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SUMMARY

Throughout the history of mankind, we have sought ways and means to extend the bound-

aries of our sensory system with the help of science and technology. Active sensing systems have

played a vital role in the advancement of human civilization— in navigation, communication,

system identification, defense, energy cultivation, meteorology, space exploration, etc. It is well

known that a judicious design of the transmit signals improves the performance of an active

sensing system by enhancing the target detection and estimation capability by manyfold. This

thesis is concerned with synthesizing waveforms for smart active sensing systems of forthcom-

ing decades, viz., (i) improved system identification and (ii) advanced radar systems. Several

problems of signal optimization in the context of practical scenarios have been considered. The

associated problems are studied and several novel algorithms are proposed and supported by

several numerical examples.
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CHAPTER 1

INTRODUCTION

Throughout history, humans have always sought to find ways to comprehend themselves

and the world around them. The ability to acquire information is the key to understand the

universe and by asking the right questions one may be able to understand it properly. Signal

Processing is one branch of science that seeks to answer these questions. Consequently, collecting

information, or in other words, sensing has always been an important part of our lives. Humans

can perceive the physical reality using observations made by mostly five basic sensory systems:

sight (visual sense), hearing (auditory sense), smell (olfactory sense), taste (gustatory sense),

and touch (somatosensory sense). Ever since the beginning of humanity, we have tried to extend

the boundaries of our sensory ability by building intelligent instruments through contemporary

science and technology, and often we succeeded. For instance, now we know that there lies

a whole electromagnetic spectrum beyond our observable range and the visible light is in fact

merely a thin slice of the entire spectrum. Thus building better sensors have always been a

particularly challenging, nevertheless highly sought-after objective among scientists.

Modern remote sensing instruments are primarily of two types [1]—

Passive sensors are able to detect and measure natural energy (or radiation) that is emitted or

reflected by the subject or scene being observed. They mostly operate in the visible, microwave,

infrared, and thermal infrared portions of the electromagnetic spectrum. Cameras are arguably

the most popular and widely available passive sensors known to mankind. Advanced passive

1
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sensors include Accelerometer, Radiometer, Spectrometer, etc. A benefit of using passive sensors

is that they do not require any transmission power source to operate.

Active sensors, on the other hand, are able to provide their own source of power to illuminate

the subject or scene that is under observation. Such sensors first emit suitable radiation in the

direction of the target object to be investigated. They then detect and measure the radiated

energy that is reflected or backscattered from the target object. One may find perfect examples

of active sensing in the natural world, for instance, bats and dolphins use acoustic signals to

communicate and to map their surroundings. Active sensing has played a vital role in the

advancement of human civilization: navigation, communication, system identification, defense,

energy cultivation, meteorology, space exploration, to name a few [2]. Most man-made remote

sensors are active e.g., Radar, Sonar, LIDAR, Laser altimeter, X-ray, GPS, Scatterometer, etc.

It is of paramount importance that the active sensing system must know the emitted wave-

forms completely in order to extract the most information about the target from the received

waveforms. The judicious design of the transmit waveforms thus improves the performance of

such systems by performing the act of asking the right questions. In the past decades, researchers

have invested a tremendous amount of effort and resources into the design of efficient waveforms

for smart active systems. This thesis aims to improve the state-of-the-art technologies for the

synthesis of such smart waveforms for various active sensing systems that have tremendous

potential in emerging applications for the coming decades viz.,

• Improved system identification, and

• Radar systems with advanced objectives.
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1.1 Organization of the Thesis

This thesis is organized into two parts, each of which is devoted to one of the above ap-

plications. Part I describes waveform synthesis for the purpose of system identification. Part

II is focused on signal design for the context of emerging applications in radar systems with

advanced objectives. In the subsequent, we provide a detailed background and the relevant

context for each of the advanced radar systems considered here and point out the contributions

of this thesis.

1.1.1 Part I: Waveform Synthesis for Improved System Identification

System identification (SI) is the field of study where modeling of dynamic systems is done

using experimental data [3, 4]. Mean square estimation (MSE) is one of the most fundamental

and widely used tools for SI in statistical signal processing, assuming the underlying system

regression is linear. The result of MSE is usually given when the input and output of the system

are real-valued. However, the analysis remains valid when these quantities are complex-valued.

Interestingly, when the input and the output are real and jointly normally distributed with

zero-mean value, the regression simply stands as linear. Unfortunately, for the normal complex

data it is no longer valid, and hence handling such scenario demands special consideration [5].

Based on the type of the systems being considered, they can be categorized into two classes:

(a) strictly linear systems for real data (SL), and (b) widely linear (WL) systems for complex

data. In the following, we unwrap these two classes in a detailed manner.
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Figure 1. An illustration of SL system h(n) with input c(n), output x(n) and disturbance v(n)
(Source: [4]).

1.1.1.1 Part I-A: Strictly Linear Systems

In SL processing, a discrete dynamic system can be characterized by a finite impulse response

(FIR) {h(n)}M−1
n=0 , as depicted in Figure 1. Here n denotes the discrete-time andM is the length

of the filter. The objective is to identify the M coefficients of the filter by probing the system

using a training sequence c(n) while observing the response x(n) that is perturbed by additive

white Gaussian noise (AWGN) v(n) whose first and second-order statistics are known a priori.

The observation x(n) is then simply given as,

x(n) = (h~ c)(n) + v(n). (1.1)

The configuration depicted in Figure 1 and Equation 1.1 is rather common in modeling the

channel estimation problem in a wireless communication system. In a communication system,

Figure 1 represents a baseband model where {h(n)}M−1
n=0 is a filter with M coefficients that

captures the effects of the channel and embeds them into the transmitted symbols. Owing to
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the unique spectral characteristics of sequences with good1 auto-correlation and cross-correlation

properties, they are the keys to efficiently identify an SL system [6–8]. Several metrics have

been proposed in the literature to measure the goodness of such sequences, for example, peak

sidelobe level (PSL), integrated sidelobe level (ISL), merit factor (MF), etc.

Due to the simplicity in terms of hardware design, binary sequences with good correlation

properties are excellent choices not only for system identification applications but also they play

an important role in many active sensing and communication systems, ranging from modulation

techniques to data encryption [9] etc. Moreover, the analytical construction of binary sequences

requires only a little computational cost. Especially, the use of binary sequences or sequence

sets with low aperiodic auto-correlation and small cross-correlation sidelobes in radar and sonar

pulse compression systems is well regarded as they provide an efficient method of synchronization

for modern active sensing and digital communication systems [10]. However, the optimization

problems arising from designing such sequences are computationally expensive and NP-hard in

general [11], especially for long binary sequences. Nevertheless, several numerical approaches

have been suggested in the literature to construct binary sequences and many of its variance,

including the skew-symmetric binary sequences [12], Rudin-Shapiro sequences [13], offset Leg-

endre sequences [14], among others [11,15,16]. However, these methods seek to construct binary

sequences whose asymptotical behavior of PSL growth is optimal. Hence the challenge remains

open, baffling researchers for decades.

1In the literature, good correlation properties of a sequence means the out-of-phase correlation coef-
ficients have significantly low magnitude, ideally zero.
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It is interesting to note that sequence sets with asymptotically optimal auto/cross-correlation

PSL growth have been known in the literature for a long time, and their construction has

been studied both analytically and numerically. However, it has been a long-standing problem

whether we can construct a family of binary sequences whose auto-correlation PSL grows in

an optimal manner. In Chapter 2, we bridge the gap between analytical construction and

computational search. Here we introduce a construction approach for binary sequences with

asymptotically optimal PSL growth from the sequence sets with good correlation properties.

A key component of the design follows from the observation that if the PSL of the sequence

set grows optimally or nearly optimally, then the PSL of the constructed binary sequence will

experience similar growth as a consequence. The proposed construction is simple-to-implement

and is shown to be accomplished in polynomial-time.

This chapter is based on the following published articles1:

[J1] Bose, A. and Soltanalian, M.: Constructing binary sequences with good correlation

properties: An efficient analytical-computational interplay. IEEE Transactions on

Signal Processing, 66(11):2998–3007, June 2018.

[C1] Bose, A. and Soltanalian, M.: Efficient construction of polyphase sequences with

optimal peak sidelobe level growth. In 2017 IEEE Global Conference on Signal and

Information Processing (GlobalSIP), pages 81–85, Montreal, Canada, November 2017.

1[J]: Journal papers, [C]: Peer-reviewed conference papers.
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Chapter 3, on the other hand, addresses the problem of designing sequences with not

only good correlation but also good distribution properties. Sequences with specific distribution

properties play an important role in biomedical system identification. In this chapter, we propose

an efficient computational framework for designing sequences with two key properties: (i) an

impulse-like auto-correlation, and (ii) a probability distribution of sequence entries which is

uniform in nature; although the results can be easily extended to an arbitrary distribution. The

proposed method is based on utilizing the Fast Fourier Transform (FFT) operations and thus

can generate very long sequences in small time frames.

The material for this chapter is based on the following article:

[C2] Bose, A., Mohammadi, N., and Soltanalian, M.: Designing signals with good

correlation and distribution properties. In 2018 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 4349–4353, Calgary, Al-

berta, Canada, April 2018.

1.1.1.2 Part I-B: Widely Linear Systems

WL systems, unlike SL systems, exploit the complex conjugate of the input signal as an

additional degree of freedom for linear processing. Using the complete second-order charac-

terization (i.e., the complementary correlation properties), the performance of the sensing and

identification systems can be enhanced by performing WL signal processing, as shown in [5,17].
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Figure 2. An illustration of WL system with input c(n) probed into h1(n) and c∗(n) probed
into h2(n), output x(n) and disturbance v(n) (Source: [4]).

A WL system can be characterized by two impulse responses {h1(n)}M−1
n=0 and {h2(n)}M−1

n=0 as

depicted in Figure 2. The observation x(n) is modeled as,

x(n) = (h1 ~ c)(n) + (h2 ~ c
∗)(n) + v(n). (1.2)

Modeling of systems using WL structures often arises especially in wireless communication

systems since in such systems non-linear radio frequency (RF) impairments are considered in the

analysis of signal modeling [4,18,19]. Such impairments include in-phase and quadrature-phase

(I/Q) imbalances that introduce interference in direct conversion transceivers employing multi-

carrier techniques such as Orthogonal Division Frequency Modulation (OFDM). In order to

alleviate such interference, one is required to synthesize sequences that are especially adequate to
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handle WL systems. Chapter 4 presents the problem of designing sets of unimodular sequences

with good cross-correlation as well as complementary cross-correlation properties over a zero-

correlation-zone (ZCZ) for the systems that especially employ WL signal processing. We provide

a gradient-based optimization approach to minimize a weighted ISL (WISL) criterion.

This chapter is based on the following published article:

[C3] Arriaga-Trejo, I. A., Bose, A., Orozco-Lugo, A. G., and Soltanalian, M.: Design

of unimodular sequence sets with good correlation and complementary correlation

properties. In 2018 IEEE Global Conference on Signal and Information Processing

(GlobalSIP), pages 121–125, Anaheim, California, USA, November 2018.

Furthermore, Chapter 5 introduces another novel generalized cyclic algorithm for the afore-

mentioned problem that seeks to minimize the same WISL criteria for the processing of WL

systems. The proposed algorithm is based on a well-known cyclic algorithm named WeCAN,

which was first proposed in [20].

The material for this chapter comes from the following publication:

[C4] Bose, A., Arriaga-Trejo, I. A., Orozco-Lugo, A. G., and Soltanalian, M.: General-

ized cyclic algorithms for designing unimodular sequence sets with good (comple-

mentary) correlation properties. In 2018 IEEE 10th Sensor Array and Multichannel

Signal Processing Workshop (SAM), pages 287–291, Sheffield, UK, July 2018.
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1.1.2 Part II: Waveform Synthesis for Advanced Radar Systems

In real-life applications, the problem of waveform synthesis is often paired with a secondary

objective. Engineers often aim to generate smart waveforms that focus on specific objectives

serving specific applications. Furthermore, in order to receive the full benefit of the realized

waveform, one may as well need to consider designing a secondary aspect of the said application.

In this part of the thesis, we consider several of such design objectives along with waveform

synthesis for the context of radar (RAdio Detecting And Ranging) technology.

Similar to the problem of system identification, a radar system uses electromagnetic energy

pulses to acquire information about its surroundings. Here the idea of identification of a system

is more abstract. As shown in Figure 3, the RF energy is transmitted to and reflected from the

target object. Depending on many factors such as antenna gains, transmit power, the distance

of the target from the transmitter-receiver, radar cross-section (RCS) of the target, etc. , a

portion of the reflected energy (also known as echo) returns back to the radar receiver. The

radar system then uses the echoed signal to determine the direction, distance, and other dynam-

ical information of the target. For instance, a land-based surveillance radar system transmits

electromagnetic (EM) waves toward the sky in order to find passing targets such as airplanes,

birds, drones etc. Once the targets interact with the inbound EM field, a small portion of the

transmitted signal returns back to the radar receiver with a unique signature imprinted by the

targets’ dynamical as well as material properties. For example, by simply measuring the round-

trip time delay of the returned signal, the distance (a.k.a. range) between the radar system and
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Figure 3. An illustration of basic wave propagation in a radar system.

the target object can be estimated since the speed of propagation for radio waves is known1.

Moreover, by carefully processing the received signal, additional target properties can also be

attained, as we shall see later in this chapter. For instance, any Doppler shift in the received

signal indicates the dynamical information of the target [21].

Since the publication of “Theory of the Electromagnetic Field” by Scottish physicist James

Clerk Maxwell in 1865, physicists have known that electric and magnetic waves travel through

space at a constant speed. However, using EM waves as active sensing agents due to such

properties did not get popularized until the late nineteenth and early twentieth century. In

1904, Christian Hülsmeyer, a German physicist and engineer conducted the first set of radar

experiments using his invention named “telemobiloscope” to identify ships in the presence of

dense fog using EM waves [22]. A decade later in 1914, a Canadian-American engineer named

1The round-trip speed of EM wave in vacuum is 299792458 m/s.
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Reginald A. Fessenden, demonstrated the same wave functionality using an acoustic echo device

termed as Fessenden oscillator, in order to detect icebergs off the east coast of Canada after

the tragic 1912 Titanic disaster [21]. Mostly impelled by scientific innovations for general war

events, radar technology underwent a strong advancement boost especially in the course of the

two world wars, and since then it has become an integral part of our civilization. Later on,

this technology had spread into diverse fields including weather monitoring, flight control, and

underwater and underground sensing.

A fundamental objective of radar engineers is to design waveforms (also known as wave-

form diversity) that constructively make use of radar resources i.e., transmitters and receivers

that are possibly distributed in the time, frequency, and polarization domains [23]. According

to IEEE Radar Standard P686/D2 (January 2008), the definition of waveform diversity is the

“Adaptivity of the radar waveform to dynamically optimize the radar performance for the par-

ticular scenario and tasks. May also exploit adaptivity in other domains, including the antenna

radiation pattern (both on transmit and receive), time domain, frequency domain, coding do-

main, and polarization domain.” The insatiable demand for extreme remote sensing capabilities

in military applications has always fueled the research of a new paradigm of waveform diversity

whose potential has led to many more interesting and promising remote sensing ideas even in

civil applications [24] such as in automotive radars [25, 26], Google’s hand gesture recognition

radars [27], and many more. Often waveform synthesis for these applications demands low

SWaP-C (size, weight, power, and cost) radar devices. For these reasons, as we have discussed

earlier, one needs to address additional requirements and explore secondary degrees of freedom



13

in conjunction with waveform design. Part II of the thesis aims to explore various ideas to opti-

mize for such secondary degrees of freedom while designing waveforms that focus on particular

applications. Especially, we investigate the following ideas while synthesizing signals:

(a) Designing the positions of radar antenna elements for multiple-input-multiple-output (MIMO)

radars,

(b) Mitigating mutual interference between multiple radar systems mounted on automotive

radars,

(c) Designing receive filter for one-bit cognitive radars, and

(d) Radars systems that use deep neural networks (deep radars).

In the following, we discuss the design context of each of the advanced applications in a detailed

manner.

1.1.2.1 Part II-A: Antenna Array Design for MIMO Radar

In this part, we devise a joint design scheme of antenna array positions along with waveform

synthesis for MIMO radars with non-uniform linear arrays. MIMO radar refers to a unique

radar architecture that employs multiple spatially distributed transmitters and receivers— an

emerging technology in the last two decades, attracting a great deal of interest from researchers

in the radar signal processing community as well as the industry [28–34]. The presence of

multiple transmitters and receivers inherently enables waveform diversity that not only improves

parameter identifiability significantly but also introduces enhanced flexibility for transmitting

beam-pattern and waveform design for more precise target parameter estimation and imaging
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[24, 31, 32]. It is well known that the accuracy of target detection and parameter estimation

revamps with the number of available independent channels of an adaptive MIMO array.

Unlike a conventional phased array radar, a MIMO transmitter can transmit a set of arbitrary

waveforms in order to increase the spatial diversity [31, 35]. One way to exploit such diversity

in MIMO systems is by transmitting orthogonal waveforms, and the echo signals can then be

re-assigned to the single transmitter. Figure 4(a) shows an example of a MIMO array system

withM transmitter and N receiver antennas [36]. Note that from such an antenna array system,

a MIMO architecture results in a virtual array of M × N independent elements by using only

M ·N physical elements, as depicted in Figure 4(b). For instance, let us assume that a target

is located at u, the mth transmit antenna and nth receive antenna are located at rT,m and rR,n

positions, respectively, and furthermore, {xm(t)}Mm=1 is the signal being transmitted at time t.

The received signal yn(t) at nth receive antenna can be expressed as [36]:

yn(t) =

M∑
m=1

xm(t) exp

(
j

2π

λ
uT (rT,m + rR,n)

)
(1.3)

where λ is the wavelength of the transmitted electromagnetic wave and j2 = −1. Note that

term (rT,m+ rR,n) in Equation 1.3 contains the information of individual propagation path that

is crucial to extract M signals from nth receive antenna, iff one uses {xm(t)}Mm=1 as an orthog-

onal set [37]. Many methods are widely available to achieve orthogonality of the transmitted

waveforms, such as time-division multiplexing (TDM), frequency-division multiplexing (FDM),

and spatial coding [38].
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Figure 4. A MIMO radar system: (a) Diagram of a MIMO array system with M transmit and
N receive antennas (Source: [36]), (b) Illustration of an example of 12 virtual arrays created

by 3 transmit and 4 receive antennas.

Virtual array thus provides additional degrees of freedom to improve the spatial resolution

[39, 40], immunity to interference [41], and an improved target localization capability [42–44]

in a radar system. The advantages of MIMO radar over traditional phased array radar have

inspired researchers to address various associated waveform design problems. Among them,

one important problem is to design the probing waveforms to approximate a desired transmit

beam-pattern under practical constraints e.g., maximum transmit power, maximum mainlobe

width or sidelobe height, etc. [45–48]. The main focus of this design problem is to control

the spatial distribution of the transmit power. One may impose additional constraints on the

class of transmit waveform (e.g., unimodular sequences) based on the intended applications.

Alternatively, one can consider the design of the probing signal covariance matrix in lieu of the
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probing signal itself. The covariance matrix acts as an oracle for the waveform design problem

and provides more degrees of freedom compared to designing the waveforms directly [49–55].

Moreover, interestingly, it has been pointed out in the literature [54,56,57] that the selection

of the array position can introduce additional degrees of freedom and enhance target detection

capability of the radar. Especially, by carefully choosing the position of the transmit and/or

receive antennas, one will be able to design a desired beam-pattern using a fewer number of

antennas. In other words, one can achieve the desired beam-pattern by carefully redistributing

the available antennas in a wider transmit/receive field which amounts to increased virtual

aperture. As a consequence, a joint design of the covariance matrix and the antenna selection

vector can procure superior performance compared with current state-of-the-art methods using

uniform linear arrays (ULA) with the same number of antennas.

Chapter 6 investigates the problem of designing the waveform covariance matrix while

approximating the desired beam-pattern for the case of a distributed MIMO radar system where

antenna positions are not fixed. We jointly design the antenna position vector and the transmit

covariance matrix, as well as minimize the cross-correlation sidelobe of the received waveforms

reflected back from the targets. We formulate this design task as a non-convex optimization

problem and then propose a cyclic optimization approach to approximate its solution. We

further propose a local binary search algorithm in order to efficiently design the corresponding

antenna positions. We show that the proposed method can be extended to the more general case

of approximating the given beam-pattern using a minimal number of antennas while optimizing

their positions.
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This chapter is based on the following published articles:

[J2] Bose, A., Khobahi, S., and Soltanalian, M.: Efficient waveform covariance matrix

design and antenna selection for MIMO radar. Signal Processing, 183:107985, 2021.

[C5] Bose, A., Khobahi, S., and Soltanalian, M.: Joint optimization of waveform covariance

matrix and antenna selection for MIMO radar. In 2019 53rd Asilomar Conference on

Signals, Systems, and Computers, Pacific Grove, CA, USA, November 2019.

1.1.2.2 Part II-B: Mutual Interference Mitigation for Automotive Radar

Automotive radars have become more relevant in the last decade or so, especially as the

means to safely drive in consumer motor vehicles as a part of their advanced driver-assistance

systems (ADAS). It is reported that every year about 1.35 million1 people die from road acci-

dents, with thousands more being injured. Automotive radar systems not only play a key role

in improving car safety measures but also meet key criteria such as low size and cost. Because

of high market demand, various automotive radar systems are now widely used in consumer ve-

hicles that enjoy cutting edge ADAS such as adaptive cruise control (ACC), stop-and-go, blind

spot detection (BSD), autonomous emergency brake (AEB), rear crash warning (RCW), lane

change assistance (LCA), front/rear cross-traffic-functions (FCTA/RCTA), lane change assis-

tance (LCA), parking assistance (PA), reverse-autonomous emergency braking (R-AEB), etc. to

name a few [58].

1World Health Organization – Global status report on road safety 2018.
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Automotive radar sensors can be categorized into two classes: short-range radars (SRR) are

used to detect targets within 30 m, and long-range radars (LRR) are used for targets that are

at 200 m and beyond. According to FCC guidelines, 24-26 GHz (K band) frequency is used in

SRRs and are mostly used for short-range applications e.g., BSD, PA, obstacle detection and

collision avoidance etc. On the other hand, LRRs use 77-81 GHz (W band) that provides better

resolution and accuracy in a smaller size. These radars are primarily used for measuring the

range and velocity of target vehicles and sensing objects within a wider field of view e.g., for traf-

fic alert systems in cross-sections. Such long-range applications require higher resolution within

a more limited scanning range [59]. These long-range automotive radars are mostly powered by

frequency modulated continuous waveform (FMCW) technology. Unlike the traditional pulsed

radars, FMCW radars use continuous wave modulation for transmission that does not have a

high peak-to-average power ratio (PAPR), making the hardware design flexible and simplified

for antennas and other RF components like mixers and power amplifiers.

FMCW radar sensors can continuously transmit signals like a simple continuous-wave (CW)

radar. However, unlike CW radar, the operating frequency of FMCW can be regulated dur-

ing the sensing process, therefore making transmitted signal frequency modulated. The main

advantages of using FMCW radar are following [59–61]:

• Potential narrow resolution allows measurement of very small ranges. The minimal mea-

surable range is comparable to the transmitted wavelength.

• Very high accuracy of range measurements.
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Figure 5. Block diagram of an FMCW radar system.

• Unlike pulsed radar, with FMCW, one can simultaneously transmit and measure the

received signal.

• Because the transmit and receive signals are “always-on”, there is zero blind range. This

means that there is no “blind spot” in between transmit and receive, where something

could be missed.

• Pulsed radar systems have high levels of peak power; this is not the case for FMCW.

• The received signal is mixed down to lower frequencies, so the processing circuitry and

algorithms need not be so complicated and expensive.

• Because of the simpler circuit design, and the capabilities of modern digital signal proces-

sors (DSPs), overall cost and the size and weight of FMCW radar modules are lower than

other radar standards.

An FMCW radar system consists of a transmitter, a receiver, a mixer to produce a signal

with an intermediate frequency, and finally, an analog-to-digital converter (ADC) to sample and
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Figure 6. FMCW sawtooth signal model.

quantize the received signal as shown in Figure 5. The transmitter broadcasts a frequency mod-

ulated signal called a “chirp” toward the field of interest. A chirp is nothing but a sinusoid whose

frequency increases linearly for a certain amount of time which is termed as “chirp duration”

(Tc). Several modulations techniques are used for FMCW transmit signals such as sawtooth,

triangle, square-wave (simple frequency-shift keying, FSK), stepped modulation (staircase volt-

age) and sinusoidal [38]. Figure 6 shows an example of a simple sawtooth FMCW signal where

fc is the starting frequency and B is the bandwidth of FMCW transmission. The horizontal

axis represents the time (t) in a coherent processing interval (CPI) with 3 chirps and the vertical

axis represents the instantaneous frequency (f).

The transmitted FMCW waveform can be expressed as [62]

sT (t) = AT cos

(
2πfct+ 2π

∫ t

0
fT (τ)dτ

)
(1.4)
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where B
Tc

is the slope of the frequency increment, fT (t) = B
Tc
t denotes the instantaneous transmit

frequency expressed as a linear function of time, and AT represents the transmitted signal

amplitude. Assume a target at a distance R0 from the radar, is moving away at a radial velocity

of v m/s. The receiver will then collect the reflected signal that resembles the transmitted signal,

that has a temporal shift τd = 2R0+vt
c , and a Doppler shift fD = −2fcvc , where c is the speed

of EM wave in free space. Thus the receive frequency is denoted as fR(t) = B
Tc

(t − τd) + fD.

Finally, the received signal can be expressed as

sR(t) = AR cos

(
2πfc(t− τd) + 2π

∫ t

0
fR(τ)dτ

)
= AR cos

(
2π

(
fc(t− τd) +

B

Tc

(
t2

2
− τd · t

)
+ fDt

))
(1.5)

where AR is the amplitude of the received signal that depends on multiple factors such as

transmitted power, antenna gains, the target’s distance from the radar sensors, and RCS of the

target. Generally, the value of AR is significantly small w.r.t. that of AT . Once, the reflected

signal is captured, sR(t) is then mixed with sT (t) by multiplication in the time domain, and

passed through a low-pass filter (LPF). This process allows to bring the operating frequency

down to a lower level, making the design process less complicated. The intermediate frequency

(IF) signal Si(t) of the LPF output is then obtained as

si(t) =
1

2
cos

(
2πfc

2R0

c
+ 4π

(
R0

c

B

Tc
+
fcv

c

)
t

)
. (1.6)
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In the above expression, some terms that are not time-dependent (phase terms) contain the

range information, and terms that are proportional to t are seen in the spectrum of the signal.

In a reasonably high SNR scenario, the frequency peak then can be observed at

fp =
R0

c

B

Tc
+
fcv

c
(1.7)

so that there is one peak containing both the Doppler and range information and from which it is

not very difficult to extract velocity information of the target once the range is resolved [63,64].

FMCW has gained considerable popularity in the automotive industry due to its simplicity

in signal processing. Given the tendency to mass-produce radars in civilian applications, such

systems, however, tend to be quite similar, or even almost identical. The increasing number of

similar or identical radar systems increases the probability of mutual interference, which may

result in severely reduced radar sensitivity, poor performance quality, and increased false alarm

rates [65,66]. In Chapter 7, we address the problem of interference mitigation in similar radar

systems. To this end, we begin by proposing two algorithms for designing slow-time codes

to modulate the chirps for a simple SISO scenario. Specifically, the first coding scheme relies

on Doppler shifting and the second one is devised based on an optimization approach. The

difficulty and complexity of the problem of mutual interference increases when the vehicles are

equipped with MIMO radar systems. We thus extend our discussion to the more general case

of MIMO radars and propose an efficient algorithm to design waveforms to mitigate mutual

interference in such systems. We propose an efficient waveform design algorithm that seeks to
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minimize a collective cross-ambiguity function. Our quest does not stop here as the interference

intensifies even further with a growing number of vehicles present on the scene. We hence

provide a generalized formulation of the problem for multiple-MIMO cases. The proposed

coding schemes are computationally efficient in practice and the incorporation of such schemes

requires only a slight modification of the existing systems. Although for the multiple-MIMO

case, the computational complexity becomes cumbersome as the number of MIMO radars grows,

the design can be performed online in a collaborative manner, or offline, in which case the radar

codes can be designed and stored in a codebook for future use.

This chapter is based on the following submitted articles:

[J3] Bose, A., Tang, B., Huang, W., Soltanalian, M., and Li, J.: Waveform design for

mutual interference mitigation in automotive radar. 2021.

[J4] Bose, A., Tang, B., Soltanalian, M., and Li, J.: Mutual interference mitigation for

multiple connected automotive radar systems. 2021.

1.1.2.3 Part II-C: Receive Filter Design for One-Bit Cognitive Radar

It is important to note that some of the most power-consuming modules in a radar system

are the digital sampling devices and the ADCs. As we have discussed in the previous sections

(cf. Section 1.1.2.2), recently, in many civilian applications, the demand for low SWaP-C radar

systems has increased significantly [25–27,67]. High precision RF sampling in digital radar is a

barrier to meet such demands as in most sophisticated radar techniques, the receiver is assumed

to have high precision ADC that are bulky and consume the most power. On the other hand,
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using a lower precision ADC in a sensing system puts more burden on post-processing techniques.

In classical signal processing, the quantization noise is usually modeled under the assumption of

additive noise that minimally affects the accuracy of algorithms that consider the infinite or very

high precision case, especially when the sampling interval is low [68]. The assumption of high-

precision data is, however, inappropriate when the measurements are extremely quantized to

very low bit-rates. In the most extreme case, the sampling process is done by utilizing a simple

sign comparator and the received signal is represented using only one bit per sample [67, 69].

The one-bit RF sampling strategy used in digital radar is a promising approach to meet these

demands in practical low resource scenarios [67].

One-bit quantizers, on one hand, are not only low SWaP-C devices but also much faster

and simpler than the traditional digital quantizers, thus significantly reducing the complexity

of hardware implementation. On the other hand, it is now well known that signals can be

recovered with high accuracy from one-bit measurements, thanks to recent advancement in

sensing theory, however at a slightly increased computational cost [70–73]. In an one-bit radar

system, the conventional radar measurement scheme simply is replaced by the direct one-bit RF

sampling as shown in Figure 7. The aforementioned increased cost incurs from the fact that by

using a one-bit receiver, the knowledge of statistics of the surroundings is available only in a

normalized sense and such uncertainties prohibit one from using traditional algorithms.

In cognitive active sensing applications, one of the objectives is to jointly optimize the

transmit sequence, as well as the receive filter as a smart listener using a priori knowledge of

interference and clutter in order to increase the estimation accuracy of the target parameters
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Figure 7. RF sampling front end of one-bit radar with unknown dithering.

[74–76]. In radar literature, clutter refers to the unwanted echoes that are usually correlated

with the transmitted waveform, while the signal independent noise as well as (adverse) jamming

signals are termed as interference [75]. A natural way to minimize the effects of clutter and

interference is to aim for maximization of the signal-to-clutter-plus-interference ratio (SCIR)

of the received energy. In such cases, the knowledge of interference statistics (particularly

the covariance) plays a vital role in the effective design of the radar waveforms. In a one-

bit radar, however, the received signal and interference statistics are available subject to some

uncertainties, as the interference covariance matrix can be obtained merely in a normalized

form. Chapter 8 formulates such a waveform optimization problem and devises an algorithm

to design the transmit waveform and the receive filter of one-bit radars given uncertainties in

acquired interference statistics.

This chapter is based on the following article:
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[C6] Bose, A., Ameri, A., and Soltanalian, M.: Waveform design for one-bit radar systems

under uncertain interference statistics. In 2019 53rd Asilomar Conference on Signals,

Systems, and Computers, Pacific Grove, CA, USA, November 2019.

1.1.2.4 Part II-D: Deep Radar

Bear in mind that all the aforementioned techniques rely on different physics-based para-

metric mathematical models that are central to the understanding and design of complex active

sensing systems. These models, however, usually do not consider the sophisticated interactions

intrinsic to the system and thus fail to fully elaborate a complex system. Purely data-driven

or learning-based models, on the other, hand shed light on these blind spots. Such approaches

do not rely on explicit mathematical models for data interpretation and thus have broader ap-

plicability, although at the cost of lower interpretability. On one hand in modern times, the

continually exploding amount of information produced by humans and machines has created a

unique opportunity for learning from the data itself. On the other hand, the advent of low-cost

and powerful computing resources (e.g., Graphical processing units (GPUs), and more recently

Tensor processing units (TPUs)) have made it possible to realize highly complex computations

within fractions of seconds. These two crucial factors together have paved the way for deep

neural networks (DNNs) and machine learning-based models to showcase their effectiveness in

modern socio-economic and engineering applications. Interestingly, such deep learning-based

methods employ non-linear transformations of a generic linear structure to obtain an abstract

representation of the underlying data. In contrast, they do lack interpretability and thus relia-
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bility by being often ignorant of the underlying mathematical intricacies which are implicit in

model-based signal processing.

In the scientific community, hence, there has been a demand to develop hybrid frameworks

that enjoy the fruits of both model-based and data-driven approaches to enhance the accuracy,

computational complexity, and efficiency of the data acquisition model in complex, large-scale

scenarios. Recent advancement in the deep unfolding networks (DUNs) has paved the way to

combine well-established signal processing approaches with data-driven architectures [77–81].

Deep unfolding architectures rely on the already established optimization or inference frame-

works that are iterative in nature. The iterations of such algorithms are then unfolded onto the

layers of a deep network, where each layer closely resembles one iteration of the underlying algo-

rithm. This way such hybrid methods benefit not only from the low computational complexity

of deep architectures but also from the flexibility and reliability of model-based methods.

Figure 8 depicts the stark comparison between DNNs and DUNs with respect to their general

architectures. Deterministic DNNs are constructed in a fashion that inference is straightforward

where the output of the network is obtained via consecutive matrix multiplications resulting in

a fixed computational complexity inference model. However, they are neither necessarily faith-

ful nor aware of the underlying mathematical model. Furthermore, massive networks often are

difficult to handle, making them impractical for real-time machine learning (RTML) applica-

tions. On the contrary, DUNs incorporate sparser networks responsive to RTML by employing

problem-level reasoning in the deep architecture. The success of DUNs in classical signal process-
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Figure 8. The comparison of general architectures between (a) generic DNNs and (b) DUNs.

ing has called for a new research paradigm in the radar community to investigate the usability

of deep networks in radar systems or in other words deep radars.

In Chapter 9, we propose a novel technique to synthesis waveform for radar systems using

such a deep unfolded network. Note that the goal of smart waveform design for radar systems is

to acquire the maximum amount of information from the desirable sources in the environment,

where in fact, the transmit signal can be viewed as a medium that collects information. In light

of this, we employ the deep unfolding framework that aims to take the well-established iterative
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approaches, and design a deep architecture for waveform design in radar systems under uni-

modular signal constraint, and boost the performance of the underlying inference optimization

algorithm in terms of speed of convergence and effectiveness.

This chapter is based on following published article:

[C7] Khobahi, S., Bose, A., and Soltanalian, M.: Deep Radar Waveform Design for Effi-

cient Automotive Radar Sensing. In 2020 IEEE 11th Sensor Array and Multichannel

Signal Processing Workshop (SAM), Hangzhou, China, June 2020.

In each chapter, several numerical examples are provided to evaluate the performance of

each of the proposed methods. When applicable, the results are further compared with the

state-of-the-art methods. Finally, Chapter 10 summarizes the contributions and concludes

the thesis.
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Signal Processing (ICASSP), pages 4691–4695, New Orleans, LA, March 2017.
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Acoustics, Speech and Signal Processing (ICASSP), pages 4734–4738. IEEE, Calgary,
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CHAPTER 2

CONSTRUCTING BINARY SEQUENCES WITH GOOD

CORRELATION PROPERTIES: AN EFFICIENT

ANALYTICAL-COMPUTATIONAL INTERPLAY

Overview: Binary sequence sets with asymptotically optimal auto/cross-correlation peak sidelobe

level (PSL) growth have been known in the literature for a long time, and their construction has been

studied both analytically and numerically. In contrast, it has been a long-standing problem whether we

can construct a family of binary sequences whose auto-correlation PSL grows in an optimal manner. In

this chapter, we devise a construction methodology for binary sequences with asymptotically optimal

PSL growth using sequence sets with good correlation properties. A key component of the design follows

from the observation that if the PSL of the sequence set grows optimally or nearly optimally, then the

PSL of the constructed binary sequence will experience similar growth as a consequence. The proposed

construction is simple-to-implement and is shown to be accomplished in polynomial-time. With such a

construction, we not only bridge the gap between analytical construction and computational search but

also pave the way to settle the long-standing design problem of binary sequences with optimal growth

of the auto-correlation PSL.

Parts of this chapter is taken from published journal article [82], and its conference version [83].
Copyright c○ 2017, 2018, IEEE.
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2.1 Introduction

Binary sequences with small auto/cross-correlation also referred to as good correlation prop-

erties form an essential component of a large set of information processing systems, ranging from

information collection in active sensing to information embedding and transmission in commu-

nication systems. For instance, they are widely used in Code Division Multiple Access (CDMA)

schemes to distinguish between different users while at the same time enabling the system to

synchronize [84], whereas in active sensing applications, usage of such sequences for pulse mod-

ulation paves the way to conveniently retrieve the received signal from the range bin of interest

by employing a matched filter, and thus suppress inputs from other range bins [85].

Although several families of sequence sets with small auto/cross-correlation have been pro-

posed in the past decades, sequences with low auto-correlation have seen little progress in the

analytical arena (see Section 2.2 for details). In fact, the task of finding sequences with low

auto-correlation is infamously known as a difficult computational problem. The complexity of

the optimization problems associated with low auto-correlation binary sequences is discussed

in [86–88]. On the other hand, the rapid increase in computational resources has motivated

the researchers to perform an exhaustive search of such sequences with larger lengths compared

with what could have been considered before. The literature on this topic is quite extensive

(e.g., see [15, 20, 85, 86, 89–113]). Nonetheless, we note that an exhaustive search over a set

of binary sequences with a cardinality larger than 1020 (i.e., approximate sequence lengths of

N ∼ 100 or larger) is still deemed to be impractical1 using the current standard computational
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tools. On the contrary, to analytically construct such binary sequences, requires only a little

computational cost. In this chapter, we bridge the gap between exhaustive search, also referred

to as computational design, and analytical constructions of binary sequences by resorting to a

polynomial-time approach that exploits the strengths of both worlds. The proposed method

constructs the binary sequences from sequence sets with good correlation properties through a

non-convex quadratic program that can be handled in polynomial-time. In particular, we show

that if the PSL of the sequence sets grows optimally in the periodic case and nearly optimally in

the aperiodic case, the PSL of the constructed binary sequences also grows in a similar manner.

As a cornerstone of our performance analysis, we present several examples of binary sequence

design and the obtained PSL values. Besides the usual design examples, we also present some

interesting results on the application of the constructed sequences in information embedding

applications, where a high degree of both imperceptibility and robustness must be guaranteed

(see e.g., [114–118], and the references therein). We will use the optimally constructed binary

sequences in lieu of sequence families commonly used in practice such as m-sequences, Gold,

or Kasami sequences in the pre-existing watermarking frameworks to ensure robustness and

imperceptibility of the authorized watermark information and enhance the efficiency of the

information embedding algorithm. While being one of many, the presented example hints at

the significant potential of our approach in practical applications.

1Assuming that a standard PC can handle 5× 109 simple math operations per second, an exhaustive
search over a space of 1020 sequences is guaranteed to take more than 634 years.
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The rest of this chapter is organized as follows. The formulation as well as a useful back-

ground review of the problem is provided in Section 2.2. Our design approach is presented

in Section 2.3. Section 2.4 is dedicated to the numerical results, including discussions on the

information embedding application. Finally, Section 2.5 concludes the chapter.

2.2 Preliminaries

2.2.1 Goodness of a Sequence

We start by developing the underlying concepts that define what constitutes the goodness of

a sequence. Let x = [x(1) x(2) · · · x(N)] be a complex sequence of length N where x(n) ∈ Ω.

Here Ω is the set of alphabets that are chosen appropriately to fit the application. The aperiodic

(r(k)) and periodic auto-correlations (c(k)) of the sequence x are given, respectively as [2],

r(k) =
N−k∑
n=1

x(n)x∗(n+ k) = r∗(−k), 0 ≤ |k| ≤ N − 1 (2.1a)

c(k) =

N∑
n=1

x(n)x∗(n+ k)mod N , 0 ≤ |k| ≤ N − 1 (2.1b)

It is interesting to note that both auto-correlations are symmetric with respect to the in-phase

lag (i.e., k = 0) a.k.a mainlobe. Furthermore, this in-phase component in both auto-correlations

represents the energy, E =
∑N

n=1 |x(n)|2 of the sequence. The problem of designing sequences

for good correlation properties usually seek to minimize the effect of out-of-phase (i.e., k 6=

0) components a.k.a the sidelobes. Several metrics have been formulated in the literature to
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quantify the quality of a sequence based on its auto-correlation properties. For instance, the

peak sidelobe level (PSL) is defined as,

PSL , max{|r(k)|}N−1
k=1 . (2.2)

Another metric is integrated sidelobe level (ISL) that can be given as,

ISL ,
N−1∑
k=1

|r(k)|2. (2.3)

Sequences with low PSL and ISL are usually considered to have good correlation properties.

Moreover, Merit factor (MF) is another important metric that can often be found in the liter-

ature and defined as,

MF ,
|r(0)|2

2
∑N−1

k=1 |r(k)|2
=

E2

2ISL
. (2.4)

It is clear that MF is inversely proportional to ISL, and thus designing sequences with good

correlation properties constitutes to maximize the MF. Note that although for the sake of

brevity, we only express these metrics in terms of aperiodic auto-correlation, they can, however

be defined for both periodic and aperiodic cases. For the case of sequence sets, such metrics can

be extended in a similar manner. In the next section, we define these metrics for a sequence set

and formulate the problem.
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2.2.2 Problem Formulation for Sequence Sets

Let X be a set of M sequences of length N denoted as {xm}Mm=1, each having identical

energy of ‖xm‖22 = N . Let xm1 and xm2 be two generic sequences from the set X. In a similar

manner, the aperiodic {rm1,m2(k)} and periodic {cm1,m2(k)} cross-correlations of the sequences

xm1 and xm2 at shift k are given as,

rm1,m2(k) ,
N−k∑
n=1

xm1(n)x∗m2
(n+ k) = r∗m1,m2

(−k), (2.5a)

cm1,m2(k) ,
N∑
n=1

xm1(n)x∗m2
(n+ k)(mod N), (2.5b)

for 0 ≤ k ≤ (N − 1). The aperiodic and periodic auto-correlation of any xm ∈ X can be

obtained from Equation 2.5b and Equation 2.5a by using xm1 = xm2 . Furthermore, the inner

product of xm1 and xm2 is given as xHm1
xm2 = cm1,m2(0) = rm1,m2(0).

In the sequel, we focus on the aperiodic case as well as the periodic case. The periodic cor-

relations are generally considered to be easier to study than their aperiodic counterparts. Often

the study of sequences with good aperiodic correlations concerns obtaining sequences with good

periodic correlation properties and then examine their aperiodic correlations. There has been

a long-standing interest in the study of design methods capable of finding binary sequence sets

whose periodic and aperiodic correlations are, in some measurable sense, collectively small. To

formalize this outcome, several measures of “smallness” have been typically employed, including
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the PSL, defined for the aperiodic (PSLAP(X)) and periodic (PSLP(X)) cases, respectively,

as [119]

PSLAP(X) , max({|rm1,m2(k)|}m1 6=m2;k ∪ {|rm,m(k)|}m;k 6=0), (2.6a)

PSLP(X) , max({|cm1,m2(k)|}m1 6=m2;k ∪ {|cm,m(k)|}m;k 6=0), , (2.6b)

which are the most relevant to our analysis. Consequently, the aperiodic and periodic PSL of a

sequence x can be derived from its auto-correlations as follows,

PSLAP(x) , max(|rm,m(k)|m;k 6=0), (2.7a)

PSLP(x) , max(|cm,m(k)|m;k 6=0). (2.7b)

Likewise, the ISL can also be defined in terms of aperiodic and periodic cross-correlations as,

ISLAP(X) ,
∑

m1 6=m2;k

|rm1,m2(k)|2 +
∑
m;k 6=0

|rm,m(k)|2, (2.8a)

ISLP(X) ,
∑

m1 6=m2;k

|cm1,m2(k)|2 +
∑
m;k 6=0

|cm,m(k)|2. (2.8b)

In the subsequent, we restrict our discussion only to PSL.
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2.2.3 Earlier Results

2.2.3.1 Periodic Auto-correlations of Binary Sequences

In an ideal setup, a binary sequence with all its out-of-phase periodic auto-correlations equal

to zero, is called a perfect sequence [120]. A necessary condition required for a perfect sequence

to exist is given in the following lemma.

Lemma 1. ( [120]) All periodic auto-correlations of a binary sequence x of length N are com-

patible with N mod 4.

PSLP(x) ≥



0 for N ≡ 0 mod 4

1 for N ≡ 1 or 3 mod 4

2 for N ≡ 2 mod 4

(2.9)

It can be concluded from Lemma 1 that the perfect binary sequence can only exist when

the length N is divisible by 4. However, the corollary given in [121] states that there exist

no perfect binary sequence of length N for 4 < N < 548964900. A detailed analysis of the

existence of perfect binary sequences can be found in [120]. Moreover, a binary sequence is

called optimal in the sense that the equality holds in Equation 2.9. Sequence families such as

Legendre, Sidelnikov, and Galois sequences are good examples of optimal sequences with respect

to their periodic auto-correlations [120].

Furthermore, considering sequence sets instead of a single sequence, it is indeed possible to

generate binary sequence sets with periodic PSL asymptotically bounded as O
(√

N
)
. For ex-
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TABLE I

KNOWN BARKER SEQUENCES

Length Codes

2 + −
+ +

3 + + −
4 + + − +

+ + + −
5 + + + − +

7 + + + − − + −
11 + + + − − − + − − + −
13 + + + + + − − + + − + − +

ample, [119] states that the well-known Gold family contains sets of binary sequences of length

N = 2K − 1 and with cardinality M = 2K + 1 where K is odd. The periodic PSL growth

of a Gold sequence set is determined as 1 +
√

2K+1 − 2. Additionally, for even length K, the

Kasami sequence sets can be generated for (N,M) = (2K−1, 2K/2) whose periodic PSL grows as

1 + 2K/2. Another example is the Weil family, that can be constructed for (N,M) = (K, K−1
2 ),

where K is prime, and shows a periodic PSL growth rate of 5 + 2
√
K.

2.2.3.2 Aperiodic Auto-correlations of Binary Sequences

On a related note, the Barker sequences have the ideal property of all out-of-phase aperiodic

auto-correlations are either 0 or 1 in magnitude. According to [120], there is no known Barker

sequence of odd length greater than 13. Table I represents the only known Barker sequences from
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lengths 2 to 13 [122]. In order to the address the presumed absence of long Barker sequences,

researchers have shown interests rather into the study of the asymptotic behavior of the aperiodic

auto-correlations of the sequences. Let XN denote the set of all binary sequences of length N .

The ultimate goal is to optimally compute and understand the asymptotic behavior, i.e., as

N →∞, of

Pmin , min
x∈XN

PSLAP(x). (2.10)

Note that to calculate Pmin numerically for a given sequence length N , even in the most inge-

nious way, requires testing an exponential number of combinations. The exponential term of

the complexity can be reduced from O
(
2N
)
to roughly O

(
1.4N

)
by using more sophisticated

and efficient algorithms [123–125]. The value of Pmin has been computed up to N = 105 in the

literature [125–127] using exhaustive search.

1. Pmin ≤ 1 for N ≤ 5 [120];

2. Pmin ≤ 2 for N ≤ 21 [126], (Note that Pmin = 1 has been essentially obtained for

N = 2, 3, 4, 5, 7, 11, 13 through Barker sequences [122]);

3. Pmin ≤ 3 for N ≤ 48 (see [127] for N ≤ 40, and [123] for N ≤ 48);

4. Pmin ≤ 4 for N ≤ 82 (see [128] for 49 ≤ N ≤ 61, and [124,125] for 61 ≤ N ≤ 70);

5. Pmin ≤ 5 for N ≤ 105 [120].
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In [129], Ein-Dor et al. provided an “educated guess” about the growth of Pmin using a heuristic

argument and conjectured that, as N →∞, we have
Pmin√
N
→ d, where d = 0.435... Historically,

Moon and Moser [108] first studied the asymptotic behavior, as N →∞, of Pmin for the binary

sequences as early as 1968.

Theorem 1. ( [108]) let G(N) be a function of N such that G(N) = o
(√

N
)
, then the sequences

x ∈ XN which have PSLAP(x) > G(N) approaches 1, as N approaches ∞.

Theorem 2. ( [108]) For any fixed ε > 0, the sequences x ∈ XN which have PSLAP(x) ≤

(2 + ε)
√
N logeN approaches 1, as N approaches ∞.

According to Theorem 1 and 2, as N → ∞, for almost all sequences satisfy the condition

G(N) < PSLAP(x) ≤ (2 + ε)
√
N logeN for any ε > 0. Mercer [130] further improved the

upper bound by showing that for any fixed ε > 0, Pmin ≤ (
√

2 + ε)
√
N logeN when N is

sufficiently large. Dmitriev and Jedwab [131] postulated that the typical PSL growth behaves

as Θ(
√
N logeN) and provided experimental evidence for the same.

We note that there are sequence families (i.e., families of single sequences) for which the

aperiodic PSL grows faster than Θ(
√
N logeN). One such example is the sequence family

F = {ψN = 1 : N ∈ N}. Nonetheless, the literature does not currently conclude regarding

the existence of any sequence family whose asymptotic aperiodic PSL grows like the lower

bound o
(√

N
)
, nor even like Θ(

√
N). Furthermore, it has been shown in [91] that the average

value of the PSL of m-sequences of length N = 2m − 1 exhibits a growth rate of Ω(
√
N)

and O
(√

N logeN
)
. However, the assertion that the asymptotic PSL of such sequences has a
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growth rate of O
(√

N
)
, which appears frequently in the radar literature, “is concluded to be

unproven and not currently supported by data” [91]. However, aperiodic correlations of families of

unimodular sequences, namely Frank and Chu sequences show optimal nature in an asymptotic

sense. In particular, [120] suggests that there exists an infinite number of unimodular sequences

of length N that have the aperiodic PSL growth proportional to
√
N .

Sequence sets with aperiodic PSL values behaving like O
(√

N
)

as N → ∞ are usually

referred to as asymptotically optimal owing to the fact that their aperiodic PSL growth has

similar behavior to that of the well-known Welch PSL bound [132]. We refer the interested

reader to [91] for further details on this aspect. Note that finding sequence sets with such

behavior is an achievable goal [84, 119] at least computationally. In particular, such sequence

can be conveniently designed via numerical tools such as fast Cyclic Algorithm-New (CAN)

algorithms (see, e.g., [20, 85, 133]), MISL algorithm [110], ADMM approach [134], ISL-NEW

algorithm [135] among others.

By tapping into the potential of sequence sets in achieving an asymptotically optimal ape-

riodic PSL growth, in the following, we propose a construction algorithm of binary sequences

whose aperiodic PSL grows like O
(√

N
)
.

2.3 The Proposed Construction

In this section, we show that sets of sequences with good correlation properties can be used

as bases for designing binary sequences with good auto-correlation. Observe that, for any subset

of the sequence sets the PSL growth optimality result holds, as considering a subset only can
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decrease the PSL. Let X = {x1,x2, · · · ,xM} be such a subset of sequences of length N with

‖xm‖22 = N, ∀ m, having good correlation properties; namely, X is constructed to achieve

ISLAP(X) ,
M∑
m=1

∑
0<|k|<(N−1)

|rm,m(k)|2 +

M∑
m1=1

∑
m2 6=m1

N−1∑
k=−(N−1)

|rm1,m2(k)|2 (2.11)

that is as small as possible. We assume that 2 ≤ M � N , and particularly that M behaves

as O (1) with respect to sequence length N . The lower bound of the aperiodic ISL metric in

Equation 2.11 is given by [133]

BISLAP (X) , N2M(M − 1). (2.12)

Also note that, using the above lower bound one can achieve the well-known Welch lower bound

on PSLAP(X):

BPSLAP (X) , N

√
M − 1

2NM −M − 1
. (2.13)

Interestingly, it was shown in [133] that the above lower bounds for the aperiodic ISL and PSL

metrics can be approached conveniently via computational design algorithms such as the fast

CAN algorithm in [85]. With this in mind, we further observe that

PSLAP(X) ∼
√
M − 1

2M

√
N (2.14)
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as N →∞, which implies

PSLAP(X) .
1√
2

√
N. (2.15)

2.3.1 Approaching the Optimal PSL Growth

Let b be a binary sequence (with ±1 entries) obtained by a linear combination of the se-

quences {xm}, viz.,

b = w1x1 + w2x2 + · · ·+ wMxM = Xw (2.16)

where

X =

[
x1 x2 · · · xM

]
, and

w =

[
w1 w2 · · · wM

]T
∈ CM .

Note that although X and w can be complex vectors, their product Xw is not necessarily

complex-valued.

Theorem 3. Let X be a set of M sequences each of length N , whose aperiodic PSL is asymp-

totically upper bounded as in Equation 2.15. In such a case, the aperiodic PSL of the binary

sequence b = Xw of Equation 2.16 will be asymptotically upper bounded by
µ2

√
2

√
N where

µ = ‖w‖1 =
∑M

m=1 |wm|.
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The significance of Theorem 3 stems from the fact that the asymptotic growth of the ape-

riodic PSL of the generated binary sequence behaves similarly as that of the original sequence

set. The proof of the Theorem 3 goes as follows. The aperiodic auto-correlation lags of b are

given by

rb(k) =
N−k∑
l=1

b(l)b∗(l + k) (2.17)

=
N−k∑
l=1

(
M∑

m1=1

wm1xm1(l)

)(
M∑

m2=1

w∗m2
x∗m2

(l + k)

)

=

M∑
m1=1

M∑
m2=1

(
wm1w

∗
m2

N−k∑
l=1

xm1(l)x∗m2
(l + k)

)

= wHRkw

where [Rk]m1,m2 = rm1,m2(k). It follows from Equation 2.17 that

|rb(k)| ≤
M∑

m1=1

M∑
m2=1

|wm1 ||wm2 ||rm1,m2(k)| (2.18)

≤ max
m1,m2

{|rm1,m2(k)|}
(

M∑
m1=1

M∑
m2=1

|wm1 ||wm2 |
)

≤ PSLAP(X) ‖w‖21.

As a result, using Equation 2.15 we have that

PSLAP(b) .
µ2

√
2

√
N. (2.19)
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In order to determine the growth rate of µ, observe that

[
XHX

]
m,n

=


N m = n,

αm,n m 6= n,

m, n ∈ {1, 2, · · · ,M}, (2.20)

where according to Equation 2.13,

|αm,n| ≤ N
√

M − 1

2NM −M − 1
.

Let X = UΣV H represent the Singular Value Decomposition (SVD) of X, where V and U are

complex unitary matrices of size M ×M and N ×N , respectively, and Σ is an N ×M diagonal

matrix. Note that XHX = V Σ2V H , where

Σ2 =


|σ1|2 0

. . .

0 |σM |2

 (2.21)

with {σm}Mm=1 being the singular values of X.

Now observe that,

V Σ2V H = XHX , NIM +Q, (2.22)
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where,

‖Q‖F ≤ N
√

(M2 −M)

(
M − 1

2NM −M − 1

)
. (2.23)

As a result,

|σm|2 = eTmΣ2em = N + eTmV
HQV em. (2.24)

The bound in Equation 2.23 implies that

|eTmV HQV em| ≤ N
√

(M2 −M)

(
M − 1

2NM −M − 1

)
. (2.25)

Consequently, one can easily verify the following:

|σm|2 ≥ N −N
√

(M2 −M)

(
M − 1

2NM −M − 1

)
. (2.26)

Further note that,

‖X†‖2F =

M∑
m=1

1

|σm|2
(2.27)

≤ M

N −N
√

(M2 −M)

(
M − 1

2NM −M − 1

) .



51

Moreover as X†X = IM , we conclude that w = X†b, and therefore,

‖w‖22 ≤ ‖X†‖2F ‖b‖22 (2.28)

≤ M

1−
√

(M2 −M)

(
M − 1

2NM −M − 1

) .

Note that, due to the Cauchy-Schwarz inequality,

(
M∑
m=1

|wm|
)2

≤
(

M∑
m=1

|wm|2
)(

M∑
m=1

1

)
. (2.29)

It follows from the above that

µ = ‖w‖1 (2.30)

≤M
√√√√√ 1

1−
√

M(M − 1)2

2NM −M − 1

, f(M,N),

where

lim
N→∞

f(M,N) = M, (2.31)

showing that µ behaves asO (1) with respect to the sequence lengthN , asN grows large. Finally,

from Equation 2.19 and Equation 2.31 one can observe that PSLAP(b) behaves like O
(√

N
)
.
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This conclusion is summarized in Theorem 4. Note that, a similar asymptotic behavior of the

periodic PSL of a binary sequence can also be drawn from the above formulations, with minor

modifications. A detailed discussion on this observation, however, is omitted here in for the

sake of brevity.

Theorem 4. Let X be a matrix comprised of M sequences each of length N , whose aperiodic

PSL grows like O
(√

N
)
. A binary sequence created as b = Xw with w ∈ CM will similarly

have an asymptotic aperiodic PSL growth bounded as O
(√

N
)
.

Remark 1. It is interesting to observe that |σm|2 = N occurs iff all the sequences included in

X are orthogonal, which will follow in a zero cross-correlation case. However, in a usual case

where the sequences only have a low cross-correlation, the orthogonality condition is nearly met,

which would lead to a µ that is upper bounded at a value larger than M . �

2.3.2 The Optimal Construction

In the sequel, we investigate an optimal approach to constructing b through considering X

as a basis—namely, we can construct the binary vectors b using the optimization problem

min
w,b

‖Xw − b‖22 (2.32)

A possible approach to deal with constructing such binary sequences is to apply a cyclic mini-

mization of Equation 2.32; namely, for fixed b the minimizer w of Equation 2.32 is given by

w = X†b. (2.33)
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Figure 9. An illustration of the simplified geometry of construction from the linear combination
of sequence sets, and the binary sequence with good correlation in three-dimensional case.

Moreover, for fixed w the minimizer b of Equation 2.32 can be obtained as

b = sign (<(Xw)) . (2.34)

Figure 9 illustrates the simplified geometry of such a construction from a linear combination of

sequences, and the binary sequences in their neighborhood for the three-dimensional case.

Remark 2. The careful reader may argue that the above approach, while optimal, does not

guarantee finding a binary vector in the subspace spanned by the sequence sets—particularly as

M � N . This is a valid observation, and pertains to situations where
∥∥∥b̃−Xw∥∥∥

2
is non-zero

at the optimum b̃. Hence, we will have a non-zero fitting error vector ε , b̃ − Xw, whose
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`2-norm is being minimized in our construction. Consequently, the auto-correlation sequence in

this case can be rewritten as

rb̃(k) =

N−k∑
l=1

b̃(l)b̃
∗
(l + k) (2.35)

=
N−k∑
l=1

(
M∑

m1=1

wm1xm1(l) + ε(l)

)(
M∑

m2=1

w∗m2
x∗m2

(l + k) + ε∗(l + k)

)

=

M∑
m1=1

M∑
m2=1

(
wm1w

∗
m2

N−k∑
l=1

xm1(l)x∗m2
(l + k)

)
+

N−k∑
l=1

ε(l)ε∗(l + k)

+

[
M∑

m1=1

(
wm1

N−k∑
l=1

xm1(l)ε∗(l + k)

)
+

M∑
m2=1

(
w∗m2

N−k∑
l=1

x∗m2
(l + k)ε(l)

)]

= rb(k) + rε(k) + 2<rbε(k),

where {rb(k)} is the desired auto-correlation of the binary sequence, and the extra terms {rε(k)}

and {rbε(k)} represent the auto-correlation lags of ε and the cross-correlation lags between the

desired binary sequence b and ε, respectively. Interestingly, one can expect that both extra

terms {rε(k)} and {rbε(k)} to be small, even if ε is non-zero. This is due to the fact that the

optimality of b̃ leads to an ε that has noise-like properties, including a low auto-correlation, as

well a low cross-correlation with the binary vector of interest [136]. Therefore, the proposed

algorithm performs well even if ‖b − Xw‖ 6= 0, as is also evident by the numerical results

presented in section 2.4. �

Interestingly, the global optimization of Equation 2.32 for finding the optimal binary se-

quences with good auto-correlation can be accomplished in polynomial-time. To see how this
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goal can be achieved in practice, note that by substituting the minimizer w in Equation 2.32,

the design problem boils down to the following minimization problem:

min
b

∥∥∥XX†b− b∥∥∥2

2
(2.36)

Now considering that XX† is Hermitian, the objective function of the above minimization

problem can be rewritten as

∥∥∥XX†b− b∥∥∥2

2
=
(
XX†b− b

)H (
XX†b− b

)
(2.37)

= bHXX†XX†b− 2bHXX†b+ bHb

= − bHXX†b+N.

Therefore, Equation 2.36 is equivalent to the computation of the binary vector that maxi-

mizes the quadratic form bHXX†b; more precisely,

bopt , arg max
b

bHXX†b (2.38)

in which rank(XX†) = M , that specifically behaves as O (1) with respect to the problem

dimension N . The maximization of a positive (semi-)definite complex quadratic form over a

binary vector set is an NP-hard problem in general and can be tackled by exhaustive search when

the quadratic form is full-rank. However, as the quadratic form in the above is rank-deficient,

the optimum can be found with polynomial complexity in the sequence length N [137, 138]. In
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particular, [137] proposes an O
(
N2M

)
cost algorithm that constructs a set of candidates with

cardinality O
(
N2M−1

)
including the global optimum of Equation 2.38 and reduces the size of

the feasible set from exponential to polynomial. This is due to the fact that the number of local

optima for rank-deficient quadratic forms such as Equation 2.38 enjoys a polynomial growth,

whereas that of a full-rank quadratic form grows exponentially with the sequence length N .

Note that the approach presented above can easily be extended to the design of Q-phase (also

known as Q-ary) sequences. To this end, one only needs to perform the maximization of the

quadratic form in Equation 2.38 over the set of Q-phase vectors in lieu of binary vectors; which

can be completed with polynomial complexity similar to the binary case (see [138] for details).

Finally, the algorithm for the construction of the desired binary sequences from the sequence

sets with good correlation is summarized in Algorithm 1.

Remark 3. We note that norms other than `2 can also be easily used if one resorts to a

cyclic/local optimization of the non-convex problem in Equation 2.32. But the above discussion

reaffirms the key motivation behind using the `2-norm for our optimization approach: by using

`2-norm, one can formulate the original design problem as a rank-deficient quadratic optimiza-

tion problem. This particular formulation, used along with the computational approach of [137],

guarantees not only to (i) find the global optimum sequence of Equation 2.32, but also to (ii)

achieve this goal with a polynomial-time computation cost. These guarantees are central to the

promise of the chapter, namely finding binary sequences with desirable correlation properties in

polynomial-time. Such critical guarantees are not available when using other metrics such as `1

or `∞ norms. �
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Algorithm 1 For construction of binary sequence families with optimal PSL growth
Input: Set N to the lowest feasible sequence length.
1: Form X from a well-known family of sequence sets with good correlation properties such as

Gold, Kasami, Legendre, Weil families or sequence sets generated by a numerical approach
such as the CAN algorithm [85].

2: Find w using Equation 2.33.
3: Find b using Equation 2.34.
4: Find bopt using Equation 2.38 following the efficient approach proposed in [138].
5: Increase N to the next available value for which the sequence sets can be generated.
6: Repeat steps 1–4.

2.4 Numerical Simulations

In this section, several numerical examples will be presented to examine the performance

of our construction in approaching an optimal growth of the PSL metrics. We also show that

our optimally constructed sequences are effective in information embedding applications in the

sense that they outperform the traditionally employed sequences.

2.4.1 Construction of the Sequences

We construct new families of binary sequences by leveraging sequences drawn from well-

known sequence sets including Gold [139], Kasami [140], Weil [141] and Legendre sets [142,143].

We compare the growth of the obtained periodic PSL values (denoted by Popt) of the optimally

constructed sequences bopt with the function
√
N , where N denotes the sequence length. Our

main interest is to test (through numerical investigations) our claim that the PSL of constructed

sequences grows like O
(√

N
)
. Moreover, we show that although CAN algorithms are not very

effective in finding binary sequences with low PSL, they can be effectively used to lower the PSL
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Figure 10. The PSL growth of constructed binary sequences vs. length N obtained from
different sequence families: (a) Gold sequence, (b) Kasami sequence, (c) Weil sequence and (d)

Legendre sequence.
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of the obtained sequences. This is achieved by using the obtained sequences as initialization for

the CAN algorithms. The notations used for the sequence families in the forthcoming discussions

and the length of sequences that are used are given in Table II.

For comparisons, we make use of the PN sequence as it is very easy to generate for virtually

any length of power 2 and is frequently used in literature. We calculate the variations of Popt with

the sequence length N and compare the outcome with
√
N for the constructed sequences from

different sequence sets. Figure 10 provides evidence of an almost constant nature of Popt/
√
N

as N grows large (from which we conclude that the original function must grow as O
(√

N
)
).

Figure 10 also compares the value Popt/
√
N of obtained sequences with that of the sequences

from the CAN algorithm (CAN-aided) by using the obtained sequence as initialization, and

also with that of PN sequences. It can be observed that the CAN algorithm can effectively

reduce the PSL of the obtained sequences from our construction. As a result, by our analysis,

the CAN-aided sequences should also have an optimal PSL growth. The plots also appear to

support the claim that the PSL of PN sequences grows as O
(√

N logeN
)
.

2.4.2 Information Embedding Application

Finally, it is of interest to see the performance of our construction in a practical example.

We use our constructed sequences as orthogonal feeding sequence in a certain digital water-

marking algorithm to examine its effectiveness towards imperceptibility and robustness of the

watermarked information. The scheme followed in this chapter invisibly embeds a binary water-

mark image into a gray-scale cover image which makes the information about the authentication

more secure. The watermarking technique described in [114,115] employs a Pseudo Noise (PN)
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TABLE II

NOTATION AND NUMBER OF SEQUENCES

Notation Sequence name Maximum length of
sequences (N)

PPN PN sequence 213 − 1 = 8191

SGold
Binary sequence constructed
from Gold sequence 213 − 1 = 8191

SKasami
Binary sequence constructed
from Kasami sequence 212 − 1 = 4095

SWeil
Binary sequence constructed
from Weil sequence

3581 (first 500
odd prime numbers)

SLegendre
Binary sequence constructed
from Legendre sequence

3581 (first 500
odd prime numbers)

sequence as its primary feeding sequence. In this chapter, instead of using PN sequences we

use our constructed binary sequences for the embedding purpose. The rest of the algorithm

closely follows the technique described in [114]. The detailed block diagram of the algorithm is

described in Figure 11.

In order to examine the effectiveness of the aforementioned watermarking technique using the

binary sequences generated by the proposed algorithm, multiple experiments are conducted on

several random test images. We use a set of gray cover images of standard size for this purpose.

For each test image, a qualitative analysis has been drawn by measuring the Peak Signal to

Noise Ratio (PSNR) between the original cover image and the watermarked image, and further

compared with the widely used PN sequences. At the receiver, the watermark is extracted from

the watermarked image by using the orthogonal codes, and evaluation of extracted watermark
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Figure 11. Block diagram of watermark embedding and extraction algorithm using generated
binary sequence.

is done by measuring Normalized Cross-correlation (NC) with the original watermark—see [114]

for details.

Figure 12 compares the variation of PSNR (dB) in the watermarked image and NC of

original and extracted watermarks with varying watermarking strength or gain factor (k) for

the binary sequences constructed from Gold, Kasami and, Legendre sequence families with that

of PN sequences. The overall PSNR decreases and the NC increase with increasing k. However,

in all cases, our constructed sequences outperform the PN sequence. It can also be observed
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Figure 12. The variation of (a) PSNR (dB) and (b) NC with Gain factor (k) for different
sequence sets: PN sequence (PPN) and binary sequence constructed from Gold sequence

(SGold), Kasami sequence (SKasami) and Legendre sequence (SLegendre).

from Figure 12 that the binary sequence obtained from the Kasami sequence set performs best

in both cases. Also to comment on the robustness of the embedding scheme, several spatial

and geometrical attacks are applied to the watermarked image. The quality of the watermark

extracted from the attacked image is qualitatively analyzed using NC between the original and

extracted watermark. Table III summarizes the results from various attacks for binary sequences

constructed as described before in comparison with the PN sequence. Similar to the previous

case, the constructed binary sequences appear to outperform the PN sequence, with SKasami

producing the best result.
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TABLE III

COMPARISON OF RESULTS FROM VARIOUS ATTACKED WATERMARKED IMAGE
AT GAIN FACTOR K = 2

Name of the Attack
NC for Sequences

PPN SGold SLegendre SKasami

Lowpass filter 0.9362 0.9563 0.9725 0.9854

Wiener filter 0.9073 0.9234 0.9541 0.9635
Laplacian high
pass filter 0.9463 0.9547 0.9623 0.9841

Edge sharpening 0.9236 0.9339 0.99521 0.9751

JPEG compression 0.9523 0.9712 0.9795 0.9911

Histogram equalization 0.9562 0.9743 0.9829 0.9863

Gaussian noise 0.9672 0.9645 0.9861 0.9910

Speckle noise 0.9629 0.9719 0.9851 0.9884

Salt and Pepper noise 0.9503 0.9739 0.9791 0.9938

2.5 Concluding Remarks

In this chapter, a polynomial-time construction approach for designing binary sequences with

optimal PSL growth was proposed. The suggested approach taps into the potential of sequence

sets in achieving an asymptotically optimal PSL growth both in a periodic and aperiodic sense,

and makes effective use of efficient algorithms available for (a specific subset of) non-convex

quadratic optimization problems. Several numerical examples have been presented to investigate

the PSL growth of the constructed sequences, particularly for rather long sequences (with length

N ∼ 212). Moreover, it was shown that the constructed sequences can outperform the widely

used PN sequence in information embedding applications.



CHAPTER 3

DESIGNING SIGNALS WITH GOOD CORRELATION AND

DISTRIBUTION PROPERTIES

Overview: Sequences with good correlation and distribution properties play a central role in

various areas of signal processing. In this chapter, we propose an efficient computational framework for

designing sequences with two key properties: (i) an impulse-like auto-correlation, and (ii) a probability

distribution of sequence entries which is uniform in nature; although the results can be easily extended

to an arbitrary distribution. The proposed method is based on utilizing the Fast Fourier Transform

(FFT) operations and thus can generate very long sequences in small time frames.

3.1 Introduction

As discussed in previous chapters, sequences with good correlation properties are necessary

components in a wide range of signal and information processing applications including active

sensing, spread spectrum communication systems, radar sensing, signal synchronization, and

cryptography [3, 24, 85, 93, 122, 144, 145]. Although, one can find a rich literature on the design

of signals with small auto-correlation sidelobe [7, 20, 85, 90, 91, 93, 95], there has been very little

effort on designing sequences possessing good correlation and good distribution properties which

has crucial potential applications in biomedical system identification [146]. In this chapter, we

focus on this critical aspect missing from the recent signal design approaches developed in the

Parts of this chapter is taken from published conference article [113]. Copyright c○ 2018, IEEE.
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literature— i.e., the distribution properties of the signal itself. Some important applications

such as biomedical signal processing often require sequences with good correlation properties

as well as a user-defined distribution property for the purpose of system identification. Such

an application in the context of Parkinson’s Disease (PD) diagnosis and treatment, has been

discussed in Section 3.1.1.

In our approach, we will use the Cyclic Algorithm-New (CAN), a computational framework

introduced in [20], in order to achieve low out-of-phase auto-correlation, and at the same time,

achieve the desired distribution by incorporating a sort-based algorithm to form partitions for

various distribution bins. Note that the CAN framework uses FFT operations as its core com-

putation and thus, can be effectively used to design longer sequences (up to N ∼ 106 or even

more).

The remainder of the chapter is organized as follows. The application of signals with good

correlation and good distribution properties in PD diagnosis and treatment has been put forward

in Section 3.1.1. Section 3.2 talks about the necessary background required for the proposed

algorithm which is discussed in Section 3.3. Numerical simulation results are given in Section

3.4. Section 3.5 then summarizes the chapter with a brief discussion about aspects of future

work.

3.1.1 An Application to Biomedical System Identification

According to the current practice, a Unified Parkinson’s Disease Rating Scale (UPDRS) is

used to evaluate and diagnose the status of PD in a patient [146]. Such an approach, however, is

very time-consuming and prone to human error. Hence, it is of great interest to search for tools
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that facilitate a quick and objective quantification of the PD status. The new framework of

eye-tracking for quantifying (or system identification [3] of) the human smooth pursuit system

(SPS) promises a solution to such difficulties with a revolutionary potential [147]. It has been

concluded in the literature that not only the human SPS is meaningfully affected by the PD,

but also the seriousness of such affliction is correlated to the status of the disease [148–150].

Nonetheless, among the several methods for SPS quantification, eye-tracking is the only non-

invasive method suggested by the literature.

In an eye-tracking system, the visual stimulus consists of a moving circle whose trajectory

is the signal to be designed, and the eye’s gaze direction is the output. One approach for

the SPS analysis is the system theory approach where the SPS is mathematically modeled as

a parameterized dynamical system correlating gaze direction to a visual stimulus using the

behavior of the SPS by imposing general restrictions on the model variables. In such a scenario,

sequences with not only good correlation properties but also a well-defined distribution are

required in order to identify the system with a high degree of accuracy [146].

It is widely known that a judicious design of the probing signals has a significant impact on

the performance of identification. In particular, it was shown that signals with good correlation

properties (i.e., with low out-of-phase auto-correlation lags) are influential for high-performance

SPS quantification, owing to their unique spectral properties [6]. The goal of this chapter is

thus not only to design and study signals possessing good correlation properties but also signals

that follow a given distribution; preferably a uniform distribution, however can be converted to

any other distributions.
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3.2 Problem Formulation

The main objective of this chapter is not only on the minimizing the ISL or ISL-related

metrics over a set of sequences, but also the elements of generated sequences should be sampled

from a uniform distribution. For the definition of ISL and other metrics, please refer to Section

2.2.1. The significantly large application area of sequences with good correlation (in particular,

with small ISL) has produced an active area of research in sequence design, and as a result,

there is a rich (yet growing) literature on this topic.

On the other hand, a generic definition of (sequence x with) uniform distribution can be

given as follows [151,152]: The sequence x = {xn}Nn=1 of real numbers can be considered to be

uniformly distributed if for every pair a, b ∈ R with 0 ≤ a < b ≤ 1, the following is satisfied:

lim
N→∞

C([a, b);x)

N
= b− a (3.1)

where, C(E;x) is the counting function defined as the number of values xn (1 ≤ n ≤ N) for

which {xn} ∈ E.

In our proposed method, we achieve sequences with uniform distribution by partitioning the

sequence entries into a number of bins and populating each bin with (almost) the same number

of elements building a uniform histogram). In a discrete sense, for the sake of simplicity, we

rewrite the definition of uniform distribution as follows:
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Theorem 5. A sequence x = {xn}Nn=1 of real numbers partitioned into P equi-spaced bins

denoted as {pi}Pi=1, can be called uniformly distributed if the number of elements in each bin,

denoted as C(pi;x) follows:

∣∣∣∣C(pi;x)− N

P

∣∣∣∣ ' 0, i ∈ {1, 2, · · · , P}, (3.2)

where the above expression is as small as possible, pertinent to cases where N is not perfectly

divisible by P .

Surprisingly, defining a sequence based on its elements’ membership to the bins will also

provide an extra degree of control to modify the distribution of the sequence itself at a later

point.

3.3 The Proposed Method

In the following, we describe in detail our proposed design approach for generating highly

uncorrelated sequences with a uniform distribution.

3.3.1 Construction with Low Correlation

The CAN algorithm in [20] provides an efficient mathematical formalism confirming our

intuitive observation that a sequence with small out-of-phase periodic correlation has an almost

uniform frequency spectrum. Following such observation, the periodic out-of-phase correlations

of a sequence x of length N can be optimized conveniently by following minimization problem:

min
x,v

‖AHx− v‖22 (3.3)
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Algorithm 2 Optimal modification of h according to the edge values, and their corresponding
bins.
Ensure: h, N, P
1: ĥ , {ĥn}Nn=1 initialize n = 1 maxnum ← floor(N/P )
2: while n ≤ N do bin_index ← ceil(n/maxnum)
3: if hn < lower_edge(bin_index) then ĥn ← lower_edge(bin_index)
4: else if hn > upper_edge(bin_index) then ĥn ← upper_edge(bin_index)
5: elseĥn ← hn
6: end ifn← n+ 1
7: end while

where A denotes the N × N (inverse) discrete Fourier transformation (DFT) matrix, whose

elements can be given as,

[A]k,l =
1√
N

exp {j2πkl/N}, k, l = 1, · · · , N (3.4)

where j2 = −1 and v is the representation of x in Fourier domain. Here, x is constrained to

have given distribution, as in Equation 3.2. Observe that, the aperiodic correlations of x can

be given in terms of periodic correlations of the sequence x̃ = [x 0N ]T .

Hence, in the aperiodic case, one can consider the following design problem in frequency-

domain aiming for minimization of the out-of-phase correlations of x:

min
x̃,ṽ

‖ÃH
x̃− ṽ‖22 (3.5)

in which Ã denotes the 2N × 2N (inverse) DFT matrix, and also x is constrained to have

uniform distribution as previously described.
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Algorithm 3 Algorithm for construction of uniformly distributed sequences with low auto-
correlation
Require: sequence length N , number of bins P .
Ensure: x using a randomly generated sequence
1: repeat
2: Compute v̂ using Equation 3.7
3: Compute x̂ using Equation 3.9
4: Compute h using Equation 3.10 and preserve the index of each elements of original

sequence x̂ in Ia(x̂)
5: Partition h into P bins of equal length and compute the edges of each bin
6: Modify the elements of h using Algorithm 2
7: Compute x̄ by restoring the index order previously stored in step 3
8: until |d(s) − d(s−1)| ≤ 10−6 where d = ‖ÃH

x̃− ṽ‖2, and s denotes the iteration number

Note that for a given x̃, the minimization of Equation 3.5 w.r.t. ṽ is straightforward. Let

f , {fn}2Nn=1 = Ã
H
x̃ (3.6)

denote the FFT of x̃. The optimum ṽ, denoted as v̂ can be obtained as

v̂ =
1√
2

[ejψ1 · · · ejψ2N ]T (3.7)

where ψn = arg {fn}, for n = 1, · · · , 2N . Similarly, for fixed ṽ, we denote inverse FFT (IFFT)

of ṽ as, g , {gn}2Nn=1 = Ãṽ.

Observe that,

‖ÃH
x̃− ṽ‖22 = ‖x̃− Ãṽ‖22. (3.8)
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(a) (b)

Figure 13. The initial and final (a) normalized aperiodic auto-correlation, and (b) histogram of
constructed sequence of length N = 103 and P = 20 using the proposed algorithm.

It follows from the above that the minimizer x of Equation 3.5, denoted as x̂ , {x̂n}Nn=1 is

simply given by

x̂n = gn, n = 1, · · · , N. (3.9)

3.3.2 Construction with Uniform Distribution

In this section, we extend our previous formulations to enforce a uniform distribution for the

sequences obtained from the above framework, and particularly Equation 3.8. This goal will be

accomplished by finding the minimizer x of Equation 3.5 that has a uniform distribution. In

other words, the nearest-vector problem in Equation 3.8 is to be solved by a projection on the
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(a) (b)

Figure 14. The initial and final (a) normalized aperiodic auto-correlation, and (b) histogram of
constructed sequence of length N = 104 and P = 250 using the proposed algorithm.

set of sequences with a uniform distribution. Therefore, we will revisit the concept of histogram

equalization.

It is not difficult to verify that the aforementioned projection can be computed by segmenting

the sequence entries into smaller bins, and aiming to achieve a uniform distribution inside these

smaller bins so that by controlling the smaller bins, a sequence with a given distribution can be

generated. The algorithm is as follows: we first sort the sequence entries in an ascending order

to form

h = Sa(x̂) (3.10)
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where Sa(·) denotes a sorting operation (in ascending order) on the vector argument. Along

with sorting, we also preserve the index of each element in the original sequence x̂ in an index

array Ia(x̂).

Next, we partition h into P equi-sized bins, where 1 ≤ P ≤ N . Note that, P = 1 resembles

the whole sequence in one single bin, whereas P = N suggests each bin pi contains only one

element x̂i. Naturally, both situations are not desirable for optimum distribution induction.

Therefore, we choose P such that the sequence length N is divisible (or closely divisible, if N is

prime) by P and also large enough to achieve a smooth transition between two consecutive bins.

Finally, we compare the values of each element with the corresponding bin’s edge values and

modify those elements according to Algorithm 2. Once we have modified ĥ, we are easily back

to our optimal sequence x̄ by employing the index array of Ia(x̂). Note that the optimality of

projection can be shown easily but is omitted herein for the sake of brevity.

The iterative algorithm for the construction of the desired sequences with good correlation

and good distribution properties is summarized in Algorithm 3.

3.4 Numerical Simulations

We provide several numerical examples to investigate the performance of the proposed

method. We use the proposed approach to design uniformly distributed sequences of length

(i) N = 103 with number of partitions P = 20, and (ii) N = 104 with partition P = 250 using

rand function in Matlab. Although rand provides fairly uniformly distributed random sequences

but is not at all uniform inside a bin. For both cases the initial and final normalized aperiodic

auto-correlation level (NAPC) = 20 log10 |rk/r0| in dB.
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The initial and final normalized aperiodic auto-correlations are presented in Figure 13(a)

and 14(a). We also present the initial and final histogram of the both sequences in Figure 13(b)

and 14(b). A significant improvement in terms of both auto-correlation and distribution can

be observed in both cases. It should also be noted that the generation of sequences using the

proposed method was relatively fast in terms of computational time. Particularly, it took 1.56

secs and 57.39 secs on a standard PC to accomplish the sequence design for the first and second

cases described above, respectively.

3.5 Concluding Remarks

Signals with both good auto-correlation and good distribution properties are required in eye-

tracking for Parkinson’s Disease diagnosis and treatment. We have presented a new framework

to design such signals based on the CAN computational framework. The proposed method

is computationally efficient and can design very long sequences (of lengths up to N ∼ 106

and even more) in relatively short time frames. The designed sequences using the proposed

algorithm show significant enhancement in terms of out-of-phase auto-correlation as well as

distribution properties. While the numerical examples showed promising results, as a future

research direction, it would be of great interest to study the behavior of ISL or other correlation-

related metrics and particularly their relationship with given marginal distributions.
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CHAPTER 4

DESIGN OF UNIMODULAR SEQUENCE SETS WITH GOOD

CORRELATION AND COMPLEMENTARY CORRELATION

PROPERTIES

Overview: In this chapter, we address the problem of identification and sensing systems that espe-

cially employ widely linear (WL) signal processing by designing sets of unimodular sequences with good

cross-correlation and complementary cross-correlation properties over a zero-correlation-zone, which has

been proven to be beneficial for such systems. The sequence sets are designed by exploiting a complete

second-order characterization, which depicts a WL system more powerfully.

4.1 Introduction

In Part I-A of this thesis, we have discussed designing sequences with low auto-correlation

sidelobe levels that are well suited for strictly linear (SL) systems. This chapter shifts our

attention to widely linear (WL) systems where it is extremely beneficial to take the complete

second-order characterization of the signals and system into consideration [154]. Such charac-

terization includes the correlation and complementary correlation functions (or relation func-

tions [18,155]). For a set of sequences {xm(n)}N−1
n=0 for m = 1, 2, . . . ,M , the definitions of auto-

Parts of this chapter is taken from published conference article [153]. Copyright c○ 2018, IEEE.
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and cross-correlations have been established in Section 2.2.1. A pair of sequences xm(n) and

xm′(n) from this set, have aperiodic cross-correlation coefficients given as,

rm,m′(l) =

N−1∑
n=l

x∗m(n)xm′(n− l), −(N − 1) ≤ l ≤ (N − 1). (4.1)

On the other hand, the aperiodic complementary correlation coefficients are defined as

γm,m′(l) =
N−1∑
n=l

xm(n)xm′(n− l), −(N − 1) ≤ l ≤ (N − 1). (4.2)

As has been documented, the correlation and the complementary correlation functions can

be used to completely characterize the second-order statistics of complex signals. In wireless

communications, WL systems are used to analyze baseband models that consider radio frequency

impairments such as in-phase and quadrature-phase (I/Q) imbalances [18].

Designing unimodular sequences with good correlation properties for an SL system is a

long-standing problem and the literature on this topic is quite extensive (e.g., see [20, 85, 90]).

Consider an SL (e.g., a radar or a communication) system that takesM and mutually orthogonal

unimodular sequences as input. Let the code length of each waveform be N . Then the full

waveform matrix can be written in a matrix form as X , [x1, · · · ,xM ] of size N ×M . Here

the mth column xm corresponds to the mth orthogonal waveform. In case of an unimodular

waveform, the nth element of xm is expressed as xm(n) = ejφ
(m)
n where φ(m)

n ∈ [−π, π] is

an arbitrary phase value. The use of unimodular sequences is quite common in many active

sensing and communication systems due to their unique equi-energy and modulation properties.
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Although, there are many numerical techniques and computational frameworks available in the

literature (see e.g., [20] and the references within), it can be noted that designing such sequences

with lengths N ∼ 104 or larger is still deemed to be impractical using the current standard

computational tools. Recently, the use of numerical techniques to generate sequences with good

cross-correlation properties has gained increased attention ( [20, 82, 85, 90, 110, 135, 156, 157]).

These methods seek to minimize a function that incorporates a weighted sum of the energy in

the sidelobe levels of the sequences, referred to as the weighted integrated sidelobe level (WISL).

For the case of an SL system, the definition of WISL for the waveforms {xm(n)}M,N−1
m=1,n=0 can be

expressed as [20],

CSL =
M∑
m=1

N−1∑
l=−(N−1),

l 6=0

(
α(l)
m,m

)2
|rm,m(l)|2 +

M∑
m=1

M∑
m′=1,
m′ 6=m

N−1∑
l=−(N−1)

(
α

(l)
m,m′

)2 ∣∣rm,m′(l)∣∣2 (4.3)

where {α(l)
m,m′}N−1

l=−N+1 are real-valued symmetric weights used for manipulation of the sidelobe

levels corresponding to different lags. Note that α(l)
m,m′ = 0 implies the sidelobe level associated

with the corresponding lth lag is not being considered. On the other hand, {α(l)
m,m′} = 1 means

CSL in Equation 4.3 coincides with the ISL defined in Equation 2.8a. With that in mind, using

Equation 4.3, the unimodular signal design problem by WISL minimization can be formally

introduced as,

min
X

CSL

s.t. |xm(n)| = 1, ∀ m,n. (4.4)
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where the constraints ensure the unimodularity of the waveforms, while the orthogonality be-

tween waveforms is guaranteed by the objective. The optimization in Equation 4.4 often imposes

a non-convex problem particularly due to the unimodularity constraint. However, by judicious

mathematical manipulation, the solution can be achieved by using alternating projections via

the Fast Fourier Transform [20], quasi-Newton methods [156], [158], [159] and the majorization-

minimization method [110,135,157] among others [90].

Nonetheless, there has been very little attention to generating unimodular sequences that

take a complete second-order description ( [4, 154, 160, 161]) into account in order to consider

especially WL systems [5], which is, essentially incorporating the complementary correlation

in the design procedure. In this chapter, we address the design of sequence sets with good

correlation and complementary correlation properties. They are constructed by optimizing a

cost function that minimizes the second-order descriptors of the sequences over a subset of

lags. A gradient-based approach is considered to perform the optimization since this family of

methods has proven to be successful in the design of unimodular sequences [156,158,159]. It is

shown via numerical examples, that the statistical properties of the designed sequences can be

fully exploited to identify both SL and WL systems.

The rest of this chapter is organized as follows. A brief but useful description of the problem

formulation is provided in Section 4.2. For more information on this please refer to [4,154]. The

numerical design approach and the corresponding optimization method are described in Section

4.3. Section 4.4 is dedicated to the numerical results that show the difference in the performance



80

of the optimized sequence between MIMO-SL and MIMO-WL scenarios. Finally, Section 4.5

concludes the chapter.

Notation. For a function of n variables, collected in the vector Φ = [φ0, φ1, . . . , φn]T ,

its partial derivatives w.r.t. φ0, φ1, . . . , φn are represented in a compact form by
∂f(Φ)

∂Φ
=[

∂f

∂φ0
, . . . ,

∂f

∂φn

]T
.

4.2 Problem Formulation

The problem addressed herein is the design of unimodular sequences that possess good

correlation and good complementary correlation properties for given lags. Let {xm(n)}N−1,M
n=0,m=1

denote a set of M sequences with length N . We are interested in determining the sequences

that minimize the following criterion [4, 154],

CWL = C1 + C2 + C3 + C4 (4.5)

where

C1 =

M∑
m=1

N−1∑
l=−(N−1),

l 6=0

(
α(l)
m,m

)2
|rm,m(l)|2 , (4.6a)

C2 =

M∑
m=1

N−1∑
l=−(N−1)

(
β(l)
m,m

)2
|γm,m(l)|2 , (4.6b)

C3 =

M∑
m=1

M∑
m′=1,
m′ 6=m

N−1∑
l=−(N−1)

(
α

(l)
m,m′

)2 ∣∣rm,m′(l)∣∣2 , (4.6c)

C4 =

M∑
m=1

M∑
m′=1,
m′ 6=m

N−1∑
l=−(N−1)

(
β

(l)
m,m′

)2 ∣∣γm,m′(l)∣∣2 , (4.6d)
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subject to the restrictions |xm(n)|2 = 1 for n = 0, 1, . . . , N−1 and m = 1, 2, . . . ,M . The scalars

{α(l)
m,m} and {β(l)

m,m′} are positive symmetric real numbers used for the purpose of weighing the

correlation and complementary correlation functions of the sequences in the set to be designed.

Remark 4. Note that, the expressions given by Equation 4.6a - Equation 4.6d have straightfor-

ward interpretations. C1 and C3 are responsible for the auto-correlation and the cross-correlation

functions of the sequences in the set and the weights {α(l)
m,m′}, define the desired zero-correlation-

zone (ZCZ) region. Similarly, C2 and C4 impose complementary correlation values according to

the weights {β(l)
m,m′}. Moreover, Equation 4.5 can be considered to define a Generalized Weighted

Integrated Sidelobe Level (GWISL) [154, 161], where a complete second order characterization

(that encompasses the correlation and the relation functions) is considered to construct the set

of interest. In fact, if we set all {β(l)
m,m′} to 0, then Equation 4.5 reduces to a WISL criterion as

reported in Equation 4.3. �

4.3 Numerical Design Approach

In this section, we take advantage of the inherent symmetries in each of the functions given

by Equation 4.6a - Equation 4.6d, to write Equation 4.5 in vector notation. This is done with

the objective of deriving a closed form expression for the gradient that enables us to use a quasi-

Newton based method to solve the stated optimization problem. Due to the constant magnitude

restriction, it is possible to consider the parameterization xm(n) = ejφ
(m)
n for n = 0, 1, . . . , N −1

and m = 1, 2, . . . ,M . Hence, the problem reduces to find the values of M × N phases that

minimize Equation 4.5.
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4.3.1 Correlation and Complementary Correlation of Extended Sequences

In order to simplify Equation 4.5, the following vectors are considered Φm = [φ
(m)
0 , φ

(m)
1 ,

. . . , φ
(m)
N−1]T , for m = 1, 2, . . . ,M and Φ = [ΦT

1 ΦT
2 · · · ΦT

N ]T with dim(Φ) = MN × 1. Ad-

ditionally, we define x̄m =
[
eiφ

(m)
0 , eiφ

(m)
1 , . . . , eiφ

(m)
N−1 , 0, 0, . . . , 0

]T
, with dim(x̄m) = 2N × 1 for

m = 1, 2, . . . ,M . The vectors x̄m contain the elements of the extended sequences {x̄m(n)}N−1
n=0

which result from appending N zeros to xm(n). The extended sequences are used to com-

pute the correlation and complementary correlation between xm(n) and xm′(n), for the lags

l = 0, 1, . . . , N − 1, via a DFT by,

r̄m,m′ =
1

2N
F 2N ((F 2N x̄m)∗ ◦ (F 2N x̄m′)) (4.7)

and

γ̄m,m′ =
1

2N
F 2N ((R2NF 2N x̄m) ◦ (F 2N x̄m′)) , (4.8)

respectively. The matrix R2N in Equation 4.8 satisfies R2N = 2N × 2N , and it is given by

R2N = [e0, e2N−1, . . . , e1] where {e0, e1, . . . , e2N−1} denotes the standard basis for C2N×1.

4.3.2 On the Optimization w.r.t. C1

The function C1 can be simplified, if we impose the restrictions α(−l)
m,m = α

(l)
m,m for l =

1, 2, . . . , N − 1 (symmetric weights for positive and negative correlation lags). Furthermore, by
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making use of the Hermitian symmetry of the auto-correlation function, rm,m(−l) = r∗m,m(l),

we can write C1 as,

C1(Φ) =

M∑
m=1

r̄Hm,mUm,mr̄m,m (4.9)

where Um,m = Diag
(

[0, α
(1)
m,m, α

(2)
m,m, . . . , α

(N−1)
m,m , 0, 0, . . . , 0]

)
. From Equation 4.9 it is possible

to compute the partial derivatives of C1 w.r.t. φ(m)
0 , . . . , φ

(m)
N−1, by

∂C1(Φ)

∂Φm
= 2<

{(
∂r̄m,m(Φm)

∂Φm

)T
UT
m,mr̄

∗
m,m

}
(4.10)

for m = 1, 2, . . . ,M , where
∂r̄m,m
∂Φm

denotes the Jacobian of r̄m,m which satisfies dim
∂r̄m,m
∂Φm

=

2N ×N . Furthermore, the columns of
∂r̄m,m
∂Φm

are computed from,

∂r̄m,m

∂φ
(m)
n

=
F 2N

N
<
{

(F 2N x̄m)∗ ◦
(
F 2N

∂x̄m

∂φ
(m)
n

)}
(4.11)

for n = 0, 1, . . . , N − 1. Now, from the structure of each of the vectors containing the elements

of the extended sequences, we have that
∂x̄m

∂φ
(m)
n

= ieiφ
(m)
n en. Hence, the gradient of C1 can be

computed from Equation 4.10 as,

∂C1(Φ)

∂Φ
=

[(
∂C1

∂Φ1

)T
, . . . ,

(
∂C1

∂ΦM

)T]T
. (4.12)
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4.3.3 On the Optimization w.r.t. C2

If symmetric weights are used for positive and negative lags, and the even symmetry of the

complementary correlation function is taken into account, this is γm,m(−l) = γm,m(l), then

Equation 4.6b can be cast in vector notation as,

C2(Φ) =

M∑
m=1

γ̄Hm,mV m,mγ̄m,m. (4.13)

The matrix V m,m satisfies dimV m,m = 2N × 2N and it is computed from

V m,m = Diag
([
β(0)
m,m, β

(1)
m,m, . . . , β

(N−1)
m,m , 0, 0, . . . , 0

])
(4.14)

for m = 1, 2, . . . ,M . Furthermore,
∂C2

∂Φm
, is evaluated through the expression,

∂C2(Φ)

∂Φm
= 2<

{(
∂γ̄m,m
∂Φm

)T
V m,mγ̄

∗
m,m

}
. (4.15)

The columns of the Jacobian matrix
∂γ̄m,m
∂Φm

, which satisfies dim
∂γ̄m,m
∂Φm

= 2N×N , are computed

in turn by,

∂γ̄m,m

∂φ
(m)
n

=
F 2N

2N

(
(R2NF 2N x̄m) ◦

(
F 2N

∂x̄m

∂φ
(m)
n

)
+

(
R2NF 2N

∂x̄m

∂φ
(m)
n

)
◦ (F 2N x̄m)

)
. (4.16)
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Similarly, the gradient of C2 is obtained from the M vectors
∂C2

∂Φm
, arranged as

∂C2

∂Φ
=

[(
∂C2

∂Φ 1

)T
, . . . ,

(
∂C2

∂ΦM

)T]T
. (4.17)

4.3.4 On the Optimization w.r.t. C3

The function C3 can be expressed as,

C3(Φ) =
M−1∑
m=1

M∑
m′=m+1

r̄Hm,m′Um,m′ r̄m,m′ +
M−1∑
m=1

M∑
m′=m+1

r̄Hm′,mUm′,mr̄m′,m (4.18)

if the restrictions α(−l)
m,m′ = α

(l)
m′,m are imposed. Their matrices Um,m′ and Um′,m contain the

weights α(l)
m,m′ and α

(l)
m′,m, respectively in their diagonals. Furthermore,

∂C3

∂Φm
is computed from,

∂C3(Φ)

∂Φm
= 2

m−1∑
l=1

<
{(

∂r̄l,m
∂Φm

)
UT
l,mr̄

∗
l,m

}
+ 2

m−1∑
l=1

<
{(

∂r̄m,l
∂Φm

)
UT
m,lr̄

∗
m,l

}
(4.19)

+ 2

M∑
l=m+1

<
{(

r̄l,m
∂Φm

)T
UT
l,mr̄

∗
l,m

}
+ 2

M∑
l=m+1

<
{(

∂r̄m,l
∂Φm

)T
UT
m,lr̄

∗
m,l

}
.

The columns of the matrices
r̄m′,m
∂Φm

and
r̄m,m′

∂Φm
, which satisfy dim

r̄m′,m
∂Φm

= dim
r̄m,m′

∂Φm
= 2N×N ,

are obtained in a similar way by evaluating
r̄m,m′

∂φ
(m)
n

and
r̄m′,m

∂φ
(m)
n

respectively for n = 0, 1, . . . , N−1.

The gradient of C3 is obtained from its M sub-blocks given by Equation 4.19.

4.3.5 On the Optimization w.r.t. C4

The function C4 is obtained from Equation 4.6c by replacing rm,m′ with γm,m′ . Similarly,

the matrices Um,m′ and Um′,m are substituted with V m,m′ and V m′,m, which are constructed
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by considering the weights β(l)
m,m′ for l = 0, 1, . . . , N − 1. The vector

∂C4

∂Φm
is obtained from

Equation 4.19 as well by replacing r̄m,m′ and r̄m′,m with γ̄m,m′ and γ̄m′,m respectively.

Figure 15. Correlation and complementary correlation of the designed set for N = 256 and
M = 2.

4.3.6 Optimization Method

A gradient-based approach, the L-BFGS method as implemented in the SciPy toolbox [162],

is hereby used to solve the optimization problem given by Equation 4.5. This technique has

been considered in the design of a set of sequences with good correlation [156] and good comple-



87

mentary correlation properties [154,160]. The algorithm requires as inputs the cost function, its

gradient, and a suitable starting point to initialize the optimization algorithm which has been

detailed in the following section.

4.4 Numerical Simulations

4.4.1 Design of a Set of Sequences with N = 256, M = 2

We consider the design of a set of M = 2 sequences with length N = 256. The weights

that define the auto- and complementary auto-correlation windows were selected as α(l)
m,m = 1 if

l ∈ [−31,−1]∪ [1, 31] and β(l)
m,m = 1 if l = [−31, 31] for m = 1, 2, zero otherwise. Concerning the

cross- and complementary cross-correlation weights, α(l)
m,m′ = β

(l)
m,m′ = 1 for l ∈ [−31, 31] and

α
(l)
m,m = β

(l)
m,m = 0 were used for m,m′ = 1, 2. The normalized correlation and complementary

cross-correlation of the resultant set are depicted in Figure 15 and are labeled as Generalized

WISL. For comparison, a set of sequences with good correlation properties for l ∈ [−31, 31] is

also considered. The set was generated with the algorithm in [157] and the results obtained are

labeled as WISL. For both cases, a common initialization point is used to start the algorithms,

halting the iterations once
f (n−1) − f (n)

max{f (n−1), f (n), 1} < 2.22× 10−9 was reached.

4.4.2 Application to MIMO System Identification

As the second numerical example, we exhibit an identification of (Multiple-Input-Multiple-

Output) MIMO systems with P = 2 inputs and Q = 2 outputs for strictly linear (SL) and

widely linear (WL) systems.
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Figure 16. Estimation error of a 2× 2 MIMO system.

4.4.2.1 MIMO-SL System

We consider that the output of the systems is given by yq(n) =
∑1

p=0(hp,q ?xp)(n)+ν(n) for

q = 1, 2, where {hp,q(n)}3n=0 is the response of the filter that relates the pth input (p = 1, 2) with

yq(n). The taps of the filters are complex numbers with their real and imaginary part drawn

from a standard normal distribution. Each of the output branches is affected with additive

white Gaussian noise, with E{|ν(n)|2} = σ2
ν . The MIMO-SL system is sounded with two

sequences xp(n) of length N = 64, that posses good correlation and complementary correlation

in a window of length 16. The identification is done with a matched filter at each output,

ĥp,q(l) = N−1(x
(l)
p )Hyq , yq = [yq(0), yq(1), . . . , yq(N+L−2)]T and x(l)

p = [0Tl×1 x
T
p 0TL−l−1×1]T

with xp = [xp(0), xp(1), . . . , xp(N − 1)]T . The results of the estimation process are depicted in

Figure 16, where the estimation error is plotted as a function of the average power of the noise
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σ2
ν (trace labeled as MIMO-SL GWISL). For comparison, the estimation process was done also

with a set of sequences of length N = 64 and good correlation properties in a window of length

16, generated with the algorithm in [157] (trace labeled as MIMO-SL WISL).

4.4.2.2 MIMO-WL System

In the WL case, the output of the system is given by yq(n) =
∑1

p=0(h
(1)
p,q ? xp)(n) +∑1

p=0(h
(2)
p,q ? x∗p)(n) + ν(n), where {h(1)

p,q(l)}3l=0 and {h(2)
p,q(l)}3l=0 are the filter responses that

relate the pth input with yq(n). The filter coefficients were generated similarly, and estimated

with ĥ(1)
p,q = N−1(x

(l)
p )Hyq and ĥ(2)

p,q = N−1(x
(l)
p )Tyq. The estimation error, using the previous

set of sequences, is depicted in Figure 16. It can be verified that sequences which minimize the

GWISL criterion, are able to identify MIMO-SL and MIMO-WL systems, by making use of the

second-order statistics of the output signals. However, for sequences that minimize only the

WISL, there is interference that degrades the estimates for the WL scenario.

4.5 Concluding Remarks

We have proposed the design of unimodular sequences by considering a complete second-

order characterization that encompasses its correlation and complementary correlation functions.

It is shown via numerical examples, that due to the properties of the proposed sequences, they

are well suited to estimate SL and WL systems.



CHAPTER 5

GENERALIZED CYCLIC ALGORITHMS FOR DESIGNING

UNIMODULAR SEQUENCE SETS WITH GOOD (COMPLEMENTARY)

CORRELATION PROPERTIES

Overview: In this chapter, we reconsider the problem of designing unimodular sequence sets

with good correlation and complementary correlation properties for widely linear (WL) systems using

generalized cyclic algorithms for the minimization of weighted integrated sidelobe level (WISL) based

metrics. The algorithm proposed here is based on a well-known framework called WeCAN that is used

for designing unimodular sequences for strictly linear systems.

5.1 Introduction

Previously, in Chapter 4, we have undertaken the problem of designing unimodular se-

quence sets with good correlation and complementary correlation properties for WL systems.

The proposed approach especially seeks to minimize the weighted ISL (WISL) criteria using a

gradient-based approach. However, the aforementioned approach is computationally expensive.

In this chapter, we reformulate the WISL criterion in Equation 4.5, and solve the corresponding

optimization problem for a unimodular constraint using a fast cyclic algorithm. For the sake

Parts of this chapter is taken from published conference article [161]. Copyright c○ 2018, IEEE.
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of readers’ convenience, in the following we reintroduce the said WISL criterion that is to be

minimized,

E ,
M∑
m=1

N−1∑
n=−N+1
n6=0

α2
n|rmm(n)|2 +

M∑
m=1

N−1∑
n=−N+1

β2
n|γmm(n)|2 (5.1)

+
M∑

m1=1

M∑
m2=1
m2 6=m1

N−1∑
n=−(N−1)

α2
n|rm1m2(n)|2 +

M∑
m1=1

M∑
m2=1
m2 6=m1

N−1∑
n=−(N−1)

β2
n|γm1m2(n)|2

where {αn}N−1
n=0 and {βn}N−1

n=0 are real-valued weights with αn = α−n and βn = β−n. The

detailed derivation of Equation 5.1 can be found in Section 4.1. In particular, we introduce

a generalized approach to minimize the criterion in Equation 5.1 by using the minimization

techniques for ISL-related metrics such as CAN and WeCAN, introduced in [20,85].

The rest of the chapter is organized as follows. Section 5.2 discusses a generalized local

minimization algorithm for WISL based on cyclic optimization. We provide a specialization of

the aforementioned algorithm in Section 5.3 when all weights are one. Numerical results are

presented in Section 5.4 and finally, Section 5.5 summarizes the paper.

5.2 Generalized WeCAN

In this section, we formulate a generalized cyclic algorithm: Generalized Weighted CAN

(G-WeCAN) which is based on the WeCAN framework devised in [85]. To facilitate the

discussion in the following, we denote the unimodular sequence set in its matrix form, i.e.,

X = [x1 x2 · · · xm · · · xM ]N×M where xm = [xm(0) xm(1) · · · xm(N − 1)]T . Moreover, the
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covariance and complementary covariance matrices of the sequences are given for different lags

as

Rn =



r11(n) r12(n) · · · r1M (n)

r21(n) r22(n) · · · r2M (n)

...
...

. . .
...

rM1(n) rM2(n) · · · rMM (n)


M×M

, Γn =



γ11(n) γ12(n) · · · γ1M (n)

γ21(n) γ22(n) · · · γ2M (n)

...
...

. . .
...

γM1(n) γM2(n) · · · γMM (n)


M×M

,

(5.2)

where n = −(N−1), · · · , 0, · · · , N−1. The G-WeCAN algorithm is associated with the criterion

E in (Equation 5.1), which can be written in matrix form as,

E = α2
0‖R0 −NIM‖2F + β2

0‖Γ0‖2F + 2
N−1∑
n=1

α2
n‖Rn‖2F + β2

n‖Γn‖2F (5.3)

=

N−1∑
n=−(N−1)

α2
n‖Rn −NIMδn‖2F +

N−1∑
n=−(N−1)

β2
n‖Γn‖2F

where δn denotes the Kronecker delta. Furthermore, following the proof in [20] for the case of

M = 1, it can be shown that the criterion in Equation 5.3 can be equivalently written as a

Parseval-type equality:

E =
1

2N

2N∑
p=1

‖Φr(ωp)− α0NIM‖2F + ‖Φγ(ωp)‖2F (5.4)
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in which,

Φr(ω) =
N−1∑

n=−(N−1)

αnRne
−jnω, (5.5a)

Φγ(ω) =

N−1∑
n=−(N−1)

βnΓne
−jnω, (5.5b)

and {ωp} are the Fourier frequencies given as, ωp = 2π
2N p for p = 1, · · · , 2N .

Note that, by choosing αn and βn appropriately, we can help shape the correlation lags in

the desired form. Particularly for convenience, we choose α0 and β0 large enough to ensure that

the matrices

A =



α0 · · · αN−1

α1 · · · αN−2

...
. . .

...

αN−1 · · · α0


, B =



β0 · · · βN−1

β1 · · · βN−2

...
. . .

...

βN−1 · · · β0


(5.6)

become positive semidefinite (i.e., A � 0 and B � 0).

Now, note that the following discrete (inverse) Fourier transform relations hold:

{αnRn}
(I)DFT←−−−→ Φr(ω) = A(ω) ∗ (χ(ω)χH(ω)) (5.7a)

{βnΓn}
(I)DFT←−−−→ Φγ(ω) = B(ω) ∗ (χ(ω)χT (ω)) (5.7b)
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where,

χ(ω) =
N−1∑
n=0

x̃(n)e−jnω, (5.8a)

A(ω) =
N−1∑

k=−(N−1)

αke
−jkω, (5.8b)

B(ω) =

N−1∑
k=−(N−1)

βke
−jkω, (5.8c)

and x̃(n) = [x1(n) x2(n) · · · xM (n)]T . Consequently, one can verify that,

Φr(ωp) =
1

2π

∫ π

−π
A(ωp − ψ) χ(ψ)χH(ω) dψ (5.9)

=
1

2π

∫ π

−π

N−1∑
k=−(N−1)

αke
−jk(ωp−ψ)χ(ψ)χH(ψ) dψ

=
N−1∑

k=−(N−1)

N−1∑
n=0

N−1∑
ñ=0

αkx̃(n)x̃∗(ñ) e−jkωp × 1

2π

∫ π

−π
ej(k−n+ñ)ψ dψ

=
N−1∑
n=0

N−1∑
ñ=0

αn−ñx̃(n)x̃∗(ñ)e−j(n−ñ)ωp

= χ̃T (ωp)Aχ̃
∗(ωp)

= (χ̃H(ωp)Aχ̃(ωp))
T ,

where χ̃(ωp) = [x̃(0)e−j0ωp · · · x̃(N − 1)e−j(N−1)ωp ]T . Similarly for Φγ(ωp), it can be given as

Φγ(ωp) = χ̃T (ωp)Bχ̃(ωp). (5.10)
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Therefore, by denoting χ̃(ωp) simply as χ̃p, the criterion in Equation 5.4 can be rewritten as

E =
1

2N

2N∑
p=1

‖χ̃pHAχ̃p − α0NIM‖2F + ‖χ̃pTBχ̃p‖2F . (5.11)

Note that the above function is quartic in {xm(n)}N−1,M
n=0,m=1, which makes the optimization

difficult. To facilitate a transformation to a quadratic objective, we simplify Equation 5.11 as

E =
1

2N

2N∑
p=1

Tr
((
χ̃p

HAχ̃p − α0NIM
)H × (χ̃pHAχ̃p − α0NIM

))
(5.12)

+ Tr
(
(χ̃p

TBχ̃p)
H(χ̃p

TBχ̃p)
)

≤ 1

2N

2N∑
p=1

‖A‖2F ‖χ̃p‖4F − 2α0N‖A‖F ‖χ̃p‖2F + α2
0N

2M + ‖B‖2F ‖χ̃p‖4F

=
‖A‖2F + ‖B‖2F

2N
×

2N∑
p=1

(
‖χ̃p‖2F −

α0N‖A‖F
‖A‖2F + ‖B‖2F

)2

+ const.

Next, instead of minimizing Equation 5.12 w.r.t. {xm(n)}N−1,M
n=0,m=1, we resort to the following

minimization problem:

min
χ̃p,vp

2N∑
p=1

‖χ̃p − vp‖2F (5.13)

s.t. |xm(n)| = 1, ‖vp‖2F = κ

where κ =
α0N‖A‖F
‖A‖2F + ‖B‖2F

. Without loss of generality, one can see that the criterion in Equa-

tion 5.12 and Equation 5.13 are “almost equivalent” to each other in the sense that if one takes
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on a small value, so does the other; particularly, the quadratic terms in Equation 5.12 become

zero if Equation 5.13 is zero, and vice versa.

To address the minimization problem in Equation 5.13, we define:

fp = [e−jωp · · · e−j2Nωp ]T , (5.14a)

F = [f1 · · · f2N ], (5.14b)

X̄ = [X 0]TM×2N , (5.14c)

V = [v1 · · · v2N ]T . (5.14d)

Consequently, one can readily rewrite the minimization problem in Equation 5.13 as

min
{xm(n)}N−1,M

n=0,m=1,

{vp}2Np=1

∥∥FHX̄ − V
∥∥2

F

s.t. |xm(n)| = 1, ‖vp‖2F = κ.

(5.15)

The criterion in Equation 5.15 can be efficiently handled via a cyclic minimization approach.

For a given {xm(n)}N−1,M
n=0,m=1, the solution {vp}2Np=1 can be given as

vp =
√
κ
dp
‖dp‖2

(5.16)
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where dTp = the pth row of (FHX̄). Furthermore, note that
∥∥FHX̄ − V

∥∥2

F
=
∥∥X̄ − FV ∥∥2

F
as

F is unitary. Hence, for a given {vp}2Np=1, the solution {xm(n)}N−1,M
n=0,m=1 to Equation 5.13 can be

found as

xm(n) = exp(j arg([FV ]m,n)). (5.17)

It must be noted that the terms FHX̄ in Equation 5.16 and FV in Equation 5.17 are

nothing but the FFT of columns of X̄ and the IFFT of columns of V , respectively. Owing to

the nature of these solutions, G-WeCAN is very fast and can essentially be used for generating

sequence sets with N ∼ 105 and M ∼ 102.

5.3 Generalized CAN from G-WeCAN

Based on the above formulations we further introduce a generalized version of the CAN

algorithm [85], referred to as (G-CAN). G-CAN is even more computationally efficient than

G-WeCAN when lowering all the out-of-phase correlation and complementary correlation lags

have the same importance. Assuming {αn}N−1
n=0 = {βn}N−1

n=0 = 1, the criterion in Equation 5.1

can be simplified as

Ẽ =

N−1∑
n=−(N−1)

‖Rn −NIMδn‖2F +

N−1∑
n=−(N−1)

‖Γn‖2F (5.18)

=
1

2N

2N∑
p=1

‖Φ̃r(ωp)−NIM‖2F + ‖Φ̃γ(ωp)‖2F
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where Φ̃r(ωp) =
∑

nRne
−jnωp ; Φ̃γ(ωp) =

∑
n Γne

−jnωp . Furthermore, following the simplifi-

cation in Equation 5.9, one can write Φ̃r(ω) = χ(ω)χH(ω) and Φ̃γ(ω) = χ(ω)χT (ω). Conse-

quently, Equation 5.18 can be given as

Ẽ =
1

2N

2N∑
p=1

‖χpχHp −NIM‖2F + ‖χpχTp ‖2F (5.19)

which can be further simplified as

Ẽ =
1

2N

2N∑
p=1

(2‖χp‖42 − 2N‖χp‖22 +N2M) (5.20)

= N

2N∑
p=1

(∥∥∥∥ χp√N
∥∥∥∥2

2

− 1

2

)2

+N2

(
M − 1

4

)
.

Finally, using the same argument following Equation 5.13, the minimization problem can be

defined as

min
χp,ṽp

2N∑
p=1

∥∥∥∥ χp√N − ṽp
∥∥∥∥2

2

(5.21)

s.t. |xm(n)| = 1, ‖ṽp‖22 =
1

2
.
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(a) (b)

Figure 17. (a) Cross-correlation and (b) complementary cross-correlation levels of the
G-WeCAN sequences for N = 1000,M = 3.

To solve the minimization criterion in Equation 5.21, we define F̃ =
1√
N

[f1 · · · f2N ]. Hence,

the minimization problem for G-CAN can simply be given in a matrix form as

min
X̄,Ṽ

∥∥∥F̃H
X̄ − Ṽ

∥∥∥2

F
(5.22)

s.t. |xm(n)| = 1, ‖ṽp‖22 =
1

2
.

To find the solutions to Equation 5.22, one can resort to similar cyclic minimization techniques

as detailed in Section 5.2.

5.4 Numerical Simulations

In this section we consider minimizing the criterion in Equation 5.15 for N = 1000 and

M = 3. We initialize the algorithm with a randomly generated set of sequences with the said
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length. However, other sequence families with known good correlation properties such as Golay

sequences can also be used for initialization. To construct the matrices A and B in Equation 5.6

that are needed in G-WeCAN, we choose α2
n = β2

n = 1 for n ∈ [1, 250] and zero otherwise. α0

and β0 are chosen to make sure that A � 0 and B � 0. For G-CAN we choose α2
n = β2

n = 1 for

all n. 17(a) shows the cross-correlation levels of the constructed G-WeCAN set of sequences for

different lags.

We also compare the generalized algorithm with previously suggested CAN and WeCAN

algorithms in terms of overall ISL metrics for different sequence lengths. We generate sets of

sequences with sequence length N = {10, 30, 100, 300, 1000} and M = 3 for CAN, WeCAN and

G-WeCAN. 18(a) depicts that G-WeCAN shows better performance than its CAN and WeCAN

counterparts. It can be noted that, whereas WeCAN requires 2N computations of SVD of an

N ×M matrix, G-WeCAN relies on computations of FFT coefficients. Due to this fact, G-

WeCAN is much faster than WeCAN and can be essentially used for generating sequences with

length in the order of 105. 18(b) shows the comparison of required computation times for CAN,

WeCAN and G-WeCAN sequences with N = {10, 30, 100, 300, 1000} and M = 3 on a standard

PC.

5.5 Concluding Remarks

We presented two cyclic algorithms, referred to as G-WeCAN and G-CAN, to minimize a

generalized WISL criterion to design sets of unimodular sequences that have good correlation

and complementary correlation properties. A number of numerical examples were provided
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(a) (b)

Figure 18. Comparison of (a) the WISL metrics and (b) computation times for CAN, WeCAN
and G-WeCAN sequences with N = {10, 30, 100, 300, 1000} and M = 3.

to demonstrate the good correlation and complementary correlation properties of the sets of

unimodular sequences obtained by the proposed algorithms.
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CHAPTER 6

EFFICIENT WAVEFORM COVARIANCE MATRIX DESIGN AND

ANTENNA SELECTION FOR MIMO RADAR

Overview: Controlling the radar beam-pattern by optimizing the transmit covariance matrix

is a well-established approach for performance enhancement in multiple-input-multiple-output (MIMO)

radars. In this chapter, we investigate the joint optimization of the transmit waveform covariance matrix

and the antenna position vector for a MIMO radar system to approximate a given transmit beam-

pattern. The sequences are further designed to minimize the cross-correlation sidelobes at a number of

predetermined target locations. We formulate this design task as a non-convex optimization problem and

then propose a cyclic optimization approach to efficiently approximate its solution. We further propose

a local binary search algorithm in order to efficiently design the corresponding antenna positions. We

show that the proposed method can be extended to the more general case of approximating the given

beam-pattern using a minimal number of antennas as well as optimizing their positions.

6.1 Introduction and Prior Works

MIMO radar refers to a unique radar architecture that employs multiple spatially distributed

transmitters and receivers— an emerging technology in the last two decades, attracting a great

Parts of this chapter is taken from published journal article [163], and its conference version [164].
Copyright c○ 2020, 2021, IEEE, Elsevier.
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deal of interest from researchers in the radar signal processing community as well as industry [29–

34, 41, 165]. Unlike a conventional phased array radar, a MIMO transmitter can transmit a set

of arbitrary waveforms orthogonal to each other in order to increase the spatial diversity [31,35].

As previously discussed in Section 1.1.2.1, one way to exploit such diversity in MIMO systems

is by transmitting orthogonal waveforms, and the echo signals can then be re-assigned to the

single transmitter. Thus, from an antenna array ofMT transmitters andMR receivers, a MIMO

architecture results in a virtual array of MTMR elements with enlarged size of virtual aperture

which provides additional degrees of freedom to improve the spatial resolution [39,40], immunity

to interference [41], and an improved target localization capability [42–44]. The advantages of

MIMO radar over traditional phased array radar have inspired researchers to address various

associated waveform design problems. Among them, is the problem of maximization of the

output signal-to-interference-plus-noise ratio (SINR) by jointly designing the probing signals for

transmitters and the filter coefficients for receivers [76, 166, 167]. The designed signals can be

utilized not only to shape a desired beam-pattern, but also to minimize the effects of cross-

correlation sidelobes between the transmitted waveforms at certain given target locations of

interest [45–48]. Here, not only the main focus of this design problem is to control the spatial

distribution of the transmit power, but also to improve the statistical performance of the radar

system. It is known that the said performance of MIMO radar depends heavily on the cross-

correlation beam-pattern which is completely missing in the phased-array case [37].

An extensive body of work already exists on designing the covariance matrix of radar trans-

mit waveforms in lieu of designing the waveforms directly; which leads to extra degrees of
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freedom in the design stage. For example, in [37], the authors describe a method to optimize

the waveform covariance matrix to approximate the desired beam-pattern and minimize the cor-

relation sidelobes using semidefinite quadratic programming (SQP), while in [45] an alternating

minimization algorithm is proposed to synthesize unimodular waveform matrix to approximate

the desired covariance matrix. Furthermore, in [168], a closed-form solution is suggested to

design the covariance matrix to achieve the desired beam-pattern based on discrete Fourier

transform (DFT) coefficients and Toeplitz matrices. An extension of the DFT-based meth-

ods to a planar-antenna-array for constant-modulus waveforms design can be found in [169]

and [170]. Although the DFT-based techniques for matching the transmit beam-pattern benefit

from a lower computational complexity, the performance is not satisfactory for a small number

of antennas. Ahmed et al., proposes two algorithms in [171] to configure a covariance matrix

for a given beam-pattern. In the first algorithm, the objective is to design the square-root of

the covariance matrix that is parameterized using the coordinates of a hypersphere that allows

to implicitly design the square matrix as a positive semidefinite matrix in an iterative manner.

The second algorithm, on the other hand, proposes a closed-form solution that exploits the de-

sign constraints and redundant information in the covariance matrix. The proposed technique

although may yield a ‘pseudo’-covariance matrix, the outcome is not guaranteed to be positive

semidefinite. For a further study on transmit beam-pattern synthesis approaches, we refer the

interested readers to consult [49–54], and the references therein.

Note that in order to match the desired transmit beam-pattern while designing the covari-

ance matrix of the transmit signals, all the aforementioned algorithms consider a uniform linear
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array (ULA) with λ/2 inter-element spacing where λ is the wavelength of the transmit signal.

However, it was shown in Cheng et al. [54] that the selection of the array position can introduce

additional degrees of freedom for designing transmit beam-pattern. Namely, by carefully choos-

ing the position of antennas, one can design the desired beam-pattern using a fewer number of

antennas. In other words, one can achieve a similar beam-pattern by carefully redistributing

the available antennas in a wider transmit field which amounts to increased virtual aperture.

As a consequence, a joint design of the covariance matrix and the antenna selection vector can

procure superior performance compared with current state-of-the-art methods using the ULA

with the same number of antennas. In [54], authors describe a method based on the Alternating

Direction Method of Multipliers (ADMM) [172] to design the antenna selection vector. However,

a convex relaxation is used to approximate the solution which is not guaranteed to produce an

optimal outcome to the non-convex problem (that is NP-hard in general).

In this chapter, we tackle the aforementioned problems using an iterative greedy local search

approach inspired by dynamic programming and evolutionary algorithms. In each iteration, a

set of optimization parameter vectors is chosen to be perturbed and the corresponding objective

values are calculated. The best parameters are then selected to form the population for the

next generation, and then the entire procedure is repeated until a stopping criterion based on

the original objective function is met. The main contributions in this chapter can be described

as follows:

• A novel cyclic algorithm is proposed in order to jointly design the covariance matrix of the

transmit waveforms and antenna selection vector. The proposed method further allows for
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minimizing the cross-correlation among the transmit signals at a number of predetermined

target locations.

• We design the antenna selection vector using a novel greedy search framework for binary

variables. We show that by using the all-one vector as initialization, the proposed algo-

rithm can provide a good approximate solution in a specific number of iterations. Our

new framework may be of interest on its own as a general non-convex solver for waveform

design in MIMO radar systems with practical constraints.

• We further provide an extension to the general antenna selection scenario where the algo-

rithm selects the minimum number of antennas.

To promote reproducible research, the codes for generating the results presented are made

publicly available 1. The remainder of the chapter is presented as follows. Sections 6.2 and 6.3

describe the considered general signal model and the problem formulation for jointly designing

the covariance matrix of the probing signals and the antenna position vector. In Section 6.3.1,

we propose a novel cyclic optimization approach to tackle the aforementioned problem, while in

Section 6.4, we discuss the antenna selection strategy using an iterative greedy search algorithm

in detail. We extend the antenna selection problem to a more general case in Section 6.5 using a

minimal number of antennas. Section 6.6 lays out several numerical examples for the proposed

framework. Finally, Section 6.7 concludes the chapter.

1The codes are available on GitHub and through the link:
https://github.com/arindam-bose/evolutionary-antenna-design-in-mimo
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6.2 Signal Model

We consider the problem of selecting N transmit antennas placed on a linear array positions

with M(≥ N) grid points with equal grid spacing d, in order to achieve a desired beam-pattern

as depicted in Figure 19. A generalized version of the problem requires choosing the minimum

number of antenna positions out of M grid points for the similar purpose. In the subsequent

sections we consider both scenarios in a detailed manner. Let us consider a binary antenna

position vector to represent the antenna configuration, viz.

p = [p1, p2, · · · , pM ]T , pm ∈ {0, 1}, m ∈ {1, · · · ,M}, (6.1)

where pm = 1 indicates that the m-th grid point is chosen for antenna placement; otherwise, we

have pm = 0.

We consider a MIMO radar system transmitting distinct waveforms from each transmis-

sion antenna to achieve a desirable beam-pattern. Let sm(l), with m ∈ {1, · · · ,M} and

l ∈ {1, · · · , L}, denote the transmit signal from m-th antenna, where L is the signal length

in discrete-time. Assuming that the signal propagation follows a non-dispersive model and that

the transmit waveforms are narrow-band, the baseband waveform at the desired target location

θ can be expressed as [31]

M∑
m=1

e−j
2π
λ
md sin(θ)sm(l) , aH(θ)s(l), l ∈ {1, . . . , L}, (6.2)
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Figure 19. Geometry of a colocated MIMO radar with M grid points with inter-spacing d.
Only N grid points can be used for antenna placement.

where λ is the wavelength of the transmitted signal, and s(l) = [s1(l), s2(l), · · · , sM (l)]T is the

space-time transmit waveform with length M , and a(θ) is the steering vector of the ULA at the

direction θ, defined as

a(θ) = [1, ej
2π
λ
d sin(θ), · · · , ej 2πλ (M−1)d sin(θ)]T . (6.3)

We seek to select N antennas out of M grid point to design the desired beam-pattern. Let

p ∈ BMN denote the antenna selection vector. The corresponding waveform at the target location

at the generic angle θ w.r.t. the ULA is then given by,

x(l) = (p� a(θ))Hs(l), l ∈ {1, · · · , L}. (6.4)
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Consequently, the power produced by the waveforms at angle θ can be expressed as

P (θ) = E
{
|x(l)|2

}
(6.5)

= (p� a(θ))HE
{
s(l)sH(l)

}
(p� a(θ))

= pTR�
(
a(θ)aH(θ)

)∗
p,

where

R = E
{
s(l)sH(l)

}
(6.6)

is the time-averaged covariance matrix of the transmit waveforms {s(l)}. As usual in the

literature, we refer to the spatial power spectrum defined in Equation 6.5, as the transmit beam-

pattern. Note that, in a similar manner, one can define the cross-correlation terms between the

probing signals at locations θ and θ̄ as

P̄ (θ, θ̄) , pT<
{
R�

(
a(θ)aH(θ̄)

)∗}
p. (6.7)

Our goal is to jointly design the antenna selection vector p and the covariance matrix R of

the transmitted waveforms in order to generate the desired beam-pattern while reducing the

cross-correlation terms. Once R has been determined, a signal sequence s(l) can be designed

that has R as its covariance matrix [30,37].
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6.3 Problem Formulation

Let φ(θ) denote the desired transmit beam-pattern, and {θk}Kk=1 be the grid of points that

covers the field of view in azimuth. We presume that the aforementioned grid comprises points

that are good estimates of the locations of K̃ targets of interest that we wish to probe at locations

{θk}K̃k=1. In addition, we assume that some partial information regarding the target positions

are available at hand, i.e., we possess some initial estimates {θ̃k}K̃k=1 of {θk}K̃k=1. In practice,

one can obtain {θ̃k}K̃k=1 using the Capon spatial spectrum or the generalized likelihood ratio test

(GLRT) function for target localization. In this chapter, we express the desired beam-pattern

as,

φ(θ) =


1, θ ∈ [θ̃k − 42 , θ̃k + 4

2 ], for k ∈ {1, · · · , K̂},

0, elsewhere,

(6.8)

where {θ̃k}K̂k=1 are the dominant peak locations of the GLRT pseudo-spectrum, with K̂ being

the resulting estimate of K̃, and 4 denotes the given beam-width for each estimated target.

Note that the value of 4 should be more than the expected error in {θ̃k}; see [31].

Our goal is to design R such that the transmit beam-pattern P (θ), approximates the desired

beam-pattern φ(θ) over the radial sectors of interest in a least squares (LS) sense, and moreover,

such that the contribution from all cross-correlation terms P̄ (θ, θ̄) (for θ 6= θ̄), are minimized
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(again, in an LS sense) over the set of possible target locations {θ̃k}K̃k=1. Formally, we make use

of the following cost function that incorporates the aforementioned criteria as follows [31]:

J(p,R, α) =
1

K

K∑
k=1

wk |P (θk)− αφ(θk)|2 +
2ωc

K̃(K̃ − 1)

K̃−1∑
p=1

K̃∑
q=k+1

∣∣∣P̄ (θ̂p, θ̂q)
∣∣∣2

=
1

K

K∑
k=1

wk

∣∣∣pTR� (a(θk)a
H(θk)

)∗
p− αφ(θk)

∣∣∣2
+

2ωc

K̃(K̃ − 1)

K̃−1∑
p=1

K̃∑
q=p+1

∣∣∣pT<{R� (a(θ̃p)a
H(θ̃q)

)∗}
p
∣∣∣2 (6.9)

where α > 0 is a scaling factor to be designed. Furthermore, ωk ≥ 0 is considered as the

weight factor at the k-th grid point (for k = 1, · · · ,K), and ωc ≥ 0 is the weight factor for the

cross-correlation terms. Note that we introduce α as a design parameter in order to achieve

the desired transmit beam-pattern that approximates an appropriately scaled version of φ(θ) to

take into account different transmit energy allocations.

In the sequel, we formulate the problem of designing beam-pattern with low cross-correlation

for a MIMO radar system as a constrained optimization problem and further impose proper

constraints for designing R and p. First, one should impose the constraint that the designed

matrix R must be positive semi-definite since it is a covariance matrix. Next, under a uniform

elemental power constraint, all the diagonal elements of R must attain the same value as all
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antennas are required to transmit uniform power. Hence, the feasible region for the desired

transmit covariance matrix can be compactly expressed as,

R � 0, (6.10a)

Rmm =
c

M
, for m = 1, · · · ,M, (6.10b)

with given c > 0, and Rmm denoting the m-th diagonal element of R. In the case of designing

unimodular sequences, one can simply set c = 1.

Secondly, since we are placing only N antennas in M(≥ N) grid points to achieve the

desired beam-pattern, we further impose the constraint that the binary antenna selecting vector

p should contain N non-zero elements. More precisely, we aim to design p according to the

following constraints,

‖p‖1 = N, (6.11a)

pm = {0, 1}, for m = 1, · · · ,M, (6.11b)
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or, equivalently p ∈ BMN . Therefore, the overall transmit covariance optimization problem can

be formulated as

min
p,R,α

J(p,R, α) (6.12a)

s.t. R � 0, (6.12b)

Rmm =
c

M
, for m = 1, · · · ,M, (6.12c)

‖p‖1 = N, (6.12d)

pm = {0, 1}, for m = 1, · · · ,M, (6.12e)

α > 0. (6.12f)

It is easy to verify that the optimization problem in Equation 6.12 can be categorized as a mixed

Boolean-nonconvex problem, especially due to the constraints imposed on p, the likes of which

is very difficult and computationally expensive to solve. In the next subsection, we propose

an efficient and novel cyclic optimization approach based on semi-definite programming and a

greedy search algorithm to tackle the non-convexity of the said problem in Equation 6.12.

6.3.1 Cyclic Optimization Algorithm

Hereafter, we address the problem of designing the desired covariance matrix R, the scaling

factor α, and the corresponding antenna selection vector p according to the objective function J

and by proposing an alternating optimization approach to tackle the problem of Equation 6.12.

Specifically, the minimization of J(p,R, α) in Equation 6.12 can be tackled via employing a

cyclic optimization approach w.r.t. the design variables (R, α) and p.
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6.3.1.1 Optimization w.r.t. R and α:

For a fixed p, the minimization problem in Equation 6.12 w.r.t. (R, α) can be recast as

min
R,α

J(p,R, α) (6.13a)

s.t. R � 0, (6.13b)

Rmm =
c

M
, for m = 1, · · · ,M, (6.13c)

α > 0. (6.13d)

Interestingly, it was shown in [37] that the above minimization problem w.r.t. design variables

(R, α) is convex and can be reformulated as a semi-definite program (SDP), which can then be

efficiently solved using numerical methods (e.g., interior point method [173]).

6.3.1.2 Optimization w.r.t. p:

On the other hand, for fixed (R, α) the optimization problem of Equation 6.12 with respect

to the antenna selection vector p can be expressed as

min
p

J(p,R, α) (6.14a)

s.t. p ∈ BMN , (6.14b)

where M and N denote the total number of grid points and the total number of antennas we

are restricted to choose, in order to form the desired beam-pattern, respectively. Note that the

constraint set BMN is not convex due to the (discrete) Boolean constraint of p ∈ {0, 1} imposed



117

on the antenna selection vector. Put differently, we are interested in minimizing the objective

function J over a subset of vertices of a hypercube of dimension M , which is represented by

BMN . We tackle this problem using a greedy search algorithm which is discussed in Section 6.4

in a detailed manner.

Finally, as mentioned earlier, the cyclic optimization method alternates between the following

optimization problems at each cycle:

(
R(t), α(t)

)
= arg min

R,α
J(p(t−1),R, α) (6.15)

s.t. R � 0,

Rmm =
c

M
,

for m = 1, · · · ,M,

α > 0,

and

p(t+1) = arg min
p

J(p,R(t), α(t)) (6.16)

s.t. p ∈ BMN ,

where t denotes the iteration index of the cyclic optimization method.



118

6.4 The Proposed Antenna Position Design Technique

In this section, we develop a heuristic optimization approach inspired by the dynamic pro-

gramming and genetic algorithms (a special case of evolutionary optimization technique [174])

equipped with a simple local search to tackle the non-convexity of Equation 6.14. Note that

the objective function J(p,R, α) is quartic w.r.t. the vector p, and thus, it is deemed extremely

difficult to solve. Cheng et al. [54] propose one approach Equation 6.14 based on a relaxation of

the Boolean constraint (e.g., via the linear relaxation of 0 ≤ p ≤ 1), which yields a suboptimal

solution at the expense of heavy computation. In this chapter, we resort to a greedy search

algorithm that can solve the exact problem in Equation 6.14 in an efficient manner.

Especially we mimic the process of natural selection for solving an optimization process by

iteratively improving the generated set of feasible solutions. The fitness of each feasible solution

is usually governed by an objective function. Then, according to a predefined criterion, the

algorithm maintains the best subset of feasible solutions at each iteration to generate a better

solution individuals accordingly. Here in each generation, we produce the set of feasible solutions

and select the best individual according to a greedy policy, however by design, the particular

choice of policy allows for shrinking the cardinality of feasible set in each generation. In the

following, we go through the main ingredients of the proposed method in order to design the

antenna position vector p.

6.4.1 Generation of Feasible Solutions Set

As mentioned earlier that our search space for a solution is a subset of vertices of an M -

dimensional hypercube represented by BMN . Hence we undertake a deterministic strategy for
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the generation of feasible solutions set. Note that the binary vector p of length M represents

a hypercube with 2M vertices. Given the most fitted solution (parent solution) at iteration k,

e.g., p(k), we generate a new set of feasible (candidate) solutions (i.e., offspring of the parent

solution) p(k+1)
CS as follows:

p
(k+1)
CS =

{
p | H

(
p,p(k)

)
= 1, ‖p‖1 < ‖p(k)‖1

}
, (6.17)

where H(x,y) denotes the Hamming distance between the two vectors, and is defined to be the

number of positions i such that xi 6= yi, where the subscript i denotes the i-th element of the

corresponding vector. In other words, given a parent solution p(k), the new set of candidate

solutions (CS) is generated as the set of vectors which only differs from p(k) in one bit (with

one less non-zero element only). Then each candidate solution is mutated using a predefined

probability (prob_mut), meaning one randomly selected bit (using uniform sampling) is toggled

with the said probability. It is well known that mutation introduces diversity into the candidate

solution set. Particularly, mutation operators prevent the active codes of candidates (i.e., chro-

mosomes) from becoming too similar to each other, thus avoiding local minima and broadening

the exploration area in the solution space [174]. Hence, at each iteration the cardinality of the

new candidate solution is upper bounded by
∣∣∣p(k+1)

CS

∣∣∣ ≤ ‖p(k)‖1. This procedure is summarized

in Algorithm 4.
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Algorithm 4 For generating children set of p which are not in seen_children using mutation
1: procedure GenerateChildren(p, seen_children, prob_mut)
2: children.push(p)
3: for i = 1, 2, · · · , len(p) do
4: if pi = 1 then
5: child ← Toggle i-th bit of p
6: if rand(1)≤ prob_mute then
7: child ← Toggle uniformly selected one bit of child with probability

prob_mut
8: end if
9: if child is not in children and seen_children then
10: children.push(child)
11: end if
12: end if
13: end for
14: return children
15: end procedure

6.4.2 Selection of the Fittest Solution

The goal of the selection procedure is to propagate the fittest candidate solution, i.e., the

one with the highest fitness value, or in other words lowest objective value, to have a higher

probability of generating new offspring or CS for the next iteration (generation) of the algo-

rithm. There exist several stochastic and deterministic methods in the literature for the selection

procedure, and in this chapter, we consider a deterministic approach. For fixed (R, α), let us

denote the objective function Equation 6.9 as J(p). Having the current CS p(k)
CS at hand, we
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Algorithm 5 For choosing the best child of p
1: procedure BestChild(children)
2: Calculate the functional values of J(child,R, α) in Equation 6.9 for each child in

children
3: return the child for which the functional value is minimum
4: end procedure

select the fittest solution p(k) to be considered for generating new candidate solutions at the

next stage as follows:

p(k) = arg min
p∈p(k)CS

J(p). (6.18)

Next, p(k) is used as the seed for generating new CS in the crossover procedure for the next

stage of the algorithm. This procedure is summarized in Algorithm 5.

6.4.3 Stopping Criteria

Once the selection procedure selects a vector p(k) as its output such that p(k) ∈ BMN or

equivalently ‖p(k)‖1 = N , then one can easily argue that a suboptimal solution is obtained.

Note that p(k) ∈ BMN implies p(k−1) ∈ BMN+1. Hence, one can conclude that if p(k) ∈ BMN ,

then p(k) is a local optimal point in a 1-Hamming distance neighborhood of p(k+1) such that

‖p(k)‖1 < ‖p(k−1)‖1, and that p(k−1) ∈ BMN+1. Moreover, the cardinality of the search space in

the 1-Hamming distance local search in Equation 6.18 is at most ‖p(k−1)‖1 and as a result the

search space is reduced in each generation. The corresponding search process is summarized in

Algorithm 7.
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Algorithm 6 For updating seen_children
1: procedure UpdateSeenChildren(seen_children, children)
2: for each child in children do
3: if child is not in seen_children then
4: seen_children.push(child)
5: end if
6: end for
7: return seen_children
8: end procedure

Algorithm 7 For choosing the best p using greedy search algorithm (The procedure Update-
SeenChildren is described in Algorithm 6)
Require: R, α, total number of antennas N , total number of grid points M , prob_mut
Ensure: p← 1M , seen_children ← ∅, flag ← 1
1: while flag do
2: children ← GenerateChildren(p, seen_children, prob_mut)
3: p← BestChild (children)
4: seen_children ← UpdateSeenChildren (seen_children, children)
5: if ‖p‖1 = N then
6: flag ← 0
7: end if
8: end while
9: return p

The above greedy search approach can be best manifested via considering a toy example.

Assume M = 3, N = 1, and the initial antenna position vector p(0) = 1M . Figure 20 illustrates

the iterations of the proposed greedy search algorithm, where the red vertices denote the parent

solution (output of the selection procedure), yellow vertices correspond to the candidate solutions

pCS, and the blue vertices are the selected solution for the next iteration. At the first iteration,
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Figure 20. Illustration of the iterations of the proposed greedy search algorithm, where the red
vertices denote the parent solution (output of the selection procedure), yellow vertices

correspond to the candidate solutions pCS, and the blue vertices denote the selected solution
for the next iteration.

the candidate solutions p(1)
CS = {[0, 1, 1], [1, 0, 1], [1, 1, 0]} ⊆ B3

2, and each member of p(1)
CS is also

in a 1-Hamming distance of p(0). Next, we introduce mutation to each of the candidate solutions

according to a predefined mutation probability. Generally, such probability is kept low ( < 0.5)

to introduce a controlled diversity so that only a small number of candidates are mutated but

not all. Let us assume, during the mutation process, only one candidate: [1, 0, 1] is mutated to

[1, 0, 0], and thus the new candidate set becomes: p̂(1)
CS = {[0, 1, 1], [1, 0, 0], [1, 1, 0]} Next, during

the selection procedure, let us assume that the vertex [0, 1, 1] is chosen as the fittest solution and

then used to generate offspring (candidate solutions), e.g.p(1) = [0, 1, 1]. The new CS generated

from p(1) is the set p(2)
CS = {[0, 0, 1], [0, 1, 0]} ⊆ B3

1. Once again, we apply mutation to all the

candidates, however, assume that due to the smallness of the predefined mutation probability,

none of the candidates are mutated in this iteration. The fittest solution is then p(2) = [0, 0, 1]
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and since it is a member of the desired set B3
1, the algorithm stops. Next, the antenna position

vector p(2) is used to design the covariance matrix R.

As it was discussed earlier, we consider the alternating (cyclic) optimization approach to

solve the joint optimization of the covariance matrix and the antenna position vector. Namely,

after performing the above greedy search technique for obtaining the solution to Equation 6.14

at the t-th iteration, i.e.obtaining the antenna selection vector p(t), we fix p = p(t) and optimize

the objective function w.r.t. the design variables (R, α) according to the method described in

Section 6.3.1.1. Finally, the proposed cyclic optimization approach is summarized in Table IV.

6.5 Extension to General Antenna Selection Scenario

So far, we have discussed the joint optimization of the transmitted signal covariance matrix

and the antenna position while restricted to placing N antennas intoM grid points in an optimal

manner. However, the same proposed greedy search algorithm can be extended to a more general

scenario in which we aim to choose the minimum number of antennas Nmin for placing in M

grid points. Namely, in the general antenna selection scenario, we consider the optimization of

the signal covariance matrix to form the desired beam-pattern, by letting the algorithm choose
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the best placement positions while using the minimum number of antennas. For this general

scenario, we consider the following relaxed optimization problem,

min
p,R,α

J(p,R, α) + ρ (|‖p‖1 −N |) (6.19)

s.t. R � 0,

Rmm =
c

M
, for m = 1, · · · ,M,

pm = {0, 1}, for m = 1, · · · ,M,

α > 0,

where ρ > 0 denotes the penalty parameter. Note that a lower value of ρ relaxes the solution p

to have less (than N) number of active antennas by encouraging the total number of non-zero

elements ‖p‖1 of the solution to go far from N . Conversely, a larger value of ρ keeps the total

number of non-zero elements of the solution near N . Hence, depending on the application, one

can choose a lower weight for the total number of active antennas via varying the penalty factor

ρ. Also, N in Equation 6.19 can be interpreted and chosen accordingly as an approximation of

the number of antennas one can afford to use.

Let J2(p,R, α) , J(p,R, α) + ρ (|‖p‖1 −N |) denote the augmented objective function in

Equation 6.19. Then, with a slight modification, the same cyclic optimization approach de-

scribed in Section 6.3.1 can be employed to solve it. Note that the extra term in J2(p,R, α)

only depends on p, and hence the optimization of J2 w.r.t. the variables (R, α) remains un-

changed and is the same as the procedure described in Section 6.3.1.1. In the previous scenario,
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we were restricted to a solution p such that it satisfies p ∈ BMN . However, we have no such re-

striction in the generalized scenario but only to have p ∈ {0, 1}M and instead, we are interested

in choosing the minimum number of antennas while optimizing their positions.

In order to optimize the new augmented objective function J2 w.r.t. the vector p, we only

need to change the stopping criteria and the fitness function. In this general case, the fitness

function is considered to be J2(p,R, α) and the corresponding stopping criteria for the greedy

search approach can be described as follows. As it was discussed earlier in Section 6.4, starting

with the initialization p(0) = 1M , at each iteration of the proposed search algorithm, the parent

node p(k) ∈ BMN−k is a local optimal point in a 1-Hamming distance neighborhood of p(k−1).

Hence, a heuristic proper stopping criteria can be assumed when the following condition is

satisfied at the k-th inner iteration of the search process:

H
(
p(k),p(k−1)

)
= 0. (6.20)

In other words, the above criteria implies that the solution p(k) is a 1-Hamming distance optimal

point for its parent p(k−1) as well as the newly generated candidate solutions p(k+1)
CS .

6.6 Numerical Simulations

In this section, we present several scenarios through numerical simulations in order to assess

the performance of our proposed algorithm. In the following experiments we assume a colocated

narrow-band MIMO radar with a linear array withM = 15 grid points and half-wavelength inter-

grid interval i.e.d = λ/2. The range of angle is (−90◦, 90◦) with 1◦ resolution. We set the weights
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TABLE IV

THE PROPOSED JOINT OPTIMIZATION METHOD

Step 0: Initialize the antenna position vector p(0) = 1M , the complex covariance matrix R(0) ∈ CN ×N , and
the scaling factor α(0) ∈ R+, and the outer loop index t = 1.

Step 1: Solve the convex program of Equation 6.15 using the procedure described in Section 6.3.1.1 and obtain(
R(t), α(t)

)
.

Step 2: Employ the proposed greedy search approach described in Section 6.4 and solve the antenna position
design program of Equation 6.16 to obtain the vector p(t+1).

Step 3: Repeat steps 1 and 2 until a predetermined stopping criteria is satisfied.

for the k-th angular direction as wk = 1, for k = 1, · · · ,K. Note that the optimization problem

w.r.t. the variables (R, α) is carried out using the convex optimization toolbox CVX [175].

Furthermore, we consider the mutation probability as 0.1.

In Figure 21, we consider a design scenario where initial direction of arrival (DoA) informa-

tion about K̃ = 3 targets with unit complex amplitudes, and approximately located at angles

{−50◦, 0◦, 50◦} is available through the Capon or GLRT method. Hence, we desire to design a

symmetric beam-pattern with three directions of interest: θ̃1 = −50◦, θ̃2 = 0◦, and θ̃3 = 50◦,

respectively and the beam-pattern of width 4 = 20◦ and thus the given transmit pattern is

φ(θ) =


1, θ ∈ [θ̃k − 42 , θ̃k + 4

2 ], k = 1, 2, 3,

0, otherwise.

Herein, we compare the resulting beam-pattern with the desired one for the two cases of

ωc = 1 (with cross-correlation) and ωc = 0 (without cross-correlation). It is interesting to note
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Figure 21. The transmit beam-pattern design for M = 15, N = 10 with and without the
cross-correlation suppression with three mainlobes at θ̃ = {−50◦, 0◦, 50◦} with a beam-width
4 = 20◦. It is noticeable that our algorithm outperforms the method described in [54].

.

that the designed beam-patterns obtained with and without considering the cross-correlation

terms are able to match the desired beam-pattern in a similar manner. However, the probing

signals corresponding to ωc = 1, are almost uncorrelated with each other resulting in much better

cross-correlation behavior than its other counterpart. This can be verified from Figure 22, where

we provided the comparison of the normalized magnitudes of the cross-correlation coefficients (as

formulated in the second term of the right hand side of Equation 6.9) for the same three targets

of interest at directions θ̃ = {−50◦, 0◦, 50◦}, as functions of ωc. It is evident from Figure 22 that

when ωc is very small (close to zero), the first and third reflected signals are highly correlated.
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Figure 22. The comparison of the normalized magnitudes of the cross-correlation coefficients
for three targets of interest at directions {−50◦, 0◦, 50◦} as functions of ωc.

On the other hand, for ωc > 0.1 all cross-correlation coefficients are approximately zero. The

proposed algorithm outperforms the method described in [54] in terms of accuracy (measured

in MSE), and additionally, is capable of designing waveform covariance matrices with low cross-

correlation.

In Figure 23, we further consider the design scenario of approximating the beam-patterns

with one mainlobe at θ̃ = 0◦, with a width of 60◦, with and without cross-correlation suppression.

Note that in both cases of ωc = 0 and ωc = 1, our proposed method can accurately approximate

the desired beam-pattern and provide a better beam-pattern than that of [54].

Figure 24 shows the beam-pattern with five mainlobes at θ̃ = {−60◦,−30◦, 0◦, 30◦, 60◦}

with a shorter beam-width of 10◦ for M = 20 and N = 15. We compare the beam-pattern
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Figure 23. The transmit beam-pattern design for M = 15, N = 10 with and without the
cross-correlation suppression with one mainlobe at θ̃ = 0◦ with a beam-width of 4 = 60◦.

approximated by our framework (i.e., with the configuration of 15 antennas placed in an array

of 20 grid points) with that generated by a full linear array i.e.15 antenna elements tightly

placed in all 15 grid points. It can be clearly seen from the Figure 24 that the proposed method

approximates the beam-pattern better than that of the full array. One can further notice that

the transmitted power values are almost the same in all mainlobe despite being farther away

from the central mainlobe, as compared to the full array.

In Figure 25, we demonstrate the final antenna position vectors suggested by the proposed

algorithm for the scenario considered in Figure 24 for the two cases of ωc = 0 and ωc = 1. It

is interesting to note that the effective antenna aperture of the array is M = 15, which can
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Figure 24. The transmit beam-pattern design for M = 20, N = 15 with and without the
cross-correlation suppression with five mainlobes at θ̃ = {−60◦,−30◦, 0◦, 30◦, 60◦} with a

beam-width of 4 = 10◦. Full array represents the 15 antenna elements tightly placed in all 15
grid points.

be safely reached by selecting only N = 10 antennas. The corresponding beam-patterns are

depicted in Figure 21.

In addition, Figure 26 shows the final M ×M covariance matrix of the transmit signals,

which can be used to design the transmitted sequence following specific requirements. It can be

readily shown that the generated matrix is symmetric and its eigenvalues are all non-negative

(i.e., R is a positive semidefinite matrix). It is interesting to note that the structure of the

final covariance matrix is in agreement with the final antenna position vector, as reflected in the

corresponding rows and columns of the rejected grid points, which are all zeros.
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Figure 25. The antenna positions for M = 15, N = 10 with and without the correlation
suppression.
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Figure 26. The generated M ×M covariance matrix for M = 15, N = 10 with cross-correlation
suppression.
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In Figure 27, the comparison of the computational cost of the proposed algorithm and

that of the method in [54] for the different number of grid points and antennas are shown.

For this experiment, we consider M = 4 and N = 3 as initialization, and then linearly scale

M and N by the factor of β ∈ {1, 2, 3, 4}. The proposed algorithm significantly reduces the

computational cost of the ADMM-based method in [54] by a factor of more than 200. To give

it a perspective, [54] takes ∼ 4500 seconds to design the beam-pattern for M = 15 and N = 10,

in around 20 outer iterations (on average) in a standard PC with 8-core processor and 16 GB

memory. Whereas, our proposed method finishes the same task in just 17 seconds using 3 outer

iterations in the same standard PC, making the proposed framework particularly suitable for

real-time applications.

Furthermore, Figure 28 illustrates the beam-pattern design for the generalized case described

in Section 6.5. In the generalized case, we relax the constraints of Equation 6.12d (i.e., ‖p‖1 =

N), and allow the total number of active antennas to deviate from N (which can be chosen

depending on the applications) via changing the penalty variable ρ. For this simulation, we set

M = 20 and N = 15 and provide the obtained beam-patterns and the final arrangement and

total number of antennas suggested by the proposed algorithm, in Figure 28-(a) and Figure 28-

(b), respectively for different values of ρ. It is interesting to note that for ρ = 0.1, the proposed

algorithm successfully returns an arrangement with 15 antennas as requested in the design

parameter. However, for ρ = 0.01, the algorithm suggests an arrangement with 10 antennas,

which remains unchanged for ρ < 0.01, suggesting N = 10 is the minimum number of antenna
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that can be utilized. Further note that the resulting beam-patterns for the two cases are similar

in the mainlobes, although having a different number of antennas.

In the next experiment, we further examine the convergence performance of the proposed

algorithm. Especially, we perform a Monte-Carlo simulation (n = 1000) with fixed parameters

used in the experiment shown in Figure 21. In each run, we initialize the waveform covariance

matrix R with a randomly generated positive semidefinite (PSD) matrix while keeping all the

other parameters unchanged. It is interesting to observe that, in each experiment, the designed

beam pattern converges to the one shown in Figure 29 for all n = 1000. Furthermore, in each

case, the optimized antenna positions are also the same as shown in Figure 29 which implies

that the proposed algorithm has satisfactory convergence performance.

6.7 Concluding Remarks

In this chapter, the problem of jointly designing the probing signal covariance matrix as

well as the antenna positions to approximate a given beam-pattern was studied. In order to

tackle the problem, a novel cyclic (alternating) optimization method based on the non-convex

formulation of the problem, was proposed. In addition, we used a greedy local search algorithm

to tackle the non-convex problem of designing antenna positions. Several numerical examples

were provided which demonstrates the superiority of the proposed method over the existing

methods in terms of accuracy and computational efficiency.
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Figure 27. Comparison of the computational cost of our proposed algorithm and that of
proposed by Cheng et al. for different number of grid points and that of antennas. We

consider M = 4 and N = 3 as initialization, and then linearly scale M and N by the factor of
β = {1, 2, 3, 4}.
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Figure 28. The (a) beam-pattern and, (b) final arrangements and total number of selected
antennas for M = 20 grid points and penalty parameter ρ = {0.1, 0.01}.
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CHAPTER 7

WAVEFORM DESIGN FOR MUTUAL INTERFERENCE MITIGATION

IN AUTOMOTIVE RADAR

Overview: Automotive radars are an integral part of modern vehicles with assistive driving

technology. With more vehicles on the road, comes the prospect of significant mutual interference among

the waveforms transmitted by similar radar systems mounted on the connected vehicles, which results in

a significant reduction in radar sensitivity and increases false alarm rates. In this chapter, we address the

problem of interference mitigation in similar radar systems. To this end, two algorithms are proposed

to design slow-time codes for a simple SISO scenario. The difficulty and complexity of the problem

of mutual interference increases when the vehicles are equipped with MIMO radar systems and even

further with a growing number of vehicles present on the scene. We thus further extend our discussion

onto a more general case of MIMO radars and propose an efficient algorithm to design waveforms to

mitigate mutual interference in such systems. The proposed technique seeks to minimize a collective

cross-ambiguity function. Our quest does not stop here. We then provide a generalized formulation of

the problem for a multiple-MIMO case. The proposed coding schemes are computationally efficient in

practice and the incorporation of the coding schemes requires only a slight modification of the existing

Parts of this chapter is taken from submitted journal article [176], submitted correspondence article
[177] and a published conference article [60].
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systems. Although for the multiple-MIMO case, the computational complexity becomes cumbersome as

the number of MIMO radars grows, the design can be performed online in a collaborative manner, or

offline, in which case the radar codes can be designed and stored in a codebook for future use.

7.1 Introduction

The radar technology exhibits an unmatched performance in a variety of vehicular appli-

cations, owing to excellent resolving capabilities and immunity to bad weather conditions in

comparison with visible and infrared imaging techniques [24, 178–181]. Due to their high ac-

curacy, smaller size, and simplified sensing technology, the millimeter wave (mmWave) radars

especially in W-band (75-110 GHz), have gained significant popularity not only in automotive

radar systems but also in drone radar applications and the internet of things (IoT) [182–186].

Given the tendency to mass-produce radars in civilian applications, such systems, however, tend

to be quite similar, or even almost identical. The increasing number of similar or identical radar

systems increases the probability of mutual interference, which may result in severely reduced

radar sensitivity and poor performance quality [65, 66, 165]. Thus it is vitally important to

enhance radar signal processing performance in severe mutual interference scenarios [187–190].

In the literature, the effects of mutual interference due to identical radar parameters and

their corresponding methods of mitigation have been discussed widely, e.g., see [7, 61, 191–

194] and the references within. A judicious signal separation method for synchronous and

asynchronous interference mitigation is proposed in [191]. In [192], the authors analyzed the

mutual interference between frequency-modulated continuous-wave (FMCW) radar systems and

proposed several techniques to mitigate the interference problem, including pre-possessing and
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Car 1

Car 2

Figure 30. Mutual interference between automotive radars: potential source of mutual
interference.

FIR filtering. Contrary to addressing the mutual interference in the receiver side, the authors

in [195–197] investigated the problems between automotive radar systems with different types of

transmissions. In this chapter, we address the mutual interference mitigation problem in similar

or identical radar systems using smart transmit waveforms. To this end, we first formulate the

problem for a simple SISO case as shown in Figure 30. Particularly, we propose two slow-time

coding schemes to reduce the interference power level.

The interference multiplies many-fold when several cars with similar or almost identical

MIMO radar systems are in close proximity. In the not-so-far future, it is reasonable to expect

that connected vehicles will go beyond academic pursuit and will be introduced to real-world

smart-road networks. Many existing studies show the effectiveness of connected vehicles, and

that transportation systems can be enhanced with more connected vehicles on the road [198].

In the later part of this chapter, we further consider the general scenario in which multiple cars,

that are able to communicate and agree on the optimal radar waveforms to be used among

them, come into contact in traffic (as depicted in Figure 31). We thus extend the formulation to
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Figure 31. Mutual interference among multiple automotive radar systems.

design such waveforms to suppress mutual interference in the case of similar or identical MIMO

radar systems for multiple connected vehicles. Note that the design can be done online in a

collaborative manner, or offline; meaning that such radar codes can be designed and stored in

a radar codebook for future use. The main contributions of this chapter are listed as follows:

• We begin our study of mutual interference with the SISO case and propose two coding

schemes to reduce the interference power level. The first coding scheme aims to shift

the Doppler frequency of the interference and separate it from the target in the Doppler

region. The second coding scheme aims to minimize the discrete periodic cross-ambiguity

function (CAF) in the desired area.
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• We further formulate the problem of minimizing the discrete periodic CAF for a general

MIMO scenario and propose an efficient cyclic algorithm to design the transmit waveforms.

• The problem formulation is then extended to the case when multiple MIMO antennas with

varying numbers of antennas are present in the scene.

The rest of this chapter is organized as follows. In Section 7.2, we discuss the mutual

interference for two identical FMCW radar systems. We propose two coding schemes for the

SISO scenario in Section 7.3. Section 7.4 is devoted to waveform design for a MIMO scenario.

Numerical simulation results are presented in Section 7.6. Finally, Section 7.7 concludes this

chapter.

7.2 Preliminaries

In this section, we start by formulating the problem for a SISO scenario. Consider two

identical FMCW radar systems shown in Figure 30, that are operating within the same frequency

band and same B/Tc ratio where B and Tc are the FMCW signal bandwidth and chirp time,

respectively, as shown in Figure 32. A brief description of FMCW radar technology and workflow

can be found in Section 1.1.2.2. In this section, we are interested in synthesizing waveforms for

such radars. The transmitted waveform, in particular, can be expressed as a train of pulses

given as

s(t) =

∞∑
n=−∞

u(t− nTc) (7.1)

where u(t) = exp(j(2πfct+ πKt2)), fc is the carrier frequency and K = B/Tc.
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Figure 32. Time-frequency illustration of the transmit waveform, the target signal, and the
interference.

When the two radar systems are operating simultaneously, the received signal by one radar

includes not only the target reflections but also the interference signal due to the transmission

from the other radar system. As a result, we can express the received signal by one radar (e.g.,

the radar mounted on Car 1 in Figure 30) as,

r(t) = yT (t) + yI(t) + w(t) (7.2)

where yT (t) = αT s(t−τT ) exp(jπfd,T t) is the target return, and yI(t) = αIs(t−τI) exp(jπfd,It)

is the interference signal with αT , αI being the corresponding amplitudes, τT is the two-way

target propagation delay, τI is the one-way delay associated with the interference, fd,T , fd,I are

the corresponding Doppler frequencies, and w(t) is the internal disturbance, including, e.g., the

receiver noise.
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Typically, FMCW radar systems collect the received signal from N consecutive pulses within

a CPI for target detection and parameter estimation. The received signal is then conjugately

mixed with the transmitted signal to produce a low-frequency intermediate (de-chirped) signal.

As a result, the de-chirped version of r(t) for the nth (slow-time) pulse is given by

rndc(t) = αT exp(j2π(fB,T t+ nfd,TTc)) + αI exp(j2π(fB,It+ nfd,ITc)) + wn(t) (7.3)

where fB,T = KτT +fd,T , fB,I = KτI +fd,I are the beat frequencies corresponding to the target

and the interference signal, respectively, and to lighten the notations, we absorb the constant

phase terms into αT and αI , and use wn(t) to denote the de-chirped noise.

The de-chirped signal is then passed through a series of ADCs and themth (fast-time) digital

sample can be expressed as,

r(m,n) = αT exp(j2π(f̂B,Tm+ f̂d,Tn)) + αI exp(j2π(f̂B,Im+ f̂d,In)) + w(m,n) (7.4)

where f̂B,T = fB,TTs, f̂B,I = fB,ITs are the corresponding normalized beat frequencies, f̂d,T =

fd,TTc, f̂d,I = fd,ITc are the corresponding normalized Doppler frequencies, and Ts = 1/fs, with

fs being the sampling frequency.
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Applying 2-D FFT to Equation 7.4 for m = 1, · · · ,M and n = 1, · · · , N , we can obtain the

range-Doppler image as,

RD(k, p) = αTDM (f̂B,T − k/M)DN (f̂d,T − p/N) (7.5)

+ αIDM (f̂B,I − k/M)DN (f̂d,I − p/N) +W (k, p)

where Dn(x) = sin(nπx)/ sin(πx) is the Dirichlet function and W (k, p) represents the 2-D FFT

of noise.

One can observe from Equation 7.5 that the interference signal will form a sharp peak in

the range-Doppler image. In particular, it is worth noting that, although the interference might

be attributable to the transmission from the antenna sidelobe of one radar and received by the

antenna sidelobe of the other, the potential interference level can be significantly higher than the

target reflections due to the non-ideal antenna sidelobe characteristic. This is attributable to the

one-way propagation characteristic of the interference signal and the direct (without reflection)

blast from one’s transmission to the other’s reception [60]. Specifically, according to the radar

range-equation, the power of the target returns (i.e., |αT |2) can be determined by

PT,r =
PtG

2
Tλ

2σtLt
(4π)3R4

T

, (7.6)

where Pt is the system transmit power, GT is the antenna gain in the target direction, λ = c/fc

is the wavelength, c is the light speed, σt is the radar cross section (RCS) of the target, Lt is
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the propagation loss, and RT denotes the target range. The power of interference (i.e., |αI |2) is

given by

PI,r =
PtGt,IGr,Iλ

2LI
(4π)2R2

I

, (7.7)

where we have assumed the two automotive radar systems have the same transmit power,

Gt,I and Gr,I denote the transmit and receive antenna gains associated with the interference,

respectively, LI denotes the propagation loss, and RI is the range between the two radar systems.

Thus, considering a target with RCS of 1m2 and ignoring the propagation loss, we have the power

ratio at the receiver input as,

PI,r
PT,r

=
4πR4

TGt,IGr,I
G2
TR

2
I

. (7.8)

Therefore, the non-negligible interference power will result in serious interference for both au-

tomotive radar systems. In the following, we formulate the problem of mutual interference

mitigation for a simple SISO scenario and then extend it to the MIMO case.

7.3 SISO Coding Scheme

Consider two systems that use N periodic consecutive pulses: x = [x1, x2. · · · , xN ]T and

y = [y1, y2. · · · , yN ]T , respectively, as depicted in Figure 33. That is to say, in the nth pulse of

a CPI, the first radar system transmits xnu(t) and the second radar system transmits ynu(t).

Moreover, to keep constant transmit power over the N pulses, we constrain the code sequences
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t
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Tchirp

B

Transmit waveform 1

……
x1 x2 x3 xN-1 xN

t

f

Tchirp

B

Transmit waveform 2

……
y1 y2 y3 yN-1 yN

Figure 33. An illustration of the SISO coding scheme for two radar systems operating under
same FMCW parameters.

to be unimodular, i.e., |xn| = |yn| = 1, n = 1, 2, · · · , N . With this coding scheme, the mth

(fast-time) sample of the nth de-chirped signal is denoted by,

rc(m,n) = αT exp(j2π(f̂B,Tm+ f̂d,Tn))

+ αIx
∗
ny(n+l)mod N exp(j2π(f̂B,Im+ f̂d,In)) + w(m,n) (7.9)
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for correlation lags l ∈ {−N + 1, · · · , N − 1}. The corresponding range-Doppler image, is thus

given by

RDc(k, p) = αTDM (f̂B,T − k/M)DN (f̂d,T − p/N)

+ αIDM (f̂B,I − k/M)rlxy(f̂d,I − p/N) +W (k, p) (7.10)

where

rlxy(f) =
N∑
n=1

x∗ny(n+l)mod N exp(j2πnf) (7.11)

is the periodic CAF of x and y, and is to be minimized [199–201].

To suppress the interference power in the range-Doppler image, we aim at designing x and

y to minimize rlxy(f) within a range of interest for f . To this end, we propose two methods to

design x and y in the following subsections.

7.3.1 The Doppler-Shifting Scheme

First, we propose a simple heuristic coding scheme to mitigate the interference. For simplicity

and without loss of generality, we assume that the Doppler frequency of the interference signal

satisfies fD,I ∈ [−fd,max, fd,max], where fd,max denotes the maximum possible Doppler frequency

(for both the target reflections and the interference signal). Note that for an automotive radar

system with sweep time Tc, the unambiguous Doppler frequency that the system can identify is

determined by

−fr
2
≤ fd ≤

fr
2
, (7.12)
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-fr/2 fr/2fd,max-fd,max 0

Target Interference

(a)

-fr/2 fr/2fd,max-fd,max 0

Interference InterferenceTarget

(b)

Figure 34. The Doppler spectra of target and interference (a) without coding and (b) with
Doppler-shifting coding.

with fr = 1/Tc (we can treat fr as the pulse repetition frequency (PRF)). Assuming that

fd,max ≤ fr/2, the possibly occupied Doppler frequencies of the interference signal can be illus-

trated in Figure 34(a). We can observe that, without slow-time coding, the Doppler frequency

of target reflections and interference signal might occupy the same area and it results in mutual

interference.

In order to mitigate the interference in the Doppler region, we introduce a coding scheme to

shift the Doppler spectrum of the interference signal into the high frequency area (> fd,max or

< −fd,max). We call the resulting code the Doppler-shifting code. With such a coding scheme, it

is possible to separate the target reflections and interference signal in the Doppler domain. As

a result, we can apply low-pass filtering in the Doppler domain to mitigate the interference. To
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this end, we propose using the following codes to shift the Doppler spectrum of the interference

signal:

x = [1, 1, · · · , 1]T , (7.13a)

y =


[1,−1, · · · ,−1, 1]T , if N is odd,

[1,−1, · · · , 1,−1]T , if N is even.

(7.13b)

Note that, the two sequences are orthogonal for even N and quasi-orthogonal for odd N . It

is easy to verify that,

|rlxy| =
∣∣∣∣∣
N∑
n=1

exp(jnπ) exp(j2π(f̂d,I − p/Nf )n)

∣∣∣∣∣
=

∣∣∣∣∣
N∑
n=1

exp(j2π((f̂d,I +
1

2
)− p/Nf )n)

∣∣∣∣∣
=

∣∣∣∣∣sin(Nπ(f̂d,I + 1/2− p/Nf ))

sin(π(f̂d,I + 1/2− p/Nf ))

∣∣∣∣∣ . (7.14)

Therefore, the above codes enable the automotive radar to shift the Doppler frequency of inter-

ference signal from fd,I to fd,I + fr/2, as shown in Figure 34(b). In particular, if fr satisfies

4fd,max < fr, (7.15)

we can isolate the target reflections and the interference signal in the Doppler domain with any

Doppler frequency fD,I ∈ [−fd,max, fd,max].
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On the other hand, note that the maximum value of the first sidelobe of the function

| sin(Nπf)/ sin(πf)| equals

SLL1 =
1

sin( 3π
2N )
≈ 2N

3π
(for large N). (7.16)

As a result, although the Doppler shifting coding scheme is simple, it may suffer from large

sidelobes and the interference signal cannot be extensively canceled.

7.3.2 Optimized Coding Scheme for SISO Radars

In this subsection, we seek to optimize x and y such that the corresponding |rlxy(f)| has small

values in a desired area. Given that the two radar systems usually have unsynchronized trans-

missions, the desired area should include all possible delays. Hence, we consider the following

optimization problem w.r.t. the two codes x and y:

min
x,y

N−1∑
l=−(N−1)

P∑
p=−P

|rlp|2

s.t. |xn| = 1, |yn| = 1, ∀n, (7.17)

where

rlp =
N∑
n=1

x∗ny(n+l)mod N exp(−j2πnp/Nf ) (7.18)
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is the discrete periodic CAF with N < Nf , 0 < P < Nf , Nf is the overall number of discrete

(Doppler) frequencies, and the value of P is closely related to the maximum Doppler frequency

of interest.

After some algebraic manipulation, the criterion in Equation 7.17 can be reformulated as

min
x,y

N−1∑
l=−(N−1)

P∑
p=−P

|xHDiag (fp) Cly|2

s.t. |xn| = 1, |yn| = 1, ∀n, (7.19)

where Cl = CT
−l =

0 IN−l

Il 0

is a circular shift matrix and nth element of fp is exp(−j2πnp/Nf ).

Note that the optimization problem in Equation 7.19 is non-convex and appears to be diffi-

cult to solve [202,203]. Herein, we propose to tackle the problem in a cyclic manner. Specifically,

in the sth iteration of our cyclic optimization process, we first optimize x for fixed y(s−1) and

then optimize y for fixed x(s). In the following, we present the solution to the two sub-problems

involved in each iteration of the cyclic approach. For notational simplicity, we omit the super-

scripts of y(s−1) and x(s).

7.3.2.1 Optimization of x for fixed y

The associated optimization problem can be recast as

min
x

xHByx,

s.t. |xn| = 1, n = 1, 2, · · · , N, (7.20)
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where

By =
N−1∑

l=−N+1

P∑
p=−P

Diag (fp) ClyyHCH
l Diag (fp)

H . (7.21)

The problem in Equation 7.20 is called a (non-convex) unimodular quadratic program (UQP).

Such problems can be tackled by employing the power-method-like iterations (PMLI) proposed

in [76] and [51] (see also [204–206] for more applications of PMLI in radar code optimization).

Specifically, let γy be a positive constant larger than the maximum eigenvalue of By to ensure

Dy = γyIN − By � 0 (i.e., Dy is positive definite). It is easy to verify that the problem in

Equation 7.20 can be equivalently written as:

max
x

xHDyx,

s.t. |xn| = 1, n = 1, 2, · · · , N. (7.22)

In the tth (inner) iteration, we update x by using the following PMLI:

x(s,t) = exp(j arg(Dyx
(s,t−1))). (7.23)

7.3.2.2 Optimization of y for fixed x

The optimization of y for fixed x is formulated as follows:

min
y

yHBxy,

s.t. |yn| = 1, n = 1, 2, · · · , N, (7.24)
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where

Bx =
N−1∑

l=−N+1

P∑
p=−P

CH
l Diag (fp)

H xxHDiag (fp) Cl. (7.25)

Similar to the previous case, we can tackle the optimization problem in Equation 7.24 iteratively.

Specifically, the solution in the tth (inner) iteration is given by

y(s,t) = exp(j arg(Dxy
(s,t−1))), (7.26)

where Dx = γxIN − Bx and γx is a positive constant larger than the maximum eigenvalue of

Bx to ensure Dx � 0.

Finally, the steps of the proposed algorithm to minimize the discrete periodic CAF for two

identical SISO systems are summarized in Algorithm 8.

Remark 5. (Optimality and the Convergence): The optimization problem in Equa-

tion 7.19 is NP-hard and multimodal, i.e., the objective has multiple local optima [207]. Due

to the non-convex nature of the objective function, one usually settles for an approximation al-

gorithm that yields local optima. In the proposed approach, we tackle the non-convexity of the

problem by resorting to a cyclic minimization algorithm. In each half of the cycle, we optimize

for one set of variables keeping the other fixed, and these two subproblems are solved based on

a local optimization method, namely PMLI for UQP, that yields good local optima [51]. From
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Equation 7.19, it can be deduced that the objective value is lower bounded at 0. Furthermore,

from Equation 7.20 and Equation 7.24, we know that for s-th iteration

x(s+1) = arg min
x∈Ωx

xHB(s)
y x, (7.27a)

y(s+1) = arg min
y∈Ωy

yHB(s+1)
x y (7.27b)

where Ωz = {z | |zn| = 1,∀n}. Therefore, one can conclude that, in each iteration the objective

value is monotonically decreasing, and that the algorithm converges. �

Remark 6. (Computational Complexity): Note that, in the code optimization, one needs to

calculate Bx and By at each iteration. Specifically, in the computation of By, we needN complex

multiplications to obtain Diag (fp) Cly (whose nth element is e−j2πnp/Nf y(n+l) mod N ). As a re-

sult, the overall computational complexity of computing By is of the orderO
(
Nf (2N − 1)(N2 +N)

)
.

Similarly, the overall computational complexity of computing Bx is of the orderO
(
Nf (2N − 1)(N2 +N)

)
,

which seems to be quite high. In Appendix C, we provide a computationally fast and inexpensive

way to calculate Bx and By. �

In what follows, we extend our discussion to the more general case of MIMO automotive

radar systems.
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Algorithm 8 Automotive Radar Waveform Design Algorithm for Interference Mitigation (SISO
Case)
Initialize: x(0), y(0), s = 0
Output: x?, y?

1: repeat
2: s← s+ 1
B Update of x(s):

3: Calculate B
(s)
y with Equation 7.21

4: t = 0, x(s,t) = x(s−1)

5: repeat
6: x(s,t) = exp(j arg((γ

(s)
y IN −B

(s)
y )x(s,t−1)))

7: t← t+ 1
8: until convergence
9: x(s) = x(s,t)

B Update of y(s):
10: Calculate B

(s)
x with Equation 7.25

11: t = 0, y(s,t) = y(s−1)

12: repeat
13: y(s,t) = exp(j arg((γ

(s)
x IN −B

(s)
x )y(s,t−1)))

14: t← t+ 1
15: until convergence
16: y(s) = y(s,t)

17: until a pre-defined stop criterion is satisfied, e.g., |J (s) − J (s−1)| ≤ ε, for some ε > 0 where
J denotes the objective function of the problem Equation 7.19

18: x? = x(s),y? = y(s)

7.4 Extension to the MIMO Case

In a MIMO scenario, the mutual interference stems not only from the waveforms of a similar

radar system nearby, but also from the various waveforms transmitted by the same radar system.

In this case, our optimization problem for radar waveform design can be formulated as

min
{xm},{yk}

∑
m,k

N−1∑
l=−(N−1)

P∑
p=−P

{
|xHmDiag (fp) Clyk|2 + |xHmDiag (fp) Clxk|2 + |yHmDiag (fp) Clyk|2

}
s.t. xm and yk are unimodular for all m, k, (7.28)
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in which {xm}Mm=1 and {yk}Kk=1 are the codes used for modulation on different antennas of

the two radar systems. Note that the first and third terms of Equation 7.28 account for the

self-interference among the waveforms transmitted in the same radar systems, while the second

term accounts for the mutual interference of different radar systems. Let

Al,p , Diag (fp) Cl, (7.29a)

X = [x1, · · · ,xM ], (7.29b)

Y = [y1, · · · ,yK ], (7.29c)

and note that the objective in Equation 7.28 can be written in a compact form as

Qmimo(X,Y) =
∑
l,p

‖XHAl,pY‖2F + ‖XHAl,pX‖2F + ‖YHAl,pY‖2F . (7.30)

Tackling Equation 7.30 appears to be more difficult than the optimization problem formulated

in the SISO case in Equation 7.17, as the new objective is quartic in both radar codes (X and Y)

and the fact that the number of CAF values to be suppressed is growing more quickly in terms

of the problem dimension than the number of design variables. In the following, we formulate a

quadratic alternative to Equation 7.28 that can be tackled more efficiently.
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7.4.1 The Quartic to Quadratic Transformation

In order to recast the problem in a quadratic form, let

Ar
l,p =

1

2
(Al,p + AH

l,p), (7.31a)

Ai
l,p =

1

2
(Al,p −AH

l,p) (7.31b)

and note that

1. Both matrices Ar
l,p and jAi

l,p are Hermitian [207].

2. For any generic vector z,

zHAl,pz = zHAr
l,pz + zHAi

l,pz (7.32)

where

zHAr
l,pz ∈ R, jzHAi

l,pz ∈ R. (7.33)

In particular it follows from the above that

|zHAl,pz|2 = |zHAr
l,pz|2 + |zHjAi

l,pz|2. (7.34)
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We particularly observe that the quartic behavior of Equation 7.28 and Equation 7.30 stems

from self-interference terms: {|xHmAl,pxm|2}, {|yHk Al,pyk|2} for all m ∈ {1, · · · ,M} and k ∈

{1, · · · ,K}.

Based on Equation 7.31-Equation 7.34, one can write

∑
l,p

|xHmAl,pxm|2 =
∑
l,p

|xHmAr
l,pxm|2 + |xHmjAi

l,pxm|2

=
∑
l,p

|xHm(Ar
l,p + ζIN )xm − ζN |2 + |xHm(jAi

l,p + ζIN )xm − ζN |2

=
∑
l,p

|xHmÃr
l,pxm − ζN |2 + |xHmÃi

l,pxm − ζN |2, (7.35)

where

Ãr
l,p = Ar

l,p + ζIN , (7.36a)

Ãi
l,p = jAi

l,p + ζIN , (7.36b)

and ζ ∈ R is chosen such that

ζ > −min

⋃
l,p

{
γmin

(
Ar
l,p

)
, γmin

(
jAi

l,p

)} (7.37)

to ensure the positive definiteness of {Ãr
l,p} and {Ãi

l,p}, where γmin(·) denotes the minimum

eigenvalue of its matrix argument. Observe that the quantity in Equation 7.35 is still quartic

w.r.t. xm, which in fact is difficult to minimize. A quadratic alternative, however, can be
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proposed in the following manner. Note that the quantity in Equation 7.35 will be made

small when the quadratic quantities {xHmÃr
l,pxm} and {xHmÃi

l,pxm} are close to ζN . This is

only possible when unit-norm vectors {url,p,m} and {uil,p,m} exist such that (Ãr
l,p)

1/2xm is close

to
√
ζNurl,p,m, and likewise (Ãi

l,p)
1/2xm is close to

√
ζNuil,p,m. As a result, minimization of

Equation 7.35 can be approached by a reformulation, in the form of the following alternative

quadratic optimization problem [46,48,85,208]:

min
∑
l,p

{∥∥∥(Ãr
l,p)

1/2xm −
√
ζNurl,p,m

∥∥∥2

2
+
∥∥∥(Ãi

l,p)
1/2xm −

√
ζNuil,p,m

∥∥∥2

2

}

s.t. xm are unimodular for all m,

‖url,p,m‖2 = ‖uil,p,m‖2 = 1 for all l, p,m. (7.38)

Interestingly, one can observe that Equation 7.38 is quadratic instead of quartic— a transforma-

tion that was made possible by judicious over-parametrization. In a similar manner, we argue

that {|yHk Al,pyk|2} can be made small by solving the alternative problem:

min
∑
l,p

{∥∥∥(Ãr
l,p)

1/2yk −
√
ζNvrl,p,k

∥∥∥2

2
+
∥∥∥(Ãi

l,p)
1/2yk −

√
ζNvil,p,k

∥∥∥2

2

}

s.t. yk are unimodular for all k,

‖vrl,p,k‖2 = ‖vil,p,k‖2 = 1 for all l, p, k. (7.39)
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As a result, the objective in Equation 7.28 can be recast in its almost-equivalent quadratic

form as described in Equation 7.40.

min
{xm},{yk},

{url,p,m},{u
i
l,p,m},

{vrl,p,k},{v
i
l,p,k}

∑
l,p

∑
m 6=k
{|xHmAl,pxk|2 + |yHmAl,pyk|2}+

∑
l,p

∑
m,k

{|xHmAl,pyk|2}

+
∑
l,p

[∑
m

{∥∥∥(Ãr
l,p)

1/2xm −
√
ζNurl,p,m

∥∥∥2

2
+
∥∥∥(Ãi

l,p)
1/2xm −

√
ζNuil,p,m

∥∥∥2

2

}

+
∑
k

{∥∥∥(Ãr
l,p)

1/2yk −
√
ζNvrl,p,k

∥∥∥2

2
+
∥∥∥(Ãi

l,p)
1/2yk −

√
ζNvil,p,k

∥∥∥2

2

}]

s.t. xm and yk are unimodular for all m, k,

‖url,p,m‖2 = ‖uil,p,m‖2 = 1 for all l, p,m,

‖vrl,p,k‖2 = ‖vil,p,k‖2 = 1 for all l, p, k. (7.40)

Note that the optimization problem in Equation 7.40 is still non-convex, especially because of

the unimodular constraints imposed on {xm} and {yk}. In the following subsection, we provide

an efficient way to tackle the above problem for all individual optimization variables.

7.4.2 The Optimization Procedure

In order to efficiently tackle the problem in Equation 7.40, we resort to a cyclic optimization

framework. Namely, we iteratively optimize the criterion with respect to one of the variables

while keeping the rest of them fixed. In sth iteration, we separate each variable {xm}, {yk},

{ucl,p,m}, {vcl,p,k} for all m ∈ {1, · · · ,M}, k ∈ {1, · · · ,K}, l ∈ {−(N − 1), · · · , N − 1}, p ∈

{−P, · · · , P}, c ∈ {r, i} from the objective function in Equation 7.40 and optimize them indi-
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vidually while fixing all other variables to their values from (s− 1)th iteration. In the following

subsections, we describe such a process of variable separation and the corresponding solution

techniques. We drop the superscript (s) for notational simplicity.

7.4.2.1 Optimization w.r.t. {xm}Mm=1

We begin by reformulating the optimization problem in Equation 7.40 w.r.t. each of xm for

all m. Eliminating all the other variables that do not depend on xm, the objective function in

Equation 7.40 becomes what is described in Equation 7.41,

Qxm = xHm

 ∑
m′ 6=m

∑
l,p

Al,pxm′x
H
m′A

H
l,p

xm︸ ︷︷ ︸
M−1 terms

+ xHm

∑
k

∑
l,p

Al,pyky
H
k AH

l,p

xm︸ ︷︷ ︸
K terms

+xHm

∑
l,p

Ãr
l,p + Ãi

l,p

xm

− 2
√
ζN<

xHm
∑
l,p

(Ãr
l,p)

H/2url,p,m

− 2
√
ζN<

xHm
∑
l,p

(Ãi
l,p)

H/2uil,p,m

+ const.

(7.41)

or simply,

Qxm = xHmRxmxm + 2<
(
xHmsxm

)
+ const., (7.42)

where

Rxm =
∑
m′ 6=m

∑
l,p

Al,pxm′x
H
m′A

H
l,p +

∑
k

∑
l,p

Al,pyky
H
k AH

l,p +
∑
l,p

Ãr
l,p + Ãi

l,p (7.43)
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and

sxm = −
√
ζN

∑
l,p

(
(Ãr

l,p)
H/2url,p,m + (Ãi

l,p)
H/2uil,p,m

)
.

By dropping the constant term in Equation 7.42, the objective function can be reformulated as,

Qxm = xHmRxmxm + 2<
(
xHmsxm

)

=

xm

1


H Rxm sxm

sHxm 0


xm

1


= x̄HmBxm x̄m (7.44)

where

x̄m , [xm 1]T , (7.45a)

Bxm ,

Rxm sxm

sHxm 0

 . (7.45b)
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Hence, the minimization of Equation 7.40 w.r.t. xm is equivalent to the following,

min
x̄m

x̄HmBxm x̄m

s.t. |xn(m)| = 1, n = 1, · · · , N,

x̄m =

xm

1

 . (7.46)

As a result of the unimodular constraint on xm, the term x̄m also has a constant `2-norm,

and hence, a diagonal loading of Bxm will not change the solution to the above problem [207].

Therefore, Equation 7.46 can be rewritten in the following equivalent form:

max
x̄m

x̄HmDxm x̄m

s.t. |xn(m)| = 1, n = 1, · · · , N,

x̄m =

xm

1

 , (7.47)

where

Dxm , γxmI(N+1) −Bxm , (7.48)
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with γxm being larger than the maximum eigenvalue of Bxm . Note that the above problem

similarly belongs to the family of UQPs [51], and can be efficiently tackled in an iterative

manner using power-method-like iterations of the form [207]:

x(s,t)
m = exp

j arg


IN×N

01×N


T

Dxm x̄(s,t−1)
m


 , (7.49)

where t denotes the inner iteration number. Note that the proposed iterations can be initialized

with the most recent design of xm (used as x
(s,0)
m ).

7.4.2.2 Optimization w.r.t. {yk}Kk=1

In order to solve Equation 7.40 for yk for all k, we follow the same algebraic manipulation

with slight modifications. In this case, the objective function, Qyk , becomes

Qyk = yHk Rykyk + 2<
(
yHk syk

)
+ const. (7.50)

where

Ryk =
∑
k′ 6=k

∑
l,p

Al,pyk′y
H
k′A

H
l,p +

∑
m

∑
l,p

AH
l,pxmxHmAl,p +

∑
l,p

Ãr
l,p + Ãi

l,p (7.51)

and

syk = −
√
ζN

∑
l,p

(
(Ãr

l,p)
H/2vrl,p,k + (Ãi

l,p)
H/2vil,p,k

)
. (7.52)
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As a result, we can formulate a UQP for each yk in a similar manner. The corresponding

solution can be approached iteratively using the power-method-like recursions of the form

y
(s,t)
k = exp

j arg


IN×N

01×N


T

Dyk ȳ
(s,t−1)
k


 , (7.53)

where

Dyk , γykI(N+1) −Byk (7.54)

with γyk being larger than the maximum eigenvalue of Byk , and

ȳk , [yk 1]T (7.55a)

Byk ,

Ryk syk

sHyk 0

 . (7.55b)

7.4.2.3 Optimization w.r.t. {ucl,p,m} and {vcl,p,k}

Solving Equation 7.40 w.r.t. {ucl,p,m} and {vcl,p,k} for c ∈ {r, i} is immediate and resolves

into closed-form solution as follows:

ûrl,p,m =
(Ãr

l,p)
1/2xm

‖(Ãr
l,p)

1/2xm‖2
, v̂rl,p,k =

(Ãr
l,p)

1/2yk

‖(Ãr
l,p)

1/2yk‖2
, (7.56a)

ûil,p,m =
(Ãi

l,p)
1/2xm

‖(Ãi
l,p)

1/2xm‖2
, v̂il,p,k =

(Ãi
l,p)

1/2yk

‖(Ãi
l,p)

1/2yk‖2
, (7.56b)
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for all m ∈ {1, · · · ,M}, k ∈ {1, · · · ,K}, l ∈ {−(N − 1), · · · , N − 1}, p ∈ {−P, · · · , P}. Fi-

nally, the steps of the proposed algorithm for interference mitigation in the MIMO setting are

summarized in Algorithm 9.

Remark 7. (Convergence): As mentioned earlier for Algorithm 8, the Algorithm 9 as well

resorts to a cyclic optimization method to tackle the non-convexity of the problem Equation 7.40.

For each iteration of Algorithm 9, one can observe that the objective value is monotonically

decreasing and bounded from below, leading to the convergence of the algorithm. Note that the

final output of the cyclic algorithms often depends on the initialization of all the optimization

variables. Different initial points in the search space may lead to different final designs due to

the non-convexity of the landscape. For this reason, it is desirable to run Algorithm 9 multiple

times. A good candidate can be using the output of the current design as the initialization for

the next design. �

Remark 8. (Computational Complexity and Parallelization): Note that, in the step 3

of the Algorithm 9, the calculation of Ã requires O
(
Nf (2N − 1)(N +N3)

)
number of com-

plex multiplications. The term N3 comes from the eigenvalue decomposition of the N × N

matrix A. Furthermore, the overall computational complexity of calculating Dxm and Dyk

is O
(
(M +K)Nf (2N − 1)[(M +K − 1)N +N3]

)
. However, it is interesting to note that the

computation of Ã is required only once in the entire optimization procedure and can be per-

formed in parallel. Moreover, in the sth iteration of the algorithm, solving for {uc(s)l,p,m}, {v
c(s)
l,p,k}

can also be done in parallel making the algorithm significantly more efficient from a computa-

tional viewpoint. �
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In the next section, several numerical examples are provided to showcase the performance

and efficiency of the proposed waveform design schemes.

7.5 Generalization for the Multiple-MIMO Scenario

In a multiple-MIMO radar scenario, the mutual interference stems not only from the wave-

forms of a similar radar system nearby but also from the various waveforms transmitted by

the same radar system. Following the formulation in Equation 7.28, firstly, the periodic CAF

(PCAF) associated with the same radar system for all vehicles is given as,

Q̄i =
∑
l,p

V∑
v=1

Mv∑
m=1

Mv∑
m′=1

|xHv,mAl,pxv,m′ |2 (7.57)

where Al,p , Diag (fp) Cl for l ∈ {−N + 1, · · · , N − 1} and p ∈ {−P, · · · , P}. Secondly, the

PCAF for the codes emitted by all other vehicles is given as,

Q̄o =
∑
l,p

V∑
v 6=v′

Mv∑
m=1

Mv′∑
m′=1

|xHv,mAl,pxv′,m′ |2. (7.58)

Combining Equation 7.57 and Equation 7.58, the total PCAF to be minimized can be obtained

as,

Q̄ = Q̄i + Q̄o =
∑
l,p

V∑
v,v′

Mv∑
m=1

Mv′∑
m′=1

|xHv,mAl,pxv′,m′ |2. (7.59)
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Algorithm 9 Automotive Radar Waveform Design Algorithm for Interference Mitigation
(MIMO Case)

Initialize: {x(0)
m }, {y(0)

k }, {u
r(0)
l,p,m}, {u

i(0)
l,p,m}, {v

r(0)
l,p,k}, {v

i(0)
l,p,k}, for m ∈ {1, · · · ,M}, k ∈

{1, · · · ,K}, l ∈ {−(N − 1), · · · , N − 1}, p ∈ {−P, · · · , P}, s = 0
Output: {x?m}Mm=1, {y?k}Kk=1

1: repeat
2: s← s+ 1
3: Calculate Ã

r(s)
l,p , Ã

i(s)
l,p for all l, p following Equation 7.29, Equation 7.31, and Equa-

tion 7.36
4: Calculate ζ(s) using Equation 7.37
B Update of {x(s)

m }Mm=1:
5: for m = 1 to M do
6: Calculate R

(s)
xm , s

(s)
xm using Equation 7.43 and Equation 7.44

7: Calculate x̄
(s)
m ,B

(s)
xm using Equation 7.45a and Equation 7.45b

8: Calculate D
(s)
xm using Equation 7.48

9: t = 0, x
(s,t)
m = x

(s−1)
m

10: repeat
11: Calculate x

(s,t)
m using Equation 7.49

12: t← t+ 1
13: until convergence
14: x

(s)
m = x

(s,t)
m

15: end for
B Update of {y(s)

k }Kk=1:
16: for k = 1 to K do
17: Calculate R

(s)
yk , s

(s)
yk using Equation 7.51 and Equation 7.52

18: Calculate ȳ
(s)
k ,B

(s)
yk using Equation 7.55a and Equation 7.55b

19: Calculate D
(s)
yk using Equation 7.54

20: t = 0, y
(s,t)
k = y

(s−1)
k

21: repeat
22: Calculate y

(s,t)
k using Equation 7.53

23: t← t+ 1
24: until convergence
25: y

(s)
k = y

(s,t)
k

26: end for
B Update of {uc(s)l,p,m} and {vc(s)l,p,k} for all c ∈ {r, i}:

27: Calculate u
r(s)
l,p,m,u

i(s)
l,p,m,v

r(s)
l,p,k,v

i(s)
l,p,k for each m ∈ {1, · · · ,M}, k ∈ {1, · · · ,K}, l ∈

{−(N − 1), · · · , N − 1}, p ∈ {−P, · · · , P} using Equation 7.56
28: until a pre-defined stop criterion is satisfied, e.g., |J̄ (s) − J̄ (s−1)| ≤ ε, for some ε > 0 where

J̄ denotes the objective function of the problem Equation 7.40
29: {x?m}Mm=1 = {x(s)

m }Mm=1, {y?k}Kk=1 = {y(s)
k }Kk=1
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By stacking the corresponding radar codes in matrix form and rewriting the above objective,

we arrive at the criterion:

Qmulti−mimo(X1, · · · ,XV ) =
∑
l

∑
p

V∑
v,v′

‖XH
v Al,pXv′‖2F (7.60)

where {Xv}Vv=1 are radar code matrices, each containing the radar codes {xv,m}Mv
m=1 in its

columns. As we have seen earlier in Equation 7.30, the objective in Equation 7.60 is quartic

in radar codes {Xv}Vv=1. Not only that, but tackling Equation 7.60 is difficult also since the

number of PCAF values to be suppressed grows more quickly in terms of the problem dimension

than the number of design variables.

In the following, we formulate a quadratic alternative to Equation 7.59 following the path

shown in Section 7.4. One can partition Equation 7.59 in the following manner:

Q̄ =
∑
l,p

V∑
v=1

Mv∑
m=1

|xHv,mAl,pxv,m|2 +
∑
l,p

V∑
v=1

Mv∑
m 6=m′

|xHv,mAl,pxv,m′ |2

+
∑
l,p

V∑
v 6=v′

Mv∑
m=1

Mv′∑
m′=1

|xHv,mAl,pxv′,m′ |2. (7.61)
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Following a similar argument to tackle the quartic nature of the self-interference terms {xHv,mAl,pxv,m},

for all v ∈ {1, · · · , V } andm ∈ {1, · · · ,Mv}, one can derive a quadratic version of Equation 7.61.

The final optimization problem can thus be reformulated as,

min
∑
l,p

V∑
v=1

Mv∑
m 6=m′

|xHv,mAl,pxv,m′ |2 +
∑
l,p

V∑
v 6=v′

Mv∑
m=1

Mv′∑
m′=1

|xHv,mAl,pxv′,m′ |2

+
∑
l,p

∑
c∈{r,i}

V∑
v=1

Mv∑
m=1

∥∥∥(Ãc
l,p)

1/2xv,m −
√
ζNucv,m,l,p

∥∥∥2

2
(7.62a)

s.t. xv,m are unimodular ∀ v ∈ {1, · · · , V } and,m ∈ {1, · · · ,Mv}, (7.62b)

‖ucv,m,l,p‖2 = 1 ∀ c ∈ {r, i}; v ∈ {1, · · · , V };m ∈ {1, · · · ,Mv};

l ∈ {−N + 1, · · · , N − 1} and p ∈ {−P, · · · , P}. (7.62c)

Note that given the knowledge of the number of vehicles on the scene and the number of their

corresponding MIMO antennas, Equation 7.62 can be solved in an online manner. However, to

enhance situational preparedness and further decrease the communication overhead, the codes

can also be pre-designed offline and stored in a database for future use. Upon arriving into

such a situation, the vehicles just need to access their copy or download the codes from the

said dataset before transmission. To efficiently solve Equation 7.62, we follow a similar iterative

optimization framework as described in subsection 7.4.2.
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7.5.1 Design of Optimized Waveforms

In sth iteration, we separate each variable {xv,m}, {urv,m,l,p}, {uiv,m,l,p}, and optimize Equa-

tion 7.62 individually w.r.t. that variable, while fixing all other variables to their current values.

This will lead to a monotonically decreasing collective PCAF until convergence is achieved.

7.5.1.1 Optimization w.r.t. {xv,m}V, Mv
v=1,m=1

We begin by reformulating the optimization problem in Equation 7.62 w.r.t. each of xv,m

for all v,m. The objective function in Equation 7.62 then becomes,

Q̄v,m = xHv,m

∑
l,p

Mv∑
m6=m′

Al,pxv,m′x
H
v,m′A

H
l,p

xv,m + xHv,m

∑
l,p

V∑
v′ 6=v

Mv∑
m=1

Mv′∑
m′=1

Al,pxv′,m′x
H
v′,m′A

H
l,p

xv,m

+ xHv,m

∑
l,p

∑
c∈{r,i}

Ãc
l,p

xv,m − 2
√
ζN<

xHv,m
∑
l,p

∑
c∈{r,i}

Mv∑
m=1

(Ãc
l,p)

H/2ucv,m,l,p

+ const.

(7.63)

or simply,

Q̄v,m = xHv,mRv,mxv,m + 2<{xHv,msv,m}+ const. (7.64)

where

Rv,m =
∑
l,p

Mv∑
m 6=m′

Al,pxv,m′x
H
v,m′A

H
l,p +

∑
l,p

∑
c∈{r,i}

Ãc
l,p +

∑
l,p

V∑
v′ 6=v

Mv∑
m=1

Mv′∑
m′=1

Al,pxv′,m′x
H
v′,m′A

H
l,p

(7.65)
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and

sv,m = −
√
ζN

∑
l,p

∑
c∈{r,i}

Mv∑
m=1

(Ãc
l,p)

H/2ucv,m,l,p. (7.66)

As a result, one can formulate a UQP for each xv,m in a similar fashion as described in subsection

7.4.2.1. The corresponding solution can be approached iteratively using PMLI of the form

x̂(s,t)
v,m = exp

j arg


IN×N

01×N


T

Dv,mx̄(s,t−1)
v,m


 (7.67)

where Dv,m , γv,mI(N+1)−Bv,m, with γv,m being larger than the maximum eigenvalue of Bv,m

and

x̄v,m , [xv,m 1]T , (7.68a)

Bv,m ,

Rv,m sv,m

sHv,m 0

 . (7.68b)

Note that the iterations can be initialized with the latest design of xv,m (used as x
(0)
v,m).
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7.5.1.2 Optimization w.r.t. {ucv,m,l,p}

Next, solving Equation 7.62 w.r.t. {ucv,m,l,p} for c ∈ {r, i} is immediate and resolves into the

closed-form solution:

ûcv,m,l,p =
(Ãc

l,p)
1/2xv,m

‖(Ãc
l,p)

1/2xv,m‖2
(7.69)

for all c, v,m, l, p. Notice that Equation 7.69 can be done in parallel making the design process

more agile.

In the next section, we numerically examine the efficiency and applicability of all the above-

mentioned proposed algorithms.

7.6 Numerical Simulations

In the following, we begin with demonstrating the effectiveness of the two coding schemes

described in Section 7.3 for the SISO scenario using several examples. We then provide similar

numerical analysis for the MIMO case detailed in Section 7.4 and further for the connected

MIMO scenario detailed in Section 7.5.

7.6.1 The SISO Scenario

Consider two identical FMCW radar systems with the same carrier frequency of fc = 24

GHz. The bandwidth of the chirp signal is B = 150 MHz. The sweep time is Tc = 50 µs. The

number of periods within a CPI is N = 256.

Figure 35(a) and Figure 35(b) show the discrete periodic cross-ambiguity functions associated

with the Doppler-shifting, and the optimized codes, respectively, where P = 200 and Nf = 512
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Figure 35. Discrete periodic cross-ambiguity functions (SISO case): (a) Doppler-shift coding
and (b) the optimized coding scheme for N = 256, P = 200 and Nf = 512.

(which implies that the maximum Doppler frequency of interest should be lower than 3906.25

Hz, corresponding to a maximum relative radial velocity of 87.9 km/h), and we initialize our

algorithm with normally distributed randomly generated codes (for x and y, respectively,) in

the optimized coding scheme.

Figure 36 compares their discrete periodic cross-ambiguity functions at the zero-delay cut.

One can observe that both coding schemes achieve very low sidelobes in the desired area. More-

over, although the optimized scheme achieves lower sidelobes in the desired area, the sidelobe

increases in the regions outside the desired area. However, for the Doppler shift coding, the

sidelobes are spread evenly throughout the entire region. Therefore, they can be used to effec-

tively suppress the interference. Further note that the peak sidelobe (PSL) corresponding to the

optimized codes is approximately 3.55 dB lower than that of the Doppler-shifting, within the
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Figure 36. Comparison of the discrete periodic cross-ambiguity functions of the optimized
code and that of the Doppler-shift code at the zero-delay cut for N = 256, P = 200 and

Nf = 512. Although the optimized scheme achieves lower sidelobes in the desired area, the
sidelobe increases in the regions outside the desired area.

desired range of Doppler frequency of interest. Interestingly, if we fix y = 1N and only optimize

x, we obtain similar results, which corresponds to a more practical coding method, since no

coordination between the two radar systems is needed.

Next, we apply these coding schemes to mitigate the mutual interference for two identical

automotive radar systems operating in a typical scenario: The range of target and interference

are at 50 m and 70 m, respectively. The speeds associated with them are 10.12 m/s and 23.45

m/s. The SNRs are 30 dB and 60 dB, respectively. The sampling frequency is fs = 4 MHz.

M = 100 samples are collected for each period. Figure 37 shows the range-Doppler image in

this scenario without slow-time coding, using Doppler-shifting code, and the optimized coding

scheme, respectively. We can observe that the power of the interference is much stronger than
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Figure 37. The range-Doppler image for the SISO case: (a) randomly generated code without
slow-time coding, (b) Doppler-shift coding, and (c) the optimized coding scheme: ©

represents the target and � represents the interference.

that of the target such that a false alarm happens. When our slow-time coding schemes are

applied, the interference power level is significantly reduced and the target can be easily detected

without suffering from false alarm problems.
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Figure 38. Discrete periodic (cross) ambiguity functions between different MIMO sequences
from the set X = {xm}2m=1 for N = 256, P = 200 and Nf = 512. Note that for identical

sequences, the ambiguity function always assumes larger values near zero.

7.6.2 The MIMO Scenario

In order to examine the effectiveness of Algorithm 9 in the MIMO case, we use a similar

set of FMCW parameters as in the SISO case. For the ease of display and sake of simplicity,

we consider two similar MIMO FMCW radar systems that use set of codes X = {xm}2m=1 and
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Figure 39. Discrete periodic (cross) ambiguity functions among different MIMO sequences
from the set Y = {yk}3k=1 for N = 256, P = 200 and Nf = 512.

Y = {yk}3k=1 each of length N = 256, operating under the same carrier frequency of fc = 24

GHz, the bandwidth of the chirp signal of B = 150 MHz, and the sweep time of Tc = 50 µs. As

mentioned earlier, we first initialize the algorithm with normally distributed random numbers

for all optimization variables: {xm}, {yk} {ucl,p,m}, {vcl,p,k}, for c ∈ {r, i}. After running the

algorithm once, we use the output codes {xm}, {yk} as the initial codes for the next run but
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Figure 40. Discrete periodic cross-ambiguity functions between different MIMO sequences
from the sets X = {xm}2m=1 and Y = {yk}3k=1 for N = 256, P = 200 and Nf = 512.

we still use random initialization for other variables, {ucl,p,m}, {vcl,p,k}, and repeat the process

multiple times.

Figure 38-Figure 40 show the periodic (cross) ambiguity functions for the radar systems:

{X}, {Y}, and {X ,Y} where P = 200 and Nf = 512. It is evident from each of these figures

that for each set of sequences, the unambiguous regions are well separated (within the range

of -40dB to -60dB), and hence, these sequences can be reliably used in MIMO FMCW radar

systems that require mutual interference mitigation.

In the next example for the MIMO case, we apply the optimized coding scheme to mitigate

the mutual interference in the presence of multiple targets. For this scenario, we use three targets
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Figure 41. The range-Doppler image for the MIMO optimized coding scheme: © represents
the targets and � represents the interference.

and one interfering radar system. The ranges of the targets and interference are at 50, 20, 60

m, and 70 m, respectively. The speeds associated with them are 10.12,−5.75, 7.34, m/s and

23.45 m/s. The SNRs are 30 dB and 60 dB for the targets and interference, respectively. The

sampling frequency is similarly fs = 4 MHz as assumed in the SISO case. Figure 41 shows

the range-Doppler image for the optimized coding scheme. It is clear from the figure that the

interference power level is significantly reduced and all three of the targets are easily detected

without suffering from false alarm issues.

7.6.3 The Multiple-MIMO Scenario

For this case, we reuse the same experimental test scenario described in previous examples.

In the first experiment, we consider V = 5 cars equipped with similar MIMO radar system,

each capable of transmitting Mv = 4 unimodular codes for all v ∈ {1, · · · , 5}. We apply the
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Figure 42. The range-Doppler image for the multiple-MIMO case: (a) with random coding (b)
with the optimized coding scheme used in the first car. The blue circle is the target and black

squares are the interferences.

optimized coding schemes to mitigate the mutual interference for these five identical automotive

radar systems operating in a typical scenario: the first car is considered to be the actual target

and the rest are interfering targets. The range of target and interferences are at 50m and

{70, 10,−20, 0}m, respectively. The speeds associated with them are 10 m/s and {20,−10, 0, 10}

m/s, respectively. Furthermore, the corresponding signal-to-noise ratios (SNR) are 30 dB and

{40, 40, 30, 60} dB, respectively. One can observe that the powers of the interference are much

stronger than that of the target, which will again lead to a false alarm. The sampling frequency

is fs = 4 MHz and M = 100 samples are collected for each period. Figure 42(a) shows the

range-Doppler image of the scenario when random coding is used. For the sake of simplicity in

Figure 42(b), we only show the range-Doppler image for the optimized code used in the first car.
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Figure 43. Results of Monte Carlo simulation (n = 50) showing average normalized peak
sidelobe level height vs. number of vehicles (V ).

It can be easily seen from Figure 42 that the interference power level is significantly reduced

(> −20 dB) and the target can be easily detected without suffering from false alarm issues.

In the next experiment, we perform a Monte Carlo simulation of designing codes for V =

{2, 3, 5, 10} vehicles in order to show the average performance of the algorithm. In particular,

we simulate n = 50 experiments for each of V having M = 5 MIMO antennas and report

the average normalized peak sidelobe level (PSL) of the PCAF as depicted in Figure 43. It is

evident that as the number of vehicles grows large, it becomes more difficult to find codes with

good interference mitigation capabilities, while the performance is satisfactory for a moderate

number of vehicles.
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7.7 Concluding Remarks

In this chapter, we discussed the problem of mutual interference mitigation in identical or

similar radar systems employed in automotive applications. We proposed two slow-time coding

schemes for the SISO case. Specifically, the first coding scheme is designed through Doppler

shifting and the second one is devised based on an efficient cyclic optimization approach. We

further extended the problem formulation and proposed another efficient algorithm to generate

the radar codes in the more general MIMO scenario. We then provided a general formulation for

the multiple-MIMO case and derived a generalized solution that can be used in MIMO antennas

mounted on multiple connected vehicles. We showed that these coding schemes can be used to

reduce the interference power level significantly.
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CHAPTER 8

WAVEFORM DESIGN FOR ONE-BIT RADAR SYSTEMS UNDER

UNCERTAIN INTERFERENCE STATISTICS

Overview: An important problem in cognitive radar is to enhance the estimation performance

of the system by a joint design of its probing signal and receive filter using the a priori information

on interference. In such cases, the knowledge of interference statistics (particularly the covariance)

plays a vital role in the effective design of the radar waveforms. In most practical scenarios, however,

the received signal and interference statistics are available subject to some uncertainty. An extreme

manifestation of this practical observation occurs for radars employing one-bit receivers, where only a

normalized version of the interference covariance matrix can be obtained. In this chapter, we formulate

a waveform optimization problem and devise an algorithm to design the transmit waveform and the

receive filter of one-bit radars given such uncertainties in acquired interference statistics.

8.1 Introduction and Prior Works

In cognitive active sensing applications, one of the objectives is to jointly optimize the

transmit sequence, as well as the receive filter as a smart listener using a priori knowledge of

interference and clutter in order to increase the estimation accuracy of the target parameters

[74–76]. Clutter refers to the unwanted echoes that are usually correlated with the transmitted

waveform, while the signal independent noise as well as (adverse) jamming signals are termed

Parts of this chapter is taken from published conference article [209]. Copyright c○ 2019, IEEE

186



187

as interference [75]. A natural way to minimize the effects of clutter and interference is to

maximize the signal-to-clutter-plus-interference ratio (SCIR) of the receiver output. It is well

known that a matched filter (MF) has the ability to maximize the signal-to-noise (SNR) in the

presence of uncorrelated additive white noise. It, however, fails to perform well in the case of

clutter or jamming suppression. As an alternative, one can use a mismatched filter (MMF) at

the receiver by trading off SNR for SCIR [75]. In comparison to MF, an MMF allows more

degrees of freedom by introducing a receive filter and is not subject to various power constraints

of the transmit waveforms such as constant-modulus (a.k.a. unimodular sequences) or low peak-

to-average ratio (PAR) constraint. Thus, a joint design of the transmit waveform and the MMF

receive filter can offer a more efficient parameter estimation framework [210].

In [74], the authors presented a joint design scheme of the receive filter and transmit waveform

by minimizing the MSE of the estimate of the target’s scattering coefficient in the presence

of interference and clutter subject to some practical constraints such as constant-modulus or

low PAR constraint on the transmit signal. To this end, they presented three flavors of their

algorithm: Cognitive REceiver and Waveform design (CREW); namely, CREW (gra), CREW

(fre), and CREW (mat). Another variation of CREW; namely, CREW (cyclic) can be found

in [76], where the authors formulated a cyclic approach to jointly design the transmit waveform

and receive filter coefficients. Note that in all the aforementioned techniques, the receiver

is assumed to have high precision analog-to-digital converters (ADC). Note that, in classical

radar signal processing, the quantization noise is usually modeled under the assumption of

additive noise that minimally affects the accuracy of algorithms that consider the infinite or
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very high precision case, especially when the sampling interval is low [68] The assumption of

high-precision data is, however, inappropriate when the measurements are extremely quantized

to very low bit-rates. In the most extreme case, the sampling process is done by utilizing a simple

sign comparator and the received signal is represented using only one bit per sample [68, 81].

One-bit quantizers, on one hand, are not only low SWaP-C devices but also much faster and

simpler than the traditional digital quantizers, thus significantly reducing the complexity of

hardware implementation. On the other hand, it is now well known that signals can be recovered

with high accuracy from one-bit measurements, at a slightly increased computational cost [70].

This increased cost incurs from the fact that by using a one-bit receiver, the knowledge of

interference statistics is available in only a normalized sense and such uncertainties prohibit

one from using traditional algorithms. In the subsequent, we propose a specialized variation

of CREW (cyclic) [76] to tackle the problem of jointly designing the probing signals and the

receive filter coefficients in the presence of uncertainty in interference statistics.

The rest of this chapter goes as follows. In Section 8.2, we provide a description of the signal

model and formulate the aforementioned problem. Section 8.3 presents the optimization scheme

in order to jointly design the waveform and receive filter for the one-bit receiver. Numerical

simulations are presented in Section 8.4. Ultimately, Section 8.5 summarizes the chapter.

8.2 Signal Model and Problem Formulation

Let s = [s1 s2 · · · sN ]T ∈ CN denote the transmitted waveform that is to be used to modulate

the train of subpulses. We closely follow the discrete data model adopted in [74] in order to

layout the problem formulation. Under the assumptions of negligible intrapulse Doppler shift,
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and that the sampling is synchronized to the pulse rate, the received discrete-time baseband

signal after pulse compression and alignment with the current range cell of interest, satisfies

y = AHα+ ε, (8.1)

where

AH =



s1 0 · · · 0 sN sN−1 · · · s2

s2 s1
... 0 sN

...

...
...

. . . 0
...

...
. . . sN

sN sN−1 · · · s1 0 0 · · · 0


, (8.2a)

α = [α0 α1 · · · αN−1 α−N+1 · · · α−1]T ∈ C2N−1, (8.2b)

where the parameter α0 is the complex-valued scattering coefficient of the range cell of interest,

while {αk}k 6=0 are that of the other adjacent range cells contributing to the clutter. Further-

more, ε is the signal independent interference comprising of measurement noise as well as other

disturbances such as jamming. In addition, we assume that Γ , E
{
εεH

}
, and β , E

{
|αk|2

}
for k 6= 0, and that ε and {αk} are zero-mean i.i.d. The motivation is to estimate the parameter

α0 provided other information is available a priori. Note that in a traditional radar system, β

and Γ can be obtained via some prescanning procedure [75].
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For a known β and Γ, the estimation of the scattering coefficient of the current range cell,

α0, can be efficiently achieved by using an MMF, and is given as [76],

α̂0 =
wHy

wHs
,

where w ∈ CN is the MMF coefficient vector. Therefore, the MSE of estimation of α0 can be

derived as

MSE(α̂0) = E

{∣∣∣∣wHy

wHs
− α0

∣∣∣∣2
}

=
wHRw

|wHs|2 , (8.3)

where

R = β

N−1∑
k=−N+1
k 6=0

Jkss
HJHk + Γ, (8.4)

and {Jk} denote the shift matrices satisfying,

Jk =



0 . . . 0 1 . . . 0

...
. . .

1

︸ ︷︷ ︸
k

0 . . . 0 . . .



H

N×N

= JH−k, ∀ k = 0, 1, · · · , N − 1. (8.5)
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It is interesting to note that the numerator of the MSE in Equation 8.3 is the total power of

the interferences while the denominator is the total power of the received signal. As a result,

minimization of the criterion in Equation 8.3 leads to maximization of the SCIR.

8.2.1 One-bit Receiver

In the case of receivers with one-bit ADC, the quantizer is nothing but a simple sign com-

parator and each measurement is represented using only one bit, i.e., +1 or −1, and thus, the

auto-correlation of the received signal is only obtainable in a normalized sense, as described in

the subsequent [68].

Let X(t) denote a scalar, real-valued, and wide sense stationary Gaussian random process

that undergoes a one-bit sampler Y (t) = sign (X(t)). The auto-correlation function of the

process Y (t), denoted by RY (τ), can be given as

RY (τ) = E{Y (t+ τ)Y (t)} =
2

π
sin−1

(
R̄X(τ)

)
, (8.6)

where R̄X(τ) = RX(τ)/RX(0) denotes the normalized auto-correlation of X(t) [211]. On the

contrary, according to the Bussgang theorem [212], the cross-correlation of X(t) and Y (t),

denoted as RY X(τ) is proportional to the auto-correlation of X(t), i.e., RY X(τ) = ζRX(τ),

where value of the scaling factor ζ relies on the power of X(t).
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The case of complex-valued vector processes can be elaborated in a similar manner [213].

Let υ be the one-bit sampled data obtained from y using complex one-bit ADCs at the receiver,

given by

υ =
1√
2

csign (y) ,
1√
2

[sign (<(y)) + jsign (=(y))] . (8.7)

Let Ry and Rυ denote the auto-correlations of the processes y and υ, respectively. In [213],

it has been shown that these two quantities are similarly related using the following arcsine

equality:

Rυ =
2

π
sin−1

(
R̄y
)
, (8.8)

where the normalized auto-correlation matrix of y is given as

R̄y ,W
− 1

2RyW
− 1

2 , (8.9)

and W = Ry � I.

In the light of above, it can be verified that in the scenario of having complex one-bit sampled

data, the matrix R in Equation 8.3 is obtainable only in a normalized sense, i.e., one only has

access to

R̄ = D−
1
2RD−

1
2 , (8.10)
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where D = R � I. Then, the problem of interest is to design the transmit waveform s and

the receive filter w given the normalized interference statistics R̄. In the following, we denote

d = diag
(
D

1
2

)
.

In such a case, a meaningful approach to the aforementioned design problem is to consider:

min
w,s

E

{
wHD

1
2 R̄D

1
2w

|wHs|2

}
, (8.11)

under some practical signal power constraint. Note that the expectation is taken over D. The

above problem is clearly non-convex. In the following, we handle the non-convexity of the

optimization objective in Equation 8.11 w.r.t. the probing sequence s and the receive filter w

using an alternating approach and propose a specialized flavor of CREW (cyclic), named as

CREW (one-bit).

8.3 Proposed Method: CREW (One-Bit)

8.3.1 Optimization w.r.t. s

Following Equation 8.4, the numerator of Equation 8.3 can be rearranged, for a fixed w, as

wHRw = wH

β N−1∑
k=−N+1
k 6=0

Jkss
HJHk + Γ

w (8.12)

= sH


β

N−1∑
k=−N+1
k 6=0

Jkww
HJHk

︸ ︷︷ ︸
χ


s+wHΓw.
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Thus, the criterion in Equation 8.3 can be reformulated as,

MSE(α̂0)

β
=
sHχs+ µ

sHWs
, (8.13)

where µ = (wHΓw)/β and W = wwH . It is interesting to note that µ is unknown; however,

independent of s, and thus merely a constant scalar w.r.t. s. To deal with the optimization

problem of Equation 8.13, we follow the identical framework as [76] that exploits the idea of

fractional programming [214].

Let a(s) = sHχs + µ, and b(s) = sHWs > 0 (MSE needs to be finite). Further, denote

f(s) =
a(s)

b(s)
and let s∗ be the current value of s. Additionally, let g(s) , a(s) − f(s∗)b(s),

and s† , arg mins g(s). Following that one can easily verify that g(s†) ≤ g(s∗) = 0. As a

result, the following is satisfied: g(s†) = a(s†)− f(s∗)b(s†) ≤ 0, and this further indicates that

f(s†) ≤ f(s∗) as b(s†) > 0. Thus s† decreases the function f(s) monotonically. It is important

to note that s† is not necessarily a minimizer of g(s); instead, it is sufficient for s† so that

g(s†) ≤ g(s∗) is satisfied.

Under the assumption that ‖s‖22 = N , for a fixed w, and any arbitrary s∗ of the minimizer

s of Equation 8.13, we have:

g(s) = sH(χ− f(s∗)W )s+ µ (8.14)

= sHTs+ µ,
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where T , χ− f(s∗)W . Then the problem in Equation 8.13 with respect to unimodular s can

be recast as the following problem which is commonly known as unimodular quadratic program

(UQP) [51]:

max
s

sH T̃ s (8.15)

s.t. |sk| = 1, 1 ≤ k ≤ N,

where T̃ , λI−T is a positive definite matrix and λ is a real scalar greater than the maximum

eigenvalue of T . Note that Equation 8.15 is NP-hard in general, and a sub-optimal solution can

be sought by semi-definite relaxation (SDR). To tackle this problem efficiently, we employ the

power method-like iterations (PMLI) introduced in [51]; namely, the vector s is updated in each

iteration n using the nearest-vector problem

min
s(n+1)

∥∥∥s(n+1) − T̃ s(n)
∥∥∥

2
(8.16)

s.t.
∣∣∣s(n+1)
k

∣∣∣ = 1, 1 ≤ k ≤ N.

Interestingly, for nth iteration, the solution to Equation 8.16 is simply given analytically by

s(n+1) = ej arg(T̃ s(n)) [76].
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8.3.2 Optimization w.r.t. w

For a fixed s, the objective of Equation 8.11 can further be simplified as,

E

{
wHD

1
2 R̄D

1
2w

|wHs|2

}
=
E
{

Tr
(
wwHD

1
2 R̄D

1
2

)}
|wHs|2 (8.17)

=
E
{
dH
(
wwH � R̄H

)
d
}

|wHs|2

=
Tr
((
wwH � R̄H

)
E
{
ddH

})
|wHs|2 .

It is clearly evident that the knowledge of d indirectly demands more information about β and Γ.

However, assuming the statistics of the noise is unchanging, one can estimate Γ in a normalized

sense by just listening to the environment while not transmitting any waveform. As a result,

from the one-bit receiver, the normalized interference covariance matrix Γ̄ can be obtained in a

similar fashion as, Γ̄ , A−
1
2 ΓA−

1
2 , where A = Γ� I. Thus the interference covariance matrix

R in Equation 8.4 can be reformulated as,

R = D
1
2 R̄D

1
2 (8.18)

= βS +A
1
2 Γ̄A

1
2 ,
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where S =
∑

k 6=0 Jkss
HJHk is constant for a known s. Hence, a judicious approach is to solve

the following problem in order to optimize d,a, and β in a joint manner:

{d̂, â, β̂} = arg min
d,a,β

∥∥∥Diag (d)
1
2 R̄ Diag (d)

1
2 − βS + Diag (a)

1
2 Γ̄ Diag (a)

1
2

∥∥∥2

F
,

s.t. d > 0,a > 0, β > 0. (8.19)

The above minimization problem is non-convex, and hence in order to efficiently solve it, we

resort to an alternating approach: by solving for each variable while keeping the other two

variables constant. By doing so, w.r.t. each variable the problem becomes convex and can be

solved using a number of available numerical solvers, such as the “fmincon” function in Matlab

that implements BFGS. Note that by solving Equation 8.19, one can obtain β and d in an average

sense which in other words justifies the usage of expectation in the formulation of Equation 8.17.

With this information in mind, let
∑N

k=1 νkuku
H
k represent the eigenvalue decomposition

(EVD) of E
{
ddH

}
, where {νk} and {uk} are the k-th eigenvalue and eigenvector, respectively.

As a result, the numerator of Equation 8.17 can further be simplified as,

Tr

((
wwH � R̄H

) N∑
k=1

νkuku
H
k

)
=

N∑
k=1

νku
H
k

(
wwH � R̄H

)
uk (8.20)

= Tr

((
wwH

) N∑
k=1

νk Diag (uk) R̄ Diag
(
uHk
))

= wHQw,
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where

Q =
N∑
k=1

νk Diag (uk) R̄ Diag
(
uHk
)
. (8.21)

It is interesting to notice that, Q can be viewed as E {R}. A relevant proof is discussed in

Appendix B. Finally, the optimization problem translates to,

min
w,s

wHQw

|wHs|2 . (8.22)

Hence, for a given s, the optimization problem in Equation 8.22 w.r.t. w results in a closed-from

solution: w = Q−1s, within a multiplicative constant. Finally, the algorithm CREW (one-bit)

is summarized in Algorithm 10 in a concise manner.

8.4 Numerical Simulations

In this section, we evaluate the performance of CREW (one-bit) and compare it with three

state-of-the-art methods; namely CAN-MMF, CREW (fre) [74] and CREW (cyclic) [76]. Note

that no prior knowledge of interference is applied during waveform design using CAN-MMF. We

herein, adopt the same simulation setups as in [76]. Especially, for the interference covariance

matrix we consider the following:

Γ = σ2
JΓJ + σ2I,
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Algorithm 10 CREW (one-bit)

Ensure: s(0) ← unimodular (or low PAR) vector in CN , w(0) ← random vector in CN , the
outer loop index t← 1.

1: repeat
2: For fixed w,

i: Compute χ,W using Equation 8.12, and thus, in turn find T̃ .
ii: Solve the power method like iterations discussed in Equation 8.16, and calculate s(t)

in each iteration until convergence.

3: Measure Γ̄ at the output of the one-bit receiver and compute R̄ using s(t).
4: For fixed s,

i: Solve Equation 8.19 to obtain d and β in average sense.
ii: Compute the EVD of E

{
ddH

}
, and in turn find Q.

iii: Update w(t) as Q−1s(t).

5: until convergence, e.g.,
∣∣∣MSE(t+1) −MSE(t)

∣∣∣ < ε for some given ε > 0.

where σ2
J = 100, and σ2 = 0.1 are used for the jamming and noise powers, respectively. Fur-

thermore, the elements of covariance matrix for jamming, ΓJ are given as [ΓJ ]k,l = γk−l where

[γ0, γ1, · · · , γN−1, γ−(N−1), · · · , γ−1]T represents an inverse FFT of the jamming power spectrum

at frequencies
p− 1

2N − 1
, for p = 1, · · · , 2N − 1. For CREW(fre) and CREW(cyclic) we fix the

average clutter power to β = 1. Finally, we use the sequences with good correlation properties

such as the Golomb sequences for the purpose of initialization of transmit waveform s.

In the presented simulations we consider two types of signal jamming: spot and barrage

jamming. Spot jamming happens when concentrated power is transmitted directly toward one

channel or frequency. In our example, we use spot jamming located at a normalized frequency

f0 = 0.2. On the other hand, barrage jamming is transmitted power spread over several channels
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or frequencies simultaneously [76]. We consider a barrage jamming located in the normalized

frequency bands [f1, f2] = [0.2, 0.3].

Figure 44 (a)-(b) depict the MSE values for spot and barrage jamming, respectively, corre-

sponding to CAN-MMF, CREW(fre), and CREW(cyclic), under the unimodularity constraint,

for various sequence lengths. It is evident from the figures that when the sequence length N

is small, the MSE is higher for CREW (one-bit) compared to other algorithms. However, as

N increases, CREW (one-bit) shows similar performance as CREW (cyclic), and eventually,

they coincide with one another for higher values of N . Consequently, it is implied that higher

signal length introduces more degrees of freedom in designing transmit waveform and thus,

compensates for the uncertainties in interference statistics.

8.5 Concluding Remarks

In this chapter, we investigated the problem of jointly designing the probing signals and

the receive filter coefficients in the presence of uncertainty in interference statistics. An efficient

method based on the state-of-the-art algorithm: CREW (cyclic), was proposed to tackle the said

problem. We showed that the performance of the proposed method improves with increasing

signal length as it introduces more degrees of freedom in designing transmit waveform and thus,

compensates for the uncertainties in interference statistics. It is further important to notice

that the knowledge of the one-bit measurements impacts the design of the receive filter and

alternatively the design of the receive filter coefficients impacts the design of transmit waveform,

which justifies the role of a cognitive radar.
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Figure 44. Comparison of mean square error values corresponding to different design
algorithms for (a) spot jamming with normalized frequency f0 = 0.2, and (b) barrage jamming
in the normalized frequency interval [f1, f2] = [0.2, 0.3] for the unimodularity constraint on the

transmit sequence.
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CHAPTER 9

DEEP RADAR WAVEFORM DESIGN FOR EFFICIENT AUTOMOTIVE

RADAR SENSING

Overview: The design of unimodular sequences has been studied widely in the last few decades,

with most design algorithms requiring sophisticated a priori knowledge of environmental parameters

which may be difficult to obtain in real-time scenarios. In this chapter, we propose a novel hybrid model-

driven and data-driven architecture that adapts to the ever-changing environment and allows for adaptive

unimodular waveform design. In particular, the approach lays the groundwork for developing extremely

low-cost waveform design and processing frameworks for radar systems deployed in autonomous vehicles.

The proposed model-based deep architecture imitates a well-known unimodular signal design algorithm

in its structure, and can quickly infer statistical information from the environment using the observed

data.

9.1 Introduction

In previous chapters, we have discussed various aspects of waveform designing where the

underlying signal models have always followed different physics-based data descriptions. As we

arrive at the last chapter of this thesis, we explore the idea of learning from observation along

with following the traditional modeling of the system in the context of cognitive radars. As

discussed in Chapter 8, it is evident that the quality of target parameter estimation depends

Parts of this chapter is taken from published conference article [165]. Copyright c○ 2020, IEEE.
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strongly on the transmit waveform design process [24, 25, 33, 51, 68, 69, 75, 76, 82, 90, 164, 206,

207, 209, 210, 215–233] and consequently there exist several approaches to tackle the task of

waveform design in such radar systems which rely on known radar models. In such model-based

approaches, one only considers a simplified mathematical model and often does not take into

account the intricate interactions innate to the kind of complex information systems that are

common in the real world. On the other hand, in a purely data-driven approach, including deep

learning techniques, one does not need an explicit mathematical model of the problem and should

be able to use the available data at hand for designing the waveforms. The major shortcoming of

the data-driven approach stems from the fact that it is unclear how to incorporate the existing

knowledge of the system model in the processing stage. Namely, purely data-driven approaches

have a wider applicability at the cost of interpretability, and in some cases, reliability [234,235].

In this chapter, we seek to bridge the gap between the model-based and data-driven approaches,

and propose a novel methodology in order to design efficient waveforms for automotive radars

by making use of the deep unfolding framework [80, 81, 235]. Note that the goal of waveform

design for radar systems is to acquire the maximum amount of information from the desirable

sources in the environment, where in fact, the transmit signal can be viewed as a medium that

collects information. In light of this, we employ the deep unfolding framework that aims to take

the well-established iterative approaches, and design a deep architecture for waveform design in

radar systems under unimodular signal constraint, and boost the performance of the underlying

inference optimization algorithm in terms of speed of convergence and effectiveness.
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The remainder of the chapter is arranged as follows. First, Section 9.2 describes the data

model considered and formulates the problem. Section 9.3 is then devoted to the description of

the DRCoR architecture. We evaluate the performance of the proposed method in Section 9.4.

Finally, Section 9.5 concludes the chapter.

9.2 Radar Model and Signal Design Formulation

Let us consider a radar system transmitting unimodular codes used to modulate a train of

sub-pulses. We follow the similar data model as previously considered in Section 8.2. Let

s = [s1 s2 · · · sN ]T ∈ CN , (9.1)

denote the complex-valued probing sequence to be designed. Under the assumptions of negligible

intrapulse Doppler shift, and that the sampling is synchronized to the pulse rate, the received

discrete-time base-band signal y, after pulse compression and alignment with the current range

cell of interest, can be modeled as follows [75]:

y = AHα+ ε (9.2)

where the definitions of the matrix A, and the vectors α and ε are described in Equation 8.1,

Equation 8.2, and the paragraph following. Given the measurement model in Equation 9.2, one

of the main goals of a system designer is typically to design the probing signal s such that it

allows for accurate recovery of the target scattering coefficient α0.
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Note that, in model-based radar waveform design, the statistics of the interference and noise

is usually assumed to be known, e.g., through stand-alone prescan procedures. Under such

conditions, the waveform design boils down to constrained quadratic or fractional quadratic

program as detailed in previous works [51, 75, 76, 164, 209]. An example for waveform design

criteria comes from the waveform’s merit for resolvability along with clutter rejection. Namely,

using a matched filter (MF) in the pulse compression stage, one can look for codes that maximize

the following criterion:

f(s) ,
|sHy|2∑

k 6=0 |sHJky|2
=
sHAs

sHBs
,
n(s)

d(s)
, (9.3)

whereA = yyH ,B =
∑

k 6=0 JkAJ
H
k , and {Jk} are shift matrices satisfying [Jk]p,q = [JH−k]p,q ,

δq−p−k, with δ(·) being the Kronecker delta function. Note that the above function can be

interpreted as an oracle to a signal-to-interference-noise (SINR) ratio as the numerator represents

the signal power and the denominator represents the combined interference and noise power

after applying the matched filter. We further note that, to lower the implementation cost, it is

desirable to use unimodular codes, i.e., sk = ejφk , φk ∈ [0, 2π), k ∈ {1, . . . , N}, that attain the

smallest peak-to-average ratio possible for transmit signals. As a result, one can consider the

following fractional program in its general form for radar waveform design:

max
s

sHAs

sHBs

s.t. |sk| = 1, k ∈ {1, . . . , N} (9.4)
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Note that evaluating the objective function in Equation 9.4, i.e., computing f(s), only requires

the knowledge of the transmit sequence s and the observed vector y at the receiver. Neverthe-

less, solving the above optimization program is still NP-hard and very hard to tackle in general.

In order to approximate the solution, one can resort to power method-like iterations specifically

designed to tackle unimodular quadratic programs (UQPs) [51]. In what follows, we reformulate

the problem of Equation 9.4 as a UQP and present the corresponding power method-like iter-

ations that lay the groundwork for our proposed hybrid model-aware and data-driven adaptive

waveform design framework.

Observe that both the numerator n(s) and the denominator d(s) of the objective function

f(s) are quadratic in s. Hence, in order to tackle the maximization of Equation 9.3 (or equiv-

alently tackling Equation 9.4) we resort to fractional programming techniques [214, 236]. Since

f(s), the SINR, is finite, we must have that d(s) = sHBs > 0. In addition, let s? denote the

current value of the code sequence s. Then, we define

e(s) , n(s)− f(s?)d(s), (9.5)

s† = arg max
s

e(s). (9.6)

Henceforth, it can be easily verified by the virtue of Equation 9.6 that e(s†) ≥ e(s?) = 0. As a

result, we have that e(s†) = n(s†)− f(s?)d(s†) ≥ 0 implying that

f(s†) ≥ f(s?), (9.7)
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as d(s†) > 0. In other words, we can argue that with respect to s?, the s† increases the objective

function f(s). It is noteworthy to mention that for the criteria in Equation 9.7 to hold, it is

sufficient for s† to satisfy e(s†) ≥ e(s?) and that s† shall not necessarily be the maximizer of

e(s).

For a given s? maximizer of Equation 9.4 we have that:

e(s) = sHAs− f(s?)
(
sHBs

)
= sH (A− f(s?)B)︸ ︷︷ ︸

,χ̃

s

Now, in order to ensure that χ̃ is positive definite, one can perform a diagonal loading procedure

by defining χ , χ̃ + λIN , where λ ≥ max{0,−λmin(χ̃)}. Next, the optimization problem of

Equation 9.4 can be cast as the following UQP [51]:

max
s

sHχs

s.t. |sk| = 1, k ∈ {1, . . . , N}. (9.8)

As previously discussed in Chapter 7 and 8, in order to efficiently tackle Equation 9.8, one can

employ a set of power method-like iterations (PMLI) suggested in [51, 76]. PMLI is capable of
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monotonically improving the objective value in Equation 9.8 using the following nearest-vector

problem:

min
s(n+1)

∥∥∥s(n+1) − χs(n)
∥∥∥

2
,

s.t.
∣∣∣s(n+1)
k

∣∣∣ = 1, ∀ k. (9.9)

The solution to Equation 9.9 can be computed analytically and is given as follows [51,76]:

s(n+1) = ej arg(χs(n)). (9.10)

where n denotes the internal iteration number, and s(0) is the current value of s. One can

continue updating s until convergence in the objective of Equation 9.4, or for a fixed number

of steps, say L. These iterations are already shown to provide a monotonic behavior of the

quadratic objective (no matter what the signal constraints are), and subsume the well-known

power method as a special case. Such a general approach to computationally efficient quadratic

programming that can handle various signal constraints (many of which cause the problems to

become NP-hard) opens new avenues in signal processing in low-cost scenarios.

Note that, in many practical scenarios, one might not have access to the a priori information

about environmental parameters. In the following, we aim to devise a hybrid data-driven and

model-based approach that allows us to jointly design adaptive transmit code sequences while

learning these parameters given the fact that the environmental information is in fact embedded

into the observed received signal y. Namely, we propose a novel neural network structure for
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waveform design, Deep Evolutionary Cognitive Radar (DECoR), by considering the above

power method-like iterations as a baseline algorithm for the design of a model-based deep neural

network. In particular, we consider an over-parametrization of the power method-like iterations

and unfold them onto the layers of a deep neural network. Each layer of the resulting network

is designed such that it imitates one iteration of the form Equation 9.10. Consequently, the

resulting deep architecture is model-aware, uses the same non-linear operations as those in

the power method, and hence, is interpretable (as opposed to general deep learning models).

The structure yet allows us to utilize data-driven approaches to optimize the parameters of

the network in an online learning manner—making the resulting network a great candidate for

reliable adaptive waveform design in automotive radar applications.

9.3 The DECoR Architecture for Signal Design

Consider the dynamics of a general fully connected deep neural network. Let g̃φi be defined

as

g̃φi(z) = a(u), (9.11)

where u = W iz and φi = {W i} denotes the set of parameters of the function gφi , and a(·)

denotes a non-linear activation function. Then, given an input x0, the dynamics of a fully

connected neural network with L layers can be expressed as follows:

xL = F (x0; Υ) = g̃φL−1
◦ g̃φL−2

◦ · · · ◦ g̃φ0(x0), (9.12)
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where, for a general DNN, Υ = {φi}L−1
i=0 denotes the set of weight matrices W i for each layer.

Now, consider the power method-like iterations of the form Equation 9.10. The connection

between the two becomes clear by paying attention to the fact that a fully connected DNN with

an activation function defined as a(x) = ej arg(x), and parameterized on a matrix W (that is

tied along the layers), boils down to performing L iterations of the PMLI. Therefore, one can

immediately see that a fully connected DNN with the specific choice of non-linear activation

function given by the projection operator S(x) , ej arg(x) is an optimal architecture for waveform

design with respect to the power method-like iterations extensively used in waveform design in

various applications [237, 238]. Hence, power method-like iterations are perfect candidates for

unfolding into DNNs since they can be characterized by a linear step, followed by a possibly

non-linear operation.

9.3.1 The Deep Evolutionary Cognitive Radar Architecture

The derivation begins by considering that in the vanilla PMLI algorithm, the matrix χ is

tied along all iterations. Hence, we enrich the PML iterations by introducing a weight matrix

χi per iteration i. Note that in the original PMLI algorithm, the matrix χ changes from one

outer iteration to another. Hence, such an over-parameterization of the iterations results in a

deep architecture that is faithful to the original model-based signal design method. Such an

over-parametrization yields the following computation model for our proposed deep architecture

(DECoR). Let us define gφi as

gφi(z) = S(u), (9.13)
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Figure 45. The proposed DECoR architecture for adaptive radar waveform design.

where u = χiz and φi = {χi} denotes the set of parameters of the function gφi , and recall

that the non-linear activation function is defined as S(x) = ej arg(x) applied element-wise on the

vector argument. Then, the dynamics of the proposed DECoR architecture with L layers can

be expressed as:

sL = G (s0; Ω) = gφL−1
◦ gφL−2

◦ · · · ◦ gφ0(s0), (9.14)

where s0 denotes some initial unimodular vector, and Ω = {χ0, . . . ,χL−1} denotes the set of

trainable parameters of the network. The block diagram of the proposed architecture is depicted

in Figure 45.

Our goal is to optimize the set of parameters Ω of the proposed DECoR architecture using

an online learning strategy that allows for fast adaptation to different environments. Intuitively,

given the nature of the PML iterations, learning the parameters Ω = {W l}L−1
l=0 corresponds to

learning the information corresponding to the signal-dependent interference and environmental

noise profile.
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9.3.2 The Proposed Online Learning Strategy

In an automotive radar application, the environment might undergo drastic changes along

different coherent processing intervals, and the noise and interference statistics might vary as

a result. Hence, it is natural to consider an online learning strategy for training the proposed

DECoR architecture.

Let Ω(t) denote the set of parameters at time t. Then, the resulting code sequence given the

set of parameters Ω(t) is simply given by the output of the last layer of the proposed DECoR ar-

chitecture, i.e., s(t)
L = G

(
s0; Ω(t)

)
. We define the goal of our online training procedure as learn-

ing the set of parameters Ω(t+1) such that the resulted code sequence s(t+1) = G
(
s0; Ω(t+1)

)
satisfies the following criterion:

f(s(t+1)) ≥ f(s(t)). (9.15)

Accordingly, we propose the following random walk-based training strategy for optimizing the

parameters of the proposed DECoR architecture in an online manner as shown in Table V.

The proposed online learning strategy for the DECoR architecture is an amalgamation of

natural evolutionary optimization techniques and policy optimization in reinforcement learning.

In particular, the increase in the objective function f(s) can be seen as a task for an agent that

is interacting with an unknown environment over the action space of Ω and the corresponding

unimodular code sL = G(s0,Ω). Note that the power method-like iterations and the model of

the system impose a positive definite constraint on the weight matrices {χi}L−1
i=0 . In order to
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TABLE V

THE PROPOSED TRAINING STRATEGY FOR DECOR ARCHITECTURE

Step 0: (Initialization): Choose an arbitrary unimodular transmit sequence s0 ∈ CN , and
set the training counter to t = 0. Initialize the radius σ of the search region to some positive
constant c, and choose δ ∈ (0, 1]. Further initialize the set of weight matrices Ω(0) = {χ(0)

i }L−1i=0

such that χ(0)
i � 0, for i ∈ {0, . . . , L− 1}.

Step 1: (Random walk- generation): For l ∈ {0, . . . , L − 1}, generate B random lower
triangular matrices L0

l , . . . ,L
B−1
l ∼ CN (0, σI), and form the set of Hermitian positive-definite

search direction matrices Di
l = Li

lL
iH
l , for each layer l and for i ∈ {0, . . . , B − 1}, where

Di
l ∈ CN×N .

Step 2: (Random walk- perturbation): For i ∈ {0, . . . , B − 1}, form the set of possible
candidate updates for the current parameter space Ω(t) as Ω

(t)
i = {χ(t)

0 + Di
0, . . . ,χ

(t)
L−1 +

Di
L−1}. Compute the corresponding B unimodular codes s(t)L,i = G(s0; Ω

(t)
i ) for i ∈ {0, . . . , B}

and form the set of training transmission codes as S(t) = {s(t)L,0, . . . , s
(t)
L,B−1}.

Step 3: (Collecting information): Transmit the unimodular codes in the set S(t) and obtain
the corresponding set of received signals Y = {y(t)

0 , . . . ,y
(t)
B−1}. Compute the function f(s)

for each transmit/receive pair (s
(t)
L,i,y

(t)
i ) and construct the set of objective values as F =

{f(s
(t)
L,i)}B−1i=0 .

Step 4: (Optimizing the DECoR architecture): Choose the current optimal parameter space
using

i? = arg max
i∈[B]

f(s
(t)
L,i).

Update the network parameters if f(s
(t)
L,i?

) ≥ f(s
(t−1)
L ) and set the search radius as σ ← c.

Otherwise, only update the search radius as σ ← δσ. Continue the online learning by going
to Step 1.

impose such a constraint in incrementally learning the parameters Ω, we initialize each χ(0)
i with

some positive-definite matrix. We then perform a random walk in the cone of positive definite

matrices by forming positive definite search direction matrices Di
l = LilL

iH
l . Such a training

strategy results in a fast adaptation to the ever-changing environment. Hence, the radar agent

can continually perform the training on the fly.
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9.4 Numerical Simulations

We begin by evaluating the performance and effectiveness of the proposed online learning

strategy for optimizing the parameters of the DECoR architecture. For this experiment, we fix

the total number of layers of the proposed DECoR architecture as L = 30. Throughout the

simulations, we assume an environment with dynamics described in Equation 9.2, and with more

details in [75], with clutter power β = 1, and a noise covariance of Γ = I. These information

were not made available to the DECoR architecture and we only use them for data generation

purposes.

Figure 46(a) demonstrates the objective value f(sL) in Equation 9.3 vs. training iterations,

for a code length of N = 10. It can be clearly seen that the proposed learning strategy and

the corresponding DECoR architecture results in a monotonically increasing objective value

f(sL). Furthermore, note that the proposed learning algorithm optimizes the parameters of

the proposed DECoR architecture very quickly. Next, we evaluate the performance of the

presented hybrid model-based and data-driven architecture in terms of recovering the target

coefficient α0. In particular, we compare the performance of our method (DECoR) in designing

unimodular codes with two state-of-the-art model-based algorithms: (a) CREW(cyclic) [76],

a cyclic optimization of the transmit sequence and the receive filter, (b) CREW(MF) [76], a

version of CREW(cyclic) that uses a matched filter as the receive filter, and (c) CREW(fre) [20],

a frequency domain algorithm to jointly design transmit sequence and the receive filter. Figure

46(b) illustrates the MSE of the estimated α0 vs. code lengths N ∈ {10, 25, 50, 100, 200}. For

each N , we perform the optimization of DECoR architecture by allowing the radar agent to



216

0 10 20 30 40 50
Training Iterations

1

2

3

4

5

6
f

(s
L
)

(a)

50 100 150 200
N

10−1

M
S

E
(α

0
)

[d
B

]

DECoR

CREW(MF)

CREW(cyclic)

CREW(fre)

(b)

Figure 46. Illustration of (a) the objective value f(sL) of the DECoR vs. training iterations
for a code length of N = 10, and (b) MSE values obtained by the different design algorithms

for code lengths N ∈ {10, 25, 50, 100, 200}.
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interact with the environment for 50 training epochs. After the training is completed, we use

the optimized architecture to generate the unimodular code sequence sL and use an MF to

estimate α0. We let the aforementioned algorithms perform the code design until convergence,

while the presented DECoR architecture has been only afforded L = 30 layers (equivalent of L

iterations). It is evident that the proposed method significantly outperforms other state-of-the-

art approaches.

9.5 Concluding Remarks

A learning-based signal designing method was proposed in this chapter. We employed a

deep unfolding framework: DECoR, that aims to take the well-established iterative approaches,

and design a deep architecture for waveform design in radar systems under unimodular signal

constraint. Numerical simulations showed that the proposed method significantly outperforms

other state-of-the-art approaches. It is interesting to note that although the DECoR framework

does not have access to the statistics of the environmental parameters (as opposed to the other

algorithms), it is able to learn them by exploiting the observed data from interaction with the

environment.



CHAPTER 10

CONCLUSIONS

This thesis placed a large swath of the current state of waveform synthesis techniques for

active sensing systems under one umbrella. The main objective of the thesis was structured

into two parts. In the first part, we investigated various aspects of designing waveforms for the

purpose of system identification. We provided, herein, the required and relevant background for

the identification of SL and WL systems and consequently proposed multiple novel algorithms

to design waveforms for such systems.

Chapter 2 and 3 of this thesis dealt with the SL systems. Firstly, a polynomial-time con-

struction approach for designing binary waveforms with optimal PSL growth was proposed. The

suggested approach utilized the potential of known sequence sets with good correlation proper-

ties in achieving an asymptotically optimal PSL growth both in a periodic and aperiodic sense

using non-convex quadratic optimization methods. It was shown that the constructed sequences

can outperform the widely used PN sequence in information embedding applications. Secondly,

a novel efficient algorithm was proposed to design signals with both good auto-correlation and

distribution properties that are required in specialized applications such as eye-tracking for

Parkinson’s Disease diagnosis and treatment. The proposed method was computationally effi-

cient and can design very long sequences (of lengths up to N ∼ 106 and even more) in relatively

short time frames. These designed sequences showed significant enhancement in terms of out-

of-phase auto-correlation as well as good distribution properties.
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In Chapter 4 and 5, we then extended the notion of designing waveforms with good cor-

relation properties toward WL systems. We proposed multiple algorithms that seek to design

unimodular sequences or sequence sets that have good correlation as well as good complemen-

tary correlation properties. Interestingly this was made possible by considering a complete

second-order characterization of the sequences or sequence sets. It was shown that the designed

waveforms were not only capable of handling the WL systems but also were suitable for use in

SL systems.

The second part of the thesis was devoted to the topic of signal designing for various advanced

radar applications. For such specialized applications, we investigated the possibilities of smart

waveform synthesis along with optimizing for secondary aspects of the radar systems. In Chapter

6, the problem of jointly designing the probing signal covariance matrix as well as the antenna

positions to approximate a given beam-pattern was studied. A novel alternating optimization

method was proposed to handle the non-convex nature of the design objective using a greedy

local search algorithm. The proposed method was proved to be superior to the existing state-

of-the-art methods in terms of accuracy and computational efficiency.

Consequently, in Chapter 7, we discussed the problem of mutual interference mitigation in

identical or similar automotive radar systems. To this end, we investigated multiple coding

schemes that can be applied not only in a simple SISO scenario but also can be extended to

a more generalized MIMO case. We, herein, proposed an efficient optimization framework to

convert a quartic objective to a quadratic one by careful over-parameterization. The designed
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codes effectively redistributed the total energy of the collective ambiguity function to the desired

region that resulted in reducing the interference power level significantly.

We furthermore, looked into another important waveform design problem for cognitive radar

systems in Chapter 8. We investigated the problem of jointly designing the probing signals and

the receive filter coefficients in the presence of uncertainty in interference statistics that arises

with the usage of very low-bit quantization on the receiver side. An efficient method based on the

state-of-the-art algorithm: CREW (cyclic) was proposed to tackle the said problem. We showed

that the performance of the proposed method improves with increasing signal length as it intro-

duces more degrees of freedom in designing transmit waveform and thus, compensates for the

uncertainties in interference statistics. It was evident that the knowledge of low-resolution mea-

surements impacts the design of the receive filter and alternatively, the design of the receive filter

coefficients impacts the design of transmit waveform, which justifies the role of a cognitive radar.

Finally, Chapter 9 moved our attention from the model-based– to a learning-based signal

designing problem. We particularly employed a deep unfolding framework: DECoR, that aims

to take the well-established iterative approaches, and design a deep architecture for waveform

design in radar systems under unimodular signal constraint. The proposed DECoR framework

not only outperformed other state-of-the-art approaches but also was able to learn the statistical

model of the environment by exploiting the observed data from interaction with the environment.

In each chapter, several numerical simulations were provided to evaluate the performance of

the proposed algorithms. We, furthermore, laid out several recommendations for future research

prospects for the waveform synthesis avenues we took.
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Appendix A

Time-complexity analysis of the Algorithm in Table IV

The computational complexity of the proposed method in Table IV for a problem

size of (M,N) (i.e., N antennas are to be selected from M locations) can be obtained

through the following steps:

1. Evaluation of
(
R(t), α(t)

)
is a convex SDP problem and has a polynomial worst-case

complexity [239].

2. Evaluation of p(t) involves:

(a) generation of pCS, and calculation of J(p) for each member of pCS.

(b) choosing the best p.

A careful investigation of the optimization step for p reveals that it requires only (M−N)

inner-iterations (see Step 2 above). Note that the generation of pCS and choosing the

best p (Step 2 above) linearly depend on the cardinality of the set pCS, and thus, can be

achieved in linear time-complexity. Namely, assuming |pCS| = l, the problem of finding

p∗ ∈ arg min pCS has a complexity of O (l). For the k-th inner-iteration, let us denote

the complexity of the calculations corresponding to the Step 2(a) above as a function of

the cardinality of pCS, i.e., C(l), where l = M − k. Furthermore, the calculation of J(p)
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Appendix A (Continued)

for each p has a constant cost c. Hence, the total cost of optimization with respect to

the vector p at each outer-iteration admits the following upper-bound:

Ctot =
M−N∑
k=1

c · (M − k) + C(M − k)

≤
M−N∑
k=1

cM + C(M)

= (M −N)(cM) + (M −N)C(M)

≤ cM2 +MC(M). (A.1)

Thus, the worst-case complexity is O (M2) (note that C(M) corresponds to a complexity

of O (M)).
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Proof that Q = E {R} in Equation 8.21

By using D
1
2 = Diag (d), the following can be deduced:

E {R} = E
{
D

1
2 R̄D

1
2

}
= E

{
ddH

}
� R̄. (B.1)

Assuming E
{
ddH

}
= ηηH + Σ, Equation B.1 can reformulated as

E {R} = (ηηH + Σ)� R̄

=
N∑
k=1

νkuku
H
k � R̄

=
N∑
k=1

νk diag (uk) R̄ diag
(
uHk
)
, (B.2)

and the proof is complete.
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Efficient Computation of Bx and By as discussed in Remark 6

Note that By in Equation 7.21 can be rewritten as

By =
P∑

p=−P

Diag (fp)

(
N−1∑

l=−N+1

ClyyHCH
l

)
Diag (fp)

H . (C.1)

Define R =
∑N−1

l=−N+1 ClyyHCH
l . It is easy to verify Ry = 2R0 − yyH , considering that

for l < 0, Cly = CN−ly, and R0 =
∑N−1

l=0 ClyyHCH
l . Moreover, we can write R0 as

R0 = YYH , (C.2)

where

Y =



y1 y2 · · · yN−1 yN

y2 y3 · · · yN y1

...
... · · · ...

...

yN y1 · · · yN−2 yN−1


. (C.3)
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As a result, R0 can be written as

R0 =



cy,0 cy,1 · · · cy,N−2 cy,N−1

c∗y,1 cy,0 · · · cy,N−3 cy,N−2

...
... · · · ...

...

c∗y,N−1 c∗y,N−2 · · · c∗y,1 cy,0


,

where cy,l =
∑N

n=1 yny
∗
(n+l)modN , l = 0, 1, · · · , N − 1. It should be noted that R0 is a

circulant matrix and its elements are determined by the values of the sequence {cy,l}N−1
l=0 .

Moreover, this sequence can be seen as the circular convolution between {yn}Nn=1 and

{yn}Nn=1, and hence can be efficiently computed via FFT operations. Therefore, the

computation of Ry requires O (N2) flops (mainly due to the computation of yyH).

It follows that By can be calculated efficiently using the following result:

By =
P∑

p=−P

Diag (fp)RyDiag (fp)
H

=
P∑

p=−P

Ry � (fpf
H
p )

= Ry � (FPFH
P ), (C.4)

where FP = [f−P , · · · , fP ] ∈ CN×(2P+1).
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Finally, we consider reducing the computational complexity of computing Bx. To this

end, we note that

Bx =
N−1∑

l=−N+1

CH
l

(
P∑

p=−P

Diag (fp)
H xxHDiag (fp)

)
Cl

=
N−1∑

l=−N+1

CH
l

(
(xxH)� (F∗PFT

P )
)
Cl. (C.5)

Let Rx = (xxH) � (F∗PFT
P ). We can observe that CH

l RxCl can be computed very effi-

ciently, since it only involves the permutation of the rows and columns of Rx. Therefore,

the computation of By only requires O (N2) flops.
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