
CAST: Design of the Algorithmic Framework for Actor-Based Cloud

Simulation

BY

AMEDEO BARAGIOLA
B.S., Politecnico di Milano, Milan, Italy, 2018

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2021

Chicago, Illinois

Defense Committee:

Mark Grechanik, Chair and Advisor

Balajee Vamanan

Elisabetta Di Nitto, Politecnico di Milano

ACKNOWLEDGMENTS

First, I want to thank my advisor Dr. Mark Grechanik for his support and suggestions

throughout the duration of the work we conducted together and for giving me the opportunity

to work as a Graduate Research Assistant under his guidance. His advice and inputs have helped

me greatly in writing my thesis. This would not have been possible without his guidance and

support. I also want to thank Professor Elisabetta Di Nitto from Politecnico di Milano and

Professor B. Vamanan for serving on my committee.

AB

ii

TABLE OF CONTENTS

CHAPTER PAGE
1 INTRODUCTION . 1

1.1 Overall Context and Research Problem 1
1.2 Our Contributions . 2

2 MOTIVATION . 4
3 THE GLOBAL CLOCK . 7

3.1 Implementation framework for Logical Clocks 12
3.2 Lamport scalar clock . 13
3.2.1 Enabling the Lamport scalar clock 13
3.2.2 Data structures . 13
3.2.3 The Format of Messages . 14
3.2.4 Clock update protocol . 14
3.2.5 Shortcomings of the Lamport clock 15
3.3 Tie resolution in Lamport Clocks 18
3.4 Vector clock . 18
3.4.1 Enabling the Vector clock . 18
3.4.2 Data structures . 19
3.4.3 The Format of Messages . 20
3.4.4 Clock update protocol . 21
3.4.5 Comparing Vector Clocks . 22
3.5 Summary . 24

4 CONSISTENCY AND REPLICATION 25
4.1 The consistency problem . 27
4.2 Implementation framework for Replication 28
4.3 Responsibilities of CAST . 30
4.4 Responsibilities of the SimEng 30
4.5 Grouping nodes . 30
4.5.1 Logical ordering of nodes in a group 32
4.6 Election of a master node . 32
4.7 Replica reconciliation . 33
4.7.1 Replica reconciliation protocol 34
4.8 Summary . 35

5 ELECTION ALGORITHMS . 37
5.0.1 Goal of an election algorithm . 39
5.1 Implementation framework for Election Algorithms 39
5.2 Definition of election messages 40
5.2.1 CAST Messages for Election . 40
5.2.2 Message Sequence in Election algorithms 40
5.3 Definition of election APIs . 41

iii

TABLE OF CONTENTS (continued)

CHAPTER PAGE

5.4 Functionality of CAST . 41
5.5 Responsibilities of the SimEng 42
5.6 Enabling Election algorithms in CAST 42
5.7 Bully algorithm . 43
5.8 A ring algorithm . 44
5.9 Summary . 46

6 PARTITIONING AND FAILURE MODELING 47
6.1 Failure types . 48
6.1.1 Crash failures . 48
6.1.2 Timing failures . 49
6.1.3 Response failures . 49
6.1.4 Byzantine failures . 50
6.2 Implementation framework for Failures 50
6.2.1 Responsibilities of the SimEng 51
6.2.2 Failure generators . 52
6.2.3 Failure generators integration 54
6.2.4 Responding to failures . 54
6.2.5 Failure control messages . 55
6.3 Summary . 57

7 RELATED WORK . 58
7.1 Cloud Simulators . 58
7.1.1 CloudSim . 59
7.1.2 CAST: A distributed simulation framework 59
7.2 Algorithmic implementations . 60
7.2.1 Global Clock algorithms . 60
7.2.2 Consistency and Replication . 61
7.2.3 Election algorithms . 61
7.2.4 Partitioning and Failure Modeling 62
APPENDICES . 63

Appendix A . 64
CITED LITERATURE . 66
VITA . 73

iv

LIST OF TABLES

TABLE PAGE

I State of node with Lamport clock. 14
II State of node i with Vector clock. 20

III CASTDSL Keywords to Feature . 65

v

LIST OF FIGURES

FIGURE PAGE

1 Lamport clock execution . 16

vi

LIST OF ABBREVIATIONS

SimEng Simulation Engineer

CAST Cloud-based Applications Simulator Testbed

CASTDSL CAST Declarative Specification Language

VM Virtual Machine

vii

SUMMARY

Nowadays, it is increasingly important for researchers to understand and predict the be-

haviour of large scale cloud datacenters and to analyze novel distributed algorithms running

on top of them. Studying large scale cloud datacenter architectures helps in solving produc-

tion issues in current cloud environments and in evaluating the performance of newly proposed

algorithms. However, building large scale cloud datacenters is very expensive and working on

existing real-world infrastructure does not provide the flexibility necessary to carry out experi-

ments and test new algorithms. Therefore large scale simulations are fundamental to evaluating

distributed algorithms and understanding their behaviour. In this thesis we introduce CAST,

a Cloud-based Applications Simulator Testbed, which makes large-scale simulations possible in

a simple and intuitive way. In particular, we start from the Actor-Based architecture originally

proposed for CAST and we expand it by integrating high-level functionalities such as the Global

Clock, Consistency and Replication algorithms, Election Algorithms and Partitioning and Fail-

ure modeling. We provide an algorithmic framework for integrating such functionalities, fun-

damental to all cloud simulators, with an Actor-Based system while building upon CASTDSL,

an easy to use declarative language for simulation engineers, to provide intuitive access to the

introduced high-level features even with limited programming experience or knowledge of the

underlying architecture.

viii

CHAPTER 1

INTRODUCTION

1.1 Overall Context and Research Problem

With the projection of the worldwide cloud computing to grow to a half trillion USD by 2023,

it is very important for systems researchers to experiment with novel algorithms and systems

optimizations in complex cloud datacenters in order to deeply understand and predict their be-

havior for the advancement of science and for societal progress [1]. Evaluating new algorithms

and techniques in large-scale cloud organization settings is vitally important, since new un-

foreseen phenomena can be uncovered. Researchers can convince industry to adopt their ideas

only if their experimental setup captures scale, heterogeneity, and other such characteristics

of today’s large datacenters. Unfortunately, building large cloud datacenters is very expensive

and even with existing ones it is very difficult to carry out experiments to determine the ef-

fectiveness and efficiency of various algorithms and techniques that involve millions of cloud

users and servers to evaluate research ideas. Operating large cloud datacenters can be highly

sensitive to a number of interdisciplinary aspects such as the choice of application frameworks

and their schedulers, revenue management models, memory consistency models, and network-

ing and storage technologies. In addition, a cloud organization is comprised of multiple regions,

which include several datacenters each of which may contain more than 10, 000 racks with 100

computer servers on each rack. Even a moderate-sized cloud organization hosts millions of

1

2

servers spread across multiple datacenters in different geographic regions with annual operating

expenditures of over $18 million each [2; 3].

Because the expense and the scale of cloud datacenters make it very difficult for researchers

to create and experiment with distributed algorithms for various aspects of cloud computing,

the researchers often resort to small-scale experiments or formal proofs of correctness of these

algorithms. However, without experimenting with real-world system models, the proofs alone

do not provide enough confidence that distributed algorithms will perform as desired in a large-

scale cloud organization. Since cloud computing is a key CISE topic, its research and education

need evaluations of various networking and software optimizations on real hardware in small

custom-built clouds, and analysis of the applications’ behaviours in small clusters that run

framework like Hadoop’s map/reduce or Spark [4; 5; 6; 7]. In all, the inability to conduct large-

scale comprehensive experiments with distributed algorithms stunts the growth of research and

education in cloud computing.

1.2 Our Contributions

This thesis work builds upon the Actor-Based architecture originally proposed for CAST,

a Cloud-based Applications Simulator Testbed, and expands it by integrating high-level func-

tionalities fundamental to all cloud simulators.

In particular, we identify the following contributions:

1. We briefly investigate the state-of-the-art of cloud simulators that we can use as the

underlying architecture for this work. For each simulator we focus on:

• Its ability to run large scale simulations.

3

• Its extensibility for researchers who wish to add additional features to the simulator.

• Its ease of use for SimEngs unaware of the simulator architecture.

2. We analyze the availability of implementations of algorithms related to Clocks, Consis-

tency, Election algorithms and Partitioning and Failure modeling in existent simulators.

3. When we find existing implementations in the literature we focus on the constraints that

such implementations impose on users like limited features or restrictions on the scenarios

in which the implementations are applicable. (e.g. only in MapReduce algorithms See

section 7.2.3).

4. We identify the steps to implement Global clocks, Consistency and Replication algorithms,

Election Algorithms and Partitioning and Failure modeling in an Actor-based architecture

including defining data structures in every node, implementing a protocol to update these

data structures, defining message types exchanged among actors, providing out-of-the-

box algorithms and APIs to SimEngs and, when necessary, comparing such algorithms to

identify drawbacks and advantages of each.

CHAPTER 2

MOTIVATION

Currently, research in cloud computing in general relies heavily on simulations to evaluate

distributed algorithms that govern various aspects of the cloud application deployment. The

closer the simulated cloud represents the actual cloud organization and its behavior, the more

convincing the results of the simulation become with experimental distributed algorithms [8].

The ability to avoid a significant expense of running large-scale experiments in the actual cloud

organization while exploring and understanding the behavior of customized cloud architecture

has been a Holy Grail in the field of cloud computing. A few dozen cloud computing simulators

have been build over the past decade [9], however, there are no records of detailed simulations

that allow researchers and educators to experiment with millions of servers in multiple dat-

acenters and various networking devices and finely modeled applications [10; 11]. Moreover,

using multithreading with synchronization mechanisms to protect concurrent accesses to shared

objects in simulation programs resulted in bottlenecks and inability to scale to very large simu-

lations, which unfortunately, are extremely demanding in resources including but not limited to

processor’s speed and the memory size in addition to data transfer rates among these resources.

More importantly, various simulators (e.g., CloudSim [12]) offer rigid design frameworks that

are difficult to learn and use, and the created simulations cannot be easily transferred among

different simulation frameworks, making their reproducibility, reuse and scaling very difficult.

4

5

Distributed and cloud computing research often requires realistic workload models resulting

from running millions of applications which read and write distributed objects. While spe-

cific requirements for these applications differ, they can be represented as collections of jobs

that in turn consist of various tasks that perform read and write operations. For example, a

map/reduce application consists of mapping and reducing jobs that perform various tasks on

key/value pairs and these tasks read input pairs and write output ones. Depending on specific

properties of these applications, which can be modeled as probabilistic distributions of read and

write operations, distributed algorithms for load balancing and resource allocation may per-

form differently depending not only on the underlying network infrastructure topology, but also

on what hardware is used to perform these operations and host distributed objects on which

these operations are performed. Unfortunately, no existing cloud simulators allow researchers

to plug different characteristics of the underlying hardware with respect to their effect on the

read and write operations, let alone to plug their simulators into the actual cloud to collect this

information from the cloud dynamically in a self-correcting optimizing feedback loop. Doing

so would enable systems researchers to quickly test their ideas and improve them based on the

highly relevant feedback from such a cloud simulator.

To summarize, problems with all existing cloud simulators can be described across three

interlocking dimensions: performance, efficiency and code engineering [13; 14]. To improve per-

formance of cloud simulators, they should be able to avoid creating internal bottlenecks (e.g.,

using synchronization mechanisms) while scaling by running on multiple computing nodes with-

out having to redesign the code. In fact, simulations and cloud computing are tightly connected:

6

simulators are designed to run in the cloud to gain performance by exploiting its parallelism

and elasticity whereas cloud simulators simulate cloud computing [15; 16; 17; 18; 19; 20; 21; 22;

23; 24; 25; 26; 27; 28; 29; 30]. Efficiency can be achieved by aggressively reducing the sizes of all

internal objects created and used as part of the simulation, which is difficult to achieve when

objects are required to inherit their functionalities from fat classes located in the underlying

simulation framework. Finally, the biggest problem is to create maintainable and reusable sim-

ulations quickly and without having to learn special programming languages and sprawling fat

object-oriented frameworks. Creating new cloud simulators is often a difficult code engineering

problem which requires significant human resources and time to go through the entire software

engineering lifecycle to create working simulators.

We will now introduce what a distributed system is and start building upon the Actor-Based

architecture originally proposed for CAST, a Cloud-based Applications Simulator Testbed, by

describing and implementing, along with the respective messages and APIs, key features like the

Global Clock, Consistency and Replication algorithms, Election Algorithms and Partitioning

and Failure modeling while building upon CASTDSL, an easy to use declarative language for

simulation engineers, to provide intuitive access to the introduced high-level features even with

limited programming experience or knowledge of the underlying architecture.

CHAPTER 3

THE GLOBAL CLOCK

”A distributed system is a collection of independent computers that appears to its users as a

single coherent system.” [31] In CAST, we model distributed systems as a graph where each

node is a computing entity that can be represented as an actor and that performs read and

write operations on some shared resource stored on one or multiple nodes. A shared resource is

some data item that is read and/or written by more than one node of the distributed system.

Every node exists in its own memory space1 and accesses the memory space of the other nodes

via messages sent over a network channel.

Example 3.0.1. For example a Database server split across multiple nodes, or servers, is a

distributed system. The nodes on which the system runs are connected by network links which

represent the connections in the graph.

Definition 3.0.1 (Process). A process is a single instance of a program which emits a sequence

of read and write operations. (messages)

Remark. For the sake for simplicity we assume that at any given time on each of the nodes at

most one process is running. This assumption is not realistic, but it is useful to simplify the

1Memory space: The memory that a node can can directly read and write using the assigned
addresses of the memory cells.

7

8

definitions given and the concepts introduced in this chapter. When we state that ”a node is

executing some operation”, we mean that the single process running on that node executes that

operation. In other words a node is a process, there is a one-to-one mapping between the two.

Furthermore, we observe how this assumption doesn’t impose any fictitious or unrealistic con-

straint as considering more processes on a single node or multiple nodes with a single process

each is equivalent for the purposes of defining the clock.

In traditional single-threaded monolithic applications, where all the read and write op-

erations are performed in the same memory space, operations are executed sequentially and

resources are manipulated one at a time. In distributed systems messages are exchanged con-

currently and the same resources are manipulated asynchronously by multiple nodes. When

multiple messages access the same resource at the same time the order of such messages (and

consequently of the operations) directly influences the output of the system.

Definition 3.0.2 (Operation). An Operation is a 3-tuple 〈x, y, z〉 (written an xyz) s.t. x ∈

{W,R}; 1 ≤ y ≤ n; z ∈ R, where z is a resource, y is the node identifier, n is the total number

of nodes in the distributed system, R is the set of shared resources, W represents an operation

which changes the resource it operates on (a write operation) and R represents operations which

don’t change the resources (read operations) [31].

The 3-tuple 〈x, y, z〉 is read as: x is executed on node y and on the subset of resources z.

Example 3.0.2. Let us consider the following order of operations on the same resource x, x is

a “char” type variable: W1x=a, W2x=b, R3x, R4x. The semantics of the operations above is

as follows: Operation W1x writes the value ’a’ into x (x = a) and is executed on node 1; W2x

9

writes the value ’b’ into x (x = b) and is executed on node 2; R3x reads x on node 3; R4x reads

x on node 4. Different orders of those operations, or equivalent serial schedules, yield different

outputs for R3x and R4x. For instance if we consider the following serial schedule W1x, W2x,

R3x, R4x, the output of R3x is ’b’ and R4x is ’b’. If the schedule is instead W1x, R3x, W2x,

R4x, then node 3 sees the value ’a’ for x, while node 4 sees the value ’b’. Seeing a value means

that when node 3 accesses the resource ’x’ it is returned the value ’a’ since the latest write is

W1x; while when node 4 access the resource x, the value ’b’ is now returned since the latest

write is W2x.

Definition 3.0.3 (Race condition). A race condition is a situation where two or more oper-

ations are executed concurrently, whereas they should have been executed in a certain order,

producing unexpected results.

In a distributed system if we access the same resource at the same time from multiple nodes,

we may encounter a race condition since the order in which the operations are executed becomes

non-deterministic. We want to avoid mistakenly returning different values for a resource de-

pending on the order in which operations are performed, like we have shown above, so we need

to introduce the concept of causality (causal precedence relation) between events and establish

at minimum a partial ordering of operations.

Definition 3.0.4 (Event). An Event is:

• The execution of an operation by the current node: a read or a write operation.

• Sending a message to another node.

10

• Receiving a message from another node.

Definition 3.0.5 (Causal precedence relation). Relation →, known as the ”happened before”

or ”causal precedence” relation, is a relation defined on the set of events (or operations) in a

system satisfying the following three conditions [32]:

1. ”If a and b are events on the same process and a comes before b, then a → b” [32].

2. ”If a is an outgoing message sent from one node to another and b is the receipt of such

message by the other node, then a → b” [32].

3. ”If a → b and b → c, then a → c” [32].

In traditional systems causality is tracked with physical time: if a → b, then the time at

which b is recorded is greater than the time at which a is recorded. By physical time we mean

the time expressed as the number of milliseconds passed since 1970-01-01 00:00:00 UTC, this is

also known as ”system time”. A process gets the current time by issuing a syscall to the kernel

through the operating system.

In distributed systems it’s not possible to have a global time that is the same across all nodes

because each node keeps track of physical time separately and the syscall above yields a different

result on different nodes; we can synchronize the physical time on each node that makes up the

system within a certain precision δ, for example by relying on protocols such as the Network

Time Protocol (NTP) that sync the system clock from a remote time server and take into

account the network latency, however, due to the intrinsic nature of clocks (an imperfect, real-

world oscillator) even if we try to synchronize the physical time on each node that makes up the

11

system, it may drift. Therefore, we can’t rely on physical time to establish causality between

events. [33]

Example 3.0.3. Consider a distributed system composed of two nodes. On the first node

(A) the system time is 2020-11-26T00:26:21+00:00. On the second node (B) it is 2020-11-

26T00:26:08+00:00. A write operation (wA) is executed on node A, and a read operation (rB)

is executed on node B, furthermore wA → rB holds.

Let us say this distributed system uses the physical time to establish causality between events.

Node A executes wA and sends it over to node B along with the timestamp at which it was

executed 2020-11-26T00:26:21+00:00. At the same time node B executes rB with timestamp

2020-11-26T00:26:09+00:00 and then receives wA from node A.

Node B can’t reliably order the events, it would think that wA was executed after rB as it has

a higher timestamp, but in reality wA → rB.

Since we can’t use the concept of physical time, we need to introduce a different type of

time: the logical time.

Definition 3.0.6 (Logical clock). The Logical clock is a function from the set of events to the

time domain, represented as CLK(e), such that the following holds true [33]: for each ei, ej :

ei → ej , then CLK(ei) < CLK(ej). A logical clock for which this definition holds is known as

a consistent clock.

12

3.1 Implementation framework for Logical Clocks

In this section we will introduce the steps necessary to implement logical clocks in dis-

tributed systems, including CAST. We will later describe how these steps are mapped to the

CAST code for each type of logical clock we consider.

Implementing Logical clocks in distributed systems, including CAST, means solving the fol-

lowing two issues [33]:

1. Implementing data structures in every node to represent the logical clock of that node.

2. Implementing a protocol to update these data structures in a way such that the clock is

consistent. (See definition 3.0.6)

More in detail, for what concerns the data structures, we need to [33]:

• Allow the node to keep track of its own progress. This means keeping track of the events

it has processed so far. This is known as implementing the local logical clock.

• Represent the node view of the global logical time. This is known as implementing the

global logical clock.

Also, we need to define a protocol that [33]:

• Defines how the local logical clock is updated when the node processes a new event (See

definition 3.0.4)

• Defines how a node updates its global logical clock in response to events.

13

3.2 Lamport scalar clock

The Lamport scalar clock was introduced by Lamport in 1978 as an attempt to provide a

way to fully order events in a distributed system. [34] We will now show how to enable the

Lamport scalar clock for a certain node, then we will define the Lamport clock in terms of data

structures and protocol used to update those data structures and show their implementation

in CAST.

3.2.1 Enabling the Lamport scalar clock

When the SimEng wants to use this type of clock for a certain node, he needs to specify a

node-level property in CASTDSL as follows:

1 my_server_0:

2 ...

3 capabilities:

4 host:

5 clock_type:

6 type: ClockAlgorithm

7 value: ScalarLamport

8 ...

Listing 3.1: Sample SimpleNode construct. The SimEng associated LC to nodes in the system.

The ”ScalarLamport” keyword enables the data structures and clock protocol below.

3.2.2 Data structures

The Lamport scalar clock uses a single integer variable which is used to track both the local

logical clock and the global logical clock. [33] In CAST this is implemented by a single variable

clklamport inside each node state:

14

Key Value Type

role ”host” 0

...

clklamport 0 0

TABLE I: State of node with Lamport clock.

The table above represents the state of a node in the graph which in CAST is modeled as a

Map: Key −→ 〈V alue, Type〉 where Key, Value and Type are column names.[35] The Lamport

Clock value is stored at the Key clklamport and has an initial value of 0 (initialization value)

along with a type of 0 indicating that this entry is a ”SimpleResource”. This representation of

the state, including the definition of SimpleResource(s), is referenced from M. Pelosi, ”CAST:

Cloud-based applications simulator testbed.” where it is described in more detail.

3.2.3 The Format of Messages

When we employ the Lamport clock in a distributed system we can formalize the messages

exchanges in such system as tuples with the message content and the clock value (an integer)

at the time at which the message was emitted as tuple elements: 〈content, clkmsg〉

3.2.4 Clock update protocol

The Lamport clock specifies that when the node processes a new event the local logical clock

must be increased by 1: clklamport = clklamport+1. [33] In CAST we obtain this by incrementing

15

the state variable representing the clock: state.clklamport = state.clklamport+1; Additionally,

when a new event is processed the node’s view of the global logical time is updated as follows:

1. clklamport = max(clklamport, clkmsg): The clock is update with the maximum value be-

tween the clock value received along with the message and the current value of the clock.

2. clklamport = clklamport + 1

3. Ready to process more events, including sending or receiving messages.

The CAST implementation follows:

1 override def receiveCommand: Receive = {

2 case event =>

3 state.clk_lamport = max(state.clk_lamport, event.c_msg)

4 state.clk_lamport = state.clk_lamport + 1;

5 processEvent(event);

6 }

The receiveCommand function (present in each Actor) is invoked by the Akka framework upon

receipt of a new event, the state variable representing the clock is updated according to the clock

specification (described above) and then the event is handled by the processEvent function.

3.2.5 Shortcomings of the Lamport clock

The Lamport clock was introduced as a first attempt to fully order events in a distributed

system, but falls short of this goal. By using a single integer variable to keep track of the local

logical clock and using the same variable to represent the node view of the global logical time

and by implementing the protocol described above, such clock shows two main shortcomings:

16

• In regards to the aim of establishing a total order of events, two or more events in two

different nodes can have the same clock value associated to them (therefore they are not

totally ordered).

• It does not satisfy the clock strong consistency property defined below.

Definition 3.2.1 (Clock strong consistency). A Logical clock (see Definition 3.0.6) is said to

be strongly consistent if and only if the following holds true [33]: for each ei, ej : ei → ej ⇐⇒

CLK(ei) < CLK(ej).

A clock that satisfies the clock strong consistency property lets us derive the causality of events

simply by looking at their respective CLK(e) clock values. In other words, take two events

e1, e2 if the comparison between CLK(e1) and CLK(e2) evaluates to: CLK(e1) < CLK(e2),

then we can assert that e1 →e2: e1 happened before e2.

To better illustrate the shortcomings on the Lamport clock, we consider the following scenario,

we illustrate how this is consistent with the clock definition, and show the issues that arise.

Figure 1: Lamport clock execution

17

The following is the list of instructions which lead to the scenario above:

1. Both node1 and node2 start with clklamport = 0.

2. node1 processes a new event and increments clklamport by 1.

3. node2 processes a new event and increments clklamport by 1.

4. node1 wants to send a message to node2: it increments the clklamport again and then

sends the message.

5. node2 receives a message from node1: it computes the max value between its current

clock value (1) and the clock value received with the message from node1 (2) and sets its

clock value to 2.

6. node2 increments its clock value by 1 and then processes the event it has received (with

clock value 3).

7. node1 processes a new event and increments clklamport by 1. (now 3)

8. node2 processes a new event and increments clklamport by 1. (now 4)

From this example we can highlight the two shortcomings indicated above:

• Two events, respectively the third and second event to node1 and node2 have the same

clock value associated to them.

• The third event on node1 has a lower associated clock value than the third event on node2,

but the ”happens before” relation does not hold. These events are independent and there

is no causal precedence among them, however, by using the Lamport clock we impose a

fictitious order on them.

18

3.3 Tie resolution in Lamport Clocks

As mentioned in section 3.2.5 one of the shortcomings on the Lamport Clock is that two or more

casually related events representing a replica and its master have the same clock value. This is a

problem because it is impossible to create a total order of such events using the Lamport clock.

In practical implementations the Lamport Clock is combined with a tie resolution mechanism

to avoid such scenarios where two events have the same clock value. [31]

In CAST a textbook mechanism is employed: when such conflicts arise, we order events with

the same timestamp by node id, such that if CLK(e1) = CLK(e2) ∧ nodeid(e1) < nodeid(e2)

we can assert that: e1 →e2. And, if CLK(e1) = CLK(e2) ∧ nodeid(e1) > nodeid(e2) we can

assert that: e2 →e1, where nodeid is a function that returns the id of the node the event is

executed on.

3.4 Vector clock

The first vector clocks were introduced indipendently by Fidge, Mattern and Schmuck and aim

at resolving the issues presented by scalar clocks such as the Lamport clock.

[33] As we did for the Lamport clock, we will now show how to enable the Vector clock for a

certain node, then we will define it in terms of data structures and protocol used to update

those data structures and show their implementation in CAST.

3.4.1 Enabling the Vector clock

When the SimEng wants to use this type of clock for a certain node, he needs to specify a

node-level property in CASTDSL as follows:

19

Listing 3.2: Sample SimpleNode construct, focus on clock property.

1 my_server_0:

2 ...

3 capabilities:

4 host:

5 clock_type:

6 type: ClockAlgorithm

7 value: VectorClock

8 ...

The ”VectorClock” keyword enables the data structures and clock protocol below.

3.4.2 Data structures

The Vector clock uses a vector of non-negative integers to keep track of time. Each node i has a

vector clkvecti [1..n] where n is the total number of nodes in the distributed system and i is the

index of the node. clkvecti [i] is the local logical clock of the node i and represents the progress

of the current node. clkvecti [j] represents the knowledge that node i has of the progress of node

j.

The full vector clkvecti [1..n] corresponds to the node view of the global logical time. [33] In

CAST this is implemented by storing the clock vector clkvecti [1..n] inside each node state:

20

Key Value Type

role ”host” 0

...

clkvecti [0..0]n 0

TABLE II: State of node i with Vector clock.

The table above represents the state of the node in the graph which in CAST is modeled as a

Map: Key −→ 〈V alue, Type〉 where Key, Value and Type are column names.[35] The Vector

Clock value is stored at the Key clkvecti and is initialized to a vector of zeros of length n where

n is the number of nodes in the group. Its type is set to 0 indicating that this entry is a ”Sim-

pleResource”. This representation of the state, including the definition of SimpleResource(s),

is referenced from M. Pelosi, ”CAST: Cloud-based applications simulator testbed.” where it is

described in more detail.

3.4.3 The Format of Messages

When we employ the Vector clock in a distributed system we can formalize the messages

exchanges in such system as tuples composed of the message content and the vector of integers

(representing the clock) at the time at which the message was emitted: 〈content, clkmsg[1..n]〉

21

3.4.4 Clock update protocol

The Vector clock specifies that when the node processes a new event the local logical clock

(element i in the node i) must be increased by 1: clkvecti [i] = clkvecti [i] + 1.

Additionally, when a new event is processed the clock vector (representing the nodes view of

the global logical time) is updated as follows [33]:

1. ∀k s.t. 1 ≤ k ≤ n: clkvecti [k] = max(clkvecti [k], clkmsg[k]): Each element of the vector

clock is updated with the maximum value between the corresponding element received

along with the message and the current value of the same element.

2. clkvecti [i] = clkvecti [i] + 1

3. Ready to process more events, including sending or receiving messages.

The CAST implementation follows:

1 //inside the actor we have definitions for:

2 // - num_nodes: number of nodes in the system

3 // - current_node_index: index of the current node

4 override def receiveCommand: Receive = {

5 case event =>

6 for (int k=0;i<num_nodes;k++) {

7 state.clk_vect[k] = max(state.clk_vect[k], event.c_msg[k])

8 }

9

10 state.clk_vect[current_node_index] = state.clk_vect[current_node_index] + 1;

11 processEvent(event);

12 }

22

The receiveCommand function (present in each Actor) is invoked by the Akka framework upon

receipt of a new event, the state vector representing the clock is updated according to the clock

specification (described above) and then the event is handled by the processEvent function.

3.4.5 Comparing Vector Clocks

Vector clocks provide the clock strong consistency property outlined in Definition 3.2.1, this

means that by looking at the clock vectors of two separate events, we can determine if these

are casually dependent one on the other. Comparing Vector Clocks requires establishing two

main relations for comparing vector clocks [33]:

• ei → ej ⇐⇒ ∀k s.t. 1 ≤ k ≤ n: CLK(ei)[k] ≤ CLK(ej)[k].

• ei ‖ ej ⇐⇒ ∃k,w s.t. 1 ≤ k,w ≤ n: CLK(ei)[k] > CLK(ej)[k] ∧ CLK(ei)[w] <

CLK(ej)[w]. (It is not possible to establish a total order between these events, therefore

these events happen independently.)

By providing the clock strong consistency property Vector Clocks enable a more detailed under-

standing of time in distributed systems by making it possible to distinguish concurrent events

from causal-dependent ones. Let us go back to the example in Figure Figure 1 and show how

the introduction of Vector Clocks addresses the shortcomings highlighted above:

1. Both node1 and node2 start with clkvect: [0, 0].

2. node1 processes a new event and the first element of the vector clock corresponding to

the clock on node1 is incremented by 1: [1, 0].

23

3. node2 processes a new event and the second element of the vector clock corresponding to

the clock on node2 is incremented by 1: [0, 1].

4. node1 wants to send a message to node2. It updates clkvect ([2, 0]) and then sends the

message.

5. node2 receives a message from node1: it computes the new Vector Clock by applying the

clock update protocol (As described in section 3.4.4): [2, 1].

6. node2 increments the second element of its vector clock by 1 and then processes the event

it has received: [2, 2].

7. node1 processes a new event and the first element of the vector clock corresponding to

the clock on node1 is incremented by 1: [3, 0].

8. node2 processes a new event and the second element of the vector clock corresponding to

the clock on node2 is incremented by 1: [2, 3].

As we can observe, the third event of node1 and the second event of node2 don’t share the same

clock value anymore. The values are respectively [3, 0] and [2, 2]. More importantly, the use of

the Lamport clock imposed a fictitious order in the example above: the third event on node1

had a lower associated clock value than the third event on node2, but the ”happens before”

relation did not hold. Instead, the two Vector clocks are now [3, 0] and [2, 3] respectively and

by applying the clock strong consistency property outlined in Section 3.4.5 it is not possible to

establish a total order between them. The two events are therefore independent.

24

3.5 Summary

In this chapter we have discussed the importance of the global clock in distributed systems

in which very node exists in its own memory space and performs read and write operations

on shared resources. We have shown the main steps we have taken in CAST to implement

global clocks including defining data structures in every node and implementing a protocol to

update these data structures in a way that keeps the clock consistent (Definition 3.0.6). Then,

we have introduced two types of clocks: the Lamport clock and the Vector clock. We have

indicated how they can be enabled in CASTDSL and used in CAST and we have described the

CAST implementation details for each of them. Finally, we have highlighted the drawbacks of

the Lamport clock and how the Vector clock successfully resolves such problems eliminating

the fictitious order imposed by the Lamport clock on events and guaranteeing the clock strong

consistency property.

CHAPTER 4

CONSISTENCY AND REPLICATION

In the previous chapter we have defined what a distributed system is and we have introduced

the concepts of Events (Def. 3.0.4) and Clocks. In this chapter we will focus on how CAST

implements an essential feature of distributed systems: replication. We will show how replica-

tion improves two key aspects of distributed systems: reliability and performance, how Logical

Clocks (Def. 3.0.6) can be used to reconcile replicas and the multiple approaches to replication

that CAST implements.

In traditional applications data is stored on a persistent storage medium (e.g. Hard Drive

(HDD)) and then accessed through read/write operations. All data is stored in a single lo-

cation, where the server is, and all clients access the central storage location. If the storage

medium (e.g. Hard Drive (HDD)) fails, data becomes not accessible; if a client is in a different

geographical location wrt the storage location it will incur in significant latency.

Definition 4.0.1 (Latency). Latency is a term that designates the period of delay when one

component of a computing system is waiting for an action to be executed by another component.

[36]

Example 4.0.1. A client is located in Melbourne, Australia and attempts to access the data

contained in a website hosted in Europe. The data access operation is significantly slower

25

26

compared to the same operation performed by a European user due to latency. This is because

of the distance between the storage location and the user.

Definition 4.0.2 (Logical data item). A Logical data item, or data item, is the unit of infor-

mation that can be manipulated through the execution of operations in the distributed system.

A logical data item i is a tuple: 〈id, C〉 where id is a logical identifier and C is a set of Replicas

(Def. 4.0.3) s.t. C := { c | rid(c) = id(i) }

Definition 4.0.3 (Replica). In CAST, replicas are tuples 〈id,Rid, anyMessage〉 where id,Rid

are logical identifiers and anyMessage is a message. Each replica is stored inside the state of

a graph node. (Def. 4.0.2)

Definition 4.0.4 (Replication transparency). Replication transparency states that clients

should not be aware that multiple copies (or replicas) of the data exist.

In the context of replication we distinguish Logical data items (Def. 4.0.2) from Replicas (Def.

4.0.3).

Definition 4.0.5 (Reliability). Reliability(x) is the probability that a cloud component has

been up and running continuously in the time interval [0,x). [37]

Replication improves reliability in case of node failures1 since the remaining nodes with replicas

can continue processing events (Def. 3.0.4).

1Node failure: A node is said to have failed if it becomes unresponsive, returns unexpected messages
or stops, totally or partially, receiving or sending messages. Please see section 6

27

In distributed systems we introduce the concept of replication or replicas with the objective of

improving reliability and performance.

Example 4.0.2 (Reliability through replication). For example in a distributed database server

(See 3.0.1) the same logical data item i is replicated on a subset M := {m1,m2,m3} of the

nodes on which the database server runs resulting in the respective replicas: R := {r1, r2, r3}.

If a node, such as m1, fails a copy of the logical data item i could still be retrieved from the

remaining nodes {m2, m3}, by performing a read operation of either replica {r2, r3}. [31]

Example 4.0.3 (Performance through replication). For example in a distributed database server

(See 3.0.1) the same logical data item i is replicated on a subset M := {m1,m2,m3} of the

nodes on which the database server runs resulting in the respective replicas: R := {r1, r2, r3}.

If a node in the subset M can process a single message x1 in the amount of time X and we

send 3 messages (x1, x2, x3), it will take 3X. If we have multiple replicas, we could (best case

scenario) send 1 message to each node in parallel and process the 3 message in X time. [31]

Remark. The examples above give an intuitive understanding of the benefits of replication

in distributed systems and represents a best case scenario. In example 4.0.2, for the sake of

simplicity, we omit to mention the problem of guaranteeing consistency and synchronization

among the replicas. In example 4.0.3, for the sake of simplicity, we assume that the messages

x1, x2, x3 can be fully executed in parallel.

4.1 The consistency problem

As we have shown replication can improve reliability and performance in a distributed system,

but a new problem arises: ensuring consistency among replicas.

28

Performing a write operation on one of the replicas results in that replica being modified (Ref

3.0.2) and becoming different from the rest. Eventually1, writes need to be executed on all

replicas to ensure consistency. [31]

Example 4.1.1 (Consistency in replication). Let us consider an example in which a user wants

to access a web page. Obtaining a copy of the web page requires connecting to the web server

via an internet connection and download the page, which can take seconds. (depending on the

connection speed). The web browser can cache the web page locally, this means creating a

copy of the web page and storing it on the hard drive. If the user asks for the same web page,

now it can be returned immediately with close to zero-latency 4.0.1. (improved performance).

Furthermore, if the web server becomes unavailable, the user can still view the local copy of the

web page. (improved reliability). However, if we don’t take any special action and the web page

is updated on the server, the user will still see the local copy which is now stale or outdated.

We need to make sure that the local copy and the online copy (called replicas) are always the

same or at least synced up at some point in time. [31]

In the rest of this section we will introduce various algorithms and their implementations in

CAST with the aim of ensuring consistency and proving replication.

4.2 Implementation framework for Replication

In this section we will introduce the steps necessary to implement replication in cloud simulators

such as CAST. We will later describe how these steps are mapped to the CAST code.

1Please see section 4.2.

29

Definition 4.2.1 (Group membership algorithm). In CAST by group membership algorithm

we mean an algorithm to group a set of nodes together, with properties associated to the group

and properties associated to all group members.

Implementing replication requires:

1. Implementing a group membership algorithm. way to group a set of nodes together, with

properties associated to the group and properties associated to all group members.

2. Implementing one or more algorithms to elect a master node for any logical data item.1

3. Choosing the data replication granularity.

4. Implementing a replica update propagation strategy (eager/lazy propagation)

5. Implementing a replica synchronization strategy which aims at solving conflicts between

replicas. (replica reconciliation strategy)

Definition 4.2.2 (Simple master replication model). In the Simple master replication model,

a master is elected among the nodes of the group for every logical data item (Def. 4.0.2) and

all updates are submitted to the master node before being propagated to the other nodes. [38]

The CAST implementation of replication is based on the single master replication model. [38].

In this replication model updates are submitted in the same order to masters and respective

replicas and replicas may become stale in between synchronization intervals.

1Election of a master node: The algorithms used to elect a master node are described in Section ??.

30

4.3 Responsibilities of CAST

When replication is enabled for a logical data item, CAST takes the following steps:

1. Elects a node inside the group as master for that logical data item.

2. Creates a route for messages so that messages representing operations on a logical data

item are routed to the master for that logical data item.

3. Creates the necessary data structures and enables the protocols of the clock chosen for

replica reconciliation and synchronization. (As described in section ??).

4. Performs synchronization periodically (replica reconciliation) using the clock.

4.4 Responsibilities of the SimEng

The SimEng responsibilities are:

• Specify which nodes belong to the group on which we want to enable replication.

• Specify the election algorithm or specify a list of master nodes for any data item type.

• Select the data replication granularity.

• Specify the synchronization interval and strategy.

4.5 Grouping nodes

A distributed system is a graph where each node is a computing entity. Nodes can be grouped

together when the SimEng wants to enable a set of features for more than one node at once

such as replication.

31

Definition 4.5.1 (Group of nodes). A Group of nodes is a set Gp,v := {n | p ∈ parameters(n)∧

val(p) = v } where p is a group parameter, v is its value, parameters(n) in a function returning

the parameters of node n and value(p) is a function returning the value of a parameter p. In

CAST groups of nodes are sets of nodes that share some common parameter p. For randomly

chosen nodes the only common parameter p is the stored data and its replicas.

Remark. Note that at least one common p should exist in order for nodes to form a group.

In CASTDSL the SimEng can create groups by specifying the following construct [35]:

Listing 4.1: Sample Group construct.

1 groups:

2 my_group:

3 members: [node_0, node_1]

4 group_parameters:

5 election:

6 type: ElectionAlgorithm

7 value: BullyAlgorithm

8 replication:

9 type: SingleMaster

10 replicated_items: [Movie]

11 clock: ScalarLamport

12 all_node_parameters:

13 clock_type:

14 type: ClockType

15 value: ScalarLamport

16

The following are the steps taken by CAST when a ”group” tag in parsed in CASTDSL:

1. A new Actor is created with the same id as the group name. (”my group”)

32

2. All messages with a destination equal to the id of any node in the group are routed to

the Actor created previously.

3. The functionalities specified in the ”group parameters” are enabled on the ”my group”

Actor created at step 1.

4. The functionalities specified in the ”all node parameters” are enabled on all nodes, rep-

resented by Actors, belonging to the group.

Remark (Enabling a functionality). How a specific functionality is enabled is detailed in its

respective section. For example Lamport clocks are enabled is described in section 3.2.

More details about the CAST architecture definition, including the definition of groups, are

referenced from the ”Architecture definition” section [35].

4.5.1 Logical ordering of nodes in a group

In CAST nodes that belong to a group can be logically ordered, this is useful for algorithms

such as the Bully algorithm (Chapter 5) which require a total node order. In CAST, by default,

the order of the nodes in the group is determined by the order in which the nodes appear in

the ”members” list (See group construct 4.1). Each node id (nid) is mapped to the node index

in the list: index −→ nid and stored in the Actor representing the node group.

4.6 Election of a master node

The CAST implementation of replication is based on the single master replication model [38]

this means that CAST will elect a master node for each logical data item the SimEng wants

to replicate. The SimEng has the responsibility of choosing the election algorithm he wants to

33

use. CAST will apply the chosen election algorithm for each replicated logical data item (ref.

4.0.2) until a master node has been selected for each of them.

4.7 Replica reconciliation

As detailed in section 3.2 certain replicas become different from the rest when they are modified

by write operations. This causes a consistency problem and makes it necessary to perform write

operations on all replicas. In this section we will show how we can rely on logical clocks to

achieve this goal.

Definition 4.7.1 (Replica reconciliation). Replica reconciliation is the process of propagating

the updates introduced in a replica to the other replicas belonging to the replication group such

that: [39]

• Perform updates (write operations) on all replicas in the same order.

• Propagate writes between replicas. If a write operation is executed on one replica, it must

be reflected on the other replicas as well.

As described in the Logical Clocks section (ref. 3.2) we formalize the messages exchanges in a

distributed system as tuples composed by the message content and the clock value at the time

at which the message was emitted: 〈content, clkmsg〉 This operation is described as ”tagging” a

message with the clock value and consists in the association of a message with the clock value

of the node where the message originated. [40]

34

Example 4.7.1 (Message and clock tagging). On a given node (A) the lamport logical clock

time is 10 when message SampleMessage is created and is tagged with a clock value of 10.

〈SampleMessage, 10〉

In order to reconcile replicas we make use of Clocks as introduced in section 3.2. Two steps

need to be accomplished:

1. ”tag” each message with the respective clock value.

2. Use a replica reconciliation protocol based on the clock value.

4.7.1 Replica reconciliation protocol

CAST implements the Totally-Ordered Multicast protocol in order to achieve replica reconcil-

iation. Intuitively all incoming messages are put in a queue and sorted by clock value so that

all replicas apply the updates (write operations) in the same order as specified by the Lamport

Logical Clock.

Definition 4.7.2 (Client node). Given a set of nodes Gp,v and the set R of replicas (Ref. 4.0.2

4.5.1) such that R are replicated on group Gp,v, a Client node is a node that is outside of group

Gp,v where no replicas belonging to set R are present. Concisely, a node is said to be a Client

node for a replication group if it is a node that is not part of the replication group.

Definition 4.7.3 (Replication Message). A Replication Message is a tuple

〈ack, content, clkmsg〉 where ack is a boolean representing whether this message was ac-

knowledged, content is the message content and clkmsg is the clock value (an integer) at

35

the time at which the message was emitted. anyMessage(s) are translated into Replication

Messages as shown: 〈id, content, clkmsg〉 −→〈id, 0, content, clkmsg〉.

In the rest of this section the protocol used by CAST to reconcile replicas is described in detail

[40]:

1. Any time a new anyMessage is received from a client node translate it into a Replication-

Message and send it to all nodes part of the replication group. (including the node that

received the anyMessage or current node)

2. Any time a new ReplicationMessage is received by a node from another replica, the node

must:

(a) Add the message to the node’s local queue

(b) Send an acknowledgement message to all other replicas

3. Any time a new acknowledgement message is received by a node, the node must:

(a) Mark the corresponding message as acknowledged in the node’s local queue

4. Any time a ReplicationMessage has been acknowledged by all replicas, it must be removed

from the queue and processed.

4.8 Summary

In this chapter we have presented two key aspects of distributed systems, reliability and per-

formance, and we have focused on how CAST implements as essential feature of distributed

36

systems: replication. We have introduced the concepts of latency and replicas along with appro-

priate examples for the concepts of reliability and performance in distributed systems. We have

discussed the problem of consistency which arises when a write operation on a replica results

in that replica being modified and becoming different from the other replicas. Additionally, we

have explained how nodes of the distributed system can be grouped together and how CAST

manages replication for these groups of nodes. Finally, we have described the problem of replica

reconciliation and how it can be achieved by relying on logical clocks introduced in Chapter 3

and the specific replica reconciliation protocol implemented in CAST.

CHAPTER 5

ELECTION ALGORITHMS

A distributed system is a graph where each node is a computing entity. Nodes in the graph can

form groups and run distributed algorithms1 to execute read and write operations.

Distributed algorithms allow for the sequence of operations to be split among multiple nodes

and some require a node to act as a Coordinator. [31] This special node is responsible for

organizing the execution of the distributed algorithm and communicates with the other nodes

in the group to schedule operations or collect results 2.

Example 5.0.1 (Distributed Commit Algorithms and Coordinators). A family of algorithms

which require a Coordinator node are the Distributed commit algorithms, such algorithms co-

ordinate whether nodes that take part in a distributed transaction should commit a transaction

or abort it. An example is the two-phase commit protocol (2PC protocol), widely-used in dis-

tributed systems [31].

For example the 2PC protocol requires the election of a Coordinator node which is the only

node responsible for [31]:

1Distributed algorithm: A distributed algorithm is an algorithm that runs on more than one node.

2Examples of the responsibilities of the coordinator which depend on the specific distributed
algorithm.

37

38

1. Sending a VOTE REQUEST message to all the nodes in the group to query them about

whether they are prepared to commit the transaction locally.

2. Collecting a response (VOTE COMMIT, VOTE ABORT) from all the group nodes indi-

cating whether they are ready to commit the operation locally.

3. Sending a message to all group nodes confirming or aborting the commit operation.

While all the remaining nodes in the group reply to the messages sent by the Coordinator and

act accordingly.

As it can be noticed from the example above, algorithms which require a Coordinator don’t

prefer a specific node over another in the group.

Remark. If the results produced by a given algorithm do not change depending on the node

chosen as Coordinator we can use Election algorithms to select a Coordinator among the nodes

in the group. [31]

In the rest of this section we will show how election algorithms can be used to elect a node as

Coordinator among the nodes in a group, the steps necessary to implement election algorithms

including the definition of the message format and APIs used in CAST and, finally, we will

introduce some common election algorithms implemented in CAST.

Remark. In order to elect one node of the group as the Coordinator we need to be able to

distinguish each node in the group. In CAST we assume that each node in the group is

uniquely identified by a node id. This assumption is realistic and the id field corresponds to

the network address of the node in the real world. Additionally, we assume that:

39

• Every node knows which are the other nodes in the group.

• Nodes in the group are not aware of whether other nodes which belong to the same group

have failed or not.

5.0.1 Goal of an election algorithm

The goal of an election algorithm is to guarantee that once an election1 starts, a new Coordinator

is elected and all nodes in the group use the newly elected node as their new Coordinator. [31]

5.1 Implementation framework for Election Algorithms

In this section we will introduce the steps necessary to implement election algorithms in CAST.

Remark. The CAST run-time knows that a Coordinator must be elected when the current

Coordinator has failed or no Coordinator has been chosen yet. More details on how to determine

a node has failed and the failure models available in CAST are contained in section 6.

Implementing Election algorithms in CAST means solving the following issues:

• Providing a way for a node to signal the start of the election process to the other nodes

in the group.

• Provide a way for nodes in the group to respond to the election start signal.

• Provide a way for a node in the group to notify other nodes that a certain node (including

itself) is the new Coordinator.

In order to implement an election algorithm we need to:

1Election: an election is the process of choosing a new Coordinator among the nodes in a group.

40

• Define a set of election messages.

• Define the election APIs made available to SimEngs.

5.2 Definition of election messages

Based on the issues outlined above we identify three main categories of messages for imple-

menting election algorithms in CAST:

• Election Message (ElectionMessage object): Message sent from a node n1 in the group

to any other node when n1 wants to start the election process.

• Node Status Message (NodeStatusMessage object): Message sent from a node in the

group to any other node that carries the node status and/or additional information about

the sending node. This message is used to query a node status given assumption 5.

• Coordinator Message (CoordinatorMessage object): Message sent from a node in the

group to all other nodes in the group to indicate the sending node is taking over as a

Coordinator.

5.2.1 CAST Messages for Election

In CAST, we formalize Election Messages as tuples composed by the sender of the message,

the destination actor and a data field 〈sender, dest, data〉.

5.2.2 Message Sequence in Election algorithms

Election algorithms differ one another, CAST provides some election algorithms out-of-the-box

in addition to allowing SimEngs to define their own. Although Election algorithms are different,

the following is the common message sequence in terms of CAST election messages:

41

1. A node in the group sends an ElectionMessage to any other node requesting an election

to start.

2. The receiver node of the ElectionMessage responds by sending a NodeStatusMessage

indicating the node status to the sender node.

3. Once, the algorithm produces the new Coordinator node a CoordinatorMessage is cir-

culated among the nodes of the group to notify them of the Coordinator change.

5.3 Definition of election APIs

In addition to definiting election message (Section 5.2), CAST defines Election APIs that

SimEngs can use to obtain information about elections.

The following APIs can be invoked from inside each actor node in a group for which election is

enabled. (See section 5.6 for enabling Election algorithms in CAST):

• getCoordinatorId(): Obtain the identifier id of the current Coordinator node for the

group.

• sendMessageToCoordinator(message): Send a message to the current Coordinator for

the group previously selected by an election.

5.4 Functionality of CAST

When election is enabled for a group of nodes, CAST takes the following steps:

• Uses a failure model specified for the group of nodes (See section 6) to determine whether

the Coordinator has failed.

42

• Creates the necessary data structures to keep track of the current Coordinator node.

• Creates a route for messages so that all messages sent with the sendMessageToCoordina-

tor(message) API are sent to the current Coordinator node.

Remark (Coordinator failure transparency). In CAST each time the API sendMessageToCo-

ordinator(message) is invoked, the status of the Coordinator is checked. If the Coordinator is

known to have failed, then the message waiting to be sent to the Coordinator is persisted, the

election process takes place and the pending message is sent to the new Coordinator transpar-

ently.

5.5 Responsibilities of the SimEng

The SimEng responsibilities are the following:

• Specify which nodes belong to the group on which we want to enable an election algorithm.

• Specify the election algorithm among the out-of-the-box algorithms offered by CAST via

the ”election” value field in CASTDSL.

• Using the sendMessageToCoordinator(message) to send messages to the elected Coor-

dinator.

5.6 Enabling Election algorithms in CAST

In CAST the chosen election algorithm is a group property, this means that the chosen election

algorithm applies to a group of nodes. Enabling Election algorithms in CAST is done by

SimEngs by specifying the election group property in CASTDSL as already shown in section

4.5. In particular election is enabled as follows:

43

Listing 5.1: Enabling election in CAST.

1 groups:

2 my_group:

3 members: [node_0, node_1]

4 group_parameters:

5 election:

6 type: ElectionAlgorithm

7 value: Bully

. The valid values of the election value field are specified in Appendix ??.

5.7 Bully algorithm

In the following section we will present the bully algorithm that CAST implements for election

of a Coordinator among the nodes in a group.

Remark. For the purposes of implementing the algorithm, we assume that a total order of the

node ids can be established. That is, each node knows how to compute the id of the successor

of a node. (See section 4.5.1)

When any node (n1) detects that the Coordinator has failed or if no Coordinator has been

chosen yet, it takes the following steps [31]:

1. n1 sends an ElectionMessage to all nodes with a higher id than the id of n1. (n1 has

detected the Coordinator failure)

44

2. If no response is detected, n1 wins the election and becomes the new Coordinator. n1

sends a CoordinatorMessage to all other nodes in the group to signal it has acquired the

role of Coordinator.

3. If any other node responds with aNodeStatusMessage, n1 terminates the election process

and the other node takes over and starts the process again from step 1.

In detail [31]:

• When a node receives an ElectionMessage from any node, the receiving node responds

by sending a NodeStatusMessage if the id of the sender of the message is lower than the

id of the node.

• When a node receives a NodeStatusMessage it means that a node with a higher id is

alive1 and it will take over the election process.

• In the end all nodes except the one with the highest id terminate the election process

following a NodeStatusMessage reply from another node. The highest id node wins the

election and becomes the new Coordinator.

5.8 A ring algorithm

In the following section we will present a ring algorithm that CAST implements for election of

a Coordinator among the nodes in a group.

1Alive: Not failed.

45

Remark. For the purposes of implementing the algorithm, we assume that a total order of the

node ids can be established. That is, each node knows how to compute the id of the successor

of a node. Furthermore, the nodes are organized in a ring, the successor of the node with the

highest id in the group is the node with the lowest id: successor.nN = n1 where N is the

number of nodes in the group.

When any node (n1) detects that the Coordinator has failed or if no Coordinator has been

chosen yet, it takes the following steps [31]:

1. n1 sends an ElectionMessage containing a list of length 1 with its node id as the only

element (data element of the message tuple as defined in section 5.2.1) to its successor

node (n1 has detected the Coordinator failure)

2. The successor responds with a NodeStatusMessage and repeats step 1 adding its own

node id in the ElectionMessage.

3. If no response is detected, n1 sends an ElectionMessage to the successor of its successor

and so on until it gets a NodeStatusMessage response.

4. This process continues until a node receives an ElectionMessage with a list containing

its own node id. This means the ElectionMessage has reaches all nodes in the ring.

5. The ElectionMessage is converted to a CoordinatorMessage containing the id of the

highest node in the list of node ids and is sent around the ring as it happened for the

previous ElectionMessage.

46

5.9 Summary

In this chapter we have discussed election algorithms and we have shown that nodes in the

graph can form groups and run distributed algorithms which require a node in the group to act

as a Coordinator. [31] Among the available algorithms to elect a node among the members of

the group we have presented the Bully algorithm (Section 5.7) and a ring algorithm (Section

5.8). Finally, we have discussed their implementation in CAST in terms of messages and of

APIs offered to SimEngs.

CHAPTER 6

PARTITIONING AND FAILURE MODELING

In the previous chapters we have introduced the concepts of Events (Def. 3.0.4), Clocks,

Replication (Chapter 4.2) and Election (Chapter 5). In this chapter we will focus on failures,

which we first introduced while discussing the concept of reliability in Section 4.0.5. We will

define what failures are in distributed systems, which are the different types of failures and how

failures are modeled in CAST.

Definition 6.0.1 (Failure in Distributed Systems). A distributed system has failed if if one or

more services the system provides to its users can not be - in full or partially - provided. [31]

Definition 6.0.2 (Partial failure). In a distributed system a partial failure is the failure of a

subset of components1 of the distributed system. [31]

A distinguishing feature of distributed systems is the concept of partial failure, where only some

components of the system can fail leaving the remaining ones untouched while in traditional

non-distributed systems failures affect the entire system [31].

Remark (Failures in CAST). In CAST we model distributed systems as graphs where each node

is a computing entity, the components of the system subject to failures are modeled as nodes

in the graph. In CAST nodes can represent network channels as well.

1In CAST by component we mean any node in the graph representing the distributed system.

47

48

6.1 Failure types

In this section we will present the most common failure types that can happen in distributed

systems that are modeled in CAST. The classification of failures throughout this work is based

on the work described in Cristian 1991 [41] and Hadzilacos and Toueg 1993 [42] [31]. Failures

in distributed systems are divided in [43] [31]:

• Crash failures.

• Timing failures.

• Response failures.

• Arbitrary failures.

6.1.1 Crash failures

Definition 6.1.1 (Crash failure). A crash failure is a type of failure in which a node stops

working at a certain time instant t, but it was working correctly1 until time instant t. After t

the node becomes unreachable and no further messages are received from it.

Example 6.1.1. Let us consider a distributed system made of two nodes which handle incoming

requests from users. One of the two nodes runs out of available memory (RAM) and the

operating system stops working. As a consequence the node stops working at a certain time t

and will no longer work unless restarted. Before running out of available memory the node was

working correctly and responding to user requests.

1Working correctly: Not failed.

49

6.1.2 Timing failures

Definition 6.1.2 (Timing failure). A timing failure is a type of failure in which a response

message from a node arrives outside a specified period of time. Given a time interval [0, tmax]

representing the maximum length of time any node will wait for a reply to a previously sent

message, a timing failure occurs if the reply arrives at any time instant t s.t. t > tmax.

Example 6.1.2. Let us consider a node that receives requests for issuing One Time Password

(OTP) tokens for web-applications valid for 60 seconds. Another node requests a new token at

time t0. The token is generated on the server at t1 and is valid until t61. In order for the reply

of the server to be useful, the node requesting the token must receive a reply before t61. If the

node receives the reply at t > t61 a timing failure occurs. In general a timing failure occurs any

time a reply message is received outside a certain validity period.

6.1.3 Response failures

Definition 6.1.3 (Response failure). A response failure is a type of failure in which a response

message from a node is systematically incorrect.

Example 6.1.3. Let us consider a node of a distributed system used to query a database and

return results. If a node is sent a SELECT query with a WHERE clause on a given column

c asking it to return all tuples for which c has a certain value v1, but instead returns tuples

with c equal to v2, then this node is experiencing a response failure. The node is returning an

incorrect response to the query performed.

50

6.1.4 Byzantine failures

Definition 6.1.4 (Byzantine failure). A byzantine failure is a type of failure in which different

nodes of the distributed system have a conflicting view of reality. [31] [44].

Example 6.1.4. Let us consider three nodes nx, ny and nz. nx and ny are connected through

a working network link, ny and nz are connected through a working network link as well while

the network link between nz and nx is faulty. In this scenario the node ny believes that nz is

functioning correctly, while nx believes that nz has failed because it appears unreachable. Each

node nx, ny belies that the information that it has at its disposal is accurate. Let us assume

that nz is the coordinator (see Section 5), node nx will initiate an election process since the

coordinator is unreachable, but will receive a conflicting response from node ny that is still

communicating with the old coordinator and does not see a reason to start an election process.

There is imperfect information as to if nx has failed. [44]

6.2 Implementation framework for Failures

In this section we will introduce a framework to model the failures described in the previous

section in CAST and provide support for failures in the simulation. We will later describe how

this framework is mapped to the CAST code for each type of failure we consider.

Remark (Nodes in CAST). In CAST failures are defined as node failures. In other words only

the nodes in the graph can fail. It is important to remind the reader that nodes can represent any

component of the distributed system, including network links and therefore this does not impose

any limitation. Please see M. Pelosi, ”CAST: Cloud-based applications simulator testbed.” for

details on how network links are modeled as nodes in CAST [35].

51

Implementing support for failures in the simulation requires:

• Being able to generate failures during the simulation, either at a specific time instant or

following a certain probabilistic distribution which reflects failure distribution in the real

distributed system.

• Providing a way for the SimEng to handle the failure and run custom code inside each

node when the failure happens.

• Providing a way for nodes in the graph to recover from failures and return to a non-failed

state.

More in detail, CAST should:

• Implement a CASTDSL construct for failure generators.

• Support the execution of custom code in response to a failure of a given type by invoking

the respective handler inside each actor representing a node of the graph.

• Provide out-of-the-box support to allow SimEngs to send recovery messages to actors

which in response should switch to a non-failed state.

6.2.1 Responsibilities of the SimEng

The SimEng responsibilities are:

• Creating a failure generator by specifying the failure type among the failure types offered

by CAST along with failure distribution and distribution parameters.

• Send a message to start/stop the failure generator using the simulation workflow messages.

• Send recovery messages to actors.

52

6.2.2 Failure generators

In this section we describe failure generators in CAST as previously introduced in Section 6.2.

When the SimEng wants to create a failure generator as part of the simulation, he needs to

specify the following CASTDSL construct. The construct appears in the root of the yaml file

and should not be nested in any other construct.

Listing 6.1: Sample Failure Generator construct.

1 failure_gens:

2 failure1:

3 group: group_1

4 failure_type: CrashFailure

5 distribution: poisson

6 distribution_params:

7 name: lambda

8 value: 3

9 failure2:

10 group: group_2

11 failure_type: TimingFailure

12 distribution: poisson

13 distribution_params:

14 name: lambda

15 value: 3

The construct above contains:

• Failure generator name such as ”failure1”,”failure2”. Must be unique.

• group: group of nodes (See Section 4.5) to which this failure generator applies.

53

• failure type: The type of failure for this generator among the types listed in Section 6.1.

Valid keywords are listed in Appendix ??.

• distribution: Probabilities distribution from which samples will be drawn.

• distribution params: Parameters of the chosen distribution.

The following are the steps taken by CAST when a ”failure gens” tag is parsed in CASTDSL.

For each of the children of the ”failure gens” tag, each representing a failure generator name:

1. A new Actor is created with the same id as the failure generator name. (”fail-

ure1”,”failure2”)

2. The Actor state is updated to generate failures of type ”failure type” and using distribu-

tion ”distribution”.

3. All messages generated by the Actor are sent to the Actor with the same id as the group

specified in the field ”group”. (See Section 4.5)

Remark. A similar approach to failure generators is present in M. Pelosi, ”CAST: Cloud-based

applications simulator testbed.” for generating simulation inputs. [35]

Remark. CAST stores the ”failure type”, ”distribution” and ”distribution params” values in-

side the node state of the Actor representing the failure generator. Each different ”failure type”

value activates a specific logic contained in the Actor code which we describe in the following

sections.

54

6.2.3 Failure generators integration

In CAST distributed systems are represented as a graph where each node is a computing entity,

nodes in the graph are organised in groups. Each group is represented by the corresponding

node Actor with the same name of the group (Group Actor) as described in detail in Section

4.5. This Actor receives all the messages for any of the group members (nodes) and forwards

them to the correct member. Also, all outgoing messages from any group member are routed

through this Actor before reaching their destination.

In CAST failure generators apply to group of nodes. The following communication takes place

between the failure generator and the Group Actor:

1. A failure generator is linked to a group via the ”group” property of the CASTDSL con-

struct.

2. The Group Actor, instead of forwarding messages directly to the group, forwards all

messages to the failure generator.

3. The failure generator transforms the messages received and returns them to the Group

Actor for delivery.

6.2.4 Responding to failures

In this section we describe how CAST allows SimEngs to respond to failures during a simulation

as introduced in Section 6.2.

CAST supports the execution of custom code in response to a failure and allows SimEngs to

extend the nodes functionality to handle the failure. When a failure event occurs, CAST:

55

• The failure message is routed to the node member by the Group Actor (Section 4.1).

• The Group Actor stops routing any message to the node.

• CAST invokes the failure handler so the SimEng can handle the failure from inside the

actor code.

• The Group Actor resumes routing of messages once the handler code has finished execut-

ing.

override def receiveCommand: Receive = case CrashFailure =¿ The receiveCommand function

(present in each Actor) is invoked by the Akka framework upon receipt of a new failure event,

the custom code is executed and then the actor waits for the next messages to the received.

6.2.5 Failure control messages

As described in the previous sections failure generators are able to produce failures during a

CAST simulation based on samples drawn from a statistical distributions. [45] In other to

coordinate and control failure generators, CAST defines a set of control messages that the

SimEng can send to failure generators to control their behaviour. [35] We identify the following

messages for sending control signals to failure generators in CAST:

• Start Message (FailureStartMessage object): Message sent to a failure generator indi-

cating that we want that generator to start producing failures based on samples drawn

from the statistical distribution.

56

• Stop Message (FailureStopMessage object): Message sent to a failure generator indicat-

ing that we want that generator to stop producing failures based on samples drawn from

the statistical distribution.

• Node recover Message (FailureRecoverMessage object): Message sent to any node in

a group indicating that that node should return to a non-failed state after a failure

occurred.1

1FailureRecoverMessage: This message is used only for Crash Failures.

57

6.3 Summary

In this chapter we have discussed the concept of failures in CAST. In particular, we have

provided the definition of failure and introduced the concept of partial failures specifically

relevant to distributed systems. We have identified four types of failures: crash failures, timing

failures, response failures and arbitrary failures and we have highlighted their differences. In

CAST we model failures as node failures, in other words only nodes in the graph representing

the distributed system can fail. Then, we have described how we have implemented support

for failures including being able to generate failures during the simulation, providing a way

for SimEngs to handle failures by running custom code and providing recovery mechanisms to

allow nodes to return to a non-failed state. Finally, we have detailed the failure generators

implementation and the types of the failure control messages.

CHAPTER 7

RELATED WORK

With the constant growth of cloud computing it is increasingly important for researchers to

understand and predict the behaviour of large scale cloud datacenters and to analyze novel dis-

tributed algorithms running on top of them. Large scale simulators are a key tool for evaluating

distributed algorithms and understanding their behaviour. CAST, a Cloud-based Applications

Simulator Testbed, makes large-scale simulations possible in a simple and intuitive way. The

aim of this work is to integrate high-level functionalities such as the Global Clock, Consistency

and Replication algorithms, Election Algorithms and Partitioning and Failure modeling into

an underlying cloud simulator architecture while providing intuitive access to such functional-

ities even for engineers with limited programming experience. In this chapter we investigate

the state-of-the-art of cloud simulators that we can use as the underlying architecture and, at

the same time, we analyze the availability of implementations of algorithms related to Clocks,

Consistency, Election algorithms and Partitioning and Failure modeling in the literature.

7.1 Cloud Simulators

In this section we investigate various cloud simulators present in the literature with the aim

of choosing one of them as the underlying architecture for the algorithmic framework we have

developed as part of this work. For each cloud simulator we consider we evaluate its ability

58

59

to run large scale simulations, its extensibility and its ease of use for SimEngs unaware of the

simulator internals.

7.1.1 CloudSim

CloudSim is an extensible simulation toolkit written in Java which allows users to run cloud

simulations by defining a set of system components (Datacenters, VMs) and tasks or cloudlets

that represent operations run on one of more system components. [46] In order to run simula-

tions on top of Cloudsim, users need to import the simulation code in a new Java project and

edit the Java code to configure the simulation specifics. Additionally, CloudSim instantiates

a Java object for each system component the users wishes to use and provides no support for

distributing objects across a set of physical machines. Work present in the literature attempts

to solve this significant issue by creating a Java-based actor-model by relying on Hazelcast[47].

Users need to learn how the Cloudsim architecture is structured before they can run simula-

tions. [12] For these reasons, we are not considering CloudSim as the underlying architecture

for the algorithmic framework we have developed.

7.1.2 CAST: A distributed simulation framework

CAST, a Cloud-based Applications Simulator Testbed, is a novel simulation framework written

in Scala and based upon Akka, an Actor-based framework. [48] Its use of the Actor model allows

CAST not to instantiate a Java class for each cloud component the user creates, but instead, use

lightweight actors with a significantly smaller memory footprint. Additionally, Akka provides

support for distributing Actors across a cluster of physical machines by relying on ”Akka Cluster

Sharding” in a seamless and transparent way. CASTDSL, the CAST Declarative Specification

60

Language, provides users with an effective way to setup and run simulations only by relying

on a declarative language with no specific knowledge of CAST architecture [35]. CAST is the

underlying architecture we have chosen for this work.

7.2 Algorithmic implementations

In this section we analyze various algorithmic implementations of Clocks, Consistency and

Replication, Election Algorithms and Partitioning and Failure modeling and their availability

in existing cloud simulators.

7.2.1 Global Clock algorithms

In distributed systems messages are exchanged concurrently and the same resources are manip-

ulated asynchronously by multiple nodes. When multiple messages access the same resource at

the same time the order of such messages (and consequently of the operations) directly influ-

ences the output of the system. Clocks are the key to order the events in distributed systems

and are an essential feature of distributed systems. However, clock algorithms, like the Lamport

Clock and Vector Clock that we have presented as part of this work, are not present in most

cloud simulators. CloudSim employs a simple Java counter to order operations during the sim-

ulation. [46] As we have discussed in Chapter 3 a simple timestamp, or counter, is insufficient

for ordering events in distributed systems as it can introduce a fictitious order among events

and generate collisions. CloudSim does not consider this issue because it does not allow the

61

execution of concurrent operations, imposing therefore a behavioural restriction1 of the cloud

architecture.

7.2.2 Consistency and Replication

In distributed systems replication algorithms improve reliability and performance while guar-

anteeing consistency among replicas when a write operation on one of the replicas results in

that replica being modified and becoming different from the rest. Cloud simulators, such as

CloudSim don’t implement any replication or consistency algorithm out of the box leaving it

up to the users to provide their own replication implementation along with any support fea-

ture required. Simulators for consistency models, such as Herd [49], are available and aim at

providing a theoretical memory consistency model simulator. Such simulators provide all the

possible combinations of events allowed in a certain consistency model and are a useful tool to

verify whether the chosen consistency constraints are enough for the user application [49]. This

work takes a more practical approach with the focus on allowing the simulation of real-world

architectures such as the Master-Slave architecture while guaranteeing consistency.

7.2.3 Election algorithms

Election algorithms are necessary to run some distributed algorithms which allow for a sequence

of operations to be split among multiple nodes and require a Coordinator [31]. The Coordinator

is responsible for organizing the execution of the distributed algorithm and communicates with

the other nodes in the group to schedule operations or collect results. Election algorithms have

1Behavioural restriction: CloudSim sequences all events in the distributed system making them
sequential.

62

been implemented in existing cloud simulators only for specific use-cases such as MapReduce

simulations in Cloud2Sim [50] [51]. In these specific instances the simulator manages the Elec-

tion in a transparent way. As part of this work we aim at providing some election algorithms

such as the Bully algorithm or a ring algorithm and the building blocks to implement further

election algorithms in an Actor-based architecture.

7.2.4 Partitioning and Failure Modeling

Failures, and in particular partial failures, are especially relevant to distributed systems: only

some components of the system can fail leaving the remaining ones untouched while in tradi-

tional non-distributed systems failures affect the entire system [31]. This can lead to unexpected

and complex behaviours which can be investigated through simulation [52]. Although not origi-

nally part of CloudSim, fault injection modules for CloudSim such as ”FIM-SIM” are present in

the literature. [45] ”FIM-SIM” is a failure generator module which creates faults in CloudSim

using samples drawn from statistical distributions such as Poisson and Weibull. The main

drawbacks of such module is that it is tightly integrated with CloudSim and it is limited to fail-

ure generation. This work builds upon fault injection modules such as ”FIM-SIM” by adapting

them to work with the Actor model and, in addition to the failure generation capabilities, by

adding additional APIs that allow SimEngs to respond to failures by executing custom code

from within actors.

APPENDICES

63

64

Appendix A

CASTDSL KEYWORDS

This appendix contains the list of CASTDSL keywords used throughout this thesis along with

the feature they relate to and a description.

65

Appendix A (continued)

Keyword Related feature Description

ClockAlgorithm Clock Specifies the associated value
is a Clock algorithm.

ScalarLamport Clock Scalar Lamport clock (3.2)
VectorClock Clock Vector clock (3.4)
ElectionAlgorithm Election Specifies the associated value

is an Election algorithm.
BullyAlgorithm Election Bully election algorithm (5)
SingleMaster Replication Single Master replication
CrashFailure Failures Crash failure (6.1.1)
TimingFailure Failures Timing failure (6.1.2)
ResponseFailure Failures Response failure (6.1.3)
ByzantineFailure Failures Byzantine failure (6.1.4)

TABLE III: CASTDSL Keywords to Feature

CITED LITERATURE

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., and Zaharia, M.: A view of cloud computing.
Commun. ACM, 53(4):50–58, April 2010.

2. Data centers: Jobs and opportunities in communities nationwide. Avail-
able at the US Chamber of Commerce - Technology Engagement Cen-
ter: https://www.uschamber.com/sites/default/files/ctec_datacenterrpt_

lowres.pdf (2020/01/17).

3. Gartner projects cloud services industry to grow exponentially through 2022. Available
at Gartner, Inc.: https://www.gartner.com/en/newsroom/press-releases/

2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g

(2020/01/17).

4. Filelis-Papadopoulos, C. K., Gravvanis, G. A., and Morrison, J. P.: Cloudlightning simula-
tion and evaluation roadmap. In Proceedings of the 1st International Workshop on
Next Generation of Cloud Architectures, CloudNG:17, pages 2:1–2:6, New York,

NY, USA, 2017. ACM.

5. Paxson, V. and Floyd, S.: Why we don’t know how to simulate the internet. In Proceedings
of the 29th Conference on Winter Simulation, WSC ’97, pages 1037–1044, Wash-

ington, DC, USA, 1997. IEEE Computer Society.

6. Li, B. H., Chai, X., Hou, B., Yang, C., Li, T., Lin, T., Zhang, Z., Zhang, Y., Zhu, W.,
and Zhao, Z.: Research and application on cloud simulation. In Proceedings of
the 2013 Summer Computer Simulation Conference, SCSC ’13, pages 34:1–34:14,

Vista, CA, 2013. Society for Modeling & Simulation International.

7. Liu, D., De Grande, R. E., and Boukerche, A.: Towards the design of an interoperable multi-
cloud distributed simulation system. In Proceedings of the 50th Annual Simulation
Symposium, ANSS ’17, pages 13:1–13:12, San Diego, CA, USA, 2017. Society for

Computer Simulation International.

8. Pan, Q., Pan, J., and Wang, C.: Simulation in cloud computing envrionment.
In Proceedings of the 2013 International Conference on Service Sciences, ICSS ’13,
pages 107–112, Washington, DC, USA, 2013. IEEE Computer Society.

66

67

CITED LITERATURE (continued)

9. Zehe, D., Cai, W., Knoll, A., and Aydt, H.: Tutorial on a modeling and simulation cloud
service. In Proceedings of the 2015 Winter Simulation Conference, WSC ’15, pages
103–114, Piscataway, NJ, USA, 2015. IEEE Press.

10. Fakhfakh, F., Kacem, H. H., and Kacem, A. H.: An evaluative review and research chal-
lenges of the simulation in cloud environment. Int. J. Softw. Innov., 5(4):59–73,
October 2017.

11. Liu, X., Qiu, X., Chen, B., and Huang, K.: Cloud-based simulation: The state-of-the-art
computer simulation paradigm. In Proceedings of the 2012 ACM/IEEE/SCS 26th
Workshop on Principles of Advanced and Distributed Simulation, PADS ’12, pages
71–74, Washington, DC, USA, 2012. IEEE Computer Society.

12. Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F., and Buyya, R.: Cloudsim:
A toolkit for modeling and simulation of cloud computing environments and evalua-
tion of resource provisioning algorithms. Softw. Pract. Exper., 41(1):23–50, January
2011.

13. Taylor, S. J. E., Khan, A., Morse, K. L., Tolk, A., Yilmaz, L., Zander, J., and Mosterman,
P. J.: Grand challenges for modeling and simulation. Simulation, 91(7):648–665,
July 2015.

14. Taylor, S. J. E., Khan, A., Morse, K. L., Tolk, A., Yilmaz, L., and Zan-
der, J.: Grand challenges on the theory of modeling and simula-
tion. In Proceedings of the Symposium on Theory of Modeling & Simulation -
DEVS Integrative M&S Symposium, DEVS 13, pages 34:1–34:8, San Diego, CA,
USA, 2013. Society for Computer Simulation International.

15. Cayirci, E.: Modeling and simulation as a cloud service: A survey. In Proceedings of the
2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex
World, WSC ’13, pages 389–400, Piscataway, NJ, USA, 2013. IEEE Press.

16. Byrne, J., Byrne, P., e Ferreira, D. C., and Ivers, A. M.: Towards a cloud based sme data
adapter for simulation modelling. In Proceedings of the 2013 Winter Simulation
Conference: Simulation: Making Decisions in a Complex World, WSC ’13, pages

147–158, Piscataway, NJ, USA, 2013. IEEE Press.

17. Szufel, P., Czupryna, M., and Kamiński, B.: Optimal execution of large scale simulations in
the cloud: The case of route-to-pa sim online preference simulation. In Proceedings

68

CITED LITERATURE (continued)

of the 2016 Winter Simulation Conference, WSC ’16, pages 3702–3703, Piscataway,
NJ, USA, 2016. IEEE Press.

18. Johnson, H. E. and Tolk, A.: Evaluating the applicability of cloud computing enterprises
in support of the next generation of modeling and simulation architectures. In
Proceedings of the Military Modeling & Simulation Symposium, MMS ’13, pages
4:1–4:8, San Diego, CA, USA, 2013. Society for Computer Simulation International.

19. Taylor, S. J. E., Kiss, T., Terstyanszky, G., Kacsuk, P., and Fantini, N.: Cloud computing
for simulation in manufacturing and engineering: Introducing the cloudsme simu-
lation platform. In Proceedings of the 2014 Annual Simulation Symposium, ANSS
’14, pages 12:1–12:8, San Diego, CA, USA, 2014. Society for Computer Simulation
International.

20. Li, Z., Chen, B., Liu, X., Ning, D., Duan, W., Qiu, X., and Xu, C.:
Qos-aware parallel job scheduling framework for simulation execution as
a service. In Proceedings of the 21st International Symposium on Distributed
Simulation and Real Time Applications, DS-RT ’17, pages 208–211, Piscataway,
NJ, USA, 2017. IEEE Press.

21. Jones, A., Shao, G., and Riddick, F.: Enabling control system and cloud-based simulation
service interoperability. In Proceedings of the 2018 Winter Simulation Conference,
WSC ’18, pages 703–714, Piscataway, NJ, USA, 2018. IEEE Press.

22. Li, F., LaiLi, Y., Zhang, L., Hu, X., and Zeigler, B. P.: Service composition and schedul-
ing in cloud-based simulation environment. In Proceedings of the Model-driven
Approaches for Simulation Engineering Symposium, Mod4Sim ’18, pages 2:1–2:10,
San Diego, CA, USA, 2018. Society for Computer Simulation International.

23. Madden, M. M. and Glaab, P. C.: Distributed simulation using dds and cloud computing. In
Proceedings of the 50th Annual Simulation Symposium, ANSS ’17, pages 3:1–3:12,
San Diego, CA, USA, 2017. Society for Computer Simulation International.

24. Kacsuk, P.: Enabling distributed simulations using big data and clouds. In Proceedings of
the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation,

SIGSIM PADS ’15, pages 125–126, New York, NY, USA, 2015. ACM.

25. Borshchev, A. and Churkov, N.: Anylogic cloud: Cloud-based simulation analytics.
In Proceedings of the 2018 Winter Simulation Conference, WSC ’18, pages 4245–
4245, Piscataway, NJ, USA, 2018. IEEE Press.

69

CITED LITERATURE (continued)

26. Rajaei, H., Alotaibi, F., and Jamalian, S.: A dististributed simulation platform
for cloud computing. In Proceedings of the 20th Communications & Networking
Symposium, CNS ’17, pages 9:1–9:12, San Diego, CA, USA, 2017. Society for Com-
puter Simulation International.

27. Chen, T.: A factory simulation system based on cloud services and portable scheduling in-
telligence. In Proceedings of the 2016 8th International Conference on Information
Management and Engineering, ICIME 2016, pages 85–88, New York, NY, USA,

2016. ACM.

28. Hwangbo, S. and Lee, K.: Cloud services for modeling and simulation: A simulation
of a chemical gasdiffusion in the cloud. In Proceedings of the 20th International
Symposium on Distributed Simulation and Real-Time Applications, DS-RT ’16,

pages 187–188, Piscataway, NJ, USA, 2016. IEEE Press.

29. Heavey, C., Dagkakis, G., Barlas, P., Papagiannopoulos, I., Robin, S., Mariani, M., and
Perrin, J.: Development of an open-source discrete event simulation cloud en-
abled platform. In Proceedings of the 2014 Winter Simulation Conference, WSC
’14, pages 2824–2835, Piscataway, NJ, USA, 2014. IEEE Press.

30. Helal, A. E., Bayoumi, A. M., and Hanafy, Y. Y.: Parallel circuit simulation using the
direct method on a heterogeneous cloud. In Proceedings of the 52Nd Annual Design
Automation Conference, DAC ’15, pages 186:1–186:6, New York, NY, USA, 2015.

ACM.

31. Tanenbaum, A. and van Steen, M.: Distributed Systems, Principles and Paradigms. 2nd.
Prentice Hall, 2007. steen2007.00 Translations: German, Portugese, Italian.

32. Time, Clocks, and the Ordering of Events in a Distributed System. Communications of
the ACM, 21(7):558–565, 1978.

33. Kshemkalyani, A. D. and Singhal, M.: Distributed Computing. Cambridge University
Press, 2011.

34. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
21(7):558–565, July 1978.

35. Pelosi, M.: Cast: Cloud-based applications simulator testbed. 2021.

36. Press., O. U.: Oxford Living Dictionary. Latency., 2017.

70

CITED LITERATURE (continued)

37. Distributed systems: Principles and paradigms.

38. Mansouri, Y.: Brokering Algorithms for Data Replication and Migration Across Cloud-
based Data Stores. (March), 2017.

39. Petersen, K., Spreitzer, M. J., Terry, D. B., Theimer, M. M., and Demers, A. J.: Flexible
Update Propagation for Weakly Consistent Replication. Operating Systems Review
(ACM), 31(5):288–301, 1997.

40. Elnozahy, M.: Time Synchronization and Logical Clocks.

41. Cristian, F.: Understanding fault-tolerant distributed systems. Commun. ACM,
34(2):56–78, February 1991.

42. V., H. and S., T.: Fault-tolerant broadcasts and related problems. In Distributed Systems
(2nd edition), ed. S. Mullender. Addison-Wesley, 1993. pages 97–145.

43. Costan, A., Dobre, C., Pop, F., Leordeanu, C., and Cristea, V.: A fault tolerance approach
for distributed systems using monitoring based replication. pages 451 – 458, 09
2010.

44. Lianza, T. and Snook, C.: A byzantine failure in the real world. https:

//blog.cloudflare.com/a-byzantine-failure-in-the-real-world, 2020 (ac-
cessed January 22, 2020).

45. Nita, M. C., Pop, F., Mocanu, M., and Cristea, V.: FIM-SIM: Fault injection module for
CloudSim based on statistical distributions. Journal of Telecommunications and
Information Technology, 2014(4):14–23, 2014.

46. Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F., and Buyya, R.: Cloudsim:
A toolkit for modeling and simulation of cloud computing environments and evalua-
tion of resource provisioning algorithms. Softw. Pract. Exper., 41(1):23–50, January
2011.

47. Hazelcast actor. Available at GitHub: https://github.com/truemped/hazelcast-actor
(2020/02/01).

48. Build powerful reactive, concurrent, and distributed applications more easily. Available at
the Akka website: https://akka.io (2020/01/17).

71

CITED LITERATURE (continued)

49. herd, a memory model simulator. Available at the Herd website: http://diy.inria.fr/

herd/ (2020/02/01).

50. Kathiravelu, P. and Veiga, L.: An Elastic Middleware Platform for Concurrent and Dis-
tributed Cloud and Map-Reduce Simulation-as-a-Service. page 12, 2014.

51. Kathiravelu, P.: An Elastic Middleware Platform for Concurrent and Distributed Cloud
and MapReduce Simulations. (September), 2016.

52. Cloud simulation under fault constraints. Proceedings - 2014 IEEE 10th International
Conference on Intelligent Computer Communication and Processing, ICCP 2014,
pages 341–348, 2014.

53. Baragiola, A.: CAST (Cloud-based Applications Simulator Testbed): A detailed view
ondomain-specific features, 2021.

54. Mell, P. and Grance, T.: The NIST Definition of Cloud Computing., 2009.

55. Nam, D.: Api design implications of boilerplate client code. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 1253–
1255, 2019.

56. Chinosi, M. and Trombetta, A.: Bpmn: An introduction to the standard. Computer
Standards and Interfaces, 34(1):124 – 134, 2012.

57. Hewitt, C., Bishop, P., and Steiger, R.: A universal modular ACTOR formalism for artifi-
cial intelligence. In Proc. International Joint Conference on Artificial Intelligence,
pages 235–245, 1973.

58. Hewitt, C.: Actor Model of Computation: Scalable Robust Information Systems. 2010.

59. Agha, G.: An overview of actor languages. Proceedings of the 1986 SIGPLAN Workshop
on Object-Oriented Programming, OOPWORK 1986, (October):58–67, 1986.

60. Spray: Elegant, high-performance http for your akka actors.

61. Build massively scalable soft real-time systems. Available at the Erlang website: https:

//www.erlang.org/ (2020/01/17).

72

CITED LITERATURE (continued)

62. Lea, D.: A Java fork/join framework. ACM 2000 Java Grande Conference, pages 36–43,
2000.

63. Scalability of fork join pool. Available at: https://letitcrash.com/post/17607272336/
scalability-of-fork-join-pool (2020/11/22).

64. Grechanik, M.: Cloud Computing. 2019.

65. Baldoni, R. and Bonomi, S.: Distributed system logical time. Available at: http://www.

dis.uniroma1.it/~baldoni/Logical_Time.pdf (2015/01/12).

66. Russ Miles, K. H.: Learning UML 2.0. O’Reilly Media, Inc., 2006.

67. Paul Bratley, Bennet L. Fox, L. E. S.: A Guide to Simulation. Springer Science Business
Media, 2011.

68. Unified modeling language 2.5.1, 2017.

69. Kemme, B.: Data Replication, pages 626–630. Boston, MA, Springer US, 2009.

70. eds. M. T. Özsu and P. Valduriez Principles of Distributed Database Systems. New York,
Springer, 3 edition, 2011.

71. Yu, H. and Vahdat, A.: Design and evaluation of a conit-based continuous consistency
model for replicated services. ACM Trans. Comput. Syst., 20(3):239–282, August
2002.

VITA

NAME Amedeo Baragiola

EDUCATION

Master of Science in Computer Science, University of Illinois at
Chicago, May 2021, USA

Master of Science in Computer Science and Engineering, May 2021,
Polytechnic of Milan, Italy

Bachelor of Science (Hons) in Engineering of Computing Systems, Jul
2018, Polytechnic of Milan, Italy

LANGUAGE SKILLS

Italian Native speaker

English Full proficiency

2018 - IELTS examination (8.0/9.0)

A.Y. 2019/20 One Year of study abroad in Chicago, Illinois

A.Y. 2018/19. Lessons and exams attended exclusively in English

SCHOLARSHIPS

Fall 2020 Research Assistantship (RA) position (20 hours/week) with full tuition
waiver plus monthly stipend

Spring 2020 Research Assistantship (RA) position (20 hours/week) with full tuition
waiver plus monthly stipend

Fall 2019 GA hourly position at UIC Innovation Center (10-15 hours/week) with
bi-weekly stipend

TECHNICAL SKILLS

Languages C/C++, JavaScript, Scala, Java, Perl, Python, SQL.

Frameworks Akka, Apache Spark, Apache Hadoop, Flask, Spring, Android, node.js.

Developer Tools Google Cloud Platform, AWS, Microsoft Azure, Cloudera HDP Sand-
box, Git, Docker, TravisCI, IntelliJ, Android Studio, Eclipse.

73

