings and carbon emission reductions. Second, a 

reinforcement learning model is developed to address the uncertainties in power supply and demand by 

dispatching a set of electric vehicles to supply energy to different consumers at different locations. 

Finally, a multiagent reinforcement learning (MARL) algorithm is introduced to address the scalability 

issues of large-scale smart grid systems. This algorithm uses centralized training and distributed 

execution, where all agents are trained using an actor network for each agent and sharing the same critic 

network, and then executed to make actions independent of other agents to reduce computation time.



   
 

 

1. INTRODUCTION 

 

1.1 Background 

 

Since the middle of the twentieth century, the population around the world is in continuous increase 

due to several factors including the end of World War II, industrial revolution, medical advancements, 

agricultural productivity, etc. According to United Nations statistics [116], the world’s population is 

projected to reach 8.6 billion by 2030 and 9.8 billion by 2050. 

 

With this increase in population along with the growth in world’s economy, the electrical industry is 

going through major changes due to the rapid increases in loads and needs for security of power supply 

to end consumers. Figure 1 illustrates the world energy demand according to Energy Information 

Administration, since it is expected that the demands on energy are projected to increase 28% by 2040 

[117]. 
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Figure 1: World energy consumption [117] 

 

In addition, the fact that the primary source of energy is fossil fuel resources such as natural gas, coal, 

etc. that are limited and nonrenewable adds to the challenge of the energy supply to meet continuous 

increases in energy demands. Figure 2 shows the world’s energy consumption by energy source, and 

indicates the dominance of the nonrenewable sources over the renewables. 

 

 

Figure 2: World energy consumption by source [118] 
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To address these challenges in the energy industry, it is imperative to seek alternative sources of energy 

that are clean, reliable, and sustainable to ensure security and stability in energy supply, improved customer 

satisfaction, and reduced carbon footprint. Distributed generation, also known as distributed energy, on-site 

generation (OSG), or district/decentralized energy, is electrical generation and storage performed by a 

variety of small, grid-connected or distribution system connected devices referred to as distributed energy 

resources (DER) (illustrated in Figure 3). Nowadays, DER is one of the most important research interests 

in the domain of energy due to its role in the shift to green and sustainable energy. It helps communities to 

use their own resources and facilities to power themselves and become independent from main power grids. 

 

 

Figure 3: Typical smart grid (DER) [119] 

It is well known that energy loads are varied at both spatial and temporal scales, so it will be more cost 

effective if the DERs can be adaptively dispatched to balance the energy load at different regions at different 

time periods. On the other hand, the amount of energy can be produced by DERs is also varied at both 
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spatial and temporal scales. For example, the energy cost may be significantly reduced if the PV panels are 

dispatched to harvest more energy at higher solar irradiance regions and serve the closest high load 

consumers. To this end, it is expected that more cost savings and higher resiliency to power disruptions can 

be achieved if multiple mobile DERs (e.g., trucks with solar panels), termed a mobile prosumer network 

(MPN), can be dynamically dispatched to different regions. For example, mobile PV systems are autonomic 

systems which can be easily mounted on a tow trailer and transported from one location to another to supply 

green energy to homes, businesses, hospitals or schools in the aftermath of disasters. Mobile PV systems 

are composed of PV panels, voltage regulators, lead-acid batteries to store the electricity, inverters to 

change DC into AC, and wiring to connect various components (see Figure 4). 

 

 

 

Figure 4: fixed or temporary Hybrid power systems [120] 

 

1.1.1 Electric Vehicles as Energy Suppliers 

    In today's world, the electrical industry is going through major changes due to rapid increases in loads 

and needs for security of power supply to end consumers. Several emerging distributed energy resource 
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(DER) technologies, such as internal combustion engine, gas turbine, microturbine, photovoltaic (PV), fuel 

cell, wind turbine, and electric vehicle (EV) [1] have been developed to mitigate the impacts of increased 

energy consumption and global warming effects. These technologies can act as local energy service 

providers to address the issue of power outages and environmental sustainability, and motivate the 

traditional energy consumers to received/supply provide energy at the same time, i.e., prosumer [2]. 

    As an emerging technology in the transportation sector, EVs can be operated in the vehicle-to-grid (V2G) 

mode where the energy flow between power grids and EVs is bidirectional [3], and thus can be used as 

energy storage to shift energy from peak periods to off-peak periods and thus to balance the energy request 

to power grids. V2G technology allows EVs to receive energy from renewable sources such as solar and 

store it for future consumption or supply it to power grids [4]. In addition, EVs can ensure sustainability of 

energy supply, especially for sensitive facilities such as hospitals, since they can act as a response to grid 

outages due to equipment failures [5]. An energy dispatch model of the Scandinavian and German 

electricity systems presented in [6] demonstrates that EVs can minimize energy costs and reduce CO2 

missions to 15g/km by year 2030. An integrated control strategy proposed in [7] can minimize the operation 

costs for EVs in the distribution grid with renewable energy sources. Additionally, vehicle-to-building is 

another concept of energy integration that has been introduced to satisfy the energy needs of buildings using 

vehicle storage. The energy costs can be reduced by 14% in a collaborative network of commercial 

buildings, EVs, and power grids using a two-stage stochastic programming model [8]. 

    Considering the mobility of EVs and spatio-temporal complexity of energy behaviors of DERs, it is 

hypothesized that a group of EVs with DERs (e.g., solar powered EVs), called a mobile prosumer network 

(MPN), will result in significant cost savings and be more resilient to power disruption. It is well known 

that energy loads are varied at both spatial and temporal scales, so it will be more cost effective 

if the DERs are allowed to be adaptively dispatched to balance the energy load at different regions subject 

to mobility constraints of EVs. On the other hand, the amount of energy can be produced by DERs also 

varies at both spatial and temporal scales. For example, the energy cost may be significantly reduced if the 

PV panels are dispatched to harvest more energy at higher solar irradiance regions and serve the closest 
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high load consumers. To this end, the energy scheduling and vehicle routing decisions should be made 

jointly to maximally exploit the benefits of MPN for cost savings, which has been less studied in the existing 

literature. 

    One of the promising applications of MPN is disaster response. For example, when a disaster strikes, 

there will be a high chance of power outages in disaster areas. The mobile prosumers can be dispatched to 

provide power service for these areas until power is restored from main grids. The mobile PV system has 

already been used to provide power service for (i) a community center after Hurricane Hugo in 1989, (ii) 

some communication centers and Southern California residents after the Northridge earthquake in 1994, 

and (iii) some medical clinics, shelters, street lights, and communication systems after Hurricane Andrew 

in 1992 [9].  

    With this as motivation, an integrated energy scheduling and vehicle routing decision model is developed 

to enable energy sharing in the MPN and thus to ensure energy security, cost effectiveness and CO2 

reductions. Specifically, this study will investigate several cases to evaluate the performance of MPN under 

various DER configurations, energy pricing, energy consumption due to vehicle mobility, consumer 

distances, and solar irradiance profiles. The simulation results demonstrate that the proposed integrated 

decision model can achieve more cost savings compared to a disjoint energy scheduling and routing 

decision process. This study makes three main contributions to the existing research:  

• An integrated decision model is developed to enable more flexible energy sharing among mobile 

prosumers at both spatial and temporal scales. 

• The tradeoff between vehicle mobility and energy service quality is explored and the performance of MPN 

is evaluated using multiple metrics including energy cost, energy requested from the main grid, and carbon 

emissions. 

• A systematic study is conducted to evaluate the cost effectiveness of the MPN concept, which can provide 

valuable insights for the energy industry to realize this novel concept.  
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1.1.2 Dynamics and Uncertainties in Energy Systems  

Power outage is one of the major power issues of the twenty-first century due to changes in the 

world’s population, weather conditions, people’s lifestyles, and technology advancement. The U.S.-

Canadian blackout of August 14, 2003 is one real world example of power issues caused by an overload 

of the main power grid and lack of supporting units, which affected nearly 50 million people in both the 

U.S. and Canada [10]. These power issues affect people’s security, quality of life, and health [11]. Hence, 

the need of an immediate response to these power disruptions is imperative to ensure the sustainability of 

power supply via providing temporary backup energy solutions until the power is restored from the power 

grid. 

To address or mitigate the impact of power supply problems, many studies investigate the causes 

of energy supply problems and develop plans to increase the resilience of the power grid to ensure 

sustainability of power supply. Different solution approaches and new technologies, such as electric 

vehicle (EV), smart grid, microgrid, and wide area monitoring applications are developed to provide 

temporal solutions and enable faster restoration of power services [12]. An EV can charge its battery with 

energy received from solar cells and supply it to power grids later [4]. Due to their mobility, EVs can be 

dispatched to disrupted areas to supply energy. 

With this as a motivation, a study will be conducted to investigate how to optimally dispatch 

multiple EVs equipped with energy storage and photovoltaic (PV) panel to provide energy services for 

spatially and temporally distributed consumers. To ensure efficient energy dispatching and supply, a 

simultaneous vehicle routing (VR) and Energy Scheduling (ES) problem will be studied. In addition, the 

energy demands of the consumers may be uncertain and dynamically changing, and the energy production 

from renewable energy are highly uncertain. Stochastic Programming (SP) is one of the commonly used 

algorithms for handling problems with uncertainties. For example, an SP model for emergency response 

has been developed in [13] to dispatch first-aid commodities to affected locations during disasters. A 

multi-objective, robust, SP model is developed in [14] to optimize the preparedness and response of relief 

operations. The study in [15] employs an SP model to handle the uncertainties in solar energy, electricity 
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prices, and energy load in a cluster of energy sharing providers. SP is used in [16] to find the optimal 

energy pricing for EV to increase both the profitability of a power aggregation business and customer 

satisfaction. To improve the efficiency of wind farms, a dynamic economic dispatching model using SP 

and wind speed forecasting is developed in [17]. 

The above publications indicate that SP is capable of dealing with uncertainties in optimization 

problems and yielding solutions for energy problems that have multiple sources of uncertainties. 

However, it may not be an efficient approach to handle the dynamics in the ES and VR problems due to 

its high computational cost [18, 19]. To enable fast decision-making for the dynamic ES and VR 

problems, first this problem is reformulated using Markov decision processes (MDP). A large volume of 

historical data including energy demand and solar irradiance are collected to train a deep reinforcement 

learning agent to map the system states (e.g., energy load, solar irradiance, battery energy level) to 

optimal actions (e.g., VR, ES). Once the training process is complete, the agent can quickly generate near-

optimal solutions to handle system dynamics and uncertainties in energy load and radiant energy without 

solving the problems from scratch. The performance of the developed reinforcement learning algorithm is 

compared with exact optimization and heuristic algorithms to demonstrate its effectiveness for fast 

decision making. 

 

1.1.3 Scalability in Energy Systems 

Sustainability of power delivery to end customers is a main essential in modern life as it directly 

affects people’s security, quality of life, and health [11]. Security of power supply is considered one of the 

major challenges in the modern power industry, and is greater in the case of delivering power to 

largescale urban areas due to the continuous changes in the demographic areas. These 

changes result in overloading the power infrastructure in large cities, which poses many challenges for 

electric utilities and city planners [20]. Hence, it is important to seek alternative power resources as an 

additional layer to power security to reduce the dependency on the main power grid, ensure the 

sustainability of power supply, and preserve the environment.  
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To increase the resilience of power grids and energy supply infrastructure in urban areas, many 

approaches and technologies to provide alternative power solutions and diversify sources of power 

services have emerged recently including electric vehicle (EV), smart grid, microgrid, and wide area 

monitoring applications [12]. Batteries of EVs can be used as a sustainable source of energy, since they 

can store energy from solar and discharge it to power grids later to reduce energy costs [4]. Further, given 

the fact that EVs can move among different places, they can be sent to supply electricity to different 

customers at different locations. 

With this as a motivation, a study is carried out to investigate how to efficiently dispatch large 

numbers of EVs which are mounted with energy storage and photovoltaic (PV) panel to deliver power 

services for spatially and temporally distributed customers. To guarantee optimal energy dispatching and 

delivery, a simultaneous vehicle routing (VR) and Energy dispatching (ED) problem should be 

investigated. In addition, the large numbers of customers and EVs makes solving high-dimensional power 

problems to be a hard task and computationally expensive. There are studies that use traditional 

optimization tools to solve large-scale problems in the energy management field. For instance, Ref. [21] 

formulate a multi-objective mixed integer nonlinear programming model with economic and 

environmental aspects to optimize the operational efficiency of large-scale combined cooling, heat, and 

power system. A mathematical model to optimize the operation of a Brazilian hydrothermal 

power plant is proposed in [22], which uses linear and non-linear programming algorithms to solve the 

model. Ref. [23] presented a novel quadratic programming (QP) model to reduce energy waste by 

optimizing hourly operations in a group of hydropower (HP) plants. 

The above studies show that conventional optimization algorithms can solve optimization problems 

with high dimensions and output solutions for energy problems that have a large number of agents.  

However, it takes a long time to produce solutions, which makes it inefficient approach to manage the 

dynamics in ED and VR problems [18,19].  Further, besides that this problem is a large-dimensional 

problem, it includes uncertainties and system dynamics, which makes a decomposition approach 

inefficient.  
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As an illustration of increasing the efficiency of decision-making for the dynamics in ED and VR 

problems, Multi-Agent Reinforcement Learning (MARL) is used to address the scalability issues in a 

network of mobile prosumers (EV’s). MARL is a framework in which a group of self-ruling, 

communicating entities share the same environment, which they observe with sensors and upon which 

they act with actuators [123]. This research makes the following contributions: 

 

• For the first time, a Decentralized Markov Decision Processes (DEC-MDP) is applied to a mobile 

prosumer network. 

• Agents are trained using a large set of historical data for energy loads and solar irradiance in a 

centralized way, where each agent has its own actor network, and all agents share the same critic 

network. Each agent then executes its actions in a decentralized way, taking actions 

independently from other agents and generating near-optimal solutions using the sequence of 

actions learned from the training process. This approach reduces the interactions and 

dependencies among agents, which leads to reducing computation time and makes it more robust 

when handling system dynamics in large-scale problems. This is the first application of this 

framework to this problem. 

• The performance of a number of different solution methods are compared: MARL, deep 

reinforcement learning (DRL) and three other heuristic algorithms (genetic algorithm (GA), 

particle swarm optimization (PSO), and artificial fish swarm algorithm (AFSA)) in terms of 

solution quality and effectiveness for fast decision-making at large-scale energy problems. 

1.2 Literature Review 

This section provides a brief review of state-of-the-art in operational modeling of individual DERs and 

a system of multiple DERs and existing algorithms to handle system dynamics and scalability issues in 

power systems. 
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1.2.1 Electric Vehicles and Distributed Energy Resources 

During the past few decades, there is a rich literature focusing on energy management of DERs to 

maintain sustainable energy supply. A study in [24] demonstrates that EVs can be efficiently integrated 

with power grids by providing real-time frequency regulation. A two-stage model is proposed in [25] to 

manage energy in office buildings by adopting EVs as flexible energy resources. A novel EV fleet 

aggregator model is developed in [26] to study the DER investment and scheduling problems under 

uncertainty and assess the impact of EV interconnections on optimal DER solutions. A mixed integer linear 

programming model is constructed in [27] to optimize energy supply to buildings in a district-scale DER 

through the energy distribution networks to minimize the total annual costs. A multi-objective mixed integer 

linear programming model is developed in [28] to optimize a DER system at a community level containing 

residential and office buildings, leading to minimized total costs and reduced carbon emissions. A short-

term model with a two-phase approach is developed in [29] to study the schedule operations of renewable 

energy resources. It is also demonstrated that renewable energy resources can reduce environmental 

pollution [30]. A mixed integer programming model is developed to obtain a cost effective and 

environmentally friendly operational strategy for DERs [31]. A conceptual model for a demand response 

management system is presented in [32] to improve the efficiency of DER operations. Energy storage is an 

essential component in DER to maintain stability and reliability of system operations [33]. A smart energy 

management system is proposed in [34] to optimize the operational strategies of energy storages in a 

microgrid. Multiple scale operation models are proposed in [35] to explore the performance of energy 

storage operations at different time scales, such as daily, weekly, etc.  

The performance of DER integration to power grids can be measured by operational costs and 

reliability [36]. Many studies focus on assessing the operational performance of distributed generators in 

terms of cost savings, emission reduction, and service quality improvement [37]. The performance of DER 

in terms of capabilities of energy supply, sustainability, and reliability is also investigated [38].  

 Other than operational modeling of individual DERs, it is also demonstrated that more cost savings can be 

achieved if multiple DERs with complementary capabilities can be integrated. For example, an integrated 
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renewable energy system can satisfy the energy request of seven unelectrified villages in India [39]. 

Through coordinating multiple energy devices including energy storages, an efficient energy supply can be 

ensured [40]. A net zero-energy residential building target can be achieved using a system of building-

integrated PV panels and hydrogen fuel cell EVs where the EVs can help to reduce the energy purchased 

from power grids by approximately 71% over one year [41]. 

  A transactive energy operation model is developed in [42] to enable efficient energy sharing among 

a cluster of microgrids with various DERs. A better energy management system for grid-connected DERs 

can be achieved using a distributed solution based on the paradigm of multi-agent systems [43]. An 

operational model for aggregated DER systems is developed in [44] to ensure efficient energy transaction 

between market and aggregator according to the size of the aggregated resources. A particle swarm 

optimization algorithm is employed to find near optimal operation strategies for a system of residential 

level DERs to maximize the net benefits of residents [45]. Taking dynamic load and benefits that end-user 

can derive from services into account, an optimization model is developed in [46] to optimize energy supply 

to end-users and increase their satisfaction.  

An operation model is developed to manage a residential microgrid including a charging spot for 

EVs and renewable energy sources where different load profiles, owner behaviors, and energy consumption 

due to mobility are considered [47]. The EVs can be optimally charged to achieve peak load shaving and 

reduction of load variability of households connected to a local distribution grid [48]. A two-layer evolution 

strategy particle swarm optimization algorithm is developed to optimize the control strategies of EVs in a 

residential distribution grid to shave peak loads [49]. A linear programming model is developed in [50] to 

evaluate the benefits of the interconnection and joint management of a district with residential loads, DERs, 

EVs, and an electrical metro substation. A similar study to shave peak load using a two-stage optimization 

model is conducted in [51]. A practical model to assess the contribution of V2G with energy management 

support of small electric energy systems is designed in [52]. A real-time digital simulator for a fleet of EVs 

to implement the V2G power transactions is developed in [53].  
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There are challenges facing the adoption of the V2G concept including a lack of frameworks to 

apply this concept in the real world, efficiency and stability of power grids, and charging/discharging 

strategies between vehicles and power grids. Optimization techniques of V2G operation [54] have recently 

been developed to overcome the possible challenges [55] of the plug-in hybrid electric vehicles (PHEV) 

and V2G concept and improve the performance of power grids in terms of efficiency, stability, and 

reliability [56]. Managing charging/discharging of large numbers of PHEV/EVs and their capabilities is 

discussed in [57].  

While promising, most of the existing research focus on energy transactions between EVs and 

power grids while the benefits of EV mobility to mitigate the impact of spatio-temporal complexity in 

energy load and production are not maximally exploited. For instance, deploying an EV with higher stored 

energy to serve consumers with higher energy loads may be efficient at the current time period, but it may 

not be efficient to serve higher energy load users at future time periods due to vehicle mobility constraints. 

This poses critical challenges to the existing disjoint vehicle routing and energy scheduling decision 

process. To bridge these research gaps, an integrated decision model is proposed in this thesis to study the 

tradeoff between vehicle mobility and energy service quality. 

 

1.2.2 Addressing Uncertainty Issues in Smart Grids 

EV is one of the most commonly used alternatives to provide temporal solutions for power 

disruptions and work as a secondary power supplying unit as they have the feature of vehicle-to-grid 

(V2G) where EVs can exchange energy with power grids [3], which enables EVs to act as mobile energy 

storage to balance energy requested from power grids by shifting energy from peak periods to off-peak 

periods. EVs can supply energy to compensate energy shortages from the main power grid and maintain 

energy supply to users [5]. Ref. [58] discusses the integration of the EV-grid including power interaction 

mode and mainstream dispatching method. Ref. [7] presents a control scheme with renewable energy to 

reduce the operational expenses for EVs in the distribution network. Ref. [59] discusses the capabilities of 

V2G to secure power and to provide ancillary services using renewable energy resources. 
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A two-stage SP model is developed in [8] to reduce energy costs in a community of buildings, 

EVs, and power networks. A novel management system is developed in [60] to manage and coordinate 

microgrid which uses plug-in EVs as distributed energy resource (DER). EVs can be efficiently 

incorporated with an energy distribution network via providing instantaneous frequency arrangements 

[24]. A two-stage model is presented in [25] to dispatch energy in office buildings by implementing EVs 

as flexible sources of energy. Ref. [26] presents a novel EV squadron aggregator model to discuss 

problems in the implementation and scheduling of DER under stochastic conditions and evaluate the 

contribution of EVs on optimal solutions. Ref. [29] investigates the scheduling operations of RES and 

develops a model for short time decisions operated in two phases. Renewable energy resources are 

considered a reliable source of clean energy that can be used to supply energy to communities while 

preserving the environment [30]. Ref. [35] presents operation models that operate under multiple scales to 

evaluate the performance of power storage at different time periods. Ref. [61] proposes a MIP model to 

develop an operational strategy for DERs to reduce energy costs and sustain the environment. A MIP 

model is presented in [27] to reduce the annual energy expenses in a district-scale DER by optimizing the 

operation of power grid. Ref. [34] presents a smart energy management system to improve the 

performance of energy storage units in a microgrid. Ref. [28] presents a multi-objective MILP model to 

reduce total energy costs and environmental pollution in a community of residential and office 

buildings. 

There is literature discussing the uncertainties that stem from unpredictability of energy demand 

and supply. For example, a risk-constrained SP model is developed in [62] to address the energy 

procurement issue for large number of users. While SP and heuristic algorithms can handle the 

uncertainties in power supply and demand, they are computationally expensive [18, 63] and cannot 

provide real-time decisions in a power supply network [19]. The dynamic energy system requires instant 

decision-making processes to maintain its operations under various dynamics and uncertainties. 

Traditional optimization tools (e.g., SP) can be used to handle the uncertainties in energy systems 

and yield optimal solutions for ES. However, these tools may not be efficient to handle system dynamics 
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for real-time decision-making. Since these tools may take longer time to generate solutions and so may 

not response to the systems dynamics faster enough compared to reinforcement learning approach, 

especially in the case of routing problems [64]. Hence, reinforcement learning may be a better alternative 

than traditional optimization approaches, since it can be trained using real world data to interact more 

efficiently with system dynamics and uncertainties in energy supply and demand to yield faster real-time 

decisions for the routing and energy dispatching. 

Reinforcement learning is widely used to address dynamic decision-making problems under 

uncertainties. For example, a stochastic optimization framework based on reinforcement learning is 

developed in [65] to address the uncertainty in energy prices and available wind energy. Uncertainties in 

traffic demand and supply in a stochastic traffic network are studied using a MDP formulation, and the 

formulated dynamic speed limit problem is solved by a real-time control mechanism [66]. A 

reinforcement learning algorithm is developed in [67] to solve the VR problem which can provide fast 

routing decisions without solving the new problem from scratch. Ref. [68] proposes a model and learning 

procedure to solve the problem of routing multiple vehicles with heterogeneous capacities. A real time 

delivery of products is modeled in [69] in the framework of average-reward reinforcement learning with 

the context of stochastic demands and multiple vehicles. Ref. [70] demonstrates that a reinforcement 

learning algorithm is able to yield optimal routing actions for autonomous taxis in the city of Singapore. 

A deep reinforcement learning-based neural combinatorial optimization strategy is presented in [71] to 

solve VR problems with minimal computation time. 

Ref. [72] presents a deep reinforcement learning-based method to address the stochastic and 

dynamic nature of RES and power electronic devices in modern power systems without system modeling. 

Ref. [73] proposes a partially observable MDP model to address the stochastic nature of future electricity 

loads and renewable power generation. A reinforcement learning algorithm for hierarchical automatic 

generation control is proposed in [74] to achieve multi-objective dynamic optimal allocation of a 

microgrid in island mode. Distributed multi-energy systems optimization problem is addressed in [75] 
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using an alternative approach based on multi-agent reinforcement learning. A reinforcement learning 

model is proposed in [76] for flexible and cost-effective dispatch of the electricity used by buildings in 

a smart grid. Ref. [77] proposes a novel energy dispatching approach for real-time scheduling of a 

microgrid considering the stochastic nature of energy demand, renewable energy, and energy price. A 

fuzzy Q-learning model is proposed in [78] with the use of renewable resources for modeling an hour-

ahead electricity market. The dimensionality issues in the dynamic optimization of generation command 

dispatch for automatic generation control is addressed in [79] using an improved hierarchical 

reinforcement learning approach. Ref. [80] presents a deep reinforcement learning model using the deep 

deterministic policy gradient algorithm to control energy transactions of shared energy storage assets 

within building clusters. An economic dispatch problem is formulated as a multi-stage decision making 

problem in [81] and is solved using reinforcement learning. 

 

1.2.3 Addressing Scalability Issue in Smart Grids 

The power supply in large urban areas is one of the main targets and challenges in the energy 

industry, since the energy system in large cities is highly sophisticated in nature and interconnected, 

posing many challenges for electric utilities and city planners [20]. Hence, the need for an efficient energy 

management is essential to satisfy large energy demands and ensure the sustainability in power supply. 

The optimization of large-scale problems has been an interest for the current state-of-the-art in the 

optimization field. For instance, a novel min-max dynamic programming (DP) model is presented in [82] 

to manage operations of HP system during peak times. Ref. [83] proposed an Angle Modulated Particle 

Swarm Optimization (AMPSO) to optimize the operations of a large-scale power systems. A mixed-

integer quadratic programming (MIQP) model is used in [84] to optimize the operations of a large-scale 

wind power plant with respect to coordination of steady state and transient state operations. 

Decomposition methods are a commonly used approach to handle large-scale optimization 

problems, aiming to partition the problems into sub-problems and solve them separately and then 

combine them again to reduce computational time. For example, a study in [85] adopts the concept of 
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decomposition to solve a large-scale vehicle routing problem to maintain acceptable run time. Ref. [86] 

investigates the use of decomposition techniques to reduce computational time for a large-scale vehicle 

routing problem with time windows. A solution method for a large scale mixed-integer problem with a 

specific structure is proposed in [87], which decomposes the primal problem using duality while 

guaranteeing that the solutions produced are feasible for the original unmodified primal problem. A study 

in [88] uses the Dantzig-Wolfe decomposition method to address a power system problem with a 16-bus 

system and a modified IEEE 30-bus system. Ref. [89] adopts a Benders decomposition based framework 

for addressing a high-dimensional energy dispatching problem. However, the decomposition approach 

assumes a natural decomposition of the problem, since it is very subjective in drawing boundaries around 

physical components and subassemblies in large, highly dependent systems. Consequently, it may fail to 

account for interdependencies in dynamic and integrated systems. Given the stochastic dynamic nature of 

the problem in this thesis, the decomposition method may not be an efficient approach to solve it [90]. 

There are well-known optimization tools (e.g., MIP, DP, etc.) that can be used to handle the 

large-scale power systems and generate optimal solutions for ED. Nevertheless, these tools may take 

considerable time to produce solutions, especially in large-scale decision-making problems [91, 92]. 

Furthermore, a reinforcement learning approach may not be a good alternative to these traditional 

optimization tools when it comes to large-scale problems, since it takes more time to converge and output 

solutions [93]. On the other hand, multi-agent reinforcement learning (MARL) is more efficient than 

reinforcement learning and other optimization algorithms when it comes to high-dimensional problems 

[94, since it is able to do the training in a centralized way and execute in decentralized way, imposing 

fewer restrictions on the agents and resulting in less execution time. This feature enables MARL to handle 

large scale energy problems that have a large number of variables that are dynamic in nature and require 

faster decision-making processes [95]. 

The Decentralized Markov decision process (DEC-MDP) is commonly used to handle the multi-

agent decision problems [96]. It has been used to solve energy management problems with distributed 
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decisions. Ref. [97] utilizes a decentralized partially observable Markov decision process (DEC-POMDP) 

to reduce delay for impedance networks with environmentally friendly power sources. A study in [98] 

uses DEC-MDP framework to formulate and solve a problem of finding decentralized transmission 

policies in a wireless communication network. A wireless sensor network for an energy harvesting 

communication network is investigated using the DEC-MDP framework in [99]. Ref. [100] presents a 

study that uses DEC-POMDP to formulate and solve a decentralized partially observable offloading 

problem to maximize the network performance with energy harvesting and Internet of Things (EH-

enabled IoT). 

Multi-agent reinforcement learning is widely used to address challenges of scalability in DEC-

MDP problems. For example, Ref. [101] presents a novel reinforcement learning algorithm that generates 

fast routing solutions for a largescale logistics system. A multi-agent routing based on learned value 

iteration is introduced in [102], which aims to output routing solutions for multiple agents in 

a dynamically changing traffic condition. Ref. [103] proposes a proactive Ecofriendly Pheromone-based 

Green Vehicle Routing (E-PGVR) scheme to minimize fuel consumption in traffic congestions via 

finding optimal routing solutions. A multi-agent based model is developed in [104] to optimize energy 

scheduling in a large-scale microgrid with modern homes interacting together to minimize energy costs. 

A distributed intelligent resource scheduling (DIRS) system is introduced in [105], which performs 

centralized training and decentralized execution by each agent dispatched in each mobile edge computing 

server. Ref. [106] presents a study that implements a multi-agent reinforcement learning based model to 

reduce energy costs and achieve the energy balance in a microgrid with grid-connected mode. A study in 

[75] discusses the implementation of a multi-agent reinforcement learning for optimal energy dispatch in 

distributed multi-energy systems. A multi-agent reinforcement learning approach for residential buildings 

is presented in [107] to address microgrid energy scheduling problem and guarantee fairness in a 

microgrid market. Ref. [108] discusses battery scheduling problems and proposes a reinforcement 

learning framework to increase the lifetime of batteries used in EVs. 
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1.3 Motivation  

Sustainability of the power supply to end clients is a basic need in the present day as it impacts 

individuals' security, personal satisfaction, and wellbeing [1]. Security of the power supply is considered 

one of the significant difficulties in the advanced power industry, particularly when providing capacity to 

largescale metropolitan zones because of persistent changes in demographics in these areas. These changes 

provoke an overburdening of the power infrastructure in huge urban areas, presenting numerous difficulties 

for electric utilities and city organizers [2].  

Existing literature explores the reasons for energy supply issues and creates plans to build the strength 

of the power grid to guarantee maintainability of the power supply. Different solution approaches and 

new advancements, for example, electric vehicle (EV), smart grid, microgrid, and wide territory checking 

applications are created to give temporal solutions and enable faster restoration of electricity services [3]. 

An EV can charge its battery with solar energy and supply it to the power grid later [4]. Because of their 

portability, EVs can be dispatched to the affected territories to supply energy. However, following the 

above literature review, some of the existing limitations in the literature on smart grid and energy 

management considering this emerging technology can be summarized as follows: 

 

1. The energy scheduling and vehicle routing decisions should be jointly made which is less studied 

in the existing research to maximally exploit the benefits of MPN for cost savings. 

2. The literature indicates that traditional optimization tools (e.g., Stochastic Programming) are 

capable of dealing with uncertainties in optimization problems. However, it may not be an 

efficient approach to handle the dynamics in energy scheduling and vehicle routing problem due 

to its high computational cost [10, 11]. 

3. The above studies show that conventional optimization algorithms take a long time to produce 

solutions, which makes them inefficient approaches to manage the dynamics in the joint energy 

scheduling and vehicle routing problem [8, 9].  
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Therefore, advancing the state-of-the-art in energy management and sustainability of the power supply in 

smart grids is necessary. 

1.4 Research Scope, Objectives, Assumptions, and Framework 

Based on the mentioned motivations and literature review, the following research scope, 

objectives, and framework are proposed. 

 

1.4.1 Research Scope 

This thesis is composed of three main stages. In the first stage, MIP is used to model and optimize 

MPN to form a benchmark for future comparisons of MPN performance. The performance of MPN is 

evaluated under different operating conditions. In the first case, the impact of different pricing mechanisms 

on the performance of MPN is investigated. In the second case, the performance of MPN under different 

solar irradiance profiles corresponding to different weather conditions (e.g., sunny, cloudy, snowy) is 

evaluated. In the third case, the performance of MPN under various consumer patterns is studied. Two 

consumer patterns are analyzed: (i) the "similar" pattern where each consumer has only one peak load and 

(ii) the "different" pattern where some consumers have one peak load, while others may have two or 

multiple peaks. In the fourth case, the performance of MPN under various energy consumption rates due to 

mobility is assessed. For demonstration, four different consumption rates are considered: 40, 70, 96, and 

121 kWh per 100 miles. In the last case, the impact of distances between consumers on the performance of 

the mobile prosumer network is analyzed. For demonstration, four different distances will be considered: 

1, 2, 4, and 8 miles. 

In the second stage, the focus is on addressing the uncertainty issues for a network of mobile 

prosumers using a DRL approach, since traditional optimization tools (e.g., SP) may not be an efficient 

approach to handle the dynamics in ES and VR problem due to its high computational cost [10, 11]. The 

dynamic decision problem is reformulated using the Markov decision processes (MDP) framework. Four 
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state variables (𝑠 ∈ 𝑆) are defined for each prosumer including location, battery level, consumer’s load, 

and solar irradiance at consumer’s location. Also, the action space (𝑎 ∈ 𝐴) is defined with a total of 

fifteen combinations of actions, five of which are mobility actions (up, down, left, right, and no move) 

and three of which are battery transaction actions (charge, discharge, and idle).  Then the reward function 

(𝑟(𝑠, 𝑎)) is defined as the energy cost for each combination of prosumers' actions, which represents the 

amount of energy requested from the power grid multiplied by the energy price. After that, the model is 

solved using deep reinforcement learning algorithm (DRL).  The decision model is trained to learn the 

dynamics and changes in energy loads and solar irradiance from historical data and make real-time 

decisions for the future. The performance of the proposed machine learning algorithm is compared with 

an exact solution approach and heuristic algorithms including genetic algorithm (GA), particle swarm 

optimization (PSO), and artificial fish swarm algorithm (AFSA) using different scales of problems. 

In the third stage, a multi-agent reinforcement learning model is developed to address the scalability 

challenges for a network of mobile prosumers and operate it with larger number of consumers and 

prosumers. Conventional optimization tools (e.g., SP and DP) take a long time to produce solutions, 

which makes them inefficient approaches to manage the scalability complexities in the ED and VR 

problem [8, 9]. The centralized training and decentralized execution mechanism is adopted to train a 

decision model in a centralized way to enable independent decisions for each prosumer. The performance 

of the proposed algorithm is evaluated using different scales of problems including (i) One hundred 

consumers and sixteen prosumers, (ii) One hundred consumers and twenty-five prosumers, (iii) One 

hundred consumers and twenty-nine prosumers, (iv) One hundred consumers and thirty-five prosumers, 

and (v) One hundred consumers and forty prosumers. Heuristic models including GA, PSO, and AFSA 

are used to compare their results with the decentralized ML model. 

1.4.2 Research Objectives 

Based on these motivations, literature review, and research scope, the goal of this thesis is 

to integrate the vehicle routing and energy scheduling operations to enable energy sharing among 
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consumers at both spatial and temporal scales. In addition, this research aims to address the 

system’s dynamics due to sources of uncertainty in both energy load and solar irradiance by 

implementing the Artificial Intelligence concept of Deep Reinforcement Learning Algorithm. 

Moreover, this thesis investigates the scalability issues in implementing the concept of a mobile 

prosumer network on large scales and uses Multi-agent Reinforcement Learning algorithm to 

enable distributed decision-making among all agents in the system, hence increasing the 

computational efficiency of the model. 

1.4.3 Research Assumptions and Limitations 

There are some assumptions that have been made in this research for the sake of simplicity of the 

models’ computations. The models in this thesis focus on the systems perspective and energy 

costs of the consumers only. Assumptions in this research can be summarized as follows: 

• In the future there will be variable energy prices in metropolitan cities since they will 

have independent generation units. The goal is to optimally dispatch EVs to different 

locations and make energy transactions to minimize the overall costs. 

• The cost is calculated from the perspective of the consumers only. EVs are assumed to be 

owned by the government to ensure sustainable power supply to the community. 

• The grid services, consumer comfort level, and grid stability are beyond the scope of this 

thesis and will be considered as future work. 

• The routes between each pair of consumers are available all the time. 

• Vehicles are assumed to operate all the time. 

• Vehicle maintenance, equipment degradation, design, and investment costs will be 

addressed in the future stages of this research. 
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1.4.4 Research Framework 

In this research, the focus is on developing models and algorithms to study operations of a network of 

mobile prosumers and evaluate its performance under different scenarios. The overall vision for this 

research is described in Figure 5, and more detailed descriptions of the stages and the research challenges 

in each stage are in the following chapters.  

 

 

 

Figure 5: Overall framework of this research 

 

Note that most of existing literature in DER focuses on energy scheduling while the benefits of 

mobile DERs to mitigate the impact of spatial-temporal complexity in energy load and production are not 
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maximally exploited. Therefore, this research proposes to develop models and algorithms for integrated 

vehicle routing and energy scheduling for a mobile prosumer network which can find optimal solutions for 

energy transactions between prosumers and consumers along with optimal routing decisions of mobile 

prosumers.  

 

1.5 Contributions and Thesis Outline 

The main contributions of this thesis are as follows: First, an integrated decision model is developed 

to enable more flexible energy sharing among mobile prosumers at both spatial and temporal scales. In 

addition, a systematic study is conducted to evaluate the cost effectiveness of the MPN concept, which 

can provide valuable insights for the energy industry to realize this novel concept. Second, this problem is 

reformulated using Markov decision processes (MDP) to enable fast decision-making for the dynamic ES 

and VR problems. A large volume of historical data including energy demand and solar irradiance is 

collected to train a deep reinforcement learning agent to map the system states (e.g., energy load, solar 

irradiance, battery energy level) to optimal actions (e.g., VR, ES). Once the training process is complete, 

the agent can generate near-optimal solutions very quickly to handle system dynamics and uncertainties in 

energy load and radiant energy without solving the problems from scratch. Third, the problem model is 

reformulated using decentralized Markov decision processes (DEC-MDP) to boost the decision-making 

for the dynamics in ED and VR problems. A large set of historical data including energy loads and solar 

irradiance is collected to train a multi-agent reinforcement learning algorithm (MARL). Agents are 

trained in a centralized way, where each agent has its own actor network and all agents share the same 

critic network. Then each agent executes the actions in a decentralized way, where each agent takes 

actions independently from other agents and generates near-optimal solutions using the sequence of 

actions learned from the training process. 

 

The rest of the thesis is organized as follows. 
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Chapter 2 introduces the concept of a mobile prosumer network and studies the feasibility of this 

concept to increase energy savings, reduce dependency on power grid, and reduce carbon emissions due 

to power generation. An integrated model of energy scheduling and routing for a network of mobile 

prosumers is presented. Where the integration of scheduling and routing is shown to yield more energy 

savings, reduce energy requested from main grid, and reduce carbon emissions. 

In Chapter 3, the uncertainty issues in the implementation of the MPN model are investigated. Here, 

the sources of uncertainty are the energy demand and the solar irradiance, which affects the energy supply 

and demand in the energy system. Hence, models and algorithms are needed to overcome or reduce the 

impact of these uncertainties. 

In Chapter 4, the scalability issues in a smart grid with large fleet of mobile prosumers (EVs) are 

studied, where a large number of mobile prosumers are dispatched to satisfy more consumers, causing it to 

take longer to get optimal solutions as the size of the problem increases. 

Finally, a summary of the main conclusions and possible future work of this thesis are provided in 

Chapter 5. 
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2. INTEGRATED ENERGY SCHEDULING AND ROUTING FOR A NETWORK OF 

MOBILE PROSUMERS 

[The majority of work presented in this chapter of the dissertation is published as: “Alqahtani, M., 

& Hu, M. (2020). Integrated energy scheduling and routing for a network of mobile prosumers. Energy, 

117451.”. 

For more information, please refer to Appendix B (Copyright Statement).] 

 

This chapter presents the concept of a Mobile Prosumer Network (MPN) and evaluates its 

performance using three metrics: operational cost, energy requested from power grids, and carbon 

emissions. It then compares this performance with disjoint models. A prosumer is defined as an entity in 

an energy system that both produce and consume energy.  In section 2.1 presents problem definition and 

model formulation for the proposed integrated decision process. The simulations to evaluate the 

performance of MPN are presented in Section 2.2 and conclusions are drawn in Section 2.3.  

 

2.1 Mathematical Model for Mobile Prosumer Network 

The overall system architecture to model the MPN is presented in Section 2.3.1 and the 

mathematical model to formulate the operational decision problem of MPN is discussed in Section 2.3.2. 

 

2.1.1. System Architecture for Mobile Prosumer Network 

In this section, the studied geographic area is assumed to be divided into mutually exclusive and 

collectively exhaustive hexagonal regions (see Figure 6) where the distance between two connected regions 

is one mile. Each region may have one consumer or may not have any consumer. This setting allows us to 

study the energy consumers with different distances from one to many miles. For demonstration purpose, 

Figure 5 assumes that there are eight consumers and four prosumers. A network of mobile energy prosumers 

is assumed to provide energy service for these consumers with various energy and solar irradiance profiles. 
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Each mobile prosumer can be considered as an autonomous vehicle equipped with multiple DERs, such as 

thermoelectric generator, PV panel, and energy storage. The decision time horizon (e.g., one day) is 

assumed to be divided into multiple time steps (e.g., one hour).  

 

  

Figure 6: Overall system architecture of mobile prosumer network at two consecutive time steps t 

and t + 1  

     

Given the energy loads and solar irradiance profiles of each consumer, the mobile prosumers will 

be dynamically dispatched to serve different consumers at different time periods. In this section, it is 

assumed that each mobile prosumer can only serve the consumers at its current region. The energy load of 

each customer will be satisfied using the mobile prosumer if it is available at the customer’s region.  

Otherwise, the power grid will provide energy for that consumer. In addition, each mobile prosumer can 

also request energy from the power grid at its current region to charge its energy storage.  

 

2.1.2. Operational Decision Model for Mobile Prosumer Network 

The integrated vehicle routing and energy scheduling decision process is shown in Figure 7. Given 

the load and solar irradiance profiles and initial vehicle region, the optimization loop aims to find optimal 

vehicle routing and energy scheduling decisions for each time step (e.g., hourly) over the given decision 

time horizon (e.g., one day).  
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The following symbols are used to illustrate decision variables: 

 

𝑓𝑖 Energy cost for consumer i ($) 

𝑓  Total energy costs for all consumers ($) 

𝑒𝐺𝑝𝑖 Electricity purchased from power grids for consumer i at time t (kWh) 

𝑓𝑇𝐺𝑛,𝑖,𝑡 Fuel used to generate electricity from prosumer n to consumer i during time t (l) 

𝑥𝑇𝐺𝑛,𝑡 ON/OFF state variable of TG for prosumer n at time t 

𝑒𝑇𝐺𝑛,𝑡 Electricity generated by TG of prosumer n at time t (kWh) 

𝑒𝑑𝑛,𝑖,𝑡 Electricity supplied from prosumer n to consumer i at time t (kWh) 

𝑒𝑐𝑛,𝑖,𝑡 Electricity received by prosumer n from power grid at consumer i's region at time t (kWh) 

𝑥𝑒𝑑𝑛,𝑖,𝑡 Indicates whether prosumer n supply energy to consumer i at time t 

𝑥𝑒𝑐𝑛,𝑖,𝑡 Indicates whether prosumer n receive energy from power grid at consumer i's region at time t 

𝑒𝑃𝑉𝑛,𝑡 Electricity provided by PV of prosumer n at time t (kWh) 

𝑒𝐵𝑛,𝑡 Amount of stored energy in storage of prosumer n at time t (kWh) 

𝑒𝐵𝑑𝑛,𝑡 Discharging rate of storage of prosumer n at time t (kWh) 

𝑒𝐵𝑐𝑛,𝑡 Charging rate of storage of prosumer n at time t (kWh) 

𝑥𝐵𝑑𝑛,𝑡 Discharging state variable of storage of prosumer n at time t 

𝑥𝐵𝑐𝑛,𝑡 Charging state variable of storage of prosumer n at time t 

𝑥𝑛,𝑖,𝑡 Indicates whether prosumer n is located at consumer i's region at time t 

𝑥𝑚𝑛,𝑖,𝑡 Indicates whether prosumer n moves to another consumer’s region at time t 
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The following symbols are used to illustrate parameters: 

N Total number of mobile prosumers indexed by n 

I Total number of consumers indexed by i 

T Total number of time steps indexed by t (hr) 

PGpt Price of electricity purchased from power grid at time t ($/kWh) 

CE Carbon emission conversion factor for electricity 

PFt Price of fuel used to generate electricity at time t ($/kWh) 

CF Carbon emission conversion factor for fuel 

𝜂𝑇𝐺  Electricity generating efficiency of TG  

𝐿𝑖,𝑡 Electricity load of consumer i at time t (kWh) 

𝑆𝑜𝑙𝑖,𝑡 Solar irradiance at consumer i's region at time t (kWh/m2) 

𝑆𝑃𝑉𝑛  Size of PV for prosumer n (m2) 

𝜂𝑃𝑉 Electricity generating efficiency of PV 

𝜂𝐵𝑑 Discharging efficiency of energy storage 

𝜂𝐵𝑐 Charging efficiency of energy storage 

𝑆𝐵𝑆𝑛 Size of energy storage of prosumer n (kWh) 

𝛼𝐵𝑚𝑖𝑛 Coefficient for minimum storage limit of energy storage 

𝛼𝐵𝑑𝑚𝑎𝑥  Coefficient for maximum discharging limit of energy storage  

𝛼𝐵𝑑𝑚𝑖𝑛 Coefficient for minimum discharging limit of energy storage 

𝛼𝐵𝑐𝑚𝑎𝑥  Coefficient for maximum charging limit of energy storage 

 

𝛼𝐵𝑐𝑚𝑖𝑛 

Coefficient for minimum charging limit of energy storage 

𝐸𝑂𝐵𝑛 Initial stored electricity in energy storage of prosumer n (kWh)  

𝐸𝑛,𝑡 Electricity consumption by prosumer n at time t (kWh) 
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𝐸0 Electricity consumption rate due to mobility (kWh) 

𝑋𝑛,𝑖,0 Indicates whether prosumer n’s initial location is i 

 

2.1.2.1. Objective Function 

In this study, the focus is on system operations (i.e., vehicle routing and energy scheduling) for a 

given system configuration, so design, investment, and configuration costs are ignored. The objective aims 

to minimize the total energy costs and carbon emission taxes for all consumers which is computed as  

𝑚𝑖𝑛 𝑓 = ∑ 𝑓𝑖𝑖    (1) 
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Figure 7: Flowchart of integrated vehicle routing and energy scheduling decision process  

 

where the total cost for each consumer i is calculated as  
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𝑓𝑖 = ∑  

𝑡

∑ 𝑓𝑇𝐺𝑛,𝑖,𝑡 × (𝑃𝐹𝑡 + 𝐶𝐹 × 𝐶𝑇) + ∑ 𝑒𝐺𝑝𝑖,𝑡 × (𝑃𝐺𝑝𝑡 + 𝐶𝐸 × 𝐶𝑇)

𝑡𝑛

 (2) 

and CT denotes the carbon tax. 

2.1.2.2. Constraints 

Energy balance constraints for consumers 

𝑒𝐺𝑝𝑖,𝑡 + ∑ 𝑒𝑑𝑛,𝑖,𝑡

𝑛

− ∑ 𝑒𝑐𝑛,𝑖,𝑡

𝑛

≥ 𝐿𝑖,𝑡      ∀𝑖, 𝑡 (3) 

 

 

 

The right hand side of this equation is the energy load of each consumer, and the left hand side is 

the net energy supply from all the mobile prosumers and power grids. 

 

Energy balance constraints for prosumers 

 

𝑒𝑃𝑉𝑛,𝑡 + 𝑒𝑇𝐺𝑛,𝑡 + 𝑒𝐵𝑑𝑛,𝑡 × 𝜂𝐵𝑑 + ∑ 𝑒𝑐𝑛,𝑖,𝑡

𝑖

=
𝑒𝐵𝑐𝑛,𝑡

𝜂𝐵𝑐
+ ∑ 𝑒𝑑𝑛,𝑖,𝑡

𝑖

+ 𝐸𝑛,𝑡      ∀𝑛, 𝑡 
(4) 

 

The left hand side of this equation is the amount of energy coming from PV, thermoelectric 

generator, energy storage, and grid at consumer’s region. The right hand side of this equation is the amount 

of energy requested by energy storage, consumers, and prosumer’s energy consumption due to mobility. 
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Constraints for photovoltaic panel 

 

𝑒𝑃𝑉𝑛,𝑡 ≥ ∑ 𝑆𝑃𝑉𝑛

𝑖

× 𝑆𝑜𝑙𝑖,𝑡 × 𝑥𝑛,𝑖,𝑡 × 𝜂𝑃𝑉      ∀𝑛, 𝑡 (5) 

The energy harvested by the PV panel depends on the size of the PV panel (𝑆𝑃𝑉𝑛), solar irradiance 

at consumer i’s region (𝑆𝑜𝑙𝑖,𝑡), the availability of prosumer at consumer i’s region (𝑥𝑛,𝑖,𝑡), and the PV 

efficiency (𝜂𝑃𝑉). 

 

Constraints for thermoelectric generator 

 

∑ 𝑓𝑇𝐺𝑛,𝑖,𝑡

𝑖

≤ 𝑀 × 𝑥𝑇𝐺𝑛,𝑡      ∀𝑛, 𝑡 (6) 

𝑒𝑇𝐺𝑛,𝑡 = ∑ 𝑓𝑇𝐺𝑛,𝑖,𝑡

𝑖

× 𝜂𝑇𝐺      ∀𝑛, 𝑡 (7) 

𝑓𝑇𝐺𝑛,𝑖,𝑡 ≤ 𝑀 × 𝑥𝑛,𝑖,𝑡      ∀𝑛, 𝑖, 𝑡 (8) 

 

Where 𝑀 is a big number commonly used in mixed-integer programming modeling. The amount 

of fuel consumed by thermoelectric generator of prosumer n to generate electricity to consumer i is 

controlled by state variables of the generator (𝑥𝑇𝐺𝑛,𝑡) and the availability of prosumer at consumer i (𝑥𝑛,𝑖,𝑡). 

 

Constraints for energy storage 

 

𝑥𝐵𝑐𝑛,𝑡 + 𝑥𝐵𝑑𝑛,𝑡 ≤ 1     ∀𝑛, 𝑡 (9) 
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𝑆𝐵𝑆𝑛 × 𝛼𝐵𝑚𝑖𝑛 ≤   𝑒𝐵𝑛,𝑡 ≤ 𝑆𝐵𝑆𝑛   ∀𝑛, 𝑡 (10) 

 𝑒𝐵𝑛,1 = 𝐸𝑂𝐵 + (𝑒𝐵𝑐𝑛,1 − 𝑒𝐵𝑑𝑛,1)∆𝑡    ∀𝑛 (11) 

 𝑒𝐵𝑛,𝑡 = 𝑒𝐵𝑛,𝑡−1 + (𝑒𝐵𝑐𝑛,𝑡 − 𝑒𝐵𝑑𝑛,𝑡)∆𝑡    ∀𝑛, 𝑡 ≥ 2 (12) 

𝑆𝐵𝑆𝑛 × 𝛼𝐵𝑐𝑚𝑖𝑛 × 𝑥𝐵𝑐𝑛,𝑡 ≤   𝑒𝐵𝑐𝑛,𝑡 ≤ 𝑆𝐵𝑆𝑛 × 𝛼𝐵𝑐𝑚𝑎𝑥 × 𝑥𝐵𝑐𝑛,𝑡    ∀𝑛, 𝑡 (13) 

𝑆𝐵𝑆𝑛 × 𝛼𝐵𝑑𝑚𝑖𝑛 × 𝑥𝐵𝑑𝑛,𝑡 ≤   𝑒𝐵𝑑𝑛,𝑡 ≤ 𝑆𝐵𝑆𝑛 × 𝛼𝐵𝑑𝑚𝑎𝑥 × 𝑥𝐵𝑑𝑛,𝑡   ∀𝑛, 𝑡 (14) 

 

Energy storage cannot be charged and discharged at the same time (see Eq. (9)). The amount of 

electricity stored in energy storage at any time should be kept between the permitted lowest level and its 

capacity (see Eq. (10)), and depends on charging/discharging activities (see Eqs. (11)-(12)), where ∆𝑡 is the 

value of the time step. The charging/discharging rates should be kept within the range of lowest and highest 

level (see Eqs. (13)-(14)). 

 

Constraints for energy exchanged between prosumers and consumers 

 

𝑥𝑒𝑐𝑛,𝑡 + 𝑥𝑒𝑑𝑛,𝑡 ≤ 𝑥𝑛,𝑖,𝑡     ∀𝑛, 𝑖, 𝑡 (15) 

𝑒𝑐𝑛,𝑖,𝑡 ≤ 𝑀 × 𝑥𝑒𝑐𝑛,𝑖,𝑡    ∀𝑛, 𝑖, 𝑡 (16) 

𝑒𝑑𝑛,𝑖,𝑡 ≤ 𝑀 × 𝑥𝑒𝑑𝑛,𝑖,𝑡    ∀𝑛, 𝑖, 𝑡 (17) 

 

A prosumer cannot supply and receive electricity from consumers’ regions at the same time (see 

Eq. (15)). Prosumer n is allowed to request electricity from power grid at consumer i’s region only if the 

state variable 𝑥𝑒𝑐𝑛,𝑖,𝑡 = 1, and supply electricity for consumer i only if the state variable 𝑥𝑒𝑑𝑛,𝑖,𝑡 = 1. 
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Mobility constraints for prosumers 

 

To model prosumer mobility, two sets of decision variables are introduced: 1) 𝑥𝑛,𝑖,𝑡 indicates 

whether prosumer n is at consumer i’s region at time t, and 2) 𝑥𝑚𝑛,𝑡 indicates whether the prosumer will 

move at time t. It is assumed that the prosumer in consumer i’s region can only move one step ahead to its 

neighborhood 𝑗 ∈ 𝑁𝑖. Let ∑ 𝑥𝑛,𝑗,𝑡𝑗∈𝑁𝑖
 represent whether the prosumer n will move to its neighborhood when 

it is at consumer i’s region, then the relationships among 𝑥𝑚𝑛,𝑡, 𝑥𝑛,𝑖,𝑡 and ∑ 𝑥𝑛,𝑗,𝑡𝑗∈𝑁𝑖
 will be modeled using 

the constraints in Eqs. (21)-(24). 

∑ 𝑥𝑛,𝑖,𝑡

𝑖

= 1    ∀𝑛, 𝑡 (18) 

∑ 𝑥𝑛,𝑖,𝑡

𝑖

 ≤ 1   ∀𝑖, 𝑡 (19) 

𝐸𝑛,𝑡 = 𝑥𝑚𝑛,𝑡 × 𝐸0   ∀𝑛, 𝑡 (20) 

𝑥𝑛,𝑖,𝑡−1 − 𝑥𝑛,𝑖,𝑡 ≤ 𝑥𝑚𝑛,𝑡      ∀𝑛, 𝑖, 𝑡 ≥ 2 (21) 

𝑥𝑛,𝑖,𝑡−1 − ∑ 𝑥𝑛,𝑗,𝑡𝑗∈𝑁𝑖
≤ 1 − 𝑥𝑚𝑛,𝑡      ∀𝑛, 𝑖, 𝑡 ≥ 2 (22) 

𝑋𝑛,𝑖,0 − 𝑥𝑛,𝑖,1 ≤ 𝑥𝑚𝑛,1                ∀𝑛, 𝑖 (23) 

𝑋𝑛,𝑖,0 − ∑ 𝑥𝑛,𝑗,𝑡

𝑗∈𝑁𝑖

≤ 1 − 𝑥𝑚𝑛,1                ∀𝑛, 𝑖 (24) 

 

Each prosumer cannot be at more than one region at any time step (see Eq. (18)), also each region 

cannot have more than one prosumer at the same time (see Eq. (19)). If the prosumer moves, it will consume 

a fixed amount of energy (see Eq. (20)). 

 



   
 

36 
 

2.2 Simulation Results Analysis 

 

In this study, a cluster of twelve energy consumers distributed at different regions in the city of 

Chicago is studied. One-day data for electricity load profiles for these consumers in the climate zone of 

Chicago are collected [42]. Solar irradiance for the Chicago area in year 2010 is used [109]. Residential 

time-of-use rate from [110] is adopted as the electricity purchasing price from the power gird. All the other 

parameters have the same settings as parameters in [42, 111]. The prosumers’ electricity consumption rates 

for mobility are adopted from [112]. All the parameter settings are provided in Appendix A. All the 

mathematical decision models implemented in this section are solved by CPLEX with a relative gap of 

0.005. 

To compare the performance of the proposed integrated model (IM), three disjoint solutions are 

proposed. In the first model (DM1), the four prosumers are assumed to stay at the four consumers with 

minimum load, the second model (DM2) assumes they will stay at the four consumers with maximum load, 

and the third model (DM3) assumes that each prosumer will move to the four neighbor consumers with 

maximum load at each time step. A baseline model (BM) which assumes no mobile prosumers, and in 

which consumers always request energy from the power grid, is also studied. 

 

2.2.1 Mobile Prosumer Network Under Different Pricing Mechanisms 

Energy price is an important factor that directly affects energy costs. Nowadays, utility companies 

offer different pricing plans to their clients, and clients can choose the plans that best suit their energy 

consumption to reduce the costs. In this section, the performance of MPN is evaluated under two different 

pricing mechanisms: (i) a basic plan where the energy price keeps as a constant for all of the consumers 

and (ii) a time of use (TOU) plan where the energy price at peak period is much higher compared to the 

off-peak period. The operational costs, energy requested from the power grid, and carbon emissions for five 

models (baseline, three disjoint models, integrated model) at two different pricing mechanisms are shown 
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in Figure 8. The operational cost saving, requested energy reduction, and carbon emission reduction for the 

three disjoint models and integrated model compared to the baseline are recorded in Table III. It is observed 

that the integrated model is more cost effective, is less dependent on power grids, and produces less carbon 

emissions compared to disjoint models. The integrated model can achieve more cost savings using TOU 

pricing plan since the prosumers can be more effectively dispatched to supply lower energy cost to 

consumers of high prices. 

 

 

Figure 8: Operational cost, energy requested from the power grid, and carbon emission under 

different pricing mechanisms 

 

TABLE I. Operational cost saving, requested energy reduction, and carbon emission reduction under 

different pricing mechanisms (DM1: disjoint model 1; DM2: disjoint model 2; DM3: disjoint 

model 3; IM: integrated model) 

Pricing  

mechanism 

Performance metrics 

Operational cost saving (%) Requested energy reduction (%) Carbon emission reduction (%) 

DM I DM2 DM3 IM DM I DM2 DM3 IM DMI DM2 DM3 IM 

Basic 

TOU 

14.78 22.37 22.03 27 

16.24 27.9 32.73 35.78 

14.78 22.37 22.03 27 

14.75 23.07 23.68 27.68 

14.78 22.37 22.03 27 

14.75 21.35 19.61 25.2 
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Simulation results in Figure 8 and Table I show that the integrated model can achieve more cost 

savings compared to other models (solutions obtained by disjoint models 1, 2, and 3) for the two pricing 

mechanisms. This is due to the fact that disjoint 1 and 2 models are fixed at certain regions and can only 

harvest solar energy from those regions, and disjoint 3 model is merely routed based on maximum loads. 

The integrated model, on the other hand, can be dynamically dispatched to locations depending on their 

loads, amount of solar irradiation, and cost of travel, thus to satisfy more energy demands with minimum 

possible cost. 

The integrated model under the two pricing mechanisms is less dependent on power grids than the 

three disjoint models since various distributed energy resources can be more efficiently allocated to 

different regions to reduce energy waste. In this section, the carbon emissions associated with both energy 

requested from the power gird and natural gas used for thermoelectric generator are considered. 

To this end, it is concluded that the integrated model can produce solutions that are more cost effective, 

less dependent on power grids, and environmentally friendly since the energy scheduling and routing 

decisions are considered jointly. 

 

2.2.2 Mobile Prosumer Network Under Different Weather Conditions 

 

Figure 9: Operational cost, energy requested from the power grid, and carbon emission under 
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different weather conditions 

 

The mobile prosumer network will be very useful for disaster response when the power supply from the 

grid is limited. In these scenarios, the mobile prosumers should be dispatched in an efficient way to harvest 

more renewable energy (e.g, solar energy) and satisfy consumers’ demand as much as possible. In this 

section, the performance of the integrated decision model is evaluated under different solar irradiance 

profiles corresponding to different weather conditions. Specifically, three representative weather conditions 

(e.g., sunny, cloudy, snowy) for the Chicago area in year 2010 [44] are chosen. It is expected that the mobile 

prosumer may harvest more solar energy during sunny days. 

The operational costs, energy requested from the power grid, and carbon emissions for the five 

models (baseline, three disjoint models, integrated model) at three different solar irradiance profiles are 

shown in Figure 9. The operational cost saving, requested energy reduction, and carbon emission 

reduction for the three disjoint models and integrated model compared to the baseline are recorded in 

Table II. It is observed that the integrated model performs better than the three disjoint models under all 

weather conditions. In addition, the integrated model under cloudy and snowy days can perform better 

than or comparably to the disjoint models under sunny days. This result further demonstrates the 

necessity and effectiveness of the integrated model. 

TABLE II. Operational cost saving, requested energy reduction, and carbon emission reduction under different weather 

conditions (DM1: disjoint model 1; DM2: disjoint model 2; DM3: disjoint model 3; IM: integrated model) 

Weather 

Performance metrics 

Operational cost saving (%) 
Requested energy reduction 

(%) 

Carbon emission reduction 

(%) 

DMI DM2 DM3 IM DMI DM2 DM3 IM DMI DM2 DM3 IM 

Sunny  

Cloudy  

Snowy 

16.24  

16.14  

15.27 

27.9  

27.17  

25.42 

32.73  

30.67  

28.3 

35.78  

34.04  

31.94 

14.75  

14.6  

13.32 

23.07  

23.07  

20.75 

23.68  

23.02  

21.3 

27.68  

27.27  

25.31 

14.75  

14.6  

13.27 

21.35  

19.21  

16.27 

19.61  

14.19  

8.87 

25.2  

20.49  

16.18 

 



   
 

40 
 

2.2.3 Mobile Prosumer Network Under Different Consumer Patterns 

Consumers are expected to have different lifestyles, since they have different financial capabilities, 

traditions, employment status, etc,, and consequently they will have different energy consumption patterns. 

In this section, the performance of MPN under various consumer patterns is studied. Two consumer patterns 

are analyzed: (i) the "similar" pattern where each consumer has only one peak load and (ii) the "different" 

pattern where some consumers have one peak load, while others may have two or multiple peaks. 

 

 

Figure 10: Operational cost, energy requested from the power grid, and carbon emission under 

different consumer patterns 

 

The operational costs, energy requested from the power grid, and carbon emissions for the five 

models (baseline, three disjoint models, integrated model) at two different consumer patterns (similar and 

different patterns) are shown in Figure 10. The operational cost saving, requested energy reduction, and 

carbon emission reduction for the three disjoint models and integrated model compared to the baseline are 

recorded in Table III. It is observed that the integrated model performs better than the three disjoint models 

under the two patterns. The integrated model enables the prosumers move to neighbor regions with 

maximum loads depending on time periods and satisfy their energy demands with cheaper energy. 
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TABLE III. Operational cost saving, requested energy reduction, and carbon emission reduction under different 

consumer patterns (DM1: disjoint model 1; DM2: disjoint model 2; DM3: disjoint model 3; IM: integrated model) 

Consumer  

pattern 

Performance metrics 

Operational cost saving (%) 
Requested energy reduction 

(% ) 
Carbon emission reduction (%) 

DMI DM2 DM3 IM DMI DM2 DM3 IM DMI DM2 DM3 1M 

Similar  

Different 

16.24  

13.48 

27.9  

33.1 

32.73  

35.73 

35.78  

37.66 

14.75  

12.81 

23.07  

25.65 

23.68  

26.71 

27.68  

29.19 

14.75  

12.71 

21.35  

23.43 

19.61  

24.37 

25.2  

26.65 

 

2.2.4 Mobile Prosumer Network Under Different Mobility Energy Consumption Rates 

 

 

Figure 11. Operational cost, energy requested from the power grid, and carbon emission under 

different consumption rates 
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According to the U.S. Department of Energy, EVs consume electricity as they move with rates ranging 

between 25 and 120 kWh per 100 miles [47]. In this section, the performance of MPN is evaluated under 

various energy consumption rates due to mobility. For demonstration, four different consumption rates will 

be considered which are 40, 70, 96, and 121 kWh per 100 miles. The operational costs, energy requested 

from the power grid, and carbon emissions for these five models (baseline, three disjoint models, integrated 

model) at four different consumption rates are shown in Figure 11. The operational cost saving, requested 

energy reduction, and carbon emission reduction for the three disjoint models and integrated model 

compared to the baseline are recorded in Table IV. It is observed that the integrated model solutions are 

more cost effective and less dependent on power grids, and produce less carbon emissions compared to the 

three disjoint models under all four consumption rates. The operational cost, requested energy, and carbon 

emission will increase when the consumption rates increase. 

 

TABLE IV. Operational cost saving, requested energy reduction, and carbon emission reduction under 

different consumption rates (DM1: disjoint model 1; DM2: disjoint model 2; DM3: disjoint model 3; IM: 

integrated model) 

Consumption 

rates  
(kWh/mile) 

Performance metrics 

Operational cost saving (%) Requested energy reduction (%) Carbon emission reduction (%) 

DM I DM2 DM3 1M DMI DM2 DM3 IM DM I DM2 DM3 IM 

0.4 16.24 27.9 34.16 35.87 14.75 23.07 25.5 27.81 14.75 21.35 22.08 25.33 

0.7 16.24 27.9 32.73 35.78 14.75 23.07 23.68 27.68 14.75 21.35 19.61 25.2 

0.96 16.24 27.9 31.47 35.71 14.75 23.07 22.21 27.56 14.75 21.35 17.32 25.09 
1.21 16.24 27.9 30.3 35.64 14.75 23.07 20.6 27.46 14.75 21.35 15.41 24.98 
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2.2.5. Mobile Prosumer Network Under Different Consumer Distances 

 

Figure 12: Operational cost, energy requested from the power grid, and carbon emission under 

different consumer distances 

 

The distances between consumers affect the energy consumption of the mobile prosumers and 

consequently affect energy supply to consumers. Thus, it is vital to study the impact of distances between 

consumers on the performance of the mobile prosumer network. For demonstration, four different distances 

will be considered which are 1, 2, 4, and 8 miles. The operational costs, energy requested from the power 

grid, and carbon emissions for these five models (baseline, three disjoint models, integrated model) at four 

different consumer distances are shown in Figure 12. The operational cost saving, requested energy 

reduction, and carbon emission reduction for the three disjoint models and integrated model compared to 

the baseline are recorded in Table V. It is observed that the solutions from the integrated model are more 

cost effective and less dependent on power grids, and produce less carbon emissions compared to the three 

disjoint models under all the four distances. The operational cost, requested energy, and carbon emission 

will increase when the distance increases. 
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TABLE V. Operational cost saving, requested energy reduction, and carbon emission reduction under 

different consumer distances (DM1: disjoint model 1; DM2: disjoint model 2; DM3: disjoint model 3; IM: 

integrated model) 

Distance  

(mile) 

Performance metrics 

Operational cost saving (%) Requested energy reduction (%) Carbon emission reduction (%) 

DM1 DM2 DM3 IM DM1 I)M2 DM3 IM DM1 DM2 DM3 IM 

1 16.24 27.9 32.73 35.78 14.75 23.07 23.68 27.68 14.75 21.35 19.61 25.2 
2 16.24 27.9 29.38 35.58 14.75 23.07 19.53 27.39 14.75 21.35 13.72 24.88 
4 16.24 27.9 22.14 35.15 14.75 23.07 11.94 27.97 14.75 21.35 -0.27 24.79 
8 16.24 27.9 5.88 34.29 14.75 23.07 -4.91 27.03 14.75 21.35 -31.93 24.56 

 

2.3 Conclusions 

In this chapter, the performance of a network of mobile prosumers is measured to provide energy 

to consumers at different regions in terms of cost effectiveness, dependency on the power grid, and 

environmental friendliness. An integrated vehicle routing and energy scheduling decision model based on 

mixed integer programming is proposed to study the tradeoff between vehicle mobility and energy service 

quality.  Five case studies designed using the proposed decision model are used to evaluate the impacts of 

different pricing mechanisms, weather conditions, consumer patterns, mobility energy consumption rates, 

and consumer distances on the performance of the mobile prosumer network. The simulation results 

demonstrate that the mobile prosumer network (integrated model) can not only shift energy load from peak 

to off-peak periods, but also from high demand to low demand consumers to mitigate the impacts of spatio-

temporal complexity in energy demand and production. Thus, it can be more cost effective, less dependent 

on power grids, and more environmentally friendly than disjoint models, as it can save up to 38% of energy 

costs and reduce up to 29% and 27% of energy requested from main grid and carbon emissions compared 

to a baseline where consumers always request energy from power grids, respectively. There are a few 
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requirements that should be considered for the implementation of MPN. For example, the vehicles are 

suggested to be unmanned or autonomous. The charging stations are available at each consumer’s region. 

  

 

 

 

 

 

 

 

 



   
 

3. DYNAMIC ENERGY SCHEDULING AND ROUTING OF MULTIPLE 

ELECTRIC VEHICLES USING DEEP REINFORCEMENT LEARNING 

 

[The majority of work presented in this chapter of the dissertation is submitted for publication in 

Renewable and Sustainable Energy Reviews journal. For more information, please refer to Appendix B 

(Copyright Statement).] 

  

This chapter is arranged as follows: Section 3.1 shows problem statement and mathematical 

model formulated as mixed integer programming (MIP) optimization problem. Section 3.2 shows the 

reformulation of the MIP model using MDP. The experiments to assess the performance of MDP are 

illustrated in section 3.3 and section 3.4 presents the conclusion. 

 

3.1 Mathematical Optimization Model 

Section 3.1 discusses the system architecture and components to model the EV network, and 

Section 3.2 presents the mathematical formulation of the EV network operational decision problem. 

 

3.1.1. System Configuration for the Electric Vehicle Network 

In this work, it is assumed that a geographic area is split into mutually exclusive and collectively 

exhaustive square areas (see Fig. 1) with equal distances of one mile between each pair of connected 

regions. It is assumed that each area may contain one consumer or may not contain any consumer, hence 

the distance between each pair of consumers ranges from one to multiple miles. Fig. 1 demonstrates a 

system of eight users and four EVs. These users have different energy loads and radiant energy and 

receive energy from a network of EVs. Each EV is mounted with a photovoltaic panel and power storage. 

Each EV makes decisions at each time step (e.g., one hour), summing up to a total decision time horizon 

(e.g., one day). 
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Figure 13: Demonstration of VR decisions at time t and t + 1 

 

In this research, each EV moves around and supplies energy to the users at its current area only. 

In other words, each customer’s load can be satisfied using an EV only if that EV exists at the user’s 

location. Otherwise, the customer’s load will be satisfied from the power grid with an incurred cost. In 

addition, each EV can charge its energy storage by requesting energy from the power grid at its current 

location. 

 
3.1.2. Operational Decision Model for Electric Vehicle Network 

All the variables and parameters introduced in the model are described in chapter 2 of this thesis. 

 
3.1.2.1 Objective Function 

In this study, the main objective is to reduce energy costs for all consumers via reducing the 

dependence on power purchased from the main power grid. Other system costs including design, 

investment, and configuration costs are disregarded. 
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3.1.2.2 Constraints 

The constraints of this model are the same as Eqs. (2-24) in Chapter 2. 

3.2 Proposed Reinforcement Learning Based Decision Model 

In this section, the mathematical model proposed in chapter 2 will be reformulated using Markov 

decision processes. A reinforcement learning algorithm is adopted to solve the reformulated problem. The 

agent is modeled in Section 3.2.1. 

The environment model is presented in Section 3.2.2. The architecture of the deep Q-network to 

solve the MDP formulation is discussed in Section 3.2.3. 

 

3.2.1 Electric Vehicle Agent 

The EV agent is assumed to be equipped with a PV panel and energy storage unit that move 

around and supply energy to consumers at various locations to satisfy their energy demand at lower 

energy costs. The system state 𝑠 𝜖 𝒮 is a tuple of four variables st = (pt ,eBt ,Solt ,Lt) corresponding to 

vehicle location pt, battery state of charge eBt, solar irradiance Solt, and energy load Lt respectively. The 

action space 𝑎 𝜖 𝒜 is defined as the mobility actions (moving up, down, left, right, and no move) and 

energy transaction actions (charging, discharging, and idle). The movement of each vehicle is restricted to 

the neighboring regions in an orthogonal movement in a 5 × 4 grid of regions. 

 

 

3.2.2. Environment Agent 

Given the system state st at time step t, the system state will transit to st+1 after executing action at 

following the state transition rules. Once the vehicle chooses which mobility action to take, the location of 

the vehicle pt is updated to pt+1. 

Given the vehicle’s location at the next state, the energy load Lt and solar irradiance Solt are 

updated to next state load Lt+1 and solar irradiance Solt+1. After that, based on the ES action taken (charge, 

discharge, idle) at the current state, the battery state of charge variable eBt is updated to the next state 
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battery level eBt+1, and output from PV will be calculated based on the solar irradiance at the next state 

Solt+1. The state of charge at the next state (eBt+1) can be computed in Eqs. (8)-(9), given the state of 

charge at the current state (eBt). The location of the vehicle at next state (pt+1) can be obtained from 

routing constraints in Eqs. (15)-(20). The solar irradiance and load at next state (Solt+1 and Lt+1) are 

obtained from the sequence of the solar irradiance and load data.  

The reward function is defined as follows: 

 

𝑅(𝑠𝑡 , 𝑎𝑡) = ∑ 𝑒𝐺𝑝𝑡
𝑖 × 𝑃𝐺𝑝𝑡

𝑖∈𝐼

 

 

(25) 

Where 𝑃𝐺𝑝𝑡 is the price of energy from the power grid. The energy costs can be obtained from 

Eq. (25), as it represents the amount of demand unsatisfied by EVs but satisfied instead by the main 

power grid at that region. 𝑒𝐺𝑝𝑡
𝑖 represents the energy requested from the power grid and can be computed 

as follows: 

 

𝑒𝐺𝑝𝑡
𝑖 = 𝑚𝑎𝑥 (𝐿𝑡

𝑖 − ∑ 𝑒𝑑𝑡
𝑛,𝑖

𝑛∈𝑁

+ ∑ 𝑒𝑐𝑡
𝑛,𝑖

𝑛∈𝑁

, 0)    ∀𝑖𝜖𝐼, ∀𝑡 

 

(26) 

The EV energy balance constraint in Eq. (4) is automatically satisfied based on the definition of 

system states and actions. The first energy storage constraint (Eq. (9)) is satisfied based on the definition 

of the battery actions, so that at each time t, the battery can only take one action (charge, discharge, or 

idle). The battery capacity constraint in Eq. (10) is included in the definition of the storage parameters, 

so that at each time step, the level in each battery is maintained between certain boundaries. The 

constraint in Eq. (11) is satisfied during model initialization. For example, at time t = 1, a certain amount 

of energy is stored in the battery. The constraint in Eq. (12) is satisfied based on the state transition rule. 

The amount of energy transactions between power grid and battery shown in Eqs. (13)-(14) are 

maintained between certain boundaries (rates of charging and discharging). These constraints are satisfied 
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by calculating the amount of energy received or supplied by the battery at each time step, such that they 

do not fall below lower limit or exceed upper limit of charging/discharging rates, respectively. 

The energy exchange between EVs and consumers is modeled according to Eqs. (15-17). Eq. (15) 

is satisfied based on the definition of action space. At each time step, each EV can either receive energy 

from the power grid or supply energy to the consumer. Constraints in Eqs. (16-17) are handled by setting 

upper and lower limits for the amount of energy exchange between EVs and consumers to fixed amounts. 

Finally, the mobility constraint in Eq. (18) is automatically satisfied. The constraint in Eq. (19) is 

satisfied by adding a condition for each region to have no more than one EV at each time t. The mobility 

of vehicles at each time step shown in Eq. (21) and Eq. (23) are considered in the definition of the action 

space, such that each EV will make decisions about whether to move to surrounding regions or stay at the 

current region. The locations of EVs at the next time step shown in Eq. (22) and Eq. (24) are satisfied 

based on the definition of action space, which restricts the mobility to only the neighboring regions of 

each vehicle. 
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Figure 14: Proposed deep Q-network architecture 

 

 

3.2.3. Deep Q-Network Architecture 
 

To solve the reformulated decision problem, a deep Q-network (DQN) is adopted to estimate the 

Q-value for each action by the EV agent. It takes the state variables including the vehicle’s location, 

battery level, consumer load, and solar irradiance at the consumer’s location (st = (pt ,eB, Solt , Lt)) and the 

routing and scheduling actions (at) as input, and passes them through the hidden layer and output layer of 

the network to approximate Q-values corresponding to each combination (routing and scheduling) of the 

agent’s actions. DQN is used because it is more efficient at handling larger numbers of inputs and outputs 

compared to Q-tables, which can only deal with discrete numbers of inputs and outputs. A neural network 
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with parameters θ, is used to estimate the Q-values, i.e. 𝑄(𝑠, 𝑎; 𝜃) ≈ 𝑄∗(𝑠, 𝑎). To do this, the following 

loss function need to be minimized [124]: 

𝐿𝑡(𝜃𝑡) = 𝔼𝑠,𝑎,𝑟,𝑠′~𝜌(.)[(𝑦𝑡 − 𝑄(𝑠, 𝑎; 𝜃𝑡))2] (27) 

 Here, ρ represents the behavior distribution over transitions s,a,r,s′ collected from the 

environment, and 𝑦𝑡 is the temporal difference target which is calculated as: 

𝑦𝑡 = 𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃𝑡−1) (28) 

The architecture of the proposed DQN is illustrated in Fig. 14. In this figure, the DQN receives 

input from both actions and states at time t including state variables and routing and scheduling actions 

that have been made at time t. It then passes the input through a hidden layer with the size of 256 neurons 

to the output layer. The size of the output layer is 15 neurons corresponding to the discounted rewards 

(estimated Q-values) for each combination of actions (i.e., routing and scheduling). This process is 

repeated over many episodes to train the DQN to map each combination of actions along with its 

approximated rewards.  Then, in the execution stage, the agents will use the trained neural network to 

evaluate the rewards for each action and select the best action. 

 

3.3 Simulation Results Analysis 

 

In this research, it is assumed thar there are twenty energy users located at different locations in 

the Chicago area. 24hr data for energy demand profiles for these users at the weather zone of Chicago are 

collected [42]. The solar irradiance profile used in this paper is taken from the city of Chicago in year 

2010 [109]. Prices of electricity purchased from the power grid were taken from [110]. All the other 

parameters used in the experiments in this paper are taken from [42, 111]. The mathematical 

programming model proposed in Section 3.3 is solved using CPLEX with a relative gap of 0.005. The 

CPLEX algorithm is considered an exact optimizer that provides an optimal solution for benchmarking. 
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To compare the performance of the presented DQN model, three heuristic solutions including 

genetic algorithm, particle swarm, and artificial fish swarm algorithms are studied. Each EV is assumed to 

go to one of the four neighboring locations (locations of users) at each time step. The DQN is trained 

using one year energy load and solar irradiance data for 1,000 episodes. Each algorithm is evaluated on 

100 problem instances. 

 

 

3.3.1. Scalability Evaluation 

3.3.1.1. Energy Network with Four EVs and Twenty Consumers 

 

Table VI: Simulation results for energy network with four EVs and twenty consumers 

 

Algorithm 
Operational cost ($) Decision  

time (sec) 
Mean Std. dev. Min Max 

CPLEX 435.44 20.85 231.13 488.37 41 

DQN 467.13 10.35 291.46 495.84 2 

GA 535.14 19.06 336.86 585.80 68 

PSO 537.54 19.06 339.26 588.20 17 

AFSA 523.46 17.00 334.69 568.79 215 

 

  In this section, the performance of the DQN algorithm is evaluated using a case of four EVs and 

twenty consumers. The operational costs and decision time per problem instance for five algorithms 

(CPLEX, DQN, and three heuristic algorithms) are shown in Table VI. It is observed that the DQN 

algorithm can obtain better solutions compared to the heuristic algorithms, with an average cost reduction 

of 21.31%. In addition, the DQN algorithm can obtain a near-optimal solution very quickly compared to 

other algorithms. The convergence curve for DQN during training is demonstrated in Fig. 15. 
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Figure 15: Convergence curve for the DQN during training 

 

 

3.3.1.2. Energy Network with Eight EVs and Twenty Consumers 

In this section, the performance of the DQN algorithm is evaluated using a case of eight EVs and 

twenty consumers. The operational costs and decision time per problem instance for four algorithms 

(DQN and three heuristic algorithms) are shown in Table VII. CPLEX is computationally expensive for 

this case, so results from CPLEX will not be reported here. 
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TABLE VII. Simulation results for energy network with eight EVs and twenty consumers 

 

Algorithm 
Operational cost ($) Decision 

Mean Std. dev. Min Max time (sec) 

DQN 418.55 7.99 285.85 442.99 6 

GA 498.75 25.38 321.81 560.45 81 

PSO 501.15 25.38 324.21 562.85 30 

AFSA 503.55 25.38 326.61 565.25 230 

 

It is observed that the DQN algorithm can generate better solutions compared to the heuristic 

algorithms, with average cost reduction of 19.53%. It further demonstrates the computational efficiency 

of the DQN algorithm for fast decision-making. 

 

3.3.1.3. Energy Network with Twelve EVs and Forty Consumers 
 

In this section, the performance of DQN algorithm is evaluated using a case of twelve EVs and 

forty consumers. The operational costs and decision time per problem instance for four algorithms (DQN 

and three heuristic algorithms) are shown in Table VIII. 

 

TABLE VIII. Simulation results for energy network with twelve EVs and forty consumers 

Algorithm 
Operational cost ($) Decision 

Mean Std. dev. Min Max time (sec) 

DQN 821.03 18.64 514.47 877.41 13 

GA 962.14 44.27 586.29 1074.14 125 

PSO 966.93 44.28 591.08 1078.93 44 

AFSA 969.33 44.28 593.48 1081.33 246 
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It is observed that the DQN algorithm can yield better solutions compared to the heuristic 

algorithms, with average cost reduction of 17.51%. It is observed that the DQN algorithm can output 

solutions that are better in terms of energy cost compared to the heuristic algorithms. Moreover, the DQN 

algorithm outperforms the heuristic algorithms in terms of the simulation time. 

3.3.1.4. Energy Network with Sixteen EVs and Forty Consumers 

In this section, the performance of DQN algorithm is evaluated using a case of sixteen EVs and 

forty consumers. The operational costs and decision time per problem instance for four algorithms (DQN 

and three heuristic algorithms) are shown in Table IX. 

TABLE IX. Simulation results for energy network with sixteen EVs and forty consumers 

Algorithm 
Operational cost ($) Decision 

Mean Std. dev. Min Max time (sec) 

DQN 606.03 14.98 345.50 657.37 23 

GA 923.48 49.62 571.23 1048.75 149 

PSO 928.25 49.62 576.02 1053.55 55 

AFSA 930.65 49.62 578.42 1055.95 279 

 

The DQN algorithm can generate better solutions, with average cost reduction of 52.78%. DQN 

also outperforms the three heuristic algorithms in terms of computational time. 

 

3.3.1.5. Summary of Scalability Evaluation 

Fig. 16 represents the simulation time for these four energy networks. It is observed that GA and 

AFSA algorithms show quadratic or parabolic patterns, whereas PSO shows a linear pattern as the 

problem scale increases. The DQN’s simulation time increases in a linear pattern with a smaller slope 

compared to PSO, which makes it more appropriate for fast decision-making to quickly respond to system 

dynamics. 
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Figure 16: Simulation time for four different energy networks 

 

In summary, a t-test is conducted to compare the five algorithms in terms of solution quality and 

computational time. Table XIV summarizes the results of the t-test for each case. The first symbol in 

“+/+” indicates that the DQN algorithm significantly outperforms the compared algorithm in terms of 

solution quality, and the second symbol indicates DQN algorithm significantly outperforms the compared 

algorithm in terms of computational time. From Table X, it is concluded that the DQN algorithm 

significantly outperforms the three heuristic algorithms in terms of both solution quality and 

computational time. 
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TABLE X. Summary of t-test results to compare DQN with other algorithms 

Algorithm 
t-test 

Case 1 Case 2 Case 3 Case 4 

CPLEX -/+    

GA +/+ +/+ +/+ +/+ 

PSO +/+ +/+ +/+ +/+ 

AFSA +/+ +/+ +/+ +/+ 

 

Fig. 17 illustrates the routing decisions of EVs that supply energy to consumers in different 

regions using a DQN algorithm along with other algorithms at critical time steps (hours 11, 12, 13, and 

15), respectively. For demonstration purposes, one EV for each algorithm is used to show the routing 

decisions of an EV at critical time steps for twenty consumers. The total energy costs of each algorithm at 

each time step are shown to demonstrate how the routing decisions affect the energy costs of multiple 

consumers in the network. It is observed that the CPLEX and DQN algorithms outperform the heuristic 

algorithms in terms of total energy costs at critical time steps (hour 11, 12, 13, and 15). Both CPLEX and 

DQN approaches show better capability to exploit solar energy to satisfy energy demands (better ES 

decisions) compared to the heuristic algorithms. Further, the CPLEX and DQN algorithms show better 

routing decisions compared to the heuristic algorithms, since they choose locations where energy loads at 

these regions and their neighboring regions are higher for consecutive time steps to incur higher net 

energy savings. 
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Figure 17: Routing decisions of EVs using different algorithms at critical time steps 
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3.3.2. Robustness Evaluation 

In this section, the DQN algorithm is examined under the case of variations in load and solar 

irradiance data from one region to another due to different consumption patterns among consumers and 

different weather conditions among different locations. The DQN algorithm is compared to the CPLEX 

and heuristic algorithms to determine the impact of variability in input data on solution quality and 

simulation time. 

 

3.3.2.1. Variability in Energy Load 

In this section, the performance of different algorithms is compared under different patterns of 

energy load. The operational costs for five algorithms (CPLEX, DQN, and three heuristic algorithms) are 

shown in Table XI. 

 

Table XI: Simulation results for energy network with different load patterns 

Algorithm 
Operational cost ($) 

Mean Std. dev. Min Max 

CPLEX 661.41 45.77 327.63 714.80 

DQN 687.53 32.44 416.85 721.61 

GA 729.41 44.78 401.37 782.18 

PSO 741.41 44.78 413.37 794.18 

AFSA 711.65 43.17 413.42 781.32 

 

The results from Table XV show that the DQN algorithm is more robust considering variability in 

energy load compared to the CPLEX and heuristic algorithms (GA, PSO, and AFSA) since it has the 

lowest standard deviation. 

 

3.3.2.2. Variability in Solar Irradiance 
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In this section, the performance of five algorithms is compared under different patterns of solar 

irradiance. The operational costs for five algorithms (CPLEX, DQN, and three heuristic algorithms) are 

shown in Table XII.  

Table XII: Simulation results for energy network with different solar irradiance patterns 

Algorithm 
Operational cost ($) 

Mean Std. dev. Min Max 

CPLEX 415.26 11.04 400.09 451.14 

DQN 441.90 9.58 429.82 465.11 

GA 444.48 10.80 430.08 476.33 

PSO 450.48 10.80 436.08 482.33 

AFSA 508.39 34.47 435.20 556.16 

 

 

The results from Table XVI show that the DQN algorithm is more robust considering variability 

in solar irradiance compared to the CPLEX and heuristic algorithms (GA, PSO, and AFSA) since it has 

the lowest standard deviation. 

 

3.4 Conclusions 

In this chapter, a network of EVs is studied which can be dispatched to supply energy to a set of 

consumers in different locations. A reinforcement learning model is proposed to allow multiple EVs to 

operate under uncertainties of energy loads and solar irradiance at different locations. Two case studies 

are designed to evaluate scalability and robustness of the proposed reinforcement learning model. The 

results show that the reinforcement learning model can better handle changes and problem scales 

compared to the heuristic algorithms since it can reduce the simulation time by 93.87%, 96.30%, 84.77%, 

and 98.83% compared to the CPLEX, GA, PSO, and AFSA, respectively. Furthermore, the reinforcement 

learning algorithm outperforms the three heuristic algorithms (GA, PSO, and AFSA) and can achieve a 

reduction in energy costs up to 22.05%, 22.57%, and 19.33% compared to GA, PSO, and AFSA, 
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respectively. Moreover, the reinforcement learning algorithm shows better robustness to variability in 

load and solar irradiance compared to the CPLEX and heuristic algorithms. In the future, a multi-agent 

reinforcement learning algorithm will be proposed where decisions can be distributed among EVs so that 

they can take actions of mobility and energy transaction in a way that is independent ofother EVs.  
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4. DYNAMIC ENERGY SCHEDULING AND ROUTING OF A LARGE 

FLEET OF ELECTRIC VEHICLES USING MULTI-AGENT 

REINFORCEMENT LEARNING 
 

 

[The majority of work presented in this chapter of the dissertation is submitted for publication in 

Applied Energy journal. For more information, please refer to Appendix B (Copyright Statement).] 

 

This work is arranged as follows: Section 4.1 shows problem description and mathematical model 

formulated as mixed integer programming (MIP) optimization problem. Section 4.2 shows the 

reformulation of the MIP model as DEC-MDP. The experiments to assess the performance of DEC-MDP 

are illustrated in section 4.3 and section 4.4 presents the conclusion. 

 

4.1 Mathematical Optimization Model 

 
This section discusses the system architecture and components to model the smart grid with EVs, 

residential buildings, and a main power grid. The objective function and constraints of the mathematical 

model for the operational decision problem of EV network are described in Chapter 2. 

In this study, it is assumed that a geographic area is broken down into mutually exclusive and collectively 

exhaustive locations (see Fig. 13) with homogenous distances (one mile) between each pair of connected 

locations. It is assumed that each location may include one customer or may not include any customer, 

hence the distance between each pair of customer ranges from one to multiple miles. Fig. 13 demonstrates 

a system of eight customers and four EVs. These customers have different energy demand and radiant 

energy and receive energy from a network of EVs. Each EV is mounted with a photovoltaic panel and 

power storage. Each EV takes actions at each time step (e.g., one hour), summing up to a total decision 

time horizon (e.g., one day). 

 

In this study, each vehicle moves around and supplies energy to the customers at its current 

location only. In other words, each customer’s demand can be supplied by the EV only if it exists at the 
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customer’s location. Otherwise, customer demand will be supplied from the power grid with an incurred 

cost. In addition, each vehicle can charge its energy storage by requesting energy from the power grid at 

its current location. 

4.2 Proposed Multi-agent Decision Model 

 
There are several challenges to address when reformulating the mathematical model into DEC-

MDP. First, from a modeling perspective, the challenge is to map actions to collective reward. To 

overcome this challenge, the states are defined as tuples of joint state variables including vehicle 

locations, battery states of charge, solar irradiance, and energy loads. Joint action spaces are defined as 

tuples including four disposition actions for each vehicle (moving up, down, left, right, and no move) and 

energy dispatch decisions (charging, discharging, and idle). Then, the joint reward function is defined, 

which is a function of state and joint actions, as the cost of energy requested by all regions from the 

power grid.  

From an algorithmic perspective, the main challenge is how to apply the MARL algorithm with a 

large number of agents. This challenge is addressed by a centralized training and decentralized execution 

framework. Since this problem is large-scale and highly dynamic due to the presence of uncertainties in 

energy loads and solar irradiance and so, a decomposition approach or traditional optimization algorithm 

cannot be used to solve this problem. 

 
4.2.1 Electric Vehicle Agent 

In this problem, multiple agents are considered, each having a “local” decision. Each agent 

collaborates with others by means of a number of organized transition dependencies. That is, activities 

taken by one agent may influence the transition functions of the other agents. Each agent interacts with 

other agents in the same environment and its decisions are impacted by other agents. The EV agent is 

assumed to be mounted with a PV panel and power storage unit that move around and discharge 

electricity to customers at various locations to satisfy their power demand with minimum energy costs. 

The DEC-MDP problem is defined by a tuple (𝑆, 𝐴, 𝑃, 𝑅), where 
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• 𝑆 is a finite set of the system states, which is a tuple of four variables st = (p1t ,…, pnt ,eB1t ,…, 

eBnt ,Solt ,Lt) corresponding to vehicle i’s position pit, vehicle i’s state of charge eBit, solar 

irradiance Solt , and power load Lt, respectively. 

• 𝐴 = 𝐴1 × … × 𝐴𝑛 is a finite set of actions. Ai indicates the set of actions taken by agent i which is 

described as the mobility decisions (moving up, down, left, right, and no move) and energy 

dispatch decisions (charging, discharging, and idle). The movement of each vehicle is restricted 

to the neighboring locations in an orthogonal movement in a 5×4 grid of locations. Each agent’s 

action depends on the actions of other agents. Namely, if an agent wants to take a disposition 

action, then it can only move to a nearby location that is empty of other agents, or it remains at its 

current location. 

• 𝑃 is a transition function. The closed form of the transition function for this problem cannot be 

obtained, but simulation is used to approximate this function. 

• 𝑅 is a reward function. R(s; a1 ,…,an ,s’) is the reward obtained from taking actions a1 ,…,an in 

state s and transitioning to state s’. 

 

4.2.2 Environment Agent 

 

The system state st at time step t will transit to the next state st+1 after making decisions (a1t,…, an,t) 

following the state transition rules: once the vehicle chooses which mobility decision to take, the 

positions of the vehicles (p1t,…, pn,t) are changed to (p1t+1,…, pn,t+1). Given the vehicle's position at the next 

state, the power demand Lt and solar irradiance Solt are updated to next state demand Lt+1 and solar 

irradiance Solt+1. After that, based on the ED decision taken (charge, discharge, idle) at the current state, 

the battery state of charge variables (eB1t,…, eBn,t) are changed to the next state battery level (eB1t+1,…, 

eBn,t+1), and electricity generated from PV will be calculated based on the solar irradiance at the next state 

Solt+1. The state of charge at the next state (eB1t+1,…, eBn,t+1) can be computed in Eqs. (11)-(12), given the 
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state of charge at the current state (eB1t,…, eBn,t). The position of the vehicle at the next state (p1t+1,…, pn,t+1) 

can be determined from routing constraints in Eqs. (18)-(24). The solar irradiance and 

load at the next state (Solt+1 and Lt+1) are obtained from real-world solar irradiance and power demand 

data at a resolution of one hour. 

 
The reward function is defined as follows: 

 

𝑅(𝑠𝑡 , 𝑎𝑡) = ∑ 𝑒𝐺𝑝𝑡
𝑖 × 𝑃𝐺𝑝𝑡

𝑖∈𝐼

 (29) 

Where 𝑃𝐺𝑝𝑡  is the price of electricity purchased from the power grid. The energy costs can be 

obtained from Eq. (29), as it indicates the amount of demand not satisfied by the main grid rather than by 

EVs at that location. 𝑒𝐺𝑝𝑡
𝑖  indicates the electricity purchased from the power grid, which can be computed 

as follows: 

 

𝑒𝐺𝑝𝑡
𝑖 = 𝑚𝑎𝑥 (𝐿𝑡

𝑖 − ∑ 𝑒𝑑𝑡
𝑛,𝑖

𝑛∈𝑁

+ ∑ 𝑒𝑐𝑡
𝑛,𝑖

𝑛∈𝑁

, 0)    ∀𝑖𝜖𝐼, ∀𝑡 

 

(30) 

The EV power balance constraint in Eq. (4) is automatically satisfied based on the definition of 

system states and actions. The first power storage constraint (see Eq. (9)) is satisfied based on the 

definition of the battery decisions, so that at each time t, the battery can only take one decision (charge, 

discharge, or idle). The battery capacity constraint in Eq. (10) is included in the definition of the storage 

parameters, so that at each time step, the level in each battery is maintained within certain limits. The 

constraint in Eq. (11) is satisfied during model initialization. For example, at time t = 1, an initial amount 

of electricity is stored in the battery. The constraint in Eq. (12) is satisfied based on the state transition 

rule. The amount of electricity exchange between power grid and battery shown in Eqs. (13)-(14) is 

maintained within certain limits (rates of charging and discharging). These constraints are satisfied by 

calculating the amount of electricity received or supplied by the battery at each time step, such that they 

do not fall below the lower limit or exceed the upper limit of charging/discharging rates, respectively. 
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The energy exchange between EVs and customers is formulated as Eqs. (15-17). Eq. (15) is 

satisfied based on the definition of action space. At each time step, each EV can either charge electricity 

from the power grid or discharge electricity to customer. Constraints in Eqs. (16-17) are handled by 

setting upper and lower bounds for the amount of electricity exchange between EVs and customers to 

fixed amounts. 

Finally, the movement constraint in Eq. (18) is automatically satisfied. The constraint 

in Eq. (19) is satisfied by adding a condition for each location to have no more than one EV at each time t. 

The movement of vehicles at each time step shown in Eq. (21) and Eq. (23) is considered in the definition 

of the action space, such that each EV will make decisions about whether to move to surrounding 

locations or stay at the current location. The positions of the EV at the next time step shown in Eq. (22) 

and Eq. (24) are satisfied based on the definition of action space, which restricts the movement to only the 

neighboring locations of each vehicle. 

 

4.2.3 Centralized Training and Decentralized Execution Framework 
 

The proposed framework uses centralized training and distributed execution (CTDE). This is a 

commonly used framework to model and solve MARL models, and many recent works have adopted a 

CTDE framework to solve distributed decision problems [113]. Each agent is trained using an actor 

network, which is a unique network for each agent, and all agents have access to global information and 

share the same critic network (which is used to evaluate the value function for agents’ decisions) to foster 

coordinated and effective learning. Then, the model is locally executed in a distributed environment such 

that each agent takes actions independently from other agents, thus reducing computational time. 

4.2.4. Actor Network Architecture 
 

The actor network is used to map the neural commands to each combination (routing and 

scheduling) of agent’s actions and select an action. The gradient of the performance with respect to the 

actor parameters is directly estimated by simulation, and the parameters are updated in a direction of 

improvement [125,126,127,128]. Given that the actor parameter vector is θ, the purpose of the critic is to 
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compute an estimate of the Q-value, which is then used by the actor to update its policy in an approximate 

gradient direction [129]. 

In this research, the actor network is trained to approximate the control policy of the agents. It 

takes the state variables including vehicle location, battery level, consumer load, and solar irradiance at 

consumer locations st = (pt ,eBt ,…, eBt ,Solt ,Lt) and the routing and scheduling actions (at) as input and 

maps the neural commands to each combination (routing and scheduling) of agent’s actions and selects an 

action. 

4.2.5. Critic Network Architecture 
 

The critic network depends exclusively on the estimates of the value function and targeting at 

learning an approximate solution to the Bellman equation in order to generate a near-optimal policy. It 

uses the approach of indirectly optimizing the performance over a policy space. The critic is a temporal 

difference algorithm with a linearly parameterized approximation architecture for the Q-value function. 

The Q-value is the expected discounted reward for executing action a at a given state s and following 

policy π [121,129]. It is calculated as: 

Qθ
r (s, a) = ∑ rjϕθ

j
(s, a)

m

i=1
 

 

(31) 

 

where 𝑟 = (r1, … , rm)ϵRm represents the parameter vector of the critic. The features ϕθ
j

, j = 1, … , m, 

used by the critic rely on the actor parameter vector θ. 

In this thesis, the critic network is trained for value function approximation to estimate the Q-

values of actions (a1t ,…,an,t) and estimate the reward for the decision chosen by the agents. Based on this 

assessment the weights of the actors are updated. The framework of the proposed MARL model is 

illustrated in Fig. 18. 
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Figure 18: Proposed actor-critic network architecture 
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4.3 Simulation Results Analysis 
 
To illustrate the application of the methods proposed in this chapter, an example with twenty energy 

users located at different locations in the Chicago area is considered. Energy demand profile data for one 

day for these users are collected at the weather zone of Chicago [42]. The solar irradiance profile used is 

taken from the city of Chicago in year 2010 [109]. Prices of electricity purchased from the power grid are 

taken from [110]. All the other parameters used in the experiments in this paper are taken from [42, 111]. 

The mathematical programming model proposed in Section 3 is solved using CPLEX with a relative gap 

of 0.005. The CPLEX algorithm is considered as an exact optimizer to provide an optimal solution for 

benchmarking. 

To compare the performance of the presented MARL model, three heuristic solutions including 

genetic algorithm, particle swarm, and artificial fish swarm algorithms are studied. Each EV is permitted 

to go to one of the four neighboring locations (users) at each time step. The MARL is trained using one 

year energy load and solar irradiance data for 5,000 episodes. Each algorithm is evaluated on 100 problem 

instances. For actor and critic networks, one hidden layer with 256 hidden units and one output layer with 

15 hidden units for each network are used. A rectified linear unit (ReLU) is used as activation function for 

each network. Adam optimizer is used to optimize the performance of the algorithm. 

In DRL, the agent interacts with the environment. At each time step t, the agent gets a state st in a 

state space S and chooses an action at from an action space A, following a policy 𝜋(at|st). This policy helps 

the agent to map states to actions to maximize a cumulative reward Rt, and select changes to the following 

state st+1 [114]. Neural networks work as approximators, which are especially valuable in reinforcement 

learning when the state space or action space is large. Neural nets can be trained to map states to actions. 

Instead of utilizing a query table to store, index, and update every single state and itsvalues, which is not 

computationally feasible for high-dimensional problems, a neural network can be trained to sample from 

the state or action space to maximize total accumulated reward [115]. 
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For DRL, the agent component is the same as the agent in MARL model with system state s ∈ S and 

action spaces defined as follows: 

• System state s ∈ 𝒮 set as a tuple of four variables st = (pt, eBt ,Solt ,Lt) corresponding to vehicle 

location pt, battery state of charge eBt, solar irradiance Solt, and energy load Lt respectively. 

• The action space a ∈ 𝒜 is defined as the mobility actions (moving up, down, left, right, and no 

move) and energy transaction actions (charging, discharging, and idle) 

The DRL model used a centralized training and execution framework, where agents are trained for 5000 

episodes and executed in a centralized way, and each agent has access to global information about the 

system state in both training and execution processes. 

 

4.3.1. Optimality Evaluation 

 
In this section, the performance of all five algorithms is evaluated using a case of 40 EV’s and 100 

customers, and the DRL algorithm is shown to provide the best performance of the five. The Mean 

Absolute Errors (MAE) for the MARL algorithm and three heuristic algorithms (GA, PSO, AFSA) 

compared to the DRL results are shown in Table XIII.  

 

The MAE is calculated as [123]: 

MAE =
∑ |xe − ye|e ∈E

E
 

 

(29) 

 

Where x represents the observation from MARL, GA, PSO, or AFSA, whereas y indicates the 

corresponding observation from DRL, respectively, and e is the index of instances with a total of one 

hundred instances in the set E. 
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Figure 19: Convergence curve for the DRL during training 

 

 
Figure 20: Convergence curve for the MARL during training 

 

Table XIII: Mean absolute error for energy network with 40 EVs and 100 customers 

 

Algorithm 
Mean absolute error ($) 

Mean Std. dev. Min Max 

MARL 74.55 36.09 0.33 145.85 

GA 162.35 75.28 1.93 401.61 

PSO 87.71 42.66 1.09 165.53 

AFSA 89.04 43.52 3.49 167.92 
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It is observed from table XIV that MARL model has the lowest MSE compared to the other models, 

with reductions of 54.32%,14.94%, and 16.85% compared to GA, PSO, and AFSA, respectively. 

 
 
 

Table XIV: Simulation results for energy network with 40 EVs and 100 customers 

 

Algorithm 
Operational cost ($) Decision 

Mean Std. dev. Min Max time (sec) 

DRL 2141.48 130.98 1062.60 2273.73 126 

MARL 2181.18 171.76 1208.45 2387.57 16 

GA 2301.40 166.19 1302.11 2503.43 164 

PSO 2205.45 173.39 1228.12 2422.69 17 

AFSA 2207.85 173.39 1230.53 2425.09 160 

 
 

 

In addition, Table XVIII shows the total costs for DRL, MARL, GA, PSO, and AFSA. It is 

observed that the MARL algorithm can obtain better solutions compared to the heuristic models, but 

underperforms the DRL. The convergence curves for DRL and MARL during training are demonstrated 

in Figs. (19) and (20), respectively. 

 From the results in tables XVIII, it is noted that DRL model outperforms all the other models in 

terms of operational costs, since it can achieve reductions of 1.80%, 6.95%, 2.90%, and 2.99% compared 

to MARL, GA, PSO, and AFSA, respectively. Nevertheless, MARL can output results faster than all 

models with reductions in run time of 95.23%, 90.24%, 5.88%, and 90% compared to DRL, GA, PSO, 

and AFSA, respectively. 

The computer used to conduct the training and execution processes had 8 GB RAM, with an 

Intel(R) Core(TM) i7-2600 CPU 3.40GHz processor. The times consumed to train the DRL model of 
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different configurations for 5,000 episodes were 32, 83, 103, 139, and 175 hours for configurations of one 

hundred customers and sixteen, twenty five, twenty nine, thirty five, and forty EV’s, respectively. 

The training times of the MARL model for the same configurations took 60,90, 103, 122, and 138 hours, 

respectively. 

 

4.3.2. Scalability Evaluation 

 
In this section, the performance and computational cost of the five algorithms are compared for 

five different configurations with varying numbers of EV’s and 100 customers. CPLEX could 

theoretically be used to calculate an optimal solution, but this was not computationally tractable for any of 

the cases reported here. In all cases, the DRL algorithm produced the highest quality solution, followed 

closely by MARL, and MARL provided the best computational efficiency. The details of the five 

simulations are presented below. 

 

4.3.2.1. Energy Network with Sixteen EVs and One Hundred Customers 
 
 

Table XV: Simulation results for energy network with 16 EVs and 100 customers 

 

Algorithm 
Operational cost ($) Decision 

Mean Std. dev. Min Max time (sec) 

DRL 2317.88 76.86 1222.98 2496.26 18 

MARL 2319.29 147.82 1248.10 2498.29 8 

GA 2389.09 148.31 1314.84 2570.25 100 

PSO 2393.77 148.29 1319.48 2574.99 10 

AFSA 2396.17 148.29 1321.88 2577.40 148 

 

The operational costs and decision time per problem instance for the five algorithms are shown in 

Table XV. It is observed that the DRL algorithm can generate better solutions compared to the MARL 
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algorithm, with an average cost reduction of 0.06%. However, the MARL algorithm demonstrates better 

computational efficiency compared to the DRL algorithm with a 55.60% reduction in run time. 

MARL outperforms the heuristic methods with average cost reduction of 2.93%,3.19%, and 3.32% 

compared to GA, PSO, and AFSA, respectively. Moreover, MARL reduces the simulation time by 92%, 

20%, and 94.59% compared to GA, PSO, and AFSA, respectively. 

 

4.3.2.2. Energy Network with Twenty Five EVs and One Hundred Customers 
 

The operational costs and decision time per problem instance for two algorithms (DRL and 

MARL) are shown in Table XVI.  

 

Table XVI: Simulation results for energy network with 25 EVs and 100 customers 

 

Algorithm 
Operational cost ($) Decision 

Mean Std. dev. Min Max time (sec) 

DRL 2198.78 132.86 1105.08 2349.00 60 

MARL 2295.39 150.72 1254.68 2476.46 10 

GA 2325.06 157.88 1285.01 2537.09 120 

PSO 2323.10 156.80 1285.37 2517.87 13 

AFSA 2325.50 156.80 1287.77 2520.27 144 

 
 

The results show that the DRL algorithm can output better solutions compared to the MARL 

algorithm, with average cost reduction of 4.2%. Nevertheless, the MARL algorithm performs better in 

terms of computational efficiency, since it can generate solutions with a reduction of 82.33% in 

simulation time compared to the DRL algorithm. On the other hand, MARL can achieve better solutions 

compared to the heuristic models with average cost reduction of 1.29%, 1.20%, and 1.30% compared to 
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GA, PSO, and AFSA, respectively. Moreover, MARL reduces the simulation time by 91.66%, 23.07%, 

and 93.05% compared to GA, PSO, and AFSA, respectively. 

 

4.3.2.3. Energy Network with Twenty Nine EVs and One Hundred Customers 
 

The operational costs and decision time per problem instance for two algorithms (DRL and MARL) 

are shown in Table XVII.  

 

Table XVII: Simulation results for energy network with 29 EVs and 100 customers 

 

Algorithm 
Operational cost ($) Decision 

Mean Std. dev. Min Max time (sec) 

DRL 2183.25 132.92 1087.26 2336.69 74 

MARL 2280.79 157.69 1255.56 2465.60 12 

GA 2306.58 164.53 1278.53 2555.75 135 

PSO 2291.74 160.93 1270.11 2492.49 14 

AFSA 2294.14 160.93 1272.51 2494.89 150 

 
 

It is observed that the DRL algorithm can generate better solutions compared to the MARL 

algorithm, with average cost reduction of 4.25%. However, the MARL algorithm demonstrates better 

computational efficiency compared to the DRL algorithm for fast decision-making with 84.02% reduction 

in run time. At the same time, MARL outperforms the heuristic models with average cost reduction of 

1.14%, 0.48%, and 0.61% compared to GA, PSO, and AFSA, respectively. Moreover, MARL reduces the 

simulation time by 91.11%, 14.28%, and 92% compared to GA, PSO, and AFSA, respectively. 

 

4.3.2.4. Energy Network with Thirty Five EVs and One Hundred Customers 
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The operational costs and decision time per problem instance for two algorithms (DRL and MARL) 

are shown in Table XVIII.  

 

Table XVIII: Simulation results for energy network with 35 EVs and 100 customers 

 

Algorithm 
Operational cost ($) Decision 

Mean Std. dev. Min Max time (sec) 

DRL 2159.64 133.74 1052.99 2302.60 100 

MARL 2227.91 162.37 1234.04 2419.91 15 

GA 2301.40 166.19 1302.11 2503.43 144 

PSO 2244.71 167.52 1247.10 2454.42 16 

AFSA 2247.11 167.52 1249.50 2456.82 155 

 
 

The results show that the DRL algorithm can output better solutions compared to MARL 

algorithm, with average cost reduction of 3.06%. Nevertheless, the MARL algorithm performs better in 

terms of computational efficiency, since it can generate solutions with a reduction of 85.03% reduction in 

simulation time compared to the DRL algorithm. On the other hand, MARL can achieve better solutions 

compared to the heuristic models with average cost reduction of 3.22%, 0.75%, and 0.89% compared to 

GA, PSO, and AFSA, respectively. Moreover, MARL reduces the simulation time by 89.58%, 6.25%, 

and 90.32% compared to GA, PSO, and AFSA, respectively. 

 

4.3.2.5. Energy Network with Forty EVs and One Hundred Customers 
 

The operational costs and decision time per problem instance for two algorithms (DRL and MARL) 

are shown in Table XIX.  
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Table XIX: Simulation results for energy network with 40 EVs and 100 customers 

 

Algorithm 
Operational cost ($) Decision 

Mean Std. dev. Min Max time (sec) 

DRL 2141.48 130.98 1062.60 2273.73 126 

MARL 2181.18 171.76 1208.45 2387.57 16 

GA 2301.40 166.19 1302.11 2503.43 164 

PSO 2205.45 173.39 1228.12 2422.69 17 

AFSA 2207.85 173.39 1230.53 2425.09 160 

 
 

It is observed that the DRL algorithm can generate better solutions compared to the MARL algorithm, 

with average cost reduction of 1.82%. However, the MARL algorithm demonstrates better computational 

efficiency compared to the DRL algorithm for fast decision-making with 87.30% reduction in run time. 

At the same time, MARL outperforms the heuristic models with average cost reduction of 5.21%, 1.08%, 

and 1.17% compared to GA, PSO, and AFSA, respectively. Moreover, MARL reduces the simulation 

time by 90.24%, 5.88%, and 90% compared to GA, PSO, and AFSA, respectively. 

4.3.2.6. Summary of comparison results 
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Figure 21: Average energy costs across different numbers of EVs 

 

 
Figure 22: Average simulation time across different numbers of EVs 

 

Figs. 21 and 22 summarize the average energy costs and average simulation times for different 

models under different configurations presented in the preceding sections. Fig. 21 shows that energy costs 

for all models decrease as the number of EV’s increases. This is expected, since EV’s contribute to the 
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reduction of energy costs by supplying free energy to consumers. In addition, the figure shows that the 

DRL model outperforms all other models under all configurations, followed by the MARL model. 

However, MARL outperforms all other models when it comes to the simulation time as illustrated by Fig. 

22, with a smaller increase in run time as the problem scale increases compared to the other algorithms. 

This demonstrates the power of the MARL model in handling large scale problems and generating 

solutions in less time. 

 

 

4.4 Conclusions 
 

In this chapter, a large fleet of EV’s is discussed which are routed to provide electricity to a set of 

customers in different locations. A DEC-MDP reformulation model is introduced (MARL) to enable a 

large fleet of EV’s to operate in large urban areas to supply energy to a large number of customers at 

different locations. Two example problems are designed to assess optimality and scalability of the 

proposed model. The results show that the MARL model outperforms the heuristic models (GA, PSO, 

and AFSA) and achieves results in MAE with average reductions of 54.32%,14.94%, and 16.85% 

compared to GA, PSO, and AFSA, respectively. Further, the MARL model can better handle changes and 

problem scales compared to deep Q-learning reinforcement learning 

and heuristic models since it can reduce the simulation time significantly compared to the DRL 

reinforcement learning model, GA, PSO, and AFSA. In addition, the MARL model demonstrates a better 

performance compared to the heuristic models in both energy costs and run time with a cost reduction up 

to 5.21%, 3.19%, and 3.32% and reduction in run time up to 92%, 20%, and 94.59% compared to GA, 

PSO, and AFSA, respectively.  
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5. SUMMARY AND FUTURE WORK 

 

This thesis discusses the optimal operation of a fleet of EV’s which are routed to provide 

electricity to a set of customers in different locations. The research project is meant to support EV 

networks for the grid. This thesis is carried out in three stages: in the first stage, a MIP integrated model is 

introduced to integrate vehicle routing and energy scheduling to enable energy sharing at both spatial and 

temporal scales. The performance of the integrated model is evaluated under different scenarios using 

energy costs, energy requested from the power grid, and carbon emissions as performance measures. 

Then the performance of the integrated model is compared to disjoint models. The results showed that the 

proposed model outperforms all disjoint models at all different conditions, as it can save up to 38% of 

energy costs and reduce up to 29% and 27% of energy requested from main grid and carbon emissions 

compared to a baseline where consumers always request energy from power grids, respectively. The 

uncertainty issue in the MPN is investigated in the second stage. The MIP model proposed in the first 

stage is reformulated as an MDP model, and DRL is used to solve it and output solutions for the routing 

and scheduling. The results demonstrate that the DRL model is computationally efficient compared to the 

exact optimization and heuristic algorithms, since it can reduce simulation time by 93.87%, 96.30%, 

84.77%, and 98.83% compared to the CPLEX, GA, PSO, and AFSA, respectively. Furthermore, DRL 

outperforms the three heuristic algorithms (GA, PSO, and AFSA) and can achieve a reduction in energy 

costs up to 22.05%, 22.57%, and 19.33% compared to GA, PSO, and AFSA, respectively. This makes it a 

more efficient method for handling uncertainty issues in the system. In the third stage, the scalability issue 

is studied, and a DEC-MDP reformulation model using multi-agent reinforcement learning (MARL) is 

introduced to enable a fleet of EV’s to operate efficiently to supply energy to a large number of customers 

at different locations. A sample problem is designed and simulations are run to assess the optimality and 

scalability of the proposed model. The results show that the MARL model outperforms three heuristic 

models (GA, PSO, and AFSA) and achieves a reduction in mean absolute error compared with 

benchmark solutions from deep reinforcement learning (DRL) with averages of 54.32%,14.94%, and 
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16.85% compared to GA, PSO, and AFSA, respectively. Furthermore, the MARL model reduces the 

simulation time significantly compared to the DRL reinforcement learning model, GA, PSO, and AFSA. 

In addition, the MARL model demonstrates better performance than the heuristic models in both energy 

costs and run time with cost reduction up to 5.21%, 3.19%, and 3.32% and reduction in run time up to 

92%, 20%, and 94.59% compared to GA, PSO, and AFSA, respectively. 

Future work built on this thesis can be either from the problem perspective or the methodology 

perspective. From the problem perspective, we can model more realistic situations (e.g., disaster response, 

energy network disruptions) where routes between regions might not be available at certain periods of 

time. In addition, grid services will be incorporated into the model as more comprehensive multi-

objective optimization in the scheduling of EV charging points, since the charging of EVs at different 

locations with faster charging times (e.g., 10-15 minutes) might cause instability and stress the power grid 

due to high fluctuations in the voltage consequently affecting the energy prices at those locations. 

Furthermore, the power losses will be considered in the calculation of the total costs (i.e., included in the 

energy prices). Moreover, consumer comfort level, reliability and maintenance of EVs, equipment 

degradation, design, and investment costs will be included in the model. From the methodology 

perspective, we can combine MARL and heuristic algorithms such that heuristics can be used to provide 

initial solutions for MARL to make good starting points to achieve better solution quality and efficiency 

than starting from scratch. 
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Appendix A 

 

TABLE XX. Energy load (kWh) profile for twelve consumers (similar behavior) 

Consumer CI C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

1 0.248 1.105 1.433 0.479 0.83 1.753 0.745 0.871 2.82I 0.385 4.588 2.648 

2 0.419 1.315 1.836 0.605 0.89 2.022 0.921 1.187 1.3 0.872 5.339 1.797 

3 0.294 0.768 1.806 0.849 0.893 2.012 0.818 2.209 1.554 0.869 2.555 1.278 

4 0.303 0.776 1.829 0.808 0.805 2.446 0.79 1.827 2.292 0.863 2.004 1.456 

5 0.291 0.812 1.799 0.651 0396 1.99 0.938 1.528 0.922 0.882 1.592 0.835 

6 0.292 0.783 1.773 0.71 0.784 2.399 1.017 1.793 0.837 0.876 1.348 0.512 

7 0.56 0.789 1.845 0.75 0.809 1.886 1.956 1.03 1.062 0.95 1.207 0.414 

8 1.558 1.772 1.835 0.699 0.773 0.643 0.691 0.525 0.9 0.931 1.138 0.399 

9 1.612 1.092 1.855 0.766 0.781 0.958 0.827 0.821 0.871 1.118 1.263 0.448 

10 1.602 1.036 1.899 0371 0.801 0.44 0.732 0.591 1.474 0.688 1.23 0.417 

11 1.519 0.629 1.902 0.692 0.858 0.44 0.724 0.539 1.726 1.386 1.158 0.45 

12 1.535 0.701 1.947 0.97 0.876 0.455 0.69 0.839 1.049 1.34 1.445 0.457 

13 1.566 0.616 2.008 0354 1.015 0.562 0313 0.598 0.916 0.951 1.194 0.871 

14 1.541 0.626 1.973 0.867 1.285 2.044 2.249 0.669 0.901 1.089 1.23 1.5 

15 1.629 1.914 1.962 1.078 1.66 3.626 4.902 0.66 4346 0.92 1.101 1.503 

16 1.729 1.404 1.963 1.195 2.964 3.803 3.626 1.693 3.031 0.937 1.963 4.635 

17 1.564 2.518 1.962 1.738 3.049 2.022 1.406 1.111 1.676 1.025 5.155 4.706 

18 1.828 2.804 1.966 0.467 2.883 1.951 0.656 0.784 1.611 1.224 4.666 3.522 

19 1.675 0.69 1.96 0.586 1.285 1.971 0394 1.024 1.547 0.949 3.82 5.218 

20 1.809 0.665 1.933 0.802 0.97 1.882 1.429 1.192 1.75 0.834 3.758 1.429 

21 1.688 0.704 1.932 0.68 2.175 2.44 2.181 1.068 0.766 0.911 3.311 1.336 

22 6.853 0.703 1.944 0.659 2.886 1.893 4.63 1.307 1.117 0.636 2.654 1.458 

23 9.006 1.097 1.942 0.532 1.959 2.899 4.158 2.01 1.877 1.303 2.55 2.417 

24 9.331 0.683 1.942 0.821 5.364 5.877 3.102 2.517 3.334 1.107 3.624 2.697 
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TABLE XXI. Energy load (kWh) profile for twelve consumers (different behavior) 

Consumer CI C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

1 1.88 5.09 0.435 2.016 1.435 1.002 1.548 1.826 2.232 3.929 0.656 1.824 

2 1.965 4.597 2.015 0.832 5.419 0.922 1.736 1.991 2.614 8.399 1.983 1.097 

3 1.044 4.429 5.719 1.479 3.479 0.788 1357 4.079 2.506 8.438 1.775 1.073 

4 1.374 5.037 6.026 0.723 3.997 0.824 1.707 1.37 3.463 3.814 1.752 1.041 

5 1.665 4.914 3.476 0.836 0.791 1.046 1.382 1.487 5.002 1.413 1.391 1.041 

6 1.479 3.378 2.055 0.691 0.649 0.733 1.107 1.312 2.759 1.781 0.657 1.428 

7 1.026 3.078 2.215 0.662 0.56 0.751 1.035 1.609 2.55 1.145 0.572 1.065 

8 0.955 2.964 1.806 0.632 0.533 0.759 1.034 0.855 2.832 1.166 0.387 1.098 

9 0.931 3.315 0.456 0.646 0.496 0.781 1.033 0.875 2.811 1.156 0.349 0.991 

10 0.693 3.142 0.458 0.664 0.509 0.814 1.042 1.254 1.788 1.633 0.218 0.96 

1 

I 
0.658 2.808 0.45 1.075 0.583 0.783 1.034 0.867 1.463 1.157 0.274 0.841 

12 0.653 3.414 0.451 3.841 0.754 1.266 1.025 2.422 1.31 1.82 0.747 0.747 

13 1.049 3.49 3.035 4.009 0.891 4.205 1.038 5.316 1.886 5.038 1.136 0.824 

14 0.598 4.838 1.864 1.338 0.666 2.236 1.125 6.17 1.372 3.746 1.715 0.992 

15 0.618 7.268 1.691 0.607 0.501 0.717 1.1 3.282 1.492 1.052 0.844 0.888 

16 4.093 4.763 2.273 0.581 0.471 0.93 0.994 0.901 2.66 1.61 0.226 0.807 

17 2.703 6.02 2.091 0.547 
0 536 

0.785 1.055 1.023 5.184 0.961 0.504 0.972 

0.577 
18 0.574 5.969 2.468 0.59 0.61 1.399 0.801 2.148 1.096 0.223 1.605 

19 0.612 4.099 2.141 0.55 0.801 1.113 1.617 0.717 1.291 1.096 0.823 1.419 

20 1.034 3.887 2.855 1.186 0.996 0.91 3.378 1.278 3.596 1.149 0.293 0.718 

21 0.875 3.765 8.29 0.571 1.075 0.605 4.152 0.648 4.791 1.564 0.362 0.731 

22 0.726 4.236 7.541 0.577 3.511 0.612 1.112 0.635 1.889 1.388 0.856 0.855 

23 0.715 4.338 2.648 1.13 5.488 0.674 1.022 2.766 2.017 1.552 3.716 1.036 

24 1.595 4.601 4.215 1.144 4.279 0.806 1.131 5.806 3.445 2.648 1.313 2.047 
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TABLE XXII. Solar irradiance (W/m2) profile                     TABLE XXIII. Electricity price ($/kWh) and natural gas 

price ($/l) 

Solar 

Hour 
Sunny Cloudy Snowy 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

5 0 0 0 

6 0 0 0 

7 0 0 0 

8 0.107 0.048 0 

9 0.549 0.432 0.264 

I0 0.72 0.601 0.435 

11 0.806 0.665 0.524 

12 0.846 0.682 0.572 

13 0.829 0.634 0.572 

14 0.812 0.603 0.525 

15 0.749 0.534 0.419 

16 0.572 0.351 0.225 

17 0.14 0.036 0 

18 0 0 0 

19 0 0 0 

20 0 0 0 

21 0 0 0 

22 0 0 0 

23 0 0 0 

24 0 0 0 

    

Price 

Hour 
Basic TOU Natural gas 

1 0.0782 0.0727 0.00867 

2 0.0782 0.0727 0.00867 

3 0.0782 0.0727 0.00867 

4 0.0782 0.0727 0.00867 

5 0.0782 0.0727 0.00867 

6 0.0782 0.0727 0.00867 

7 0.0782 0.0727 0.00867 

8 0.0782 0.0727 0.00867 

9 0.0782 0.0727 0.00867 

10 0.0782 0.0727 0.00867 

11 0.0782 0.0727 0.00867 

12 0.0782 0.0727 0.00867 

13 0.0782 0.0727 0.00867 

14 0.0782 0.0727 0.00867 

15 0.0782 0.0727 0.00867 

16 0.0782 0.0727 0.00867 

17 0.0782 0.0727     0.00867 

18 0.0782     0.0727     0.00867 

19 0.0782     0.0727     0.00867 

20 0.0782     0.0727     0.00867 

21 0.0782     0.0727     0.00867 

22 0.0782     0.0727     0.00867 

23 0.0782     0.0727     0.00867 

24 0.0782     0.0727     0.00867 
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