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SUMMARY 

 We propose Primal-Dual Graph Attention networks, a novel model for the task of 

3D pose estimation. It builds upon Graph Convolution Networks (GCNs) by tackling the 

shortcomings present in vanilla GCNs. The core of the network, the Primal-Dual block, 

employs the use of multiple attentions to obtain improved feature representations by 

modeling feature dependencies in both the spatial and the channel domain.  

 After conducting multiple ablation studies for the individual elements of the 

proposed network, it is found that the network is able to generate a superior model for 2D 

to 3D pose upliftment. 
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1. INTRODUCTION 

1.1. Human pose estimation: 

HPE is the task of finding the posture of the human body with given sensory 

information, usually an image or a video. It is one of the key areas of research in 

computer vision. With the recent rise in popularity of deep neural networks, the same has 

been applied to the task of pose estimation as well. Furthermore, 3D human pose 

estimation is concerned with predicting the pose in 3-dimensional space. This turns out to 

be a quite difficult problem as there can be multiple 3D poses from a given 2D pose.  

1.2. Motivation 

Research in the area of HPE is quite interesting, the reason being its varied 

applications. Perhaps one of the most popular implementations of this technology is in 

the Microsoft Kinect (Kinect, 2021) game console which lets players control the 

characters in the games using their body motions. Other areas of application include 

movies, video games animation, gesture control, security and threat detection, automotive 

control, etc. 

1.2.1. Video games and animation: 

Currently, most video games contain character models which are painstakingly 

animated by hand or require expensive motion capture equipment which is also a hassle 

to use. With proper pose detection and tracking, the animation could be self-generated by 

tracking an actor in plain clothes. 
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1.2.2. Gesture recognition 

With the advent of fast and accurate pose tracking, devices like smartphones, 

TVs, etc. could be controlled without any sort of interaction medium like a touch screen 

or a remote.  

1.2.3. Security and threat detection 

With proper pose detection employed by security cameras, threats could be 

classified and alerts generated accordingly without human surveillance. 

1.3. Graph convolution networks 

Vanilla Convolution Neural Networks (CNNs) lack the ability to perform 

operations on data that is structured as a graph. To this endeavor, Graph Convolution 

Networks (GCNs)  (Marco Gori, 2005) (Welling, 2017) (Franco Scarselli, 2009) have 

been proposed. GCNs are good for the task of pose estimation since the human body can 

be effectively modeled as a graph. 

 However, there are a few drawbacks of vanilla GCNs. Firstly, they have a fixed 

graph structure that is dictated by the affinity matrix, as such they are unable to learn the 

specific importance of different edges of the graph. Secondly, they only consider the 

immediate neighbors when performing the convolution operation. Due to this, they are 

unable to generate effective long-range interactions between the nodes. Thirdly, a vanilla 

GCN only aggregates features in the spatial domain but fails to capture relationships in 

the channel domain. 

1.4. Contributions 

To tackle the shortcomings of vanilla GCNs listed above, we propose a novel 

architecture called Primal-Dual Graph Attention Networks. These networks successfully 
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attempt to model the interaction of features both in the spatial and channel domain, while 

at the same time providing a flexible graph structure and effectively modeling long-range 

dependencies. The contributions of this research are twofold: 

• We introduce a novel Primal-Dual block, which forms the backbone of our 

network and is responsible for tackling the problems of vanilla GCNs listed 

above. 

• We demonstrate the effectiveness of the individual elements of the Primal-

Dual block via three ablation studies and show how different attention 

mechanisms improve the performance of the network. 
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2. RELATED WORK 

2.1. 3D Human pose estimation 

One of the earliest attempts at 3D pose estimation from 2D was (Chen, 1985). 

Traditional methods involve using hand-crafted features (Triggs, 2006) (Catalin Ionescu 

F. L., 2011) (Gregory Rogez, 2008) or using nearest neighbors (Ankur Gupta, 2014) 

(Jiang, 2010) to predict 3D poses. However, with the recent boom in the capabilities of 

neural networks, deep learning methods for pose estimation have become quite popular. 

“Recently it has been proven that 2D pose information is crucial for 3D pose estimation” 

(Zhao, 2019). (Julieta Martinez, 2017) demonstrated a simple model for estimating the 

3D pose solely from the 2D pose.  

Some other methods employ the use of temporal information present in the input 

for generating 3D poses. However, for the purposes of this research, we are only 

concerned with single-frame 3D human pose estimation. 

Graph-based skeleton models for pose estimation were first proposed by 

(Felzenszwalb, 2005). Such models were used by (Cao, 2017) for 2D and 3D pose 

estimation. Another type of model used for pose estimation is the contour-based model. 

Such models were used in (Ju, 1996) (T.F. Cootes, 1995). Volume-based models are also 

popular. They use geometric shapes, meshes, etc. to model the pose of the human body. 

Instances of their use are (Sidenbladh, 2000) (Anguelov, 2005) (Matthew Loper, 2015). 

2.2. Graph convolution networks 

Regular neural networks are unable to efficiently model graph data. To this goal, 

GNNs were formulated in (Marco Gori, 2005) (Welling, 2017) (Franco Scarselli, 2009). 

Similarly, GCNs are a generalization of CNNs for the purpose of computations on graph 
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data. Generally, there are two types of GCNs: spectral and spatial. GCNs have been very 

successful for computer vision applications such as object detection (Hang Xu, 2019), 

action recognition (Rui Zhao, 2019), tracking (Junyu Gao, 2019), modeling temporal 

information (Gupta, 2018) (Sijie Yan, 2018). Here we apply GCN for the task of 3D 

human pose estimation. (Sami Abu-El-Haija, 2019) makes use of a high-order GCN to 

compute relationships between nodes not in the direct vicinity, thus increasing the 

receptive field of the convolution. In contrast, we employ the use of non-local layers (He, 

2018) to model long-range dependencies.   
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3. GRAPH CONVOLUTION NETWORKS 

3.1. Need for Neural Networks for graphs 

Vanilla neural networks are great for data where there is no structure between the 

input features. However, a large amount of data in the real world has an inherent 

structure, which needs to be modeled in the network. Examples of these are social 

networks, geographic locations, DNA sequences, webpages, etc. In these cases, the data 

is modeled in the form of a graph – with nodes containing information and edges 

connecting related nodes. For a neural network to work efficiently on this data, such a 

structure needs to be explicitly modeled in the network.  

GCNs are used to apply convolution operations on general graphs instead of on 

images that have a fixed grid-like structure. GCNs are divided into two categories – 

spectral-based and non-spectral-based. For the purposes of our research, we are 

concerned with spatial GCNs. 

 

3.2. Graph networks in Human Pose Estimation 

The task of human pose estimation is very well suited to graph networks. The 

human body can be intuitively modeled as a graph where the nodes represent joints in the 

body and the edges correspond to bones or connected joints (Felzenszwalb, 2005). This 

type of representation has been extensively used previously for HPE (Cao, 2017). 

3.3. Vanilla GCN 

“Let G = {V, E} denote a graph where V is the set of K nodes and E are edges, 

while 𝑥⃗𝑖
(𝑙)

 ∈  ℝ𝐷(𝑙)
 and 𝑥⃗𝑖

(𝑙+1)
∈ ℝ𝐷(𝑙+1)  are the representations of node i before and after 

the l-th convolution respectively” (Zhao, 2019). D(l) is the number of dimensions of the 
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input feature vector, and D(l+1) is the number of dimensions of the output feature vector. A 

weight matrix W transforms the feature vector to D(l+1) dimensions. Then, the features 

from neighboring nodes are aggregated using the adjacency matrix. This operation is 

followed by an activation function (ReLU (Hinton, 2010)). 

The vanilla GCN updates the node features via: 

𝑋(𝑙+1) = 𝜎(𝑊𝑋(𝑙)𝐴̃) 1 

where X(l) and X(l+1) are the set of node features before and after the convolution 

operation respectively, 𝐴̃ is normalized from A, the adjacency matrix of the graph. A is 

K*K matrix, where K is the number of nodes in the graph. A(i,j) = 1 if node j is in the 

neighborhood of node i and A(i,i) = 1. 

3.4. SemGCN as a baseline 

Here we describe configuration 1 of the GCN model used by (Zhao, 2019). A new 

weight matrix 𝑀 ∈ ℝ𝐾∗𝐾 is added to the Equation 1, which now becomes: 

𝑋(𝑙+1) = 𝜎 (𝑊𝑋(𝑙)𝜌𝑖(𝑀 ⊙ 𝐴)) 2 

“where 𝜌𝑖 is Softmax nonlinearity which normalizes the input matrix across all choices of 

node i, ⊙ is an elementwise operation that returns mij if aij = 1 or negatives with large 

exponents saturating to zero after 𝜌𝑖” (Zhao, 2019). 

Additionally, (Nanyang Wang, 2018) used separate transformation matrices for 

aggregations of the features for self-transformation and neighbor-transformation. We also 

employ this method in the actual implementation. Equation 1 now becomes: 

𝑋(𝑙+1) = 𝜎(𝐼 ⊗ 𝑊0𝑋(𝑙)𝐴̃ + (1 − 𝐼) ⊗ 𝑊1𝑋(𝑙)𝐴̃) 3 

Where I is the identity matrix. Equation 2 is modified similarly: 

𝑋(𝑙+1) = 𝜎 (𝐼 ⊗ 𝑊0𝑋(𝑙)𝜌𝑖(𝑀 ⊙ 𝐴) + (1 − 𝐼) ⊗ 𝑊1𝑋(𝑙)𝜌𝑖(𝑀 ⊙ 𝐴)) 4 
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We adopt this method used in configuration 1 of (Zhao, 2019) as our baseline which we 

will refer to as SemGCN. 
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4. GRAPH ATTENTION NETWORK 

In this section, we describe the “graph attentional layer” proposed by (Petar 

Velickovi ˇ c, 2018). The basis of the GAT layer is formed by the concept of ‘edge-

attention’, where the connections between any two nodes are attended over. This type of 

attention helps to emphasize the impact of neighboring nodes. “As opposed to GCNs, 

[this] model allows for (implicitly) assigning different importances to nodes of a same 

neighborhood, enabling a leap in model capacity”. Additionally, this attention method is 

independent of the structure of the graph and is applied individually to edges (Petar 

Velickovi ˇ c, 2018). 

 Given two nodes i and j, where xi and xj are the node representations of nodes i 

and j respectively, an attention coefficient can be computed as follows: 

𝑒𝑖𝑗 = 𝑎(𝑊𝑥⃗𝑖, 𝑊𝑥⃗𝑗) 5 

where W is a transformation matrix and 𝑎: ℝ𝐷 × ℝ𝐷 → ℝ is a function to compute the 

attention coefficient between the two nodes of D dimensions each. Equation 5 gives the 

relationship between node j and node i. The coefficients are then normalized by using 

softmax operation: 

𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝑒𝑖𝑗) 6 

The function a is a “single-layer feedforward neural network parametrized by a weight 

vector 𝑎⃗ 𝜖 ℝ2𝐷”. The two nodes i and j are concatenated after transformation and a 

nonlinearity is applied. Finally, the weight vector 𝑎⃗ is applied and 𝛼𝑖𝑗 – the normalized 

attention coefficient- is calculated. 

𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝑎⃗𝑇[𝑊𝑥⃗𝑖||𝑊𝑥⃗𝑗]) 7 
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where T is the transpose function and || represents concatenation. Figures 1 and 2 show 

the working of the GAT layer. 

 

Figure 1 Attention Coefficients in GAT 

 

Figure 2 Aggregation of features in GAT 
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In the implementation of this function, we only compute the attention between the 

neighboring nodes. Thus, j is set to only take values in the neighborhood of i. By doing 

this, we encode the inherent structure of the graph by using the affinity matrix in the 

attention operation (masked attention).  

 Additionally, this GAT can also be viewed as a modification of the vanilla GCN. 

Instead of using the static affinity matrix of the graph in GCN, we encode the edge 

attention coefficients and use that as our affinity matrix, which now becomes dependent 

on the individual features of the node and its neighbors. 

 In (Petar Velickovi ˇ c, 2018), they also employ multiple attention heads for a 

single GAT layer. However, for the purposes of our research, we have fixed the number 

of heads to 1. We also only consider the immediate neighbors while computing the 

attention coefficients. 
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5. CHANNEL ATTENTION 

In this section, we describe the squeeze-and-excitation block proposed by (Sun, 

2018). This SE block employs channel attention to “[improve] the quality of 

representations produced by a network by explicitly modeling the interdependencies 

between the channels of its convolutional features” (Sun, 2018). The SE block consists of 

two parts. The squeeze operation takes the input features (K*D) and aggregates them 

across nodes. This aggregation is then followed by the excitation operation, which “aims 

to fully capture channel-wise dependencies” (Sun, 2018). This is implemented by 

applying some gating transformations to the embeddings created in the squeeze part, and 

then the original input features are scaled with the activations generated in the excitation 

step.  

5.1. Squeeze 

To model the dependencies in channels, we perform a squeeze operation to obtain 

condensed channel descriptors. This is done by average-pooling across the spatial 

dimensions. The result is a D dimensional embedding vector z. 

𝑧𝑐 =
1

𝐾
∑ 𝑥𝑖

𝑐

𝐾

𝑖=1

8 

where 𝑥𝑖
𝑐 is the cth feature of node i. 

5.2. Excitation 

Using the embeddings z created above, we apply transformations and non-linear 

activations to generate a gating vector. This is done by two weight matrices – 𝑊1 ∈ ℝ
𝐷

𝑟
×𝐷

 

and 𝑊2 ∈ ℝ𝐷×
𝐷

𝑟   which form a bottleneck. This helps reduce the model size. r is the 

reduction ratio. The computation of gating vector s is as follows: 
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𝑠 = 𝜎(𝑊2𝛿(𝑊1𝑧)) 9 

Here 𝑠 ∈ ℝ𝐷 and 𝛿 is a ReLU non-linear activation function (Hinton, 2010). This is 

followed by a scaling operation which scales the input X by the vector s to generate new 

feature matrix X'. 

𝑥′𝑐
= 𝑠𝑐𝑥𝑐 10 

 The resulting feature matrix X' now contains the channel dependencies present in 

the original input. Figure 3 gives a pictorial representation of the SE block. 

 

 

 

Figure 3. Squeeze and Excitation block 

  



14 
 

 

6. PRIMAL DUAL GRAPH ATTENTION NETWORKS 

In this section, we describe the novel primal-dual block, that forms the backbone of the 

architecture we have created for the task of 3D human pose estimation.  

6.1. Intuition 

The idea behind this model is to have feature aggregations in both the spatial and 

channel dimensions. For this, we create two branches- the Primal branch and the Dual 

branch. 

The Primal branch applies feature-mask attention along with feature aggregation 

and attention across body-joints. It utilizes the SE block (specified in chapter 5) for 

feature masking and performs feature aggregation with the GAT layer (specified in 

chapter 4). Finally, it applies a non-local layer to compute the dependencies of nodes that 

are not in the direct neighborhood. 

The Dual branch is very similar to the Primal branch, but it is supposed to encode 

the interactions of elements in the feature dimension as opposed to the spatial dimension 

in the Primal branch. Essentially, it is a mirror of the Primal branch with certain 

modifications. 

6.2. Primal branch 

As mentioned above, the primal branch (shown in Figure 4) concentrates on 

feature aggregation in the spatial dimension. This branch is responsible for encoding the 

graph structure in the network with the affinity matrix. The three elements of the Primal 

branch are specified below: 
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6.2.1. Feature mask attention 

Feature masking is done using the SE block. Given an input 𝑋𝜖ℝ𝐾×𝐷 where K is 

the number of nodes in the graph and D is the number of the feature dimensions, the input 

to the primal branch 𝑋𝑝𝑟𝑖𝑚𝑎𝑙𝜖ℝ𝐾×𝐷 is 𝑋𝑝𝑟𝑖𝑚𝑎𝑙 = 𝑋. A mask is applied as follows: 

𝑋𝑝𝑟𝑖𝑚𝑎𝑙
′ = 𝑋𝑝𝑟𝑖𝑚𝑎𝑙 ⊙ 𝑠 

where 𝑠 ∈ ℝ𝐷 is computed from Equations 8 and 9. X' now contains channel 

dependencies present in the input X. 

6.2.2. Feature aggregation 

This step performs the actual convolution operation where it uses the GAT layer 

to perform graph attention and convolution. This step is done by combining Equations 2 

and 7. This step of feature aggregation computes the relations between neighboring nodes 

and also uses a flexible graph structure. Additionally, a batch normalization (Szegedy, 

2015) layer and Relu (Hinton, 2010) non-linearity are applied here. 

6.2.3. Non-local layer 

In order to encode long-range dependencies, we need to consider features of 

nodes that are not in the direct vicinity. For this, we use the non-local layers specified in 

(He, 2018). The non-local operation is as follows: 

𝑥⃗𝑖
(𝑙+1)

=  𝑥⃗𝑖
(𝑙)

+
𝑊𝑥

𝐾
∑ 𝑓(𝑥⃗𝑖

(𝑙)
, 𝑥⃗𝑗

(𝑙)
). 𝑔(𝑥⃗𝑗

(𝑙)
)

𝐾

𝑗=1

10 
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Figure 4. Structure of the proposed Primal Branch. The first part is the application of 

feature-mask with the SE (Sun, 2018) layers. This is followed by a GAT layer (Petar 

Velickovi ˇ c, 2018) which also transforms the dimensionality of the input. Finally, a 

non-local layer is applied and the output is obtained. 

6.3. Dual Branch 

The dual branch (shown in Figure 5) is responsible for computing the relations 

between the features in the channel dimension. It applies node-mask attention along with 

a linear transformation, and a non-local layer. The Dual branch is a sort-of replica of the 

Primal branch, with the key difference being that the input to the Dual branch is the 

transpose of the input to the Primal branch. Therefore, given an input graph  𝑋𝜖ℝ𝐾×𝐷 , 

the input to the Dual branch 𝑋𝑑𝑢𝑎𝑙𝜖ℝ𝐷×𝐾 is 𝑋𝑑𝑢𝑎𝑙 = 𝑋𝑇. The elements of the Dual 

branch are detailed below. 

6.3.1. Node-mask attention 

This is used to model the interactions between the nodes in the Dual branch. It is 

similar to the feature-mask attention of the Primal branch, but since the input is 

transposed, masking is done along the node dimension. The node-mask is as follows: 
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𝑋𝑑𝑢𝑎𝑙
′ = 𝑋𝑑𝑢𝑎𝑙 ⊙ 𝑠 

Here 𝑠 ∈ ℝ𝐾 is computed similarly from Equations 8 and 9. 

6.3.2. Non-local layer 

Again, this part is the same as the non-local layer in the Primal branch, but since 

the input to the Dual branch is the transpose of X, the non-local layer will calculate the 

long-range dependencies in the channel domain. 

 

Figure 5 Proposed Dual branch. Operates similarly to the Primal branch, input to the 

branch is transposed. 

6.4. Primal-Dual Block 

Combining the Primal and the Dual branches, we have a Primal-Dual block. The 

two branches operate in parallel and after computation, the results of both the branches 

are fused by summation. The structure of the Primal-Dual block is shown in Figure 6. 
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Figure 6 Proposed Primal-Dual block  
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7. NETWORK ARCHITECTURE 

The Primal-Dual block specified in the previous section makes the backbone of 

our network architecture. Like (Julieta Martinez, 2017), we employ the use of residual 

blocks (Kaiming He, 2016) each of which consists of two Primal-Dual blocks. In the 

input of the network, we first have a Primal-Dual block which transforms the input graph 

into a higher dimensional feature space. Then we have four residual blocks. Finally, 

towards the output, we have a lone Primal block to generate the results in the output 

space. The architecture of the network is depicted in Figure 7. 

 

 

Figure 7 Model architecture 
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8. 3D HUMAN POSE ESTIMATION 

In this chapter, we describe the usage of the proposed Primal-Dual graph attention 

network for the task of 3D human pose estimation 

8.1. Problem formulation 

The human skeleton can be intuitively represented as a graph. The nodes of the 

graph represent the joints of the body while the edges of the graph represent the 

connected joints or the bones. Such a representation has previously been employed in 

(Cao, 2017). The skeleton is made up of 16 joints with the pelvis as the root joint. 

Many works in the past years have shown that highly accurate 3D pose can be 

estimated from 2D pose only (Julieta Martinez, 2017). Hence, we employ the Primal-

Dual graph attention network to lift the pose from 2D to 3D in the camera coordinate 

system. 

We have our input as a set of 2D joints  𝑃 𝜖 ℝ𝐾×2 and desired output as the 

ground-truth joint positions in 3D 𝐽 𝜖 ℝ𝐾×3. “The system aims to learn a regression 

function F* which minimizes the following error over a dataset containing N human 

poses” (Zhao, 2019). 

𝐹∗ = argmin
𝐹

1

𝑁
∑ ℒ(𝐹(𝑃𝑖), 𝐽𝑖)

𝑁

𝑖=1

11 

The input 2D joint locations can either be ground-truth 2D locations or the 

estimated 2D locations from a 2D joint detector. 
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Figure 8 Human pose as a graph with nodes representing body joints and edges 

representing bones 

8.2. Dataset 

The Dataset used for the purpose of 3D human pose estimation is Human3.6M 

(Catalin Ionescu D. P., 2014). “The dataset consists of 3.6 million different human poses 

collected with 4 digital cameras. Data is organized into 15 training scenarios including 

walking, sitting and lying down, various types of waiting poses and so on” (Catalin 

Ionescu D. P., 2014). Similar to (Xingyi Zhou, 2017), the input poses are converted from 

50fps to 10fps. Samples from the dataset are shown in Figure 9. 

8.3. Loss Function 

Following configuration 1 of (Zhao, 2019), the mean squared error loss function 

is employed. The error is calculated between the predicted and the ground truth 3D joint 

locations. 

ℒ(𝐽) =  ∑ ||𝐽𝑖 − 𝐽𝑖||
2

𝐾

𝑖=1

12 
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where 𝐽𝑖  and 𝐽𝑖 are the ground truth and predicted 3D joint locations for joint i 

respectively. 

 

Figure 9 Samples from the Human3.6M dataset 

8.4. Evaluation metrics 

For Human3.6M (Catalin Ionescu D. P., 2014), two protocols are used for 

evaluation. Protocol #1 uses 

“all 4 camera views in subjects S1, S5, S6, S7 and S8 for training and the 

same 4 camera views in subjects S9 and S11 for testing. Errors are calculated 

after the ground truth and predictions are aligned with the root joint. 

[Protocol 2] makes use of six subjects S1, S5, S6, S7, S8 and S9 for training, 

and evaluation is performed on every 64th frame of S11. It also utilizes a rigid 
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transformation to further align the predictions with the ground truth.” (Zhao, 

2019) 

For Protocol #1, we report the performance of our model using mean per-joint 

position error (MPJPE) as the metric. For protocol #2, the metric used is mean per-joint 

position error after Procrustes alignment (P-MPJPE). Both of these evaluation metrics 

measure the Euclidean distance in millimeters between the ground truth and the predicted 

3D pose. 

𝑀𝑃𝐽𝑃𝐸 =  
1

𝑇

1

𝑁
∑ ∑ ||(𝐽𝑖

𝑡 − 𝐽𝑟𝑜𝑜𝑡
𝑡 ) − (𝐽𝑖

𝑡 − 𝐽𝑟𝑜𝑜𝑡
𝑡 )||

2

𝐾

𝑖=1

𝑇

𝑡=1

 13 

 

  



24 
 

 

9. IMPLEMENTATION DETAILS 

Here we describe the specific implementation of our network for 3d human pose 

estimation. For the inference of positions of joints in 3D space, we use the camera 

coordinate system. As has been used in earlier work (Dario PavlloF, 2019), we use 

cascaded pyramid network (CPN) (Yilun Chen, 2018) as our 2D pose detector which 

takes images and estimates a pose in 2D. However, in our ablation study, we only use 

ground truth 2D poses to pass to our network. 

9.1. Training 

We train our network using Adam optimization (Ba, 2014). Via experimentation, 

we set the hyperparameters as follows: For the ground truth 2D pose, we use an initial 

learning rate of 0.001, with the learning rate decaying by a factor of 0.96 for every 4 

epochs, and a batch size of 64. For the CPN 2D detections, we use an initial learning rate 

of 0.005, with the learning rate decaying by a factor of 0.65 for every 4 epochs, and a 

batch size of 128. 

Training is done on an Nvidia RTX 2080Ti GPU with PyTorch. Weights are 

initialized by (Bengio, 2010). 
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10. RESULTS 

10.1. Ablation Study 

We conduct 3 ablation studies to demonstrate the effectiveness of our proposed 

model. For the purpose of the ablation study, we use the 2D ground-truth poses as input 

to the network. The 3 studies demonstrate the effectiveness of the individual modules in 

each of the following: Primal branch, Dual branch, Primal-Dual block. 

10.1.1. Variants of Primal branch 

In this, we consider network configuration with only the Primal branch. We 

remove individual elements from the Primal branch to analyze their impact on the 

performance. We demonstrate that the removal of each element from the Primal branch 

results in a drop in performance. Results are shown in TABLE I. 

TABLE I 

COMPARISON OF DIFFERENT ELEMENTS OF THE PRIMAL BRANCH 

Method #Parameters MPJPE P-MPJPE 

Baseline SemGCN 0.27M 42.88 mm 33.89 mm 

Primal (only GAT) 0.27M 42.36 mm 34.66 mm 

Primal (only feature-mask) 0.29M 41.47 mm 32.56 mm 

Primal (only non-local) 0.57M 40.84 mm 31.08 mm 

Primal w/o feature-mask 0.57M 40.55 mm 31.38 mm 

Primal w/o GAT 0.59M 39.39 mm 31.47 mm 

Primal w/o non-local 0.29M 38.87 mm 31.43 mm 

Primal branch 0.59M 38.37 mm 29.89 mm 
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10.1.2. Variants of Dual branch 

In this, we consider network configuration with only the Dual branch. Individual 

elements are removed to analyze their impact on the performance. We show that each 

element on the Dual branch contributes to the improved performance. Results are shown 

in TABLE II. 

TABLE II 

COMPARISON OF DIFFERENT ELEMENTS OF THE DUAL BRANCH 

Method #Params MPJPE P-MPJPE 

Dual w/o non-local 0.14M 58.94 mm 48.89 mm 

Dual w/o node-mask 0.14M 44.02 mm 35.20 mm 

Dual branch 0.14M 42.26 mm 34.90 mm 

 

10.1.3. Primal-Dual block study 

Finally, we study the effects of the combination of the Primal and Dual branches 

for the proposed Primal-Dual block. TABLE III shows that the Primal and Dual branches 

are complementary to each other and help in improving performance. 

TABLE III 

COMPARISON OF INDIVIDUAL BRANCHES OF PROPOSED NETWORK 

Method #Params MPJPE P-MPJPE 

Primal branch only 2.33M 38.62 mm 30.12 mm 

Dual branch only 0.54M 44.02 mm 35.20 mm 

Primal-Dual graph attention network 2.87M 36.69 mm 29.37 mm 
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10.2. Comparison with baseline 

For this, we change the number of channels in the baseline SemGCN to match the 

number of parameters in our proposed network. This proves that the performance boost in 

the proposed model is not simply due to an increased number of parameters. Results are 

shown in TABLE IV. 

TABLE IV 

COMPARISON OF PROPOSED NETWORK WITH BASELINE 

Method Channels #Params MPJPE P-MPJPE 

Baseline SemGCN 422 2.87M 40.37 mm 31.91 mm 

Primal-Dual graph attention network 256 2.87M 36.69 mm 29.37 mm 

10.3. Comparison with the state of the art 

The quantitative results of the evaluation of our model and its comparison with 

some state-of-the-art approaches on the Human3.6M dataset (Catalin Ionescu D. P., 

2014) are shown in TABLES V and VI.  Some of these approaches use additional 

techniques which are complementary to our network. For example, (Xiao Sun, 2017), 

(Wei Yang, 2018) use complex loss functions.  

10.4. Qualitative results 

In Figure 10, we show examples of the resulting 3D pose estimated from image 

inputs. We see that our network is able to accurately predict the pose of people doing 

different activities. 
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Figure 10 Qualitative results on Human3.6M dataset 
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11. CONCLUSION 

In this thesis, we have studied the application of graph convolution networks for 

the task of 3D human pose estimation. We see how a graph neural network is able to 

effectively model the skeletal structure of the human body. We extensively study the 

effect of various attention mechanisms on the performance of pose estimation. 

Acknowledging the shortcomings of vanilla GCNs, we propose a novel model for 3D 

human pose estimation, the Primal-Dual Graph Attention Networks. This network 

incorporates a flexible graph structure along-with using the interdependencies in both the 

spatial and channel domain and also long-range dependencies. A comprehensive ablation 

study of the proposed modules of the network shows their individual effectiveness as 

well as their power when used together in the proposed network. 

For future work, the network could be modified to make use of temporal 

information from videos and sequences. Additionally, the application of the Primal-Dual 

graph attention network in domains other than human pose estimation is left to be 

attempted. 
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