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SUMMARY

Recent rapid advances in sensor technology and Internet of Things (IoT) have led to remarkable

progress in medical applications and public healthcare. Consequently, there is a huge momentum to

develop Health Monitoring Systems (HMSs) that can improve patient care and safety, the accuracy of

the information, and the real-time assessment of the human health condition.

Sensors play a crucial role in healthcare technology and HMSs, with the aim of improving the

quality of human life. The sensors can capture vital signs and other patient information and convert

them into electrical signals that can be analyzed for follow-up action by caregivers as appropriate. A

key challenge in HMSs is to find low-cost and accurate sensors that can be fitted on to non-intrusive,

affordable, reliable, small, lightweight, and easy-to-use devices. The objective of these devices is to

help achieve an accurate diagnosis, and to monitor patients not only in clinical settings but also in home

environments.

In this dissertation we investigated the use of low-cost, non-contact pyroelectric and thermopile

passive infrared sensors for motion detection in health monitoring applications. The research focus is

on exploring the use of these sensors for the tasks of

i. convulsive body motion detection targeted at monitoring patients with epilepsy during sleep,

seeking to prevent sudden unexpected death in epilepsy (SUDEP), and

ii. subtle body motion detection aimed at estimating two vital signs: heart rate and respiratory rate.

We also investigate the design of efficient and low-cost algorithms and their practical implementa-

tion to perform the tasks and validate the methods experimentally. For the task of detecting convulsive

xviii



SUMMARY (Continued)

motion aimed at epileptic seizure monitoring during sleep, we propose a novel approach that uses low-

cost, non-intrusive, contact-free pyroelectric infrared sensors to sense convulsive body motion and dis-

tinguish it from other body motions. The method is tested on the signals captured from healthy subjects,

recruited after getting IRB approval. We investigate the use of different machine learning algorithms and

attain a maximum accuracy of 98.98% for our data. We also examine the use of a low-cost, low-power,

and low-resolution (8×8) thermopile sensor array implemented with a Convolutional Neural Network

(CNN). We demonstrate that a 99.2% accuracy is achieved in classifying convulsive movements and

non-convulsive body motion. For task of measuring subtle body motion aimed at estimating one of the

vital signs, the human respiratory rate, we again investigate the use of the thermopile infrared sensor

array and the pyroelectric infrared sensor. We propose and experimentally validate a novel method that

human respiration rate may be reliably estimated from respiration-induced body movements. We de-

vised computationally efficient algorithms to analyze the data collected from human subjects with IRB

approval. We demonstrate that a 97.7% correlation between the actual respiratory rate and the estimated

rate in our dataset is attained. We also propose a novel approach to estimate the human respiratory rate

and heart rate by investigating the use of a low-cost, contact-free, and non-invasive pyroelectric infrared

sensor. The respiratory rate and the heart rate are inferred from the time-varying sensor signal due to the

subtle movements of the head caused by the flow of air from the lungs and blood from the heart to the

head via the carotid artery, respectively. The PIR sensor is placed behind the human head without direct

contact with the body. Experimental results show a 96.4% correlation between our heart rate estimates

and the pulse oximeter measurements is achieved in our dataset. Also, 95.37% correlation is achieved

between the respiratory rate estimates and the chest movements monitoring as a ground truth.

xix



CHAPTER 1

INTRODUCTION

1.1 Introduction

Recent developments in microelectronics and sensor technology have led to design and implementa-

tion of light weight, small size, and affordable sensor devices that play a fundamental role in transform-

ing how healthcare service is provided [3]. Traditional healthcare systems are designed, implemented,

and optimized to react to the treatments of the diagnosed illness rather than focusing on prevention. On

the other hand, contemporary HMSs are implemented to react to prevention of illness with early detec-

tion of the disease [4]. Most of HMSs usually rely on using a combination of sensors, a microcontroller,

and a workstation for data processing and decision making. Sensors are the kernel of the HMSs. They

can monitor and measure the main physiological parameters of the patient that can assess his/her health

condition status. Based on whether contact with a human body is made, sensors can be classified into

contact-based sensors or contact-free sensors [5], [6].

Recently, there is an increased interest in the use of contact-free sensors in HMSs to measure the

vital signs and early detection of some of the chronic diseases [7]. Such sensors include Infrared IR

sensors, vibration and acoustic sensors, and different type of cameras [7], [8], [9], [10].

Several factors influenced the trend towards the increased used of contact-free sensors in HMSs. One

factor is the low cost of such sensors that makes them affordable for use by many people, including the

low-income segment of population. The small size and light weight of these sensors make them easy to

1
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use in different setups, not only in hospitals or clinics but also in home environments for Assistive Living

(AL) [11], [12], [13]. Another factor is the high accuracy and tolerable rate of errors in applications that

can improve the quality of life of people. Finally some of the contact-free sensors such as an IR sensors

and low-resolution thermal cameras are non-intrusive in the sense that they preserve the privacy of the

patients [14].

1.2 Motivation

More than 65 million people world-wide, with 3.4 million in the United States, suffer from epilepsy

[15]. Unfortunately, they carry a higher risk for death than the general population. Every year 1 out of

1000 people with epilepsy dies from sudden unexpected death in epilepsy (SUDEP) [16], [17]. SUDEP

is a fatal threat to patients who suffer from convulsive seizures. The causes of the SUDEP are still not

well-understood, and patients who suffer from epileptic seizures may face death during sleep, likely after

an unwitnessed convulsive seizure. An important step towards SUDEP prevention is reliable seizure

detection during sleep that is inexpensive and unobtrusive. This motivated our search for affordable,

low-power, contact-free solutions to this problem. This led us to the investigation of two different type

of passive sensors, the Pyroelectric Infrared sensor and the low -resolution thermopile sensor array for

convulsive seizure detection based on our prior knowledge of the effectiveness of passive sensors in

motion detection applications. Detection of an epileptic seizure during sleep may be used to issue alerts

to caregivers to provide timely help to the patients. The contact-free nature of the passive sensors and

their ability to detect seizures even in the dark make them attractive for patient use. We note that while a

sleep stage can trigger the epilepsy, which is noticeable in some epilepsy syndrome cases like Rolandic

seizures, epilepsy may in turn disorganize and confuse sleep during epileptic seizures [18].
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Another key challenge in healthcare is the incidence of Cardiovascular diseases (CVDs), which is

one of the leading causes death among both males and females in United States. According to the

Centers for Disease Control and Prevention (CDC), about 6.5 million people in the United States suffer

a heart failure every year, and a heart failure was a contributing factor in one in 8 deaths in 2017

[19]. Moreover, 30% of deaths around the world are due to CVDs [20]. Vital signs are critical in

monitoring patients with CVDs. The Heart Rate (HR), Respiratory Rate (RR), blood pressure and

body temperature are four vital signs which are indicators of the human body’s most basic functions.

Continuous monitoring of the HR and RR and accurate measurement of the HR and RR are important

for monitoring the health status of patients with CVDs. This motivated us and led us to examine the use

of PIR sensor and the thermopile sensor array as a low-cost, privacy-preserving and contact-free sensors

to measure the HR and RR. We used the pyroelectric IR sensor to detect the HR and RR from the subtle

head movement of the stationary subjects while the thermopile sensor array is used to measure the RR

during sleep.

1.3 Research Contributions

The main contributions of this thesis are summarized as follows:

1. We propose a novel approach and implement and algorithm to detect convulsive body movements

motivated by epileptic seizure detection using PIR sensors. (Hanosh et al., [1]).

2. We propose and demonstrate a new method of detecting convulsive movements during sleep using

an (8×8) low-resolution thermopile sensor array. (Hanosh et al., [2]).

3. We propose a novel approach and carryout the implementation of an algorithm to measure the HR

and RR from the subtle head movement using PIR sensor.
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4. We devise and demonstrate the effectiveness of new method to detect the RR during sleep using

an (8×8) thermopile sensor array.

The results were demonstrated using data collected from human subjects with IRB approval.

1.4 Thesis Outline

The rest of this dissertation is organized as follows. In Chapter 2, we provide an introduction to

passive sensors and describe related work for detecting convulsive seizures. We also present the related

work to estimate the heart rate and respiratory rate. In Chapter 3, we describe our novel approach

to detect convulsive seizures using pyroelectric IR sensor. Chapter4 demonstrates our novel method

for detecting convulsive movements using a low-resolution 8×8 thermopile sensor array. Chapter 5

describes our approach to estimating the respiratory rate using a thermopile sensor array. Chapter 6

presents our unique method to estimate the pulse rate and respiratory rate from a single signal that

captures the subtle head movements using a contact-free pyroelectric IR sensor. The conclusion and

possible future work are presented in chapter 7.



CHAPTER 2

PASSIVE SENSORS AND RELATED WORK

Recent developments in the design, technology, and manufacturing of sensors with a decrease in

their size, power consumption and cost has led to expanding the role of the sensors in the healthcare

application and assistive living [21]. To monitor patients with a variety of diseases, different types of

contact-based sensors, contact-free sensor, passive and/or active sensors are incorporated in the HMSs

to detect the early symptoms and initiate an alarm to the caregivers to help their patients. The need of

non-invasive devices for continuous health monitoring and the need of early detection of many diseases

motivate us to investigate two types of low-cost, contact-free and passive sensors, the pyroelectric In-

frared PIR sensor and the thermopile sensor array, in selected healthcare applications. We investigate

the use of these sensors to detect the convulsive seizures during sleep and to measure two vital signs,the

Respiratory rate (RR) and the Heart Rate (HR), that play an important role in assessing patient’s health.

In this chapter we present an overview of the pyroelectric IR sensor and an (8×8) thermopile IR sensor

array. A background of the sensors that are used to detect convulsive movements and the sensors that

are used to measure the RR and HR, is provided.

2.1 Sensors classification

Sensors are entities that can capture physical input from the environments, and generate an electri-

cal or optical output. The sensed physical input from the environment may be thermal energy , light

intensity, temperature, humidity and other input. Each type of sensor has its own internal condition-

5
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ing unit to generate the electrical output corresponding to the variation of the captured input [22]. The

sensors can be classified in many different types. Based on whether contact is made with a subject’s

body, they are classified as contact-based sensors and contact-free sensors. Sensors also are classified

based on the energy radiation into passive and active sensors, active sensors illuminate a scene with their

own radiated energy. Passive sensors on the other hand, do not radiate energy. They are not equipped

with transmitters to radiate any type of energy. Furthermore, the sensors can also be classified based on

whether their output is digital or analog (see Figure 1) [23].

Figure 1: A block diagram of sensor classification based on the type of the output, the way of connection, and the

energy radiation.
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2.2 Thermopile and Pyroelectric passive sensors

Nowadays pyro-electric IR sensor and thermopile IR sensor are widely used in our daily life [24–28].

The thermopile and pyroelectric sensors are provide two ways of detecting infrared radiation emitted

by humans in motion. They detect IR light with a wavelength between 8 and 13µm, which is not in the

visible range of the human eyes. Both sensors can perform non-intrusive and contact-free detection, and

are passive because they do not emit any radiation. In our work we used these sensors in two different

systems to detect convulsive movements and, measure two vital signs: the heart rate and respiratory

rate, which are important to assess the health condition of a human.

2.2.1 Thermopile sensor array

A thermopile sensor array is a set of thermocouples made of two dissimilar materials to detect the

IR radiation from a moving subject. It works based on the Seeback effect phenomena [29]. Since an

individual thermocouple generates a low output, several thermocouples are connected in series to boost

the output level. Each thermocouple is made of two junctions: hot junction and cold junction [29].

The hot junction detects the IR radiation, while the cold junction is isolated from the IR radiation (see

Figure 2). When the IR radiation is incident on the hot junction of the thermocouple (points A, B and

C in Figure 2), a temperature difference between the hot junction and cold junction (point D, and E in

Figure 2) is created, and an electrical output proportional to the intensity of radiation is produced (see

equation 1).

Vout = NT hcSB (TH −TC) (2.1)
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where NT hc is the number of thermocouples, SB is the Seeback coefficient, TH is the hot junction tem-

perature, and TC is the cold junction temperature. In our work we used a low-resolution Panasonic

Grid-EYE 8× 8 thermopile sensor array, consisting of 64 pixels, and a frame rate of 10 frames per

second, with a low power consumption of approximately 15mW .

Figure 2: Internal structure of the thermopile sensor array made of a number of thermocouples connected in series.
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2.2.2 Pyroelectric sensor

A pyroelectric sensor is used to measure IR radiation emitted from a moving object within its Area of

Detection (AoD). It has two slots made of the same materials that are sensitive to the IR radiation. When

there is no motion, the differential IR level between the two slots is equal to zero, because both slots

have the same amount of charge, corresponding to the ambient light. If the IR radiation is intercepted

in one of the slots due to motion, then PIR slot a (see Figure 3) has more IR level change than slot b,

generating a positive differential charge. On the other hand, when the moving object exits the AoD of

the PIR sensor, the level of IR radiation of the second slot b will be higher than that of slot a, generating

a negative differential charge.

Figure 3: Internal structure of the Pyroelectric Infrared PIR sensor that has two slots made from the same material.
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2.3 Review on epileptic seizure detection

More than 65 million people world-wide, with 3.4 million in the United States, suffer from epilepsy

[30]. Unfortunately, they carry a higher risk for death than the general population. Every year 1 out of

1000 people with epilepsy dies from Sudden Unexpected Death in Epilepsy (SUDEP) [31], [32]. The

cause of SUDEP is still unknown, but in most cases, death occurs in sleep and victims are found face

down in bed [33]. Early detection of seizures and simple interventions could reduce the risk of SUDEP

[33]. We seek to design a low-cost, contact-free, and privacy-preserving system to detect epileptic

seizures during sleep.

Many methods are used to detect seizures [34–50], but most are not well-suited for in-home seizure

monitoring that would be required for SUDEP prevention. The electroencephalogram (EEG) is the

gold-standard method for seizure detection and measures the electrical activity of the brain. However,

EEG electrodes are not suitable for routine home use since they are uncomfortable, and it is potentially

harmful to have them attached to the scalp for a long period of time. Another approach is to indirectly

detect seizures by monitoring a subject’s heart rate with electrocardiography (ECG) [35]. Because the

heart rate usually increases during an epileptic seizure, ECG is used as indicator of seizures in newborns

and with implanted devices like the vagal nerve stimulator [35]. As with the EEG though, it is very

difficult for a patient to wear the ECG electrodes for a long period of time.

Recently, non-electrode based wearable devices have been introduced to detect convulsive seizures.

Most of the technologies rely on sensors attached to the body to detect body movements and/or heart-

beat, such as micro-electromechanical sensors or pulse oximeters [34]. These sensors are typically cou-

pled to a wireless communication channel to transmit the signal for processing. Although such wearable
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sensor devices are small, the body contact needed for these devices may bother a patient during sleep or

patients may not remember to wear the devices.

2.4 Type of Epileptic seizures

Epileptic seizures can be classified based on the area of the brain that involved in such a seizure

into partial seizures and generalized seizures. In the partial seizures, the activity can occur in a certain

area of one side of the brain, then it may transfer to another area or it could stay in the same area. Two

main types of partial seizures can be observed: simple partial seizures, and complex partial seizures

(see Figure 4). For the people who have a simple partial seizure, although they can be awake during

the seizures, they are unable to move or speak. Complex partial seizures can affect a greater area of

the brain compared with simple partial seizures, and they effect the consciousness. The other type

of the epileptic seizures is the generalized seizures which involve both sides of the brain. It can be

classified into absence; atonic; tonic clonic; and myoclonic. In this research study we detect convulsive

movements similar to generalized tonic clonic or the compulsive seizures during sleep. This type of

seizures can cause injures or even unexpected sudden death [51].

2.5 The Relation Between Epileptic Seizure And Sleep Stages

According to many studies, the relationship between sleep and epilepsy has been known since the

ancient Greek times [52], [53], [54]. This relationship is based on two major factors: the epilepsy

syndrome and the stage of sleep. Sleep is broadly divided into three stages - wake, Non-Rapid Eye

Movement (NREM) stage, and Rapid Eye Movement (REM) stage. NREM sleep has been linked to

strengthening of the connection between brain cells while the REM stage has been linked to dreams.

According to the American Academy of Sleep Medicine (AASM), the NREM stage may be divided into
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Figure 4: A block diagram of epileptic seizure classification, that consists the partial seizure which starts at a

specific area in the brain, and the convulsive seizure that may involve the whole brain.

three stages. The first two stages are known as light sleep while the third stage is known as deep sleep,

or Slow-Wave Sleep (SWS) [55]. Stage one of the NREM sleep lasts for approximately 10 minutes dur-

ing which muscles are relaxed, whereas, in stage two, breathing and the heart rate are observed to slow
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down. This stage lasts around 20 minutes and it has been observed that patients with epilepsy experience

seizures during this sleep stage which is characterized by sudden and unusual movements of arms and

legs, screams, and jerky movements. Such seizures may lead to injuries, including concussions, broken

bones, or even Sudden Unexpected Death in Epilepsy (SUDEP) if the patients are not attended to in

a timely manner [56], [53], [55]. It is therefore important to reliably detect the occurrence of seizures

during sleep. This motivated our search for affordable, low-power, contact-free solutions to this prob-

lem. This led us to the investigation of pyroelectric IR sensors for epilepsy detection based on our prior

knowledge of the effectiveness of pyroelectric IR sensors in motion detection applications. Detection

of an epileptic seizure during sleep may be used to issue alerts to caregivers to provide timely help to

the patients. The contact-free nature of the pyroelectric IR sensors and their ability to detect seizures

even in the dark make them attractive for patient use. We note that while a sleep stage can trigger the

epilepsy, which is noticeable in some epilepsy syndrome cases like Rolandic seizures, epilepsy may in

turn disorganize and confuse sleep during epileptic seizures [57].

2.6 An overview of Respiratory Rate (RR) and Heart Rate (HR) measurements

Breathing and pulse rates are vital signs that are routinely measured by healthcare providers to assess

a human body’s basic functions and diagnose diseases. The Respiratory Rate (RR) and Heart Rate

(HR), alongside with blood pressure and body temperature are the vital signs which are indicators of the

human body’s most basic functions [58]. The leading cause of death among males and females in United

States is heart disease. According to the Centers for Disease Control and Prevention (CDC), about 6.5

million in the United States have a heart failure every year, and a heart failure was a contributing of

one in 8 deaths in 2017 [59]. Continuous monitoring and accurate measurement of the HR and RR is
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important in monitoring patients with Cardiovascular Diseases (CVDs). The HR is the number of times

that the heart beats in one minute for a subject, and the heartbeat pulses can be sensed from any artery

close to the skin. The respiration rate is the number of breaths per minute, and it can provide an early

warning of disease or a health status deterioration [60]. The normal respiratory rate range for adults is

between 12 to 20 breaths per minute [61]. The respiration process is related functionally with the brain,

lungs, respiratory muscles, and blood vessels [62]. A large number of clinical situations can affect the

respiration rate such as: heart failure, asthma, COPD, sleep apnea, diabetes, pain, and lately the acute

respiration due to COVID- 19 disease [63], [64], [65]. Therefore, continuous monitoring of respiration

rate is a useful and important tool to trigger an early warning of the patient’s condition in hospitals and

during in-home health care services [66–72]. The respiration rate can roughly be assessed by humans

using visual and palpation methods but these are prone to errors. Many healthcare scenarios point to

the need for a reliable automated system for continuous monitoring of respiration rate without requiring

measurements by a human observer, usually a caregiver. For example, conditions like arrhythmia and

mental stress alter the respiration rate significantly. These factors can also significantly affect the sleep

quality of a subject. Obesity and aging have been observed to result in the sleep apnea syndrome (SAS).

A cause of SAS is the deposition of fat in neck causing obstruction in air flow leading to reduced levels

of alertness during daytime. Hence, a device for monitoring respiratory rate through the night would

be valuable. Several systems have been proposed for monitoring the heart rate and respiratory rate.

Based on how the heart rate and respiratory rate are measured, these systems are classified into contact-

based systems and contact-free systems [69, 70, 73–75]. In contact-based systems the measurements

devices used in monitoring the HR and RR are in direct contact with the subject’s body, while in the
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contact-free systems, the devices measure the HR and RR without touching the subject’s body. One of

the advantages of the contact-free systems over the contact-based systems is the comfort of the subjects

during the monitoring, especially if the subjects need to be monitored for a long period of time such as

during sleep. The traditional contact-based methods to measure the HR rely on different type of sensors

and electronic devices such as oximeter sensor [76], [77], electrocardiogram (ECG) [78], smart watches,

and wrist bands that need skin contact to measure the heart rate [79], [80]. These traditional methods can

cause discomfort and inconvenience to the subjects. They may also cause damage to the skin, especially

for the infants and the elderly whose skin is fragile. Interest is growing towards using contact-free

methods to measure the HR. Many potential applications use commercial cameras to estimate the heart

rate by capturing the skin color change due to the cardiac pulse [81], [82], [83]. Although contact-free

methods are successful in estimating the heart rate from the captured video of the stationary subjects,

the variation of the illumination factor can affect the performance and the outcomes of camera-based

methods. This is because the strength of the cardiac pulse is small compared to the varying illumination

factor [84]. Active sensing using Microwave beams is used in estimating the heart rate and measure the

human subjects breathing [85]. In addition to that, the Fiber Optic Respiratory Plethysmograph (FORP)

is used for respiratory monitoring [86]. Although these approaches can estimate the HR and RR, but

they need specialized hardware and have other shortcomings including cost.

Another approach uses Radio Frequency (RF) wireless signal for emotion recognition by estimat-

ing the HR of the human subjects [87]. An infrared sensor is also used to estimate the heart rate and

respiratory rate by monitoring the chest movements of the subjects [87]. One way to monitor the respi-

ratory rate using contact-based devices is to measure the sound of respiration using a microphone that is
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placed over the throat or mounted on the neck. In combination with microphone, a frequency analysis

is applied to detect the variation of the sound. This method can be affected by speech or coughing of

the subjects during the monitoring process [88]. Nasal pressure transducer sensor is another contact-

based instrument to measure the respiratory rate. It detects the variation of the temperature between the

inhaled and exhaled air. The detected variation is related to the respiratory rate. The airflow measure-

ments can be done using this sensor via facemask or nasal cannula [89]. The limitation of this method

is that the subjects may not feel comfortable with this type of sensor [90]. Impedance pneumography is

another tool that is used to monitor the respiratory rate by measuring the change in thoracic impedance

due to the abdominal chest wall movements during inhalation and exhalation. One of the limitations of

this method is the patient’s other movements that can cause inaccurate measurement of the respiratory

rate. In addition, any obstruction of the air flow can cause inaccurate measurement because the chest

wall will continue to move as a patient’s tries to breathe [91]. The respiratory rate can be extracted from

the Electrocardiogram (ECG) signal by measuring the fluctuation of the ECG signal. This technique

is known as the ECG-Derived Respiration (EDR). Since the ECG electrodes has a direct contact with

the subject’s skin, the subjects may have some skin damages especially for long-term respiration mon-

itoring [92]. Respiratory rate is measured using a pulseoximeter where a frequency spectral estimation

method or a Continuous Wavelet Transform (CWT) is applied on the pulseoximeter waveform [93].

Plethysmogram is used to estimate the respiration by measuring the blood oxygen saturation (SpO2).

Wavelet transform is used to process the plethysmogram signal to extract the respiratory rate [94], [95].

Radar-based monitoring, Fiber Grating (FG) vision sensor, video cameras, and passive infrared sensor

are used as contact-free monitoring instruments to estimate the respiratory rate. Greneker [96] devel-
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oped a Radar Vital Signs Monitoring (RVSM) method to estimate the respiratory rate by monitoring the

chest movements using the Doppler phenomenon. This system is an early contact-free system to esti-

mate the respiratory rate. Motion artifacts are considered as a limitation of this system because it can

degrade the breathing signal. Aoki et al. [97] developed a respiratory rate monitoring system that uses

a combination of viper grating projection with a Charge-Coupled Device (CCD) camera and an optical

filter. The bright spots on the captured images were extracted and processed to estimate the respiratory

rate. A webcam video camera is also used to estimate the respiratory rate by monitoring the chest and

abdominal movements of children [98]. Regular and infrared camera-based monitoring systems violate

the privacy of the subject and cannot be used at night during sleep. Infrared sensors have been proposed

for HR estimation by us and other researchers [99], [100], [101]. A combination of Passive Infrared

(PIR) sensor and a vibration sensor are used to estimate the respiratory rate from the chest wall move-

ments of subjects during sleep. The empirical mode decomposition and a wavelet transform are used to

extract the respiratory rate from the captured sensors signals [99]. Recently, a low-resolution thermopile

array is used to monitor the flow of respiration for various observation settings from 20 cm [101].



CHAPTER 3

CONVULSIVE MOVEMENT DETECTION USING PASSIVE INFRARED PIR

SENSOR

Parts of this chapter have been presented in (Hanosh et al., [1]). Copyright c© IEEE sensors
Journal, 2019.

In this chapter we investigate the use of Passive InfraRed (PIR) sensor for convulsive movement

detection based on our prior knowledge of the effectiveness of PIR sensors in motion detection applica-

tions. The PIR sensors can detect human body motion caused by epileptic seizures during sleep which

makes the body shake and causes the PIR sensor to generate an oscillatory output signal. We distinguish

this signal from that of ordinary motions during sleep by using analysis with different machine learning

and deep learning algorithms. We classify the data set of the PIR sensor output into three classes: the

occurrence of convulsive movements, ordinary motion, or absence of motion. We test the method on

the PIR signals captured at 1 m from 33 healthy recruited subjects who, after watching seizure videos,

either moved their body on a bed to simulate a seizure, ordinary motion, or lay still. Detection of an

epileptic seizure during sleep may be used to issue alerts to caregivers to provide timely help to the

patients. The contact-free nature of the PIR sensors and its ability to detect seizures even in the dark

make them attractive for patient use.

3.1 Contribution

The contributions of this chapter can be summarized as follows:

18
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1. We propose a novel approach to detect the convulsive seizures during sleep using low-cost, low-

resolution, non-intrusive and contact-free PIR sensor.

2. For this study we received an Institutional Review Board (IRB) approval to examine the use of

our sensing method on healthy recruited subjects for the purpose of carrying out a preliminary

study using data from simulated motions of seizure.

3. Our approach is applied on 33 healthy recruited subjects (27 males and 6 female).

4. A supervised hidden Markov model algorithm (HMM) and a 1-D and 2-D convolutional neural

network (ConvNet) are used to classify the data set of the PIR sensor output into the occurrence

of epileptic seizures, ordinary motions, or absence of motion.

5. Our approach is reliable since all simulated seizures were successfully detected, with errors oc-

curring only in distinguishing between ordinary motion and no motion.

6. Our approach is demonstrates the potential for using PIR sensors in the epileptic seizure detection.

The rest of this chapter is organized as follows. Section 3.2. presents the proposed method. Clas-

sification and feature extraction using deep learning networks are explained in Section 3.3. The perfor-

mance metrics of the classification methods are described in Section 3.4. Finally, Section 3.5 discusses

the performance results of the proposed method.

3.2 Proposed System Design

PIR sensors are low-cost devices which can be used in affordable detection systems. They consume

very little power and they can be efficiently used to detect body motion based on the infrared energy

emitted by the human body. Unlike camera-based detection systems, invasion of privacy is not a concern
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with the use of PIR sensors. In contrast to visible-light devices, PIR sensors can also work in the

dark [102], [103], [104], [105]. A pyro-electric infrared PIR sensor measures the change of infrared

radiation (not the averaging of IR) emitted by moving objects within its range of view, and generate

an electric potential corresponding to the rate of change of the detected infrared radiation. The electric

potential generated by the PIR sensor is so small. Therefore, the PIR sensor cannot be used alone. To

make the PIR sensor more powerful. We use a sensing unit (SU) instead of a standalone PIR sensor.

3.2.1 The Sensing Unit (SU)

The SU consists of an array of Fresnel lenses, an IR filter, and a PIR sensing element which consists

of three pins (GND, Vcc and binary output), analog circuitry, and a microcontroller (Arduino Nano) as

shown in (Figure 5).

3.2.2 Infrared (IR) Radiation

Infrared (IR) radiation is an electromagnetic radiation with a wavelength of 750nm to 100µm. Its

wavelength is longer than the visible light, therefore the human’s eyes cannot detect the IR radiations

but we can sense it as a heat. The IR can be classified into sub-bands based on its wavelength (see Figure

6). At normal body-temperature, the human radiates an IR roughly at a wavelength approximately equal

to 10µm.

3.2.3 Fresnel Lenses

Fresnel lenses are plano-convex lenses that permit the IR radiation to penetrate them. Basically,

Fresnel lenses work as an antenna by increasing the range of captured IR and projecting it onto the

sensing plates of the PIR sensor. Since the amplitude of the IR radiation decreases with distance, Fresnel

lenses are also used to expand the range of the detecting distance for the PIR sensor.
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Figure 5: Sensing Unit (SU) in the proposed method that consists an array of Fresnel lenses, an IR filter, and PIR

sensing elements.

3.2.4 PIR Sensor

A PIR sensor is made of two sensitive plates that can sense IR radiation, and the output of the sensor

is proportional to the difference in the IR radiation impinging on the two plates. When there is no

motion, a zero-output signal is generated because each plate detects the same amount of IR radiation.

In contrast to that, a moving body causes a differential change in one plate when it moves in the sensing

area. Most of the commercially available PIR sensors that are used for motion detection have a binary

output [103], [105].
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Figure 6: IR radiation sub-bands, the PIR detects the long wavelength infrared that is not visible to the humans

eyes.

3.2.5 Analog Circuit

The analog circuit of the SU is used to generate an analog output of the PIR sensor instead of the

digital output. The maximum amplitude voltage of the PIR sensor is 3.3v and, therefore, voltage divider

resistors are used to prevent any clipping in the amplitude of the analog output signal. The PIR signal

is a low-amplitude signal and its frequency is less than 5 Hz [102], [106]. Epileptic seizures are charac-

terized by rhythmic jerks of the body, and the average jerking rate in a seizure is about 2 jerks/second,

and this can be captured in the signal acquired with a PIR sensor. Two operational amplifiers (op-amps),

OA1 and OA2 (see Figure 7) are used as a cascaded stage in order to increase the amplitude of the PIR
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signal and bring it to a readable level. The two successive op-amps are also used to filter the signal from

the unwanted noise. To filter noise from the signal, R2, C1 and R5, C4 at each stage act as a low pass filter

with cut-off frequency equal to 1.6 Hz (see Equation 3.1 and 3.2). Because PIR sensors are intended to

detect the human body motion with a frequency content less than 3 Hz, there is, therefore, no need to

deal with high frequencies. R4, C3 and R3, C2 at each stage are used as a high pass filter to suppress the

DC bias of the signal (see Equation 3.3 and 3.4).

fcuto f f1 =
1

2πR2C1
, (3.1)

fcuto f f2 =
1

2πR5C4
, (3.2)

flow1 =
1

2πR4C3
, (3.3)

and

flow2 =
1

2πR3C2
(3.4)

The gain for each stage is approximately equal to 100 (see Equation 3.5 and 3.6) which gives a total

gain approximately equal to 10,000.

GainOA1 = 1+
R2

R4
, (3.5)
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Figure 7: A conditioning circuit of two cascaded op-amps to filter the analog input of the PIR sensor. The output

of the second amplifier OA2 Output is the filtered analog output of the Panasonic AMN21111 PIR sensor.

and

GainOA2 = 1+
R5

R3
(3.6)

The output of OA2 is the filtered analog output signal of the PIR sensor. The filtered analog output

is sampled and quantized with an Arduino nano microcontroller in order to be sent to the processing

unit for classification. The sampling frequency used is 20 Hz with 10 bit quantization level.
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The output signal of the PIR sensor contains a bias that can change with the room temperature. To

remove this bias, the PIR sensor signal x[n] is convolved with a high-pass filter (HPF) with transfer

function:

H(z) = h[0]+
10

∑
n=1

h[n]
(
z−n + zn) (3.7)
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Figure 8: a) PIR sensor signal corresponding to an epileptic seizure case, and b) its high-pass filtered version.

The high-pass filter is designed using a minimax magnitude criterion, with a normalized angular

passband edge frequency of 0.1π and stopband edge frequency of 0.05π . Figure 8 shows a filtered PIR

signal. The output y[n] is obtained using convolution, y[n] = x[n]∗h[n].
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3.3 Feature Extraction and Classification

In order to design and build a precise model that can deal with a large amount of complex data and

give accurate outcomes, many machine learning and deep learning algorithms are being used for the

task of classification. In this study three different algorithms are used to extract features and classify

the data captured from the PIR sensor, a) a Hidden Markov Model, b) a 1-D ConvNet, and c) a 2-D

ConvNet and they are compared to each other.

3.3.1 Supervised Hidden Markov Model (HMM):

A supervised Hidden Markov Model is used to classify epileptic seizures and absence of epileptic

seizures during a subject’s sleep. In our study, we considered the normal movement during sleep and no

movement during sleep as absence of epileptic seizure. Figure 9 shows three HMMs corresponding to

three classes: Model E corresponds to the occurrence of epileptic seizures, model M corresponds to the

normal movement of the subjects during sleep, and finally, model N corresponds to no-movement case

during deep sleep.

We design three Markov models corresponding to epileptic seizures, normal movement during sleep,

and no-movement during deep sleep from our training data [107]. The filtered PIR signal y[n] is quan-

tized into three levels using a threshold value of T h which is used to define the observation symbols,

states and the corresponding transition probabilities for each model. An estimated threshold T h = 0.05v

is used in our method. We have three states S0, S1 and S2 and three observation symbols O0, O1 and O2

in the three Markov models. The output y[n] of the high-pass is quantized into three levels. The symbol

O0 represents the data when y[n] is within the interval [−T h,T h]. O1 represents the data when y[n] is
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Figure 9: Three HMM chains with three classes, No-movement (N), Movement (M), and Epileptic seizures (E).
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above the threshold T h, while O2 represents the data when y[n] is below −T h. In HMM framework,

we cannot exactly know how the Baum-Welch training algorithm assigns the states [107]. Ideally, state

S0 may correspond to the case of y[n] being in the interval [−T h,T h]. State S1 may represent the data

when y[n] is above the threshold Th, while state S2 may represent the data when y[n] is below−T h. The

states are hidden from us. Hence the designation Hidden Markov Model. We estimate the transition

probabilities from our training data. Each model has different state transition probabilities estimated

by the Baum-Welch training algorithm [107]. The probability of observing a sequence of symbols

O = {o1, · · · ,on} given a state sequence W = {w1, · · · ,wn} and the Markov model (No-Movement) is

expressed as follows:

P(O | N) = π(w1)P(O1 | w1)
n

∏
t=2

Pr(t), (3.8)

where

Pr(t) = Ai jB jk = P(wt | wt−1)P(ot | wt), (3.9)

where π is the initial probability of starting with state w1, n is the number of states in S, ot represents

the observed symbol at time t, Ai j is the state transition probability, Ai j = p(wt = S j |wt−1 = Si) and B jk

is probability of observing the kth symbol ok at the state wt = S j, B jk = P(ok | wt = S j).

Similarly, we calculate
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P(O |M) = π(w1)P(O1 | w1)
n

∏
t=2

Pr(t), (3.10)

and

P(O | E) = π(w1)P(O1 | w1)
n

∏
t=2

Pr(t), (3.11)

which represent the probabilities of movement and epilepsy classes, respectively. Finally, the clas-

sification decision is made based on the most probable class. Fast algorithms for computing the proba-

bilities in (3.8), (3.10), and (3.11) are described in [107].

Each Markov model has different transition probability values because when there is no seizure

the signal stays mostly within the threshold interval [−T h,T h]. Therefore, the model N has very high

probability p(S0 | S0) compared to other models. When there is an epileptic seizure, the signal oscillates

between states frequently due to rhythmic jerks. Therefore, the state transition probabilities p(Si | S j)

(i 6= j) of the model E is higher than those of the other models. In the ”Ordinary Movement” Markov

model, the state transition probabilities of moving back to the resting state (S0), p(S0 | S1) and p(S0 | S2),

are higher than other state transition probabilities, because the subject goes back to static state after body

movements or a turning up to the left or to the right.

3.3.2 1-D ConvNet

Deep learning techniques are modeled to mimic the human brain ability to make an accurate decision

for different complex problems [108]. A ConvNet is a discriminative deep learning model that is used to

extract and classify features based on a combination of non-linear transformation operations and linear
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filters [108], [109]. The main building blocks of the 1-D ConvNet are convolution, activation function,

and pooling [110]. The input to the 1-D ConvNet is a set of 396 time series vectors of PIR data collected

from 33 subjects, as described below. The size of each vector is (1× 764), where 764 represents the

number of feature samples in each vector. The feature detector size is equal to (64× 1) with a depth

of 32 filters. To add a non-linearity to the ConvNet, an activation function must be applied after the

convolution.

In this system, a Rectified Linear Unit (RELU) function is applied to the convolution layer. A

max pooling or down sampling filter of size (1× 701) (as shown in equation 12) is used to reduce the

activation map dimensions, the network computations, and the number of parameters. The output of

the max pooling layer, which represents the high-level extracted features of the input, is flattened and

fed into a fully connected layer. A fully connected layer used in this system is a Neural Network (NN)

of 300 hidden layers and three outputs. Finally, to prevent over-fitting, a dropout of 0.2 is applied to

the output of the 1D-ConvNet. The softmax function is used to squash the output vector to ensure that

the sum of the output probability is equal to one. Generally, the 1D-convolution and the max pooling

layers are used to extract features from the input while the fully connected layer classifies the extracted

features.

Figure 10 shows the 1D-ConvNet design that is used to classify the captured data signal via PIR.

The size of activation map filter and the output of the max pooling layer depends on the size of the

feature detector and the max pooling filter, the stride and the zero padding as shown in equation 3.12.

Filter Size =
(

W −F +2Pd

St

)
+1 (3.12)
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where W in this equation represents the height or width of the input image, F represents the size of the

feature detector filter. Pd refers to the number of zeros padded and St is equal to the number of samples

that the feature detector slides during the convolution operation.

Figure 10: The structure of 1D-ConvNet with max pooling layers, fully connected layer, and three outputs is used

to classify the captured real-time series data using PIR sensor.

3.3.3 2-D ConvNet

The 2-D ConvNet layer consists of two convolutional layers, two max pooling layers and a fully

connected layer. The data captured by the SU system are converted into spectrogram images, prepro-

cessed, reshaped into (64 × 64) arrays with three input channels (RGB) and fed to the ConvNet. The
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input image matrices are convolved with a feature detector of size (3 × 3). An activation map of size

(62 × 62 × 32) is produced. A down-sampling filter of size (2 × 2) is applied to reduce the size of the

activation map.

Figure 11: 2D-ConvNet deep learning structure with two convolution layers and two max pooling layers that used

to classify the spectogram images of the collected data.

While there is loss of information due to down-sampling, the down-sampling or max pooling process

reduces the number of calculations required for the next layers. The size of the filter after the first max

pooling is (31 × 31 × 32) , this filter is convolved with a feature detector of size (3 × 3) and down-

sampled with a (2 × 2) filter before it flattened and fully connected to 128 hidden layers. The output
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of this network maps to to one of three different classes. Figure 11 shows the structural layers of the

proposed 2d ConvNet.

3.3.4 Captured DataSet

The sensor signal of our proposed SU system are sampled at 20 Hz frequency with 10-bit quantiza-

tion. A total of 396 records (132 record for each class) are fed to the 1-D ConvNet. In order to measure

the accuracy of our system and compare it with the activation accuracy of 1-D ConvNet, the data are

mapped into spectrogram images and fed into a 2-D ConvNet. Figure 12 shows the signal corresponding

to normal movements of the SU system. Figure 13 shows the PIR signal during epileptic seizure. For

HMM, the observation data sets are partitioned into an observation data set for each class. The data set

per each class are trained individually. The max loglikelihood of each test set data per class is computed

to classify each observed window. Figure 14 shows the spectrogram images for the cases of no motion,

normal movement, and epileptic seizure.

3.4 Evaluation Metric of the SU System

In many classification problems, one of the most important steps to get an optimum classifier is the

selection of metrics. Confusion matrix is a measurement metric, it is an array of size n×n (true labels×

predicted labels), where n is equal to the number of different classes [111], [112]. For a binary classifier

(n=2), if the actual and predicted values are true, the class cell refers to true positive (TP). If both are

false, then the class cell refers to true negative (TN). The confusion matrix gives a false positive (FP)

when the actual value is false and predicted value is true. If the opposite happens, the class cell refers to

false negative (FN). The related metric parameters can be represented mathematically as:
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Figure 12: The PIR signal due to normal movements selected from one of the 33 subjects, the session period is

40 second.

Figure 13: The PIR signal due to epileptic seizure selected from one of the 33 subjects, the session period is 40

second.



35

Figure 14: Spectogram image of captured PIR signal for a) no motion, b) a normal movement, C) an Epileptic

seizure, all the three images which selected randomly are belong to one of 33 subjects.
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PR =
T P

T P+FP
, (3.13)

RC =
T P

T P+FN
, (3.14)

F1 Score = 2× PR×RC

PR +RC
, (3.15)

ACC =
T P+T N

T P+FP+T N +FN
, (3.16)

where PR (Precision) is the ratio of correctly detected epileptic seizures to the total detected seizures, Rc

(Recall or sensitivity) is the ratio of correctly detected epileptic seizures to all the class observations,

F1 Score is harmonic mean of precision and sensitivity, and Acc (Accuracy) is the probability of the

model’s correct predictions [112]. Since we have three classes in our work (Epileptic seizures, Normal-

movement and No-movement), a confusion matrix of size 3×3 was used as shown in Figure 15. The

measurements of sensitivity and precision metrics for a certain class such as epileptic seizure class can

be represented mathematically as follows:

SensitivityE pilepsy =
CE pilepsy,E pilepsy

∑n TE pilepsy
, (3.17)
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PrecisionE pilepsy =
CE pilepsy,E pilepsy

∑n PE pilepsy
, (3.18)

where CE pilepsy,E pilepsy is the confusion matrix element that represents the intersection of true label

and predicted label of epileptic seizures class, TE pilepsy is the row elements of epileptic seizures class,

PE pilepsy is the column elements of epileptic seizures class. The evaluation metrics for other classes are

defined in a similar way [112].

Figure 15: a) Confusion matrix, (b) sensitivity measurement of the epileptic seizures class, and (c) precision

measurement of the epileptic seizures class.
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3.5 Results and Discussion

For this study we received an Institutional Review Board (IRB) approval to examine the use of our

sensing method on healthy recruited subjects for the purpose of carrying out a preliminary study using

data from simulated motions of seizure. This will enable us to establish an early proof of concept for

epileptic seizure detection using PIR sensors. For access to patients experiencing real seizures, we are

waiting for IRB approval in collaboration with physicians studying epilepsy patients. We recruited 27

male and 6 female healthy subjects for this study.

The subjects were asked to perform a set of activities following procedure that consists of 12 sessions

of activities where each session lasts 40 seconds. Half of the sessions (6) are done in a lit room while

the other half are done in a dark room.

Before the start of the procedure, the subjects were asked to watch a YouTube video of a patient

experiencing a compulsive epileptic seizure. In each session, each subject was asked to lie down on a

couch and perform a set of activities consisting of 1) pretending to sleep without moving; 2) mimicking

motions of an epileptic seizure while pretending to be a sleep; 3) moving the body to change position

during sleep to mimic normal occasional body movement. The data are collected through the SU system

that we designed and transmitted to a dedicated PC. The PIR sensor is the central unit of the SU system

and it works based on the IR energy received from the subject. There was no contact between the sensor

and the subjects through the entire procedure.

To process and classify the captured data set, we initially examined the use of the signal frequency

content for classification. Since the epileptic seizure class has the highest frequency content among

the three classes (epileptic seizure, movement, and no movement), we computed the Discrete Fourier
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Transform (DFT) of the signal and defined features based on the fraction of the signal frequency content

energy in suitably defined bands. We investigated features with different choices of frequency band

boundaries and among these we chose the features that yielded the highest accuracy which was equal

to 84.6%. The count of false positives was high, and we sought to improve the classification perfor-

mance. Therefore, we examined the use of machine learning algorithms in order to enhance recognition

accuracy.

A HMM algorithm was used to classify the collected data sets. As described before, three Markov

models (epilepsy, ordinary movement and no-movement) were trained individually. The maximum log-

likelihood of each test data set per class was measured to classify each suitable selected window of

observation. The validation accuracy using HMM is 97.032%. In addition to that, two deep learning

classification methods were used to classify the captured data. For the 1-D ConvNet, the data set are

converted into 396 records. These records are split into 297 training records and 99 testing records (i.e.

75% training set and 25% test set). The data are fed into a multi-layer network that consists of a 1D

Convolution layer, a flattening layer, and a fully connected layer (see Table I).

To prevent overfitting, a drop out of 0.2 and a softmax activation function are applied to the output

[113]. All the epileptic seizure cases were correctly detected, and no false positive values appeared.

On the other hand, 3 normal movement cases were misclassified as no-movement cases. Therefore, the

validation accuracy of the system classification is equal to 96.97%, while the validation loss is equal to

0.06. Figure 16 shows the confusion matrix of the designed network. 1D-ConvNet successfully detected

all the seizures. The precision, recall and F1 Score evaluation metrics are also calculated (see Table II).
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TABLE I: THE STRUCTURAL LAYERS AND NUMBER OF PARAMETERS OF THE 1D CONVNET

Layer type Output shape parameters #

Conv 1d, 1 stride, 0 Padding 32 x 701 x 1 2080

RELU (Activation Function) 32 x 701 x 1 0

Max poling, 1 stride, 0 Padding 32 x 1 x 1 0

Flatten Hidden 32 0

Dense Hidden 300 9900

Dropout (0.2) 300 0

Dense Output 3 903

Softmax (Activation Function) 3 0

In the second method of data classification, the captured data was converted into spectrogram im-

ages. All the spectrogram images are reshaped into a (64 × 64) arrays and fed into a 2D ConvNet. The

network designed consists of two convolutional layers with feature detector size (3 × 3) and depth 32

for each, two max pooling layers with down sampling filter of size 2 × 2 (2 stride and depth length 32)

and a fully connected layer with 128 hidden layers and three outputs (see Table III).

Excessive training causes the classifier to memorize the input data. In order to avoid the poor

performance of the classifier, a K-fold cross validation is applied on the input data images to estimate

the generalized performance of the classifier [114]. The set of images were divided into 12-fold groups

of equal size (33 records). The first fold is used as a test dataset while the remaining folds are used as
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TABLE II: EVALUATION METRIC OF THE 1D CONVNET WHICH SHOWS THE VALUE OF PRECI-

SION, AND RECALL, F1 SCORE FOR EACH OF THE THREE CLASSES: EPILEPTIC SEIZURE, NORMAL

MOVEMENT, AND NO MOVEMENT

Precision Recall F1-Score Support

Class0(Epileptic Seizure) 1.00 1.00 1.00 33

Class1(Normal Movement) 1.00 0.91 0.95 33

Class2(No Movement) 0.92 1.00 0.96 33

Avg / total 0.97 0.97 0.97 99

a training dataset. The accuracy and the other performance metrics are then calculated. The procedure

was repeated twelve times. The total accuracy, precision, recall and F1 Score of this network are equal

to the average of the K-fold cross validation trials (see Table 3.4). The validation accuracy of the 2D-

ConvNet designed is equal to 98.98%. Figure 17 shows the confusion matrix of 2D-ConvNet design.

Because of the use of the K-fold, all the spectrogram input images were used as a training set and as a

data set during classification.

It is observed in this study that the 2d ConvNet gives better performance than the 1d ConvNet,

with higher accuracy and precision. However, in terms of speed HMM is the fastest machine learning

algorithm (see Table VI, and Table V). The total number of parameters that are used in both networks

depend on the size, the number of filters, the number of neurons that are used, and the way that they

connect to the other neurons. This system is used to detect the generalized epileptic or generalized tonic-

clonic seizure but not the partial seizure that happens in a certain part of the brain [115]. To use this
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Figure 16: A 3 × 3 two-dimensional (true label vs predicted label) confusion matrix of 1D-ConvNet.

system in patient monitoring, the sensor can be connected to a wireless network to alert a first response

or a caregiver.

A variety of high-level machine learning and deep learning techniques were used to classify the

captured signals from the PIR sensor. All the programs were implemented using a CPU E5-1620 V3,

3.5 GHz with 8 cores, Memory size 32 GB, and an operating system Centos 6.9. A comparison between

the applied algorithms was done based on the validation accuracy, implementation time (See Table V),

evaluation metric, confusion matrix, and structural design. We observe that the accuracy in Table V
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TABLE III: THE STRUCTURAL LAYERS AND NUMBER OF PARAMETERS OF THE 2D CONVNET THAT

GIVES THE TYPE OF LAYERS USED, THE SIZE OF EACH LAYER, AND THE NUMBER OF PARAME-

TERS EXTRACTED FROM EACH LAYER

Layer type Output shape no. of parameters

Conv 2d, 1 stride, 0 Pad 32 x 62 x 62 896

RELU (Activation Function) 32 x 62 x 62 0

Max Pooling 2d, 2 strides, 0 Pad 32 x 31 x 31 0

Conv 2d, 1 stride, 0 Padding 32 x 29 x 29 9248

RELU (Activation Function) 32 x 29 x 29 0

Max poling 2d, 2 strides, 0 Pad 32 x 14 x 14 0

Flatten 6272 0

Dense Hidden 128 802944

Dense Output 3 387

Softmax (Activation Function) 3 0

is equal to 97.03% for HMM, 96.97% for 1D ConvNet, and 98.98% for 2D ConvNet. We compared

our results with the accuracy of the other motion-based epileptic seizure detection systems (seeTable

VI). We observe that our method shows significantly improved performance, while noting that it was

achieved with data obtained from simulated epileptic seizures.

For real-time monitoring of a patient, the collected sensor data will be processed and classified using

overlapping data segments. It is adequate to process and analyze the data segments at the rate of 15 to
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TABLE IV: EVALUATION METRIC OF THE 2D CONVNET WHICH SHOWS THE VALUE OF PRECI-

SION, AND RECALL, F1 SCORE FOR EACH OF THE THREE CLASSES: EPILEPTIC SEIZURE, NORMAL

MOVEMENT, AND NO MOVEMENT

Precision Recall F1-Score Support

Class0(Epileptic Seizure) 1.00 1.00 1.00 33

Class1(Normal Movement) 1.00 0.97 0.98 33

Class2(No Movement) 0.97 1.00 0.98 33

Avg / total 0.99 0.99 0.99 99

TABLE V: VALIDATION ACCURACY AND IMPLEMENTATION TIME OF EACH CLASSIFIER, HMM, 1D,

AND 2D CONVNET

Classifier Validation accuracy Implementation time (µsec)

HMM 97.03% 00.02

1D ConvNet 96.97% 07.10

2D ConvNet 98.98% 92.20

20 times per minute. This provide 3-4 seconds of data acquisition and processing time to analyze the

data. Given the processing times shown in Table V, it is clear that we can accomplish the processing and

analysis within 3 seconds to support real-time monitoring. To improve the performance of the system

we plan to investigate the use of an array of sensors.
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Figure 17: A 3 × 3 two-dimensional (true label vs predicted label) confusion matrix of 2D-ConvNet.

TABLE VI: VALIDATION ACCURACY COMPARISON WITH OTHER MOTION SENSORS TO DETECT

EPILEPTIC SEIZURES

Method Type of sensor Accuracy

Proposed PIR 98.98%

Beniczky [36] Wireless wrist accelerometer 89.00%

Nijsen [37] 3D-accelerometer 55.56%

Narechania [41] mattress sensor 80.00%



CHAPTER 4

CONVULSIVE MOVEMENT DETECTION USING LOW-RESOLUTION

THERMOPILE SENSOR ARRAY

Parts of this chapter have been presented in (Hanosh et al., [2]). Copyright c© IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020.

Sudden Unexplained Death in Epilepsy (SUDEP) is a fatal threat to patients who suffer from convul-

sive seizures. The causes of the SUDEP are still not well-understood, and the patients who suffer from

epileptic seizures may face death during sleep, likely after an unwitnessed convulsive seizure. An im-

portant step towards SUDEP prevention is reliable seizure detection during sleep that is inexpensive and

unobtrusive. In this Chapter, we investigate the use of a non-contact, non-intrusive, privacy-preserving

system that can detect convulsive movements experienced by human subjects. Detection is accom-

plished by a combination of uncooled low-cost, low-power, low-resolution (8×8) IR sensor array, and

a deep learning algorithm implemented with a Convolutional Neural Network (CNN). The thermopile

sensor array is placed 1m from subjects who are reclining in bed. The CNN training set consists of ther-

mal video streams from 40 healthy subjects mimicking convulsive movements or lying in bed without

making convulsive movements.

4.1 Contribution

The contributions of this chapter can be summarized as follows:

46
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1. We propose a novel approach to detect the convulsive movements during sleep using low-cost,

low-resolution, non-intrusive and contact-free (8×8) thermopile IR sensor array.

2. For this study we received an Institutional Review Board (IRB) approval to examine the use of

our sensing method on healthy recruited subjects for the purpose of carrying out a preliminary

study using data from simulated Convulsive motions of seizure.

3. Our approach is applied on 40 healthy recruited subjects (28 males and 12 female).

4. A deep learning Convolutional Neural network (CNN) algorithm is used to classify convulsive

movements and non-convulsive episodes.

5. Our approach is reliable since it produces no false negatives to distinguish between the occurrence

and non-occurrence of convulsive movements.

6. The performance results show that the thermopile sensor array has the potential to detect convul-

sive seizures while maintaining patient privacy and not requiring direct patient contact.

The rest of this chapter is organized as follows: Our proposed system design is described in Sec. 4.2.

The data acquisition using thermopile sensor array is shown Sec. 4.2.1. The input data processing is

presented in Sec. 4.2.2. The feature extraction and classification are shown in Sec. 4.3. The supervised

2-D Convolutional Neural Network (CNN) description is explained in Sec. 4.3.1. The Evaluation

metric of the proposed system design is shown in Sec. 4.4. The experimental results and discussion are

provided in Sec. 4.5. Finally a comparison between the PIR sensor and the thermopile sensor array to

detect the convulsive seizures is presented in sec. 4.6.
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4.2 System Design

The seizure-detection system consists of a low-resolution (8×8) Grid-eye thermopile sensor to cap-

ture the thermal images due to body movements within its field of view, an Arduino uno microcontroller

with 10 Hz sampling rate, 10-bit quantization level, and a processing unit for feature extraction and

classification, as seen in Figure(18).

Figure 18: The proposed system consists of a thermopile sensor array, Arduino Uno micro controller, and a

processing unit for extracting and classifying data.
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4.2.1 Data Acquisition using the Thermopile Sensor Array

A thermopile sensor array consists of low-cost, highly sensitive, uncooled sensors that generate

an electrical signal proportional to the detected infrared radiation when infrared radiation is incident on

their active area. Individual thermoelements are made of two different thermal activity materials and can

detect light with a wavelength between 8 and 13µm, which is not perceivable by the human eye. Their

operation is based on the Seeback effect phenomena in which the heat difference between two different

thermal activity materials generates an electrical signal between the two ends of the thermoelement

[116]. The thermopile sensors generate a thermal image from the infrared radiation displayed as a

matrix (Figure 19) [117]. We used an 8× 8 Panasonic Grid-EYE sensor array that captures a thermal

64-pixel images every 100msec, with a power consumption of ' 15 mW. The low resolution of the

sensor array is advantageous in preserving the privacy of the observed subjects.

Data for this study were collected from normal recruited subjects under a protocol approved by an

Institutional Review Board of the University of Illinois at Chicago. Before the start of the data acquisi-

tion, we presented to the subjects, two different YouTube videos of patients experiencing a convulsive

epileptic seizure. In each session, each subject was asked to lie down on a couch, located one meter

away from the thermopile sensor array, and perform a set of different activities consisting of 1) pretend-

ing to sleep without moving; 2) mimicking normal incidental body movements by changing the position

during sleep; 3) mimicking the convulsive epileptic seizure movements while pretending to be asleep

(Figure 20 and Figure 21).
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Figure 19: The thermopile sensors that generate a thermal image from the infrared radiation displayed as a matrix.
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Figure 20: a) A sequence of frames captured by an (8× 8) sensor array due to no movement (sleep mode). b)

A sequence of frames captured by an (8× 8) sensor array due to normal movements. c) A sequence of frames

captured by an (8×8) sensor array due to convulsive movements.

4.2.2 Input Data Preprocessing

Image preprocessing consisted of calculating the absolute difference between two consecutive frames

before feeding the information to the neural network as seen in equation (4.1).
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Figure 21: a) A thermal image with corresponding temperature values captured by an (8× 8) sensor array due

to no movement (sleep mode).b) A thermal image with corresponding temperature values captured by an (8×8)

sensor array due to convulsive movement.

Idi f f [n] = |I[n]− I[n−1]| (4.1)

where I[n] and I[n− 1] represent two consecutive frames captured at time n and n− 1 respectively by

thermopile sensor array and Idi f f [n] represents the input frame to the neural network. In the absence

of motion, the difference is zero and a stationary subject is not detectable. Since we seek to detect the

motion not the presence of the subject, the absence of the subject in a difference image used as neural

network input is not a concern (Figure 22).

4.3 Feature Extraction and Classification

Deep learning algorithms are now commonly used to extract and classify features in complex data

sets [118]. In this work we used a 2-D Convolutional Neural Network (CNN) as a binary classifier to

detect the occurrence and non- occurrence of convulsive motion.
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Figure 22: An absolute difference between two consecutive thermal images that captured using an (8× 8) ther-

mopile sensor array.

4.3.1 2-D CNN Description

The number of parameters that are used in the 2D-CNN depends on the size and depth of the filters,

type of filters (kernel filter in our design), and the number of hidden layers and neurons that are used

and the way that they connect to each other [119].

Our deep CNN design consists of two convolutional layers, a max pooling layer, and a fully con-

nected layer. Generally, the convolution stage and max pooling stage are responsible of extracting the

features from the input images, while the fully connected layer stage classifies the extracted features

from the previous stages. The input to the CNN, which represents the set of an (8×8) thermal images,

is convolved with 32 kernel filters of size (3× 3). An activation map of size (6× 6× 32) is produced.

A batch normalization is used in order to make the learning process more stable, and to reduce the
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number of epochs that are needed to train the deep network. A Rectified Linear Unit (RELU) activation

function is applied to the convolved data to add a non-linearity. A down-sampling or max-pooling filter

of size (2× 2) is used to reduce the activation map dimensions. The output of the max pooling layer

(3× 3× 32) is convolved with another 16 kernel filters of size (3× 3) and down-sampled with a filter

of size (2×2). The output of the feature extraction layers (2×2×16) is flattened and fully connected

to two hidden layers of size 128 and 64 respectively (see Table VII and Figure 23).

The batch size of this network is 32 with 50 epochs. Excessive training can cause the classifier to

memorize the input data. A dropout of 0.2 and a Ridge Regression L2 regularization with regulariza-

tion parameter value equal to 0.001 are used to prevent overfitting. In addition to that a K-fold cross

validation is applied to the input data images to avoid the poor performance of the classifier [120].

In order to ensure that the sum of the output probabilities is equal to one, the SoftMax function is

used to normalize the output vector. An Adam optimizer is used as stochastic gradient descent optimizer

with cross-entropy loss to estimate the error of our model and to measure the performance of classifica-

tion, for which the probability of its output lies between [0,1]. If the predicted probability diverges from

the actual label, the loss function increases and vice versa. Equation (4.2) shows the cross-entropy loss

JCH function for multi classes.

JCH =−
C

∑
c=1

Po,c ln P̃o,c (4.2)

where C represents the number of classes, Po,c is the actual label of observation o, P̃o,c is the predicted

probability of class c, and ln is the natural log. Since we are dealing with two classes, occurrence and
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Figure 23: A structural diagram of the proposed 2-D CNN that used to classify captured thermal images into

occurrence or non occurrence of convulsive movements.

non-occurrence of convulsive movements, the equation of cross entropy loss of our proposed network

can be written as follows:

JCH =−
(
P ln

(
P̃
)
+(1−P) ln

(
1− P̃

))
(4.3)

Figure 23 shows the 2-D CNN structural design that is used to classify the captured data of the

thermal sensor array.

4.4 Evaluation Metric of System Design

The selection of the evaluation metric is a crucial step in many classification problems to get an

optimum classifier, and to measure the quality of the machine learning or deep learning models. One
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such metric is the confusion matrix, which is an array of size (m×m) (Predicted labels×Actual labels),

where m represents the number of the classes of the classifier model [121]. Since we have two classes in

our model, occurrence and non-occurrence of convulsive movements, m is 2, and the model is a binary

classifier. If the predicted label and actual label of the confusion matrix are both false, the class cell of

the confusion matrix indicates true positive (TN), while if both are true, then the class cell refers to true

positive (TP). A false positive (FP) is generated when the predicted value is true, and the actual value

is false. In our design the (FP) refers to a false alarm generated in response to a non-convulsive state.

The converse situation (i.e. a convulsive movement is misclassified as a non-convulsive movement), is

a false negative (FN). All the metric parameters can be represented mathematically as:

PR =
T P

T P+FP
, (4.4)

RC =
T P

T P+FN
, (4.5)

F1Score = 2× PR×RC

PR +RC
, (4.6)

Acc =
T P+T N

T P+T N +FP+FN
, (4.7)

in which Precision (PR), or Positive Predicted Value, is the ratio of the number of cases with correctly

detected convulsive movements to the total number of cases that the CNN classifies as having convulsive

movements. Recall (RC), or sensitivity, is the ratio of number of cases with convulsive movements

that were detected correctly to the number of all cases with convulsive movements. F1− Score is the
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harmonic mean of the recall and precision. Acc is the diagnostic accuracy, or the probability that the

model’s prediction is correct [121].

4.5 Results and Discussion

Twenty-eight male and 12 female healthy subjects were recruited to be monitored with the IR array

while acting out either 12 seconds of convulsive movements or 12 seconds of simulated rest or normal

movements.

Altogether 4800 frames were collected for each of the two class
(

12seconds×10 f rames
second ×40sub jects

)
.

The total preprocessed images are fed into the CNN for training. In order to avoid the small data set

issues, the data were augmented using an image data generator.

The image data set was split into 10 groups of equal size for each group. The first group was used

as a test dataset while the remaining groups were used as training dataset. The performance metrics

and the classification accuracy were then calculated. The procedure was repeated 10 times, each time

trained with nine groups and tested with the remaining group. The test set contains 1600 images, and

the classification accuracy of the network is 99.2% (Table VIII).

The 2D-CNN classifier had no false negatives. meaning that it identified all the cases with convulsive

movements. Thirteen episodes of normal movement were misclassified as convulsive, giving a false

positives rate of 1.6% (Figure 24). A comparison between the original captured thermal images data

sets, and absolute difference images data sets Iinput [n] is shown in Table IX. Absolute difference image

based classification is far superior to single image based classification. This is due to the fact that we

classify movement information not the thermal images using the CNN.
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TABLE VII: THE STRUCTURAL LAYERS AND NUMBER OF PARAMETERS OF THE 2D CNN.

Layer type O/P shape no. of parameters

Conv 2d, 1 stride, 0 Pad 32 ×6×6 896

Batch-Normalization 32 ×6×6 128

RELU (Activation Function) 32 ×6×6 0

Max-Pooling 2d, 1 strides, 0 Pad 32 ×3×3 0

Conv 2d, 1 stride, 0 Padding 16 ×2×2 2064

Batch-Normalization 16 ×2×2 64

RELU (Activation Function) 16 ×2×2 0

Flatten 64 0

Dense Hidden 128 8320

Activation 128 0

Dense Hidden 64 8256

Activation 64 0

Dropout 64 0

Dense Output 2 130

Soft-max (Activation Function) 2 0
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Figure 24: Evaluation metric of the 2D CNN.
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TABLE VIII: THE STRUCTURAL LAYERS AND NUMBER OF PARAMETERS OF THE 2D CNN.

Pre-cision Re-call F1-Score Sup-port

Convulsive movements 1.00 0.98 0.99 800

Non-convulsive movements 0.98 1.00 0.99 800

Avg / total 0.99 0.99 0.99 1600

TABLE IX: A COMPARISON BETWEEN THE CAPTURED THERMAL IMAGES DATA SETS, BEFORE

TAKING THE ABSOLUTE DIFFERENCE, AND AFTER TAKING THE ABSOLUTE DIFFERENCE.

I/P to CNN TP FP TN FN Accuracy

Idi f f [n] 800 13 787 0 99.2%

I[n] 669 131 672 128 83.3%

4.6 PIR sensor vs Thermopile Sensor Array

Both our novel approach studies were controlled studies due to the position of sensors, the distance

of the sensor from the subjects, and the activities the recruited subjects were asked to do.

Although the PIR sensor and the thermopile sensor array have the ability to detect the convulsive

movements, but each sensor can do it in different approaches. It should be noted that the number of

subjects in the two studies is different which will affect a comparison of the two types of sensors. The

PIR sensor uses the pyroelectric detectors to measure the changes in the infrared radiation received while
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the thermopile sensor array uses the thermocouples to measure the temperature differences. Owing to

this fact, both sensors are shown to be reliable to detect the epileptic seizures in a home environment. In

clinical settings where the circumstances are different due to the fact that the patient’s room may have

more than one patient and the motion could be affected by other factors. The thermopile sensor array

is advantageous over the PIR sensor because it can spatially distinguish multiple subjects in a scene.

The PIR sensor may detect other movements due to other subjects in the room and may produce false

alarms. In addition, the thermopile sensor array can detect the thermal energy of the static subject. One

benefit of the PIR sensor over the thermopile sensor array, it has a wider bandwidth.

Both the low-resolution 8×8 thermopile sensor array; and the PIR sensor, can reliably detect simu-

lated convulsive movements. Both systems are contact-free, noninvasive, and use passive sensors.

TABLE X: A COMPARISON BETWEEN A LOW-RESOLUTION 8× 8 THERMOPILE SENSOR ARRAY

AND PIR SENSOR.

Thermopile sensor array PIR sensor

Sampling rate 10 Hz 20 Hz

Detection distance Up to 7m Up to 5m

Type of data Thermal images Time series data

Accuracy 99.2% 98.98%
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A comparison between the thermopile sensor array and the PIR sensor based on the detection dis-

tance, sampling frequency, activation accuracy to detect the convulsive seizure, and the type of collected

data are shown in Table X.



CHAPTER 5

RESPIRATION RATE ESTIMATION USING A PASSIVE THERMOPILE

INFRARED SENSOR ARRAY

The respiration rate alongside the heart rate, blood pressure and body temperature, is a vital sign

for assessing the human’s body functions. In this chapter, we investigate the use of a thermopile sensor

array to estimate respiratory rate. We propose and experimentally validate a novel method that human

respiration rate may be reliably estimated from respiratory-induced body movements captured using a

low-cost, contact-free, passive thermopile sensor array. A thermopile sensor array detects the thermal

infrared energy emanating from stationary human subjects within its area of detection. The sensed

energy fluctuates with body movement. Low resolution 8× 8-pixel thermal video clips were collected

from 40 recruited subjects at rest positioned one meter away from the thermopile sensor array. Image

frames are processed by Haar-like filters leading to the extraction of a one-dimensional feature signal

from each video. A peak detection algorithm is used to identify each breath period. The proposed

method is computationally efficient because it is based on multiplierless Haar-like feature extraction

and peak detection.

5.1 Contribution

In this chapter we summarized our contributions as follows:

1. We propose and experimentally validate a novel approach to estimate the respiratory rate from

respiratory-induced body movements.

63
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2. We investigate the use of low-cost, low-resolution, and contact-free thermopile IR sensor array to

estimate the respiratory rate. A thermopile sensor array detects the thermal infrared energy ema-

nating from stationary human subjects within its area of detection. The sensed energy fluctuates

with body movement.

3. For this study we received an Institutional Review Board (IRB) approval to examine the use of

deidentified data that are collected from healthy recruited subjects during rest. Our approach is

applied on 40 healthy recruited subjects (28 males and 12 female).

4. A Haar-like filters and peak detection algorithm are used to extract and estimate each breath

period. Our proposed method is computationally efficient because it is based on multipliersless

Haar-like feature extraction and peak detection algorithm.

5. We achieved a high positive correlation rate of 97.7% between the actual respiratory rate and the

estimated rate in our dataset.

The rest of this chapter is organized as follows: The materials and methods of our proposed system

are described in Sec. 5.2. The thermopile Infrared (IR) sensor array is presented in sec. 5.2.1. The

thermopile data processing is shown Sec. 5.3. Finally, the experimental results and discussion are

provided in Sec. 5.4.

5.2 Materials and Methods

In this work, we used the Panasonic Grid-Eye thermopile passive infrared sensor array to monitor

subjects. The contact- free sensor array has a detection range of up to 7 meters. The sensor is placed

1m away from the subjects. It generates low- resolution 8×8 infrared images of subjects as shown in
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Figure 26. In the following subsection we briefly review the basic features of the thermopile sensor

array.

Figure 25: Proposed system design to monitor and estimate the respiration rate using a low resolution, contact-free

thermopile sensor array.

In the following subsection we briefly review the basic features of the thermopile sensor array.

5.2.1 Thermopile InfraRed (IR) sensor array

The low-resolution thermopile IR sensor array is designed to measure the thermal energy by detect-

ing the IR radiation from a subject within its area of detection. The subject need not be in motion to
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Figure 26: Thermopile InfraRed (IR) sensor array.

generate a non-zero sensor signal, as in the case of pyroelectric IR sensors. The thermopile IR sensor

has several thermocouples connected in series. Each thermocouple has two junctions made of two dis-

similar materials: the hot junction and the cold junction. The cold junction is isolated and, therefore, it

does not absorb any IR radiation. On the other hand, the hot junction is sensitive to the IR radiation as

shown in Figure 27. The thermopile sensor works based on the Seeback effect phenomena [122]. When

the hot junction detects the IR radiation, a temperature difference between the two junctions is created

and an electrical voltage Vout proportional to the difference between the hot junction temperature Thot

and the cold junction temperature Tcold is produced according to Equation (5.1):

Vout = NthSb (Thot −Tcold) (5.1)
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where Nth is the number of thermocouples that are connected in series and Sb is the coefficient of the

Seeback effect phenomena.

Figure 27: The internal structure of the thermopile sensor array that is made of several thermocouples connected

in series.

Panasonic Grid-Eye passive IR thermal sensors array with a low power consumption of 15 mW is

used in this work. The sensor can produce 10 images per second. The Panasonic Grid- Eye sensor

can detect Long-Wave Infrared (LWIR) light in a wavelength range from 8 to 13µm. The sensor can

therefore be used to monitor subjects during sleep at night as well. The low-resolution IR video streams
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captured using the thermopile sensor array are sent to the processing unit via a microcontroller as shown

in Figure 25.

5.3 Thermopile Data Processing

In order to extract the feature parameters from the captured low resolution 8×8 frames, we apply

Haar-like filters [123] on each frame and obtain three different feature signals sh, sv and svc representing

horizontal, vertical, and vertical central differences in the recorded low-resolution thermal video data,

respectively. Figure 28 describes the feature extraction process from the thermopile sensor array data.

The feature signal sv is defined as follows:

sv(k) =

∣∣∣∣∣∣∑
N
i=1 ∑

N/2
j=1 Ik(i, j)

N2/2
−

∑
N
i=1 ∑

N
j=N/2+1 Ik(i, j)

N2/2

∣∣∣∣∣∣ (5.2)

where Ik(i, j) is the (i, j)−th pixel of the k-th frame of the infrared thermal data. Each recording is

one-minute long with a frame rate of 10 frames/sec yielding 600 frames. Therefore k∈{1,2, ...,600}.The

image size is N×N and N = 8.

Similarly, sh, and svc are defined as follows:

sh(k) =

∣∣∣∣∣∑N
j=1 ∑

N/2
i=1 Ik(i, j)

N2/2
−

∑
N
j=1 ∑

N
i=N/2+1 Ik(i, j)

N2/2

∣∣∣∣∣ (5.3)

and

svc(k) =

∣∣∣∣−∑
N
i=1 ∑

N/4
j=1 Ik(i, j)

N2/4 +
2∑

N
i=1 ∑

3N/4
j=N/4+1 Ik(i, j)

N2/2 − ∑
N
i=1 ∑

N
i=3N/4+1 Ik(i, j)

N2/4

∣∣∣∣ (5.4)
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Figure 28: a) Haar-like filters are applied to capture the structural differences in each thermal image: (a) the first

filter is applied on the left and right halves of each frame, b) the second Haar-like filter is applied on the upper

and lower halves of each frame, and c) the third Haar-like filter is applied by dividing each frame into three zones

as shown.
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A typical one-minute-long feature signal sv is shown in Figure 29. The other feature signals sh

and svc are similar to sv. We observe an approximately periodic behavior due to respiration rate in

these signals. The one-dimensional time-series feature signals sv(k), sh(k) and svc(k) are decimated

by a factor of 10 after applying a finite-duration impulse response (FIR) lowpass filter (LPF) of order

30 with normalized passband frequency= 0.03π , and the normalized stopband frequency = 0.1π . We

decimate the feature signals because the frame rate of the sensor is 10 frame per second (fps) or 600

frames/minute and this rate is unnecessarily high for the respiration rate which has a range of 12 to

20 breaths per minute for adults. A down-sampled feature signal is shown in Figure 30. The down-

sampling factor should set to a different value if our approach method is applied to measure the RR

for children who have a RR range of 17 to 27 (bpm) [124]. Since all our datasets were recorded from

adults subjects. Therefore, we did not change the set of down-sampling factor. We detect the peaks of

the decimated feature signals to determine the respiration rate as shown in Figure 30. We modified the

peak detection algorithm described in [125] to determine the peak locations. Since the peak is the data

sample that is a local maximum, we calculated the local maximum value in a moving window of size

2w+ 1 = 7. Our peak detection algorithm is described in Algorithm 1 and a typical detection result is

shown in Figure 30. The peaks of the decimated feature signal are clearly identifiable, and the peak

detection process is very accurate and efficient.

The total number of the maximum topological features of the decimated time series signal represents

the number of respiration per minute (Figure 30).
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Figure 29: A feature signal after applying the vertical Haar-like filter on each captured IR frame.

5.4 Experimental Results

We collected IR data from forty healthy subjects (28 males, and 12 females). The subjects lay on a

bed in a resting position as shown in Figure 25 and the distance between a subject and the sensor was

about 1m. We recorded 60-second long 8×8 IR video clips with 10 fps frame rate using the thermopile

sensor array.

Haar-like filters are applied to each frame of the data collected from the thermopile sensor array to

measure the absolute average temporal difference values as shown in Figure 28. Each filter generates

a single value for each frame. As a result, we obtain 3 time-varying feature signals sh, sv and svc for

each video. Figure 29 shows the signal sv after applying the vertical Haar-like filter on each captured
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Figure 30: The downsampled feature signal and the detected peaks. The number of peaks per minute corresponds

to the respiration rate (bpm=breath per minute).

IR frame. The frame rate of the sensor is 10 Hz which is well above the Nyquist rate for typical human

respiration rate detection. We therefore decimate the data by a factor of 10 to reduce the sampling rate

to 1Hz. We low-pass filter the feature signal signals sh, sv and svc using a Low-Pass Filter (LPF) with

a cutoff frequency equal to 0.1 and down-sample the output by a factor of 10 and we obtain the signal

shown in Figure 30. This signal is approximately periodic as it tracks the subject’s respiration rate. We

applied a modified version of a known peak detection algorithm to find the number of local maxima.

The number of maxima per minute determines the respiration rate or the number of chest movements

within one minute as shown in Figure 31.
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Figure 31: A block diagram of the proposed algorithm to extract the respiratory rate from the low-resolution

thermal images by using Haar-Like filter and peak detection algorithm.

We measured the average Root Mean Squared Error (RMSE) for each Haar-like feature. We achieved

an average RMSE equal to 0.387 breaths per minute when the Haar-Like filter is applied on three dif-

ferent regions of each frame, while an average RMSE equal to 0.274, and 0.591 are achieved when the

Haar-Like filter is applied on the left and right side, and on the upper and lower side of each frame,

respectively. The results are summarized in Table XI. We compared our system design with Lorato et

al. [126] that used a thermopile sensor array from distance of less than one meter to monitor the respira-

tion rate in Table XII. We measured the average Root Mean Squared Error (RMSE) for each Haar-like

feature approach. We achieved an average RMSE equal to 0.387 breaths per minute when the Haar-Like

filter is applied on three different regions of each frame, while an average RMSE equal to 0.274, and
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0.591 are achieved when the Haar-Like filter is applied on the left and right side, and on the upper and

lower side of each frame, respectively. The RMSE error is defined as follows,

T hRMSE =

√
∑

N
i=1 (T hRR(i)−ORR(i))

2

N
(5.5)

where T hRR is the respiratory rate measurements extracted from the output signal of the thermopile

sensor array, ORR is the ground truth respiratory rate readings due to chest movements monitoring, and

N is the total number of datasets recordings. Based on the observed results reported in Table XI, we

chose the filter with the minimum average RMSE.

TABLE XI: AN AVERAGE RMSE OF THREE DIFFERENT HAAR-TYPE FILTERS THAT USED IN OUR

WORK

Haar-like filters sv : Left and right

rectangular

sh Upper and lower

rectangular

svc : Three regions

rectangular

Average RMSE 0.274 0.591 0.387

In order to measure the reliability of this system, the chest movements of one subject out of the 40

subjects are visually recorded and used as a ground truth measurement [127]. A correlation coefficients

is used to measure the relation between the actual and estimated respiratory rate value as follows
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Figure 32: The distribution of the respiration rate values that are estimated from the recorded data.

r =
∑

N
i=1(T hi− T̄ h)(oi− ō)√

∑
N
i=1(T hi− T̄ h)2 ∑

N
i=1(oi− ō)2

(5.6)

where T h is the estimated respiratory rate measured from the output streaming frames of an 8×8 ther-

mopile sensor array,T̄ h is the mean of the estimated respiratory rates from the thermopile sensor array

signal, o is the ground truth respiratory rate measurements, ō is the mean of the ground truth measure-

ments, and N is the number of recordings. A high positive correlation coefficient equal to 97.77% is

achieved between the monitored respiratory rate as a ground truth and the estimated respiratory rate



76

from the captured signal of the thermopile sensor array. The average respiratory rate is equal to 18

breaths per minute. Figure 32 shows the distribution of the estimated respiratory rate of the recorded

data.

We compared our system design with Lorato et al. [126] that used a thermopile sensor array to

monitor the respiration flow in Table XII. Lorato et al.’s method performs best when the distance between

the sensor and the subject is about 0.2 meters, which is too close to the subject. On the other hand,

our sensor can determine the respiration rate when the distance is about 1 meter, which is a much

comfortable distance to monitor subjects. As a result, the sensor can be placed on an end table near the

bed of the subject and it can be used to monitor subjects during the sleep. We have 40 healthy subjects

in our study compared to 6 subjects in [126]. Although the datasets are different, we have slightly better

accuracy compared to [126].

Our algorithm can also detect the respiration rate from the frontal head thermal infrared images. We

did not have any frontal head recordings using the thermopile sensor array in our dataset. Unfortunately,

we are currently unable to record new data due to restrictions of the COVID-19 pandemic. However, we

found three thermal IR videos on YouTube and created low-resolution video-clips as shown in Figure

33. The human head makes slight movements whenever we take a breath [128]. The IR camera captures

these subtle movements and the warm air coming out of nostrils and the mouth.

We extracted IR image sequences from the video clips and down-sampled them into the 8×8-pixel

size, which is the image size of the thermopile sensor array that we use. We applied our algorithm on

the low-resolution YouTube clips. The respiration rate estimation procedure is summarized in Figure

33. A 96.07% correlation rate are achieved between the actual respiratory rate and the estimated rate
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TABLE XII: A COMPARISON BETWEEN OUR APPROACH THAT USED A THERMOPILE SENSOR AR-

RAY TO MEASURE THE RESPIRATORY RATE AND LORATO ET AL [126]

Our proposed system Lorato et al. [126]

Sensor type 8×8 thermopile sensor array 8×8 thermopile sensor array

Approach Haar-like feature extraction and

peak detection, count the number

of peaks in the time domain

Hanning-windowed and 1DFFT,

find the maximum peak in the fre-

quency domain

Number of tested

subjects

40 healthy subjects 6 healthy subjects

Sensor distance 1.0m 0.2m

Ground truth ob-

tained

by counting the chest movements

over a 60sec period

by impedance pneumography

Average RMSE 0.274 breaths per minute (bpm) 1.59 bpm

Correlation with

the ground truth

97.77% Was not specified

that detected from the thermal low-resolution images as shown in Figures 34 and 35. In these video

clips subjects move their heads in the video clips. Despite head movements our algorithm was able to

determine the correct respiration rate.
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Figure 33: Steps of the proposed algorithm applied on three thermal YouTube videos.

We calculated the average RMSE values for each Haar-like filter as shown in Table III. The feature

signal sv obtained using the left-right Haar filter produces the best results in these three video clips. We

can accurately detect the respiration rate as shown in Figure 35.
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Figure 34: A horizontal feature signal after applying the Haar-like filter on each low-resolution 8x8 image ex-

tracted from thermal YouTube videos.
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Figure 35: Low-pass filtered, down-sampled, and baseline removed feature signal corresponding to Fig.10. The

number of local maxima corresponds to the respiration rate (16 bpm).
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Algorithm 1 PEAK DETECTION ALGORITHM
S =s(1),s(2),...,s(k)

Respiratory←Ø

Input k=60

Output Respiratory

j← j = 0

for i = 1, i++, i < k do

j← j+1

Peak[j]=Plocal (S, i,si,w)

end for

m=length(Peak)

for j = 1, j++, while j < m do

if Peak[j]> mean(Peak[j]) then

Respiratory← Peak[j]
⋃

Respiratory

end if

end for

for each adjacent pairs in Respiratory do

if |l− k|<w) then

Remove the min(Respiratory[l],Respiratory[k]) from Respiratory

end if

end for
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RESPIRATION RATE AND HEART RATE DETECTION FROM SUBTLE HEAD

MOTION USING THE PYROELECTRIC INFRARED (PIR) SENSOR

Breathing and pulse rates are vital signs that are routinely measured by healthcare providers to assess

a human body’s basic functions. In this chapter we investigate the use of a low-cost, contact-free, non-

obtrusive, and non-invasive Pyroelectric Infrared sensor to estimate the Respiratory Rate (RR) and the

Heart Rate (HR) from the subtle head movements. The RR and HR are inferred from the time-varying

sensor signal due to the subtle movements of the head caused by the flow of air from the lungs and

blood from the heart to the head via the carotid artery, respectively. The PIR sensor is placed behind the

human’s head without any contact to the human body and it can detect the motion from a distance of up

to 50 centimeters. The sensor can be placed to the head rest of a chair or a bed and can continuously

estimate both the RR and the HR at the same time.

6.1 Contribution

In this chapter we summarize our contributions as follows:

1. We propose a novel approach to estimate the respiratory rate and the heart rate from the subtle

movements of the head caused by the flow of air from the lungs and blood from the heart to the

head via the carotid artery, respectively.

2. We investigate the use of low-cost, contact-free, and passive Infrared sensor to estimate the respi-

ratory rate and heart rate.
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3. The pyroelectric IR sensor was found to detects the thermal infrared energy emanating from

stationary human subjects within its area of detection. The analog output of the pyroelectric

IR sensor is digitized and analyzed using appropriate signal processing algorithms. The pulse

oximeter is used as a ground truth.

4. We achieved a high positive correlation of 96.4% between our estimates and the pulse oximeter

measurements.

The rest of this chapter is organized as follows: The materials and methods of our novel system are

described in Sec. 6.2. The concept of subtle head movements is shown in sec. 6.2.1. The pyro-electric

IR sensor is presented in sec. 6.3. Heart rate and respiratory rate are described sec. 6.3.1. The heart

rate estimation algorithm is described in sec. 6.3.2, while the respiratory rate estimation algorithm is

presented in sec. 6.3.3. Finally, the experimental results and discussion are provided in Sec. 6.4.

6.2 Material and Methods

Our proposed system is based on a low-cost, contact-free, and non-intrusive PIR sensor that does

not emit any type of radiation. A microcontroller is used to transfer the analog output of the PIR sensor

to the processing unit which estimates the respiration and heart rates from the infrared sensor signal due

to the subtle head motion of the subject (Figure 36).

6.2.1 Subtle head motion

During each cardiac cycle, the left ventricle contracts of the heart contracts and injects a blood to

the aorta. Approximately 12 grams of the blood flow on either side of the head from the aorta via a

carotid artery [129]. According to the Newton’s third low, the blood’s force on the head is equivalent to
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Figure 36: A proposed system that captured the subtle head motion of the subject using a low-cost, contact-free,

non-intrusive pyroelectric IR sensor that placed behind the human subject.

Figure 37: Subtle head motion during each cardiac cycle due to the flow of the blood from the aorta through the

carotid artery into each side of the head.
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the head’s force that acting on the blood, and as a reaction it causes cyclic subtle head movements [130]

(see Figure 37).

6.2.2 Pyroelectric IR sensor

Pyroelectric IR sensors are low-cost passive infrared sensors, that are well known as motion detec-

tion sensors. They are widely used in monitoring systems and energy savings systems [131]. Since

the pyroelectric IR sensors are contact-free and non-intrusive sensors, in the recent years, they are in-

volved in the healthcare applications such as detecting the epileptic seizures during sleep to avoid the

Sudden Unexpected Death in Epilepsy (SUDEP) [1]. The pyroelectric IR sensors functionality is based

on measuring the amount of the emitted infrared from the moving subjects. The output of the pyroelec-

tric IR sensor can be affected by many factors including the distance of the moving subjects from the

pyroelectric IR sensor, the speed of the moving subject, and the direction of the movement [131]. The

pyroelectric IR sensor has two pyroelectric plates that are sensitive to the IR radiated from the moving

objects and the two plates have the same amount of charge which is equal to the background ambient

light. When there is no motion detected by the pyroelectric IR sensor, the IR difference between the two

plates are equal to zero. If the moving subject enter the region of detection (RoD) of the pyroelectric IR

sensor, the charge of the pyroelectric plate a will be higher than the charge on the plate b (see Figure

36). As a result, a positive differential charge will be generated. When the moving subjects leave the

RoD, the amount of the IR charge on pyroelectric plate b will be higher than the IR charge on the other

plate. Therefore, a negative differential charge will be generated. The pyroelectric IR sensor has Fresnel

lenses that are used to increase the area of detection of the pyroelectric IR sensor. In addition to that, the

Fresnel lenses use the same concept of a radar by focusing all the captured IR radiations that are emitted
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Figure 38: a) A block diagram of the algorithm that is applied on the captured PIR analog signal to estimate the

RHR. b) A block diagram of the algorithm that is applied on the captured PIR analog signal to estimate the RR.

from the moving subject on the pyroelectric plates [132]. The pyroelectric IR sensor has no ability to

detect more than one moving subject at a time [131].

6.3 Heart rate and respiratory rate extraction

The captured analog output of the pyroelectric IR sensor due to the subtle head motion is sent to the

processing unit via a microcontroller with a 20 Hz sampling rate (Figure 1). We note that the magnitude

of heart beat vibration is lower than the magnitude of respiration activity, and the heart beat acceleration

is higher than the breathing acceleration [100]. The information of the HR and RR resides in different
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frequency bands,therefore two different algorithms were applied on the captured PIR signal to extract

the heart rate and respiratory rate.

6.3.1 Heart Rate Estimation algorithm

In order to attenuate the high frequency components that are generated due to the non-linearity of

the Analog to Digital converter (A/D), the captured analog output of the PIR sensor is convolved with a

Lagrange low-pass filter (LPF). Equation (1) shows the transfer function of the Lagrange Filter :

H(z) =−z3 +9z+16+9z−1− z−3 (6.1)

The characteristic frequency of the filter should be half of the sampling frequency to avoid the

aliasing that can affect the estimation of the heart rate of the subject. Therefore, the sampling rate of the

signal is reduced by factor of 2 before applying the second derivative filter to the captured signal. Since

the cardiac activity is much faster than the breathing, the second derivative filter is used to extract the

heart rate by getting the acceleration of the subtle head movements [133]. The transfer function of the

1st-derivative filter:

H1st−deriv(z) = 1− z−1 (6.2)

The first derivative filter is convolved with itself in the time domain to generate the 2nd-derivative filter

with transfer function:

H2nd−deriv(z) = z−2+ z−1 (6.3)
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As a result, by convolving the 2nd-derivative filter with Lagrange LPF we achieved the FIR filter

that is used in this work to estimate the RHR as shown in Figure 3-a. The normalized FIR filter has the

transfer function:

HFIR(z) =−z4 +2− z3 +8z2−2z−14−2z−1 +8z−2 +2z−3− z−4 (6.4)

HNormalized(z) =
1

40

(
h[0]+

4

∑
n=1

h[n]
(
z−n + zn)) (6.5)

To preserve the sharp edges of the signal and to remove the zero-mean additive noise before ap-

plying the zero-crossing algorithm to achieve the heart rate. A bandpass filter (BPF) of order 30, with

normalized stopband frequencies 0.1π , and 0.6π rad/samples, and normalized passband frequencies

0.2π , and 0.4π rad/samples, and a median filter are applied on HNormalized(z).

Finally, the zero-crossing algorithm is applied on the filtered signal to measure the number of beats

per minute (see Algorithm II).

6.3.2 Respiratory Rate estimation algorithm

The respiratory rate which is also known as the breathing rate is the number of breaths a human

being takes per minute. The range of normal breathing rate for adults is between 12 to 20 breaths per

minute. Below 12 or above 25 breaths per minute is considered as an abnormal respiratory rate which

can be an indication to many unhealthy conditions that humans can suffer in their daily life, such as:

anxiety, heart failure, asthma, and lung disease [134]. Lately the abnormal respiratory rate is linked with

the symptoms of unprecedented COVID-19 disease [135].
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Algorithm 2 HEART RATE ESTIMATION USING PIR SENSOR
1: System Initialization

2: x[n]←Captured− signal

3: h1[n]←−δ [n+3]+9δ [n+1]+16δ [n]+9δ [n+1]−δ [n+3]

4: h2[n]← δ [n+1]−2δ +δ [n+1] . 2nd derivative filter

5: Processing the captured signal

6: Y [n]← x[n]~h1[n]

7: YDS← Y [2n]

8: Y2nd−deriv← YDS ~h2[n]

9: YBPF ← f irpm[Y2nd−deriv]

10: Yout ←Median[YBPF ]

11: L← length[Yout ]

12: while 6= L do

13: if (Yout < T h) & (Yout >−T h) then

14: Yout ← 0

15: end if

16: end while

17: if [Yout(present) < 0 & Yout(next) > 0] Or [Yout(present) > 0 & Yout(next) < 0] then

18: beat← beat +1

19: end if
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To extract the respiratory rate from the captured signal we investigated the use of a filter that has the

lowest phase distortion with a smooth amplitude response. A 30th order Butterworth filter is applied to

the analog output of the PIR sensor with normalized angular 0.35π , 0.65π , and stop band edge frequen-

cies of 0.25π , 0.75π . A peak detection algorithm form [125] is used to detect the local maximums. The

total number of the local maximums of the one minute duration of the filtered output signal represents

the estimated respiratory rate. The local maximum counts of the filtered output signal represents the

estimated RR as shown in Figure 3-b.

6.4 Results and discussion

A 100 recordings were collected with more than 9,000 heart beats. To measure the reliability of the

infrared sensor, we used a pulse Oximeter sensor simultaneously with the PIR sensor to estimate the

heart rate. In addition we consider the chest movements as the ground truth to estimate the respiratory

rate. All the recordings are done using a low-cost, noninvasive, contact-free Panasonic AMN 21111 PIR

sensor with 20 Hz sampling rate are placed 50 cm away from the back of the head of a stationary subject

(see Figure 39).

The captured time series data are filtered using a Lagrange lowpass filter as shown in Figure 40. To

extract the heart rate, the output of this filter is convolved with a 2nd derivative filter as shown in Figure

41. Figure 42 shows the time series signal after removing the additive noise. Finally a zero-crossing

algorithm is applied to estimate the heart rate.

Since the Butterworth filter has a flat response in the pass band and smooth amplitude response

compared to other filters. Therefore, a Butterworth filter and a peak detection algorithm are applied

to the captured PIR output to estimate the respiratory rate. The local maximum counts represent the
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Figure 39: A captured time series signal from the subtle head motion using PIR sensor.

10 20 30 40 50 60

55

56

57

58

59

60

61

Figure 40: A Filtered time series signal using Lagrange LPF.
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Figure 41: A time series signal after applying the 2nd order derivative to estimate the RHR.
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Figure 42: A time series signal after applying the BPF and median filters.
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number of breathing per minute as shown in Figure 43. A high positive correlation coefficient equal to

95.37% is achieved between the estimated respiration from the captured signal of the PIR sensor and

the actual reparations due to chest movements monitoring.
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Figure 43: A PIR output signal after applying a Butterworth filter, the peak-to-peak values represent the number

of breathing per minute.

To measure the reliability of our system, a commercial pulse Oximeter sensor is used simultaneously

with the PIR sensor to measure the RHR. The correlation coefficients are used to measure the strength

of relationship between the two sensors:

rpo =
∑

N
i=1(pi− p̄)(oi− ō)√

∑
N
i=1(pi− p̄)2 ∑

N
i=1(oi− ō)2

(6.6)
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where p is the PIR sensor recording, o is the pulse Oximeter sensor recording, p̄ is the mean of the

PIR recordings, ō is the mean of the pulse Oximeter recordings, N is the number of recording and in

our work N is equal to 100. We achieved a high positive correlation between the two sensors with a

correlation coefficient equal to 96.4% as shown in Figure 44.

Figure 44: A correlation relation between the PIR sensor and the pulse Oximeter sensor.

We applied the chi-square test to measure the validity to estimate the heart rate from the subtle head

movements using PIR sensor:

χ
2 =

N

∑
i=1

(pi−oi)
2

oi
(6.7)
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AS a result, the PIR sensor is significant at (α = 0.1) compared to the commercial Oximeter sensor.

Figure 45 shows the normal distribution of the estimated heart rate using the PIR sensor with a mean

(µ = 89.92) and standard deviation (σ = 5.93).

Figure 45: A normal distribution of the RHR that are estimated from the analog output of PIR sensor.

We compared our approach with the method in [130] that uses the Principal Component Analysis

(PCA) to detect the pulse from head motion in videos (see Table XIII). In [130]. They used a video

camera with 30 f rame/sec to record the head motion. The shortcomings of this approach is that the

illumination and the skin color tone can affect their method unlike our approach that relies on detecting

the IR radiation due to the subtle head movements of the subject. In addition, the video camera can not
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TABLE XIII: A COMPARISON BETWEEN OUR APPROACH THAT USED A PIR SENSOR AND BALAKR-

ISHNAN ET AL.

Our proposed system Balakrishnan et al. [130]

Sensor type PIR sensor Video camera

Way of connection Contact-free HContact-free

Sampling rate 20 Hz 30 frames / sec

Data type Time series data Image frames

Subject status Stationary subject Stationary subject

work in the dark, and it compromises the patient’s privacy. On the other hand, in our method, we use a

”one-pixel” passive sensor with a 20 Hz sampling frequency. In both methods, the data were collected

from stationary subjects.



CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis we proposed a novel approach that investigated the use of two passive sensors: the

pyroelectic IR sensor and an 8×8 thermopile sensor array to detect the convulsive seizure during sleep.

Chapter 3 presented a novel approach to detect the convulsive seizures using pyroelectic IR sensor.

Our study shows that the system we devised has the potential to be applied to subjects with epileptic

seizures. We note that the results have been obtained for simulated seizures. Since all the seizures were

detected successfully, the low-cost, low-power pyroelectic IR sensor shows promise as a reliable device

to detect epileptic seizures. Because of the contact-free nature of the pyroelectic IR sensor, it can avoid

discomfort with the use of such sensors during sleep. Furthermore, this system can work in the dark as

well as with illumination. Additionally, the ambient light does not affect the sensitivity of the system.

Finally, the cost of this system is lower than the other available monitoring cameras and sensors.

A variety of high-level machine learning and deep learning techniques were used to classify the

captured signals from the pyroelectic IR sensor. All the programs were implemented using a CPU

E5-1620 V3, 3.5 GHz with 8 cores, Memory size 32 GB, and an operating system Centos 6.9. A

comparison between the applied algorithms was done based on the validation accuracy, implementation

time, evaluation metric, confusion matrix, and structural design. We achieved an accuracy equal to

97.03% for HMM, 96.97% for 1D ConvNet, and 98.98% for 2D ConvNet. We compared our results

with the accuracy of the other motion-based epileptic seizure detection systems. We observe that our

96
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method shows significantly improved performance, while noting that it was achieved with data obtained

from simulated epileptic seizures.

Chapter 4 presented a novel approach to detect the convulsive seizures using an 8×8 thermopile

sensor array. The pairing of a low-resolution IR sensor array with a CNN showed promise as a detecting

convulsive movement. Since the thermal sensor array is contact-free and privacy preserving, it might

eventually prove to be a practical tool for home monitoring of epileptic subjects at risk for SUDEP.

While this study demonstrated the technical feasibility of a low-cost non-invasive system.

Chapter 5 presented a novel approach to estimating the respiratory rate using a low-cost, contact-

free, privacy preserving, low-resolution 8 ×8 passive IR thermopile sensor array. We collected the data

from healthy subjects resting on a bed. Our proposed system shows a promising result to estimate the

respiratory rate which is one of the vital signs used in assessing a human’s health status.

The respiration rate can also be determined using a pyroelectric IR sensor in a contact-free manner.

However pyroelectric IR sensor observations are liable to interference from the movements of other

people or pets within its viewing range and there is no way to separate the signal coming from the

subject from other sources. Unlike the pyroelectric IR sensor, the thermopile sensor array generates

a low-resolution image of the monitored area and we can identify the location of the person being

monitored. The respiration rate monitoring system can focus on the person by resizing the windows of

the Haar-like filters.

Chapter 6 presented a novel approach to estimate the respiratory rate and the resting heart rate from

the subtle motion of the head using a low-cost, contact-free, and non-intrusive system. We used an

algorithm based on 2nd derivative filter, BPF, median filter and zero crossing to estimate the RHR from
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the analog output of the yroelectric IR sensor. In measuring the RR, a Butterworth filter is applied

to the output signal. To measure the reliability of the proposed system, we used an industrial pulse

oximeter simultaneously with the pyroelectric IR sensor. Our system shows promising results for a

reliably estimating two of the main vital signs that are indicators of the human body functions and can

give an early indication for many of the diseases that are related to the respiratory system or the cardiac

output.

In the future, there is a need to investigate the training and testing of both sensors on patients with

epileptic seizures. Moreover, investigation is needed on the use of a combination of pyroelectric IR sen-

sor and thermopile sensor array to design a real-time health monitoring and home assistive monitoring

system that can monitor and estimate the heart rate and respiratory rate, and detect the epileptic seizure

during sleep and send an alarm to the caregivers.

In addition, future works include investigation the use of multiple pyroelectric IR sensors to detect

the epileptic seizure during sleep, and to estimate the heart rate and respiratory rate from the subtle head

movements. This includes the study of the correlation between the multiple PIR sensors and measure

the optimum location of the sensors.
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18. Rocamora, R., Sánchez-Álvarez, J. C., and Salas-Puig, J.: The relationship between sleep and
epilepsy. The Neurologist, 14(6):S35–S43, 2008.

19. Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P.,
Chamberlain, A. M., Chang, A. R., Cheng, S., Das, S. R., et al.: Heart disease and stroke
statistics-2019 update a report from the american heart association. Circulation, 2019.

20. Organization, W. H. et al.: Cardiovascular diseases (cvds) fact sheet. World Health Organization,
2017.

21. Trifan, A., Oliveira, M., and Oliveira, J. L.: Passive sensing of health outcomes through smart-
phones: systematic review of current solutions and possible limitations. JMIR mHealth
and uHealth, 7(8):e12649, 2019.



CITED LITERATURE (Continued) 106

22. Sendra Compte, S., Lloret, J., Garcı́a Pineda, M., and Toledo Alarcón, J. F.: Power saving and
energy optimization techniques for wireless sensor networks. Journal of communications,
6(6):439–459, 2011.

23. Tomas, J., Lloret, J., Bri, D., and Sendra, S.: Sensors and their application for disabled and elderly
people. In Assistive Technologies: Concepts, Methodologies, Tools, and Applications,
pages 357–376. IGI Global, 2014.

24. Kapre, S. S., Salunkhe, S. S., Thakkar, R. M., Pawar, A. P., and Malusare, O. A.: Advanced
security guard with pir sensor for commercial and residential use. International Journal
for Advance Research in Engineering and Technology, 2(XI), 2014.
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