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SUMMARY 

 

Given the rising prevalence of Diabetes and thus Diabetic Retinopathy in the world, developing 

better techniques for early detection is paramount. This study aims to build upon previous studies 

that used geometric quantitative features in OCTA images to classify Non-Proliferative Diabetic 

Retinopathy (NPDR). Six geometric features, three angle-related (VBA, CBA1 and CBA2) and 

three width-related (VBC, VWR1 and VWR2), were automatically calculated in four distinct 

types of analyses made possible by the classification of OCTA vessel structures in arteries and 

veins using a clustering technique built around four features derived from the same vessels in the 

relative OCT images. Arteries’ and veins’ features were calculated separately, their ratios were 

computed and then their separate measurements were put together in a “Weighted Average” 

method. Comparative analysis of healthy patients, patients with diabetes but no retinopathy 

(NoDR) and patients with various stages of NPDR was conducted. This study found that 

sensitivity increased in width-related measurements and decreased in angle-related ones 

compared with the previous study. Some explanations are proposed as causes of this difference. 

Also, it was observed that the ratio measurements between artery values and vein values do not 

seem to contribute to the classification of patients and data seem to suggest that arteries and veins 

may be affected in circa the same way by NPDR with respect to the analyzed six features. VBC 

and VWR1 showed very good ability to separate between Control and NoDR patients from the 

NPDR patients even with the most conservative Bonferroni Correction.  
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AIMS 

Blood vessel branchpoint analysis in Optical Coherence Tomography Angiography (OCTA) has 

been demonstrated for objective classification of Diabetic Retinopathy [4]. The aim of this work 

is to test if the branchpoint geometry features are dependent on artery and vein types, and thus to 

verify if differential artery and vein analysis can improve the sensitivity of OCTA detection of 

geometric feature distortion due to DR. 
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CHAPTER 1 

BACKGROUND 

1.1 Diabetic Retinopathy 

Diabetic Retinopathy (DR) is a form of retinopathy found in Diabetes Mellitus (DM) patients and 

is the leading cause of blindness in people aged 20 to 64 in the US [1]. In 2004 it was estimated 

that around 40% of diabetic patients aged 40+ developed this retinopathy, bringing the number of 

affected people to more than 4 million Americans [2]. Worldwide, it was predicted that the people 

suffering from diabetes-related retinopathies will increase to close to 600 million by 2025 [3]. 

This will inevitably cause a strain of the healthcare systems around the developing countries 

especially. The early detection of this illness will save resources and will prevent partially or 

totally the related loss of vision [3]. 

The increased glucose concentration in the blood caused by DM can block the blood vessels in 

the retina and eventually break their walls. In the beginning, this condition is called NPDR (Non-

Proliferative Diabetic Retinopathy), because the partially blocked vessels are not replaced by new 

ones. This leads to swelling of the nerve fibers and ever-increasing leaks into the retina. When the 

blood vessels begin to close due to the blockages, a more severe retinopathy stage is reached. 

Figure 1 shows the difference between a Healthy eye and an eye with Severe NPDR. New blood 
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vessels will be prompted to form but they will not be properly developed and the leakings will 

increase. Pressure will gradually build in the eye, leading to optic nerve damage, which will in 

turn lead to vision damage. Moreover, the retina can begin to detach from the back of the eye. 

Since the early detection of DR is paramount, the NPDR stage must be clearly diagnosable in 

order to reduce vision damage to the minimum. 

 

 

Figure 1: OCTA images of a Healthy eye (left) and a Severe NPDR eye (right) from two 

different patients 

 

1.2 Blood Vessel-related Biomarkers for DR 

In 1926, Murray analyzed the problem of oxygen transport and blood flow [5]. His reasoning 

relied on the hypothesis that blood flow should be as economic as possible in energetic terms. So, 

the blood vessels should have a physiological standard in terms of radius, number, branching, etc. 

Should these vessels deviate from this pattern, oxygen circulation will be impaired. In 1983, 

Ernest et Al. studied oxygen autoregulation in dogs with hyperglycemia and found that it impaired 

oxygen autoregulation [6]. In a retinal circulation study from 1996, DM patients were observed 
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to have a larger total volumetric blood flow rate (increasing with the illness duration) and 

“decreased regulatory responses to hyperoxia” with respect to control patients [7]. Advanced 

digital imaging has greatly helped this field of study. In 2010 a study performed on 1159 subjects 

in Sydney found correlations between DM (and DR) and abnormalities in the retinal vessel pattern 

[8]: “Longer diabetes duration was associated with larger arteriolar branching angle and increased 

arteriolar [tortuosity]” and higher blood glycemia “was associated with increased arteriolar 

tortuosity”. These changes occur before the retinopathy is present.  

 

 

1.3 Fundus Imaging  

“Fundus oculi” is Latin for “rear of the eye”. Fundus Imaging is therefore the imaging of the back 

of the eye, that is the retina. This technique has existed for over a century, and its major 

improvement came with the development of digital imaging. These images are taken with a 

special camera called a Fundus Camera, which photographs the retina directly using the pupil as 

both entrance and exit for its illuminating and imaging light rays [13]. In a Fundus Image, the 

macula, the optic disk and the blood vessels are clearly distinguishable. Moreover, the 

employment of RGB colored filters results in images in full-color and the use of particular 

fluorescent dyes increase the contrast of specific structures allowing for easier identification and 

segmentation. Figure 2 shows a Fundus Image with the respective 6x6 mm OCTA image 

superimposed, which is centered around the Macula. The optic disk is visible in the Fundus Image.  
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Figure 2: Fundus Image with superimposed OCTA image covering an area of 6x6 mm 

 

Traditionally, Fundus Imaging has been used to “follow, diagnose and treat eye diseases.” [13]. 

On this basis, studies were performed to automatically identify DR based on blood vessel 

segmentation and lesion identification [9]. Algorithms have been developed to search for 

microaneurysms and small hemorrhages which can indicate the presence of abnormalities in blood 

circulation, reaching a 0.99 AUC (Area Under the Curve) with Deep Learning models. Other 

algorithms were created to segment the blood vessels and analyze them, but the presence of lesions 

and the not ideal quality of fundus images limited this procedure, which nonetheless managed to 

achieve over 97% accuracy with the use of Convolutional Neural Networks. The disadvantage of 

such procedures is that their operations are completely autonomous, and so their inner workings 

are not intelligible in case of errors. 

In 2014, Habib e t Al. [18] used fundus imaging to conduct a study on the geometric features of 

blood vessels of healthy patients as well as patients with NPDR and DR. The features for each 

bifurcation were measured manually and were not averaged for each image. This study found that 
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the diameters of the parent vessel as well as both the child vessels significantly varied between 

the cohorts. Moreover, two of the three bifurcation angles (corresponding to our VBA and CBA1 

respectively) could significantly differentiate between the cohorts. These results will be 

referenced in the “Results” section of this study. 

 

1.4 OCTA: the new Standard? 

Optical Coherence Tomography Angiography (OCTA) is a noninvasive and noncontact imaging 

technique that is able to differentiate between blood vessels and the other tissues. It has seen 

numerous improvements in “sensitivity, acquisition speed and resolution” and “rapid and wide 

adoption in ophthalmology” in the last two decades [10]. Its noninvasive and tridimensional nature 

makes it preferable to invasive and bidimensional methods such as Fluorescein Angiography 

(FA). Moreover, there exist numerous techniques to improve blood vessel contrast in OCTA, in 

order to highlight “ocular structures with micrometer-scale depth resolution”. Figure 3 shows a 

En-Face OCT image and a OCTA image of the same eye, in which can be seen that the OCTA 

technique has a better representation of the smaller vessels. OCTA has become popular in 

identifying abnormalities in the vessel geometry and in the blood flow [36,37], and this makes it 

very important for the identification of retinopathies such as age-related macular degeneration 

[24-28], Diabetic Retinopathy [4,29-32,38-41], Sickle Cell Retinopathy [20-23], etc. In 2018, a 

study demonstrated that it was possible to distinguish between control and mild Diabetic 

Retinopathy patients using features extracted from segmented vessels and the foveal avascular 

zone (FAZ) [11,38]. The segmented vessels were extracted from OCTA images and the accuracy 

of this early detection was 94.3%. The introduction of non-dimensional markers minimizes “the 

effects of optical artifacts, refractive errors, and variation of image resolutions” [4]. Using 

geometric vessel-related markers is therefore a very promising option to identify NPDR and 

prevent any vision loss. 
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Figure 3: En-Face OCT image (left) and corresponding OCTA image (right) of a Healthy eye 

 

Le and Al. [4], reported six markers, derived from vessel segmentation in OCTA images, and a 

procedure to distinguish between healthy patients and patients with NPDR, as well as between 

different stages of NPDR. The study found that four out that six of the proposed features had 

significantly different distributions between the various cohorts. This work will use the same 

markers but a different take on the procedure.  

 

1.5 Artery-Vein Differentiation 

Differentiating arteries from veins and analyzing them separately has been shown to increase 

sensitivity and shown if and how different illnesses affect them in a different way [21]. In this 

study, geometric features extracted from arteries and veins separately will be analyzed to verify 

if and for which features the sensitivity increases, decreases or does not change.  
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In the years, many methods have been proposed to classify arteries and veins in both Fundus 

Imaging [17,35] and OCTA, the latter ranging from Deep Learning [33] to Near Infrared Oximetry 

[34] to Features calculated in the corresponding OCT images [14]. This last method is the one 

that is used in this study to differentiate arteries from veins in the OCTA images. 
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CHAPTER 2 

MATERIAL AND METHODS 

The study was approved by the institutional review board of the University of Illinois at 

Chicago and follows the ethical standards stated in the Declaration of Helsinki. 

 

2.1 Composition of the Dataset 

The dataset used in this work is composed of 139 OCTA images of patients, both male and female, 

taken from the clinical database of the Lions of Illinois Eye Research Institute (LIERI), and 

partially overlaps with the dataset used in the work of Le at Al. [4]. All the images were taken 

using an ANGIOVUE spectral domain OCTA system (Optovue, Fremont, CA), with a 70-kHz A-

scan rate, an axial resolution of 5 μm, and a lateral resolution of 15 μm. All OCTA images were 

macular scans. The software used for exporting the images was ReVue (Optovue, Fremont, CA). 

The images have different quality scores and were taken from patients divided in the following 

categories: 

• 20 Control patients (without both Diabetes and Diabetic Retinopathy) 

• 17 patients with Diabetes but not Diabetic Retinopathy (NoDR) 

• 20 patients with Mild NPDR 

• 20 patients with Moderate NPDR 

• 20 patients with Severe NPDR 

Each image was labeled by a specialized professional. 
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2.2 Classification of DR stages 

According to the American Diabetes Association, DR stages are defined as such [12]: 

• Mild NPDR: “Small areas of balloon-like swelling in the retina’s tiny blood vessels, called 

microaneurysms, occur at this earliest stage of the disease. These microaneurysms may 

leak fluid into the retina.” 

 

• Moderate NPDR: “As the disease progresses, blood vessels that nourish the retina may 

swell and distort. They may also lose their ability to transport blood. Both conditions cause 

characteristic changes to the appearance of the retina and may contribute to DME.” 

 

• Severe NPDR: “Many more blood vessels are blocked, depriving blood supply to areas of 

the retina. These areas secrete growth factors that signal the retina to grow new blood 

vessels.” 

 

2.3 From OCTA image to binary map 

For each OCTA scan, only the “Outer Retina” slice was extracted and processed. The processing 

was done with custom-made Matlab (Mathworks, Natick, MA) procedures.  

In order to obtain a binary vessel map, the OCTA images are filtered using a Frangi 2D filter, that 

has the effect of enhancing the edges of the vessels, and then binarized using a single threshold. 

Moreover, the binary image is then cleaned of any spurious pixels or little segmented areas. These 

steps constitute the “preprocessing” part of the procedure. The complete pipeline is shown in 

Figure 4. Figure 5 contains a detailed view of the Geometric Feature Computation Process. Figure 

6 shows the OCTA binary Vessel map that is obtained during pre-processing. 
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Figure 4: flowchart showing the broad steps of the Feature Extraction. The black boxes 

represent inputs and outputs while the grey ones stand for steps that will be detailed in the 

following pages. Adapted from Fully automated geometric feature analysis in optical coherence 

tomography angiography for objective classification of diabetic retinopathy [4], April 22 2019, 

Copyright 2019 by The Optical Society 
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Figure 5: Detailed description of the Geometric Feature Computation process. Thick boxes show 

steps that output the values of the features. Adapted from Fully automated geometric feature 

analysis in optical coherence tomography angiography for objective classification of diabetic 

retinopathy [4], April 22 2019, Copyright 2019 by The Optical Society 
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Figure 6: An overview of the Vessel Map generation. The OCTA Image (left) is processed to 

obtain the Vessel Map (right). In the middle, an overlay of the vessel map (in red) on the 

original OCTA image is shown. 

 

2.4 Artery-Vein Differentiation 

In 2019, Alam et Al. [14] developed a method to differentiate arteries and veins in OCT images 

employing four classifying features. In this study, a slight modification of the procedure is 

proposed. The only difference is in the OCT Vessel Map extraction phase and will be explained 

later.  

In order to classify the blood vessels, en face OCT images, corresponding to the OCTA images 

in the dataset, were used. Since “the en face OCT and OCTA are naturally reconstructed from the 

same spectrogram data sets, the OCT artery-vein vessel map can be readily used to guide artery-

vein differentiation in corresponding OCTA.” [14]. The complete pipeline of the Artery-Vein 

Differentiation is shown in Figure 7. Figure 8 contains a detailed view of the Source Node 

Classification process. 
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Figure 7: flowchart showing the broad steps of the Artery-Vein Classification. The black boxes 

represent inputs and outputs while the grey ones stand for steps that will be detailed in the 

following pages. Adapted from OCT feature analysis guided artery-vein differentiation in 

OCTA [14], March 29 2019, Copyright 2019 by The Optical Society 
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Figure 8: Detailed description of the Source Node Classification process. Black boxes show 

inputs and outputs of the process. Adapted from OCT feature analysis guided artery-vein 

differentiation in OCTA [14], March 29 2019, Copyright 2019 by The Optical Society 

 

2.4.1 Bias Field Correction 

According to Alam et Al. [14], since “the en face OCT images are often affected by intensity 

inhomogeneity”. Thus, “a bias correction technique is implemented to remove the intensity 

inhomogeneity before performing OCT feature analysis”. The aim of this step is to estimate the 

bias field of the image. Then, the image is divided by the estimated bias field in order to generate 

an image with normalized intensity.  
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A model for the en face OCT image is the following: 

𝐼(𝑥, 𝑦) = 𝑏(𝑥, 𝑦) 𝐼𝑡𝑟𝑢𝑒(𝑥, 𝑦) 

where I(x,y) is the intensity profile of the en face OCT image, b(x,y) is the bias field that is 

estimated, and Itrue(x,y) is the OCT image with normalized intensity. In turn, b(x,y) can be defined 

as: 

𝑏(𝑥, 𝑦) =  ∑ 𝑤𝑘

𝑀

𝑘=1

∙ 𝐺𝑘 

where “G is the set of smooth basis functions which ensures the smooth varying property of the 

bias field. 20 polynomials of the first degree are chose as the basis functions.” Given M = 20, the 

optimal coefficients [w1, w2, … wM] have to be calculated. After this, the en face OCT image is 

divided by the bias field. This Bias-Field Correction is applied to two images (instead of one as 

in the previous paper) per patient: the En-Face OCT image and the Outer Layer OCT image. 

Figure 9 and 10 show this procedure applied to both images. 

 

 

Figure 9: Image Normalization steps for En-Face OCT. From left to right: the original En-Face 

OCT image, the Bias Field extracted from the image, the image without the Bias Field and the 

image after Intensity Normalization. Adapted from OCT feature analysis guided artery-vein 

differentiation in OCTA [14], March 29 2019, Copyright 2019 by The Optical Society 
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Figure 10: Image Normalization steps for Outer Layer OCT. From left to right: the original 

Outer Layer OCT image, the Bias Field extracted from the image, the image without the Bias 

Field and the image after Intensity Normalization. Adapted from OCT feature analysis guided 

artery-vein differentiation in OCTA [14], March 29 2019, Copyright 2019 by The Optical 

Society 

 

 

 

2.4.2 OCT Vessel Map Extraction 

After normalizing the images, the vessel map is extracted from the OCT Outer Layer image 

instead of the En-Face OCT one. This is because the former image contains the shadows of the 

vessels. These shadows cannot be differentiated in arteries and veins but have more contrast with 

respect to the background, thus making the vessel mask extraction easier. For every image, the 

correspondence between En-Face vessels and Outer Layer structures was checked. Figure 11 

shows the difference between a En-Face OCT image and an Outer Layer OCT image of the same 

patient. 
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Figure 11: En-Face OCT (left) and Outer Layer OCT (right) images of the same eye. The latter 

image is cleaner and has more contrast between vessels and background. 

 

Then, “a matched filtering method is combined with bottom hat filtering to enhance and extract 

the blood vessel map from the en face OCT image. For the match filtering, 2D Gaussian kernels 

of 12 different orientations and 10 different sizes are implemented to match blood vessels. These 

kernels cover all the blood vessel diameters and directions” [14] and are defined by Li et Al. [15] 

as:  

𝐼(𝑥, 𝑦) =  
1

𝜎√2𝜋
𝑒

(𝑦 cos 𝜃−𝑥 sin 𝜃)2

2𝜎2  

where x, y are the coordinates of the pixels, θ is the rotation angle of each kernel (ranged 0 to π), 

and σ is the width of the kernel. Taking again from Alam et Al. [14]: “the en face OCT image is 

convolved with 120 kernels after subtracting the mean from each kernel. In the process of cross-

correlation, the features matching the kernels (representing blood vessels of various widths) 

produce larger coefficient values. Larger coefficient values representing the vessel structures are 

selected to produce the segmented blood vessel map (Fig. 2(D)) from a maximum intensity 

projection of all the convolved images”.  
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In the original paper, the next step would be the application of a 20 × 20 pixels bottom-hat filter 

in order to further improve contrast between vessel structures and background. An improvement 

to this procedure was conceived. Instead of using only one bottom-hat filter, a selection of four 

bottom-hat filters with different structural elements and different sizes were applied to the image 

in parallel and their results were averaged. This was shown to better highlight the vessel structures, 

allowing for better masks to be extracted. 

After these changes, the procedure of the paper was closely followed: “A global thresholding 

method is used to extract the binary blood vessel map (Fig. 2(E)). The binary map is multiplied 

with the intensity normalized en face OCT image to generate the segmented vessel map of en face 

OCT image (Fig. 2(F)). This en face OCT vessel map is used for further source node identification 

and artery-vein tracking.” [14]. Figure 12 shows these steps applied to images form an eye of a 

Control patient. 

 

Figure 12: OCT Vessel Map generation steps. Top left: Intensity Normalized Outer Layer OCT 

image from the previous step. Top middle: mask generated by the Matched Gaussian filtering. 

Top right: image after subtraction of the mask. Bottom left: image after Bottom-Hat filtering. 

Bottom middle: image after single threshold binarization. Bottom right: result of the 

multiplication of the vessel map with the Intensity Normalized En-Face OCT image. 
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Figure 13: Assessment of the Vessel Map extraction by superimposition with the Intensity 

Normalized En-Face OCT image.  

 

2.4.3 Source Node Identification  

In order to classify the newly extracted vessels into arteries or veins, an ad hoc strategy is required. 

In Alam. Et Al. [14] a procedure of this kind is outlined. It involves several steps: the first one is 

to identify the source nodes, defined as the points in which different vessels cross the boundary 

of the image. The second step is to extract some features required to correctly identify each source 

node. The last step is to trace the vessels from the source nodes to their various endpoints in the 

image and thus reconstructing the entire vessel map with the vessels being marked as either veins 

or arteries.  

Before the next step, the vessel map is skeletonized to create a skeleton map, in which each vessel 

is reduced to a line one pixel wide. To identify the source nodes a single line is drawn in the 

skeleton map following the borders of the images with a certain offset. Every white pixel crossed 

by this line is marked as a source node and thus is eligible for classification. Figure 14 (left) shows 

the result of this step. 
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Figure 14: Source Node Classification steps. On the left, the Source Nodes are identified and are 

marked with yellow crosses. In the middle, an enlarged Source Node segment with respective 

skeleton (in white) and sample profiles (in yellow). On the right, the Source Nodes are identified 

as arteries (in red) or veins (in light blue). Adapted from OCT feature analysis guided artery-

vein differentiation in OCTA [14], March 29 2019, Copyright 2019 by The Optical Society 

 

2.4.4 Profiles Extraction 

Using ‘profiles’ as defined in [16] is possible to introduce new classification features. Segments 

of the vessel in both the vessel map and skeleton map is taken near the source node. As explained 

in [14]: “The number of profiles depends on the size of the source node segments. The profiles 

are set to have a distance of two pixels among each other along the vessel skeleton. For example, 

if a vessel skeleton within the source node segment is 40 pixels long, the first profile will be 

extracted at the middle point, pixel 20. Then the profiles will be extracted at 2 pixel intervals in 

both directions. The maximum number of profiles is set at 20 and minimum is 5. In case of a 

segment smaller than 5 pixels long, profiles are taken from all of the pixels.”  

A profile set, called ‘PSi’, is thus created equal to: 

𝑃𝑆𝑖 = 𝑆 𝑥 𝑁 

where S is the number of segments for each source node, N is the number of profiles (ranging 

from a minimum of 5 to a maximum of 20), and i is the number of source nodes in the image. An 
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image profile set is defined as PS and comprises the PSi for each source node in the image. For 

example, if an image has 16 source nodes, PS will be [PS1, PS2, … PS16]. Figure 14 (middle) 

shows some sample profiles in a Source Node segment. 

 

2.4.5 Feature Extraction and Classification of the Source Nodes 

Once all the profiles are extracted, four features are then measured for every single profile. These 

features are: “i) ratio of vessel width to central reflex, ii) average of maximum profile brightness, 

iii) average of median profile intensity, and iv) optical density of vessel boundary intensity 

compared to background intensity.” [14]. In Figure 15, the average normalized distributions for 

both arteries and vein features are shown.  

 

 

Figure 15: Normalized feature distribution in artery and vein vessels. RWCR: ratio of width to 

central reflex; AMPB: average of maximum profile brightness; AMPI: average of median 

profile intensity; ODVB: optical density of vessel boundary. Reprinted from OCT feature 

analysis guided artery-vein differentiation in OCTA [14], March 29 2019, Copyright 2019 by 

The Optical Society 
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After measuring these features, a K-means algorithm is employed to classify the source nodes. 

Each source node will be classified as being either artery or vein. The K-means method was 

chosen “due to its computational simplicity and efficiency”, and because its results were very 

reliable [14]. The two classes of the algorithm (Artery and Vein) have their centroids are set to 

the extremes (maximum and minimum) of the input set, in order for the cluster centers to be as 

far away as possible for each other. The metric used to calculate distance from the centroids was 

the Euclidean distance.  

 

In order to maximize the K-means algorithm’s accuracy, three steps are performed: 

1. the algorithm is applied (and the classification is performed) to every source node segment 

(S * i datapoints) 

2. four quadrants are identified in the image, starting from the fovea. Each quadrant has its 

K-means predictions calculated separately. Given the uneven intensity distribution inside 

quadrants of the images, this step minimizes its effect on the overall estimation. 

3. the four quadrant are then rotated by 45 degrees eight times (to reach 360 degrees), as 

shown in Figure 16. The algorithm is applied to every rotation and every quadrant, for a 

total of eight estimations per source node. Moreover, rotating by 45 degrees implies that 

there is overlapping between the quadrants, in order to reduce even further the uneven 

intensity distribution. The final classification of a source node is therefore the combination 

of the eight predictions, in order to reduce the contribution of outliers.  

Figure 14 (right) shows the result of the Classification step.  
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Figure 16: Overview of all the rotations of the quadrants relative to the center of the fovea. 

Adapted from OCT feature analysis guided artery-vein differentiation in OCTA [14], March 29 

2019, Copyright 2019 by The Optical Society 

 

 

2.4.6 Tracking the Vessel from Source to End Nodes 

After the classification of all the source nodes, the classification has to be extended to the entire 

vessels in the image. The algorithm to track the blood vessels from the source nodes to the various 

end nodes is described in [17]. Figure 17 shows the core steps of this algorithm. 
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Figure 17: core steps of the Blood Vessel Tracking algorithm. Adapted from Combining ODR 

and Blood Vessel Tracking for Artery- Vein Classification and Analysis in Color Fundus Images 

[17], April 2018, Copyright 2018 by ARVO Journals 

 

The tracking algorithm begins from a source node. It uses a system of concentric grids to identify 

vessel pixels from which to continue. The grid starts as 3 × 3 pixels and its size grows every time 

any vessel pixels are not found inside. When an intersection is found it is marked, and the 

algorithm follows the main branch, defined by curve and angle information.  
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Figure 18: Main steps of the Blood Vessel Tracking algorithm. A: the algorithm starts from a 

source node. B: the main branch of the vessel is tracked; the green dots represent the 

encountered branch nodes. C: enlarged window showing the process of choosing the forward 

path in the vessel map. D: all remaining possible branches are identified; one four-way 

intersection is marked with a yellow dot. E: the algorithm takes a decision about the four-way 

intersection and the whole vessel is identified. F: these steps are repeated until the skeleton map 

is completely classified in arteries (red) and vein (blue). G: fully classified vessel map. Adapted 

from Combining ODR and Blood Vessel Tracking for Artery- Vein Classification and Analysis 

in Color Fundus Images [17], April 2018, Copyright 2018 by ARVO Journals 
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“P1 is the current point, and P2 and P3 are the candidate points for the forward path. A past-visited 

point P0 is chosen, and two separate curves are considered to compare. The first curve is P0-P1-

P2, and second is P0-P1-P3. The curvature can be quantified using the distance metric between 

P0 (x1,y1) and P2 or P3 (x2,y2) which can be calculated as”:  [17] 

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =  
1

𝑛
 ∑ (

𝐺𝑒𝑜𝑑𝑒𝑠𝑖𝑐 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
)

𝑛

𝑖=1

 

The two distances are calculated between the two endpoints of the vessel branch. The Geodesic 

Distance is defined as: 

𝐺𝑒𝑜𝑑𝑒𝑠𝑖𝑐 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  ∫ √(
𝑑𝑥(𝑡)

𝑑𝑡
)

2

+  (
𝑑𝑦(𝑡)

𝑑𝑡
)

2

  𝑑𝑡
𝑡1

𝑡0

 

Where x(t) is the curve P0-P1-P2, y(t) is the curve P0-P1-P3 and [t0, t1] is the interval that 

comprises both curves. The Euclidean Distance is defined as: 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥1 − 𝑥2)2 +  (𝑦1 − 𝑦2)2 

The path with smaller curvature is therefore considered the main branch and it will be used by the 

algorithm to advance forward. The angle information is also taken into account: the branch with 

the greatest angle will be used to identify the main branch. After the first endpoint is reached, the 

tracking algorithm selects a marked intersection and continues from the other branch. If the 

marked intersection is a four-way intersection, then it remains marked and saved for later. Once 

all three-way intersections are tracked to their endpoints, the same procedure is repeated for 

another source node.  

Regarding the four-way branchpoints, there are two possibilities: either it is a crossing between 

two different vessels of it is a multiple branching of the same vessel. To verify this, all the four 

branches are tracked backwards until they reach an intersection or an endpoint. If they do not 

reach any other vessel intersection they are classified as being part of the main branch. Otherwise, 
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the four branches must be classified, with one at least already so (the main branch). The algorithm 

uses various textural parameters to compare the two vessels and decide to which one the branches 

are assigned to. If these parameters do not provide enough information, then the remaining 

branches are classified as either arteries or veins by similarities with the textural parameters of all 

arteries and veins in the map. An overview of the results of the main steps of this algorithm is 

found in Figure 18. 

 

2.4.7 Classifying the OCTA Binary Vessel Map 

Once the skeleton map is completely classified, it is combined with the binary vessel map to 

generate a classified vessel map.  

First, it is to be considered that “the en face OCT and OCTA images are generated from 3D 

projection of OCT B-scans and B-Scan speckle variance images, respectively. This means the 

structural coordinates of both images are same. Therefore, any process of image registration is not 

required for the overlaying process” [14]. To classify the greater vessels in the OCTA image, it is 

possible to transfer the classification directly from the same coordinates in the OCT classified 

map.  

However, there are smaller vessels in the OCTA map that do not appear in the classified map. The 

procedure to classify them is very similar to the tracking algorithm explained above. It starts in 

the skeleton map: from the endpoint of an unclassified vessel and back-tracks until it reaches a 

classified vessel, and then begins again from another endpoint. Four-ways intersections are treated 

in the same way as before. After this passage, the OCTA vessel map is completely classified into 

arteries and veins. An overview of this step is found in Figure 19. 
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Figure 19: Artery-Vein classification in OCTA. A: classified source nodes in OCT vessel map. 

B: OCT artery-vein map. C: original OCTA image. D: OCTA binary vessel map. E: OCT 

artery-vein map overlaid onto the OCTA binary vessel map. F: final OCTA artery-vein map. 

Adapted from OCT feature analysis guided artery-vein differentiation in OCTA [14], March 29 

2019, Copyright 2019 by The Optical Society 

 

2.5 Feature Extraction 

In this work, a total of six geometric features will be analyzed through a fully automatic custom-

developed MATLAB procedure. Three of these features are based on branching angle information 

and the other three are based on vessel width information. Taking from Le at Al. [4]: “Vessel 

angle-based features measure the degree of bifurcation and relative angle change among the parent 

and child vessel branches. The first feature is vessel branching angle (VBA: θ), which measures 

the overall degree of bifurcation between the child branches. The second and third features are 

the child branching angle 1 (CBA1: α1) and child branching angle 2 (CBA2: α2), which measures 

the direction of branching of each child vessel. The child angles can provide information relating 

to the deviation of direction of child vessels with respect to the original parent vessel direction.  

Vessel width-based features measure the structural change of the vessels as a result of branching. 

The first vessel-width feature is vessel branching coefficient (VBC), which measures the effect of 

branching on vessel area between the parent, first (larger) child, and second (smaller) child. 

Similarly, the second and third vessel-width features are vessel width ratio 1 (VWR1) and width 
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ratio 2 (VWR2), which examines the change in width between individual child and parent 

vessels.” 

 

2.5.1 Separating Arteries from Veins 

Once the classified OCTA vessel map is ready, veins and arteries must be separated in two 

different maps. This procedure is very straightforward, since the previous algorithm saves the 

arteries with a red color and the veins with a blue color. A simple MATLAB procedure can easily 

extract the two different maps. The results of this procedure can be seen in Figure 20. However, 

there are gaps whenever a type of vessel (usually arteries) crosses over the other type (usually 

veins), leaving the latter vessel with a discontinuity. This is not a cause for concern since the 

geometric analysis focuses on branchpoints and the chance that two vessels cross over a 

branchpoint (five-way or six-way intersection) is low (but still possible). 

 

Figure 20: Separation of the OCTA artery-vein map into the OCTA artery and vein maps. The 

discontinuities in the OCTA vein map can be clearly seen. 
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2.5.2 Identifying the Branching Triangle 

Once the arteries and veins are separated, the features are ready to be measured. The measurement 

occurs separately for arteries and veins.  

In order to do that, every branchpoint in the skeleton map must be identified. MATLAB 

morphological functions are used, returning a binary map with only the vessels’ branch points. 

These points are then dilated to form disks with a certain radius. This radius is arbitrarily defined 

as 7 pixels. The multiplication of this disk map with the skeleton map gives a map with only the 

branchpoints areas (the rest is eliminated). After this, another morphological function allows for 

the extractions of all endpoints in the resulting image. So, the endpoints of all the branches are 

identified, corresponding to the points in which the circumferences of the disks intersect with the 

skeleton map. “The preprocessing and branch triangle identification steps results in four images, 

i.e., the processed vessels, vessel skeleton, branchpoints, and endpoints, used for following feature 

measurement” [4]. 
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Figure 21: Overview of the Branching Triangle Identification and Features Measurement.        

A: Feature Localization Step for an example branchpoint. A1: Processed vessel map.              

A2: A composite image containing the vessel skeleton, where the green pixel represents the 

branchpoint, red pixels represent the end points, the blue pixels represent our vessels of interest, 

and the yellow circle represents the dilated area. A3: A composite image of the branchpoint 

(green) and endpoints (red), where the yellow square represents the window area. B: Illustration 

of branch angle measurement. Angles A and B in B1 are complementary angles used to 

calculate θ (VBA), α1(CBA1) and α2 (CBA2) in B2. C: Illustration of window method used to 

calculate vessel width of one representative vessel branch. C1: A yellow window is centered 

around the endpoint (red pixel). The coordinates of the yellow window are used to measure the 

pixels in the processed vessel map (C2) and in the skeleton map (C3). Adapted from Fully 

automated geometric feature analysis in optical coherence tomography angiography for 

objective classification of diabetic retinopathy [4], April 22 2019, Copyright 2019 by The 

Optical Society 
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2.5.3 Features Measurement 

Once all branchpoints and endpoints are identified, the iterative feature measurement algorithm 

is run for each branchpoint with exactly 3 branchpoints. Four endpoints make sure that the 

respective branchpoint is always labeled as a crossing of two vessels, while branchpoints with a 

different number of endpoints are treated as errors and outright excluded from the analysis.  

For each branchpoint, a square window 15 pixels wide and centered at the branchpoint itself is 

extracted. The window width is defined as 1 + 2 × the dilation radius defined in 2.5.2 (arbitrarily 

set as 7). The window is used to save the coordinates of the endpoints that are inside of it in the 

endpoints image. Here is when the branchpoint can be excluded (if the number of endpoints is 

different than 3).  

The coordinates of the recorded endpoints and the branchpoint in the center are then used to define 

segments (vectors), starting from the branchpoint and ending in the three endpoints and 

identifying three vessels: the parent and the two children. These three vectors are used to measure 

the three angles that are between them. These angles will be called θ, A and B. The angle θ is also 

the feature called VBA, and it is defined as the smallest of the three angles. This definition is 

based on the vessel branching’s physiology. Angle A and B are the largest and second largest 

angle respectively, and together with θ they sum up to 360°. The two other angle features, CBA1 

and CBA2, can be calculated with angles A and B: 

𝐶𝐵𝐴1 = 180° − 𝐵 

𝐶𝐵𝐴2 = 180° − 𝐴 

where the first Child Branching Angle is always larger than the second one.  

With the three angle features measured, the three endpoints can be classified to find the parent 

endpoint and the children endpoints. The two segments that bound the angle θ (VBA) have to be 

the children, so their endpoints are marked as such. Conversely, the remaining vector is marked 
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as the parent vessel. When all three vessels are identified, their widths have to be measured. In 

order to do this, we use another window method. This time, the window is centered around a 

single endpoint, and the width of the vessel is calculated as such: 

𝑤𝑖𝑑𝑡ℎ =  
∑ 𝑉(𝑖, 𝑗)𝑛

𝑖=1,𝑗=1

∑ 𝑆(𝑖, 𝑗)𝑛
𝑖=1,𝑗=1

 

where 𝑉(𝑖, 𝑗) is the number of pixels in the window area in the vessel map image, and 𝑆(𝑖, 𝑗) is 

the number of pixels in the window area in the skeleton map image. With this setup, the vessel 

map provides an area and the skeleton map provides a pseudo-length and the result is a 

representation of width of the vessel. This window method is repeated three time, once per vessel.  

The final step is calculating the width-related features. The first one is the Vessel Branching 

Coefficient (VBC). It is obtained by the following equation: 

𝑉𝐵𝐶 =  
(𝑐ℎ𝑖𝑙𝑑1 𝑤𝑖𝑑𝑡ℎ)2 + (𝑐ℎ𝑖𝑙𝑑2 𝑤𝑖𝑑𝑡ℎ)2

(𝑝𝑎𝑟𝑒𝑛𝑡 𝑤𝑖𝑑𝑡ℎ)2
 

where 𝑐ℎ𝑖𝑙𝑑1 𝑤𝑖𝑑𝑡ℎ is the width of the smaller child vessel, 𝑐ℎ𝑖𝑙𝑑2 𝑤𝑖𝑑𝑡ℎ is the width of the 

larger child vessel and 𝑝𝑎𝑟𝑒𝑛𝑡 𝑤𝑖𝑑𝑡ℎ is the width of the parent vessel. 

VWR1 and VWR2 are calculated as:  

𝑉𝑊𝑅1 =  
𝑐ℎ𝑖𝑙𝑑1 𝑤𝑖𝑑𝑡ℎ

𝑝𝑎𝑟𝑒𝑛𝑡 𝑤𝑖𝑑𝑡ℎ
 

𝑉𝑊𝑅2 =  
𝑐ℎ𝑖𝑙𝑑2 𝑤𝑖𝑑𝑡ℎ

𝑝𝑎𝑟𝑒𝑛𝑡 𝑤𝑖𝑑𝑡ℎ
 

After this step, all six features are measured for one branchpoint. This measuring procedure is 

done for every non-excluded branchpoint in the image. The results of every branchpoint are thus 

averaged to produce one average value for each feature. The final six values are then recorded 

and saved in a spreadsheet with the results from the other images.  
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2.6 Feature Sets 

In this study there are four feature sets, composed of six features each, making the number of 

extracted features per image up to a total of 24. The four sets are: 

1. ARTERY: these are the six features that were extracted only from artery vessel maps. 

2. VEIN: these are the six features that were extracted only from vein vessel maps. 

3. A/V RATIO: these are the ratios between the six artery features and the six vein features: 

𝐴
𝑉⁄  𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =  

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐴

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑉
 

where 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐴 and 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑉 are the values of the same feature in the Artery and Vein 

case respectively. 

The analyses on this dataset will provide us with information on if and how DR affects 

arteries and vein in a different way. 

4. WEIGHTED AVERAGE: these six features were obtained as follows: 

𝑔𝑙𝑜𝑏𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =  
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐴 × 𝑛𝐴 +  𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑉 × 𝑛𝑉

𝑛𝐴 +  𝑛𝑉 
 

where 𝑛𝐴 and 𝑛𝑉 are the number of non-excluded branchpoints in the artery and vein maps 

respectively. 

These features are made to put together the information obtained from the Artery and Vein 

measurements by an average weighted by the number of analyzed branchpoints. 
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2.7 Statistical Analysis 

There are two types of statistical analyses, both performed using Microsoft Excel (Microsoft 

Corporation, Redmont, WA). The first consists in a one-way, multi-label analysis of variance 

(ANOVA). It compares the statistical distributions of the features among the five patient groups 

(Control, NoDR, Mild NPDR, Moderate NPDR, Severe NPDR). This analysis was done four 

times, one for each feature set (Weighted Average, Artery, Vein and A/V Ratio). Whenever 

ANOVA found significantly different distributions, one versus one comparison of those features 

in the same cohorts followed. They were performed using a Student t-test and corrected using the 

Bonferroni Correction. Statistical significance was defined as having a P-value under 0.05. 
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CHAPTER 3 

RESULTS 

The database used for this study is the same as the ones used in [4]. Therefore, a direct 

comparison of the results can be made.  

 

3.1 Demographics 

The demographics of the dataset are detailed in the following table: 

TABLE I: DEMOGRAPHICS OF CONTROL AND DR SUBJECTS 

   Diabetic Retinopathy 

 Control NoDR Mild NPDR 
Moderate 

NPDR 

Severe 

NPDR 

Number of Subjects 20 17 20 20 20 

Sex (male) 12 6 11 12 11 

Age (mean ± SD), 

years 
42 ± 9.8 66.4 ± 10.14 50.1 ± 12.61 50.8 ± 8.39 

57.84 ± 

10.37 

Age Range, years 25-71 49-86 24-74 32-68 41-73 

Duration of 

Diabetes (mean ± 
SD), years 

- - 19.64 ± 13.27 16.13 ± 10.58 
23.40 ± 

11.95 

Diabetes Type (%, 

type II) 
- 100 100 100 100 

Insulin Dependent 

(Y/N) 
- 14/3 7/13 12/8 15/5 

HbA1C, % - 5.9 ± 0.7 6.5 ± 0.6 7.3 ± 0.9 7.8 ± 1.3 

HTN prevalence, % 10 17 45 80 80 
 

Abbreviations: DR: diabetic retinopathy, SD: standard deviation, HbA1C: Glycated Hemoglobin, 

HTN: hypertension. 

Reprinted from Fully automated geometric feature analysis in optical coherence tomography 

angiography for objective classification of diabetic retinopathy [4], April 22 2019, Copyright 

2019 by The Optical Society.
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There was not statistical significance in the distributions of age, sex and HTN between the various 

DR groups and the Control group (ANOVA p-value = 0.14; CHI-Square test p-values = 0.11 and 

0.32 respectively).  

 

 

 

 

3.2 ANOVAs 

The analysis of variance in the four sets yielded results that were similar but at the same time 

different than the ones found in [4]. The details of this analyses are shown in the following four 

paragraphs.  

To summarize, width-related features (VBC, VWR1, VWR2) seem to perform better than      

angle-related features (VBA, CBA1, CBA2) in distinguishing between the five cohorts, especially 

between Healthy and NPDR subjects.  

Weighted Average values obtained by weighted average between arteries and veins seems to the 

most sensitive of the four feature sets in separating Control and NoDR groups from the NPDR 

patients. It must be specified that Artery values are similar in sensitivity and that Weighted 

Average analysis contains nearly double the data points of the other three feature sets. 

A curious finding is that the ratios between artery and vein values (A/V Ratios) do not appear to 

be significantly different between groups and (almost) all hover around the values of 1. More 

detailed results descriptions follow.  
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3.2.1 Artery ANOVA 

Described in the following table are the average values, standard deviations and ANOVA p-values 

for the features extracted from the Artery Maps: 

TABLE II: STATISTICS OF ARTERY GEOMETRIC FEATURES  

Features Control NoDR Mild Moderate Severe p-values 

VBA 83.71 ± 5.32 83.76 ± 4.57 84.06 ± 4.90 84.79 ± 6.02 81.98 ± 6.29 0.344 

CBA1 58.89 ± 4.70 58.34 ± 4.07 58.92 ± 4.42 59.93 ± 4.89 57.44 ± 3.97 0.281 

CBA2 24.81 ± 3.93 25.42 ± 4.08 25.14 ± 5.26 24.86 ± 3.34 24.54 ± 4.34 0.945 

VBC 1.29 ± 0.15 1.33 ± 0.13 1.38 ± 0.11 1.39 ± 0.09 1.36 ± 0.10 0.019 

VWR1 0.676 ± 0.08 0.709 ± 0.07 0.766 ± 0.06 0.751 ± 0.05 0.754 ± 0.04 6 E-08 

VWR2 0.881 ± 0.06 0.870 ± 0.06 0.856 ± 0.05 0.882 ± 0.05 0.858 ± 0.05 0.246 

 

Based on these p-values, we can assert that only two features, VBC and VWR1, may have the 

potential to differentiate between the groups. Looking at the very low p-value of VWR1 and the 

distributions of its values among the different cohorts, one could claim that the Control group and 

the NoDR group can clearly be separated from the NPDR ones and between themselves as well. 

Qualitatively, it was seen that VBA, CBA1, CBA2 and VWR2 follow the same trends found by 

Le et Al, while VBC and VWR1 roughly do so. 
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3.2.2 Vein ANOVA 

Described in the following table are the average values, standard deviations and ANOVA p-values 

for the features extracted from the Vein Maps: 

TABLE III: STATISTICS OF VEIN GEOMETRIC FEATURES  

Features Control NoDR Mild Moderate Severe p-values 

VBA 83.61 ± 3.75 81.43 ± 4.56 81.31 ± 6.93 85.84 ± 7.42 82.08 ± 6.78 0.062 

CBA1 58.66 ± 3.64 56.44 ± 4.66 57.15 ± 6.62 59.46 ± 4.29 57.26 ± 5.95 0.248 

CBA2 24.95 ± 3.36 25.00 ± 4.05 24.16 ± 5.27 26.37 ± 5.65 24.82 ± 4.93 0.618 

VBC 1.31 ± 0.12 1.31 ± 0.15 1.37 ± 0.17 1.36 ± 0.11 1.29 ± 0.14 0.167 

VWR1 0.695 ± 0.07 0.717 ± 0.07 0.757 ± 0.09 0.749 ± 0.06 0.742 ± 0.06 0.0065 

VWR2 0.869 ± 0.07 0.855 ± 0.06 0.863 ± 0.06 0.863 ± 0.06 0.829 ± 0.07 0.065 

 

Based on these p-values, we can assert that only one feature, namely VWR1, may have the 

potential to differentiate between the groups. While VBC and VWR1 p-values are clearly worse 

than in the Artery ANOVA, it must also be pointed out that VBA and VWR2 p-values are much 

lower in Veins compared to Arteries, albeit they do not pass the significance threshold of 0.05. 

VWR2 is nonetheless a little more significant that in the previous study (0.065 vs. 0.086). 

Qualitatively, it was seen that VBA, CBA1 and VWR2 follow the same trends found by Le et Al, 

while CBA2 and VWR1 roughly do so. 
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3.2.3 A/V Ratio ANOVA 

Described in the following table are the average values, standard deviations and ANOVA p-values 

for the Ratio of the features extracted from Artery and Vein Maps: 

TABLE IV: STATISTICS OF A/V RATIO GEOMETRIC FEATURES  

Features Control NoDR Mild Moderate Severe p-values 

VBA 1.00 ± 0.07 1.03 ± 0.07 1.04 ± 0.11 0.99 ± 0.11 1.00 ± 0.09 0.312 

CBA1 1.01 ± 0.07 1.04 ± 0.12 1.05 ± 0.18 1.01 ± 0.10 1.01 ± 0.13 0.644 

CBA2 1.01 ± 0.22 1.04 ± 0.25 1.03 ± 0.28 0.98 ± 0.25 1.03 ± 0.28 0.953 

VBC 1.00 ± 0.16 1.02 ± 0.13 1.02 ± 0.14 1.03 ± 0.14 1.07 ± 0.14 0.389 

VWR1 0.98 ± 0.15 0.99 ± 0.11 1.02 ± 0.12 1.01 ± 0.11 1.02 ± 0.10 0.619 

VWR2 1.02 ± 0.11 1.02 ± 0.10 0.99 ± 0.08 1.03 ± 0.09 1.04 ± 0.12 0.495 

 

Based on these p-values, we can see that no feature seems to possess the potential to differentiate 

between the groups. The close average values (hovering around a value of 1) may suggest that 

there is no significant difference between artery and vein values in every patient type, i.e., arteries 

and veins features may be influenced in the same way and/or in the same magnitude overall. The 

(relatively) high standard deviation also could suggest a high inter-individual variability of the 

A/V Ratio for some of these features, especially CBA2.  
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3.2.4 Weighted Average ANOVA 

Described in the following table are the average values, standard deviations and ANOVA p-values 

for the features computed from the weighted average of the values extracted from Artery and Vein 

Maps: 

TABLE V: STATISTICS OF WEIGHTED AVERAGE GEOMETRIC FEATURES  

Features Control NoDR Mild Moderate Severe p-values 

VBA 83.79 ± 3.52 82.97 ± 3.55 82.84 ± 3.91 85.10 ± 4.94 81.92 ± 5.32 0.090 

CBA1 58.83 ± 3.68 57.78 ± 3.05 57.61 ± 2.23 59.79 ± 3.64 57.37 ± 3.15 0.039 

CBA2 24.96 ± 2.51 25.18 ± 2.89 25.23 ± 3.12 25.31 ± 2.79 24.55 ± 3.45 0.85 

VBC 1.29 ± 0.09 1.33 ± 0.10 1.39 ± 0.09 1.38 ± 0.05 1.35 ± 0.08 0.0013 

VWR1 0.683 ± 0.06 0.712 ± 0.07 0.765 ± 0.05 0.749 ± 0.04 0.750 ± 0.04 4 E-09 

VWR2 0.875 ± 0.04 0.868 ± 0.04 0.864 ± 0.04 0.874 ± 0.03 0.850 ± 0.04 0.069 

 

Based on these p-values, we can assert that three features, CBA1, VBC and VWR1, may have the 

potential to differentiate between the groups. These features have lower p-values than either the 

Artery and Vein feature sets. This could be due to two separate influences: one suggesting that 

accounting for both types of vessels yields more information and a better capacity of separation 

between the cohorts, and the other considering that this type of analysis has nearly double the data 

points with respect to the other three feature sets. Looking at the very low p-value of VWR1 and 

the distributions of its values among the different cohorts, one could claim that the Control group 

and the NoDR group can clearly be separated from the NPDR ones and between themselves as 

well with ease. The Weighted Average Analysis obtained with the weighted average thus appears 

to be the most promising analysis in this study, although with the above specifications about the 

nearly doubled data points, which could lower the standard deviation which in turn lowers the     

p-values. 
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3.3 Boxplots 

In order to better represent the distributions of the features among the four sets, a series of six 

boxplot (one per feature) will be shown below. 

 

3.3.1 VBA Boxplot 

The first boxplot shows the distributions of the VBA feature across all cohorts and all feature sets. 

 

 

Figure 22: Boxplot of the VBA distributions among all patient cohorts and all feature sets 

 

It can be seen that VBA distributions follow the same pattern in both Arteries and Veins. This 

makes the Weighted Average distributions have the same trend and the A/V Ratio ones to be 

almost horizontal and indistinguishable from one another. 
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3.3.2 CBA1 Boxplot 

The second boxplot shows the distributions of the CBA1 feature across all cohorts and all feature 

sets. 

 

 

Figure 23: Boxplot of the CBA1 distributions among all patient cohorts and all feature sets 

 

It can be seen that the Artery distributions cannot be differentiated between each other. The 

Weighted Average distributions have lower variance than both Artery and Vein ones while 

following a more contained version of the Vein distributions trends. This allows for a significant 

p-value, given the median value of the Moderate NPDR distribution. The A/V Ratio distributions 

are, as before, almost horizontal and indistinguishable from one another. 
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3.3.3 CBA2 Boxplot 

The third boxplot shows the distributions of the CBA2 feature across all cohorts and all feature 

sets. 

 

 

Figure 24: Boxplot of the CBA2 distributions among all patient cohorts and all feature sets 

 

As was the case with the results found in [4], distributions are basically horizontal and 

indistinguishable from one another. Both Arteries and Vein smaller branch angles do not vary 

with the presence or staging of the illness in a significant way. 
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3.3.4 VBC Boxplot 

The fourth boxplot shows the distributions of the VBC feature across all cohorts and all feature 

sets. 

 

 

Figure 25: Boxplot of the VBC distributions among all patient cohorts and all feature sets 

 

It can be seen that the Weighted Average distributions show a very clear ascending trend from 

healthy to NPDR patients. This trend also can be seen in the Artery distributions, while the Vein 

ones show a final descent in the Severe NPDR stage. This descent prompts an increase in the A/V 

Ratio but not enough to be clearly separated from the other distributions. 

 

 

 

 

* 

* + 



47 
 

 

3.3.5 VWR1 Boxplot 

The fifth boxplot shows the distributions of the VWR1 feature across all cohorts and all feature 

sets. 

 

 

Figure 26: Boxplot of the VWR1 distributions among all patient cohorts and all feature sets 

 

It can be seen that the Weighted Average, Artery and Vein distributions show a very clear 

ascending trend from healthy to NPDR patients. Since the trend is the same in arteries and veins, 

the A/V Ratio distributions are almost aligned horizontally. VWR1 shows the same trend as VBC, 

suggesting that the first child vessel, which is usually the smallest one, increase in diameter with 

respect to the parent vessel more than the second child vessel (usually the largest one). This is 

likely due to the blockage of the blood vessels cause by Diabetes, which threats to totally block 

the smaller vessels. Thus, the rise in the diameter of the smaller vessels compared to the larger 

ones is to be expected, and can be reliably used to separate the Control, NoDR and NPDR cohorts. 

 

* * 
* 

+ 
** * * 

* 

+ 

* * + 
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3.3.6 VWR2 Boxplot 

The sixth and final boxplot shows the distributions of the VWR2 feature across all cohorts and all 

feature sets. 

 

 

Figure 27: Boxplot of the VWR2 distributions among all patient cohorts and all feature sets 

 

It can be seen that the Weighted Average and Artery distributions show a somewhat descending 

trend from healthy to NPDR patients. This trend is very much reduced in the Vein distributions. 

The A/V Ratio distributions are arranged in a very contained V shape. 
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3.4 Student t-tests 

In order to better study the separation capabilities of the most promising features, a series of six 

Student t-tests was performed. The selected features were the ones which p-values were 

statistically significant, i.e. CBA1, VBC and VWR1 from the Weighted Average set, VBC and 

VWR1 from the Artery set and VWR1 from the Vein set. The Bonferroni Correction was used on 

the results of the t-tests to offset the number of tests performed per feature. This procedure is 

explained in the next paragraphs. 

 

 

3.4.1 Bonferroni Correction 

The Bonferroni Correction is based on the fact that the probability of observing rare events 

increases as the number of tested hypotheses increases [19]. Thus, the type I errors (false 

positives) are maximized. In this study, a total of ten hypotheses are tested for each feature. 

Dividing by ten the significance threshold will minimize the likelihood of false positives, but it 

will increase the likelihood of false negatives. Nevertheless, the p-values that will still be 

statistically significant are sure to be so. This, in turn, allows a better recognition of the differences 

between the various distributions. In the following tables, all shown p-values will have to be lower 

than 0.005 to achieve significance. In order to avoid false negative, the p-values that will be 

statistically significant without the correction but are not if the correction is applied will be marked 

with a * symbol. The significant p-values will be shown in bold. 
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3.4.2 Weighted Average CBA1 Individual Comparison t-tests 

The individual t-test comparison for Weighted Average CBA1 feature is shown below: 

TABLE VI: STUDENT T-TESTS RESULTS FOR INDIVIDUAL GROUP SIGNIFICANCE 

COMPARISONS FOR WEIGHTED AVERAGE CBA1, DUE TO THE SIGNIFICANCE OF THE 

ANOVA TEST 

 Control NoDR Mild NPDR Moderate NPDR Severe NPDR 

Control      

NoDR 0.2498     

Mild NPDR 0.1304 0.8241    

Moderate NPDR 0.3549 0.0534 0.0233*   

Severe NPDR 0.0779 0.6033 0.7188 0.0136*  

 

It can be seen that there are no strictly significant p-values, even if, as seen in the CBA1 boxplot, 

the Moderate NPDR distribution could be differentiated from the Mild NPDR and Severe NPDR 

ones.  

 

3.4.3 Weighted Average VBC Individual Comparison t-tests 

The individual t-test comparison for Weighted Average VBC feature is shown below: 

TABLE VII: STUDENT T-TESTS RESULTS FOR INDIVIDUAL GROUP SIGNIFICANCE 

COMPARISONS FOR WEIGHTED AVERAGE VBC, DUE TO THE SIGNIFICANCE OF THE 

ANOVA TEST 

 Control NoDR Mild NPDR Moderate NPDR Severe NPDR 

Control      

NoDR 0.3075     

Mild NPDR 0.000883 0.0369*    

Moderate NPDR 0.000171 0.0379* 0.6417   

Severe NPDR 0.0260* 0.4324 0.0773 0.0627  
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It can be seen that the Control distribution can clearly be separated from the Mild and Moderate 

NPDR. Three p-values, namely Control vs. Severe, NoDR vs. Mild and NoDR vs. Moderate, are 

significant before the Bonferroni Correction but not significant after.  

 

3.4.4 Weighted Average VWR1 Individual Comparison t-tests 

The individual t-test comparison for Weighted Average VWR1 feature is shown below: 

TABLE VIII: STUDENT T-TESTS RESULTS FOR INDIVIDUAL GROUP SIGNIFICANCE 

COMPARISONS FOR WEIGHTED AVERAGE VWR1, DUE TO THE SIGNIFICANCE OF THE 

ANOVA TEST 

 Control NoDR Mild NPDR Moderate NPDR Severe NPDR 

Control      

NoDR 0.0904     

Mild NPDR 0.000001 0.0035    

Moderate NPDR 0.000004 0.0215* 0.2453   

Severe NPDR 0.0000002 0.0126* 0.2371 0.9111  

 

It can be seen that the Control group can be clearly separated from any NPDR group, but not from 

the NoDR group. This latter group can be distinguished from Mild NPDR patients but it is unclear 

if it’s statistically different from Moderate and Severe NPDR distributions. This is the feature 

with the lowest p-value in the study, and the high separating power between healthy and NPDR 

patients could be easily exploited in a classifier. 
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3.4.5 Artery VBC Individual Comparison t-tests 

The individual t-test comparison for Artery VBC feature is shown below: 

TABLE IX: STUDENT T-TESTS RESULTS FOR INDIVIDUAL GROUP SIGNIFICANCE 

COMPARISONS FOR ARTERY VBC, DUE TO THE SIGNIFICANCE OF THE ANOVA TEST 

 Control NoDR Mild NPDR Moderate NPDR Severe NPDR 

Control      

NoDR 0.4154     

Mild NPDR 0.0212* 0.1347    

Moderate NPDR 0.0061* 0.0554 0.7004   

Severe NPDR 0.0279* 0.2047 0.6311 0.3301  

 

It can be seen that, compared to the Weighted Average VBC individual comparison t-test table, 

these p-values are higher, as was the ANOVA p-value for this feature. However, Weighted 

Average analysis has the advantage of having nearly double the data points that lower the standard 

deviation and lower the p-values. 

 

3.4.6 Artery VWR1 Individual Comparison t-tests 

The individual t-test comparison for Artery VWR1 feature is shown below: 

TABLE X: STUDENT T-TESTS RESULTS FOR INDIVIDUAL GROUP SIGNIFICANCE 

COMPARISONS FOR ARTERY VWR1, DUE TO THE SIGNIFICANCE OF THE ANOVA TEST 

 Control NoDR Mild NPDR Moderate NPDR Severe NPDR 

Control      

NoDR 0.1071     

Mild NPDR 0.000003 0.0054*    

Moderate NPDR 0.00009 0.0333* 0.3839   

Severe NPDR 0.000004 0.0109* 0.3867 0.8377  
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It can be seen that, as was the case in the Weighted Average VWR1 analysis, the Control group 

can be clearly separated from any NPDR group, nut not from the NoDR group.  

 

 

3.4.7 Vein VWR1 Individual Comparison t-tests 

The individual t-test comparison for Vein VWR1 feature is shown below: 

TABLE XI: STUDENT T-TESTS RESULTS FOR INDIVIDUAL GROUP SIGNIFICANCE 

COMPARISONS FOR VEIN VWR1, DUE TO THE SIGNIFICANCE OF THE ANOVA TEST 

 Control NoDR Mild NPDR Moderate NPDR Severe NPDR 

Control      

NoDR 0.2694     

Mild NPDR 0.0083* 0.1011    

Moderate NPDR 0.0047 0.1187 0.7162   

Severe NPDR 0.0040 0.1677 0.4650 0.6630  

 

It can be seen that the Vein VWR1 feature should be capable of separating the healthy patients 

from the ones with Moderate and Severe NPDR, but it is unclear if it can separate them effectively 

from the Mild NPDR cohort.  Overall, it is clearly worse than the corresponding Artery p-values. 
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CHAPTER 4 

DISCUSSION 

To summarize, an automated procedure was used to differentiate the vessels of OCTA images 

into arteries and veins. Then, a fully automated method was used to measure and extract six 

geometric features (VBA, CBA1, CBA2, VBC, VWR1 and VWR2. Statistical analyses, ANOVA 

and Student t-tests were performed on the extracted parameters belonging to five different cohorts 

(Control, NoDR, Mild NPDR, Moderate NPDR and Severe NPDR subjects).  

 

4.1 Comparison with the previous study 

Looking at Table 3 in the paper from Le. et Al. [4], it can be seen that there are some differences 

in significances and trends of the various parameters. The differences will be examined first, and 

some causes for these differences will be presented next.  

Looking at the p-values in the previously said table, it can be noted that the Angle-based features 

(VBA, CBA1 and CBA2) are, on average, less significant than in the non-differentiated study, 

while the Width-related features (VBC, VWR1 and VWR2) shown, on average, increased 

significance. In particular, VBA, which was the most promising feature in the previous study, is 

now above the significance threshold. Looking at the distributions, the mean values and standard 

deviations are higher, allowing for less separation capability. The trend of the VBA distribution 

is conserved in the Artery features, even if the averages are nearer to each other. In the Vein 

distributions, the average values are more far apart from each other (especially the Moderate 

NPDR values), but it is still not enough to reach significance. CBA1 and CBA2 also follow the 

same observations. Looking at the Student t-tests of the previous study [4], it can be noted that 



55 
 

 

VBA could not allow for a total Control-NoDR-NPDR separation, since Control and NoDR 

distributions could not be clearly separated from the Severe NPDR one. 

Regarding the Width-based measurements, VBC and VWR1 have a very high significance and 

separating power. They also show a very clear trend, where the values get higher the more the 

NPDR progresses. The Student t-tests confirm that they can be used to differentiate between 

Control and NoDR subjects on one side and the NPDR subjects on the other. The trends of the 

previous study are not preserved and are even inverted. Looking at the Student t-tests of the 

previous study [4], it can be noted that both VBC and VWR1 could not separate between NoDR 

and any of the NPDR distributions, and also between Control and Moderate NPDR distributions. 

Another thing to note is that, similarly to this study, VBC had less separating power than VWR1.  

It is worth noting that, although the trend of VBC appears inverted compared to the previous 

study, its distributions among the patient groups give us the same insights. From the work by 

Adam et al. [42] the estimated VBC for a perfectly symmetrical branching is circa 1.26, and any 

variation from that value implies an asymmetry in the branching. In the previous study the VBC 

values decreased with the onset and progression of NPDR, while in this study they increase, but 

in both cases the growing asymmetry is shown. That is true for the Artery and Weighted Average 

analysis: in the Vein distributions we find that the Severe NPDR values are closer to a situation 

of symmetry than the two other NPDR groups. This is in turn signaled by a little spike in the A/V 

Ratio, but not enough to be detected as significantly different from the other distributions.  
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4.1.1 Differences between Angle- and Width-based Features 

The different performance of the Angle and Width-based parameters, especially with regard to 

the same parameters in the old study, is worth investigating since it may offer insights on the 

physiology of the illness or on the method itself. As said before, Angle-based features have 

decreased significance and sensitivity while Width-based features have increased significance and 

sensitivity.   

Since CBA1 + CBA2 = VBA, the three features suffer from the fact that a measuring error can 

trickle down and influence the others. This influences the distributions in the five patient cohorts, 

and in turn influences the significance of the features themselves. Compared to the previous paper, 

VBA averages are closer together, which means that also CBA1 and CBA2 averages are closer 

together. Also, a higher standard deviation is inherited from VBA by the other two angle-related 

features. The lower significance may be explained in this way. 

When measuring quantities, taking ratios of two or more measurements can help in reducing or 

enhancing the sensitivity of any single measurement. The width-related features are constructed 

in such a way. It is natural that, if any differences exist between the parent and vessel diameters 

distributions, the three features distributions have enhanced sensitivity. This is exactly what has 

been found out in this study: the p-values of VWR1 in particular are very low, the trends are clear 

and are conserved between Artery, Vein and Weighted Average analyses. Moreover, since the 

ratio is used to quantify the relationship between (in this case) the parent vessel width and the 

children vessel width, it cannot detect changes in the vessels’ widths that still result in the same 

relationship between them. 
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4.2 Sources of Differences 

In this section, the most prominent sources of the differences shown in the previous paragraph 

will be discussed. 

The sources that will be presented below are three: 

1. the differences in the vessel map generation 

2. the analyzed branchpoints and their correspondence 

3. the measurement window cleanness  

 

4.2.1 Differences in Vessel Map Generation 

The artery-vein classification algorithm used in this study to generate the AV vessel maps is an 

extra step which may have an influence on the measurements of the features. The previous results 

[4] were indeed measured on unclassified vessel maps. In order to maintain the automatic 

characteristics of the said classification algorithm, its resulting vessel maps were not touched or 

cured. The two similar but different processes in these two studies could result in differences in 

the measurements of the features. It is necessary to remind that, used on unclassified maps, the 

algorithm used for this study outputs the same results as the ones used by Le at Al. 

 

4.2.2 Correspondence of Analyzed Branchpoints  

A complete study of the branchpoints analyzed by the algorithm was conducted. In this sub-study, 

every branchpoint of artery and vein maps was manually inspected with the objective to see how 

many branchpoints were analyzed in the classified and unclassified maps and how many of those 

branchpoint were analyzed in both cases. The latter metric was defined as Branchpoint 

Correspondence. Three main findings are described below: 
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The first finding is that the combined Artery and Vein maps have, on average, 1 to 2 analyzed 

branchpoint more than the unclassified maps. The only notable exception is the NoDR cohort, in 

which there are, on average, 5 branchpoints more than in the unclassified maps.  

The second finding is that the Branchpoint Correspondence metric is, on average, around 31.6 %. 

This means than little less than one third of the branchpoints are analyzed in both the Artery and 

Vein maps and the unclassified maps. This percentage varies and is highest in the Moderate NPDR 

patients and lowest in the NoDR patients. This last figure also derives from the fact that the NoDR 

cohort has more analyzed branchpoints.  

The third finding regards the number of analyzed branchpoints in Artery maps compared to Vein 

maps. On average, Artery maps have 3 to 4 more analyzed branchpoints that Vein maps. This 

number is lower in Healthy patients (1 to 2 more) and is higher in Severe NPDR patients (5 to 6 

more). This could be explained by looking back at Figure 20: since arteries tend to cross over 

veins and not vice versa, the Vein map suffer from discontinuities of its vessels. If these crossings 

happen near a vein branchpoint, they will disrupt the identification and the analysis of its features. 

 In the retina, arteries tend to cross over veins. In the unclassified maps, this is not an issue, but in 

the classified maps it can become so. That is because, some veins are split by arteries crossing 

over them. In turn, this results in more branchpoint exclusions in veins since a vein branching can 

be cut off by an artery. This explains the observed difference in numbers of analyzed branchpoints 

in vein maps compared to artery maps that was described as the third major finding above. It must 

be noted that, in order to affect any measurement, the crossing must occur close or right above a 

vein branching.  

This sub-study offers many insights on the differences between the showed results and the ones 

from Le at Al. [4]. Below, an example of a very common situation encountered in the sub-study 

is shown to better understand the high impact of these metrics on the results. 

 



59 
 

 

4.2.2.1 Example: two common scenarios 

Manually analyzing the Branchpoint Correspondence between classified and unclassified images, 

two common scenarios were identified that could account for a significant part of the differences 

between the two types of images. 

The first one is about branchpoints that appear in unclassified maps but not in the classified ones. 

Since the images are classified into Artery and Vein maps, “false” branchpoints (not representing 

a real branching) like the one shown below are separated and thus not taken into account by the 

algorithm. Classifying the images cleans the final values of the features of any noise caused by 

these occurrences, of which an example is shown in Figure X. An arteriole terminates its course 

close to a vein: without separating arteries from veins, a “false” branchpoint is identified where, 

in fact, no such branchpoint is really present. 

 

Figure 28: False branchpoint scenario. WA: Weighted Average unclassified vessel map. The red 

square represents an identified branchpoint. A/V: Artery-Vein differentiated vessel map.                      

A and V: Artery and Vein map.  

 WA 
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The second scenario is shown below in Figure X. In this example, in the unclassified Weighted 

Average skeleton map (marked as G) an artery branching and a vein branching intersect in a 

way that the two branchpoints are too close and one of them (the vein one) is misidentified as a 

four-way intersection. Red squared were used to signal branchpoints that were not excluded. 

After classifying the vessels and separating the Artery and Vein maps, the two branchpoints are 

correctly identified and analyzed by the algorithm. Identifying the right branchpoints and 

excluding the bad ones leads to better endpoints identification and different values being 

measured and counted.  

 

Figure 29: Non-detection of real branchpoints. WA: Weighted Average unclassified vessel map. 

A/V: Artery-Vein differentiated vessel map. A and V: Artery and Vein map. The red squares 

represent    identified branchpoints. 

 

 

 

 WA 
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4.2.3 The Influence of Measurement Windows  

This reasoning starts from the fact that, in order to measure vessel width, a window centered on 

the endpoint is identified and its contents are extracted for the computations. In the classified and 

separated Artery and Vein maps, these windows will obviously contain less “noise”. This “noise” 

is composed of many possible components: mainly endings and/or parts of other vessels and/or 

the same types of vessels, etc. Single vessel’s width measurements are surely improved by a 

cleaner and emptier measurement window. If we couple the resulting more accurate values with 

the use of ratios, we should obtain better features with better sensitivity. This is reflected by the 

fact that width-based features have greater significance and separating power between the various 

groups. Width-related features have clearer trends, lower standard deviations and more separated 

distributions, and this paragraph may be the major reason why. 

 

4.3 Why the Bonferroni Correction 

In this study, the Bonferroni Correction was employed to correct the p-values of the Student t-

tests. It is the most conservative interpretation of results of multiple statistical tests, giving the 

priority to minimizing the false positives (type I statistical errors). On the other hand, it also has 

the effect of increasing type II statistical errors, i.e., false negatives. Having this information, the 

resulting p-values should be interpreted in this way: 

• p-values < 0.005: the two distributions can be regarded as significantly different and thus 

separable.  

• p-values > 0.05: the two distributions cannot be regarded as significantly different and 

thus cannot be separated. 

• 0.005 < p-values < 0.05: the two distributions fall in a sort of limbo. The Bonferroni 

correction makes them not significant in order to minimize false positives but may incur 

in a false negative case. In the t-tests performed on the six significant features found in the 
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ANOVA analyses, 14 p-values fall in this category. It cannot be excluded that false 

negatives could be present in these 14 p-values, as cannot be excluded that the Bonferroni 

Correction correctly avoided some cases of false positives. 

To summarize, p-values that retain significance after the correction are sure to be true positives, 

while the ones that do not achieve it without the correction are sure to be true negatives. The 

others in between are either false negatives (after the correction) or false positives (before the 

correction).
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CHAPTER 5 

CONCLUSIVE REMARKS 

To summarize, differentiating arteries and vein in OCTA images to detect Diabetic Retinopathy 

through the extraction of the six geometric features has given some insights about the process and 

the illness itself. 

The first insight is that a Weighted Average analysis of the feature seems to possess the best 

separating power compared to the other types of analysis explored in this study. However, it must 

be noted that it had nearly double the data points of the other three feature sets. In this light, the 

Artery distributions contain a similar amount of separating power. The differences between using 

an unclassified map and computing the weighted average of the values from the classified maps 

has been explored in detail. 

The second insight is that, with respect to the six features analyzed in this study, there seems to 

be no statistical difference in how NPDR affects arteries and veins. Almost all of the A/V Ratios 

hover around a value of 1. There are some exceptions, but they cannot be clearly separated from 

the other distributions. This may suggest that the first stages of Diabetic Retinopathy affect 

arteries’ and vein’ branching features with the same magnitude. In future studies, other features 

may show different behaviors. 

The third insight is that the width-related features seem to be more capable of discriminating 

between the patients’ groups than the angle-related ones. Changes in the blood vessels’ width 

seem to be much more informative than the ones that occur in the relative angles in bifurcations. 
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APPENDIX 

Material Permission: since all the reprinted or adapted figures and tables were published on Open 

Access journals, the Creative Commons License applies. 
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