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SUMMARY 

 

Electrostatic atomization has appeared as a desired technology in distinct industrial 

applications such as painting, coating, and injection in diesel engines. It yields controlled spray 

trajectories, enhanced dispersion/deposition efficiency, and increased evaporation compared to 

traditional atomization methods. Furthermore, it prohibits common coating problems such as 

uneven or over-application of oil. It demands less energy and provides applicability to a wide range 

of fluid viscosity.  

The so-called leaky dielectric liquids are the best candidates for electrostatic atomizers due to 

their enhanced charge residence time compared to conducting liquids such as water, where the 

charges would instantly relax to the surface. The leaky dielectric liquid concept emerged in the 

mid-’60s to explain electrohydrodynamic phenomena in liquids previously considered as 

insulators, such as vegetable oils. These ionic conductor liquids are capable of possessing a small 

net charge resulting in a relatively low conductivity. The origin of ions in such liquids is still under 

debate. In electrostatic atomizers, electrodes are perfect conductors capable of passing through an 

electric current and sustaining faradaic reactions. However, in non-conducting surfaces, only 

embedded charges remain and there is no sustained electric current at the surface. 

In this study, the electrification and ion transport in ionic conductor liquids (oils) are studied 

theoretically and numerically while allowing for the Frumkin-Butler-Volmer kinetics responsible 

for the electron transfer at the metal electrodes. The numerical model solves the fluid flow 

equations along with the electrostatic equations. The fluid flow equations are the continuity and 

momentum equations. The source term in the momentum equation accounts for the Coulombic 

body force responsible for the electro-osmotic flow. The electrostatic equations are the anion and 
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cation transport equations, along with the Poisson equation. As a sample case, a channel flow is 

considered with the charging electrodes to occupy the middle part of the channel while other 

sections are electrically insulated. The considered ionic conductor liquid throughout this study is 

canola oil. 

The constituted near-electrode layers across the electrode in the outwards direction are 

compact and diffuse layers, respectively. The ions present in the compact layer do not participate 

in the electrohydrodynamic flow. Hence, the computational model at the electrode surface starts 

from the interface of the compact and diffuse layers. In ionic conductor liquids with very low 

permittivity, such as canola oil, 99% of the potential drop occurs across the compact layer. This 

drop makes finding the electric potential value at the interface of compact and diffuse layers crucial 

since it is used as a boundary condition for the provided computational model. On the other hand, 

most of the potential drop in aqueous solutions occurs in the diffuse layer, which is not the case in 

this study. 

The electric potential boundary condition at the electrode surface of the considered channel 

flow case is a fixed value (Dirichlet-type boundary) with orders of magnitude lower than the 

applied voltage at the electrode surface. The ionic boundary conditions at the electrode surface are 

Neumann-type conditions. Further comprehension of the characteristics of the compact Stern and 

diffuse layers in electrostatic atomizers enables us to apply a more accurate electric potential 

boundary condition for the electrode surface in the provided numerical model.  

A novel theoretical approach is developed to correlate the thickness of the equivalent one-

dimensional compact layer to the potential drop across this layer. These electrodes are subjected 

to high voltage and sustain an electric current. The non-specific (non-electric) ion adsorption 

responsible for creating the compact Stern layer is attributed to the Langmuir-Brunauer-Emmet-
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Teller mechanism. Faradaic reactions are responsible for electron transfer at the open parts of the 

metallic electrode surface. In contrast, the compact Stern layer is formed on the oxide or impurities 

at the electrode surface.  

The electron transfer regime in electrostatic atomizers with electrodes exposed to high voltages 

is kinetic-limited. Hence, we employ the Frumkin slow discharge theory combined with the 

Marcus electron transfer theory to present another novel approach to predict the electric potential 

at the interface of the compact and diffuse layers. The activation energy of the electron transfer in 

the faradaic reaction is found from the Marcus theory. The ionic concentration and net charge 

distribution across the polarized diffuse layer are calculated from the numerical simulations given 

the known counter-ion flux value at the electrode surface from the concurrent experimental 

measurements. With the concentration of ions at the interface of compact and diffuse layers be 

known and employing Frumkin slow discharge theory, the electric potential value at the interface 

is found from a predictor-corrector algorithm that is detailed with examples. 

The provided numerical and theoretical models thoroughly demonstrate the electrification 

mechanism, constituted near-electrode layers and internal electrohydrodynamic flow in 

electrostatic atomizers. We found in the channel flow case that the role of Smoluchowski slip near 

the electrodes is negligibly small compared to the viscous scraping of the polarized layer under 

any realistic values of the imposed longitudinal electric field. This means that ions are removed 

from the polarized diffuse layer by the visocus scraping mechanism in electrohydrodynamic flow 

inside electrostatic atomziers, rather than the Coulombic force. 
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1. INTRODUCTION 

1.1. Motivation and objectives 

Electrostatic atomization has appeared as a promising technology in many industrial 

applications such as the oil coating, painting, and fuel injection in combustion chambers of diesel 

engines1-2. It provides controlled spray trajectories, enhanced dispersion efficiency, and efficient 

evaporation while avoiding uneven or over-application of oil than conventional atomization 

approaches3-4.  

Despite the desirable features of this technology, the electrification mechanism and the 

parameters affecting the resulting net charge at the outlet are unknown. These are vital parameters 

in designing industrial devices employing this technology. The motivation of the current study is 

to provide a fundamental background to explain the charging phenomenon and internal 

electrohydrodynamic flow in electrostatic atomizers. Unfortunately, the constituted near-electrode 

layers in these high-voltage electric current-carrying electrodes are not well understood. Due to 

substantial differences with the low voltage (less than 3 volts) regime, the available 

electrochemical theories in this regime do not apply to the electrostatic atomizers  

The characterization of near-electrode layers would help demonstrate the internal 

electrohydrodynamic flow due to counter-ion discharge at the electrode surface. This discharge 

creates a polarized diffuse layer. Transport of ions present in the polarized diffuse layer occurs due 

to viscous scraping. Figure (1.1) illustrates an electrostatic atomizer schematic, the supply line, 

and the constituted near-electrode layers. As depicted, the computational model at the electrode 

surface starts from the interface of compact and diffuse layers. This makes the recognition of the 

properties of this interface imperative. 
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Figure 1.1. A schematic of the electrostatic atomizer and the supply line. The near-electrode layers 

and the starting surface of the computational domain at the electrode surface are indicated. 

 

The first objective of this study is to provide a numerical model capable of demonstrating the 

internal electrohydrodynamic flow in electrostatic atomizers. The measured electric current at the 

electrode surface is a consequence of counter-ion discharge. The numerical model should 

accommodate the realistic electron transfer faradaic reactions based on the Butler-Volmer-

Frumkin equation35 and the measured electric current density values in experimental 

investigations. The electric potential boundary condition at the electrode surface is challenging for 

the computational model. Due to the low permittivity of canola oil, there is a substantial potential 

drop across the compact layer. The electric potential at the interface of compact and diffuse layers 

is significantly lower than the applied voltage at the electrode surface. 

The second objective is to find the electric potential value at the interface of diffuse and 

compact layers by characterizing the constituted near-electrode layers. These layers, including the 

compact Stern layer and the polarized diffuse layer, are not previously studied for high voltages. 

Knowing their characteristics is imperative to apply accurate Dirichlet-type boundary conditions 

for electric potential at the interface of compact and diffuse layers.  
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1.2. Structure of the dissertation 

The thesis investigates the fluid flow and charging mechanism inside the electrostatic 

atomizers. The second chapter discusses the fundamental and related literature regarding 

constituted near-electrode layers in conventional electrochemical systems. The concept of ionic 

conductor liquid and the current computational methods targeting internal electrohydrodynamic 

flow are explained. Furthermore, the differences between conditions in electrostatic atomizers with 

the ion-exchange membranes are illustrated. 

Chapter 3 explains the numerical methodology and the governing equations solved within the 

computational model. The sample case of internal electrohydrodynamic flow inside a 

microchannel with the middle section composed of electric current-carrying electrodes is solved. 

The resulting spray current and the transport of ions are demonstrated.  

Chapter 4 describes the proposed theoretical models to characterize the constituted near-

electrode layers in electrostatic atomizers. The thickness of the compact Stern layer is calculated 

by employing the developed theoretical model based on the Langmuir-Brunauer-Emmet-Teller 

adsorption mechanism61. 

Chapter 5 illustrates the employment of Frumkin slow discharge theory47 to find the electric 

potential at the interface of compact and diffuse layers. The activation energy of the electron 

transfer reaction is calculated through the Marcus electron transfer theory49.  
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2. LITERATURE REVIEW 

2.1. Introduction 

This section is divided into three parts. First, we review the concept of the leaky dielectric 

model and the available computational models for ionic conductor liquids in the context of an 

electrohydrodynamic flow, such as the charge injection method. Also, we demonstrate the 

differences between our case and the ion-exchange (permselective) membranes. 

In the second part, we review the available models for the Stern compact layer. The 

deficiencies in these models, which makes them inapplicable to the case of high-voltage 

electrification in electrostatic atomizers, are demonstrated. Also, we elaborate on the constituted 

near-electrode layers in electrostatic atomizers and their characteristics.  

In the last part, we demonstrate the characteristics of the heterogeneous electron transfer in 

faradaic reactions occurring at the electrode surface. These characteristics enable the deployment 

of Frumkin slow charge and Marcy electron transfer theories to calculate the electric potential at 

the interface of compact Stern and diffuse layer in the context of electrostatic atomizers.  

2.2. Leaky dielectric model and the previous computational research 

The leaky dielectric model was first suggested in the 60s to demonstrate the charging 

characteristics of previously known insulating liquids5-7. Liquids such as refrigerants and 

transformer oils were earlier known as dielectric liquids8-9. Later, it was revealed that these liquids 

possess a very low electric conductivity, which is responsible for electrohydrodynamic effects. 

They express the properties of weak electrolytes7-8 and can feature near-electrode polarized layers. 

For non-conducting surfaces sustaining no electric current and possessing embedded charges, the 

thickness of the polarized layer is on the order of the Debye length10-11. Imposing a tangential 

electric field to the non-conducting electrode would lead to Smoluchowski-driven flow due to the 
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Coulombic force acting on the charges in the polarized layer12-13. Electrodes in electrostatic 

atomizers are perfect metallic conductors sustaining an electric current due to the faradaic 

reactions14-17 occurring at the electrode surface. 

The computational study on the internal electrohydrodynamic flow of poorly conducting 

liquids in electrostatic atomizers is mainly performed based on the charge injection theory18-20. 

The well-known blade-plane geometry18-20 is studied vastly through unipolar ion injection at the 

metallic electrode/electrolyte21 interface. In electrostatic atomizers, electrodes are exposed to high 

voltages in the range of kV. The charge injection theory ignores the transport of ions (charges) 

across the electrode surface due to faradaic reactions. It considers a fixed, known value as the 

charge density boundary condition at the metal/liquid interface. Subsequently, the charge transport 

equation is solved across the domain along with the fluid flow equations to determine the 

volumetric charge density and the Coulombic body force in electrohydrodynamic flow. The 

electrohydrodynamic plumes created by a sharp blade electrode in contact with an ionic conductor 

liquid is investigated thoroughly with charge injection theory employing different injection laws22. 

An unsteady regime is predicted depending on parameters such as electric mobility, blade shape, 

and injection strength22. Charge injection theory is combined with the lattice Boltzmann method 

to study the three-dimensional electroconvection of dielectric liquids23. It should be emphasized 

that in charge injection theory, there is no physical relationship between the applied voltage and 

the sustained electric current at the electrode surface. Moreover, the boundary condition for the 

charge density at the electrode surface is of the Dirichlet type with assumed values.  

On the other hand, the charge density value at the electrode surface can be found by solving 

the ionic transport equations with appropriate boundary conditions considering the measured 

electric current at the electrode/electrolyte interface24-25. These studies account for the constituted 
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compact Stern layer at the electrode surface and electron transfer through faradaic reactions. For 

instance, a combined mathematical and computational method is developed to model the classical 

diffusion-limited regime of the electrochemical thin film under DC current26. Non-linear boundary 

conditions related to the reaction kinetics and the compact layer capacitance are also taken into 

account27. The simplified set of equations appropriate for low-voltage applications (less than 3 V) 

is employed28 compared to more generic cases dealing with high voltage electrification in ionic 

conductor liquids.  

In electrostatic atomizers, we deal with the case of oil charging in contact with metallic 

electrodes sustaining an electric current. Our proposed computational method accounts for the ions 

transport in electrohydrodynamic flow coupled with the kinetics of faradaic reactions at the 

electrode surface. It is applicable at all voltages (low to high). The previous proposed solvers29 and 

approaches26-27 were either tailored for low voltage operating conditions through a simplified set 

of transport equations or not considering the electron transfer at the electrode/electrolyte surface. 

The present work employs the electrohydrodynamic flow governing equations in general form 

with no simplifications (valid for all cases) with or without ion flux at the electrode surface to 

provide a comprehensive numerical model. 

It is important to note that here we target a completely different situation than the ion-exchange 

membranes30-34. Such membranes possess an embedded charge density and merely allow crossing 

counter-ions as a consequence of concurrent diffusion and electric mobility. Counter-ion discharge 

and ionization due to faradaic reactions are neglected in such cases. Hence, the Frumkin-Butler-

Volmer equation does not apply to these cases35-36. In permselective membranes, an imposed 

constant concentration of counter-ions at the surface acts as a counterbalance to the fixed charge 

concentration inside the membrane. Due to the developing hydrodynamic instability in the near-
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surface layer, these membranes operate even above the diffusion-limited regime37 (far from the 

kinetic-limited regime in our case). The flow in ion-exchange membranes is merely electric-

driven. Although, in some cases, such as the electrodialysis stacks, a non-electrically driven forced 

flow might exist.  

On the other hand, in electrostatic atomizers, faradaic reactions are sustained15-17 through the 

discharge of counter-ions or ionization of neutral ions. These electron transfer reactions are 

governed by the well-known Frumkin-Butler-Volmer. The recent experiments have indicated the 

kinetic-limited regime of electrification in these electrodes16-17. These slow faradaic reactions are 

called “glowing” similar to what is done for the corrosion reactions38.  

The current work aims to demonstrate the electrification and electrohydrodynamic flow in a 

model electrostatic atomizer with a flux of counter-ions compatible with concurrent experimental 

measurements16-17. An analytical solution for the near-electrode polarized layer is provided and 

used as a benchmark case to validate the numerical model. A two-dimensional problem associated 

with the bulk Coulomb force near a non-conducting polarized electrode is solved and compared 

with the available analytical solution12-13.  

2.3. Stern compact layer and the presence of Butler-Volmer-Frumkin equation 

The early and pioneering works of Butler, Volmer, and Frumkin demonstrated the kinetics of 

faradaic reactions occurring at the conducting electrode surface. The constituted layers near the 

conducting electrodes are the compact and diffuse layers35,36,39,40. The applied electric potential at 

the electrode surface specifies the structure of these polarized layers. Following an applied high 

electric potential at the electrode surface, counter-ion crowding occurs in aquatic solutions, 

contributing to the thickness of the compact layer40. However, in the case of oils in focus here, this 

ion crowding is barely feasible41. In liquids with low conductivity (such as the vegetable oils), the 



8 
 

near-electrode compact layer can only be created through the non-specific (non-electric) 

adsorption of ions described in the preliminary work of Stern42.  

Stern considers the compact layer as a one-dimensional capacitor with constant capacity CS. 

Stern assumed that the electrodes possess a ζ-potential that causes the polarization. Models, such 

as the Grahame43, distinguish between the direct adsorption of ions or with the shell formed by 

polar molecules in aquatic solutions. It is interesting to note that such hydration is irrelevant in the 

case of oils. The Stern’s or Grahame’s models did not imply the electric current-carrying electrodes 

and faradaic reactions at the electrode surface. The effective thickness of the Stern compact layer 

is introduced in the work of Bazant et al27,28,40. They used it as a free parameter to find the potential 

drop across the compact layer.  

It is important to emphasize that the concept of a compact layer adjacent to an electrode goes 

back to the early works of Helmholtz44 and Smoluchowski45. In these early works and the 

subsequent ones, there was no electron transfer through the compact layer46. The potential drop 

across the compact layer has a fundamental role in characterizing the constituted near-electrode 

layers. In previous works, the compact and diffuse layers were lumped together in the same 

domain, and the Stern electric potential boundary condition was applied for the entire domain42,27. 

The physical reasons behind potential drop across the compact and diffuse layers differ36,42. Not 

taking into account these different characteristics leads to predicting the electric potential at the 

interface of compact and diffuse layers less than 1 V regardless of the ionic flux value at the surface 

of the electrode40. In cases with the applied voltage at the electrode in the range of kV16-17, 

imperfect demonstration of the characteristics related to the constituted near-electrode layers 

becomes problematic and results in faulty simulations. Hence, a detailed description of the 
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compact layer in high voltage electrode (the case electrostatic atomizer) is required and aimed in 

the current work 

2.4. Slow discharge theory and Marcus electron transfer energy equation 

The kinetics of the heterogeneous charge transfer reactions are demonstrated by the Frumkin 

slow discharge theory, which accounts for the electrostatic interaction of reactants and products 

across a charged interface47. The Frumkin slow discharge theory can be rearranged based on the 

quantum-chemical approach of the Marcus theory48. The Marcus electron transfer theory 

calculates the reaction rates of heterogeneous electrode reactions49. The primary aspect of the 

Marcus theory is the quadratic dependence between the free energy (associated with the reactant 

and product) and the configurational reaction coordinate. This coordinate is at the intersection of 

potential energy parabolas, where the isoenergetic electron transfer happens. In this study, we 

utilize the Frumkin slow discharge theory to ascertain the electric potential value at the compact 

and diffuse layers interface. The activation energy of the electron transfer reaction is calculated 

from the Marcus electron transfer theory.  
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3. Numerical Investigation of Ionic Conductor Liquid Charging 

 

(Previously published as Kashir, B., Perri, A., Yarin, A.L., and Mashayek, F. (2019) Numerical 

investigation of ionic conductor liquid charging at low to high voltages, Phys. Fluids 31, 

021201(1)-(17) - Kashir, B., Perri, A., Yarin, A.L., and Mashayek, F. (2019) Electrification 

mechanism and constituted near-electorde layer inside electrostatic atomizers, ILASS–Europe 

2019, 29th Conference on Liquid Atomization and Spray Systems, 2-4 September 2019, Paris, 

France). 

 

This chapter focuses on providing a numerical model for internal electrohydrodynamic flow. 

An analytical solution for the polarized boundary layer adjacent to a conducting electrode with 

faradaic reactions is provided, and the numerical model is validated against the analytical 

distributions. The distribution of ions and the ionic transport equation terms in a configuration 

similar to the realistic atomizers are demonstrated to provide a better comprehension of transport 

mechanisms in the after-electrode section and before ejecting the spray current from the atomizer 

orifice. 

3.1. The polarized boundary layer of a conducting metallic electrode  

Consider a conducting electrode with sustained electric current due to the faradaic reactions. 

Here, we assume the conducting electrode is a cathode with an applied electric potential of −V0∗ 

(with V0∗ > 0). The flux of cations discharging at the cathode based on the Nernst-Planck equation 

yields:  

j∗
+ = −D

dc∗
+

dx∗
−

De

kBT
c∗

+ dφ∗

dx∗
= j∗        (3.1) 
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Here, j∗
+ is the cation flux; c∗

+ is the cation concentration with the units 1 m3⁄ ; e is the 

elementary charge; D marks the diffusion coefficient; φ∗ indicates the electric potential; T is the 

temperature and kB represents the Boltzmann constant. x∗ is the normal coordinate orienting 

toward the electrode. The electrolyte is considered to be 1:1. The asterisks identify the dimensional 

parameters.  

The anion flux j∗
− is given by the following formulation accounting for the fact that anions do not 

participate in electron transfer at the cathode surface. 

j∗
− = −D

dc∗
−

dx∗
+

De

kBT
c∗

− dφ∗

dx∗
= 0        (3.2) 

Here, c∗
− is the anion concentration with the units 1 m3⁄ . For simplicity, the diffusion coefficient 

for both anions and cations are considered to be identical (10−11   m2 s⁄ ).  

The Gauss law takes the form of a one-dimensional Poisson equation as: 

d2φ∗

dx∗
2 = −

e

εε0
(c∗

+ − c∗
−)         (3.3) 

where is ε0 the vacuum permittivity, and ε is the dielectric permittivity of the solvent.  

The cathode is located at the x∗ = 𝑙 from the electroneutral bulk domain. The boundary conditions 

at the electroneutral bulk imply: 

x∗ = 0, c∗
− = c∗

+ = c∗∞, φ∗ = 0        (3.4) 

with c∗∞ being the bulk concentration of the electrolyte. 

Equations (3.1)-(3.3) are rendered dimensionless with the following scales: l for x∗, c∗∞ for c∗
_  and 

c∗
+, kBT e⁄  for φ∗ and V0∗ and Dc∗∞/𝑙 for j∗

+, j∗
− and j∗. The dimensionless equations take the 

following form:  

dc+

dx
+ c+ dφ

dx
= −j          (3.5) 

dc−

dx
− c− dφ

dx
= 0          (3.6) 
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ε1
2 d2φ

dx2
= c− − c+          (3.7) 

The dimensionless parameter ε1
2 is equal to 2 (λD 𝑙⁄ )2. λD indicates the Debye length with the 

following formulation50:  

λD = (
εε0kBT

2e2c∗∞
)

1 2⁄

          (3.8) 

The dimensionless boundary conditions at the electrode and electroneutral bulk read: 

x = 0, c− = c+ = 1, φ = 0         (3.9) 

x = 1, φ = −V0          (3.10) 

Considering the domain length long enough so that λD ≪ 𝑙 yields ε1
2 ≪ 1, which in itself makes 

the problem stated by Eqs. (3-5) to (3-7) singular. In distances from the cathode greater or equal 

to l, the left-hand side of Eq. (3.7) becomes negligible. Hence, full electroneutrality reveals at such 

distances. Adding this electroneutrality (c+ − c− = 0) to Eqs. (3.5) - (3.6) and integrating under 

the bulk boundary conditions (3.9), yields: 

c+ = c− = 1 −
j

2
x          (3.11) 

Integrating Eq. (3.6) with accounting the boundary conditions in (3.9) yields: 

φ = ln (1 −
j

2
x)          (3.12) 

Equations (3.11) and (3.12) demonstrate the outer solution of the considered problem. The 

outer solution is well-known and reveals that the dimensionless cation flux does not exceed the 

value of j=2, which brings the cation concentration to zero as we approach the electrode (i.e., x →

1)37. This is related to the case of a strong faradaic reaction at the electrode surface where a 

diffusion-limited regime occurs. Our interest is the slow discharge regime governed by the 

Frumkin-Butler-Volmer equation35,36, i.e., the cases with j ≪ 2.  
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The outer boundary solutions, i.e. (3.11) and (3.12) are invalid in the inner boundary domain 

where there is polarization. In the inner boundary layer, the left-hand side of Eq. (3.7) is no longer 

negligible and, as mentioned earlier, makes the problem singular. A stretched coordinate should 

be employed to overcome the singularity51,52. The stretched coordinate X can be defined as X =

(1 − x) ε1⁄  with Χ being in the order of 1. Neglecting the small term ε1j, (since ε1 ≪ 1) yields the 

following governing equations for the inner boundary layer:  

dc+

dX
+ c+ dφ

dX
= 0          (3.13) 

dc−

dX
− c− dφ

dX
= 0          (3.14) 

d2φ

dX2 = c− − c+           (3.15) 

Figure (3.1) indicates a schematic of the inner and outer boundary layers with considered 

coordinates for each cathode and anode electrodes.  

 

Figure 3.1. (a) The inner and outer boundary layers for a cathodic half-cell, (b) The inner and 

outer boundary layers for an anodic half-cell. 

 

It is deduced from Eq. (3.15) that the inner boundary layer is polarized. Integrating Eqs. (3.13) and 

(3.14) provides  

c+ = K1exp(−φ), c− = K2exp(φ)        (3.16) 
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with K1 and K2 being the constants of integration. These are found by matching with Eq. (3.11) as 

X → ∞, while x → 1 which gives: 

K1 = (1 −
j

2
)

2

, K2 = 1         (3.17) 

The inner solution for the ion concentrations becomes: 

c+ = (1 −
j

2
)

2

exp(−φ), c− = exp(φ)       (3.18) 

Replacing the solutions of (3.18) in Eq. (3.15) provides: 

d2φ

dX2 = exp(φ) − (1 −
j

2
)

2

exp(−φ)        (3.19) 

In the limiting condition of small j and relatively small φ (and V0), the linearization of Eq. (3.19) 

reads 

d2φ

dX2 − 2φ = j           (3.20) 

The inner solution for the electric potential in general form becomes 

φ = K3exp(√2X) + K4 exp(−√2X) −
j

2
       (3.21) 

K3 and K4 are the integration constants. In a similar limit of small j, the outer solution of electric 

potential reads 

φ = −
j

2
x           (3.22) 

By matching solutions (3.21) and (3.22) as X → ∞, while x → 1, we obtain K3 = 0. Satisfying 

the boundary condition (3.10) for the inner solution gives K4 = (−V0 + j 2⁄ ). By replacing the 

integration coefficients in solution (3.21), we have the final form as 

φ = (−V0 + j 2⁄ ) exp(−√2X) −
j

2
, X =

(1−x)

ε1
      (3.23) 

It is interesting to note that the non-linear Eq. (3.19) accepts an order reduction. However, the 

concluding first-order equation does not have an analytical solution. It can be reformulated as a 
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second-order equation, which still has to be solved numerically. Hence, the non-linear boundary-

layer problem in Eq. (3.19) should be dealt with numerically as a quadratic equation.  

Equation (3.23) represents the ohmic limit of the faradaic reactions. It is important to note that 

in any circumstances (low-voltage ohmic or non-linear high-voltage regime), the electric current 

density Je (rendered dimensionless by eDc∗∞/𝑙) is a function of applied voltage at the electrode 

Je = Je(−V0) governed by the Frumkin-Butler-Volmer equation35,36.  

The dimensionless charge density of the inner layer (ec∗∞ as the scale) in the limit of small 

flux value j and electric potential φ reads 

q = −2φ − j           (3.24) 

With knowing the dependency of electric current density Je on the applied voltage at the 

cathode −V0, the electric potential and charge density inside the polarized inner layer can be fully 

determined. In the presence of a tangential electric field E∗τ, an electro-osmotic flow could arise 

in the inner layer where polarization exists. The Smoluchowski velocity along the cathode u∗Sm =

− εε0E∗τ(−V0∗ − φ∗) μ⁄  in the dimensionless form becomes:  

u = φ + V0           (3.25) 

Here, the scales are εε0kBTE∗τ μe⁄  for the velocity and c∗∞ εε0kBTE∗τ𝑙 μ⁄  for the electric 

potential with μ being the solvent dynamic viscosity.  

The dimensionless spray current in the polarized layer is found from Eqs. (3.23) - (3.25) as: 

jspray = ∫ qudX
∞

0
=

(V0−j 2⁄ )2

√2
         (3.26) 

which is made dimensionless by c∗∞εε0 kBTE∗τ𝑙 μ⁄ . The sign of dimensional spray current j∗spray 

can change with E∗τ. For instance, in the case of a cathode V0 > 0, j > 0 and E∗τ < 0, we will 

have j∗spray < 0. For an anode with V0 < 0, j < 0 and E∗τ > 0, then, j∗spray > 0. The spray current 
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magnitude is the same in these cases for a symmetric 1:1 electrolyte with identical diffusion 

coefficients.   

Similarly, the dimensionless governing equations for an anode subjected to a positive potential 

V0∗ read: 

dc+

dx
+ c+ dφ

dx
= 0          (3.27) 

dc−

dx
− c− dφ

dx
= j          (3.28) 

ε1
2 d2φ

dx2
= c− − c+          (3.29) 

Here, the flux j has the same magnitude as the cathode. Nevertheless, the motion of anions is 

in the opposite direction compared to the cations in the cathode case. The dimensionless boundary 

conditions for anodic half-cell are 

x = 0, c− = c+ = 1, φ = 0         (3.30) 

x = −1, φ = V0          (3.31) 

The anodic half-cell is depicted in Fig. (3.1) (b). The outer solution for the anode case is: 

c+ = c− = 1 +
j

2
x          (3.32) 

φ = −ln (1 +
j

2
x)          (3.33) 

For the anodic half-cell, the stretched coordinate becomes X = (1 + x) ε1⁄ . The near-anode inner 

layer solutions read 

c+ = exp(−φ), c− = (1 −
j

2
)

2

exp(φ)       (3.34) 

The governing equation for the electric potential in the inner layer is found as 

d2φ

dX2 = (1 −
j

2
)

2

exp(φ) − exp(−φ)        (3.35) 
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In the limit of small flux j and relatively small φ (and V0), the linearized form of the Eq. (3.35) has 

the following analytical solution:  

φ = (V0 − j 2⁄ ) exp(−√2X) +
j

2
        (3.36) 

The linearized solutions of (3.23) and (3.36) provide a benchmark case to be validated against 

the numerical solution of the non-linear equations (3.19) and (3.35). 

3.2. The governing equations and the numerical methodology 

The Open Field Operation and Manipulation (OpenFOAM) platform53 has been used as the 

computational platform to build numerical tools. This library employs finite-volume-based 

schemes and boundary conditions written in a C++ standard template library. Two types of 

problems are considered, as discussed in the next sections. 

3.2.1. Anodic half-cell without flow 

The non-linear system of Eqs. (3.27) - (3.29) for an anodic half-cell are solved numerically by 

utilizing a smooth solver to validate the numerical predictions with the available inner and outer 

boundary layer solutions. An iterative approach with a run-time selected smoother (here the Gauss-

Seidel) is employed to converge the residues to the required tolerance. A diagonal incomplete-

Cholesky (DIC) preconditioner is employed to improve the convergence. The Cuthill-Mckee (CM) 

algorithm provides a band matrix of coefficients by renumbering the grid points54.  

3.2.2. Channel flow with the discharge of counter-ions in the middle section  

The continuity and momentum equations of the incompressible flow with a source term in 

momentum equation accounting for the Coulombic body force in dimensional form read 

∇ ∙ 𝐕∗ = 0           (3.37) 

ρ∗ [
∂𝐕∗

∂t∗
+ (𝐕∗ ∙ ∇)𝐕∗] = −∇p∗ + μ∇2𝐕∗ + q∗𝐄∗ + q∗𝐄∗ext     (3.38) 
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with q∗ = e(c∗
+ − c∗

−) being the bulk charge density, 𝐕∗ is the velocity vector, ρ∗ indicates the 

fluid density, p∗ marks the pressure and 𝐄∗ = −∇φ∗ is the electric field due to the gradient of 

electric potential inside the domain. 𝐄∗𝐞𝐱𝐭 indicates the externally applied electric field vector. The 

last two terms in the momentum equation represent the source terms related to internal and external 

electric fields superimposed on each other. 

The dimensional cation and anion transport equations along with the Poisson equation for the self-

induced electric potential are 

∂c∗
+

∂t∗
+ ∇ ∙ (c∗

+𝐕∗) = D∇2c∗
+ +

De

kBT
∇ ∙ (c∗

+∇φ∗)      (3.39) 

∂c∗
−

∂t∗
+ ∇ ∙ (c∗

−𝐕∗) = D∇2c∗
− −

De

kBT
∇ ∙ (c∗

−∇φ∗)      (3.40) 

∇2φ∗ = −
q∗

εε0
           (3.41) 

The measured17 electric conductivity of the canola oil is σ = 2.6 × 10−11S/m with the 

dielectric permittivity of ε = 3. This yields the charge relaxation time as τC = εε0 σ⁄ = 1 s. The 

diffusion coefficient is considered55 to be D = 10−11 m2 s⁄ . By replacing charge relaxation 

formulation in Eq. (3.8) and considering the electric conductivity formulation as σ = 2
De2

kBT
c∗∞, 

the Debye length becomes λD = (DτC)1/2 which gives λD = 3.16 μm. The bulk ion concentration 

calculated from Eq. (3.8) will be in the order of 1017  1 m3⁄  for the canola oil. 

3.3. Results and Discussion 

Here, the numerical prediction for an anodic half-cell case without flow is considered and 

validated against the benchmark boundary layer solution of section (3.2). Afterward, an 

electrohydrodynamic microchannel flow is predicted and validated versus the available benchmark 

data. Next, another microchannel with liquid charging by the electrode faradaic reactions is studied 

numerically. 
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3.3.1. Numerical solution for the anodic half-cell without flow 

Two one-dimensional cases are studied to validate the numerical solutions of Eqs. (3.39) - 

(3.41) against the analytical solutions provided in relations (3.32) - (3.36). In the first case, the 

applied electric potential at the electrode and the corresponding species flux values at the electrode 

surface are taken independent of each other (i.e., unrelated by the Frumkin-Butler-Volmer 

kinetics). In the second case, the relation between the applied electric potential and the counter-

ion flux is found from the experimental measurements17 associated with the low-voltage limit of 

the Frumkin-Butler-Volmer equation.  

In the first case, the applied electric potential at the anode V0, anions flux j, and the 

dimensionless parameter ε1 are selected as V0 = 0.0012, j = 0.002 and ε1 = 10−3. Figure (3.2) 

provides a comparison between the numerical predictions and analytical solutions across the 

anodic half-cell domain (cf. Fig. (3.1)(b)).  



20 
 

 

Figure 3.2. Comparison of the numerically predicted distributions with the analytical solutions for 

the anode half-cell. (a) Electric potential distribution, (b) cation concentration and (c) anion 

concentration.  

The comparison reveals that the numerical predictions are in perfect agreement with the 

analytical solutions. It is interesting to note that the numerical predictions can capture the abrupt 

slope change in the vicinity of the anode related to the anions and cations concentration. This is 
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obvious in Figs. (3.2) (b)-(c). To provide a better comprehension of circumstances in the vicinity 

of the electrode, the distributions in this region are magnified and depicted in Fig. (3.3).  

 

Figure 3.3. Zoomed-in views of the anode boundary layer and the asymptotical matching zone, 

which is marked by vertical dotted lines. (a) Electric potential distribution, (b) cation concentration 

and (c) anion concentration. It is emphasized that (b) and (c) do not show any systematic error. By 

a tremendous stretching of the vertical axes, it is always possible to separate two non-identical 

lines (asymptotically approaching each other) at a certain axis stretching, as is the case here.  
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It should be emphasized that the observed difference between the numerical predictions and 

analytical solutions in Fig. (3.3) is due to the extreme stretch of the vertical axis. Otherwise, the 

error is entirely negligible. The zoomed-in and whole-domain predictions perfectly depict the 

matching of inner and outer boundary layer solutions and the accurate spanning of the entire 

domain by the numerical predictions.  

In the second validation case considered in the present subsection, the limiting low-voltage 

dependency of electric current density and applied voltage at the electrode follows the Frumkin-

Butler-Volmer equation and is measured as16: 

Je∗ = 10−4.43 × 38.66V0∗  [
A

m2]        (3.42) 

By choosing a small value of 2 × 10−12 V for the anode potential, we obtain the corresponding 

electric current density as 2.87 × 10−15 A m2⁄ . The ε1 value is 10−3 as the previous one-

dimensional validation case. Hence, the corresponding dimensionless flux of ions is calculated to 

be j = 3.74 × 10−5. Figure (3.4) demonstrates the distribution of electric potential and ion 

concentration over the entire domain −1 < x < 0. Once again, the agreement of the asymptotic 

analytical and numerical solutions is reasonably good. 

The magnified views of the near-anode inner layer and the matching zone in the case 

corresponding to the low-voltage limit of the Frumkin-Butler-Volmer kinetics for canola oil are 

indicated in Fig. (3.5).  
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Figure 3.4. Comparison of the numerically predicted electric potential and ion concentration 

distributions with the benchmark analytical solution in the case corresponding to the low-voltage 

limit of the Frumkin-Butler-Volmer kinetics measured for canola oil14. (a) Electric potential 

distribution, (b) cation concentration and (c) anion concentration.  
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Figure 3.5. Zoomed-in views of the near-anode boundary layer and the asymptotical matching 

zone, which is marked by vertical dotted lines. The low-voltage limit of the Frumkin-Butler-

Volmer kinetics for canola oil14. (a) Electric potential distribution, (b) cation concentration and (c) 

anion concentration.  

3.3.2. Electro-osmotic flow 

3.3.2.1. Two-dimensional validation case 

x



-1 -0.998 -0.996 -0.994 -0.992 -0.99
0

5E-06

1E-05

1.5E-05

2E-05

2.5E-05

3E-05

Analytical (inner)

Analytical (outer)

Interface

Numerical

Toward Anode

Frame 001  25 Dec 2017 

x

c
+

-1 -0.998 -0.996 -0.994 -0.992 -0.99
0.9997

0.9998

0.9999

1

Analytical (inner)
Analytical (outer)
Interface
Numerical

Toward Anode

Frame 001  24 Aug 2018 

x

c−

-1 -0.998 -0.996 -0.994 -0.992 -0.99
0.9997

0.9998

0.9999

1

Analytical (inner)

Analytical (outer)

Interface

Numerical

Toward Anode

Frame 001  24 Aug 2018 

(a) 

(b) (c) 



25 
 

A two-dimensional planar microchannel flow driven by the pressure gradient and electro-

osmotic component associated with a polarizing dielectric section (cf. Fig. (3.6)), which possess a 

non-zero ζ-potential is studied numerically. The microchannel imposes a non-zero ζ-potential in 

the middle section and has an analytical solution12-13. The inlet flow field is assumed to be fully 

developed and steady with no-slip boundary condition throughout the channel.  

The analytical one-dimensional velocity profile in the middle section of the microchannel 

(driven by pressure and electro-osmotic flow) is given as12-13: 

u(y) = −
1

2

dp

dx
(1 − y2) + 1 − φ(y)        (3.43) 

where x and y are the dimensionless Cartesian coordinates, p is the dimensionless pressure, φ 

marks the dimensionless electric potential, and u is the dimensionless velocity, neglecting 

dependence on x. This distribution serves as a plausible approximation for the middle polarizing 

section of the channel drawn in Fig. (3.6). 

The scales used to provide dimensionless parameters are the half-channel height h∗ for x∗ and 

y∗, the ζ-potential for  , μus/h∗ for p∗, and −εζE∗ext/μ for u∗. Here, u∗Sm = −εζE∗ext/μ is the 

Smoluchowski velocity with E∗ext being the externally applied electric field in the spanwise 

direction.  

The microchannel is constituted of three parts, with the middle section having dielectric 

polarizing walls with the dimensionless potential being φ = 1. The entry and exit sections are non-

polarizing with φ = 0. Each section has the dimensionless length L=3.1. h∗ is chosen to be 6 μm. 

The Debye length is 30 nm (the case of an aqueous solution, as in Ref. 13). The polarized layer 

thickness is considered to be constant along the electrode section.  
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Figure 3.6. Configuration of a microchannel with electro-osmotic/pressure-driven flow. The 

electro-osmotic force is associated with two polarizing dielectric middle sections (shown with 

thick black lines), which possess a non-zero ζ-potential.  

The Reynolds number of the fully-developed inflow is 0.005 (calculated based on the average 

inflow velocity and h∗). The  -potential at the polarized section is considered to be 25.4 = −  

mV. The longitudinal electric field strength is constant. The analytical solution of the one-

dimensional Poisson equation yields the electric potential distribution near the polarizing 

sections13: 

d2φ

dy2 = β sinh(αφ)          (3.44) 

Here, α and β are the dimensionless parameters with values, 1 and 10000, respectively13. Table 

(3.1) lists the Smoluchowski velocity values related to the applied external electric field strengths. 

It also shows the dimensionless maximum velocity values corresponding to a fixed dimensional 

velocity of u∗in = 0.0025 m s⁄  in these cases.  

Table 3.1. The Smoluchowski velocity for several external longitudinal electric field strengths.  

E*ext(V/m) u*Sm(m/s) u*in(m/s) uin(m/s) 

6.950104 0.00125 0.0025 2 
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The numerically predicted dimensionless velocity profile at x= 4.5 (lies within the middle 

polarizing section) is compared with the analytical solution (3.43) in Fig. (3.7). As can be seen, 

the numerical predictions and analytical solutions are in good agreement despite the fact that the 

analytical solution neglects the two-dimensional character of the flow. A grid resolution study is 

performed to indicate the grid independence of the numerical findings. The grid specifications are 

displayed in Table (3.2).   

 

Figure 3.7. Comparison of the numerically predicted and analytical dimensionless velocity 

profiles at x = 4.5 (in the polarizing section). The results for half-channel 1 y 0−    are shown.   
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Table 3.2. Grid specification used in the simulations.  

 

Figure 8 depicts the predicted dimensional axial velocity component for the external electric 

field strengths of E∗ext = 1.390 × 105 and 6.950 × 104  V m⁄ . It is seen that the two-dimensional 

distribution of the flow field (due to the existence of the polarizing middle section) is not addressed 

by the simplified analytical solution (3.43). The strong Coulombic body force due to the externally 

applied electric field and polarized section completely changes the initially Poiseuille-like velocity 

profile in the middle part, moving the high-velocity region toward the polarizing walls.   

 

Figure 3.8. Predicted fields of the axial velocity component for externally applied electric field 

strengths of (a) E*ext= 1.390105 V/m and (b) E*ext= 6.950104 V/m.  

Cell Dimensions Δx Δywall Δycenter Total points 

Coarse Grid  0.0197 0.00383 0.0077 328042 

Fine Grid 0.0123 0.0033 0.0066 632342 
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3.3.2.2. Numerical modeling of liquid electrification and transport in a microchannel flow 

Here, we consider another microchannel composed of three sections, the entry, middle, and 

exit sections. An active middle electrode section, as depicted in Fig. (3.9), replaces the polarizing 

one of Fig. (3.6). The entry and exit sections are electrically insulated and do not sustain any 

electric current due to faradaic reactions. The entry and the electrode sections are 6 μm long, 

whereas the exit section is 96 μm. The channel height is 20 μm. The inflow is a fully developed 

Poiseuille flow with the maximum velocity of u∗in = 0.00385 m s⁄ . The Reynolds number, 

defined based on the half-channel height and the maximum inlet velocity, is 4.9 × 10−4. The bulk 

ion concentration is 8 × 1017  1 m3⁄  (based on Eq. (3.8)).  

The no-slip conditions are imposed at the channel wall throughout the entire length. The inlet and 

the exit section walls do not sustain any faradaic reactions (i.e., are fully insulated) or any non-

specific adsorption. Accordingly, the cation and anion fluxes j∗
± at the walls of these sections 

vanish, i.e., ∂c∗
± ∂y∗⁄ = ∂φ∗ ∂y∗⁄ = 0. On the other hand, the electrodes sustain faradaic reactions 

and carry electric current due to the attached battery (Fig. 3.9). The normal to the wall components 

of the ion fluxes at the walls, where the convective ion transport vanishes, are given by 

j∗
± = −D

dc∗
±

dy∗
∓

De

kBT
c∗

± dφ∗

dy∗
         (3.44) 

The cations flux at the anode surface (the upper electrode in Fig. (3.9)) is zero, whereas at the 

cathode surface it is determined as j∗
+ , namely 

dc∗
+

dy∗
= −

e

kBT
c∗

+ dφ∗

dy∗
    (anode)     (3.45) 

dc∗
+

dy∗
= −

j∗
+

D
−

e

kBT
c∗

+ dφ∗

dy∗
   (cathode)     (3.46) 
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Similarly, the boundary conditions associated with the anions at the electrodes are: 

dc∗
−

dy∗
= −

j∗
−

D
+

e

kBT
c∗

− dφ∗

dy∗
   (anode)     (3.47) 

dc∗
−

dy∗
=

e

kBT
c∗

− dφ∗

dy∗
    (cathode)     (3.48) 

 

 

Figure 3.9. Microchannel with the two opposite polarity electrodes used to charge liquid in 

throughflow. The externally applied electric field is in the longitudinal ( *x ) direction. 

Inside the electrostatic atomizers, the ionic conductor liquid flows through an electrode section 

and faradaic reactions generate a net charge that can be carried (mostly through convection) toward 

the counter-electrode (typically, ground16-17). The free jet exiting the atomizer is sustained by a 

pump (pressure-deriven) and is uncoupled from electric pulling toward the counter-electrode. 

It should be emphasized that |j∗
+| = |j∗

−|, and the applied voltages at the electrodes are ±500 V. 

The experimentally derived17 current-voltage relation for the cathode in this case is as follows: 

Je∗ = j0∗10[(−V0∗ 2⁄ +ψ1) bc⁄ ] = 10{[−V0∗ 2⁄ −(𝑎𝑐−ψ1)] bc⁄ }  [
A

cm2]   (3.49) 
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where j0∗ indicates the exchange current density, − V0∗ 2⁄  is the applied electric potential at 

the cathode, ac − ψ1 and bc are the experimental coefficients measured to be -29183.0 V and -

3451.85 V, respectively. Equation (3.42) is the low-voltage limit of Eq. (3.49). By utilizing Eq. 

(3.49) and considering − V0∗ 2⁄ = −500, the value of electric current density at the cathode 

becomes 5.03 × 10−5  A m2⁄  which in itself yields the flux of counter-ions at the electrodes to be 

|j∗
+| = |j∗

−| = Je∗ e⁄ = 3.13 × 1014 (m2s)−1.Here and hereinafter, ±ψ1 denote the value of the 

electric potential at the interface of the compact27 and diffuse layer on each electrode side (negative 

sign relates to the cathode and positive sign is associated with the anode). The inclusion of the 

Frumkin-Butler-Volmer equation (3.49) as a boundary condition for the system of the 

electrokinetic equations makes the present approach similar to that of Refs. 40 and 56. 

Attached to each electrode, there is a thin compact layer27. Stern proposed the first model for 

the compact layer, which was the case of a polarized layer created adjacent to a dielectric surface 

with a non-zero ζ-potential with no sustained electric current. Stern associates compact layer 

creation with non-specific (non-electric) adsorption/desorption equilibrium of ions at the surface42. 

Hence, it can also be constituted at the surface of conductive metallic electrodes without discharge 

of ions, i.e., at the insulating stains or oxide islands. Typically, an effective thickness λS is 

associated with the potential drop across the compact layer. In the case of the cathode, this general 

relation becomes40,42:  

λS
∂φ∗

∂y∗
|

compact layer
= −

V0∗

2
+ ψ1      (3.50) 

In the present numerical simulations of microchannel electrohydrodynamic flow, the 

reasonable value of λS = 26.6 nm provides the potential drop over the compact layer from 

− V0∗ 2⁄ = −500 to −ψ1 = −5 V. The computational domain starts from the interface of the 
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compact and diffuse layers, adopting the characteristics of the compact layer. This removes the 

necessity for a prohibitively superfine grid to capture the steep gradients of electric potential and 

ionic concentration across the compact layer.    

Table 3.3. Grid specifications for the simulations of microchannel charging of liquid (canola oil) 

in throughflow. The number of elements in the x and y directions and the total number of the 

elements are denoted as nx, ny and ntot, respectively. 

 

The canola oil, as mentioned earlier, is the flowing liquid17. The temperature is taken as 300 

K. The kinematic viscosity of canola oil is measured57 to be 7.82 × 10−5  m2 s⁄ . The effect of 

externally applied electric field on the transport of ions (and charges) along the microchannel is 

also studied. Two different computational grid resolutions are considered, and it is seen that further 

refinement in both spanwise and crosswise directions will not affect the provided results. 

Figure (3.10) depicts the two-dimensional contours of ions within the computational domain. 

Strong repulsion of co-ions (blue color) and slight aggregation of counter-ions (red color in the 

zoomed-in view) can be seen in the figure. The accumulation of counter-ions can be interpreted as 

the outcome of competition between the discharge of counter-ions due to the faradaic reactions 

and attraction as a result of the strong electromigration term.  

x (nm)  wally (nm)  centery (nm) xn   yn   
zn   totn   

67 3.9 78 1620 800 2 2,592,000 

60 3.4 69 1800 900 2 3,240,000 
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Figure 3.10. Two-dimensional contours of ions in the electrohydrodynamic flow of canola oil 

inside a microchannel exposed to opposite-polarity electrodes. (a) Cation concentrations and (b) 

anion concentrations. 

The spanwise distribution of cation concentration at different vertical positions is demonstrated 

in Fig. (3.11). The scales are the half-channel height (H∗/2) for the coordinates (x∗, y∗) and bulk 

ion concentration (c∗∞ = 8 × 1017 m−3) for the ion concentrations. At y=0.03 and for the 

locations inside the electrode section, an enhancement in the cation concentration arises. This 

signifies that the attraction of cations through the electromigration process is greater than the 

discharge of cations through faradaic reactions. At bottom-half, i.e., y ∈ {0.03,0.2} and 

downstream locations, the cation concentration tends to reduce. This reduction is associated with 

the crosswise diffusion of cations from the lower half toward the upper half of the microchannel. 
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Diffusion is inclined to evenly distribute the cation concentration in the exit part of the 

microchannel. The same suggestion justifies the gradual increase of cation concentration close to 

the upper wall of the microchannel (y=1.97). The strong repulsion of cations from the upper 

electrode (anode) is apparent in Fig. (3.11) (c), which reveals a region deprived of cations even 

after the electrode section up to x=3 locations.  

 

 

Figure 3.11. Dimensionless cation concentration along the channel and in different vertical 

positions. (a) y= 0.03, (b) y= 0.2, (c) y= 1.97. 
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To verify that the ion transport equations are balanced numerically, the cation transport 

equation is used as an example. The terms of Eq. (3.39) at two different microchannel cross-

sections are plotted in Fig. (3.12). One position lies within the middle electrode section, and the 

other one is far downstream. Here, there is no externally applied electric field. The cation transport 

equation terms including the time derivative ∂c∗
+ ∂t∗⁄ , the convective 𝛁 ⋅ (c∗

+𝐕∗), the 

electromigration (De kBT⁄ )𝛁 ⋅ (c∗
+𝐕∗) and the diffusive term D∇2c∗

+ are rendered dimensionless 

with the scale τc c∗∞⁄ = (8 × 1017)−1[m3s]. The dimensionless residue represents the difference 

of the summation of right-hand side terms from the left-hand side ones. The zero values of the 

residue verify the numerical balance of cation transport equation terms.  

 

Figure 3.12. Dimensionless terms of the cation transport equation (3.3) at two cross-sections of 

the microchannel: (a) x 1=  (inside the electrode section), (b) x 2.4=  (far downstream from the 

electrode section). The figure legends are ddt.= * *c / t+  , Diff.= 2D c+

 , Conv.= ( )c+

  V , Electro-

m.= ( ) ( )B *De / k T c+

  .  
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Figure (3.12) indicates that inside the electrode section (x=1) and close to the electrode (y→0), 

the electromigration and diffusion terms become dominant. However, by moving away from the 

electrode in the y-direction, these terms deteriorate abruptly. This prediction is in agreement with 

the analytical boundary layer solution provided in section (3.2) in which the convective term is 

neglected at the electrode surface. The substantial values of the electromigration term at the 

electrode surface are attributed to the steep gradients of the electric potential in the perpendicular 

direction. At far downstream locations (x=2.4), the dominant terms are the convective and 

diffusive ones, representing the strong spanwise diffusion and convection in the after-electrode 

(exit) section. However, it is essential to note that the magnitude of the transport terms is much 

greater in the electrode section compared to the after-electrode downstream locations.  

We consider the normal distance from the interface of the compact and diffuse layers to the 

position where the absolute net charge drops to 1% of the interface value, i.e., 0.01e(c∗
+ − c∗

−)|int 

, as the thickness of the diffuse layer (λd). Figure (3.13) reveals the thickness of the diffuse layer 

along the lower-half electrode (cathode). Similar distribution with equal values is expected along 

the upper-half electrode (anode). The observed concave curvature results from the electrode 

section border edges and the insulating walls on the diffuse layer profile. It is anticipated to observe 

a more flattened profile by increasing the length of the electrode section with respect to the 

insulating walls. 
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Figure 3.13. Diffuse layer thickness inside the electrode section (lower half) for the two-

dimensional microchannel flow case 

 

Figure (3.14) demonstrates the crosswise dimensionless distribution of ions at three spanwise 

locations. Two positions are selected inside the middle electrode section, and one position is far 

downstream. Here, we investigate the presence of an externally applied electric field on the 

transport of ions within the electrode section and in downstream locations. The magnitude of the 

external electric field is in the range observed in electrostatic atomizers17. Here, the thickness of 

the diffuse layer is found to be 172 nm. 

It should be emphasized that based on Fig. (3.14), the exit section of the channel must be much 

longer than the current case to let the y-component of the diffusive term play a major role. In the 

current case, the convective and the x-component of the diffusive term carry the charge along the 

microchannel. 
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Figure 3.14. Distributions of ions within the electrode section and at the downstream location for 

two cases with and without an externally applied longitudinal electric field. (a) Cation 

concentration at x=0.8, (b) anion concentration at x=0.8, (c) cation concentration at x=1.15, (d) 

anion concentration at x=1.15, (e) cation concentration at x=6, (f) anion concentration at x=6. 
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The cross-sectional dimensionless average of the ion concentrations (which can be calculated 

as c̅i = ∫ ci
1

0
dy) are indicated in Fig. (3.15) for the lower half of the channel. The distributions in 

the upper half of the channel are antisymmetric due to the geometry.  

 

Figure 3.15. Distributions of the average ion concentrations over the lower half of the channel 

cross-section. (a) Cation concentrations, (b) anion concentrations.  

 

Figure (3.15) depicts that in the lower half of the channel, the averaged cation concentrations 

are higher than the averaged anion concentrations. Hence, a positive spray current is expected in 

the lower half of the channel. The net spray current across the entire height is zero at any axial 

location in the absence of an externally-applied electric field due to the anti-symmetry of the 

channel. The spray current for the bottom half of the microchannel reads: 

jspray = ∫ qudy
1

0
        (3.51) 

Figure (3.16) illustrates the dimensionless spray current in the bottom half of the channel for 

two different values of the longitudinal electric field. In the case with E∗ext = 108  V m⁄ , the ion 

x

c+

0 2 4 6 8 10 12
0

1

2

3

4

E
*ext

= 0 V/m

E
*ext

= 10
8

V/m

Electrode Borders

(a)

|

Frame 001  28 May 2018 

x

c−

0 2 4 6 8 10 12
0

1

2

3

4

E
*ext

= 0 V/m

E
*ext

= 10
8

V/m

Electrode Borders

(b)

|

Frame 001  28 May 2018 



40 
 

distribution varies so that the anions in the vicinity of the anode are attracted toward the channel 

inlet, and cations close to the cathode are drawn away toward the channel outlet. This justifies the 

slight disparity between the spray current values of the two cases in the middle electrode section. 

It is evident from Fig. (3.16) that the longitudinal electric field of E∗ext = 108  V m⁄  has no 

practical impact on the spray current value along the channel. This implies that the transport of the 

net charge from the near-electrode polarized layer is performed by viscous scraping rather than the 

Smoluchowski flow. This could also be the common case in electrostatic atomizers, where the 

order of the applied longitudinal electric field strength would be similar or lesser than the one 

applied here. Here, the spray current magnitude in the bottom half reaches a sharp peak value close 

to the electrode trailing edge and then remains almost constant along the exit section of the channel. 

This is an indication that at high electrode voltages, diffusion (y-component) does not have a 

contribution in the exit section of the channel with insulated walls. To achieve an electrified oil at 

the channel outlet, a separation dielectric plate should be placed at the channel center to segregate 

the charged liquid in the upper and lower halves with opposite charges from each other.  

The current numerical model predicts the liquid charging in the framework of electrokinetic 

approach8,58, and does not extend to the break-up of the ejected charged liquid from the 

microchannel atomizer. In any presumed ejection model, the charged liquid should be first 

considerd in the electrokinetic framework until all the charges reach the free surface and making 

the jet equipotential. In cases where the characteristic hydrodynamic time τH is greater than the 

charge relaxation time τC, charges reach the free surface much faster than the free jet evolution. 

Such cases can be treated in the framework of the Taylor-Melcher leaky dielectric model in the 

limit explained in Ref. 59. On the other hand, if τC > τH in the free jet, its evolution is fully 
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describable with the electrokinetic model. The presented results establish the needed boundary 

conditions for the following free jet problem.  

 

Figure 3.16. Dimensionless spray current magnitude in the bottom half of the channel originating 

from the cathode.  
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4. Formation of near electrode layers in ionic conductor liquids at high voltages 

 

(Previously published as Kashir, B., Perri, A., Mashayek, F., and Yarin, A. L. (2019) 

Theoretical and numerical study of formation of near-electrode layers in ionic conductor liquids 

at high voltages, Langmuir 35, 11080-11088)  

 

4.1. Introduction 

The original works of Butler, Volmer, and Frumkin identified the kinetics of near-electrode 

constituted layers in conducting electrodes35,36,39,40. As a consequence of high electric potential 

applied at the electrode, crowding of counter-ions happens in ionic conductors such as aqueous 

solutions, which could potentially increase the thickness of the compact layer40. However, this ion 

crowding is barely feasible in oils, which are the ionic conductor liquids employed in electrostatic 

atomizers41. In liquids with very low conductivity, the near-electrode compact layer can only be 

created through the non-specific adsorption introduced in the work of Stern42. The simple one-

dimensional compact layer model of Stern42, considers it a capacitor with constant capacity CS. In 

contrast, the more recent model of Grahame43 differentiates between direct adsorption or with the 

shell formed by polar molecules, such as aqueous solutions. This hydration is irrelevant in the case 

of oils. Bazant et al.27,28,40 introduced the effective thickness of the Stern compact layer λS as a free 

parameter to account for the potential drop across the compact layer. Stern’s or Grahame’s model 

did not consider the cases where electrodes sustain electric current. Nonetheless, the superficial 

faradaic reactions and the corresponding electric current give rise to oil charging in electrostatic 

atomizers15-17.  
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The idea of a compact layer constituted on a surface exposed to an electrolyte goes back to the 

classical works of Helmholtz44 and Smulochowski45. In these cases and the subsequent ones, there 

was no sustained electric current through the compact layer46. The potential drop across the 

compact layer is of importance in the case of electrostatic atomizers. Due to the low permittivity 

of canola oil, the majority (almost all the drop) of potential reduction occurs inside the compact 

layer27. An asymptotic approach was proposed to relate the potential drop across the compact layer 

to the thickness of this layer40. Although the faradaic reactions were considered via appropriate 

ionic boundary conditions, the compact and diffuse layers were lumped together in the same 

domain. Moreover, the Stern electric potential boundary condition42 was applied for the entire 

domain.  

Here, we propose a novel method to correlate the thickness of the equivalent one-dimensional 

compact layer to the potential drop occurring across this layer. The kinetics of the governing non-

specific adsorption is elaborated, and the thickness is calculated, assuming realistic conditions. 

4.2. Non-specific (non-electric) multilayer adsorption 

Although the seminal work of Stern was later applied to electrodes with sustained electric 

current26,27, it is still unclear why some of the counter-ions discharge at the electrode surface, 

whereas the remaining counter-ions in contact with such an electrode adjoin the compact layer. 

Stern recognizes the non-specific adsorption/desorption equilibrium of ions at the electrode surface 

as the primary factor for creating a near-electrode compact layer on a dielectric surface with a non-

zero ζ-potential.  

Metallic conducting electrodes are covered with oxide islands and/or insulating impurities (to 

some extent), making it possible to form the compact layers. In this regard, Stern’s theory can be 

generalized to the case of electric-current carrying conducting electrodes, which allows us to relate 
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the thickness of the equivalent one-dimensional compact layer λS to the physical parameters of the 

occurring electrochemical process rather than using it as a fitting parameter, proposed ad hoc26,27.   

Ions can be adsorbed at non-conducting impurities, including oxide islands or stains. Stern42 

suggested the Langmuir-type60 monolayer adsorption, whereas in realistic conditions, non-specific 

adsorption is also known to create multi-layer patches61. Hence, we depict a generalized case of 

the multi-layer adsorption/desorption process following some of the assumptions of the Brunauer-

Emmet-Teller (BET) mechanism61. Suppose that ions (anion or cation) can be adsorbed on top of 

the oxide islands or stains. Subsequently, ions with similar polarity can create higher layers over 

the first adsorbed layer. The thickness of the compact layer is considered to be small enough in a 

way that the ion-ion repulsion or attraction in this layer is negligible compared to the non-electrics 

attracting ions toward the impurities. However, the ionic electric forces originating from the outer 

boundary of the compact layer and the forces inside the compact layer can indirectly affect the 

adsorption process, as explained below. Figure 1 indicates the two and three-dimensional 

schematics of the compact layer. Ions with distinct polarity are adsorbed non-specifically on 

surficial impurities.  
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Figure 4.1. Multiple adsorbed ion layers comprising the compact layer. (a) Side view. (b) 

Isometric view. Red spheres indicate cations, and green ones are anions. 

 

The following clarification is given for the configuration depicted in Fig. (4.1). Based on 

Earnshaw’s theorem, a static system of interacting charges is impossible to exist62,63. However, in 

the presence of other forces this situation might change. Consider that one ion is already adsorbed 

in the compact layer through the attractive van der Waals forces between the ion and an oxide 

island (as in Fig. (4.1)), while another ion with the same polarity is at the distance x from the first 

ion and away from the electrode surface. The second ion receives an electrostatic repulsive force 

from the first ion present in the compact layer and an attractive van der Waals force from the 

electrode surface. The interaction and the resulting balance between the attractive van der Waals 

Impurity 
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Counterions 
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force from the impurities and oxide islands and the Coulombic repulsive force between adsorbed 

ions can form multi-layers of ions in the compact layer.   

The ions present in the first layer of the compact layer are subjected to different forces. An 

attractive van der Waals force from the surface of the electrode covered with impurities, in addition 

to a repulsive force from farther ions in the compact layer pushing the first layer toward the 

impurities on the electrode surface and a repulsive van der Waals force from the underlying 

impurity molecules constitute these forces. Ions present in the hovering second layer experience 

an attractive van der Waals force toward the electrode surface and a repulsive Coulombic force 

from the first layer. The two-layer schematic is depicted in Fig. (4.2).   

 

Figure 4.2. Schematic of the two non-specifically adsorbed layers on the oxide islands. Circles 

indicate ions. 

 

Here we consider the ion charge be equal to the elementary charge e, and the ion densities per 

unit area in a two-layer configuration are indicated by 𝜎1 and 𝜎2, respectively and possessing the 

unit of 1 m2⁄ . By considering two elements of dY∗ × 1 in the first layer and dy∗ × 1 in the second 
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layer, the Coulombic repulsive force reads fc = e2σ1σ2dy∗dY∗/[x1∗
2 + (y0∗ − y1∗)2] × 12. The 

unit length in the direction perpendicular to the x∗ − y∗ plane is denoted by × 1. The total 

Coulombic force applied from the first layer on an element with length dy∗ in the second layer is:  

FC = e2σ1σ2dy∗ ∫
dY∗

[(y0∗−y1∗)2+x1∗
2 ]

+∞

−∞
=

πe2σ1σ2dy∗

x1∗
      (4.1) 

Here and hereinafter, the multipliers × 12 with the units of 1 m2⁄  are neglected for brevity. The 

Lennard-Jones potential64 reads: 

W(r∗) = −
C1

r∗
6 +

C2

r∗
12          (4.2) 

where W marks the Lennard-Jones potential, C1 = 10−27 Jm6 and C2 = 10−134 Jm12 are the 

coefficients of the attractive and repulsive parts, respectively64, and r∗ = √x1∗
2 + (y0∗ − y1∗)2 

identifies the distance between interacting ingredients.  

The van der Waals force as the derivative of the Lennard-Jones potential is found as: 

fw(r∗) = −
dW

dr∗
= −

6C1

r∗
7 +

12C2

r∗
13         (4.3) 

In the second layer, the repulsive component of the van Waals force becomes negligible, i.e. 

fw(r∗) = −
6C1

r∗
7 . Therefore, the van der Waals attractive force between elements with areas dY∗ × 1 

and dy∗ × 1 in the first and second layers, yields65: 

FW(r∗) = −6C1σ1σ2dy∗ ∫
dY∗

[(y0∗−y1∗)+x1∗
2 ]

7 2⁄

+∞

−∞
= −

32

5
C1σ1σ2

dy∗

x1∗
6     (4.4) 

The multipliers × 12 with the units 1 m2⁄  are disregarded for shortness.   

The Hamaker constant A is defined as64: 
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A = π2C1ρ1ρ2           (4.5) 

Here, ρ1 and ρ2 are the volumetric number density of interacting bodies (ions or molecules) in 

the layers with the units 1 m3⁄ . The volumetric number density and surface area density in each 

layer are related as   

σi

d
= ρi (𝑖 = 1,2)          (4.6) 

where d is the characteristic diameter of interacting bodies i.e. ions.  

Replacing Eq. (4.6) into (4.5) gives 

A = π2C1
σ1σ2

d2            (4.7) 

Finally, we rewrite Eq. (4.4) as 

Fw(r∗) = −
32

5π2 Ad2 dy∗

x1∗
6          (4.8) 

The balance of forces for an element with length dy∗ in the second layer of the compact layer 

becomes:  

πe2σ1σ2dy∗

x1∗
= −

32

5π2 Ad2 dy∗

x1∗
6          (4.9) 

Simplifying relation (4.9) yields the distance between the second layer and the first layer attached 

to the impurities as: 

x1∗ = [
32

5π3

Ad2

e2σ1σ2
]

1 5⁄

          (4.10) 

Based on available data in Ref. 64, the thickness of a two-layer configuration with the ion 

diameter d=0.4 nm and the volumetric number densities ρ1 = ρ2 = 3 × 1028  1 m3⁄  becomes 15 

nm. The Hamaker constant is 10-19 J, and the elementary charge is 1.6×10-19 C. The calculated 

value of 15 nm is in the expected order of the Stern layer thickness40. It should be mentioned that 
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systems with additional layers can be created following the same logic in the balance of interacting 

forces, including the Coulombic and van der Waals forces. 

Figure (4.3) demonstrates a three-layer configuration for the compact layer in conjunction with 

the diffuse layer ions, which are at the average distance of the Debye length λD from the surface 

of the electrode.  

 

Figure 4.3. Schematic of the three non-specifically adsorbed layers (red color) on an oxide island along 

with the ions (pastel color) present in the hovering diffuse layer.  

 

The dimensionless balance equations for a system of two hovering layers in a three-layer 

structure (cf. Figure (4.3)) reads 

j = 2: 
ρ̅2ρ̅1

x̅2
−

ρ̅2ρ̅3

x̅3−x̅2
−

ρ̅2ρ̅d.l.

λ̅D−x̅2
−

ρ̅1ρ̅2

x̅2
6 = 0       (4.11) 

j = 3: 
ρ̅3ρ̅1

x̅3
−

ρ̅2ρ̅3

x̅3−x̅2
−

ρ̅3ρ̅d.l.

λ̅D−x̅3
−

ρ̅1ρ̅3

x̅3
6 = 0       (4.12) 
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Here, x̅2 and x̅3 are the dimensionless distance of the second and third hovering layers from 

the first layer attached to the oxide islands and λ̅D marks the dimensionless Debye length. The 

scale is x1∗ from Eq. (4.10). The dimensionless volumetric number densities of the layers are ρ̅1, ρ̅2 

and ρ̅3. The third term on the left-hand side of Eqs. (4.11) and (4.12) indicates the repulsive force 

from the diffuse layer acting on the second and third layers of the compact layer (j=2 and 3). The 

volumetric number density related to atoms (ions) of the radius 0.2 nm (ρ∗ = 3 × 1028  1 m3⁄ ) is 

used as the scale. ρ̅d.l. indicates the volumetric number density in the diffuse layer. 

The inherent ζ-potential of the oxide islands is thoroughly screened by combining the compact 

and diffuse layers. If we present the dimensionless volumetric number density in the oxide islands 

as ρ̅0, the full screening condition becomes: 

ρ̅d.l. = ρ̅0 − (ρ̅1 + ρ̅2 + ρ̅3)         (4.13) 

By taking ρ̅0 = 1.5 and ρ̅1 = 1 as constant parameters and increasing the value of ρ̅2, the 

parameters ρ̅3 and ρ̅d.l. can be found from relation (4.13) interdependently. By specifying the 

volumetric number densities, the system of Eqs. (4.11) and (4.12) can be solved numerically to 

find the physically acceptable (order of layers) solutions. In the case of canola oil, the Debye length 

is λD = 3.1 μm. Based on x1∗ as the length scale, λ̅D = 210. Table (4.1) represents the physical 

solutions for the second and third layers. By increasing ρ̅3 (the dimensionless volumetric number 

density in the third layer), the position of this layer moves away from the oxide island surface. The 

second hovering layer (i.e., third layer in the compact layer) is two orders of magnitude farther 

from the first hovering layer (i.e., the second layer in the compact layer). The second hovering 

layer experiences repulsive Coulombic force from the first hovering layer and the layer attached 

to the oxide islands. In contrast, the first hovering layer is repelled electrostatically from the 
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electrode surface only by the layer attached to the oxide islands. Remarkably, the distance between 

the second hovering layer (third layer in the compact layer) and the electrode surface is much less 

than the Debye length. Hence, diffusion in the flow field can not influence the second hovering 

layer. Moreover, convection in the bulk flow can only play a role in affecting the second hovering 

layer when the longitudinal velocity component be in the order of 10−4  cm s⁄  or higher, which 

comes from the comparison of Coulomb and Stokes forces acting on a hovering ion.  

Table 4.1. Distances of the hovering layers of the compact layer from the oxide layer surface 

1  2  
3  d.l.  2x  3x  

1 10-10 5×10-20 0.4999999999 1.0 140.0 

1 10-4 10-5 0.49989 1.0 140.0 

1 10-4 5×10-5 0.49985 1.0 140.0 

1 10-3 10-5 0.49899 1.0 140.1 

1 10-3 5×10-5 0.49895 1.0 140.1 

1 10-2 10-3 0.489 1.0 141.5 

1 10-2 5×10-3 0.485 1.0 141.9 

1 5×10-2 10-3 0.449 1.0 147.1 

1 5×10-2 5×10-3 0.445 1.0 147.5 

 

Let us indicate the fraction of the non-conducting islands on the electrode with no ion 

adsorption as θ0. Also, denote the kinetic constant of the adsorption process on the i-th layer as 

kf,i and denote the kinetic coefficient of the desorption process from the i-th layer as kb,i. For 

brevity, the kinetic coefficients are considered the same in the adsorption/desorption processes for 

anions and cations. Adsorption of a single ion immediately on the oxide islands will transfer an 
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empty site to a part of the first layer. The kinetic equation for the ion-free sites in the non-

conducting oxide islands or impurities at the electrode surface reads 

dθ0

dt∗
= kb,1θ1

± − kf,1c∗
±θ0         (4.14) 

Here, θ1
± indicate the fraction of the non-conducting islands covered with a layer of ions. The 

first term on the right-hand side of Eq. (4.14) denotes the desorption from the first layer, which 

adds to the ion-free sites on the non-conducting oxide islands or the impurities at the electrode 

surface. The second term on the right-hand side indicates ion adsorption on non-conducting islands 

that adds to the fraction of ion-covered parts in these islands.  

The kinetic equation for the i-th layer in a multilayer structure of the compact layer becomes  

dθi
±

dt∗
= −kb,iθi

± + kf,ic∗
±θi−1

± + kb,i+1θi+1
± − kf,i+1c∗

±θi
±     (4.15) 

where θi
± denotes the parts of the non-conducting islands with i layers of ions atop.  

The first and third terms on the right-hand side of Eq. (4.15) indicate desorption from the i-th 

and (i+1)-th layers, respectively. On the other hand, the second and fourth terms demonstrate the 

adsorption process from the outer boundary of the compact layer onto the (i-1)-th and i-th layers, 

respectively.  

In equilibrium, time derivatives become zero, and the following system of equations is 

obtained for (i-1) layers constituted atop the non-conducting islands: 

kb,1θ1
± − kf,1c∗

±θ0 = 0         (4.16) 

−kb,1θ1
± + kf,1c∗

±θ0 + kb,2θ2
± − kf,2c∗

±θ1
± = 0      (4.17) 
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−kb,i−1θi−1
± + kf,i−1c∗

±θi−2
± + kb,iθi

± − kf,ic∗
±θi−1

± = 0     (4.18) 

By replacing Eq. (4.16) into Eq. (4.17) and so on, the following system of equations is obtained 

kb,2θ2
± − kf,2c∗

±θ1
± = 0         (4.19) 

kb,iθi
± − kf,ic∗

±θi−1
± = 0         (4.20) 

It is plausible to assume that ion adsorption/desorption on any occupied layer possesses 

identical kinetic characteristics, that is, kf,i = kf,2 and kb,i = kb,2 for i > 2, whereas the 

adsorption/desorption on the empty surface itself is different, that is, the kinetic coefficients kf,1 ≠

kf,2 and kb,1 ≠ kb,2. Hence, the solutions of Eqs. (4.19) - (4.20) read 

θ1
± = Y±θ0           (4.21) 

θ2
± = X±θ1

± = Y±X±θ0 = K(X±)2θ0        (4.22) 

θi
± = K(X±)iθ0          (4.23) 

with  

Y± =
kf,1c∗

±

kb,1
, X± =

kf,2c∗
±

kb,2
, K =

Y±

X±        (4.24) 

By considering the number of constituted layers (i) and the fraction of non-conducting islands 

covered by ions in each layer (θi), the equilibrium number of ions present in the unit surface area 

of the compact layer reads 

neq
± = ∑ iθi

± = Kθ0 ∑ i(X±)i =∞
i=1

∞
i=1 Kθ0

X±

(1−X±)2      (4.25) 
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The summation to infinity is initially introduced in the Baunauer-Emmet-Teller (BET) 

mechanism61, which can be a realistic limit when the ion size is negligible compared to the unit 

surface area of non-conducting islands.  

Adding fractions of non-conducting islands covered with anions and cations and the empty fraction 

together yields 

∑ θi
+∞

i=1 + ∑ θi
−∞

i=1 + θ0 = 1         (4.26) 

Replacing Eq. (4.23) into (4.26) gives 

Kθ0 ∑ (X+)i∞
i=1 + Kθ0 ∑ (X−)i∞

i=1 + θ0 = 1       (4.27) 

For the summation of geometric progressions in Eq. (4.27) we have 

∑ (X+)i∞
i=1 =

X+

1−X+
, ∑ (X−)i∞

i=1 =
X−

1−X−
       (4.28) 

Solving for θ0 based on Eqs. (4.27) and (4.28) gives 

θ0 =
1

1+K[X+ (1−X+)⁄ +X− (1−X−)⁄ ]
        (4.29) 

Substituting θ0 in Eq. (4.25) provides the equilibrium dimensionless charge density as 

neq
± = K

X±

(1−X±)2{1+K[X+ (1−X+)⁄ +X− (1−X−)⁄ ]}
       (4.30) 

Based on Eq. (4.24), we have Y± = KX±. Rearranging Eq. (4.30) yields  

neq
± =

Y±

(1−X±)2[1+Y+ (1−X+)⁄ +Y− (1−X−)⁄ ]
        (4.31) 



55 
 

Defining two dimensionless parameters for the system as 

α =
kf,1c∗∞

kb,1
, β =

kf,2c∗∞

kb,2
         (4.32) 

Substituting introduced parameters in Eq. (4.31) yields the final form as 

Then, Eq. (4.31) takes the form 

neq
± =

Y±

(1−βc±)2[1+Y+ (1−βc+)⁄ +Y− (1−βc−)⁄ ]
       (4.33) 

with c
 being the dimensionless cation and anion concentrations at the outer boundary of the 

compact layer (at the interface with the diffuse layer). 

In the case when polarization at the outer boundary of the compact layer due to the electric 

field is insignificant, i.e. c c+ − , and a monolayer adsorption (i.e., 0 = ), one obtains from Eq. 

(4.33) the following relation:  

(neq
± )

Langmuir−Stern
=

Y±

[1+Y++Y−]
=

kf,1c∗
± kb,1⁄

1+kf,1c∗
+ kb,1⁄ +kf,1c∗

− kb,1⁄
=

αc±

1+αc++αc− =
αc±

1+2αc±  (4.34) 

Equation (4.34) corresponds to the Langmuir adsorption isotherm60 in the heteropolar 

adsorption case considered by Stern42 under such conditions. Note that in the case of an 

insignificant polarization at the outer surface of the compact layer, i.e., c+ ≈ c− , and thus X+ =

X− = X, Eq. (4.33) yields 

neq
± =

αc±

(1−X)[1+2αc±−X]
> (neq

± )
Langmuir−Stern

      (4.35) 
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A single-ion-occupied site has the area66 2

0A 16.2 A=  . Then, the magnitude of charges in 

the compact layers on the cathode and anode are, respectively,  

|Qcathode| = e(neq
+ − neq

− ), |Qanode| = e(neq
− − neq

+ )     (4.36) 

Following Stern42 and considering the equivalent one-dimensional compact layers on the 

cathode and anode as plane capacitors and employing Eq. (4.36) one obtains for the cathode 

εε0S

λS
|−V0∗ + ψ1| =

eS

A0
(neq

+ − neq
− )        (4.37) 

and for the anode 

εε0S

λS
(V0∗ − ψ1) =

eS

A0
(neq

− − neq
+ )        (4.38) 

In Eqs. (4.37) and (4.38) −V0∗ (V0∗ > 0) is the cathode potential, and V0∗ is the anode potential, 

whereas ∓ψ1 (with ψ1>0) are the corresponding potentials at the outer boundary of the compact 

layers, where the electron transfer corresponding to faradaic reactions happens. S  is the electrode 

surface area (the SI units are used).  

Note that the consideration of the two-dimensional island pattern shown in Fig. (4.1)(b) as a 

one-dimensional one shown in Fig. (4.1)(a), which stems from the original Stern model42 and is 

used here, is essentially the mean-field approximation; its validity is discussed in section (4.4). 

It should be emphasized that the compact layer capacitance CS is, according to Eq. (4.38), 

CS =
εε0S

λS
           (4.39) 

Equations (4.37) and (4.38) are identical in this case, and thus the thickness of the equivalent 

one-dimensional compact layer λS is found as 

λS =
εε0A0

e(neq
− −neq

+ )
(V0∗ − ψ1)         (4.40) 

which relates λS to ψ1 and, through Eq. (4.33), to the other physical parameters of the 

electrochemical process.  



57 
 

According to Eq. (4.35), one should expect that multilayer ion adsorption makes the equivalent 

one-dimensional Stern layer thinner because a higher charge can be accumulated at the compact-

layer ‘capacitor’ at a fixed potential difference, i.e., its capacitance increases.  

4.3. Electro-kinetic problem in the diffuse layer 

The Open Field Operation and Manipulation (OpenFOAM) toolbox53 is employed to solve the 

electro-kinetic problem in the diffuse layer above the compact layer to predict concentrations of 

the cations and anions c∗
± required to predict neq

±  according to Eq. (4.35). The following set of 

equations is solved numerically:  

∂c∗
+

∂t∗
= D∇2c∗

+ +
De

kBT
∇ ⋅ (c∗

+∇φ∗)      (4.41) 

∂c∗
−

∂t∗
= D∇2c∗

− −
De

kBT
∇ ⋅ (c∗

−∇φ∗)      (4.42) 

∇2φ∗ = −
q∗

εε0
        (4.43) 

A one-dimensional anodic half-cell is considered to investigate the thicknesses of the compact 

and diffuse layers. The ionic concentrations and electric potential distribution inside the diffuse 

layer are found numerically by solving Eqs. (4.41) - (4.43) to predict concentrations c∗
±|interface at 

the interface between the diffuse and the compact layers. Then, these concentrations are used to 

predict the equilibrium dimensionless charge densities neq
±  in the equivalent one-dimensional 

layer. 

The one-dimensional half-cell case is considered, in which an anode is in contact with an 

electrolyte at rest (cf. Figure (4.4)). The computational domain begins from the bulk and ends at 

the interface. The overall length scale is H∗ = 10 μm. The bulk ion concentration is taken as c∗∞ =

8 × 1017 1 m3⁄  , and y∗ = 0 indicates the electroneutral bulk boundary. 
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Figure 4.4. The anodic half-cell. 

 

The electric current density at the interface is found using the Frumkin-Butler-Volmer kinetics 

with the parameters based on the experiments17. The electric current density for the anodic 

oxidation process in the Tafel form (including the Frumkin correction) is as follows17  

Je∗ = 10{[V0∗ 2⁄ −(aa+ψ1)] ba⁄ }  [
A

cm2]       (4.44) 

where V0∗ 2⁄  is the voltage at the anode, aa + ψ1 and ba are the experimentally measured 

coefficients equal to 0.99996(V0∗ 2⁄ ) + 1.05123 and 0.1118, respectively. The cations flux j∗
+ =

0 at the anode, whereas j∗
− > 0. The boundary conditions for the anions and cations at the anode 

surface are given in relations (3.47) - (3.48).  

The boundary conditions in the bulk read c∗
± = c∗∞. The electric potential in the bulk is chosen 

as  =  0 V, while the value at the interface is φ∗ = ψ1 = 10 V. The anode voltage is taken as 

V0∗ 2⁄ = 1750 V.  
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In the simulation, the finest cell at the interface was 0.63 nm. The results are rendered 

dimensionless with the following scales: H∗ for y∗, c∗∞ for c∗
+ and c∗

−, and ec∗∞ for q∗. The 

predicted dimensionless ion concentrations at the interface were c+|interface = 0, c−|interface =

37500. The predicted dimensionless ion and charge density distributions across the half-cell are 

shown in Fig. (4.5). The thickness of the diffuse layer λd is found to be 90 nm. 

 

 

Figure 4.5. Dimensionless distributions across the anodic half-cell: (a) cation concentration, (b) 

anion concentration, (c) net charge density. 
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Then, the thickness of the equivalent one-dimensional compact layer λS and the capacitance of 

the compact layer are found for several values of the adsorption kinetic parameters   and  . The 

lesser values of   compared to   are employed because it is expected that a higher ratio of the 

adsorption to desorption rate is at the bare electrode surface than on the ionic layers. The results 

are listed in Table (4.2). It is seen that the value of   practically does not affect the thickness of 

the equivalent one-dimensional compact layer and thus its capacitance. At β=0, only monolayer 

adsorption is possible (only the Langmuir adsorption). As the value of β increases, multi-layer 

adsorption patches become possible, the thickness of the equivalent one-dimensional compact 

layer λS decreases, whereas the capacitance increases. At a certain limiting value of β, λS = 0 and 

thus the infinite capacitance CS = ∞ is reached. Therefore, there exists a limiting value of the 

second adsorption-to-desorption ratio β beyond which the model of the equivalent one-

dimensional compact layer cannot be used.  

Table 4.2. Thickness and capacitance of the equivalent compact layer for several values of the 

kinetic parameters   and  . The capacitance is calculated for the electrode area of S= 1 cm2.  

    
eqn
−

 
s (nm)  CS (µF)     

eqn
−

 
s (nm)  CS (µF) 

1 0 1.0 40.0 0.07 10 0 1.0 40.0 0.07 

1 0.00001 1.6 25.0 0.11 10 0.00001 1.6 25.0 0.11 

1 0.00002 4.0 10.0 0.27 10 0.00002 4.0 10.0 0.27 

1 0.000022 5.7 7.0 0.38 10 0.000022 5.7 7.0 0.38 
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Using the data from electron microscopy, it was found that in the case of Cu, the oxide island 

diameter is 65 Å, and the interisland spacing is 40 Å, i.e., 6.5 nm and 4 nm, respectively67. 

Similarly, for Ni, the oxide island diameter is 2.5-3 nm, and interisland spacing is 2 nm, and for 

Ti the oxide island diameter is 1.5-2 nm, and the interisland spacing is below the resolution 

threshold (below ~1 nm). The predicted thickness of the compact layer λS listed in Table (4.1) is 

either much larger than the oxide island diameter and the interisland spacing or comparable to 

them. This comparison shows that the mean-field approximation involved in the treatment of the 

two-dimensional island pattern of Fig. (4.1)b as a one-dimensional one of Fig. 1a, which is 

embedded in the original Stern layer model42 (the case of β=0), and implemented here (the cases 

0  ), is approximately valid: better for Ti than for Ni, and then Cu. 

4.4. Validity of one-dimensional compact layer 

The Stern layer thickness can be measured, for example, by X-ray photoelectron spectroscopy 

(XPS)68. The results are intriguing because the measurements reveal that ‘the Stern layer 

compresses (becomes thinner) as the electrolyte concentration is increased’. This counter-intuitive 

result is in line with the predictions of the present theory that multilayer ion adsorption makes the 

equivalent one-dimensional Stern layer thinner because of the accumulation of a higher charge at 

the compact-layer ‘capacitor’ at a fixed potential difference, i.e., an increase in the Stern layer 

1 0.000024 10.0 4.0 0.66 10 0.000024 10.0 4.0 0.66 

1 0.000026 40.0 1.0 2.66 10 0.000026 40.0 1.0 2.66 
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capacitance. In more concentrated electrolytes68 multilayer ion adsorption is facilitated, and 

accordingly, the Stern layer becomes thinner. 

Applications such as electrostatic atomizers used for charging oils, kerosene, and diesel fuel to 

facilitate their secondary atomization and finer dispersion and multiple electrohydrodynamic 

devices transporting the so-called dielectric liquids can benefit significantly from the insight into 

the nature of the near-electrode compact layer achieved in this work. It is shown that, at high 

voltages, the major potential drop occurs at the compact layer27, and the boundary conditions in 

any theoretical and numerical simulations could be imposed at the interface of the compact and 

diffuse layers41. It should be emphasized that liquid charging by means of the so-called charge 

emission at the tip of a needle electrode in electrospinning, electrospraying, and electrostatic 

atomization proceeds due to faradaic reactions responsible for the formation of a nearby polarized 

layer in the ionic conductor liquid, which is issued as a flowing charged liquid jet14,16,17,63,69,70. It 

is highly effective due to the high electric field strength near the tip of the electrode; however, it 

has the same physical nature as in the near plane electrode zone in model microchannel 

atomizers41. The latter case is described by an easier theoretical/ numerical description, which is 

the main reason that it has been studied in detail. In contrast, the needle electrodes are more 

involved, and their numerical investigations are still underway. Note also that because the 

thickness of the Stern layer is much smaller than any practically possible radius of curvature of the 

needle electrode tip, the planar theory of the Stern layer holds without any restrictions. 
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5. Slow discharge theory and calculation of the potential drop across the compact layer 

 

(Previously published as Kashir, B., Perri, A., Yarin, A. L., and Mashayek, F. (2019) Slow 

discharge theory and calculation of the potential drop across the compact layer at high electrode 

voltages.  Langmuir 35, 14458-14464)  

 

5.1. Introduction 

The computational models proposed for electrokinetic and electrohydrodynamic flows are 

based on the ionic transport equations and account for the flux of counter-ions at the electrode 

surface due to faradaic reactions. These equations are solved starting from the interface of the 

compact and diffuse layers27,28. Accordingly, in such models, the value of the electric potential at 

the interface is required as a boundary condition. In ionic conductor liquids with low dielectric 

constant and significant potential drop across the compact layer, calculating the value of the 

electric potential at the interface of the compact and diffuse layers is desirable, rather than 

imposing an ad hoc value as in the previous studies27,28. Specifically, both the thickness and 

potential drop across the compact layer were unknown parameters in these studies and inevitably 

one should be estimated to calculate the second parameter thereof. Here, we propose an approach 

which stems from the Frumkin slow discharge theory and allows one to calculate the potential 

drop across the compact layer directly, rather than using it as a parameter assumed ad hoc.  

The Frumkin slow-discharge theory describes the kinetics of heterogeneous charge transfer 

reactions and considers the electrostatic interaction of reactants and products with a charged 

interface47. The theory can be re-formulated in the framework of the quantum-chemical approach 

of the Marcus theory48. Electron transfer through faradaic reactions at the electrode surface in 
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electrostatic atomization is kinetics-limited (slow), rather than diffusion-limited (fast)16. The 

microscopic electron transfer theory, proposed by Marcus49, predicts reaction rates for 

heterogeneous electrode reactions72. The fundamental feature of the Marcus theory is the quadratic 

dependence of the reactant and product free energy on a configurational reaction coordinate, where 

electron transfer occurs iso-energetically at the intersection of potential energy parabolas. 

Here, we employ the formulation of the Frumkin slow discharge theory to calculate the electric 

potential at the interface of the compact and diffuse layers in the context of the ionic conductor 

liquids. The activation energy present in the Frumkin formulation is calculated from the Marcus 

electron transfer theory. The heterogeneous electron transfer energy is discussed in section 5.2. In 

contrast, section 5.3 presents the governing equations of the computational model and the proposed 

numerical approach to predict and correct the interface voltage by employing the Frumkin slow 

discharge theory. Results and discussions for two examples for the canola oil as the ionic conductor 

liquid in electrostatic atomization are provided in section 5.4. 

5.2. Heterogeneous electron transfer energy  

For electrodes’ redox (reduction or oxidation, Ox + e ⇄ Red) reactions, Marcus73 suggested 

the following expressions for the electron transfer activation energy based on the energy level 

parabolas: 

∆G∗ = NA (
λel

4
[1 +

eη∗

λel
]

2
) [

J

mol
]    Reduction process  (5.1) 

∆G∗ = NA (
λel

4
[1 −

eη∗

λel
]

2
) [

J

mol
]    Oxidation process  (5.2) 

where ∆G∗ is the activation energy for the electron transfer, η∗ is the over-potential, and λel is the 

reorganization energy.  
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The over-potential in Eqs. (5.1) and (5.2) is defined as the difference of the electrode potential 

from the formal potential and is expressed as74:  

η∗ = V0∗ − V0∗
′ =

RT

F
ln (

c∗Ox

c∗Red
)        (5.3) 

where, V0∗ is the electrode voltage, V0∗
′  is the formal potential, R is the universal gas constant, 

F is the Faraday constant, c∗Ox is the concentration of reactants in a reduction process, and c∗Red 

is the concentration of products (also in a reduction process happening in a cathodic half-cell). A 

schematic of the constituted near-electrode layers and associated electric potentials are indicated 

in Fig. (5.1). 

 

Figure 5.1. Schematic of the constituted layers across the electrode (here anode) and associated 

electric potentials. x∗ coordinate is considered perpendicular to the electrode surface directing 

outwards. 
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The formal potential would be equal to the measured potential of the half-cell when the ratio 

of the concentrations of the oxidized and reduced species is equal to one75. In a self-exchange 

reaction (between the chemical species that are identical except for the oxidation state), the value 

of the over-potential is zero. However, for an electrode reaction, the value of the over-potential is 

non-zero36 and determined by Eq. (5.3). 

The reorganization factor, λel, which expresses the energy required to distort the nuclear 

configuration of the reactants and transforms it into the nuclear configuration of the products 

without electron transfer, is constituted by the following two terms36: 

λel = λi + λO           (5.4) 

where λi represents the ‘inner’ contribution corresponding to the contribution from the 

reorganization of participating species. This contribution expresses the energy required for 

changes in the bond lengths. In other words, it is the relaxation energy of the reactant dominated 

by the short-range bond forces. The inner contribution is calculated using the following relation36:  

λi = ∑
1

2
kj(qOx,j − qRed,j)

2M
j=1         (5.5) 

where kj is the force constant; qj is the displacement in the normal mode coordinate, and M is the 

total number of the normal mode coordinates.  

A normal mode of a fluctuating system is a pattern of movement, in which all sections of the 

system move sinusoidally with the same frequency and constant phase relation. The total number 

of normal modes depends on the molecular structure. If the total number of atoms in a molecule is 

N, a nonlinear molecule has M=3N-6 normal modes. In contrast, a linear molecule has M=3N-5 
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normal modes77, because the rotation about the molecular axis cannot be observed, since in a linear 

molecule all atoms are located along a straight line. 

The ‘outer’ contribution, λO, in Eq. (5.4) represents the reorganization energy of the solvent 

dominated by the long-range electrostatic forces76. The outer component is calculated as36: 

λO =
e2

8πε0
(

1

aO
−

1

RO
) (

1

εop
−

1

εS
)        (5.6) 

Here, aO is the radius of the sphere of the reactant (ions) and RO is twice the distance from the 

center of participating species to the electrode (during the electron transfer). Also, εS is the static 

dielectric constant (corresponding to low frequencies), and εop is the optical dielectric constant 

(corresponding to high frequencies). Several experiments have shown that the outer component of 

the reorganization energy (λO) dominates in the liquid-solid interfacial interactions, i.e., in the 

electrode electron-transfer reactions, and thus, λi ≪ λO 78-79.  

5.3. Computational model and the governing equations 

The following computational model is introduced to predict the interface voltage. The model 

is comprised of the ionic transport equations and Poisson’s equation for the electric potential, i.e., 

Eqs. (4.41) - (4.43). The solvent dielectric constant ε is equal to the static dielectric constant. It 

should be emphasized that Eqs. (4.41) - (4.43) are used in the diffuse layer, starting at the interface 

with the compact layer. 

To introduce the numerical procedure capable of finding the interface voltage ψ1, a 

computational domain featuring an anode in contact with the electrolyte at rest is sketched in Fig. 

(5.2). The computational domain starts from the interface of the compact and diffuse layers. Hence, 
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the electric potential at the interface provides a Dirichlet-type boundary condition for the 

computational model. The height of the domain, H*, is 10 µm.  

The boundary conditions in the electroneutral bulk read: 

y∗ = 0: φ∗ = 0, c∗
+ = c∗

− = c∗∞        (5.7) 

 

Figure 5.2. The anodic half-cell and the one-dimensional computational domain. 

 

The ionic boundary conditions at the interface of the compact and diffuse layers (i.e., at y∗ = H∗) 

are found from relations (3.45) and (3.47). The electric potential boundary condition is ψ1. The 

ionic boundary conditions express that anions are discharged at the anode surface (through the 

electron transfer) and become neutral molecules. Also, the flux of cations at the anode surface is 

equal to zero.  

In practice, the electrode's voltage is measured and known experimentally, and the voltage at 

the interface is not known. Here, a numerical algorithm is introduced to predict and correct the 

interface voltage by employing the Marcus activation energy73 and the Frumkin slow discharge 
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theory80. The Frumkin slow discharge theory yields the following relation80 for an electrode with 

η∗ > 0: 

ΔG∗ = −F(α − zox)ψ1 − αFη∗        (5.8) 

where,   is the charge transfer coefficient, and zox is the valence of products in an oxidation 

reaction ( )Red Ox e→ + . Assuming 0.5 =  (symmetric electron transfer reaction) and zox = 1 

(1:1 electrolyte), Eq. (5.8) takes the form: 

ΔG∗ = 0.5Fψ1 − 0.5Fη∗ = 0.5F(ψ1 − η∗)       (5.8) 

The following algorithm is proposed for the above-mentioned anodic half-cell (a similar 

algorithm can be applied to a cathodic half-cell) to predict and correct the interface voltage: 

(i) Estimate the ratio of c∗Ox c∗Red⁄ . (ii) Calculate the over-potential from Eq. (5.3). (iii) 

Calculate the activation energy from Eq. (5.2) using the over-potential value from step (ii). (iv) 

Using the calculated values of the activation energy and the over-potential in Eq. (5.8), find the 

interface voltage ψ1. (v) Solve the governing equations (4.41) - (4.43) for the anodic half-cell with 

the bulk boundary conditions (5.7) and the interfacial boundary conditions (3.47)-(3.48). (vi) After 

the numerical simulation reaches a steady-state solution, recalculate the ratio c∗Ox c∗Red⁄  at the 

interface. (vii) Repeat steps (ii) to (iv) to predict the interface voltage ψ1. (viii) If the value of ψ1 

predicted at step (vii) matches the one at step (iv) within an acceptable error margin (for example, 

the absolute difference is less than 0.1 V), the estimated ratio c∗Ox c∗Red⁄  is accepted, and the 

corresponding value of ψ1 is sufficiently accurate. Otherwise, find a new value of ψ1 by applying 

an under-relaxation formulation for the old (step (iv)) and predicted ψ1 (step (vii)) values and 

repeat the algorithm from step (v) to step (viii). The loop should be repeated until the absolute 

difference between the old and predicted ψ1 values is less than the defined error margin. 

5.4. Results and discussions 
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Here, we first apply the Marcus electron transfer theory to the canola oil as the ionic conductor 

liquid in electrostatic atomization and subsequently employ the proposed numerical algorithm 

within the developed computational framework to predict the value of the electric potential at the 

interface.  

Canola oil has a nonlinear molecule composed of saturated and non-saturated fatty acids81. The 

nonlinear structure is defined as a branched-chain molecule where atoms do not lie along a straight 

line. The canola oil composition incorporates 56% unsaturated oleic acid with the chemical 

formula of 
18 34 2C H O (N=54). This provides the total number of normal modes in the canola oil 

molecule as M=3N-6=156. However, this information is redundant because λi is negligibly small, 

as explained in Section (5.2), and need not be calculated. 

Considering canola oil as a 1:1 weak electrolyte, one can use the following values of the 

dielectric properties82: εop = 2.946 and εS = 3.00. The diameter of the canola oil molecule is 1.4 

nm based on the density and molecular weight83. The value 
OR  is taken as 1.5 times the canola oil 

ion diameter. Electron transfer can happen at the electrode surface and at distances extremely close 

to the electrode84, so 1.5 times the ion diameter is considered as an average of the doubled distance 

between the center of ion participating in electron transfer reaction and the electrode surface.  

RO = 1.5 × (2aO) = 2.1 × 10−9m        (5.9) 

Then, the reorganization energy of canola oil ions can be evaluated based on Eq. (5.6) as λel =

λi + λO ≈ λO = 6.7 × 10−22J. The electric conductivity,  , of canola oil was measured as17 

2.6 × 10−11  S m⁄ . The dielectric constant is equal to 3 and the diffusivity is85,86 D =

1 × 10−11 m2 s⁄ . The charge relaxation time87, τc, is calculated as τc = εε0 σ⁄ = 1s, and the 

Debye length, λD, is found as λD = (Dτc)1 2⁄ = 3.1 μm. The bulk ion concentration is taken 8×1017 

1/m3 in the following simulations (as before in previous chapters).  
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The number concentration of canola oil molecules in the bulk (c∗Bulk
N ) is calculated from the 

canola oil properties (molecular weight MWCanola = 0.9 kg mol⁄  and density of canola oil 

ρCanola = 910 kg m3⁄ ), and Avogadro’s number and is found as 6.1 × 1026m−3. For an oxidation 

reaction in a 1:1 electrolyte (Re Ox e)→ + , anions release the extra electron to become 

neutralized; hence, c∗Ox c∗Red⁄ = c∗
N c∗

−⁄ . The concentration of neutral ions (molecules) at the 

vicinity of the electrode, c∗
N, is assumed to be only modestly modified by the faradaic reactions 

and remain close to the bulk neutral concentration; therefore, it is considered to be equal to c∗Bulk
N  

i.e., 6.1 × 1026m−3. 

From our previous experimental measurements, the electric current density, Je∗, has been 

expressed as a function of anode voltage, V0∗, in the framework of the Butler-Volmer-Frumkin 

kinetics as17:  

Je∗ = 10{[V0∗−(aa+ψ1)] ba⁄ } [
A

cm2]        (5.10) 

where aa + ψ1 and ba are the experimental coefficients measured as 0.99996(V0∗ 2⁄ ) + 1.05123 

and 0.1118, respectively. Table (5.1) summarizes the parameter values used in the following 

simulations for the canola oil as the ionic conductor liquid. 

Table 5.1. Model parameters used in the simulations. 

Parameter Value Reference 

Bulk Ion Concentration, c∗∞ 8×1017 m-3 Calculated 

Debye Length, λD 3.1×10-6 m Calculated 

Diffusivity, D 10-11 m2s-1 85, 86 

Electric Conductivity, σ 2.6×10-11 Sm-1 17 

Faraday Constant, F 96485.33 C mol-1 36 

Neutral Ion Concentration, c∗
N 6.1×1026 m-3 Calculated 
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Reorganization Energy, λel 6.7×10-22 J Calculated 

Universal Gas Constant, R 8.314 J mol-1 K-1 88 

 

Two examples are considered to demonstrate the proposed numerical algorithm for finding the 

interfacial voltage ψ1 at two different values of the applied voltage at the electrode. In the first 

example, considered as case A, the applied voltage at the anode is taken as 500 V. The 

corresponding anion flux at the electrode surface is calculated from Eq. (5.10) as |j∗
−| = Je∗ e⁄ =

1.1 × 1014m−2s−1. Then, the value of the over-potential from Eq. (5.3) is calculated for the anodic 

half-cell (oxidation reaction c∗
− → c∗

N + e). If one assumes that, in this case, the order of the 

concentration of the neutral ions (products) at the interface of the compact and diffuse layers would 

be three orders of magnitude higher than that of the anions (i.e., as the first guess in the iteration 

algorithm described above is c∗Ox c∗Red⁄ = 103), one obtains from Eq. (5.3):  

η∗ =
RT

F
ln (

c∗Ox

c∗Red
) =

8.314×300

96485.33
ln(103) = 0.179      (5.11) 

Calculating the activation energy of the oxidation reaction using Eq. (5.2) yields: 

∆G∗ = NA (
λel

4
[1 −

eη∗

λel
]

2
) = 6.022 × 1023 (

6.7×10−22

4
[1 −

1.6022×10−19×0.179

6.7×10−22 ]
2

) = 176
kJ

mol
(5.12) 

Substituting the calculated values of the over-potential η∗ and the activation energy ΔG∗ into 

Eq. (5.8), one obtains ψ1 = 3.8 V. Using this value of the interfacial voltage as the boundary 

condition for the electric potential in the computational domain, the system of Eqs. (4.41) - (4.43) 

is solved numerically with the previously described bulk boundary conditions.  

The boundary conditions at the interface of the compact and diffuse layers are as demonstrated 

in relations (3.45) and (3.47) with |j∗
−| = 1.1 × 1014 m−2s−1 and φ∗ = 3.8 V.  

Performing the one-dimensional simulation and following the algorithm described in section 

(5.3) for the oxidation reaction c∗
− → c∗

N + e in a 1:1 electrolyte (canola oil), one obtains c∗
N c∗

−⁄ =
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6.1 × 1026 6.2 × 1023⁄ = 984. The over-potential, the activation energy, and the interface voltage 

found from Eqs. (5.2), (5.3) and (5.8) are 0.179 V, 166 KJ/mol and 3.7 V, respectively. Because 

the absolute difference between the predicted and calculated interface voltages is not greater than 

0.1 V, the assumed value of c∗
N c∗

−⁄ = 103 at step (i) of the algorithm is considered acceptable and 

the result converged. Hence, in the case of canola oil in contact with a metallic anode with the 

applied electrode voltage of 500 V and the anion flux of 1.1×1014 m-2s-1 at the anode surface, the 

electric potential at the interface between the compact and diffuse layers drops to 3.7 V. 

The dimensionless ions concentration ci and charge density distribution q across the anodic 

half-cell of case A are depicted in Fig. (5.3). The non-dimensional scales are c∗∞ for c∗
+ and c∗

−, 

ec∗∞ for q∗ and H∗ for y∗. The maximum value of q∗ occurs at the interface and is equal to 

−1.2 × 105 Cm−3. 

The polarized diffuse layer thickness λd is also shown in Fig. (5.3) (b).  

 

Figure 5.3. Dimensionless ion and charge distributions across the anodic half-cell with ψ1 = 3.8 V 

and |j∗
−| = 1.1 × 1014 m−2s−1: (a) Ions concentration, (b) charge density.  
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In the second example, considered as case B, the applied voltage at the anode is taken as 1750 

V. This voltage yields the anion flux value at the interface equal to |j∗
−| = 2.975 × 1014 m−2s−1.  

Starting from the assumption c∗
N c∗

−⁄ = 9 × 104, provides the first guess of interface voltage as 10 

V. Taking this value as the interfacial electric-potential boundary condition and solving Eqs. (4.41) 

- (4.43) numerically yields c∗
N c∗

−⁄ = 1.7 × 104. Here, as described above, the c∗
N value is 

considered constant in all simulations and equal to 6.1 × 1026 m−3. The value of c∗
− at the interface 

is calculated through the numerical solution of Eqs. (4.41) - (4.43) within the one-dimensional 

domain in Fig. (5.2). 

By employing the c∗
N c∗

−⁄  ratio in Eqs. (5.2) - (5.3) to calculate the over-potential and activation 

energy values, the predicted interface voltage is found as 7.3 V. Taking this value as the interface 

voltage and solving Eqs. (4.41) - (4.43) produces negative anion concentration at the interface 

because the flux of counter-ions due to discharge becomes greater than the accumulation of 

counter-ions due to electromigration. To prevent this issue, an under-relaxation formulation is 

introduced to correct the predicted value:  

ψ1
New = ψ1

Old + β(ψ1
Predicted − ψ1

Old)       (5.13) 

Here, ψ1
Predicted is the predicted interface voltage, ψ1

Old is the old interface voltage, ψ1
New is the 

new interface voltage, and β is the under-relaxation factor.  

Taking under-relaxation factors close to unity provides situations where the discharge rate is 

greater than the accumulation of counter-ions which yields negative anion concentrations at the 

interface. Hence, a low under-relaxation factor (β = 0.18) is used. This provides the new interface 

voltage as 9.5 V. By solving Eqs. (4.41) - (4.43), the ratio c∗
N c∗

−⁄  becomes 5.8 × 104. Employing 

this value in the over-potential and activation energy formulations and recalculating the interfacial 

voltage yields the value of 9.6 V. This indicates that the algorithm is converged and the interfacial 
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voltage for the considered anion flux value |j∗
−| = 2.975 × 1014 m−2s−1 and electrode potential 

V0∗ = 1750 V is found through the proposed procedure. Note that a different choice of the under-

relaxation value could have resulted in more iterations to converge to this result. 
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6. Conclusions and Future Work 

This work aims to gain a fundamental knowledge of electrification, constituted near-electrode 

layers, and the electrohydrodynamic flow inside electrostatic atomizers by providing realistic 

numerical and theoretical models. The previous models do not demonstrate the electrification 

mechanism and the constituted near-electrode layers. In this study, distinct theoretical and 

numerical models are provided to elaborate the charging phenomenon, the constituted compact 

Stern layer, and internal electrohydrodynamic flow. 

The electrification of an ionic conductor liquid in electrostatic atomizers is predicted by 

accounting for the faradaic reactions at the electrode surface. The numerical approach solves the 

cation and anion transport equations along with the Poisson equation for the electric potential 

coupled with the continuity and momentum equations using the OpenFOAM platform. The 

boundary conditions are modified to account for the faradaic reactions at the liquid/electrode 

interface. A novel analytical solution for the near-electrode boundary layer with the electric current 

is found and matched with the analytical solution for the outer layer. The uniformly valid analytical 

solution for the low-voltage case is used as a benchmark case for the numerical simulations, and 

the agreement of the analytical and numerical results is established. An additional benchmark case 

used to validate the numerical results is a two-dimensional flow in a microchannel with a 

polarizing section without electric current (with the ζ-potential) and electro-osmotic flow driven 

by the longitudinal external electric field. 

The electrification of canola oil flowing through a microchannel is studied with two counter-

electrodes that sustain an electric current. Also, the effect of the longitudinal external electric field 

is studied. The removal of the resulting bulk net electric charge by the flow (the so-called spray 

current) is predicted. The two contributions to the spray current, the viscous scraping, and the 
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Smoluchowski slip are compared under the conditions reminiscent of the electrostatic atomizers. 

It is found that under the realistic values of the longitudinal electric field strength, the viscous 

scraping is the dominant mechanism for producing the spray current in comparison to the 

Smoluchowski slip. Both the viscous scraping and the electro-osmosis are equally diminished at a 

higher viscosity (as follows from the Poiseuille law and the expression for the Smoluchowscki 

slip, both inversely proportional to the viscosity). Accordingly, the dominance of the viscous 

scraping under the realistic values of the external electric field would be sustained at any viscosity. 

Because it was shown that the effect of the longitudinal electric field is always negligibly small 

compared to the viscous scraping, an “electroneutral” liquid would be inevitably collected at the 

channel exit if one would allow the volumes coming from the upper and lower halves being mixed 

(for example, by collecting all the liquid in a vessel). Only, separating these volumes at the exit, 

e.g., by a central separating plate, one would collect charged liquid. It should be emphasized that 

the flow in the model channel atomizer remains practically unidirectional because the Coulombic 

body force arising in the electrode section (due to the appearance of the polarized layers) is 

insufficiently strong under the realistic conditions to reverse the flow near one of the electrodes. 

In the channel with the insulated walls in the exit section, the spray current value is practically 

conserved along the channel length. 

In this study, a modified model of the compact layer adjacent to a metallic electrode, which 

carries an electric current is introduced. The model details the ion non-specific adsorption process 

(first introduced in the seminal work of Stern) as a two-dimensional process, which does not lead 

to ion discharge in a faradaic reaction only if it is adsorbed onto oxides or impurity islands. 

Otherwise, on clean metal islands, a faradaic reaction occurs, electrons are transferred, and no 
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adsorbed ions of the compact-layer type exist. The discharged ions become neutral molecules and 

leave to be replaced by other discharging ions, thus sustaining the electric current.  

This two-dimensional vision of the compact layer can be reduced to the equivalent one-

dimensional compact layer model of the Stern layer type (with only monolayer adsorption 

possible). In addition, the present equivalent one-dimensional compact layer model is generalized 

to account for the multilayer, Langmuir−Brunauer−Emmett−Teller ion adsorption mechanism. 

This multilayer equivalent one-dimensional compact layer can be characterized by its thickness 

and capacitance. Both the thickness and capacitance are predicted rather than used as adjustable 

parameters. As the adsorption to-desorption ratio β, corresponding to the layers higher than one, 

increases, the thickness of the equivalent one-dimensional compact layer model λS decreases, 

whereas the capacitance CS increases. There exists a limiting value of β for which λS = 0 and CS = 

∞. The Stern layer thickness can be measured, for example, by X-ray photoelectron spectroscopy 

(XPS)68. The results are intriguing because the measurements reveal that the Stern layer 

compresses (becomes thinner) as the electrolyte concentration increases. This counterintuitive 

result is in line with the predictions of the present theory that multilayer ion adsorption makes the 

equivalent one-dimensional Stern layer thinner because of the accumulation of a higher charge at 

the compact layer “capacitor” at a fixed potential difference, that is, an increase in the Stern layer 

capacitance. In more concentrated electrolytes68, multilayer ion adsorption is facilitated, and 

accordingly, the Stern layer becomes thinner.  

Applications such as electrostatic atomizers used for charging oils, kerosene, and diesel fuel to 

facilitate their secondary atomization and finer dispersion as well as multiple electrohydrodynamic 

devices transporting the so-called dielectric liquids, can benefit significantly from the insight into 

the nature of the near-electrode compact layer achieved in this work. It is shown that, at high 
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voltages, the major potential drop occurs at the compact layer27, and the boundary conditions in 

any theoretical and numerical simulations could be imposed at the interface of the compact and 

diffuse layers41. It should be emphasized that liquid charging by means of the so-called charge 

emission at the tip of a needle electrode in electrospinning, electrospraying, and electrostatic 

atomization proceeds due to faradaic reactions responsible for the formation of a nearby polarized 

layer in the ionic conductor liquid, which is issued as a flowing charged liquid jet16,17,63,69,70. It is 

highly effective due to the high electric field strength near the tip of the electrode; however, it has 

the same physical nature as in the near-plane electrode zone in model microchannel atomizers41. 

The latter case is described by an easier theoretical/numerical description, which is the main reason 

that it has been studied in detail, whereas the cases with the needle electrodes are more involved, 

and their numerical investigations are still underway. Note also that because the thickness of the 

Stern layer is much smaller than any practically possible radius of curvature of the needle electrode 

tip, the planar theory of the Stern layer holds without any restrictions. 

The Frumkin slow discharge theory is used to develop an algorithm to determine the electric 

potential value at the interface of the compact and diffuse layers formed near the high-voltage 

electrode during the electrostatic atomization process. Unlike the previous models, the electric 

potential at the interface is calculated rather than considered to be an ad hoc parameter. 

Specifically, the proposed numerical approach is capable of calculating the electric potential value 

at the interface. The computational models for electrokinetics and electrohydrodynamic flow that 

solve the ionic transport equations require the electric potential value at the interface as a boundary 

condition. The ionic conductor liquids employed in the electrostatic atomization possess low 

dielectric constant values. Hence, the entire potential drop across the electric double layer occurs 

within the compact layer. The sustained electric current at the electrode surface is due to discharge 
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counterions through faradaic reactions. These reactions at the electrode surface are kinetics-

limited, which allows the application of the Frumkin slow discharge theory. The activation energy 

is calculated from the Marcus electron transfer theory. The ionic transport equations and the 

Poisson equation are solved numerically in a 1D computational domain starting from the 

electroneutral bulk toward the interface of the compact and diffuse layers. The ionic boundary 

conditions at the interface account for the flux of counterions, which has been measured 

experimentally. Two cases with different applied voltages at the electrode and counterion flux 

values revealed that the proposed approach could predict the corresponding interfacial voltage. 

In the present work, the method of calculation of the potential ψ1 from first principles is 

proposed. As a result, the entire electrokinetic theory could describe experiments without any 

adjustable parameters in a self-consistent way. Accordingly, any comparison with the experiment 

which reveals agreement without an adjustable parameter involved would indirectly confirm the 

theory, including the predicted values of the voltage drop.  

For future work, the theoretical and numerical models presented in this thesis can be applied 

to a realistic domain with higher dimensions to predict the spray current in practical cases. 

However, it requires a high-performance computing infrastructure. Besides, the numerical model 

can become dimensionless to avoid the necessary super-fine resolution at the electrode vicinity by 

choosing appropriate scales.  
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