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SUMMARY

Unlike mass media news articles, research papers have a well-defined structure and the

language is much more formal. Many words have specific meanings and these meanings do not

change based on the context in which these words are used (e.g., repository always designates

a kind of storage in a source code control system).

We theorize that with a limited manual effort these research papers can be turned into a

semantic graph where new relations between terms can be obtained. Moreover, with the vocab-

ulary expansion, these terms can be linked to other concepts (e.g., repository −→ storage −→
memory) thereby enhancing the power of inferential reasoning about new relations. We also

explore the possibility of finding contradictions among established relations hence raising new

research questions about deeper explorations of already obtained relations.

Therefore, in this thesis, we address a problem of automatically creating inferences from the

corpus of data published in research papers in the area of empirical software engineering.

To this end, we build an MVC-based application called ”Generator of Research Out-

put Units in Software Engineering” a.k.a. GROUSE which elicits the user to define

relations between terms belonging to the corpus of 603 research papers published across var-

ious editions of Mining Software Repositories’ conferences. With limited manual effort, we

first create a ground truth conceptual graph upon which our application employs techniques

such as Expected Entropy Loss (EEL), Latent Semantic Analysis (LSA), Relational Topic Mod-

elling (RTM) and term expansion to infer new relations for semantically similar terms, terms

viii



SUMMARY (Continued)

with similar underlying associations and papers which are related depending on the terms they

contain.

With GROUSE, the empirical software engineering research community can collaborate

on automatically generating new research questions that reveal deeper insights in software

engineering processes and solutions.
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CHAPTER 1

INTRODUCTION

Science is deeply fragmented, with many areas of specialization and researchers who work in

these specialized areas present their works at designated venues, i.e., conferences and workshops

and they publish in scientific journals. Reviewers, selected for these venues and journals, review

submitted papers to determine if they satisfy quality standards for each specialized research

area. Therefore, it is generally assumed that accepted papers contain novel research ideas and

some proof of their viability. More generally, unlike publications in mass media or social media,

these papers contain the terminology, the jargon and a pattern of discourse that are specific to

each specialized research area. For example, when the word ”architecture” is encountered in

a software engineering paper, it is almost certainly meant as a formal blueprint for a software

system and not for an urban building. Understanding the terminology and the jargon for each

scientific area, and learning to use them in a proper discourse, is a part of education of every

researcher.

Naturally, as part of learning the state-of-the-art in an area of science, researchers obtain a

list of papers published at representative venues and analyze them. Once researchers understand

the terminology and the structures of the papers, it becomes much easier for them to obtain

“reusable brain artifacts,” which are concise statements about the problem addressed in a given

paper and their solutions. Even though there may be some disagreement about the meaning of

1
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specific terms, it is rare enough to highlight that researchers mostly agree on big and important

terms and relations among them.

While getting acquainted with the state of the art in a given area a researcher starts gen-

erating new ideas and hypotheses that can reveal new information to advance the state of the

art in this area. One of the simplest argument to create new ideas and hypotheses is based on

hypothetical syllogism, i.e., a researcher uses established facts, P −→ Q from one paper and

Q −→ R from another paper to deduce a hypothesis that P −→ R. Often, the next step is to

obtain the experimental data used in both papers to analyze it further to show that there is a

statistically strong evidence to support the new hypotheses. As a result a new Least Publishable

Unit (LPU) is born.

In this thesis we explore the possibility to infer new ideas and hypotheses from the corpus

of peer-reviewed published research papers with a high degree of automation. We selected

the research area of Empirical Software Engineering, specifically the subarea of mining soft-

ware repositories. We collected over six hundred papers published over 12 years. We create

a software application to assist the extraction of the Conceptual Graphs (CGs) from these

papers to formalize domain-specific knowledge representation using the expert in Software En-

gineering, Prof. Mark Grechanik under whose guidance the work on this thesis was performed.

These conceptual graphs along with the extracted technical terms are used as anchors to guide

machine-learning (ML) algorithms for creating relationships among research questions raised

in these papers, so that by exploiting these relationships we can suggest
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The main idea of this project is to allow researchers to produce meta-research publications

semi-automatically. Meta-research publications are based on existing publications that pro-

vided enough material to formulate research questions and use the previously published papers

to answer these questions. As it is defined elsewhere, ”Meta-analysis includes a set of meth-

ods that can combine quantitatively the evidence from different studies in a mathematically

appropriate way. Combining data may improve statistical power, when there are several small

studies on a specific question, but each one of them is largely under powered or has not been

designed to address that research question. Meta-analysis may provide a precise and robust

summary estimate after a systematic and rigorous integration of the available evidence.” A

different source provides a glimpse at the history of meta-analysis: “The American educational

psychologist Gene V. Glass (1976) coined the term meta-analysis to stand for a method of sta-

tistically combining the results of multiple studies in order to arrive at a quantitative conclusion

about a body of literature. The English statistician Karl Pearson (1857–1936) conducted what

is believed to be one of the first statistical syntheses of results from a collection of studies when

he gathered data from eleven studies on the effect of a vaccine against typhoid fever (1904).

For each study, Pearson calculated a new statistic called the correlation coefficient. He then

averaged the correlations across the studies and concluded that other vaccines were more ef-

fective than the new one. Our goal is to automate parts of the meta-analysis process to assist

researchers in producing meta-research paper as least publishable units.

Consider an inference example for a new idea from several published papers. (2) can be

described using a simple conceptual graph where repository is related to Java that is related to
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library that is related to exception that is related to runtime that has bugs that are related to

anti-patterns that are related to library and Java. The CG for (3) can be described as Bugzilla

has bugs that have reports that have features and these reports that are related to NLP that has

classification that is related to deontic norms that is related to behavior. (4) is characterized

by the conceptual graph: Jira has issues that are related to developers that have sentiments

and joy and love and is-a bullies that have productivity that is-a fixing time that is-a metric.

(5) is characterized as a simple conceptual graph where repository is related to Java that is

related to library or application that is related to exception that is java.lang.Exception that

is related to handlers that has catch blocks and finally blocks that are related to patterns that

are related to errors that is-a bug. Finally, (6) is about sentiment that has SentiWordNet that

is related to IT and ticket that is related to developer that has feelings.

The word deontic is expanded with the synonyms ethics, morality, duty and obligations

where morality and duty are strongly associated with feelings. From these conceptual graphs it

is possible to infer the following hypotheses. First, exception has handlers that has catch and

finally blocks and it is related to bugs that is related to anti-patterns and patterns. The latter is

identified as contradiction for researchers to determine the relationship between using patterns

vs anti-patterns on the number of bugs in exception handler blocks. Second, bug reports are

related to morality and sentiment that is related to IT and ticket that is related to developer

that is related to bugs that is related to exception handlers. Extending the first hypothesis

a researcher can formulate a research question to determine if certain metrics of sentiments

are prevalent in tickets and issues that are related to bugs in exception handlers. Since the
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original papers provided empirical evaluations of the corresponding hypotheses, to answer the

formulated research question requires a researcher to perform a number of standard steps to

obtain the datasets and run analyses using software packages which are specified in the papers.



CHAPTER 2

MOTIVATION: CONCEPTUAL GRAPHS

To set the background of this chapter, it is necessary to understand the idea of conceptualism

and its specifications. One such specification is that of an ontology. An ontology describes

relations between various concepts governing some domain. These concepts in an object oriented

parlance can be likened to classes, the attributes they contain and the relations they exhibit

with other classes. An example is the following:

Figure 1: A typical IS-A relationship

In the above domain which concerns a bird, the concepts include its attributes - colour and

speed, their types - string and int and the relation - IS-A between the two classes - bird and

albatross.

For an intelligent system to understand ontologies, these ontologies ought to be represented

formally. Formal representations typically define a relation between two concepts using which

more implications can be drawn. There ought to be a certain taxonomy which governs the

attributes a certain concept can possess and what other concepts can be derived by manipulating

these attributes. A thing to keep in mind when choosing a formal representation is that it

6
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should not be restrictive when representing concepts pertaining to the domain under interest.

We briefly describe frame based models, semantic networks and conceptual graphs.

2.1 Frame Based Models

In a frame based model, the knowledge representation primitive are frames and their prop-

erties. Here, frames denotes some primitive object that represents a concept in the domain

under interest.

2.2 Semantic Networks

A semantic network is essentially a graph where each node denotes a concept and the edges

represent the edges between these concepts. Such a network introduces the following relations:

1. synonym - The relation when two concepts A and B represent the same thing.

2. antonym - Here, the concept A represents something that is the opposite of what concept

B represents.

3. meronym, holonym - Concepts through this relation express has-part and part-of relations.

4. hyponym, hypernym - Concepts can express the type-of relationship.

An important use case for this type of formalism is that of interlingua which is a represen-

tative language used to perform translations between different natural languages.

2.3 Conceptual Graphs

A conceptual graph is similar to a semantic network but it can be represented more directly

as a first order predicate logic. The graphical representation of concepts further enables what

the graph is trying to depict. As far as the graphical representation is concerned, rectangles
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denotes some instance of a concept and an ellipse represents the relations between concepts.

The directed edge shows in which direction the relation is oriented. An example of a conceptual

graph is below:

Figure 2: CG for John is going to Boston by bus (1)

Here, the concepts’ labels are Person, Bus, City and Go and John and Boston denote concept

names. The relations are Agent (Agnt), Instrument (Inst) and Destination (Dest) (1). The CG

can be understood as a person being some agent of the concept Go which in turn uses the Bus

as an instrument and destination as Boston. The first order predicate logic can be written as

(1):

(∃x)(∃y)(Go(x)∧ Person(John)∧ City(Boston)∧ Bus(y)∧

Agnt(x, John)∧Dest(x, Boston)∧ Inst(x, y))

(2.1)

Owing to the above logic, conceptual graphs can be understood by systems due to this

formal representation. Going back to example in section 1, we can construct conceptual graphs

as follows:
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Figure 3: CG for (2)
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Figure 4: CG for (3)
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Figure 5: CG for (4)
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Figure 6: CG for (5)

Figure 7: CG for (6)

Owing to such a graphical representation, path finding algorithms such as Depth First Search

can be applied to traverse from a particular term to another for a set of relation edges. This

will allow an author to draw inferences across multiple concepts with terms across different

papers describe so as to formulate new research questions. An example of such a formulation



13

can be taken from section 1 where a traversal can start from the term bug through relations

is-a, is-related-to and has. One would observe as a result of this traversal various inferences

such as bugs being related to patterns and anti-patterns.



CHAPTER 3

RELATED WORK

As evidenced by literature, there exist several ways in which a conceptual graph can be

constructed. Svetlena proposed one such way which used semantic role labelling knowledge

bases such as WordNet and VerbNet and domain specific syntactic patterns a sentence can take

(8). An interesting example is how Hasegawa et al create conceptual graphs to aid modelling

requirements for software applications. They make use of Cabocha (9), which is a PoS tagger

for the Japanese language to extract pertinent terms from a requirements specification and

determine associations between these terms by encoding them into co-occurence vectors and

calculating the cosine similarity between them (9). Associations can be created between terms

whose cosine similarities are higher (9).

It can be ordinarily understood that a domain expert can disambiguate terms pertaining to that

domain. Ma’ ayan et al explain how a team of such domain experts can be interviewed with the

common purpose of creating conceptual diagrams (10). These diagrams provide a visual way of

understanding relationships between abstract concepts (10). Another domain-centric approach

comes up in the context of object oriented programming. Hines realized such a paradigm with

the help of Sowa’s techniques to construct a conceptual graph (11).

A use case of conceptual graphs is to make computing systems more intelligent. In one such

instance brought forth by Nečaský, XML documents with different formats are reverse engi-

neered by delineating its schema and mapping them to conceptual graphs (12). This allows for

14
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the system to enforce a consistency when schemas are modelled (12). Schematron is a language

which instead of relying on rule-based grammar instead makes use of conceptual models to

model XML schemas (13). Similarly, UMLs can be understood better by assigning real-world

semantics to a set of UML constructs (14). This is done by mapping these constructs to an

ontology laid down by Mario Bunge, which is a standardized ontology for modelling information

systems (14). Bouchakwa et al make use of conceptual graph formalisms to annotate images

in a semantic context (15). (16) measures the plasticity of user interfaces which is a measure

of the extent to which the usability of a UI is maintained while introducing variations to the

context in which it is used. This paper enlists a three step process wherein first the situation

is recognized, following which a remedy is computed and finally the remedy is executed (16).

The descriptions of this process are visualized in the form of a CG (16).

A problem in our thesis is to determine terms which succinctly describe a research publication

which in turn enables categorizing these papers. One such approach is to obtain key-phrases

as provided by ACM’s classification system (17). The idea is to compute a phrase-to-text rele-

vance measure by using techniques such as cosine relevance score, pertinent characteristic of the

probability of the term being generated and CPAMF which stores characteristics of conditional

probabilities of fragments from various texts and phrases (17). Jo et al present a visualization

based approach to build intuition about accessing papers rather than just extracting free form

text (18). Semantic linking systems can be used which models a graph having document con-

cepts as nodes and edges denote to what extent these concepts are related semantically. Using

such a graph, the model proposed in (19) computes the conditional probability for a query
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concept given certain values for concepts of a document.

Topic modelling is a technique which extracts latent topics over a corpus of documents. Latent

Dirichlet Allocation (LDA) is one such topic modelling technique. In this technique, a topic is

described as a proportion over words and each document as a distribution over a set of topics.

Bayesian learning is used to determine such distributions. Owing to the intractability of com-

puting these probability distributions, (20) develops a non-Bayesian approach called Additive

Regularization of Topic Models which is based on regularized maximum likelihood estimation.

Topic modelling are popular across domains such as in law (21) where legislative text is summa-

rized and annotated with salient legal topics. (22) proposing a topic modelling methodology for

tweets based on clustering called ClusTop which determines connected words and subsequently

the topic which governs them using community detection techniques.

For the purpose of linking research papers, one proposed solution is to extract citations and

textual content from these research papers and computing similarity by making use of SVMrank

(23). Wikify is a system which performs tasks such as keyword extraction and word-sense dis-

ambiguation to link documents with relevant Wikipedia pages (24). In the case of presentations,

Erol et al present a retrieval technique which leverages image matching algorithms (25). Using

this technique, presentations and particular slides in a presentation can be linked amongst thou-

sands of them (25). For the purpose of knowledge management, EROCS posits an algorithm

which maps predefined entities to text in a document (26). Linkage between documents which

map to the same entities are linked (26). A use case in a legal setup is proposed by Shaffer
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et al where court cases are linked to clauses in the US constitution (27). Paragraphs in legal

documents are linked using a rule-based system and neural networks (27).



CHAPTER 4

TOOLS, NLP OPERATIONS AND TOPIC MODELLING TECHNIQUES

In this chapter we highlight various libraries/packages used along with the pertinent NLP

operations and topic modelling techniques to infer concepts pertaining to our corpus of research

papers.

4.1 Natural Language Processing Operations

4.1.1 Tokenization

Tokenization is the process of taking in a stream of characters and then slicing them into a

set of predefined rules. Typically, these tokens are chopped in a way to represent words which

have some semantic meaning (28).

4.1.2 Part of Speech Tagging

In linguistic studies, the process of part-of-speech tagging takes in raw text as input and

assigns words in this raw text with some part-of-speech taking into account both its definition

and the context within which it appears (29).

4.1.3 Term Expansion

Term expansion is a specific approach which is a part of a broader set of approaches under

the umbrella of query expansion. Here, a term, specifically located in a query, can be replaced

with synonyms or semantically similar terms to expand search results (30).

18
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4.2 Topic Modelling

4.2.1 Latent Semantic Indexing

Latent Semantic Analysis is an information retrieval technique which discovers a latent

semantic structure across terms belonging to a corpus of documents. In this technique, each

document and term is expressed as a vector whose elements signify to what extent it can be fit

into a particular structure (31).

4.2.2 Singular Value Decomposition for LSA

Consider a term-document matrix A. Here, each column of A represents a document. If a

term i occurs x times in a document j then A[i, j] = x. A is an mxn matrix where m is the no.

of terms and n is no. of documents (31).

Say, matrix B = AAT is a document-document matrix. B[i, j] = b if documents i and j have

b words in common. Likewise, C = ATA will be the term-term matrix where C[i, j] = c implies

that terms i and j have c documents in common. Here, both B and C are square and symmetric

(31).

Owing to the above property of B and C, SVD can be performed on A. The general form of

SVD for A is where S is matrix of eigenvectors of B and U is matrix of eigenvectors of C and

Σ is a diagonal matrix (31):

A = SΣUT
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Say, we wish to reduce the rank of A to k and call the matrix with reduced rank as Ak (31).

We can obtain it using the following:

Ak = SkΣkU
T
k

where Sk, Σk and Uk are mxk, kxk and kxn matrices and their product results in an mxn

matrix (31).

Intuitively it can be said that the k-participating vectors in S and U are hidden concepts where

the terms and documents participate and that they have a new representation in terms of these

hidden concepts (31). Here, the terms are represented in terms of row vectors of mxk matrix

(31):

SkΣk

and documents are represented by the column of the kxn matrix (31):

ΣkU
T
k

and the query can be encoded as the centroid of the vectors for the terms it contains (31).

Finally in order to rank documents with respect to some query q, the cosine distance can be

used as below (31):
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di · q
|di||q|

Higher the cosine distance greater the similarity (31).

4.2.3 Relational Topic Modelling

Relational Topic Modelling (RTM) is a hierarchical probabilistic model of networks wherein

each node contains attributes (32). At the time the authors came up with this model, the

focus was primarily on document based networks such that this model can be used to model

links between these documents as a binary random variable (32). Such a model is superior as

preexisting models required a training set of observed links to predict new links whereas the

RTM can do so by observing the attributes of a document and vice-versa (32). It is important

to note that attributes here refer to the words contained in a document belonging to some fixed

vocabulary (32).

In the RTM, each document is generated from some observed topic distribution as in the case of

LDA (32). The links between documents are modelled as some binary random variable which is

again dependent on this topic distribution. Due to the dependence of both words and links on

topics, the content of a document is dependent on the link structure involving this document

(32).

Here we introduce the joint posterior probability for modelling a link and how it can be

computed using variation inference briefly.
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4.2.3.1 Parameters of RTM

1. β1 : K: K multinomial parameters each of which describes a distribution on words (32).

2. α: A K-dimensional Dirichlet parameter (32).

3. Ψ: The link probability function which models a link between a pair of documents (32).

4. w1 : D,1 : N: This notation denotes a set of documents where wi,1 : N refers to the set of

words contained in the ith document (32).

5. y1 : D,1 : D: All links between a pair of documents. yi,j = 1 is there is a link between

documents i and j and is zero otherwise (32).

4.2.3.2 Word and link generation process for documents

1. For each document d:

(a) Θd|α ∼ Dir(α) is a probability distribution which satisfies a Dirichlet distribution

parameterized by α. Drawing from this distribution gives us some topic proportion

(32).

(b) For each word wd,n:

i. zd,n|Θd ∼ Multi(Θd) is a probability distribution which satisfies a multinomial

distribution parameterized by Θd. Here, assignment, say zd,n is drawn from the

multinomial distribution Θd (32).

ii. For each topic chosen, say zd,n, the word is chosen from the distribution of words

on the topic chosen. From such a distribution βzd,n , a word, wd,n is chosen (32).
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2. For a pair of document d, d ′:

(a) yd,d ′ |Zd, zd ′ ∼ Ψ(·|zd, zd ′ , η) satisfies the link probability function which is a probabil-

ity distribution function (32). Here the probability distribution function modelling

the link, Ψ depends on the pair of topic assignments and global regression parame-

ters, η. Here zd = {zd,1, zd,2, . . . , zd,n} (32)

4.2.3.3 Computing the link probability function

The authors look at the following possibilities to compute Ψ (32). These are:

Ψσ(y = 1) = σ(ηT (z̄d ◦ z̄d ′)υ) (4.1)

Ψe(y = 1) = exp(ηT (z̄d ◦ z̄d ′) + υ) (4.2)

where z̄d = 1
Nd

∑
n
zd,n and the product between zd and zd ′ denotes the Hadamard/element-

wise product (32). η and υ denote the coefficients and intercept which parameterize the logistic

regression used to model the per-document-pair binary variable (32). While Ψσ and Ψe use the

same covariates, the former uses a sigmoid function (σ) and the latter the exponential function

(exp) (32).

4.2.3.4 Inference, estimation and prediction

Computing the posterior for hierarchical Bayesian models is intractable and therefore arises

the need to approximate it. The authors turn to variational inference whose methods assume a
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family of distributions and the one with the lowest difference in relative entropy with respect to

the original posterior is selected. The fully-factorized family is selected where topic proportions

and topic assignments are considered as independent random variables (32).

q(Θ,Z|γ,Φ) =
∏
d

[
qθ(θd|γd)

∏
n

qz(zd,n|Φd,n)

]

(32)

In the above equation, γ refers to the variational Dirichlet parameters for each document

and Φ are multinomial variational parameters for each word in each document (32).

Minimizing the relative entropy is the same as maximizing the Jensen’s lower bound on

the marginal probability across all observations. This quantity is known as the evidence lower

bound (32):

L =
∑

(d1,d2)

Eq[logp(yd1,d2 |zd1 , zd2 , η, υ)] +
∑
d

∑
n

Eq[logp(zd,n|θd)] +
∑
d

∑
n

Eq[logp(wd,n|β1 : K,zd,n)]

+
∑
d

Eq[logp(θd|α)] +H(q)

(4.3)

(d1, d2) denote all document pairs in the corpus and H(q) is the entropy of the distribution

q (32). For more efficient computation, a pair of documents is treated as observed iff yd1,d2 = 1

(32). The intuition offered here is that treating yd1,d2 = 0 as unobserved instead is more
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truthful to the fact that a link could exist but does not ascertain that a link doesn’t (32).

Now the aim is to compute each term in the above equation. The first term is:

∑
d1,d2

Ld1,d2 ≡
∑

(d1,d2)

Eq[logp(yd1,d2 |zd1 , zd2 , η, υ)] (4.4)

Using a first order approximation and implying the function to only depend on z̄d1 ◦ z̄d2 ,

the equation can be rewritten as (32):

Ld1,d2 = Eq[logΨ(z̄d1 ◦ z̄d2)] ≈ logΨ(Eq[z̄d1 ◦ z̄d2 ]) = logΨ(π̄d1,d2)

where π̄d1,d2 = Φ̄d1 ◦ Φ̄d2 and Φ̄d = Eq[z̄d] =
1
Nd

∑
n
Φd,n. The link probability functions

can be now expressed as (32):

Eq[logΨσ(z̄d1 ◦ z̄d1)] ≈ logσ(η
T π̄d1,d2 + υ)

Eq[logΨe(z̄d1 ◦ z̄d1)] = η
T π̄d1,d2 + υ

(4.5)

Once the expectations have been obtained, the ELBO is to be optimized with respect to the

variational parameters γ and φ (32). The update for the variational multinomial comes out to

be (32):

Φd,j ∝ exp

∑
d ′ 6=d
∇Φd,n

Ld,d ′ + Eq[logφd|γd] + logβ·,wd,j

 (4.6)
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The update part of the above equation ∇Φd,n
Ld,d ′ depends on the link probability function

(32).

∇Φd,n
Ld,d ′ = (∇π̄d1,d2Ld,d ′) ◦ φ̄d

′

Nd
(4.7)

The above equation will cause a document’s latent topic assignments to tilt towards its

neighbouring document’s topic assignments (32). The magnitude of this depends solely on

π̄d,d ′ which is a measure of how close the two documents are. The following gradients of the

link probability functions are as below (32):

∇π̄d,d ′L
σ
d,d ′ ≈ (1− σ(ηT π̄d,d ′ + υ))η

∇π̄d,d ′L
e
d,d ′ = η

The contribution of the word evidence in Equation 4.6 logβ·,wd,j
can be computed by taking

element-wise logarithm of the wd,jth column of the topic matrix β. The contribution of the

document’s latent topic proportions to the update is given below (32):

Eq[logθd|γd] = z(γd) −z(
∑

γd,i)

where z is the digamma function. The update for variational Dirichlet parameters γ is

given as (32):



27

γd ← α+
∑
n

φd,n

For the purpose of fitting the model, maximum likelihood estimates for multinomial topic

vectors β1 : K and link function parameters η, υ are to be determined (32). As this is again an

intractable problem, variational expectation-maximization is performed where ELBO is opti-

mized with respect to variational distribution and model parameters (32). Here, the update for

topics matrix β is given as (32):

βk,w ≈
∑
d

∑
n

1(wd,n = w)φd,n,k

To fit parameters η and υ of the logisitic regression function given in Equation 4.1, gradient-

based optimization is used (32). Gradient descent equations are as below:

∇ηL ≈
∑
d1,d2

[yd1,d2 − σ(η
T π̄d1,d2 + υ)]π̄d1,d2

δ

δυ
L ≈ σ(d1,d2)[yd1,d2 − σ(η

T π̄d1,d2 + υ)]

Once the model has been fit, the goal now is to make predictions about links given words

and vice-versa (32). For link prediction, a new document with words not part of the training

set is given and links are to be computed (32). This probability distribution is expressed as:

p(yd,d ′ |wd, wd ′) =
∑
zd,zd ′

p(yd,d ′ |z̄d, z̄d ′)p(zd, zd ′ |wd, wd ′)
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Our goal now is to find variational parameters which optimize the ELBO for evidences

such as words and links from the training set and words from the test document (32). The

probability can now be approximated as (32):

p(yd,d ′ |wd, wd ′) ≈ Eq[p(yd,d ′ |z̄d, z̄d ′)] (4.8)

Similarly word prediction can be computed using the same variational technique as below

(32):

p(wd,i|yd) ≈ Eq[p(wd,i|zd,i)] (4.9)

4.2.4 Expected Entropy Loss

The Expected Entropy Loss (EEL) is an algorithm which is used to extract the most relevant

attributes for a set of documents (33). This algorithm works by ranking attributes based on

how well it describes a given category. The indicator which is used to quantify this ranking

is the attribute’s entropy for that category. Consider the example of a term, say ”uml”. This

term is more likely to belong to the category of ”Modelling” as opposed to ”Version Control

Systems”.

More formally, entropy is a measure of the uncertainty associated with an event and is expressed

in terms of a discrete set of probabilities over some event space where xi represents some event.
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Entropy is computed as below (33):

e(X) =

n∑
n=1

Pr(xi)log(Pr(xi))

Consider the following variables - C which corresponds to some event denoting whether an

application belongs to a certain category and a be the event that a document contains a

certain term. We can now define the following equations (33):

Pr(C) =
Number of relateddocuments

Number of documents

Pr(C̄) = 1− Pr(C)

Pr(a) =
Number of documentswith terma

Number of applications

Here, Pr(C) is the probability that for a certain category, the document will belong to that

category and Pr(a) is the probability for each attribute, that a document will contain that

attribute (33).

Pr(ā) = 1− Pr(a)

Pr(C | a) =
Number of relateddocumentswith terma

Number of documentswith terma

Pr(C̄ | a) = 1− Pr(C | a)
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Pr(C | ā) =
Number of relateddocumentswithout terma

Number of documentswithout terma

Pr(C̄ | ā) = 1− Pr(C | ā)

The prior entropy which corresponds to the distribution of documents for a category is

computed as below (33):

e(C) = −Pr(C)log(Pr(C)) − Pr(C̄)log(Pr(C̄))

The posterior entropy calculates the probability for a given term being categorized with a

certain category (33).

ea(C) = −Pr(C | a)log(Pr(C | a)) − Pr(C̄ | a)log(Pr(C̄ | a))

For the case where the attribute is not to be categorized with a certain category, we have the

below equation (33).

eā(C) = −Pr(C | ā)log(Pr(C | ā)) − Pr(C̄ | ā)log(Pr(C̄ | ā))

Therefore it can be said that the expected posterior entropy can be calculated as (33):

EPE(C, a) = ea(C)Pr(a) + eā(C)Pr(ā)



31

Finally, the entropy loss is computed as follows (33):

EEL(C, a) = e(C) − EPE(C, a)

The EEL value can be computed for every term for each category where the higher the value,

more the distinction when it comes to categorizing the term (33).

4.3 Important tools used

In this section, we list down some key tools/libraries to implement key aspects of our

application.

4.3.1 Natural Language Toolkit

Natural Language Toolkit (NLTK ) is a package which enables performing pertinent NLP

tasks such as classification, tokenization, stemming, tagging, parsing and semantic reasoning

(34).

4.3.2 WordNet

To put it simply, “WordNet® is a large lexical database of English” (35). It uses what

is known as synsets to group words which are semantically similar. One may think of it as a

database representing a thesaurus but it goes further to store what sense the words are used in

(35).

It stores relations between words which realizes a word being a hypernym/hyponym of another

word (35). What this denotes is whether there exists a type-of relationship(hypernym) between

words or vice-versa (hypernymy). An example is, “an eagle is a hypernym of a bird” or “a
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furniture is a hyponym of a bunk bed”.

This database helps us achieve the objective of term expansion as we shall see in a subsequent

chapter.

4.3.3 PdfBox

Apache’s PdfBox is a Java based library which helps in the creation, manipulation and

extraction of textual content from PDF documents (36).

4.3.4 flask

flask is a Python-based web application framework which is used to create mappings

between URLs and functions and allows an application to be deployed in a web server. It does

so without forcing a developer to choose specific libraries which it may depend on (37).

4.3.5 marshmallow

marshmallow is a Python-based library which performs operations such as Object Relation

Mapping (ORM) and Object Database Mapping (ODM). More concisely, it is used to create

schema on which input data can be validated. This schema data can be serialized to through

input data coming in as a request object from a HTTP call. These schema objects can be

deserialized back into standard forms such as JSON (38).

4.3.6 scikit-learn

scikit-learn is a Python-based library which provides functions to perform supervised

and unsupervised machine learning. It provides models out of the box along with utilities for

data pre-processing and evaluation (39).
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4.3.7 science-parse

science-parse is a utility written in the Scala language which parses published articles

and extracts from them pertinent information such as the abstract, author list, references and

the text pertaining to individual sections in the chosen article (40).

4.3.8 pymongo

pymongo is a Python-based library which provides the functionality of connecting to a Mon-

goDB backend and performing database-specific operations such as create, read, update and

delete (CRUD) operations (41).



CHAPTER 5

OUR CORPUS

The corpus we chose are an assortment of research papers published in the Mining Soft-

ware Repositories’ conferences. This field analyzes data from software repositories and reports

insightful results concerning software projects and systems (42). We start off from a corpus of

603 research papers whose textual content is extracted using Scala’s Apache’s PdfBox package.

Owing to the structured manner a research paper is written, it becomes easier to build regular

expressions to extract content so as to perform some interesting analysis on its content.

5.1 Sections of a research paper

Commonly, a research paper has the following sections - Abstract, Introduction, Motiva-

tion, Future Work, Conclusion, References. We perform a manual inspection of 50 papers to

look specifically for sections and check for the occurrences of these sections using Python’s re

package. The results we obtain are shown in Table I.

5.2 Authors

We analyze for our corpus, the authors of the research papers. We particularly look at

authors with the most publications and the most citations. To this end, AllenAI’s science-

parse package is used which extracts author names. Citations are extracted using Python’s

refextract package. Metadata pertaining to authors are tabulated in Table II.

34
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TABLE I: Paper Sections’ Metadata

Term No. of papers occurring in

Abstract/ABSTRACT 308/314

Acknowledgements/ACKNOWLEDGEMENTS 22/35

Approach/APPROACH 139/64

Background/BACKGROUND 19/80

Case Study/CASE STUDY 62/56

Conclusion/Conclusions/CONCLUSION/CONCLUSIONS 28/30/317/182

Discussion/DISCUSSION 68/169

Future Work/FUTURE WORK 25/128

Introduction/INTRODUCTION 98/546

Methods/METHODS 121/22

Motivation/MOTIVATION 48/16

Problem Statement/PROBLEM STATEMENT 4/1

References/REFERENCES 55/550

Related Work/RELATED WORK 34/276

Results/RESULTS 222/240

Summary/SUMMARY 69/37

TABLE II: Authors Metadata

Indicator Count

Total no. of authors extracted 1239

Max. publications for an author 20

Median no. of publications for an author 1
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5.3 Research questions

Research questions (RQs) form a pertinent part of research papers as they enlist the ques-

tions which the researcher plans on investigating. We posit that a typical research question is as

”RQ1: What is the correlation between no. of commits and hours worked by a developer?”. We

apply the following regex ((RQ|rq)\s*[0-9])([^.?!])+\? to extract RQs and there were a

total of 360 papers for which we could do so. There were a total of 5 papers that had questions

which started with a ’Q’ or did not have a ’?’ as shown in Table III.

TABLE III: Research Questions Metadata

Indicator Count

Research questions extracted 679

Max RQs for a paper 7

No. of papers with RQs 360

No. of papers with undetected RQs 5

5.4 References

References provide a way to cite other articles whose content has been used in a research

paper. We rely on the structure of a research article and look specifically for the strings ”REF-

ERENCES” and ”References” instead of ”references” or the far more unlikely ”reFeRences”.

All text following the string are then extracted and upon observation we see that an example

of a typical reference is ”[24] Rohan Padhye, Senthil Mani, and Vibha Singhal Sinha. 2014.
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TABLE IV: Most common nouns occurring in research questions

Noun Frequency

code 70

developers 61

time 43

different 40

models 39

TABLE V: Citations Metadata

Indicator Count

Total papers 592

Total citations extracted 11271

Min. citations for a paper 1

Max. citations for a paper 81

Median of citations for a paper 15

Max. citations for an author 217

Median of citations for an author 1

No. of authors across all citations 11208

A Study of External Community Contribution to Open-source Projects on GitHub. In MSR.

ACM, 332–335.” and we employ the regex \[[0-9]+\] to split at. We obtain the following

statistics with respect to references as shown in (?)
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5.5 Content of the paper

In this section, we analyze the most frequently occurring terms and the no. of terms

occurring in a paper. Terms are tokenized by removing special characters and splitting the

residual text at white spaces. The results are displayed in Table VI, Table VII. Tables and

figures provide a way for a paper to report results. We analyze the no. of papers which make

use of them in Table VIII.

TABLE VI: Top 5 term frequencies

Term Frequency across all papers

software 19752

code 18896

data 11476

number 8777

source 8640
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TABLE VII: Top 5 papers by no. of words

Paper Title No. of terms

The Maven Dependency Graph: a Temporal Graph-based Representation of Maven Central 27092

An Empirical Study on Android-related Vulnerabilities 7544

Data-Driven Search-based Software Engineering 7470

Deep Learning Similarities from Different Representations of Source Code 7420

Analyzing Requirements and Traceability Information to Improve Bug Localization 7021

TABLE VIII: Miscellaneous paper metadata

Indicator Frequency

Papers with reference to a GitHub URL 201

Papers with Figure/FIGURE 514/1

Papers with Table/TABLE 496/173



CHAPTER 6

SOLUTION

Our primary objective for this thesis is to create a conceptual graph. We identify the

following concepts to be realized by our conceptual graph:

1. paper : Here, a paper denotes an article published in various editions of the Mining Soft-

ware Repositories’ conferences.

2. term: A term is a lexical token present in a paper. Consider a paper P1 with text “I am

a boy”. In this case, our term set = {“I”, “am”, “a”, “boy”} consists of elements each of

which has some semantic meaning in the domain of software engineering.

3. category : A category in the context of our application is a semantic umbrella for related

papers and terms these papers contain. An example of a category is “Version Control

Systems” which could be used to categorize a paper titled as “What is the Gist? Under-

standing the Use of Public Gists on GitHub”. For anyone familiar with version control

systems, GitHub is a very popular web client which employs the git VCS. On a similar

note, terms which these papers contain can be categorized. A point to note is that there

exists a many-to-many relation between a category and a paper or a category and a term.

4. relation: A relation connects two terms either across two papers or within the same paper

which are semantically related. In the context of our application, a relation is represented

40
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as a phrase. An example of a relation is, the term “object” is related to “class” where the

relation is “is related to”. In our implementation, a relation is bi-directional in nature.

5. Relation inference strategy : A relation could be added using multiple strategies. These

include the following:

(a) GROUND TRUTH : This allows a domain expert to manually add relations between

terms.

(b) TERM EXPANSION : Through this strategy, synonyms for already related terms

are obtained and new relations using synonyms are added.

6.1 Extracting textual content from papers

Research papers like any other textual document has content with special characters, stop

words, numbers and other non-alphabetical characters etc. which do not make much semantic

sense. A preliminary step is to preprocess this content by using precise regular expressions,

language specific stop words and specifying common delimiters about which a sentence can be

tokenized into terms belonging to some fixed vocabulary. We enlist the steps taken to tokenize

the content of a paper:

1. Extract textual content of a paper using Apache’s PdfBox library.

2. Extract the title of the paper, remove special characters, numbers, null valued characters

from the textual content of the paper and split the residual text using whitespaces as a

delimiter.

3. Extract sentences from a paper by splitting residual text at full stops.
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6.2 Filtering terms in a paper

In spite of the previous step, terms often had special characters which required the need to

specify their respective Unicode values so as to remove them. To fix this issue, we build two

lists - ground truth terms and super tech ground truth terms. As we specify in a later chapter,

we provide the end user with two components - Build ground truth terms and Build super tech

ground truth terms. For the former, the user builds a subset of terms from the original list of

terms across the entire corpus and for the latter, a specialized list of terms from the ground

truth terms is built. This also allows for greater technical focus when it comes to ascertaining

candidate terms for our conceptual graph.

6.3 Contextualizing terms in a paper

Now it may so happen that a term in a paper may appear in varying contexts in spite of

confining our realm of terms to that of empirical software engineering. An apt example is that

of the term ”Abstract” which can either denote the summary of a paper or it may appear in

the phrase ”Abstract Syntax Tree” which is the syntactic representation of some source code in

the form of a tree. To allow the user greater understanding of all possible usages of a term, we

list out all sentences where the term appears. This enables better categorization of such terms

along with encapsulating all possible contexts when adding relations pertaining to these terms.

6.4 Defining relations

Relations provide a way of introducing semantics when a system is to understand real word

knowledge. This was all the more important within the database community. Backed by

research done in the fields of logic, linguistics and cognitive psychology semantic relationships
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were categorized as inclusion, possession, attachment, attribution, antonym, synonym and case

(7). Diagrammatically this taxonomy is as follows:

Figure 8: Semantic relationships (7)

The semantic relations can be defined as:

1. Inclusion: This relationship describes a situation when an entity type comprises or con-

tains another entity (7). An example is ”Car is a type of Vehicle”.

(a) Class: This represents a typical subtype/supertype relationship (7).

(b) Meronymic: Here, the part-of relationship is denoted (7).

(c) Spatial : Spatial relations describe situations where one object is surrounded by an-

other but is not part of the thing that surrounds it (7). E.g. ”Buyer is in the candy

shop.”.

2. Possession: This denotes the ownership relationship (7). E.g. ”Person possesses a job.”
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3. Attachment : In this type of relationship, one entity type is connected/joined to another

type (7). Ë.g. ”The door knob is attached to the mug.”

4. Attribution: An attribution specifies some property that an entity exhibits (7). E.g. ”Bird

has wings.”

5. Antonyms: Antonyms can occur in attributes, entities, or relationships alike. Two enti-

ty/attributes/relationships types will be mutually exclusive if they are antonyms (7). An

example is ”Borrowers borrow books” and ”Borrowers return books”.

6. Synonyms: As with antonyms, synonyms also characterize entities, their attributes and

the relationships they may occur in (7). E.g. ”Worker performs on the job.” and ”Em-

ployee performs on the job.”.

We start off by entering in preliminary relations into the system such as is-a (inclusion),

part-of (meronymy), has (attribution), use (attachment), attached-to (attachment) and display

it in a list box so that the user has some relation templates to relate two terms. To this end,

we built an add relations component which we detail in 4.

6.5 Building the conceptual graph

Once we have defined our concepts, associations between these concepts have to be created.

We identify the following associations:

1. Every term can have one or more categories.

2. Every paper can have one or more categories.

3. A pair of terms across papers can have one or more relations.



45

We build Angular components which allows the user to create these associations. A usability

issue came up when adding relations between two terms. We initially built a component which

had two auto-complete elements where the titles of both the papers would be specified and two

drop-downs which displayed the list of terms of each paper as shown below.

Figure 9: Add term relations component

This led to extremely long drop-downs of which the user didn’t have a more widespread

view of. Subsequently, we visualized our graph as an adjacency matrix where the x-axis and

y-axis corresponded to the terms of the two selected papers. On a large enough screen, say a

45 inch screen, this allows the user to have a view large enough to see multiple relations across
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terms. Each cell of the matrix is a button whose colour would change from red to green in the

case where a relation between the two terms have been defined.



CHAPTER 7

ARCHITECTURE

In this chapter, we explain in detail the design of our application which achieves the task

of building a conceptual graph.

7.1 Application design

The application we build follows the model-view-controller (MVC) architectural pattern.

We build the view component using Angular which is a JavaScript-based framework used for

building responsive user interfaces. The model and the controller components are a part of a

Python-based web application which exposes RESTful endpoints to carry out pertinent CRUD

operations on a Mongo based database. The user interface project is grouse-ui and the

Python-based back end project is grouse-server.

Figure 10: GROUSE flow diagram

7.1.1 grouse-ui: The user interface

The various components in this application are described below. A component is a unit

which groups elements to create a view (43).

1. Add category : This component enables the user to define a category.

47
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Figure 11: Add category component

2. Add paper term category : This component is required to assign a category for a selected

term in a chosen paper. The user execution flow first requires the paper to be chosen

from an auto-complete enabled input field after which the terms specific to the paper are

fetched and chosen.

Figure 12: Add paper term category component
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3. Add paper category : Similar to the previously mentioned component, this component

allows the user to specify a category for a paper.

Figure 13: Add paper category component

4. Add relation : This component facilitates defining a relation as a template which can be

added to relate two terms in the future.

Figure 14: Add relation category component

5. Merge categories: The use case of this component is so that categories which could possibly

be semantically similar are merged into a single category. For example, say the user defines

categories such as ”General” and ”Mainstream”. There could then be a need to store just

one of these categories. The user can then decide to merge ”General” into ”Mainstream”

or vice-versa. To this end, the component displays a select component to select a category

to be merged into and a multi-select component to select categories to merge.
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Figure 15: Merge categories component

6. View relations: Using this component, one can view all relations defined for some term.

It displays a table which consists of the relation, both the primary and secondary term

which are part of the relation and the papers to which the respective terms belong to. A

button is provided for the option to delete the relation.

Figure 16: View relations component
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7. Build concept matrix : In this component, the user first chooses a couple of papers by

specifying their respective titles. Then, the Build conceptual graph button is clicked.

What this creates is a adjacency matrix like structure with the terms of both the first

and second paper. Here the user can click a button corresponding to a pair of such terms

which in turn opens up to a modal to add a relation between the two terms. The modal

also consists of a text-area element which displays the sentences in which the terms appear

to show context.

Figure 17: Build concept matrix component

8. Build ground truth terms: The purpose of this component is to create a subset from all

terms across the corpus of papers. In this component, there are two elements: one from
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which the user can select a term from a possible ground truth (adds it to the ground

truth) and another from which the added ground truth terms can be viewed. Clicking a

term in the ground truth adds it back to the list of possible ground truth terms. As there

were a total of 93607 terms across all papers, rendering all of them causes the browser’s

memory to be exhausted thereby leading to the page hanging. To fix this, we make use

of Angular’s Component Development Kit (CDK) which provides the virtual scrolling

functionality. This kit consists of elements which only react to scrolling events thereby

rendering only what fits on-screen (44).

This ground truth of terms is reflected when it comes to adding a relation between two

terms or categorizing these terms. With this, terms which are used to build conceptual

graphs are carefully curated thereby removing those which contain special characters and

do not make any semantic sense.

9. Downloads: Using this component, the user can download data such as relations, cate-

gories and relations between terms. The downloaded data is in the JSON format.

The service class files - terms.service.ts, paper.service.ts with RESTful endpoints defined in

grouse-server. It is important to note the domain in which grouse-server and initialize the

baseURL with this domain.

7.1.2 grouse-db: The database

To this end, we make use of MongoDB’s Atlas to set up a MongoDB cluster. Atlas is a

cloud-based database service fully managed by AWS. In order to set up such a cluster, we follow

the steps below:



53

1. Create an account on the following link: https://www.mongodb.com/cloud/atlas/signup

2. Specify the organization and project name along with the preferred language.

Figure 18: Project, organization and language specification

3. Specify the cloud service provider and the cluster. It is best to choose an availability zone

close to your physical location.

https://www.mongodb.com/cloud/atlas/signup
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Figure 19: Cloud service provider and cluster configuration

4. Specify the authentication mechanism, the IP address which is to be allowed to authen-

ticate and the environment from which the connection is to be made.
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Figure 20: Enabling data access

5. As we make use of the pymongo library to connect to Atlas, we choose the ”Connect your

Application” option as shown below:
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Figure 21: Picking the connection method

6. Copy the following code along with replacing the required parts with your username and

credentials required for authenticating the connection:

Figure 22: Connect to the cluster
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7. Click on collections to create the database.

Figure 23: Create collections

8. Click on Add My Own Data.
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Figure 24: Add own data

9. Enter the database name as grouse-db and create collections as mentioned in section ??.
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Figure 25: Enter database name and collection name

7.1.2.1 grouse-db: Collections

First, we go through some of the key MongoDB concepts:

1. Document : A document is a unit of data in MongoDB and is akin to a row of a table in

an RDBMS (45).

2. Collection: A collection is a grouping of documents. This can be thought of as a table in

an RDBMS (46).
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3. Query : Using a query, the selection criteria can be specified.

4. Projection: The projection specifies the fields of to return for all documents in a collection.

5. Cursor : A cursor is essentially a pointer to result set returned by some query.

6. BSON : BSON is a combination of the terms binary and JSON. This is a serialization

format which is used to store documents (47).

7. ObjectId : A BSON type which uniquely identifies a document within a collection. It is

composed of the timestamp, a random value and a counter (48).

8. Operator : An operator is a mongo keyword which starts with the $ symbol. It helps

in performing updates and query transformation operations. An example of this is $lt

which denotes the ”less than” operator (49).

9. Cluster : A cluster is essentially a network of nodes on which a MongoDB deployment is

done. A deployment primarily consists of sharded collections across nodes (50).

Next, we define some of the pertinent MongoDB collection methods and operators used in

grouse-server.

Collection methods used:

1. find(query, projection): This method returns a pointer to a collection of documents

(51).

2. findOne(query, projection): This method returns a single document which satisfies

the criteria specified by the query (52).

3. insertOne: This method inserts a document into a collection (53).
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4. deleteOne: Using this method, a document is removed from the collection (54).

5. updateOne: Using this method, a document is updated the collection (55).

6. distinct: Fetches all distinct values which a field in a collection takes and returns the

results in an array (56).

Operators used:

1. $regex: All documents whose field’s value(s) match a regular expression can be fetched

using this operator.

2. $in: This operator matches a field’s value present within an array of values.

3. $set: This operator is used to add new fields to a document in a collection.

We list down and define the following collections along with an example for each:

1. categories: All defined categories are stored in this collection. Here, the category key

refers to the category string. paper references is a list of id which uniquely identifies

a paper document. paper terms is a list of all paper titles and paper terms is a list of

all terms categorized by the aforementioned category.

1 {

2 "_id":{"$oid":"6025 e32c974a4024c245452d"},

3 "category":"Modelling",

4 "paper_references":["600 cdb15d4677ead6f29ae13"],

5 "paper_titles":["An extensive dataset of UML models in GitHub"],

6 "paper_terms":{}

7 }
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2. ground-truth-terms: This collection represents a set of only those terms which are to

be included in the conceptual graph and operations pertaining to it. Here, the term key

refers to the term string added to the ground truth.

1 {

2 "_id":{"$oid":"60204872974 a4024c245139f"},

3 "term":"a-priori"

4 }

3. paper-category: This collection stores all categories for a paper. Here, the paper title

key refers to the title of some paper. category references is a list of id which uniquely

identifies a category document. categories annotated with is a list of all categories

which categorize the aforementioned paper.

1 {

2 "_id":{"$oid":"6025 e342974a4024c245452e"},

3 "paper_title":"An extensive dataset of UML models in GitHub",

4 "category_references":["6025 e32c974a4024c245452d"],

5 "categories_annotated_with":["Modelling"]

6 }

4. papers: This collection represents all papers in our corpus. paper title is the title of

a paper, raw text is the raw textual content of the paper. paper terms is a dictionary

with key as the term and whose value is a dictionary with the sentence indices key.

sentence indices is a list of integers which correspond to the sentence nos. in which

the term appears.
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1 {

2 "_id":{"$oid":"600 cdbb6d4677ead6f29aff6"},

3 "paper_title":"The Open -Closed Principle of Modern Machine Learning

Frameworks",

4 "raw_text":"The Open -Closed Principle of Modern Machine Learning

Frameworks\nThe Open -Closed Principle of Modern Machine Learning\

nFrameworks\nHoussem Ben Braiek\nSWAT Lab.,",

5 "paper_terms":

6 {

7 "rising":

8 {

9 "sentence_indices":[16 ,170 ,176 ,325]

10 }

11 }

12 }

5. relations: This collection defines possible relation strings that can be used to relate two

terms. Each document uses the relation key which corresponds to a relation string and

the terms annotated key stores a list of all terms which are related using this relation.

1 {

2 "_id":{"$oid":"602589 ac974a4024c2454528"},

3 "relation":"create",

4 "terms_annotated":["apache","author"]

5 }
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6. term-relations: This collection stores all possible relations for a term. The term key

specifies the term string and the relation references stores an array of dictionaries

where each element has the relation reference key which is the id of the relation,

relation which represents the relation string, paper title primary and paper title -

secondary which is the title of the paper to which the outer term and term defined in

the relation reference element belong to respectively. The inference strategy stores

the context in which the relation is added.

1 {

2 "_id":{"$oid":"602589 ac974a4024c245452a"},

3 "term":"author",

4 "relation_references":

5 [

6 {

7 "relation_reference":"602589 ac974a4024c2454528",

8 "relation":"create",

9 "term":"apache",

10 "paper_title_primary":"How Distributed Version Control Systems

Impact Open Source Software Projects",

11 "paper_title_secondary":"How Distributed Version Control

Systems Impact Open Source Software Projects",

12 "inference_strategy":"GROUND_TRUTH"

13 }

14 ]

15 }
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7.1.3 grouse-server: The backend

In this section, we describe what the pertinent files are, where they are located in the project

directory and what they achieve.

7.1.3.1 application.py

This file defines the REST service endpoints associated with the application.

1. GET /categories: Fetches all categories.

2. POST /category: Adds a category.

3. POST /paper/category: Adds a category for a paper.

4. DELETE /paper/category: Deletes a category of the paper.

5. POST /paper/terms/category: Adds a category for a term in the paper.

6. DELETE /paper/terms/category: Deletes a category for a term in the paper.

7. GET /relations: Fetches all relations.

8. POST /relation: Adds a relation.

9. DELETE /relation: Deletes a relation.

10. POST /term/relation: Adds the specified relation for a term.

11. DELETE /term/relation: Deletes the specified relation for a term.

12. GET /term/relation/term={term}: Fetches all relations for the specified term.
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7.1.3.2 grouse/schema.py

This file consists of schema which are Python classes corresponding to the resources used

by the application. These schema include:

1. CategorySchema: This schema stores category information.

2. PaperCategorySchema: This schema stores all the categories assigned to a paper.

3. RelationsSchema: In an instance of this schema, the relation and all terms which are

assigned this relation are stored.

4. RelationReferencesSchema: Such a schema depicts a relation between two terms. It

consists of properties such as term, relation reference which is the unique identifier

for the relation, relation which is the string representation of it, paper title secondary

which corresponds to the title of the paper which term belongs to, paper title primary

which is the title of the paper which connects some term to term and the inference -

strategy which is a string defining the strategy used to infer relation.

5. TermRelationsSchema: This schema defines properties such as term and a list of Rela-

tionReferencesSchema.

7.1.3.3 db/mongo client.py

This file consists of the MongoRepository class which defines repository specific functions

and it is here that the developer initializes arguments such as the connection URL, the database

name and the password. A connection URL is a string which establishes a connection between

your application and a MongoDB instance.
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Some algorithms for pertinent functions such as adding a adding category for paper and a term,

merging categories and adding a relation for a term.

7.1.3.4 sentence parsing/utilities.py

The functions defined in this file are responsible for extracting terms and sentences from

each paper and also the sentences in which a term appears.

7.1.4 Using the application

In order to use this application, the code for the user interface is to be cloned from the

following GitHub repository. The instructions to spawn an instance of this UI are specified in

the README in the repository. As of now this instance can only be used locally so it is to be

ensured the Node.js runtime is set up locally.

The grouse-server can either be deployed on an AWS EC2 instance or can be run locally. For

our purposes, we made use of AWS Elastic Beanstalk which is a service provided by Amazon

which automates the process of deployment and provides additional configuration options in

terms of security groups to control who can access the instance, load balancing options when

the application is to be deployed on multiple EC2 instances, type of EC2 instance etc.

7.1.4.1 Deploying grouse-server

The following steps outline how grouse-server can be deployed on an EC2 instance:

1. Clone the git repository from the following URL : https://github.com/jeet1995/grouse-server

2. Zip the contents of parent folder.

https://github.com/jeet1995/grouse-server
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Figure 26: Parent directory of grouse-server

3. Open up the AWS Beanstalk console and click on the Environments option on the left

followed by the Create Environment button as shown below:

Figure 27: Create environment

Figure 28: Create application

4. Select the environment tier as web-server environment as our application will run on a

web-server. After this, fill in the application name as grouse-application



69

Figure 29: Select environment tier
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Figure 30: Filling in the application and environment name along with the domain

5. Upload the application code (grouse-server.zip) and click on Configure More Options.
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Figure 31: Uploading application code

6. Go to the Network card and select the default VPC and assign a public IP address to it.

Figure 32: Edit Network card
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Figure 33: Configuring the VPC and the instance subnet

It is important to ensure that the domain is available and the baseURL string present in the

service classes of grouse-ui should be initialized with the same domain.



CHAPTER 8

INFERENCE TECHNIQUES

The objective of this thesis is to construct a conceptual graph for the corpus under interest.

We identify categories, relations, papers and terms these papers contain as the elements of our

graph. We outline some of the steps we plan on taking to infer these elements using various

topic modelling techniques and other approaches pertaining to research question extraction,

PoS tagging, term expansion and citation network extraction.

8.1 Building our collections

We first require the user of our application to persist all documents along with terms into

the papers collection. This implies extracting its titles, words, sentences and the sentences

wherein these words appear.

8.2 Building the ground truth conceptual graph

In this step, a domain expert is required to categorize documents, terms and specify relations

between terms across papers. A prerequisite step that can be carried out is to select words of

greater focus so as to simplify conceptual graph creation.

8.3 Concept graph creation through term expansion

In this technique, the constituent terms of every relation can be iterated through and can

be augmented with other terms which are semantically synonymous. An example is, say there

exists a term relation, TR = {’term1’: ’communities’, ’relation’: ’possesses’, ’term2’: ’knowl-
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edge’}. An inferred term relation could be TRinferred = {’term1’: ’community’, ’relation’: ’pos-

sesses’, ’term2’: ’knowledge’}.

8.4 Concept graph creation using research questions

This approach will be used when nouns implicating each other can be extracted using part-

of-speech tagging of research questions. An example could be ”How does drinking coffee affect

developer productivity?”. Here, part-of-speech (PoS) tagging would extract nouns set S =

{”coffee”, ”developer”, ”productivity”} and a relation could be generated between a pair of

words belonging to this set.

8.5 Concept graph creation through Relational Topic Modelling

When we talk about linking papers, we first need to categorize similar papers or in other

words, we need to create a document network. The labels could be either created by adding

a new category which can be further used to annotate a paper. In our network, a node v

corresponds to a paper and an undirected edge e corresponds to links between them.

Following this, we can make use of the predictive label rank (PLR) as a measure to determine

how strongly linked two papers are (57). Observing the topic assignment of a document that has

been drawn out, the probability with which it will link to another document will be computed

as mentioned in section 4.2.3.4. Then the PLR is computed as follows (57):

PLR(d) =
1

D

∑
(d,d ′)∈E

rd ′ (8.1)
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This process can be repeated with a trained RTM with 10 randomly chosen subsets of data.

Each time, 9 of these subsets would be used for training and the remaining would be used for

testing (57). The average PLR across all repetitions can be calculated and it can be determined

what the best cluster for these papers are (57). The domain expert can now focus on these

clusters to create new relations between terms belonging to a pair of papers in this cluster (57).

8.6 Concept graph creation through Latent Semantic Analysis

The approach here is to first cluster terms in a paper into topics. Then, we build a query

with terms belonging to some topic. This in turn will give us documents which are closely char-

acterized by the query terms. Hence, this will form as a precursor to group related documents

and to identify terms between these documents to be related.

8.7 Concept graph creation through Expected Entropy Loss

Here, we again start of by first having a domain expert to run through documents and to

define possible categories which could be used to classify the entire corpus. Then the next step

is to categorize a subset of papers. What EEL helps in realizing is to what extent these terms

pertaining to the categorized papers can be categorized with a certain category C. The domain

expert can then pick out terms from a given category and add relations between them.

In case the corpus of papers is too large for manual annotation, supervised learning approaches

such as Naive Bayes, Decision Trees and Support Vector Machines can be used to categorize

papers in the testing set (33). These approaches will include a feature vector set which realizes

all terms across the corpus of papers and how often they occur.



CHAPTER 9

CONCLUSION

In this thesis, we achieve the objective of creating a conceptual graph. This is done by

eliciting from a domain expert categories of each paper in the corpus and the terms these

papers may contain. Relations which are represented in the form of verb phrases are used to

relate two terms within the same paper or across different papers. These annotations are elicited

using an Angular based user interface and are persisted to a MongoDB database through a flask

based server written in the Python programming language.

The benefits of creating such a conceptual graph are drawing inferences across a corpus of

research papers which can help formulate research questions aiding meta-research publications.

Our ground truth conceptual graph can be used as a training dataset to draw more inferences

with a high degree of automation with the help of topic modellers and classification algorithms.
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