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ABSTRACT 

Epilepsy, a condition manifested by aberrant brain networks from a combination of disparate etiologies, is 

in continuing need for better biomarkers for diagnosis and treatment. While seizures identified using 

electrophysiological tools is most recognized in detecting seizure onset and spread, their rare occurrence 

limits its ability to identify epileptic foci. On the other hand, events such as interictal spikes are a potential 

and commonly suggested alternative. Although these spikes are often associated with seizure onset 

regions, their precise roles are poorly understood. Additionally, the convoluted structural abnormalities alter 

the way the brain communicates amongst its different regions. What is needed is an integrated approach 

to understanding the functional networks of the diseased brain that accounts for its underlying structures. 

Using a combination of long term electrocorticography recordings and magnetic resonance imaging, we 

developed a set of algorithms and mapped the spatial-temporal network of interictal spike propagations and 

related it to brain topography and cortical lesions loci in 43 pathologic brains. We found that our method of 

isolating the time-epochs when time-locked interictal spikes were occurring led to the best identification of 

seizure onset regions, are related to brain topography, and are related to lesion loci. From a series of work, 

we have found the following observations. Interictal spike network is highly reproducible at different time 

points and frequency bands. While spikes are mostly closer to the epileptic foci, they are also sparsely 

distributed across the neocortex amongst which only a subset of spikes propagate to different cortical 

regions. Among these propagating spike regions, the spike onset regions often do not correspond to high 

spiking regions. While spike onset regions partially co-localize to seizure onset regions, they are also found 

on other cortical regions not identified as seizure onset zones. The specificity of these spike network is 

significantly higher compared to total brain network which is evaluated using the entire dataset irrespective 

of spiking. 

The spike propagation is not uniform across all cortical region and is dependent on the geodesic distance 

between electrodes as well as the sulcal patterns. While the total brain network connection density 

decreases with geodesic distance, the rate of decrease in propagation density for spike network is more 

drastic. The large sulci such as central sulcus acts as a rigid barrier of propagation and restricts 80% of the 

propagations. While brain topography is a natural barrier of propagations, the pathologic lesions also play 

an important role. The spike networks are often found reverberating in the perilesional regions and 
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colocalize with seizure onset. Such evaluations delineate the relationship between subtle electrical 

signatures and the underlying pathology, suggesting further attention to these biomarkers to enable better 

surgical precision, treatment plans, and drug development. 
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I. INTRODUCTION 

Epilepsy is a chronic neurological disorder characterized by recurrent seizures, affecting 70 million 

people worldwide across every age group, resulting in comorbidity and poor quality of life(Singh and Trevick 

2016). Epilepsy differs from other neurological disorders due to its heterogeneity in etiology and 

phenotypes. It can be classified as either symptomatic where the cause may be an infection in the brain 

(e.g. neurocysticercosis), brain tumor, stroke, head injury, congenital abnormalities; or it can be idiopathic 

with no identifiable cause. It is a non-contagious neurological condition, with lifelong comorbidities, poor 

quality of life, social stigma, and discrimination. Although, 70% of the patients can achieve seizure control 

with anti-seizure medications, for many drug-resistant patients alternative course of action is necessary for 

disease control where accurate identification of the epileptic foci is absolutely essential along with adequate 

knowledge of the functional transmission of signals amongst regions in the brain, known as the epileptic 

network. Numerous studies have already helped in identifying these seizure onset regions using widely 

used electrophysiological techniques such as electroencephalography (EEG) combined with imaging. 

Although seizure source localization uses both manual and algorithmic identification, pinpointing seizure 

onset regions has never been easy due the different spatio-temporal patterns and the complex mechanisms 

of seizure initiation. Very few studies explore the mechanisms of seizure onset. The sporadic nature of the 

seizures also adds additional difficulty. What is needed is the ability gain more information about these 

complex patterns, structure, and function. 

1.1. Electrophysiological events in epilepsy 

Seizures are hallmark of epilepsy. These are abrupt, highly synchronized, rhythmic spatio-temporal 

neuronal activity that often alters the brain’s natural state for several hours (Karoly et al. 2016). Extensive 

research has been performed on seizure onset, spread to different cortical regions and its relationship with 

epileptic foci (Miao, Tang, et al. 2014; Bartolomei et al. 2016; Bandt et al. 2014; S.-A. Lee, Spencer, and 

Spencer 2000; Wilke et al. 2010; Worrell et al. 2004; Dai et al. 2012). Multiple seizures recorded from 

individual patients help understanding the seizure affected cortical regions and leads to identify the 

pathological cortex responsible for seizure generation. However, seizures are infrequent events, making 

epileptic foci identification based on seizure onset alone difficult. Evidence suggests that abnormal brain 
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networks are not only confined to seizures but in fact, there are more frequent interictal events (events in 

between two consecutive seizures) produced by this pathological network such as interictal spikes, sharp 

waves, high frequency oscillations (A Korzeniewska et al. 2014; Staba, Stead, and Worrell 2014). Amongst 

these interictal events,  interictal spikes are defined as brief electrographic transients of approximately 

250ms or less, consisting of a short sharp wave, followed by a lasting slow wave (K. J. Staley, White, and 

Dudek 2011; K. J. Staley and Dudek 2006; de Curtis and Avanzini 2001). These interictal spikes are 

considered as significant biomarkers of epilepsy and widely found in seizure onset and other brain regions 

(Asano et al. 2004; Hufnagel et al. 2000; Marsh et al. 2010; Asano et al. 2003; Kobayashi, Merlet, and 

Gotman 2001). While decades of research establish the importance of interictal spikes in epilepsy, the 

functional dynamics of these paroxysmal events and its relationship with seizure and epileptic foci is poorly 

understood. There are also varied opinion on the role of interictal spikes suggesting, interictal spikes may 

also have a significant, yet independent impact on behavior as they are present in a wide variety of 

neuropsychiatric disorders in the absence of seizures (G. L. Holmes and Lenck-Santini 2006; Nicolai and 

Kasteleijn-Nolst Trenité 2011; Ebus et al. 2012; Baglietto et al. 2001).  Previous studies have suggested 

that the increase in occurrence of interictal spiking protects the brain against seizures (Lieb et al. 1978; 

Lange et al. 1983; de Curtis and Avanzini 2001). However recent studies suggest otherwise. While some 

studies suggest that the spikes play a functional role in developing the epileptic foci (K. Staley, Hellier, and 

Dudek 2005; White et al. 2010; K. J. Staley and Dudek 2006), and resection of high spiking cortical regions 

improve post-surgical outcomes; Others suggest that spike occurrence is not a reliable predictor of seizure 

onset regions (Asano, Brown, and Juhász 2013). This conflicting evidence leads us to believe that spike 

occurrence alone may not be a functionally useful measure, and further analysis of interictal spikes 

including their source activity, network pathways of propagation and network characterization are 

necessary to develop a better understanding of the role of interictal spikes in epilepsy.  

1.2. Methods of evaluating the brain connectivity 

Brain network are often measured in three different but related connectivity measures. Structural 

connectivity reflects the synaptic connections connecting anatomically distinct brain regions through the 

white matter tracks. These connections are the physical brain connections and are often stable. Diffusion-

weighted and diffusion tensor imaging (DWI/DTI) are the neuroimaging techniques used to find the fine 
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scale brain microstructures and structural abnormalities such tumor, necrosis, edema, and other lesion 

pathologies. While structural connectivity is highly stable and provides a true sense of brain connections, it 

lacks the time varying measures of connectivity. On the other hand, functional connectivity provides the 

statistical estimations of the time varying connectivity. Several neuroimaging techniques such as fMRI, 

EEG, MEG is used to calculate the functional connectivity. Since it is a statistical measure of the 

connections between different brain regions irrespective of the presence of physical connection, it often 

needs appropriate statistical validations. There are several parametric and non-parametric methods that 

calculates the functional connectivity in time and frequency domain. While correlation, coherence and 

partial coherence-based studies have revealed the pairwise functional connections [1], and more recently 

multivariate algorithms such as Direct Transfer Function and Partial Direct Coherence use parametric 

modelling to robustly identify causal propagations. We prefer Granger causality-based direct directed 

transfer function (dDTF) to evaluate the functional causal networks. This method has been used extensively 

and proven to identify the most likely direct connections in a multivariate environment  (Fasoula, Attal, and 

Schwartz 2013; Anna Korzeniewska et al. 2008; Hur and Kim 2015; Laura Astolfi et al. 2007; Bianchi et al. 

2013; Biswajit Maharathi et al. 2018). Using these functional networks, we have understood that the 

pathologic functional networks are very consistent (Biswajit Maharathi et al. 2018; Biswajit Maharathi, Loeb, 

and Patton 2016). When these causality-based algorithms are combined with structural connectivity 

measures, it is called effectivity connectivity that reflects the effect of one cortical region exerted on other 

brain regions. Once such connectivity measures are estimated, graph theory-based measures are used to 

characterize the structural and functional connections in normal and pathologic brain.   

1.3. Approaches to evaluate epileptic connectivity  

Epileptic events are spontaneous and appear intermittently across the neocortex. In network evaluation 

of epileptic signal, when all the electrode data is looked together without giving preference to any specific 

epileptic events or brain location, it is difficult to distinguish which propagations represent background 

activity and which are pathologic. Previous study suggest that  usually different brain regions within 

neocortex frequently communicate with each other (Biswajit Maharathi, Loeb, and Patton 2016) making it 

difficult to isolate the pathologic propagations from the background ones. Epileptic brain also often does 
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not spike uniformly across times and cortical regions. Spike can be seen localized to specific brain regions 

and occur repetitively over time in some of those specific location raising a question regarding the distinct 

characteristics of these event specific network patterns and their reliability on locating the epileptic brain 

regions as compared to the underlying background network interaction of all the brain regions.  

1.4. Impact of brain topography on the functional network of propagations 

Dynamic brain networks represent the spontaneous interaction of different brain regions. Previous 

connectivity studies suggest that although unique functional networks are produced during spontaneous 

and task related activity, they are not entirely a product of it. The resilient brain topography that represents 

the physical connections of the certainly delineates the spontaneity of such networks (Park and Friston 

2013; Honey, Thivierge, and Sporns 2010; Zalesky, Fornito, and Bullmore 2010).  Previous studies have 

presented that the structure influences functional propagation, irrespective of disease, time of recording or 

electrophysiological frequency band (Biswajit Maharathi et al. 2018; Biswajit Maharathi, Loeb, and Patton 

2016; Park and Friston 2013). Although there are studies that outline the influence of brain structure on its 

spontaneous functional connections, what is needed is an approach that evaluates the functional 

connectivity while also considering the underlying structure.   When the functional connectivity is integrated 

with structural measure such as cortical thickness, geodesic distance, and the brain topography, combined 

with statistical methods, we can establish the relationship between interictal spike-epoch propagation 

occurrence and geodesic distance. Also, it is essential to understand the role of large sulci and gyri in 

changes in connectivity density, however they have not been extensively researched. The words “functional 

network” are typically used to distinguish the statistically evaluated propagation behavior amongst 

electrodes, and “structural network” are used to distinguish the detailed anatomical considerations such as 

white matter pathways and geodesic path distances over the brain topology.  

1.5. Brain lesions and interictal spike 

Structures such as gyri and sulci are the hardwired communication pathways within brain topography 

that controls the information exchange while transmitting information from one cortical region to the next 

one. While these structures help brain to control the brain’s natural order of information flow, brain lesions 
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are the pathological abnormalities that disrupt this order. These structural lesions are associated with partial 

epilepsy and are often clinically intractable. These lesions can be small or may cover large portions of the 

brain. While lesions such as stroke, tumor or vascular malformation have higher favorable outcome for 

seizure control, other abnormalities such as hippocampal sclerosis negatively impacts the outcome. 

Although there is a general clinical consensus on the expected outcome, the exact role of structural 

abnormalities towards outcome is not clearly understood. While clearly demarcated lesions may be 

associated with recurrent seizures and may have stronger prognostic influence on outcome, the association 

needs extensive investigation.  

The relationship between lesion location and epileptic foci is also not straight forward. While many times 

seizure onset is confined within the lesion and perilesional boundaries, in many patients the seizure foci 

can be far away and, in some cases, distinct and non-contiguous with the lesion loci. In the event of 

secondary epileptogenesis, independent epileptogenic foci are found that are responsive for similar 

paroxysmal events as observed on or near the structural lesions, although these scenarios are often found 

in case of tumors. While seizure onset may not be associated with these lesion locations and the epileptic 

foci, frequent interictal spikes are observed in these areas, however the frequency of the spikes may be 

dependent on the type of lesion, severity of the disease, cellular alternation and other confounding 

variables. A previous study suggests that peritumoral regions have frequent spiking with shorter durations 

but higher power spikes as compared to distant regions and have proved that tumor proximity results in 

smaller sharper spikes irrespective of the epileptogenic potential of the cortex. Careful surgical planning for 

lesion loci or seizure foci may result in better outcome, but the prognostic value of these locations is not 

clearly understood. While complete surgical removal of lesion or epileptic foci results in better seizure 

control, the combined prognostic value of these parameters may not significantly alter the outcome. A better 

understanding of the lesion location and epileptic foci is essential for developing rational therapeutic 

strategies (Awad et al. 1991; Semah et al. 1998; van Breemen, Wilms, and Vecht 2007; Mittal et al. 2016).  

1.6. Organization of the thesis 

The current work seeks to explore the intricate details of interictal spike, their occurrent at specific brain 

regions, the causal propagation, and evaluates different graph properties at different electrophysiological 
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frequency bands. I further evaluate the different between the pathological spike network and the 

background brain network, evaluate the candidacy of interictal spike network as a potential predictor of 

epileptic foci. Since topography of the brain and brain lesions play a significant role in delineating the 

propagation pathways, I have tried to integrate these natural and pathological structural information to the 

functional one to understand the way a pathological brain function.  

The chapters presented below each represent a paper that has been published as part of my thesis 

work. The above studies are outlined in following 5 chapters, are either been published or are in preparation 

to be submitted as manuscripts to journals. At first, I characterize the interictal spike network and test their 

reliability in predicting the epileptic foci (Chapter 2, published in Clinical Neurophysiology). Then I explore 

the advantage of these networks over background network which is evaluated using the all the recorded 

signals irrespective of whether they are spiking (Chapter 3, published in the 2019 9th International 

IEEE/EMBS Conference on Neural Engineering (NER)). I further investigate the role of brain topography in 

delineating the functional network connections (Chapter 4, published in the 2019 41st Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)). Lastly, I establish 

relationship between pathological lesion and interictal spike network (Chapter 5, manuscript in preparation 

to submit to annals of neurology). Finally, my results are further discussed in detail to develop future vision 

for a better understanding of the functional activity of a pathologic brain (Chapter 6, manuscript in 

preparation to be submitted to annals of neurology). 
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II. INTERICTAL SPIKE CONNECTIVITY IN HUMAN EPILEPTIC NEOCORTEX 

 

This chapter has been adapted from the following manuscript publication: 

Maharathi, Biswajit, Richard Wlodarski, Shruti Bagla, Eishi Asano, Jing Hua, James Patton, and Jeffrey A. 
Loeb. "Interictal spike connectivity in human epileptic neocortex." Clinical Neurophysiology 130, no. 2 
(2019): 270-279. 

 

2.1. Introduction 

Epilepsy is a common neurological disorder characterized by chronic and recurrent seizures. Seizures 

are abrupt, temporal and spatial patterns of highly synchronized, rhythmic electrical activity that are often 

followed by a long duration of an altered brain state (Karoly et al. 2016). Due to the clinical importance of 

seizures in epilepsy and its ramifications resulting in behavioral changes, extensive research has been 

performed on seizures, its network and the relationship of seizure onset with epileptic foci (Miao, Tang, et 

al. 2014; Bartolomei et al. 2016; Bandt et al. 2014; S.-A. Lee, Spencer, and Spencer 2000; Wilke et al. 

2010; Worrell et al. 2004; Dai et al. 2012). However, seizures are not frequent events, which makes the 

identification of epileptic foci using seizure onset alone difficult. Evidence suggests that abnormal brain 

networks are not only confined to seizures but in fact, there are more frequent interictal events (events in 

between two consecutive seizures) produced by this pathological network (A Korzeniewska et al. 2014). 

Amongst these interictal events,  interictal spikes are defined as brief electrographic transients of 

approximately 250ms or less, consisting of a short sharp wave, followed by a lasting slow wave (K. J. 

Staley, White, and Dudek 2011; K. J. Staley and Dudek 2006; de Curtis and Avanzini 2001). These interictal 

spikes were previously thought to be significant biomarkers of epileptic brain regions along with seizures 

(de Curtis and Avanzini 2001). Although, vast literature exists on interictal spikes in the epileptic brain, little 

is known about the dynamic network of these events and their relationship to seizures. While spikes often 

originate from synchronously firing neurons at or near seizure onset zones  (Asano et al. 2004; Hufnagel 

et al. 2000; Marsh et al. 2010; Asano et al. 2003), they are also observed in cortical regions far from seizure 

onset (Kobayashi, Merlet, and Gotman 2001; Hufnagel et al. 2000). Moreover, clinically, interictal spikes 

may not only be a biomarker of epileptic brain regions, and may also have a significant, yet independent 
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impact on behavior as they are present in a wide variety of neuropsychiatric disorders in the absence of 

seizures (G. L. Holmes and Lenck-Santini 2006; Nicolai and Kasteleijn-Nolst Trenité 2011; Ebus et al. 2012; 

Baglietto et al. 2001).  

Interictal spikes have also been postulated to play a role in the formation of epileptic foci that produce 

seizures (K. Staley, Hellier, and Dudek 2005; White et al. 2010; K. J. Staley and Dudek 2006), and animal 

models have shown that spike generation often precedes the development of seizures (White et al. 2010). 

The resection of high-spiking cortical regions also has been associated with decreased seizure events and 

an improved post-surgical outcomes (Tomlinson et al. 2016; Asano et al. 2009; Palmini et al. 1995; Asano 

et al. 2003). Conversely, other studies challenge this concept, suggesting that increased spiking actually 

protects the brain against seizure activity (Lieb et al. 1978; Lange et al. 1983; de Curtis and Avanzini 2001). 

Recent investigations of spike occurrence (frequency) and its correlation with seizure onset regions, have 

produced conflicting interpretations of whether spike occurrence is a reliable predictor of seizure onset 

zones (Asano, Brown, and Juhász 2013). This suggests that spike occurrence alone is not a functionally 

useful measure, and further analysis of interictal spikes including their source activity, network pathways of 

propagation and network characterization are necessary to develop a better understanding of the role of 

interictal spikes in epilepsy. 

Here, we use an effective connectivity measure to map the causal network behavior of interictal spikes 

across different cortical regions in the human epileptic brain. Causal connections were computed using 

direct-directed transfer function (dDTF). We analyzed the dynamic nature of interictal spike networks over 

time in different patients across a wide range of frequency bands. We further assessed the effects of deep 

brain sulci, such as the central sulcus, on propagation patterns. Finally, we performed an initial evaluation 

on the relationships between interictal spike networks and physician identified seizure onset regions.  

2.2. Materials and methods 

2.2.1. Patient selection and data collection 

Ten pediatric epileptic patients (4F/6M, age: 2-15years) with drug-resistant focal seizures were 

selected under a protocol approved by the institutional review board of Wayne State University and the 
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University of Illinois at Chicago (Table2.1). All the patients were identified as having intractable epilepsy 

and underwent surgical implantation of subdural recording electrodes for long-term seizure monitoring at 

the Children’s Hospital of Michigan, Detroit, Michigan. 

The electrocorticography (ECoG) recordings were obtained using a 192 channel Nihon Kohden 

Digital System (Nihon Kohden America Inc, Foothill Ranch, CA, USA) with 1000 Hz sampling rate from 

subdural electrodes (4 mm in diameter and spaced 10 mm apart, PMT platinum electrodes, PMT 

Corporation, Chanhassen, MN, USA). An experienced electroencephalographer help identify three 10-

minute interictal ECoG recording segments for each patient. These segments patients were all awake but 

in quiet restfulness in the resting state (closed eyes, wakeful, and at least 6 hours apart from any seizure 

activity). We obtained MRI scans for constructing 3D models of each patient’s brain using Freesurfer 

software (B. Fischl and Dale 2000; Bruce Fischl, Sereno, and Dale 1999; Dale, Fischl, and Sereno 1999). 

We localized and co-registered Electrodes on the 3D brain model using post electrode implantation CT 

images, and verified electrode locations with the help of intraoperative photographs taken at the time of grid 

removal (to ensure they did not move (Nakai et al. 2017). We then computed geodesic distances (tracking 

along the gray-white junction) between electrode positions and cortical thickness measures were computed 

(J. Wang et al. 2014; Zou et al. 2006).  

Table2.1. Patient clinical information 

 

patient age sex diagnosis total spikes 
in 10 mins 

seizure focus 

Ep162 1 F Polymicrogyria 6927 Left Hemispheric 

Ep164 3 F White matter gliosis, 
superficial heterotopia 

4274 Left Temporal Occipital 

Ep165 3 F Mild gliosis 4475 Left Hemispheric  

Ep169 8 M Mild gliosis 3731 Right Occipital-Temporal 

Ep181 13 M Subcortical band heterotopia. 5664 Left Temporal 

Ep187 5 M Tuberous sclerosis 4202 Left Frontal 

Ep196 2 M Patchy subcortical myelinated 
fiber loss and gliosis  

1427 Left Frontal-Temporal-
Parietal 

Ep198 3 F Gliosis  631 Left Frontal-Parietal 

Ep199 2 M Gliosis and patchy foci of 
decreased myelin 

1980 Right Temporal  

Ep202 3 M Tuberous sclerosis , and mild 
patchy cortical gliosis 

6467 Right Temporal  
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Seizure onset zones (SOZ), as previously defined (Asano et al. 2009) were identified from 

intracranial recordings by an experienced epileptologist (EA). Each patient presented focal clinical or 

electrographic seizures along with complex epileptic behaviors, except for two patients where only 

subtle/minimal clinical symptoms were noted during the seizure events. Moreover, five out of ten patients 

also had epileptic spasms (Asano et al. 2005; Nariai et al. 2011). All patients had neocortical epilepsy often 

with mild pathological gliosis except for an individual with tuberous sclerosis and another with 

polymicrogyria. 

2.2.2. Signal Analysis 

For the purpose of the present study, we focused only on a subset of the electrodes, specifically a 64 

channel (8x8) grid placed on the frontal-parietal lobe overlying the central sulcus, to understand the interictal 

 

Figure 2.1. Discrete short time direct directed transfer function (dDTF) computing propagation 
of synchronous interictal spikes. For a selected set of electrodes corresponding to a specific part of 
the brain, interictal ECoG recording segments were selected and interictal spikes were identified. The 
dDTF method was applied to synchronously appearing interictal spikes (IIS block selection) to evaluate 
their propagation activity (connectivity analysis), followed by statistical significance testing using a 
surrogate data method. In this matrix, the greater the area under the red line for each pair of electrodes 
that is outside the gray areas corresponds to a significant propagation. Interictal spike onset and spread 
electrodes were identified based on the frequency of outgoing and incoming propagations for each 
electrode (connectivity identification, represented by the blue arrows). 
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spike behavior with a common reference and the role of the central sulcus in the propagation of epileptic 

spikes. For our causal propagation analysis, we did not include other electrode locations that, in some 

cases, limited our ability to include all seizure onset and spiking areas for this analysis.  

We processed these 64 ECoG signals through a multistage algorithm to evaluate the propagation of 

interictal spikes.  We first identified interictal spikes using an established spike detection algorithm and 

manually validated these results with a trained epileptologist (JAL) and a panel of human reviewers (Daniel 

T Barkmeier et al. 2012). Then, we isolated synchronous interictal spikes (peaks within 50 ms). We 

identified time blocks containing these synchronous spikes from 100 ms prior to and 250 ms after all spike 

peaks, excluding channels without interictal spikes.  

2.2.3. Discrete short-time direct directed transfer function (dDTF) analysis and statistical 

validation 

Post extraction, the time blocks were then processed for multivariate causality analysis using 

discrete short time direct directed transfer function (dDTF). dDTF is a Granger causality based model 

designed for quasi-stationary signals (M. J. Kamiński and Blinowska 1991; Kuś, Kamiński, and Blinowska 

2004). This method predicts the direct flow of information between a pair of signals in the presence of all 

other signals in a multivariate environment, not confounded by any indirect causal interaction from other 

signals for a short time period. Prior to the signal processing for causality evaluation, the extracted spike 

epochs were tested for stationary nature using Phillips–Perron test (~96.5% of spikes found stationary with 

p<0.3) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test (~90% of spikes found stationary with p<0.1).  

The isolated spike epochs were then processed for the dDTF evaluation following the recently described 

method by our group (Biswajit Maharathi, Loeb, and Patton 2016). Briefly, each spike epoch was fitted to a 

multivariate autoregressive model (MVAR) using modified covariance method to the form X(t) =

 ∑ A(i)X(t − i) + E(t)mord
i=1  , where X(t) is the data vector, A(i) is the model coefficient, E(t) is the zero mean 

uncorrelated white noise, and mord is the order of the model fit. The model order was determined using 

Akaike information criterion (AIC), where model order of the fit corresponds to the model order with the 

minimum AIC value (max model order was fixed to 20, however the median model order across all patients 

was 8±6, mean spikes in each epoch 4±5).  
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Then the data model is transformed to frequency domain using the Z-transform for a specific 

frequency band of interest and the power spectra of the signal is calculated as S(f) = H(f)VH∗(f), where V 

is the variance of the Noise matrix and H(f) is the transfer matrix. Following this, we computed two 

parameters, partial coherence as χij
2(f) =  

𝓂ij
2 (f)

𝓂jj(f) mii(f)
 , where mij is the minor of the spectral matrix after 

removing the ith row and jth column; and full frequency normalized direct transfer function (ffDTF) as ηij
2(f) =

 
|Hij|

2

∑ ∑ |Hic(f)|2m
c=1f

 . The direct directed transfer function is evaluated as the linear product of partial coherence 

and ffDTF. It provides direct causal influence of jth channel on ith channel in the presence of all other 

channels and has values between 0 and 1.  The above process was repeated for all such epochs of 

synchronous interictal spikes identified in the previous step.  To understand the causal propagation of 

interictal spikes at each frequency band, the isolated spike epochs were processed through the dDTF 

algorithm for a specific frequency band, including low frequencies (1-50Hz), delta (1-4 Hz), theta (4-8 Hz), 

alpha (8-13 Hz), beta (13-30 Hz), gamma (30-50 Hz) and high-frequency oscillations (HFO, 80-250 Hz).  

We used surrogate data validation to determine the significance of each causal connection (Pritchard, 

Duke, and Krieble 1995). Briefly, time blocks were transformed to the frequency domain using Fourier 

transform and the phase values were randomized. Post randomization, the data was transformed back to 

the time domain and processed for dDTF evaluation as mentioned above using same model parameters. 

The surrogate data method was repeated 100 times. The surrogate data dDTF estimation serves “false 

positive” level where no causal relationships among different electrode positions for the given dataset. If 

dDTF values were greater than the 95th percentile of these surrogate dDTF simulations, we declared this a 

causal propagation between electrodes (Biswajit Maharathi, Loeb, and Patton 2016). To understand how 

each patient’s data was consistent across time, we also determined similarity amongst their three 10-minute 

epochs (pairwise using a Pearson correlation coefficient). These values were normalized to a maximum of 

causal propagations to further evaluate the network activity of interictal spiking. An alpha level of 0.05 

established statistical significance. 
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2.3. Results 

2.3.1. Interictal spike propagation was highly reproducible 

Using three 10-minute segments selected from each of 10 patients with neocortical epilepsy, we used an 

established spike detection algorithm to detect all spikes in all channels independently under an 8x8 

subcortical grid centered over the central sulcus (Daniel T Barkmeier et al. 2012). A trained 

electroencephalographer validated the accuracy of this algorithm for each patient. Next, clusters of interictal 

spikes within defined time periods were evaluated for synchrony; at least two peaks falling within 50-

milliseconds of each other was considered a synchronous event. The dDTF was then used to identify causal 

propagations (Fig. 2.1). 

 

 

 

 

Figure 2.2. Each patient has unique but highly consistent pattern of interictal spike propagation. 
(A) Shows consistent Interictal spike propagation for three 10 min time segments collected over three 
different days for 2 patients (EP187, EP181). The red circles are the electrodes positions, and the blue 
lines represent direct propagation from one electrode to the other in the direction of the arrow in red. 
The thickness of each blue line corresponds to the frequency of occurrence of propagation events for 
that pair of electrodes. Only the top 5% of propagations are shown for improved visualization.  Including 
all does not change the pattern. (B) Pairwise Pearson correlation coefficients for 10 patients shows a 
high level of propagation consistency between three different time samples for each patient except one 
(ep198).  Data shown represent Pearson correlation coefficients between onset patterns of three 
different 10 minute ECoG segments for each patient. The mean correlation coefficient values for each 
patient are (0.79, 0.64, 0.85, 0.93, 0.92, 0.91, 0.76, 0.21, 0.87, 0.83) corresponding to patient IDs as 
shown. 
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This approach was robust, reproducible, and revealed highly consistent causal propagation 

patterns of interictal spiking within each patient when evaluated at three different time segments (Fig. 2.2). 

Interestingly, along with being conserved, these dynamic network patterns were unique to each patient. 

Pearson correlation coefficients were used to measure the degree of correlation of the propagation patterns 

within each patient. For this, the number of onset propagations were summarized for each electrode within 

the selected electrode grid for individual 10-minute ECoG segments. For each patient, the Pearson 

correlation coefficient was calculated for the corresponding electrode between each pair of 10-minute ECoG 

files.  In 9 out of 10 patients, a patient wise high correlation was observed in onset patterns across the 

multiple ECoG segments (mean 0.83±0.09) (Fig. 2.2B).  

 

2.3.2. Propagation patterns were consistent across all frequency domains 

An important area of research involves the role of epileptic activities in different frequency domains, where 

some studies suggest that higher frequency oscillations have good predictive values for epileptic brain foci 

(Höller et al. 2015; Miao, Xiang, et al. 2014; Burnos et al. 2014; Frauscher et al. 2017).  Here we examined 

 

Figure 2.3. Interictal spike propagation is highly consistent across EEG frequency bands. (A) 
Interictal spike propagation patterns were analyzed across different frequency bands (delta, theta, 
alpha, beta, gamma and high frequency oscillations). Highly consistent propagation patterns were 
observed within each frequency band. As an example, spike propagation patterns across different 
frequency bands for EP187 shows high levels of consistency. (B) This is a box plot superimposed on 
scatter plot showing multiple correlation coefficients among frequency bands revealing high significance 
for all 10 patients.  Data presented within each box shows the multiple correlation coefficient value for 
each frequency band with all other frequency bands. Each column in a box represents a single patient 
and each marking within the column represents the multiple correlation coefficient for 10-minute ECoG. 
The mean ± SD for each frequency are (Delta: 0.9±0.05, Theta: 0.94±0.04, Alpha: 0.96±0.03, Beta: 
0.96±0.04, Gamma: 0.92±0.13, HFO: 0.94±0.05) 
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the propagation pattern for each patient focusing on specific frequencies and found that each frequency 

band measured had the same propagation pattern (Fig. 2.3). Using the same three 10min ECoG samples, 

we summarized the number of onset propagations from each electrode in the selected grid. Once 

evaluated, we calculated the multiple correlation between onset patterns of different frequency bands for 

corresponding electrodes in each 10-minute ECoG segment for each patient. We found high onset 

correlation values for each frequency domain (delta=0.92±0.03, theta=0.97±0.01, alpha=0.98±0.01, 

beta=0.98±0.01, gamma=0.96±0.02, HFO=0.94±0.03 in mean± SD) (Fig. 2.3A). Counting propagations in 

each frequency band (delta= 1430.3±1697.9, theta= 3131±3322.5, alpha= 3846.8±3051.3, beta= 

4389.1±3061.5, gamma= 4707.4±4221.3, HFO= 3990.2±3888.9 count/10 minutes) suggests that beta was 

most “spike propagation active” followed by the gamma and HFO frequency bands. The total number of 

propagations in each frequency band across patients varied with patient EP198 having fewest propagations 

(delta= 73, theta= 207, alpha= 219, beta= 163, gamma= 49.6, HFO= 72).  

2.3.3. Regions of spike onset did not correspond to regions with the highest spike occurrence 

Most studies to date have focused on rate of spike occurrence (frequency) as a measure of the 

epileptogenicity of a given brain region, with regions exhibiting the highest spike occurrence considered to 

be more epileptic. Along with spike occurrence, we analyzed the spike onset regions. Spike onset regions 

are defined as brain regions which have the greatest number of outgoing spike propagations above a 

defined maximum threshold within the selected grid. Interestingly, we did not find interictal spike onset 

regions to have the highest occurrence of spikes (Fig. 2.4A). In fact, electrodes with the highest spike 

occurrence were more likely to receive spikes from multiple brain locations. Out of all interictal spikes 

investigated, only 71.3±17.7% of spikes were found present in the selected synchronous spike epochs, and 

not all synchronous spikes propagated. We isolated spike propagation events in each frequency band, and 

a small proportion propagated while also shifting frequency (delta= 25±12.8%, theta= 45.1±16.5%, alpha= 

51±16.5%, beta= 51.9±18.7%, gamma= 44.2±22.7%, HFO= 47.2±23.6%). Only a small percentage of total 

locations acted as onset zones (delta= 7.9±3, theta= 10.9±3, alpha= 10.7±3.4, beta= 11.5±3.6, gamma= 

12.2±5.6, HFO= 8.6±3.2). Many spikes participated in spread of interictal spike patterns (delta=13.4±7.4, 

theta= 20.3±8.8, alpha= 17.5±7.4, beta= 14.2±6, gamma= 9.7±4.2, HFO= 16.9±9.5), and hence were 

“intermediaries” of propagation, having incoming and outgoing events (delta= 3.7±3, theta= 14±6.5, alpha= 
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22.8±8.8, beta= 26.2±11.2, gamma= 22.3±14.7, HFO= 21.7±15.6). In summary, dDTF analysis suggests 

that most cortical epileptic spiking brain regions are receiving rather than generating interictal spikes. 

Furthermore, only a small proportion of spike onset regions brain areas truly initiate spiking, as most act as 

intermediary regions that both receive and spread the spike to other areas (p ≤ 0.05 across all frequency 

bands, pairwise t-test).  

 

Figure 2.4. Spike onset measurements reveal clear, localized patterns of outgoing and incoming 
connectivity. (A) Comparison of spike occurrence, onset, and spread demonstrates that measuring 
spike propagation, presents a simpler, more focused pattern than spike occurrence (left panel) for two 
patients (EP164, EP169).   The size of each circle (red, blue, green) corresponds to the number of 
events at each electrode location on the 8x8 grid.  Propagating spikes are shown as either outgoing 
(onset) or incoming (spread) and represent only a subset of all spiking events.   These results show 
that spike onset brain regions are most often not the highest spiking (occurrence) regions. (B) The 
maximal onset electrode for each patient is labeled with  in A and is shown with detailed outgoing and 
incoming propagation patterns in B. The thickness of each line corresponds to frequency of propagation 
and the darker shaded lines on the outgoing propagation plot correspond to a greater than 50% of 
outgoing propagation from that electrode.  
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Based on these findings, we developed spatial models of outgoing (spike onset) and incoming 

(spike spread) epileptic activities as shown in Fig. 2.4B.  Isolating individual electrodes on the grid shows 

highly consistent patterns of both outgoing and incoming activity, providing a unique look at the epileptic 

connectivity of these brain regions. dDTF analysis therefore allows a deeper understanding of the cortico-

cortical networks that underlie interictal spiking which could have important downstream value in improving 

surgical outcomes in patients with epilepsy.   

 

2.3.4. Spatial patterns of interictal spike propagation related to cortical structures 

We next combined the temporal and directional patterns of interictal spikes using dDTF with 3D 

brain models for each patient to understand how brain structure influences spike propagation.   Fig. 2.5 

shows that while approximately 50% of outgoing spike propagations travel to nearby, often adjacent 

electrodes (~50 mm geodesic distance), the other half of spikes propagate over longer distances. 

Surprisingly, approximately 22% of spikes propagated over 10 cm (geodesic) distance from their site of 

 

Figure 2.5. Interictal spikes propagate mostly over short geodesic distances, but also travel to 
distant sites. Most of the interictal propagation is observed between electrodes with short geodesic 
distances. (A) This shows a 2D surface view of a cortical gyrus. While Euclidian distances are measured 
on the cortical surface, the geodesic distance is measured though white matter tracks. (B) This is a 
histogram showing the number of propagation events observed with increasing geodesic distance 
pooled from all 10 patients. The absolute distance values are rounded off to nearest 5 or multiple of 5. 
The frequency of propagation events decreases as a function of geodesic distance, but spike 
propagation can occur at all distances, including regions far from the onset point. 
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onset.  In addition, the directionality of spike propagation was non-random and affected by cortical 

topography (Fig. 2.6). Since all patients had an electrode grid overlying the central sulcus, we determined 

the relative number of spike propagations that crossed the central sulcus versus electrode locations on the 

same side of central sulcus. Surprisingly, a majority (76±9.6%) of spike propagations did not cross the 

central sulcus, in either frontal or parietal lobes. This result was also independent from ECoG frequency 

bands. 

 

2.3.5. Spike and seizure onsets regions were not often interrelated 

Even though interictal spikes are considered prominent biomarkers of epileptic brain regions that also 

produce seizures (Palmini et al. 1995), their exact spatial and temporal associations with seizures are not 

 

Figure 2.6. The central sulcus acts as a significant barrier to the propagation of interictal spikes. 
(A) A distinct reduction in activity of spikes, spike onset and spike spread is noted across the central 
sulcus (CS). This pattern suggests that the central sulcus acts as a natural barrier that restricts spikes 
from crossing in all patients we examined. (B) Quantitatively there is a proportionate reduction of 
propagations across the central sulcus. This figure compares the proportion of propagations crossing 
the central sulcus versus the number of propagations staying on the same side of the sulcus. Solid lines 
represent the difference between propagations crossing the CS vs not crossing with p<0.05. Each 
vertical line with three points on it represents one patient with results from three ECoG files. The height 
of the line is the variance between three data points. The width of the diamond shape represents the 
variance of mean of number of propagations crossing or not crossing the CS across all patients and the 
height of the diamond shape represents the variance of variance of propagation crossing or not crossing 
the CS across all patients. 
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well understood. We investigated whether seizure onset regions had any association with the onset or 

spread of interictal spiking brain regions. We first considered electrodes with activity exceeding 80% of 

maximum of the entire grid in at least one of the three files. Fischer's exact test along with Chi-square tests 

of independence was used to test for any relation between seizure onset regions and (1) interictal spiking 

regions (2) spike onset regions and (3) spike spread regions.  In patient Ep164, there was a strong 

relationship between seizure onset and interictal spiking regions, spike onset regions, and spike spread 

regions that were all significant (p<0.05). However, in the remaining 7 patients, the spike network had a 

more complex relationships, if any, with seizure onset regions (Fig. 2.7).  For example, in patient Ep169, 

seizure onset overlapped more with high spiking regions compared to spike onset and spread regions 

whereas in patient Ep199, seizure onset regions were well associated with spike onset and spread regions 

(p< 0.05). In patients Ep165 and Ep196, who also had infantile spasms, seizure onset regions were diffuse 

an encompassed a large portion of the grid.  Further analysis will be required to understand fully the 

relationships between spike onset and seizure onset, especially in patient with infantile spasms who often 

have both diffuse as well as focal seizure onset regions.  Two of the patients (Ep181 and Ep187), had their 

seizure active zones outside of the measurement grids and were therefore removed from consideration.  

However, even in these patients, the spike onset and spread regions were located on the electrodes near 

seizure onset regions.  

2.4. Discussion 

We performed a novel effective connectivity analysis using dDTF to better understand the spatial- 

temporal patterns of interictal spike propagation in the human epileptic neocortex. We observed consistent 

pattern of interictal spike propagation which are individualized for each patient and are highly reproducible 

across multiple days of recording for the same patient. We also found that spikes propagate in a similar 

fashion across a wide range of frequency bands, including HFOs. Our findings shed new light on the 

relationships between cortical anatomy and spike propagation.  Specifically, propagations often travelled 

locally, also across great distances but rarely and the central sulcus appears to be a significant barrier for 

interictal spike propagation which is in congruent with previous studies reporting that signal propagation 

often skips the motor area (Iimura et al. 2017).  Surprisingly, brain regions with the highest spike 
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occurrences most often did not initiate spiking.  While our study was primarily focused on spike onset, we 

found no clear relationships between interictal spike onset regions and seizure onset regions, suggesting 

that spikes and seizures might be having different networks.  

 

Interictal spikes are known to be highly associated with the epileptic state (Rodin et al. 2009; K. J. 

Staley and Dudek 2006) and are thought to result from synchronous cortical hyper-excitation of neural 

assemblies (Pillai and Sperling 2006). Previous studies have found that spikes have consistent frequencies 

and locations for each patient’s interictal spike network and interictal spikes have been used to confirm the 

clinical diagnosis of epilepsy and to assist in the planning of drug management and epilepsy surgery (Pillai 

and Sperling 2006; Rodin et al. 2009). The spatially conserved pattern of spike propagation within each 

 

Figure 2.7. Spike and seizure onset patterns are not clearly interrelated and highly variable. We 
found no clear relationships between seizure onset zones identified within the selected electrode grid 
location and the spike occurrence, onset, and spread for all 10 patients. Note some patients who had 
infantile spasms had widespread ictal onset areas (patients EP164, EP165 and EP196).  The size of 
each circle corresponds to the number of events at each brain location. 
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patient signifies an invariability of the epileptic network over time. This suggests that once the wiring of 

neurons turns pathologic, the underlying network of interictal epileptic activity remains quite consistent.  

A major question in epilepsy is whether interictal spikes are simply singlet spikes from a repetitively 

spiking seizure focus or represent an entirely different network.  Previous research has suggested that, 

interictal spikes proceed the development of seizures, but when increased, correlate with spontaneous 

seizure events (White et al. 2010).  It might therefore be possible to predict seizure onset regions based on 

occurrence of interictal spiking.  However, there is widely discordant data for this hypothesis as it is well 

known that regions of high interictal spiking are not always seizure onset regions (J. Jacobs et al. 2008; 

Hufnagel et al. 2000; Marsh et al. 2010; Asano et al. 2004).  There is conflicting data to support the removal 

of high spiking regions for a positive surgical outcome (Alarcon et al. 1997; Mégevand et al. 2014; Bautista 

et al. 1999; Asano et al. 2009).  An important new observation from our study that may help resolve this 

discordance is that most regions with the highest interictal spiking frequency are not areas of spike onset, 

but areas that receive the spread of spikes.   

All of these findings taken together favor the hypothesis that interictal spiking and seizure networks 

are distinct with different mechanisms of origin (Karoly et al. 2016). Surprisingly, except in one patient, we 

did not find a tangible relationship between spike onset and seizure onset. However, in the present study 

we did not use data from all brain regions covered by electrodes that could also be involved, nor did we 

focus on less frequent spiking regions in our dDTF analysis that focuses on the most common patterns of 

spread.  Clearly, more research will be needed to explore the complex relationships between the interictal 

spike and seizure networks. Further studies will need to look at not only the spatial, but also the temporal 

relationships between interictal spike onset regions and seizure onset regions.   

Another physiological aspect of epilepsy that has gained significant interest is in the area of HFOs.  

Some have found HFOs to highly correlate with seizure onset regions (Ochi et al. 2007; Jirsch et al. 2006; 

Modur and Miocinovic 2015; Salami et al. 2014; J. Jacobs et al. 2008). We looked at the propagation 

patterns embedded within interictal spikes and found that all frequencies, from lower frequency bands to 

HFOs propagate in a similar fashion. This may not be too surprising as it has previously been shown that 
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high frequency oscillations are often coexistent with interictal spikes (J. Jacobs et al. 2016, 2008; Rodin et 

al. 2009) and in the present study we focused entirely on interictal spiking.   

By co-registering electrode locations with 3D MRI reconstructions, we examined the spatial aspects 

of spike propagation with respect to cortical structures. We found that the distance interictal spikes 

propagate is generally quite short, most often to adjacent electrodes, spikes can also traverse larger 

distances, likely through subcortical pathways, but the chances are few. Perhaps the most salient 

observation was that the central sulcus acts as a significant anatomic barrier to spike propagation in all 

patients we examined. The central sulcus divides primary sensory from motor cortex and is one of the 

deepest sulci in the brain that has been extensively studied for its functional localization and cortical 

plasticity.  Identifying the location of the central sulcus is critical in surgical planning to reduce unwanted 

motor and sensory deficits (Towle et al. 2003). Previous studies have found that spikes originating  from 

sulcal and gyral cortices on either side of central sulcus propagate across central sulcus (Jung, Kim, and 

Kim 2003).  In contrast, when looking at all spiking events statistically, we observed that the central sulcus 

is a strong barrier to the spread of spikes. A recent study on human epileptic tissues that defined tissue 

markers of spiking found that molecular markers of epileptic activity in the MAPK/CREB pathway also failed 

to cross deep gyri, suggesting an underlying molecular and cytoarchitectonic underpinning that creates 

anatomical barriers across the cortex (Beaumont et al. 2012). Although from the current study it is difficult 

to point out the exact mechanism of how central sulcus acts as a barrier, a probable reason might be the 

large cortical surface coverage of the deep sulci and thinner cortex.  More studies will be needed to connect 

structural and functional information together using a variety of connectivity measures including cortico-

cortical evoked potentials or fiber tractography.  This will allow further exploration of the effects of deeper 

sulci and other anatomical abnormalities on spike propagation networks across different brain regions.  

Because our study only involved surface grid electrodes, examination of spike propagation patterns from 

patients with stereo EEG could also help in this endeavor.  Finally, propagation patterns may be age 

dependent and examining patients within different age groups would be helpful in learning how these 

networks may change as a function of brain development.  
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 Several signal analyses tools have been proposed to quantify and understand interictal spike 

propagations. Granger causality based functional measures (Granger 1969), such as direct transfer 

function (DTF) (Bressler and Seth 2011) and partial direct coherence (PDC) (Baccalá and Sameshima 

2001), evaluate the causal flow of information between signals in a multivariate environment. They provide 

statistical estimates of connection strength along with the direction that information flows. Since these 

evaluations compute the causality based on phase differences, they are robust to volume conduction as 

compared to other bivariate analysis. With simulated and experimental data, it has been shown that an 

enhancement of the DTF algorithm, direct DTF (dDTF), is more efficient in identifying causal connections 

(statistically) with fewer false detections. It also has a lower fictitious causal density and high spectral 

selectivity (Fasoula, Attal, and Schwartz 2013; Laura Astolfi et al. 2007; L Astolfi et al. 2005; Bressler and 

Seth 2011). Such approaches enable robust understanding of path and timing of network signal 

propagations. More recently, the direct-Directed dDTF has been successfully implemented in previous 

studies evaluating seizure propagation and epileptic source localization (Hur and Kim 2015; M. Kamiński 

et al. 2001; Anna Korzeniewska et al. 2008; Wilke et al. 2010). 

The clinical implications for this work are still not fully developed.  Although there are several 

limitations in the current study, and primarily we focused on evaluating the interictal spike propagation 

patterns, taken together our findings suggest that interictal spikes and seizures develop nearby, but from 

different networks. Whether removal of spike onset regions would produce a better surgical outcome 

remains an open question not answerable by our current retrospective data. However, application of this 

analysis prospectively could allow a greater understanding on whether disrupting or removing interictal 

spiking networks on surgical outcome.   
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III. EPILEPTIC SPIKE FUNCTIONAL NETWORKS BEST PREDICT SEIZURE 

ONSET ZONES 

This chapter has been adapted from the following manuscript publication: 

Maharathi, Biswajit, Jeffrey A. Loeb, and James Patton. "Epileptic spike functional networks best predict 
seizure onset zones." In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 
895-898. IEEE, 2019. 

 

3.1. Introduction 

Epilepsy is a severe neurological disease affecting 65 million people word wide. Most of these patients 

can control the disease with regular medication. However, for majority drug resistant cases, surgical 

intervention is one of best alternative. A key challenge in such cases is to find the seizure onset zones 

(SOZ), specifically when the seizure itself is a very rare event. There has been substantial research in 

identifying the SOZ with limited successful outcome.  

In such cases, interictal (electrical recording collected in between two consecutive seizures) electrical 

information is an essential component. Past and recent studies have explored the potential use of interictal 

spikes (spike-slow wave complexes found during the interictal period) and high frequency oscillations (HFO, 

time-voltage segments in EEG where the power in the frequency band ~80-250Hz exceeds a predefined 

threshold) as a way to identify seizure onset zones. However, the relationship between interictal electrical 

information and seizure onset zones is not well understood. 

We implemented a unique approach to evaluate the relationship between the interictal ECoG pattern 

and SOZ using a causal network. We implemented a Granger causality base network evaluation algorithm 

direct directed transfer function (dDTF) to estimate the functional network of the electrocorticography 

(ECoG, electrical signal collected from cortical surface of the brain)  following two different approaches; first 

identifies interictal spikes and then building their network and second, taking the entire ECoG information 

and evaluating the causal functional network. We further calculated different properties of this directed 

network to find a potential relationship between the interictal functional network and SOZ. Below is 

comprehensive explanation of the graph properties we used. 
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1. Page rank:  Assigns the weight of the node by measuring the relative importance of the node within the 

set of nodes.  

2. Betweenness: Measures the importance of a node by calculating relatively how many times the shortest 

path between two nodes in a set of nodes pass through the node under consideration. We calculated 

the betweenness measure using different cost functions such as (1) betweenness with reciprocal of 

count of connection between nodes as cost function, (2) betweenness2 with geodesic distance between 

nodes as the cost function and (3) betweenness3 with (geodesic distance/ count of connections 

between the same nodes) as the cost function.  

3. Indegree: Number of incoming edges to each node. 

4. Outdegree: Number of outgoing edges from each node. 

5. Hub and authority: These are two linked centrality measures where hub in general means the node that 

has links that greatly exceeds the average number of links in a directed graph. In Kleinberg’s centrality 

measure, a hub is a node connected to authorities and a node is a authority if is linked to hubs 

(Kleinberg 1999). 

 

 

Figure 3.1. A simple schematic of the computational processing steps for both total and spike 

propagation. 
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Our goal here was to evaluate the different network centrality measure of the total functional network 

and the spike functional network in interictal ECoG and establish a relationship of these properties with 

SOZ in terms of predictability of SOZ. 

3.2. Methods  

We randomly selected 8 pediatric epileptic patients (4F / 4M, median age: 3 years) with drug resistant 

focal seizures, under an approved protocol by University of Illinois at Chicago. All patients underwent surgical 

subdural electrode implantation for long term recording. The electrocorticography (ECoG) recordings were 

obtained using a 124 Stellate Digital recording system with 1000 Hz sampling rate from subdural electrodes 

(4mm diameter, 10mm spaced apart). For current study, in each patient, we selected a set of 64 electrodes 

(8 X 8 grid), containing a subset of seizure onset zone (SOZ) identified by epileptologists.  

The causal propagation was evaluated following two different approaches. In the first approach, we took 

the entire 64 channel ECoG and evaluated the functional network of consecutive 10 second long ECoG 

segment with zero overlap, using direct directed transfer function (dDTF) at different frequency bands (delta 

(1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), gamma (30-50 Hz) and high frequency oscillations 

(HFO, 80-250 Hz)) (Biswajit Maharathi, Loeb, and Patton 2016). In the second approach, we identified 

interictal spikes (epileptic spike slow wave complex that occur in between two consecutive seizure episodes) 

using an robust existing algorithm (Daniel Tice Barkmeier 2010), and isolated the signal when at least two 

spikes appear in synchrony (if the peaks of a set of spikes appear within 100 millisecond time) for the selected 

electrode grid. Then these synchronous spike segments were processed through dDTF for causality 

estimations for the above mentioned frequency bands(Biswajit Maharathi et al. 2018). A phase randomized 

surrogate data validation method was implemented to validate the measured network in each case. 

After functional network evaluation, different graph properties (page rank, betweenness, in degree, out 

degree, hub and authority) were evaluated. Further, each electrode position was ranked based on the 

numerical value of each of the previously evaluated properties of the graphs. We implemented a thresholding 

approach (0 to 100 with an increment of 5% at each step) to compare the top ranked electrode positions 

against physician marked seizure onset zones (SOZ) for each patient. For the comparative analysis, we 

used individual data points and the area under the receiver operator characteristic curve (ROC plotted True 
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positive rate on Y-axis vs. False positive rate on X-axis). Wilcoxon signed rank test was implemented for 

significance testing between different properties and other evaluations as well. 

 

3.3. Results 

We analyzed the interictal total propagation and spike propagation in 8 epileptic pediatric patients 

admitted for epilepsy surgery. The goal of this study was to evaluate how accurately interictal functional 

network of brain helps in predicting the seizure onset zones. For a comparative analysis, we evaluated the 

performance of different graph parameters (page rank, betweenness, in degree, out degree, hub and 

 

Figure 3.2A. Total propagation network for a patient at different frequency bands. Only top 5% 

propagations are presented here for a clear visualization. The red dots represent the electrode 

locations. The blue lines represent the connection between a pair of electrodes with thickness of line 

representing the propagation counts. The red arrow mark shows the direction. 
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authority) at different ECoG frequency bands for both total and spike propagation. Using this comparison, 

we asked specific question, (1) does spike propagation better predicts the seizure onset zones, (2) is there 

any specific frequency band that best predicts the SOZ, (3) is there any specific graph property or centrality 

measure that has better predictability and (4) is there any gold standard of thresholding these parameters 

to obtain the best prediction of seizure onset zones.  

 

3.3.1. Interictal spike propagation is a better predictor of seizure onset zones 

We comparatively evaluated the ROC curve and area under each ROC curve for different graph 

properties. The ROC curve for spike functional network properties, at all frequency bands were significantly 

performed better in SOZ prediction compared to the respective properties in total functional network (p<0.05) 

 

Figure 3.2B. Spike propagation network for the patient shown in fig.3.2A at different frequency 

bands. While this process is thresholded in the same way as Figure 3.2A, it yields differing results. 
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with very few exceptions, where either the ROC curve was below the random guess line or the frequency 

band was HFO. Also the area under the curve in spike propagation network was comparatively higher than 

the total propagation network (p <0.05) (Fig. 3.3A & 3.3B) concluding that the spike propagation network 

properties are better predictors of seizure onset zones compared to total propagation network. 

 

 

Figure 3.3A. ROC curve for each ECoG band and all graph properties in total propagation 

network shown in fig. 3.2A. 
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3.3.2. In total propagation, the best predictions come from the HFO band 

In total propagation, since HFO network was frequently observed to be a better predictor of SOZ 

compared to other bands in total propagation (Fig. 3.3A), we further evaluated whether the difference is 

significant. We observed that in 6 out of 8 patients, HFO was significantly better in predicting SOZ compared 

to other frequency bands (ROC curve comparison: p <0.05, AUC comparison p<0.05). 

 

 

Figure 3.3B. ROC curve for each ECoG band and all graph properties in spike propagation 

network shown in fig. 3.2B. 
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3.3.3. Spike propagation network in all frequency bands predicts SOZ in a similar way 

In spike propagation network, all frequency bands predicted SOZ with very similar accuracy (p<0.05) with 

exception of beta and HFO band producing the best accuracy.  

3.3.4. Different graph properties predict SOZ differently depending on frequency band and 

patients 

We dived into more detailed analysis on how well the different graph measures predicted SOZ at different 

frequency bands in spike functional network. While often, there was no significant difference between 

frequency bands in predicting SOZ, there were few exceptions. In four patients, beta band outperformed 

other frequency bands (AUC comparison, p<0.05).  

Out of all tested properties, PageRank was frequently the best property predicting SOZ (p<0.05, best 

predictor of SOZ in 4 out of 8 patients). Other properties such as authority, indegree and hub were also 

alternative graph properties good at predicting SOZ (p<0.05). Although the betweenness centrality was a 

good predictor, it performed poorly in most of the patients. 

3.3.5. A lower threshold value works best for seizure onset prediction 

We calculated the distance of each data point on ROC from [0, 1] (top left corner of ROC curve) to find 

the threshold which is most accurate in predicting the SOZ.  The optimum threshold value was 55% ± 13 

(median ± SD) except one patient where the median threshold value was 15%.  

3.4. Discussion 

Interictal spikes are the signature electrophysiological biomarker of epilepsy. These events have been 

associated with seizure onset zones frequently (de Curtis and Avanzini 2001). Subsequently there have 

been an increasing number of studies that focus on functional networks using the entire ECoG signal 

including very high frequency bands to establish a relationship between HFOs and SOZs (Wilke et al. 2010; 

J. Jacobs et al. 2008).  When we took this unique approach by first identifying epileptic spikes rather than 

the more traditional approach of including the entire EEG segment in our analysis, we show significant 

superiority in detecting SOZs.    

This suggests that not all network events are pathologic, and we need to focus more on aberrant electrical 

activities to best discern pathologic networks. However, looking at the spikes is only possible when they are 
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abundantly available and represent themselves in a synchronous manner as is commonly seen on 

intracranial recordings.  In cases, where spikes are not present, additional parameters may be needed to 

identify the pathologic network using the entire ECoG.  

Although we discovered that, the HFO network in the total functional network was quite effective in most 

patients predicting the SOZ, it was still not as accurate as spike network. Apart from HFO, we also observed 

that in spike network in beta band was also effective in predicting the SOZ accurately, however further 

research is necessary with a larger patient sample to establish the relationship between beta band activity 

with SOZ.  

Previous studies have established that the betweenness centrality when evaluated using seizure data or 

interictal ECoG, has been a good predictor of SOZ (Wilke, Worrell, and He 2011). However in the current 

study, we discovered that there are other centrality measures of graph which significantly better in predicting 

seizure onset zones compared to betweenness measure. We also implemented page rank algorithm on the 

functional total and spike network and discovered that this is one of the best predictors of seizure onset 

zones using the network activity.  

One of the patients had all electrodes marked as seizure onset zones (prevalence = 100%), in which 

case there was no false positive and high sensitivity was achieved with very thresholds with deterministic 

specificity. In such cases, there needs to be an alternative robust parameter to estimate the efficacy of 

network in detecting the seizure onset zones.  

While looking for the optimum thresholding value, we found that high thresholding was not a very effective 

measure to detect SOZ, in fact for most patients, across all frequency bands and different parameters, lower 

threshold as close as ~50% worked much better in predicting SOZ. In one of the patients where prevalence 

was ~96%, we observed that the betweenness was an accurate predictor and the threshold required was as 

low as 15%. The curious question of whether high prevalence has any dependency of threshold or other 

graph measures is case requiring further research.  

3.5. Conclusion 

The key takeaway from the current work is that granger causality measure of appropriate dataset using 

dDTF when combined with different graph centrality measures proves to be an effective tool in predicting the 
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seizure onset zones. We discovered that use of properties of isolated synchronous interictal spike functional 

network is a better predictor of seizure onset zones compared to the total brain network, where different 

frequency bands played a little role. Further work in this direction has the potential in assisting physicians 

taking appropriate measures in determining the seizure onset zones as well as other focal activity accurately 

during pre-surgical decisions and can enhance our understanding of basic brain functionality and 

connectivity. 
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IV. CENTRAL SULCUS IS A BARRIER TO CAUSAL PROPAGATION IN 

EPILEPTIC NETWORKS 

This chapter has been adapted from the following manuscript publication: 

Maharathi, Biswajit, Jeffrey A. Loeb, and James Patton. "Central sulcus is a barrier to causal propagation in 
epileptic networks." In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society (EMBC), pp. 2555-2559. IEEE, 2019. 

 

4.1. Introduction 

Brain functional networks are dynamic in nature representing the spontaneous interaction of different 

brain regions. Previous research on structural connectivity and functional brain networks suggest that 

although these functional dynamic networks produce distinct graphs of interactions during different task 

specific activity, they are not entirely a product of it. The structural arrangements of the brain which are 

quite resilient in nature certainly alter the spontaneity of such networks (Park and Friston 2013). These 

structural arrangements also mediate both local and global network manifestations. However, such nature 

of the structural connections is not fully understood. What is needed is an approach that evaluates the 

functional connectivity while also considering the underlying structure.    

Bivariate algorithms such as correlation, coherence and partial coherence based studies have revealed 

the pairwise functional connections [1], and more recently multivariate algorithms such as Direct Transfer 

Function and Partial Direct Coherence have used parametric modelling to robustly identify causal 

propagations. We prefer Granger causality-based direct directed transfer function (dDTF) to evaluate the 

functional causal networks. This method has been used extensively and proven to identify the most likely 

direct connections in a multivariate environment  (Fasoula, Attal, and Schwartz 2013; Anna Korzeniewska 

et al. 2008; Hur and Kim 2015; Laura Astolfi et al. 2007; Bianchi et al. 2013; Biswajit Maharathi et al. 2018). 

Using these functional networks, we have understood that the pathologic functional networks are very 

consistent (Biswajit Maharathi et al. 2018; Biswajit Maharathi, Loeb, and Patton 2016). 

Structure influences functional propagation, irrespective of disease, time or frequency band (Biswajit 

Maharathi et al. 2018; Biswajit Maharathi, Loeb, and Patton 2016; Park and Friston 2013).The above 
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evaluated network was then integrated with the brain topography calculated from the MRI imaging and 

further statistical methods were performed to establish the relationship between interictal spike-epoch 

propagation occurrence and geodesic distance(Biswajit Maharathi et al. 2018). We also observed that the 

large sulcal patterns such as the central sulcus acts as a barrier to the propagations in the interictal spike 

network (Biswajit Maharathi et al. 2018). Such variations in propagation with respect to brain topography 

are important, however they have not been extensively studied.  

A critical aspect affecting these results may be what portions of the data recording has been used. Our 

interictal spikes causal network used a preselected subset of the time records that isolated the epochs of 

interictal spike propagation (Biswajit Maharathi et al. 2018). It may be important to compare the functional 

network arising from the entire interictal time record (full network), and whether this also is affected by such 

structural barriers. This may be further dependent on different frequency bands.  

In this paper, our major focus was to evaluate (a) how often propagation events in full network occur 

between distant cortical regions compared to adjacent locations. Since Central sulcus is one of the largest 

sulci in the brain, it was our focus to understand its role as a barrier to functional network propagations, so 

we enquired (b) to what extent the central sulcus plays a role in restricting the information flow in the full 

pathologic network. We preferred to have the network evaluation in two different approaches. First, we 

considered to take the continuous non-overlapping ECoG segments and evaluate the network which we 

call full network. In the second approach we analyzed the isolated interictal spike network (spike network). 

Using both these networks, we asked the question (c) does propagation distance with respect to brain 

topography change differently in both these networks and does central sulcus play the same role for both 

these networks when evaluated at different frequency bands. Such specific understanding of the complex 

brain structural and functional network would reveal fundamental operations of the brain and help explore 

pathological networks and task specific network interactions in an improved manner.   

4.2. Methods 

4.2.1. Data Collection 

We selected 7 epileptic patients (4 Female/ 3 Male, median age: 3 years) who underwent two-stage 

surgery due to drug resistant epilepsy, under the approved protocol of University of Illinois at Chicago. All 
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seven patients underwent long term video-EEG monitoring with subdural electrodes (4mm diameter, 

spaced 10mm apart). Three 10-minute electrocorticography (ECoG) recordings were extracted from the 

EEG database recorded with 124 electrode stellate digital recording system with 1000 Hz sampling rate. 

For the current study we selected a set of 64 electrodes (8X8 frontal temporal grid) containing the central 

sulcus (the central sulcus divides the grid with approximately equal number of electrodes on either sides). 

The quality of the dataset along with all the evaluations were verified by a trained epileptologists.  

 

a. Signal processing schematics: 

 

b. Image analysis schematics: 

 

Figure 4.1. A simple schematic representation of the signal and image processing steps. (a) 

Explains the stepwise processing of full and spike signal and (b) shows the stepwise processing of the 

MRI scans to get the different parameters.  
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4.2.2. Signal Analysis 

The causal propagation network was evaluated following two different approaches. In the first approach, 

we took entire 64 grid electrodes ECoG information. Following a windowing approach, we evaluated ECoG 

with 10s continuous non-overlapping time segments of the full dataset. In the second approach, like in 

(Biswajit Maharathi et al. 2018), we first marked the interictal spikes and isolated time segments that 

contained synchronous multiple interictal spike events with spike peak within 100 milliseconds  time period. 

Further we extracted approximately 350ms time segments for each spike within the spike synchrony. For 

the causality evaluation we used direct directed transfer function (dDTF) (Biswajit Maharathi et al. 2018; 

Biswajit Maharathi, Loeb, and Patton 2016). Briefly, we performed Phillips–Perron test to check the stationary 

nature of the signal. We then fit each epoch of the data to a multivariate autoregressive model using modified 

covariance method. The model fit order was determined using Akaike information criterion where the 

maximum order was fixed to 20th order. Further using this model, the dDTF values for each pair of electrode 

information was calculated. Both the approaches were verified using a phase randomized surrogate data 

method. Here we created 100 copies of the surrogate data and compared it with the original output. If the 

area under the original dDTF values for a pair of electrode was greater than the 95th percentile of the 

surrogate dataset dDTF values, then the propagation between the same pair of electrodes, we accepted that 

propagation as a real propagation.  

Both the above mentioned approaches were evaluated at different frequency bands such as delta (1-

4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-30Hz), gamma (30-50Hz) and high frequency oscillation (HFO, 

80-250Hz). Once the functional network was evaluated it was further used along with the imaging information 

to analyze the effect of brain topography on functional networks. 

4.2.3. Image Analysis 

We obtained the MRI images for each patient and constructed the 3D models using freesurfer. We further 

co-registered the electrode positions using CT images and cross verified with intra-operative images taken 

during grid removal to ensure that they did not move. We then marked the central sulcus and computed the 

geodesic distance for each pair of electrodes within the considered grid.  An outline of the methods is given 

in Fig.4.1. 
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4.3. Results 

We were able to analyze interictal propagation networks of 7 epileptic patients using our two sets of 

extracted data: one where epochs of inter-ictal spike propagations were isolated in time (spike epochs) and 

one where 10-second windowed segments of the entire dataset were used (full dataset). The goal of the 

research was to evaluate the relationship between functional networks and the topography of the brain. For 

 

Figure 4.2. Propagations in full network travel to adjacent locations as well as distant cortical 

regions but less frequently. The x-axis represents the geodesic distance which quite translates to 

centimeter scale. The y-axis represents the total count of propagations combined for 7 patients. While 

until 100 geodesic distance (AU), the propagation count remains high, it reduces by 50% at that distance 

and decreases drastically with respect to increasing geodesic distance. 
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this analysis we evaluated both the networks across a range of frequency bands. We demarcated the 

central sulcus and computed the geodesic distance for each pair of electrodes within the considered grid 

of electrodes. Using this multimodal dataset, we evaluated a set of specific questions: (1) Do propagations 

in full network travel distant electrodes, (2) does the central sulcus restrict the propagations in full network, 

and (3) do anatomical structures have a similar effect on the full network as they have on the spike network. 

4.3.1. Propagations in the full network travel adjacent locations as well as distant cortical 

regions 

Propagations in the full network travel to both adjacent electrode positions as well as to distant locations, 

however after a certain distance, sudden decrease of propagation count is observed (Fig. 4.2). We observed 

that the count of propagations becomes half after ~100 geodesic distance (AU) and after that the decrease 

is more sudden as observed in Fig. 4.2. Although the absolute count of propagation in each frequency band 

is different, the overall pattern of propagations corresponding to increasing geodesic distance remains quite 

consistent (mean correlation coefficient = 0.99, p<0.005) suggesting that propagation patterns behave in a 

similar fashion with respect to geodesic distance for all frequency bands. 

4.3.2. Central sulcus restricts propagations in full network 

We counted the number of propagations occurring on the same side of the central sulcus and compared 

it with the count of propagations crossing it. The propagation counts on the same side of the central sulcus 

(NoCross) and crossing the central sulcus (CrossCS) were normalized to the respective electrode counts on 

each side. We first hypothesized that the central sulcus has no effect on propagation where it was assumed 

that each electrode in either side of the central sulcus propagated to each electrode with equal probability 

for each epoch of data. Using this assumptions, we determined the number of probable propagations and 

calculated the proportion of propagations that would have remained on the same side of the central sulcus 

compared to the proportion of propagations crossing the central sulcus (Fig. 4.3a). We then compared these 

values with the actual propagation events observed in the full propagation network. In full propagation 

network we observed that in all patients, percentage of propagations crossing the central sulcus (~30 %) 

was significantly lower (p<0.005) compared to propagations on the same side of the central sulcus (~70 %) 

(Fig. 4.3b). We investigated similar behavior in all frequency bands and found that the percentage of 

propagations crossing the central sulcus did not change significantly (30%± 1.3, mean ±SD). However, these 
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values were significantly different (p<0.005, Two-sample Kolmogorov-Smirnov) from the null hypothesis 

values (47.7% ± 4.67 crossing CS) suggesting that the central sulcus truly restricts the propagation of events 

across different frequency bands. We further investigated whether the propagations that cross central sulcus 

is similarly affected by the geodesic distance compared to the propagations occurring on the same side of 

the central sulcus. Although we observed the relationship between propagation crossing central sulcus vs. 

distance has similar nature as the propagations occurring on the same side of the sulcus (Fig. 4.4c), there 

was a distinct delay in terms of geodesic distance (~50 AU distance).  

 

  (a)                                                     (b)                                                           (c)                          

             

Figure 4.3. Central sulcus restricts the propagation of events in full network. This figure compares 

propagation count crossing the central sulcus versus the propagation count staying on the same side of 

the sulcus in (a) the null hypothesis case where the assumption was that each electrode propagates to 

each other electrode and there is structural barrier to any propagation events and (b) the propagations 

found in Full network theta band. Solid lines represent the difference between propagations crossing 

the CS vs not crossing with p < 0.05. Each vertical line with three points on it represents one patient with 

results from three 10-minute ECoG files. The height of the line is the variance between three data points. 

The width of the diamond shape represents the variance of mean of number of propagations crossing 

or not crossing the CS across all patients and the height of the diamond shape represents the variance 

of variance of propagation crossing or not crossing the CS across all patients. (c) Shows the cumulative 

count of propagations in all patients vs. geodesic distance on x-axis.  The solid lines represent the 

propagations on the same side of the central sulcus and the dashed lines are for propagations crossing 

the central sulcus.  
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4.3.3. Brain topography affects full network differently than spike network 

In our previous work we have discovered that propagations in spike networks mostly travel to adjacent 

locations and count of propagations is dramatically reduced with increasing geodesic distance (Fig. 4.4b). 

While in full network, we observe that the propagations travel longer distance, in spike propagation 

comparatively the propagation mostly travel to adjacent electrode positions with shorter geodesic distance 

(Fig. 4.4).  

 Moreover, the central sulcus also affects both networks differently. While in full propagation network 

approximately 30% of the propagations cross the central sulcus, in the case of spike propagation the number 

reduces to 21%. In spike propagation only 21% of the propagation travel across the central sulcus while the 

remaining 79% propagate on the same side of the central sulcus. This observation on both functional 

networks remain very consistent across all frequency bands.  

We also observed that the propagations crossing the central sulcus has different relationship with 

geodesic distance in both full network and spike network. While the distance delay in full network was 

a.  Full Network                                                       b.  Interictal spike network 

              

Figure 4.4. Comparative visualization of full and spike propagation occurrence on y axis vs 

geodesic distance on x-axis. Propagations in spike network travel mostly to adjacent locations. While 

until 50 geodesic distance (AU), the propagation count remains high, it decreases drastically with 

respect to increasing geodesic distance at all frequency bands. Although the absolute count of 

propagations remains different at different frequency bands, the overall pattern remains highly 

correlated. In both the propagation networks, while there are three distinct peaks observed, the 

transitions are more distinct in spike propagation with longer geodesic distance. 
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approximately 50 AU with consistent propagations till 150 AU, spike network had propagation observations 

vs geodesic distance for propagations crossing central sulcus differently. Although we still can observe three 

small peaks in the propagations crossing the central sulcus as compared to the propagations on the same 

side of the central sulcus, the propagation counts are pretty low, and at around 150 AU geodesic distance 

good number of propagations are observed.  

4.4. Discussion 

Understanding the functional network of the pathologic brain has drawn a lot of attention in recent years. 

Analysis of such networks has helped identifying the seizure onset zones (Bandt et al. 2014; Wilke et al. 

2010), helped in exploring the interaction of interictal epileptic spikes (Biswajit Maharathi et al. 2018), and in 

general helped understand the dynamic function of the brain. However, such functional networks don’t 

function independently. Even though the pathological conditions alter the brain networks, these changes are 

also affected by the brain topography.   

In the current study, we observed that the propagations travel differently depending on the type of 

network. While in the spike network, these propagations travel mostly short distances, in the full network 

these propagations are observed to be travelling short to moderate distances (Fig. 4.4). However, one 

common observation in both the networks is that the propagations are observed to be frequently travelling 

to adjacent locations and shorter geodesic distance. This might suggest that often the neural excitation is 

sufficient to excite nearby cortical areas, and brain communicates in a cascading flow of information instead 

of direct information delivery with high excitatory potentials. We also investigated specific case of 

propagations vs geodesic distance in propagations crossing central sulcus verses propagations not crossing. 

In full propagation network, although the count of propagation decreases rapidly in case of propagations not 

crossing central sulcus (Fig. 4.4a), the drop in propagation count was different in propagations crossing the 

central sulcus (Fig. 4.4b). We observed a rapid rise in the count of propagations with geodesic distance 

around 50 AU, after which the count remains consistent till 150 AU and then falls rapidly. Such nature might 

be due to the large cortical folding of the central sulcus. The shorter distance propagations observed in this 

might be the edge cases where electrodes are closer to the regions where the central sulcus starts or ends. 

In such locations the sulcal folding decreases, reducing the distance between electrode pairs. This nature of 
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propagation was observed across all the frequencies that we have analyzed here. We also observed a similar 

behavior in spike propagation across different frequency bands, but the effect was rather more drastic.   

We also observed that the central sulcus restricts the propagation of events in both networks, but 

differently. While 30% of the propagations cross the central sulcus in full propagation, only 21% of the 

propagations cross the central sulcus in spike propagation. The physiological explanation for such behaviors 

would be complex, however we understand few things. The spike propagation network is a subset of the full 

network, representing pathological epileptic activity of the brain. The full propagation might include other 

functional communications that are essential to the basic functioning of the brain, and hence have higher 

number of propagations in general as well as higher proportion of propagations crossing the central sulcus 

compared to spike propagation network. This result might also reflect on the compartmental structure of the 

brain where naturally the brain is trying to restrict the high pathological activity while maintaining the 

physiological stability. However, with this limited information, concluding is difficult and further research is 

necessary to understand the science behind such behavior.  

Although the results in this study are significant, there are several limitations to this study if we are to 

draw a stronger conclusion and generalize the outcomes. For the current research, we only considered a 

limited set of electrodes with a small brain area coverage. A detailed whole brain analysis would provide 

more information on events on both ipsilateral and contralateral sulcal patterns. Moreover, we need to look 

at other sulcal and gyral patterns to understand the effect of topography. We also need to compare such 

pathological networks with normal healthy person’s functional network. Although we have used very robust 

algorithms evaluating the direct causal network, it would be interesting to look at the comparative analysis 

of the direct and indirect propagation network along with integrating other brain imaging modalities.  

4.5. Conclusion 

The key takeaway from this study is that the propagations do not travel to distant locations in general 

whereas the spike propagations are mostly confined to adjacent locations. Secondly, anatomical structures 

like the central sulcus act as a strong barrier to propagation of events and such structures must be included 

while performing functional network studies.  
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V. HIGHLY CONSISTENT INTERICTAL SPIKE NETWORKS IN TEMPORAL 

LOBE EPILEPSY 

5.1. Introduction 

Temporal lobe epilepsy (TLE) is the most common type of drug-resistant epilepsy. Hippocampal 

sclerosis (HS), also known as mesial temporal sclerosis, is the most common pathologic substrate of 

TLE(Velasco et al. 2006),and is seen in about 70% of patients with drug-resistant TLE(Engel et al. 2012). 

TLE is often intractable and is one of the most common types of pharmacologically resistant epilepsy. 

Epilepsy surgery with removal of the epileptogenic zone can lead to seizure freedom in up to 89% of patients 

during the first 2-3 years of follow up(Salanova, Markand, and Worth 2002).   

To achieve a good surgical outcome, precise location of the epileptogenic zone is critical. In many patients, 

this will be possible only with intracranial recordings. The most used methods for intracranial recordings 

are grids (with subdural electrodes) or depth electrodes (stereo EEG-SEEG). Both are often used for 

intractable cases where no definitive focus can be found with scalp electrodes(Bancaud et al. 1970).   

Another less invasive approach is the insertion of foramen ovale (FO) electrodes for the 

assessment of mesial structures(Velasco et al. 2006; Nilsson et al. 2009).  Intracranial FO electrodes can 

record epileptic interictal spikes (95% of spikes not observed on scalp EEG) and seizures in Alzheimer’s 

disease which are often not observed on the scalp EEG(Lam et al. 2017). FO electrodes can also be useful 

in identifying focal seizure onset where scalp EEG is unable to detect these events(Velasco et al. 2006). 

Coupled with high resolution imaging including MRI, PET and SPECT, FO electrode data can help guide 

surgical or other invasive treatments(Beleza et al. 2010).  

Growing evidence suggests that epilepsy is not simply a disease of individual neurons, but of abnormal 

electrical and anatomical networks in the interictal state that predisposes the brain to seizures.  To date, 

interictal networks have been measured mostly through functional connectivity studies in temporal lobe 

epilepsy. Resting state MRI demonstrates disrupted connections in temporal lobe epilepsy(Waites et al. 

2006) and lateralization of the hippocampal network helps identify epileptic foci(Tracy and Doucet 2015).  

Hippocampal networks have been associated with neurocognitive function(M. Holmes et al. 2014) with 

https://www.sciencedirect.com/topics/medicine-and-dentistry/epilepsy
https://www.sciencedirect.com/topics/medicine-and-dentistry/drug-resistant-epilepsy
https://www.sciencedirect.com/topics/medicine-and-dentistry/hippocampal-sclerosis
https://www.sciencedirect.com/topics/medicine-and-dentistry/hippocampal-sclerosis
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increased hippocampal functional activity in temporal lobe epilepsy(Haneef et al. 2014) and decreased 

hippocampal and amygdalae connectivity in temporal lobe epilepsy(Pittau et al. 2012). While clearly 

demonstrating the existence of epileptic networks that can interfere with normal networks, functional 

imaging studies are mostly correlative and lack sufficient time resolution compared to EEG to produce a 

detailed electrical map of interictal networks.   

Here we used a directed direct transfer function (dDTF) to measure the interictal spike networks from 

long-term FO EEG recordings on 10 consecutive patients combined with high resolution MRI.  Interictal 

spike networks were highly reproducible across time and included all neurophysiological frequency bands. 

We found that interictal spike networks are unique for each patient and closely related to structural brain 

lesions and seizure onset zones and therefore could be of significant value for improving surgical and non-

invasive treatments. 

 

Table5.1. Patient clinical information (note: 5 and 10 are the same patient with two separate 

recordings). 

Patient 
Age 

(Years) 
Sex 

Age of Onset 
(Years) 

MRI Image Findings Seizure Onset 

1 39 F 17 
Tumor (teratoma) in left 
hippocampus 

Left anterior temporal 

2 44 M 10  Left hippocampal sclerosis Left anterior temporal 

3 34 M 20  Left temporal dysplasia Left posterior temporal 

4 45 F 06 Left hippocampal sclerosis 
Bilateral independent 
temporal 

5 52 M 27 Diffuse volume loss None captured 

6 55 M 20 Normal None captured 

7 21 M 14 Normal Extra temporal 

8 36 F 0.5 Normal None captured 

9 48 M 36 Left hippocampal atrophy None captured 

10 51 M 27 Diffuse volume loss None captured 
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5.2. Methods 

5.2.1. Patient Selection 

The retrospective study was approved by the Institutional Review Board at University of Illinois at 

Chicago. We studied 10 consecutive FO patients who had undergone FO electrode placement along with 

scalp electrode placement as a part of pre-surgical evaluation of drug resistant epilepsy. Before the FO 

placement, patients were evaluated with medical history, neurological and neuropsychological assessment, 

and magnetic resonance imaging (MRI) scans (T1 and T2). For surgical evaluation, scalp and FO 

electrodes were run simultaneous to the EEG recording using a digital video EEG system (Nihon Koden). 

Surface electrodes were placed on the scalp according to the international 10–20 system and placed sub 

 

Figure 5.1. Interictal spike propagation networks are measured using a direct directed transfer 

function (dDTF). (A)Using the MRI and CT scan, the electrodes placed through the foramen ovale are 

co-registered showing their proximity to specific mesial temporal structures.  Spikes detected from the 

FO electrodes appear synchronous, but when closely examined have clear time delays such as 

between electrodes L3 and L4/L5. (B) dDTF was applied to a given 10-minute EEG segments after 

spikes were first marked using an automated spike detection algorithm.  The detected synchronous 

appearing spike blocks of spikes were then extracted and processed through the dDTF based 

connectivity analysis. This function, that combines surrogate data analysis and statistical validation, 

provides a spike propagation network for each block of spikes, which is then further consolidated for 10 

minutes of EEG.  The top 10% of spike propagations are shown in the far right to create a simplified 

network for further analysis. In each schematic the thickness of the arrow indicates the frequency of a 

particular propagation pattern and the arrowhead indicates the direction of spread. 
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temporally according to the 10–10 system. Six-contact AdTech FO electrodes (Ad-Tech Medical, Oak 

Creek, Wisc.) with 5-mm intercontact spacing were inserted percutaneously under general anesthesia with 

the aid of intraoperative fluoroscopy, positioned so contact 1 was at the end of the ambient cistern and 

contact 6 was above the foramen ovale. CT scans were performed after electrode implantation for 

coregistration of electrode positions.  In all patients, anticonvulsant medications were withdrawn in various 

amounts after FO placement to try to elicit seizures.   

5.2.2. EEG and MRI data 

  EEG recording was done at 200Hz. An experienced electroencephalographer (AS) identified three 

10-minute awake and three 10-minute asleep EEG segments totaling 1 hour of data, for each patient. These 

EEG segments were selected when the patient was resting with no rapid eye moment. Anti-epileptic 

medication was discontinued at least 24 hours before the sample time, and each sample was at least six 

hours away from any ictal activity. Ictal events were also isolated. 

3D brain models for each patient were created from T1 MRI scans using Brainsuite(Shattuck and Leahy 

2002). The FO electrode locations were identified from CT scans and superimposed on the 3D brain model 

using a locally developed method. The structural lesion boundaries were marked manually on sequential 

MR image slices and the 3D surface was rendered using Brainsuite. 

5.2.3. Signal Analysis 

 Seizure onset regions and automatically detected interictal spikes on FO electrodes were verified by 

experienced epileptologists (JAL, AS). The FO spike data were processed through our previously 

established multistep dDTF algorithm (Biswajit Maharathi et al. 2018) that first requires accurate interictal 

spike detection(Daniel T Barkmeier et al. 2012) and time-locked spike segments, followed by evaluating 

the causal propagation of spikes. Briefly described, a rule-based algorithm first identifies epochs of interictal 

spikes to separate active time segments from periods of non-spiking background activity. Then, these 

specific time blocks are inspected for temporally consecutive spikes within 50 milliseconds. Such spikes on 

multiple channels were further isolated and grouped into time blocks. Each spike block started 750 

milliseconds before the first spike peak and ended 750 milliseconds after the last spike peak. 
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To determine network propagation activity, each time block was extracted and further processed through 

discrete short-time direct directed transfer function (dDTF).  dDTF is a previously established Granger 

causality-based model that predicts the flow of information between signal pairs in the presence of all other 

signals. First, spike blocks tested for stationarity using the Phillips–Perron test (~96.6% of spikes were 

stationary with p<0.2 when tested on individual spikes). Spike blocks were then processed using methods 

described previously(Biswajit Maharathi, Loeb, and Patton 2016; Biswajit Maharathi et al. 2018) where the 

entire signal was first filtered into specific frequency bands (20th order infinite impulse response filter), then 

fitted to a multivariate autoregressive model using modified covariance methods. Model order was 

determined by Akaike information criterion (AIC), corresponding to minimum AIC values (Model order: 

13±12, minimum AIC value for each block: -0.0013±11, maximum model order: 50). The linear model was 

transformed to the frequency domain, and the resulting power spectra was used to identify partial 

coherence and full frequency-normalized direct transfer function (ffDTF). The dDTF is the linear product of 

the partial coherence and ffDTF and dDTF indicates the direction of information flow along with the strength 

of connection. Finally these values were statistically validated by exceeding the 95th percentile of 100 -fold 

phase-randomized surrogate data.(Biswajit Maharathi, Loeb, and Patton 2016; Biswajit Maharathi et al. 

2018)  

To investigate the propagation in narrow as well as broad frequency bands, we evaluated dDTF in isolated 

narrow bands such as delta (1-4Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), gamma (30–50 Hz) 

and a broad band at 1-35Hz. 

5.2.4. Statistics 

Pearson correlations were used for simple comparisons of propagation results. Multiple correlations used 

the correction R2 = cT Rxx
-1

 c, where R is the multiple correlation coefficient, c = (rx1y, rx2y, …, rxNy) 
T the 

correlations of rxny, between independent variables Xn and dependent variable y, and  Rxx is correlation 

matrix, defined as 

𝐑𝐱𝐱 =  (

rx1x1  rx1x2  …     rx1xN

rx2x1  rx2x2  …     rx2xN

…
rxNx1  rxNx2  …     rxNxN

) 

We used a threshold α=0.05 for significance on all comparisons.  
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5.3. Results 

5.3.1. Patient characteristics for interictal spike network analysis 

Based on the successful application of dDTF to map interictal spike networks in neocortical epilepsy 

from subdural recording electrodes(Biswajit Maharathi et al. 2018), we asked whether interictal spike 

networks exist in patients being evaluated for temporal lobe epilepsy using bilateral FO recordings from 10 

consecutive studies.  Table 5.1 lists these patients with long-term, bilateral FO recordings of the mesial 

temporal surfaces as shown in Fig. 5.1A.  All patients had simultaneous recordings from scalp electrodes.  

Four of these patients were lesional: two with unilateral hippocampal sclerosis, one with a teratoma tumor 

and one with focal dysplasia. Patients 5 and 10 were two separate recordings from the same patient with 

hippocampal asymmetry without sclerosis. The other 4 were either normal or showed diffuse atrophy on 

MRI. We captured seizures in all of the lesional patients and in one of the non-lesional patients. Medication 

withdrawal was performed to try to elicit seizures in all patients. 

For each FO study, we selected six 10-minute EEG recordings with at least 100 interictal spikes 

(median spike count: 442±635) in each segment and evaluated the interictal spike networks.  Spikes were 

detected using a validated spike detection algorithm(Daniel T Barkmeier et al. 2012).   Fig 5.1A. Shows that 

while spikes often appear synchronous, they are not.  By measuring the time delay between nearby spikes 

it is possible to map the spike propagation pattern for each spike. In Fig. 5.1B, we used the dDTF algorithm 

to map the spike propagation network of all time-locked spikes from each 10 min EEG recording.  The result 

produces a probability map and directionality for each pair of electrodes for the 12 FO electrodes.  The 

algorithm uses surrogate data based statistical validation to determine whether a spike will propagate 

between any pair of electrodes more than would be expected by chance.  The end result produces a spike 

network map shown on the right-hand part of Fig. 5.1B that quantitatively summarizes all of the spike 

propagations and their direction as arrows within a given 10 min period.  The thicker the line, the greater 

the number of spike propagations.  To simplify the ‘wiring diagram’ to indicate the most common spike 

propagations in the network, we also show the top 10 percentile spike propagations. 
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5.3.2. Interictal spike networks are highly consistent within each patient and are not state 

dependent 

Three of the six 10 min EEG segments were acquired during wakefulness and three in sleep.  To 

measure the consistency of each patient’s network and the relationship of the awake versus sleep state, 

we compared the interictal spike networks across both sleep and awake time segments. When analyzed in 

1-35Hz broad frequency band as shown in Fig. 5.2A, we found that each patient had a highly consistent 

networks across all wake and sleep time periods (0.93±0.13) with no significant difference between awake 

and sleep (p<0.05) (Fig. 5.2B).  Note that the interictal spike networks from patients 1-5, that were both 

mostly unilateral and lesional, were the most consistent. 

 

 

 

 

Figure 5.2. Interictal spike networks are highly reproducible and independent of sleep wake 

cycles. (A) The top 10% (solid blue lines with red arrow marks) and 90% remaining (faint blue lines) 

propagations are shown for patient 8 at three different awake and sleep 10 min intervals (Time1, Time2, 

Time3). Propagations here include all EEG activity between the broad band of 1-35 Hz. The average of 

the awake and sleep propagations are shown on the right panel which shows the high level of similarity 

for both wake and sleep spike propagations. (B) Multiple correlation coefficients across 3 sleep (red 

diamonds) and 3 awake (blue circles) 10 min EEG segments for each of 10 patients (0.93±0.13) is 

shown demonstrating the high reproducibility of the measured spike networks in both wake and sleep 

states.  
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5.3.3. Interictal spike networks are patient-specific, multidirectional, and cross over to the 

contralateral temporal lobe 

Fig. 5.3A shows the interictal spike networks for each patient together with their top 10th percentile 

network (Fig. 5.3B).  No two patients had the same networks.  Within each network, spikes propagated 

both within and between temporal lobes.  Spikes sometimes had a clear directionality of spread: for example 

from anterior to posterior or posterior to anterior. For many brain regions spike networks were bidirectional 

and reverberated between two or more sites.  In addition to spike propagations within a given temporal 

lobe, spikes also frequently propagated between temporal lobes. For each patient, the percentage of spike 

propagations within each temporal lobe (intra temporal) and between the two temporal lobes (cross 

temporal) are shown.  Intra temporal propagations (67±13%) were significantly higher than cross temporal 

propagations (33±13%) in 9 out of 10 patients (p< 0.05) suggesting most of the propagations remain within 

 

Figure 5.3. Each patient has a unique spike propagation network that can be unilateral or 

bilateral.  (A) The total spike propagation network and the percentage that occur within (intra temporal) 

and between (cross temporal) temporal lobes are shown in the top panel.  The solid blue lines with red 

arrows represent top 10 percentile of the propagation, and the faint blue lines represent bottom 90 

percentile of the propagation. (B) Data for only the top 10th percentile propagations from panel A show 

simplified network schemata for each patient as well as the intra and cross propagation percentages.  

FO patient studies 1-5 were mostly unilateral, whereas 6-10 had a mix of intra and cross temporal 

propagations that may be related for some to the presence of ipsilateral lesions.  
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the same temporal lobe. The patient with studies 5 and 10 is the same patient that was recorded twice (the 

earlier recording is 10, the recording done the following year is 5). Study 5 showed unilateral spike networks 

without cross temporal propagations, study 10 instead had bilateral spike networks with significant cross 

temporal propagations. It is possible that either medication differences (clobazam stopped the day prior to 

the recording) or the presence of a vagus nerve stimulation device placed prior to study 5, but not present 

for study 10, prevented these cross temporal propagations and kept the spike network unilateral.  In patient 

7, although the intra temporal propagations were higher than the cross-temporal propagations, it was not 

significant (p< 0.1). Interestingly, most cross temporal lobe spikes utilized posterior rather than anterior 

anatomical connections. Of note, we did not see any significant effect of sleep or awake states on cross 

temporal propagations in any patient (data not shown). 

 

5.3.4. Interictal spike networks are strongly influenced by brain lesions 

In lesional patients, propagations were primarily ipsilateral to the lesion (patients 1-4). The patients 

without brain lesions (patients 6, 7, 8, and 10), had comparable propagations within each temporal lobe 

and had the most cross temporal propagations. Patient 9 had an MRI documented reduction in the volume 

of the anterior hippocampus with no sclerosis.  While his spike propagations were bilateral and cross 

 

Figure 5.4. Interictal spike networks are highly reproducible across different frequency bands. 

(A) The top 10 percentile spike propagation patterns at delta, theta, alpha, beta, gamma frequency 

bands, and 1-35 Hz broadband shown for patient 2 are remarkably similar. (B) Multiple correlation 

coefficients (0.97±0.006) for each frequency band across all patients during sleep (red diamonds) and 

awake (blue circles) are quite similar.  
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temporal, there were very few propagating spikes over the region with reduced hippocampal volume and 

most of his spike network involved the contralateral (right) side.  

 

5.3.5. Interictal spike networks are consistent across frequency bands 

Given the growing interest in the predictive value of different frequency bands, we analyzed the 

interictal spike networks across delta, theta, alpha, beta, gamma, and broad bands (1-35 Hz). This is shown 

for patient 2 in Fig. 5.4A and for all patients in Fig. 5.4B. We did not find any significant differences in spike 

propagations on EEG data filtered for each of these frequency bands or as a function of specific awake and 

sleep cycles.  While both low and high frequency bands had highly reproducible networks (0.97±0.006) 

 

Figure 5.5. Medial temporal spikes rarely appear on scalp electrodes and are have no clear 

propagation pattern. Medial temporal spikes recorded from FO electrodes (L3 – L6) show 

synchronous interictal spikes with the scalp leads only 4% of the time (left)  at (F7, T3, T5) (right) for 

patient 2. A zoomed in visual of the spike events on FO electrodes and scalp electrodes show highly 

synchronous FO and scalp EEG spikes with no consistent time delays between FO and the scalp 

events, suggesting no clear pattern of propagation between these two recording sites. 
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within each patient, we failed to find any frequency-dependent differences. Although broad band and delta 

band appeared to have slightly higher connection density, no significant difference between other frequency 

bands were observed. We also noticed that the patient subgroup who had highly conserved networks in 

broad bands, did show higher network similarity across different frequency bands (median: 0.99) compared 

to the subgroup that had lower network similarity in broad band (median: 0.90).  We did not specifically 

examine high frequency oscillations due to the limitations of our recordings, recorded at 200 Hz. 

 

5.3.6. Mesial temporal spikes cannot be detected on surface EEG and do not clearly propagate 

to the cortical surface 

Previous studies using both intracranial and surface electrodes have shown the limitations of 

surface leads to detect EEG activities in deeper structures, such as the mesial temporal lobe(Lam et al. 

2017; Velasco et al. 2006) .  An unanswered question is whether spikes that are detected by surface EEG 

 

Figure 5.6. Relationships between interictal spike networks, structural lesions, and seizure onset 

zones. (A) Patient 1 had a teratoma tumor in the mesial temporal lobe that was coregistered to the FO 

electrodes.  The top 10 percentile interictal spike network is shown in relation to the lesion and seizure 

onset zones. (B) Patient 2 had left hippocampal sclerosis with a smaller hippocampus and a bright MRI 

FLAIR signal.  The interictal spike network and seizure onset zones were both present at the L4 and L5 

electrodes which were on the edge of the sclerotic region.   
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in deep structures are detecting spikes generated from these deep structures via volume conduction or 

whether they are propagating to the cortical surface. We measured ~8000 time-locked spike blocks on FO 

electrodes and determined the percentage that coincided with scalp EEG spikes. On average, only 4% of 

mesial temporal spikes coincided with scalp EEG spikes.  This finding is in line with previously published 

results(Lam et al. 2017).  However, when we used the dDTF function to determine the directionality of 

propagation, we did not find clear evidence of mesial temporal spikes propagating to scalp or vice versa.   

These findings confirm that surface EEG spikes are not generated from deeper temporal structures by 

volume conduction, but do not establish a clear propagation pattern in either direction for those spikes that 

appear synchronous between mesial and lateral temporal lobe structures. 

5.3.7. Spike networks relate to seizure onset and lesion location 

While the present series is limited in the number and similarity of patients in this retrospective 

analysis, we explored the relationships between interictal spike networks, seizures, and lesion locations in 

those with lesions in the hope that this type of analysis could in the future aid in surgical and non-surgical 

planning.  Only 5 of 10 patients had seizures recorded and of these only two had clearly defined lesions 

and focal seizures (patients 1 and 2, Table 5.1). The relationship between lesion, seizure onset, and spike 

networks are summarized in Fig. 5.6 for these two patients.   

Patient 1 had a teratoma tumor adjacent to the left hippocampus extending to the left temporal 

lobe. The L4 electrode was closest to the tumor, however, had very few spikes.  The interictal spike network 

predominantly split into two regions:  L1-L3, posterior to the tumor, and L5-L6, anterior to the tumor (Fig. 

5.6A).  Maximal spike reverberation occurred between L1 and L2.  Three recorded seizures were generated 

anterior to the tumor at L5-L6 with subsequent spread to other electrodes. While the most active subnetwork 

involved the posterior electrodes (L1-L3), it was the anterior L5-L6 spike network that perfectly aligned with 

the seizure onset zone.  

Patient 2 had left hippocampal sclerosis with maximal MRI FLAIR signal and volume loss seen at 

L3 (Fig. 5.6B). The spike network for this patient was broad from L2-L5 with maximum reverberations at 

L3-L4, just anterior of the region of maximum sclerosis. Three out of 4 seizures recorded had onset starting 
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further anterior to the sclerosis that started with heralding spikes at L4-L5 followed by spread to L2-L3 

posterior to the sclerosis and then more uniform ipsilateral involvement throughout the temporal lobe. 

While the present series is limited, the use of dDTF for these 2 lesional patients reveal that both spikes 

and seizure networks were adjacent to rather directly coming from the lesions.  These examples also 

demonstrate that while a portion of the spike network overlaps perfectly with seizure onset, other portions 

of the network, often with the highest level of spiking occur at independent locations from the seizure 

network, suggesting that not all spike networks may be related to the production of seizures. 

5.4. Discussion 

Interictal spikes have been suggested to be a significant biomarker of epilepsy and are hypothesized 

to arise from the cumulative synchronous firing of millions of underlying neuronal cells. The concept of the 

epileptogenic focus has been recently revised to a broader definition of an “epileptogenic network” that 

includes different brain regions, amongst which hippocampus is a key player. Understanding networks is 

extremely important for targeting therapies such as focal ablation and neuromodulation. Previous studies 

have shown that interictal spike networks are ‘hard-wired’ in their propagation patterns in the neocortex, 

are highly consistent within a given patient, but highly unique for each patient (Biswajit Maharathi et al. 

2018). Here we demonstrate a similar hard wiring of interictal spike networks in patients being evaluated 

for temporal lobe epilepsy.  These networks are independent of the sleep-awake state and indistinguishable 

at different frequency bands, similar to what has been seen in the neocortex (Biswajit Maharathi et al. 2018). 

This suggests that spike propagations have multiple frequencies in their signals that propagate together.  

We were able to map these interictal spike networks in the temporal lobes using the causality based 

dDTF algorithm on intracranial recordings obtained with bilateral foramen ovale leads in 10 consecutive FO 

studies of epileptic patients. Patients with brain lesions had the most consistent spike networks and tended 

to be unilateral compared to non-lesional patients. On the other hand, non-lesional patients had more 

bilateral propagations involving both temporal lobes along with cross-temporal propagations.  Spikes 

propagated in both anterior and posterior directions along the mesial temporal surface and most cases, 

reverberated in both directions.  This was particularly prominent in lesional patients where spike 

reverberations occurred near the lesion and did not cross to the other temporal lobe.  Surprisingly, most 
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cross-temporal lobe propagations occurred through the posterior electrode positions, suggesting usage of 

the hippocampal commissure within the fornix rather than the anterior commissure as the anatomical 

pathway for spike propagation.  

It is generally well-accepted that patients with temporal lobe lesions seen on MRI have a better surgical 

outcome than those without lesional forms of epilepsy (Clusmann et al. 2004).  Lesional patients in our 

series had more restricted and unilateral interictal spike networks compared to non-lesional patients, who 

generally had bitemporal networks with more frequent spike crossing between the two temporal lobes.   

Non-lesional patients from our series either had no clear seizures or seizure onset zones outside of mesial 

temporal lobe structures.  On the other hand, lesional patients had seizure onset zones that overlapped 

portions of the interictal spike network but were not at regions of the network with the highest levels of 

interictal spiking.  The remarkable reproducibility of spike networks near or around lesions suggests that 

measuring these networks prior to lesion resections could improve patient outcome by reducing seizures 

or preventing the development and growth of epileptic networks that can occur over time if networks are 

left in place.   

While our series is limited, both the spike networks and seizure onset zones mostly involved lesion 

borders.  The lesions themselves, including tumors and hippocampal sclerosis, had reduced spike networks 

and were not the sites of seizure onset.  Spike propagations commonly reverberated at the perilesional 

boundaries.  Other studies highlight this observation.  One study showed that  peritumoral spikes are most 

frequent and can be sharper than other interictal spikes (Mittal et al. 2016).  Similarly, studies in tuberous 

sclerosis infants suggest that epileptic spikes are often seen long before they have their first seizure and 

the spikes often localize with seizure onset zones that are peri-tuberal (Wu et al. 2016).  Perhaps this is not 

surprising given that many tumors, including the teratoma here, are not themselves capable of generating 

epileptic activity.  In the case of hippocampal sclerosis, sub-regions of the hippocampus with the most 

gliosis and neuronal cell loss are likely not be capable of generating epileptic activities as easily as adjacent, 

more intact regions of the hippocampus.   

Consistent with other studies, we found that only 4% of mesial temporal spikes seen with the FO 

electrodes were time-locked with spikes on scalp electrodes. Patients with lesional epilepsy had high 
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amplitude scalp spikes that were closely time-locked with spikes seen with the FO electrodes, and were 

always lateralized to the side of the lesion. Non-lesional patients who had less well-formed spike networks 

on the FO electrodes, didn’t have synchronous scalp spikes. However, unlike spikes within or between the 

mesial temporal lobe structures, coincident spikes in the lateral temporal cortex (seen by FO and surface 

electrodes at the same time) had no clear directionality of spread. These results strongly suggest that 

temporal lobe spikes detected with scalp EEG are not being detected from mesial temporal structures by 

volume conduction, but instead are being generated by the neocortex closest to the surface EEG 

electrodes. Previous studies looking at neocortical spikes detected by subdural grids and surface EEG 

concluded that cortical sources of scalp EEG spikes require the synchronous activation of at a minimum of 

6-10 cm2 of neocortex, with 20−30 cm2 needed to produce prominent scalp EEG spikes (Tao et al. 2005).  

The fact that there was no clear directionality of spread between FO and surface-detected spikes, suggests 

that the onset of the spike may be generated somewhere between medial and lateral structures. It is also 

possible that lesional patients recruit a larger neuronal network than non-lesional patients thus generating 

larger interictal spike fields that more readily propagate to the cortical surface.  

It has been postulated that bilateral (bitemporal) discharges are the consequence of the progressive 

nature of epileptogenesis (Morrell 1989). Based on this, it was thought that the longer the duration of 

epilepsy, the more likely it will spread to the contralateral side. Within our patient cohort, we did not see a 

clear correlation between age of onset and duration of epilepsy, but instead identified the lack of temporal 

lobe lesions as the strongest indicator of bilaterality.  Interestingly, the same patient recorded on two 

separate occasions (patient 5 and 10) was initially bilateral (10), but became unilateral (5) while taking the 

medication clobazam and having vagus nerve stimulation.  This observation demonstrates the potential to 

explore the specific effects of medications and other treatments on interictal spike networks as a potential 

therapeutic approach. It also supports the effect of neuromodulation on spike networks.  

Taken together, while the current study has limitations in cohort size, electrode coverage, and diversity 

of  patients, it provides the first clear evidence for highly reproducible interictal spike networks that are 

closely linked to both lesions and seizure onset brain regions. Our results show that the most consistent of 

these spike networks and seizures come from the perilesional tissues. Non-lesional patients have spike 
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networks that are more diffuse, and more often bilateral.  Interictal spike networks in patients with temporal 

lobe seizures had a portion of their spike network that precisely overlapped with their seizure onset zone, 

but also had other portions of their spike network, often with higher levels of spiking, that were spatially 

distinct from seizure onset.  Further studies will be needed to delineate both spatial and temporal 

relationships between interictal spike networks and seizures and to see if interictal spike networks could be 

used to predict seizure onset zone location or when a seizure is going to occur.  Measuring these networks 

in advance of surgical resections could determine which spiking regions need to be removed for better 

postsurgical outcome. Findings from these studies will advance our ability to perform less invasive 

treatments of epilepsy.  Given the expanding use of closed loop and direct stimulation devices for the 

treatment of refractory epilepsy, a precise spatial and temporal understanding of interictal spike and seizure 

networks could vastly improve the utility of these and other devices and approaches. 
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VI. INTERICTAL SPIKE PROPAGATION HUBS PREDICT SEIZURE ONSET 

ZONES IN NEOCORTICAL EPILEPSY 

6.1. Introduction 

Refractory epilepsy often results in intractable seizures and needs surgical intervention. In such 

cases, pre-surgical evaluation needs to delineate the epileptogenic and adjacent eloquent areas accurately. 

While recurrent seizures recorded on EEG are the most reliable way to identify the seizure onset regions, 

their infrequent nature limits our ability to rely on them entirely. The alternative reliable EEG biomarker to 

seizure is the interictal spike. These interictal spikes are brief, but sharp electrical events, frequently 

occurring between consecutive seizures and are often located in the seizure onset regions. Along with EEG 

measurements, brain lesions or structural abnormalities observed on MRI also help pinpoint the 

epileptogenic tissue locations (Wyllie et al. 2007).  However, there is no clear consensus in the field 

delineating the relationship between epileptic seizures, interictal spikes, and brain lesions. 

Existing literature on brain lesions such as tuberous sclerosis, cortical dysplasia, and other lesions 

related to epilepsy suggest that complete removal of structurally-marked lesions significantly improves the 

post-surgical outcome (Oluigbo et al. 2015; Awad et al. 1991; C. Lee, Jeong, and Chung 2019). The study 

conducted on  tumor-related epilepsy also suggests that the extent of resection is not a measure of 

postoperative seizure outcome, and complete removal of the tumor is a better approach (C. Lee, Jeong, 

and Chung 2019). Other studies on the temporal lobe epilepsy suggest only 70% of surgical interventions 

have good outcomes in lesion related epilepsy, and additional tissue removal around the lesion may not 

further improve the seizure outcome (Clusmann et al. 2004). Although lesion removal helps improve 

outcomes, tumor resection in tumor-related epilepsy does not always provide an optimal outcome (Englot 

et al. 2012, 2011). Other studies suggest taking additional tissue around the tumor margin for better 

outcomes  (Mittal et al. 2016). Hence structural guidelines are not only unclear, and not all patients have 

structural markers visible on MRI.  

Alternatively, physicians and researchers have widely pursued interictal spikes to localize epileptic 

foci because of their frequent occurrence in refractory epilepsy.  The source analysis of these interictal 
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spike peaks suggests that they occur near lesion regions identified on MRI (G. Wang et al. 2011).  The 

interictal spike source could also accurately indicate epileptic foci (Brodbeck et al. 2009).  In tumor-related 

epilepsy, interictal spikes occurring close to tumors were lower in amplitude and less sharp while 

peritumoral interictal spikes had higher occurrences and sharper slope (Mittal et al. 2016). Also, interictal 

spikes in seizure onset regions (SOZ) were frequent and had a higher power, removal of which resulted in 

excellent seizure outcome (Mittal et al. 2016). It is clear that intervention might be better guided. 

One suggestion is to focus instead on the propagation of interictal spikes rather than the events 

themselves, as epilepsy has been hypothesized as a network disease that alters connectivity. In such a 

case, it is essential to understand the dynamics of this network evaluated from the epileptic events such as 

spike and seizures and study the relationship of this network with seizure onset and lesion location. It is 

essential to explore the dynamics of interictal spikes and seizures in lesional patients versus non-lesional 

cases to identify common and unique features for each. Previous studies suggest that Interictal spikes have 

a patient-specific reproducible network (Biswajit Maharathi et al. 2018). These networks also can predict 

seizure onset regions in most cases (B. Maharathi, Loeb, and Patton 2019). Chapter 5 found that the 

interictal spike network reverberates in peri-lesional tissue in temporal lobe epilepsy. However, the ways a 

network might transmit information amongst its constituent parts is complex and needs tools that can 

appropriately analyze the many ways signals might propagate. We assert that the network analysis tools 

from graph theory can help diagnose epileptic brain regions and identify targets for intervention.  

In the present Chapter, we evaluated interictal spike propagation networks and different centrality measures 

for the network in 23 neocortical epilepsy patients admitted for epilepsy surgery. We related several graph 

centrality metrics to seizure onset, lesion location, and high spiking brain regions. This extends our previous 

work (B. Maharathi, Loeb, and Patton 2019) to cover wider brain regions in a more extensive series of 

lesional and non-lesional patients with a stronger focus on seizure onset. 

6.2. Methods 

6.2.1. Patient selection and data collection 

 Twenty-three intractable epilepsy patients with recurrent seizures were selected under a protocol 

approved by Institutional review board at University of Illinois at Chicago. All the patients went through two 
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stage epilepsy surgery, where large number of subdural electrodes were implanted on their neocortex for 

long term monitoring.  

 

 Electrocorticography (ECoG) data was recorded at 1000 Hz using 192 channel Nihon Kohden 

Digital System (Nihon Kohden America Inc, Foothill Ranch, CA, USA) with subdural electrodes (4 mm in 

diameter and spaced 10 mm apart, PMT platinum electrodes, PMT Corporation, Chanhassen, MN, USA). 

Three patients were recorded at 200Hz sampling rate. An experienced EEG reader extracted three 10-

minute ECoG time segments for each patient from three different days when adequate interictal spikes 

were observed and patient was resting with eyes closed. It was made sure that there were no seizures 

Table6.1. Patient Information 

Patient ID Age Sex Pathology Spike Count/ 10 minute 

EP122 15 female Polymicrogyria 311 

EP124 10 male Polymicrogyria 4325 

EP129 29 male  Focal cortical 
dysplasia 

3624 

EP132 10 female gliosis 61695 

EP138 4 female polymicrogyria 4707 

EP142 8 male TSC 4269 

EP143 11 female Heterotopia 4716 

EP156 2 male gliosis 28640 

EP158 1 male gliosis 19198 

EP160 1 female gliosis 12016 

EP162 1 female Polymicrogyria 6111 

EP164 3 female gliosis 18053 

EP165 3 female gliosis 16572 

EP169 8 male gliosis 6479 

EP173 2 male gliosis 19941 

EP183 22 Female Hemiparesis 10397 

EP187 5 Male TSC 7543 

EP188 16 Male Large cyst 6033 

EP195 7 male gliosis 11177 

EP196 2 male gliosis 3119 

EP199 2 male TSC 12694 

EP201 15 female gliosis 1384 

EP202 3 male TSC 11597 
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within 6 hours of the sample dataset. T1/T2 MRI scans before surgery were collected for each patients for 

identification of the any structural lesion or abnormality. Further intraoperative images and CT/ X-ray scans 

were collected post electrode implantation, for accurate localization of the electrode positions. 

6.2.2. Image processing 

 3D brain models were created for each patient from T1 MRI using BrainSuite 19a. Implanted 

electrode locations were co-registered on the 3D surface using CT scan and visually verifying the electrode 

positions from x-ray and intraoperative images. A mask was created for each lesion or abnormality on T1 

MRI manually using Brainsuite and surface was rendered so that we can visualize 3D model of the brain 

along with lesions and implanted electrode locations.  

6.2.3. Signal Analysis 

 We followed a previously established protocol (Biswajit Maharathi et al. 2018) to evaluate the 

interictal spike propagation in neocortex. Briefly, Interictal spikes were automatically marked on the EEG 

files using a previously established algorithm (Daniel T Barkmeier et al. 2012) and verified by experienced 

epileptologists (JAL). The interictal spikes were further analyzed by an algorithm to find the series of 

consecutive spikes that align with their peak to peak distance within 50 milliseconds. A series of such time-

locked spikes on multiple channels are called a spike block.  Once the spike blocks are detected in each 

files, we isolated spike data of length 500 milliseconds before the peak of first temporally occurring spike 

and 500 millisecond after the last spike peak in the same spike block.  

Further, we used Granger causality based direct directed transfer function (dDTF) to evaluate the 

spike propagation within each spike block. First, isolated spike block are extracted and filtered to 1-35 Hz 

frequency band using a 50th order zero phase band pass infinite impulse response filter. Next, this filtered 

signal was fit to a multivariate auto regressive model with a model order predetermined by Akaike 

information criterion (AIC). The optimum model order selected corresponded to the minimum AIC value. 

The maximum allowed model order was set to 50. Further the modeled dataset was transformed to 

frequency domain and dDTF was calculated. The dDTF estimates the direct propagation between a pair of 

channels while accounting the effect of all other channels. The estimated dDTF was validated by exceeding 
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95th percentile of dDTF response to 100 phase randomized surrogate dataset generated from the same 

spike block. The similar procedure was applied to all the discrete spike blocks present in the dataset.  

 The evaluated propagations were further used to construct directional graphs and relationship of 

spike propagation with seizure onset and lesion location. Appropriate statistical measure were used for 

each type of analysis and details are provided along with the results as appropriate.  

 

6.3. Results 

We obtained recordings from electrodes placed on the neocortex in 23 epilepsy patients who 

underwent epilepsy surgery. Table 6.1 lists these patients. The patient population (median age: 5±7.4, 

range: 1-29, 10 female, 13 male) was divided into two groups based on the presence or absence of lesions 

 

Figure 6.1. Interictal spike network is reproducible across time but patient specific. (A) 

Reproducible interictal propagation pattern in two different patients EP183 and EP187. For each patient, 

the spike propagation at three different time points is very similar. For easy understanding only top 10 

percentile of the network is shown. Each line thickness shows how often the pair of electrodes 

propagated in 10 minutes, and the arrow mark shows the direction of propagation. (B) The interictal 

spike propagation similarity among three 10-minute time segments evaluated using multiple correlation 

coefficient. The box plots with blue data points are for the patients who had lesions identified on MRI/ 

pathology test. The box plots with red data points are for the patient without any identifiable lesion. Most 

of them had gliosis. 
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on their MRI. The nine non-lesional patients had mild gliosis, whereas the 14 lesional patients had diverse 

lesions on their MRI or their pathology reports, including four patients with polymicrogyria, four with tuberous 

sclerosis, one with focal cortical dysplasia, one with heterotopia, one with an arachnoid cyst, one with 

stroke, one with a large cyst and one with gliosis. Amongst the lesional cases, the lesion location could be 

observed on the MRI in only seven of the patients. 

 

For each patient, we selected three 10-minute ECoG segments. Each patient had 96±8 electrodes 

placed on the neocortex with at least 1000 interictal spikes in 10 minutes (median: 9371± 13414) except 

for EP122 where fewer than 1000 spikes were marked. We used the dDTF algorithm to map the interictal 

spike propagation for each patient using isolated time-locked spike epochs. Amongst all the spike in all the 

patients, 85±11% spikes were found to be propagating. Using the evaluated spike network, we investigated 

the spike network's reproducibility at different time points in each patient, the relationship between high 

 

Figure 6.2. Electrodes with high spike counts are best associated with PageRank and Hub 

characteristics. (A) Shows the top 10 percentile propagations after aggregating all the propagations 

in 30 minutes for patient EP183. (B) Shows high spiking electrodes after thresholding 90% spikes. (C), 

(D), (E), and (F) shows the top 10% electrodes after thresholding the Outgoing, Incoming, Hub and 

PageRank centrality measures, respectively. 
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spiking electrodes and spike propagation centrality measures, the relationship between interictal spike 

network with lesion location and seizure onset zones in each patient. 

We found that interictal spike propagation was consistent across time and agnostic of lesion and 

seizure locations (Fig. 6.1). First, we evaluated the count of propagations for each pair of the electrode in 

each patient's 10-minute file. We removed any electrodes from analysis with one or zero propagations in 

the 10-minute data segment. Further, we took the propagation counts for each electrode pair across all 

three segments and calculated the multiple correlation coefficient. The interictal spike network was highly 

reproducible in each patient (median correlation 0.8±0.15) except for two patients EP122 and EP201. The 

median correlation in these two patients was 0.002, suggesting no reproducibility of the spike network in 

these two patients for the selected time segments. We further evaluated the number of propagation going 

out from each electrode and compared that across all three ECoG segments and found similar observation 

(median correlation: 0.85±0.14) except those two patients in which case median multiple correlation 

coefficient was 0.06.  

We checked overall spike propagation similarity in patients with lesions identified by MRI or 

pathology and compared with patients with gliosis or no identifiable lesion on MRI or pathology. Overall, 

when evaluated with student's t-test with equal mean but unequal variance, we did not find any significant 

difference between the two patient groups. 

We further separated the propagations to only seizure onset zone electrodes (SOZ) and compared 

them for reproducibly of spike propagation against non-seizure onset electrodes (non-SOZ). We did not 

see any significant difference in spike propagation reproducibility between SOZ electrodes and non- SOZ 

electrodes (Kruskal-Wallis one-way ANOVA, combined with all patients p=0.185). We further divided the 

patients into lesional and non-lesional groups, as explained above, and performed a similar test on SOZ 

vs. non-SOZ. There was no significant difference between SOZ electrodes and non-SOZ electrodes in 

spike propagation (p=0.7) in patients with brain lesions; however, in the non-lesional patient group, the 

difference between SOZ vs. non-SOZ electrode group was significant (p=0.02).  

We also found that seizure onset s was better associated with spike propagation hubs than spike 

count. We conducted comparisons between spike propagation centrality measures and seizure onset 
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regions to find the best centrality measures that accurately predict seizure onset zones (Biswajit Maharathi 

et al. 2018). For this, we considered several parameters starting with spike count, outgoing, incoming, hub, 

authority, PageRank, and betweenness centrality. First, we implemented a graduated threshold method 

from 5-95% for each measure and calculated the receiver operator curve (ROC). We further computed the 

area under the curve and the closest point on the curve to the (0, 1) point for each centrality measure and 

each patient from the ROC curve. For any of the parameters under consideration, the median threshold 

ranged between 42-49 percentiles across all patients. For further computations, we used the 50-percentile 

threshold. We found that the performance of the graph centrality measures predicting seizure onset zones 

is very patient-specific. Eleven out of 21 patients had significant seizure onset prediction from any of the 

graph centrality measures and simple spike count (p<0.005, Fisher exact test). These 11 patients also had 

a higher area under the ROC curve (0.74±0.15) than the rest of the ten patients (0.46±0.14). Overall, hub 

centrality was the best seizure onset predictor (14/ 21 patients, p<0.005, Fisher exact test, median Critical 

success index: 47±21), and betweenness centrality was the worst predictor of seizure onset (9/21 patients, 

median Critical success index: 43±21). We excluded Patient EP122 and EP201 from the analysis because 

of their low reproducibility of spike network propagation. 

Spike propagation often reverberated in perilesional regions. While the present series of patients 

have diverse pathologies and MRI lesions, we explored the relationship between lesion location observed 

in MRI and spike network. In the current patient cohort, only 7 of 23 patients, apparent anatomical lesions/ 

abnormality, were seen on T1/T2 MRI. Using available MRI scans, we reconstructed the 3D model of the 

brain and modeled the lesion location. Further, the electrode grids were co-localized on the 3D brain surface 

using available CT/ X-ray scans and intraoperative images. We investigated the high spiking locations and 

spike propagation centrality measure and compared them with seizure onset and lesion location.  

Patient EP129 had focal cortical dysplasia on the right frontal lobe, and the right temporal lobe was 

abnormally small compared to the contralateral side (Fig. 6.3A). We observed most of the spiking on the 

cortical dysplasia and spiking adjacent to the temporal lobe. These areas also had frequent spike 

propagations with a reverberating pattern. The seizure onset was also on the same locations did not 

completely overlap with any of the interictal propagation centrality measures.  
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Patient 188 had a large cyst on the right side, mostly on the occipital-parietal lobe (Fig. 6.3B). The 

interictal spike propagation was primarily on the temporal lobe, anterior to the cyst, and the lateral occipital 

electrode strip. PageRank and hub centrality measure for the interictal spike propagation aligned with the 

seizure onset electrodes on the occipital lobe, but there was limited overlap on the anterior areas of the 

lesion.  

In the case of patient EP187 (TSC) and EP183 (Stroke), the spike propagation was on the peri-

lesional regions, and spike propagation centrality measures had limited overlap with seizure onset regions 

(Fig. 6.3C & D). Other lesional cases also had a similar observation. 

While the present series of patients is limited, and the lesions have diverse pathologies, the spike 

propagation reveals that the spikes and seizures come from adjacent lesion regions. However, a direct 

relationship between spike network centrality measures and seizures is limited, suggesting the existence 

of an independent lesion driven spike network. The spiking network observed far from the lesion location 

might also be independent. 

High spiking electrodes have high relative importance (PageRank). To understand the relative 

importance of high spiking electrodes in terms of graph measures, we compared it with different node 

centrality measures of the interictal spike propagation. We calculated indegree, outdegree, betweenness, 

hub, authority, and PageRank centrality measures for each spike block. Further, for each node, we 

calculated the net centrality value by aggregating respective centrality scores over 30 minutes of ECoG 

(Fig. 6.2). Once we got the centrality measure for each node in each patient, we further thresholded to 90 

percentile and only took the top 10% of the electrodes for each centrality measure and compared it with the 

top 10 percentile spiking electrodes, where the spike count was also aggregated over 30 minutes. High 

spiking electrodes had a significantly higher page rank score (median Critical success index for PageRank: 

78±21, p<0.005, fisher exact test, h=1 for all patients). These high spiking nodes also had a better chance 

of becoming network hubs (median Critical success index for hub: 67±19, p<0.005, fisher exact test, h=1 

for all patients) and often higher closeness centrality. Betweenness centrality did not have a good 

association with high spiking electrodes (median Critical success index for betweenness: 20±16, fisher 
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exact test, h=1 for 12/21 patients). Other centrality measures had a varied range of associations with high 

spiking electrodes. We also repeated the tests at 50 percentile threshold had noticed similar results. 

 

Figure 6.3. Spike propagations reverberates on or adjacent to lesion location. (A) Case of focal 

cortical dysplasia where spike network reverberates on the lesion and seizure onset is also observed 

in the same area along with a few electrode locations on the temporal lobe. (B), (C) and (D) shows 

three different lesional cases with Large Cyst, TSC and Stroke respectively where the spike network 

reverberated in peri-lesional regions. The seizure onset (cyan color) and the spike network did not align 

exactly, but the SOZ electrodes are near the lesion.  
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6.4. Discussion 

We evaluated the interictal spike propagation using causality based dDTF and explored the propagation 

pattern of interictal spikes in 23 neocortical cases. We further evaluated the relationship between spike 

propagation, seizure onset, and lesion location.  Interictal spike propagations were highly reproducible yet 

unique in all patients as previously revealed (Biswajit Maharathi et al. 2018), suggesting interictal spikes 

are ‘hard-wired’ and can potentially represent the underlying active epileptic network. While spike network 

was significantly consistent in most patients, patient EP122 and EP201 did not have a reproducible network. 

EP122 had significantly low spike count, often scattered, which might be the reason for the network 

inconsistency. 

We compared seizure onset electrodes and the spike propagation centrality measures. As previously 

observed, for 11 out of 21 patients, the seizure onset was significantly associated with any centrality 

measures (B. Maharathi, Loeb, and Patton 2019), indicating we can use any of the centrality measures 

from spike propagation to predict seizure onset regions in such patients. While hub centrality was the best 

measure predicting SOZ in 14 of 21 patients, betweenness was the worst measure and only predicted 

seizure onset in 9 of 21 patients. The simple spike count was also a good measure to predict SOZ. High 

spiking electrodes in the current patient cohort could predict SOZ in 11 patients accurately. Surprising, the 

patients in which the centrality measures were not well associated with SOZ are the patients with lesion or 

abnormalities, as observed on MRI. Such mismatch might suggest that while non-lesional patients have 

higher chances of spike and seizure onset generating from the adjacent cortical regions, lesion influences 

these events in lesional patients. In lesional cases, only a part of the spike network aligned with the seizure 

onset region, suggesting that while some of the spiking regions might have the same origin as the seizures, 

lesions have additional pathological regions with an active epileptic network, primarily near the edge of the 

lesion.  

We evaluated the relationship between the spike count at each electrode location and different spike 

propagation centrality measures. PageRank centrality and high spiking electrodes were significantly 

aligned. The PageRank centrality measures how often the node is getting connected from other nodes and 

represents the relative importance of nodes in a network. The high concordance of frequent spiking 
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electrodes with PageRank centrality suggests that these electrodes receive propagations from several 

other electrodes or are connected with electrodes that receive several other connections from different 

electrodes. The high spiking electrodes have previously been associated with the seizure onset regions 

and hypothesized to play a significant role in epilepsy. The PageRank centrality might be representing 

significant propagation receiving property of the spikes. These high spiking electrodes also frequently co-

localized with hub centrality. Hubs are the nodes that have higher direct outgoing connectivity with other 

nodes as compared to the average outgoing connections. The concordance of high spiking electrodes with 

spike propagations hubs might suggest that the frequent spiking electrodes often connect to several cortical 

regions and initiate connections to multiple electrodes when they spike. The frequent propagation activity 

of high spiking electrodes and their concordance with seizure onset electrodes might suggest that they 

have a significant role in fortifying the epileptic network in non-lesional patients. They might be playing a 

similar role in patients with lesions, but lesion might generate additional spike activities.  

  The current study comes with several limitations: patient cohort size, diversity of pathology, and 

lack of additional data modalities, however the primary focus of the study was to establish relationship 

between spike propagation, seizure onset, and any existing lesion as identified on MRI. The present 

analysis provides apparent evidence of spike propagation patterns and its relationship with seizure onset 

in both lesional and non-lesional cases. Our results show that while non-lesional patients have a 

reproducible spike network that aligns with the seizure onset, the results differ in the patients with a lesion. 

In the lesional patients, the seizure onset is partially localized with the spike centrality measures and 

frequent spiking electrodes suggesting additional pathological active regions are present which distinct form 

seizure regions are. Further studies are necessary to establish a stronger relationship between spikes and 

seizures. However, these measured networks have good potential to assist in surgical planning and 

targeted drug development.  
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VII. GENERAL DISCUSSION 

The dissertation work explored the causal propagation of time-locked interictal spikes in the human 

neocortex and related it to the brain topography and lesion. The work also revealed the relationship between 

seizure onset zones (SOZ), interictal spike propagation network properties, and brain lesions if present. 

While revealing the basic functioning of the interictal spikes in the pathological epileptic brain, the 

dissertation takes forward our scientific understanding of the complex coordinated information flow of these 

paroxysmal events in the human brain and provides an edge to explore its utilization in clinical settings.  

7.1. Contributions to Neuroscience 

The current work established that the interictal spike network is consistent within each patient, 

specifically it is reproducible at different time points and across frequency bands. These spike networks 

were reproducible when we considered all the electrodes placed on the brain or only a subset of it. Lesions 

or SOZ did not significantly alter the reproducibility of these networks. However, we observed that the 

network consistency between SOZ and non-SOZ electrodes in non-lesional patients was significant. Each 

patient had a unique spike propagation pattern. On the temporal lobe from electrodes placed through the 

Foramen Ovale of the skull, interictal spikes propagated in multiple directions and often crossed to the 

contralateral temporal lobe, mostly from and to posterior positions. In all our analyses, we used subdural 

electrodes, placed close to the cortical surface. Such electrodes in the temporal lobe recorded considerably 

more epileptic activity than scalp electrodes, which often detected very few events.  

The question of whether there is a relationship between interictal spikes and SOZ is crucial to the field, 

but not straight forward. Seizure onset did not directly correlate with high spiking electrode regions for all 

patients, as previously thought (K. J. Staley, White, and Dudek 2011).  Spike events are perhaps not as 

vital as if and how they propagate. In patients without any lesion, seizure onset was predicted by any of the 

spike propagation centrality measures, even with simple spike count. However, there was no exact 

concordance between spike network and seizure onset in patients with a lesion. Overall, these seizure 

onset zones were best associated with interictal spike hubs. 
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The presence of a lesion on the neocortex or temporal lobe did have a significant effect on spike 

propagation. When lesions were present on the temporal lobe, most of the spike propagation was 

reverberating pairs in perilesional positions and did not cross to the contralateral side. In these patients, the 

seizure onset aligned with a smaller cluster of reverberating spikes. In patients with a lesion on the 

neocortex, the relationship between spike network and seizure onset was similar to that observed on the 

temporal lobe. Interictal spikes were observed on and around lesions, but also far from lesions. A subset 

of spiking electrodes around the lesion form a reverberating pair, and a subset of these electrodes often 

associated seizure onset electrodes. However, similar reverberating propagations were also observed in 

distant cortical regions. The lesions are hypothesized to infiltrate the perilesional space, in which case they 

might induce anomalous propagations. Only some of those regions might generate enough abnormal 

excitation to make the tissue prone to seizure activity.  

All spikes did not propagate. In multiple studies, we revealed that only 70-85% of the spikes were 

propagating across different cortical regions. Spike occurrence was not uniform across all electrodes; there 

were high spike occurrence electrodes and comparably low spiking electrodes. These high spiking 

electrodes were not the regions that initiate most propagations; instead, high spiking electrodes often 

received propagations from other regions. These high spiking electrodes did have higher relative 

importance in terms of PageRank centrality measure of the interictal spike network, suggesting these high 

spiking electrodes either received propagations from several other spiking electrodes or connected with 

electrodes which received several propagations within each spike block. A subset of these high spiking 

regions also acted as network hubs meaning they initiated propagations to multiple electrodes when 

analyzed within each spike block. These hubs were also associated with seizure onset zones (SOZ).  

Spike propagations were related to the natural topography of the brain surface. This may be a 

representation of the idea of “hard-wired” circuits, with closer connections having more traffic. With 

increasing geodesic distance, the propagations decreased between a pair of electrodes, and propagation 

count was significantly reduced while crossing large sulcal structures like the central sulcus.       

Interictal spikes blocks, which were isolated time epochs, does not represent the entire brain activity. 

We took the entire ECoG signal recorded, evaluated the total network, and compared it with the interictal 
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spike network. The total network, which was also very consistent, had more propagations than interictal 

spike propagation, and did not have any similarity to the interictal spike network. When we investigated 

these two networks at different frequency bands, the interictal spike network was always a better predictor 

of seizure onset zones than the total network. While the spike network could predict the seizure onset at 

any frequency band, the total network could best predict seizure onset zones at high-frequency oscillations, 

which was still less accurate than the interictal spike network. Interestingly, the total network also gets 

affected because of the brain topography, but the effect is not as dramatic compared to the spike network. 

The current thesis work reveals the neuroscience of pathologic brain connectivity and provides 

important clinical information regarding the epileptic activity of the patient's brain. Clinically interictal spikes 

have a significant role in epileptogenesis, as suggested by previous studies. However, the current work 

reveals the critical brain locations among the spiking electrodes and reveals the electrode location that 

generates seizures.  

Interictal spikes and high-frequency oscillations are the two epileptic electrophysiological biomarkers 

extensively studied to predict the seizure onset zones in clinical settings. Both events are associated with 

accurate SOZ prediction and good surgical outcomes after the corresponding tissue resection. However, 

when these HFOs are co-determined with interictal spikes, the results are much better. The current 

challenges in the HFO research specifically isolate the pathological HFOs from the physiological ones, may 

suggest that the interictal spikes might be a better biomarker to predict the SOZ and use in a clinical setting. 

While frequent spiking regions are often associated with seizure onset zones, the current work suggests 

that the spike network centrality measures might pinpoint the specific locations and help optimize the 

surgical planning to minimize tissue removal. Resection may not be the most suitable strategy. It may so 

happen that spike onset regions' isolation may solve the spread of the epileptic network. We might have to 

separate the spiking regions active in propagation from the other regions.   

7.2. Contributions to Neural Engineering 

Several novel network analysis modules enabled a pipeline for better understanding of the propagation 

of interictal spikes. The first module was that we isolated time epochs of the interictal spike propagations 

(called the spike network) led to better predictions of seizure onset zones (SOZ) than using the entire stretch 
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of times (called the total network). Isolating the time segments of relevant interictal spike activity helped 

pinpoint epilepsy-related network activity from the rest. While several studies have been conducted on the 

total network, preictal and ictal times (Li et al. 2016; Wilke et al. 2010; Hur and Kim 2015), to our knowledge, 

we were first to this initial isolation of only the times of interictal spike propagations (B. Maharathi, Loeb, 

and Patton 2019; Biswajit Maharathi et al. 2018). This may be simply the case of having more signal 

available to drive strong conclusions.  

The second module enabled frequency isolation. Using this, we found time-isolated interictal spike 

network propagations were consistent across frequency. While we did not find significant differences across 

frequencies, it may be a tool for future analyses that might need isolated frequency. For all times (total 

network), SOZ were predicted by high-frequency oscillations range (80-250 Hz), which is comparable to 

others’ findings who did not time-isolate (J. Jacobs et al. 2008; Modur and Miocinovic 2015).  

Another important module was the phase-randomized surrogate data thresholds in dDTF network 

evaluations. Although dDTF evaluates the propagation, it needs a thresholding to detect events. Surrogate 

data as previously recommended (Faes et al. 2004; Theiler and Prichard 1997; Junfeng Sun, Xiangfei 

Hong, and Shanbao Tong 2012) helps statistically validated the correctness of these events above 

background noise. Since dDTF is very sensitive to phase, the use of phase-randomized approaches helped 

best detect output. 

 Another important module was the centrality measures from graph theory, which helped understand 

the way interictal spikes propagate. We gained insight on the network’s bulk behavior and the  many ways 

propagations can occur. Centrality measures revealed the importance of different electrodes positions and 

helped find associations between interictal spiking, SOZ and lesion location. Previous research suggested 

betweenness (Wilke, Worrell, and He 2011), indegree (Li et al. 2016), and  outdegree (Haneef and Chiang 

2014) best predict SOZ. We discovered these properties were patient-dependent, and while many centrality 

measures could predict the SOZ in a subset of patients, but hub centrality was the best predictor of SOZ 

across all patients. This suggests electrodes initiating simultaneous propagations are more prone to be 

related to SOZ. Interestingly, we found that betweenness was not a good predictor of SOZ. Graph centrality 

estimating SOZ might be dependent on the method used to get the network.  
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 Finally, we developed a module related functional networks evaluated from EEG with brain 

structures and topology. We evaluated the change in propagation count with increasing distance between 

electrodes. While Euclidean distance measures the shortest distance between two points as if they are 

connected through a straight line, human brain follows a convoluted structure that includes gyri and sulci. 

We calculated the geodesic distance between electrode points that calculates the true shortest distance 

between electrodes through the sulcal folding and is a better measure than Euclidean distances. The work 

revealed the exponential decreasing propagation count with increasing electrode geodesic distance and 

helped us understand that central sulcus like large sulci act as barrier to propagation. The effect of 

decreasing propagation count vs distance was not so drastic in total network.   

7.3. Limitations of the work  

7.3.1. Patient Selection  

Epilepsy differs from other neurological disorders due to its heterogeneity in etiology and phenotypes. 

The biggest issue with this study was the patient selection. Our patient cohort came from different age 

groups (pediatric and adult), different epilepsy duration, and electrodes were placed on different brain 

locations. The patients had different brain conditions ranging from polymicrogyria, stroke, tuberous 

sclerosis, atrophy, and many patients did not have any identifiable lesion on their brain through MRI. These 

patients also had different seizure semiology, some patients had focal seizures, and pediatric cases often 

had epileptic spasms.  Interestingly, these patients also had unique epileptic networks, which made 

comparisons across patients infeasible. 

7.3.2. Electrode coverage and spatial resolution  

Epilepsy surgery often focuses on a minimally invasive procedure that can have optimum outcomes, 

and the primary focus remains to remove the seizure onset region. In the presence of a lesion, the goal 

also includes removing the lesion completely. In such a situation, the electrodes only implanted as required. 

While such electrode placements are best for the patient, it limits the research scope by limiting the area of 

coverage. With limited data modalities and only a part of the brain covered with electrodes, we are restricted 

to analyze a biased brain region. Intraoperative electrodes are not placed on the whole brain, limiting our 

understanding of the events that occur on the brain's contralateral side, which is presumed to normal. In 
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the current dissertation, all patients had subdural electrode placement. While the information collected from 

the neocortex provided excellent information on the spatial-temporal propagation of epileptic events, we 

could not explore the propagation activities that occur at deeper brain layers and through the white matter 

cortex. Suppose we would have access to higher spatial resolution data set. In that case, we could precisely 

map the exact pathway of information propagation and explore the different intricate brain regions involved 

in the epileptic network. 

7.3.3. Methodology limitations 

There are several methods developed to understand brain networks. While each algorithm has its 

purpose, the dDTF was developed based on the Grainger causality framework to understand the signal 

propagation between a pair of electrodes in the presence of many electrodes. While the algorithm 

performed well and claimed to be accurate, it still needs statistical validation. The validation process is too 

time-consuming and needs massive computing resources. Alternative methods should be explored that 

provide similar or better estimations but less computational heavy and executes in a shorter time. Also, 

these algorithms need enough data to generate the multivariate autoregressive models. In the case of 

limited data availability, alternative non-parametric methods should be explored. 

7.4. Future visions 

Our patient cohort consisted of only 30 minutes of information extracted from several days of 

intraoperative monitoring with limited electrode coverage on the cortical surface and no depth electrodes. 

The data analyzed in the current dissertation is also limited to EEG and MRI modalities. There are several 

scopes of improvement and with better data collection, intricate scientific details can be revealed.  

 A few minutes of EEG data is often sufficient to understand the pathological network, however it does 

not provide any information on the temporal evolution the disease. It would be exciting to see how this 

interictal spike evolves over longer period, and its variation with the circadian rhythm. Moreover, anti- 

epileptic drugs are known to suppress epileptic events. It would be exciting to investigate the total network 

and spike network before discontinuing the drug and compare it with after the drug is withdrawn.  
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The other aspect is the temporal evolution of the network. Epilepsy is a network disease, and this 

network evolves. While the disease network's temporal progression is difficult to track in human cases, 

similar experiments should be conducted in animal models of epilepsy.  This will provide us with a better 

understanding of interictal spikes and seizures' network evolution to help develop targeted drug 

development and intervention strategy.   

While the current study, with available ECoG and MRI, does a surprisingly good job identifying the 

epileptic network and relating it to the underlying natural brain topography and pathological lesions, it is still 

limited to the neocortex. Integration of other data modalities such as DTI/DWI should be strongly considered 

to delineate the correlation between functional network recorded from the brain's surface and white matter 

tract. This will provide a comprehensive understanding of the structural-functional dynamics of the epileptic 

network.  

One can easily envision a better world if one recognizes the recent evolution of new electrode 

technology and the possibility of very dense networks. Epilepsy has frequent pathological activities in the 

inner layers of the cortex and mesial structures. With the limitation of grid electrodes on the neocortex, it is 

impossible to collect high-resolution spatial-temporal information from those structures. With the 

advancement of microelectrodes, it is possible to implant several stereotactic depth electrodes on deeper 

brain structures for better data collection. This will be immensely helpful in the presence of a lesion. With 

adequate electrode implantation, we can understand the neural abnormalities on the lesion's surrounding 

tissue, which often involves deeper layers of the neocortex and white matter tracks.  

The electrical recordings observed on the neocortex are the implication of the synchronous firing of 

several million neurons under the recording electrode. This neural activation is not random; instead, it 

follows specific molecular pathway activation. Previous studies have described decreased in GABA 

receptors and increase in postsynaptic glutamate receptors in epileptogenic tissue (K. M. Jacobs, Kharazia, 

and Prince 1999). Recent studies have reported that the epileptic tissue shows the presence of micro 

lesions in the deeper cortical layers with decreased neuronal processes and MAPK/CREB activation 

(Dachet et al. 2015). On the genetic alteration level, hyper excitable states, as seen in epilepsy, are also 

associated with long non-coding RNA activity (Barry et al. 2017). It would be interesting to see the system 
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biology studies on these epileptic activities that integrate the molecular, cellular, structural, and functional 

activity of epilepsy related activities. A better understanding of such end-to-end mechanisms will help future 

drug discovery directions and other therapeutic interventions.  

7.5. Conclusion 

Despite the limitations, the current study is the first of its kind that provides a comprehensive analysis 

of the interictal spike network in the epileptic neocortex and its relationship to brain topography, presence 

of lesions, and seizure onset zones. The analyses reveal the consistent propagation of interictal spikes 

across multiple days and frequency bands, unique to each patient. Since the ten-minute time intervals were 

sufficient to find the reproducible network, this might reduce the time any patient has to go through 

monitoring during intraoperative surgery.  Moreover, the interictal spike network was reproducible at 

different frequency bands, including high-frequency oscillations suggesting we might reliably predict the 

spiking network by evaluating it at lower frequency narrow bands. 

The interictal spike network is partially localized with seizure onset, suggesting the two are not directly 

correlated. In contrast, a subset of spikes may come from the same region as seizures. The interictal spikes 

might have broader control over the epileptic network and may create additional onset zones distinct from 

the already identified ones. Along with removing the seizure onset zones, it might be useful to focus on 

these network active spiking regions for better patient outcomes.  

Frequent spiking electrodes also revealed brain lesions' role in generating additional tissue regions 

prone to generate interictal spikes that are not associated with seizure onset zones. While the work's clinical 

implication is still in the preliminary stage and needs additional work, these networks may help develop 

targeted drugs and surgical planning. They also help us understand the basic network functioning of the 

pathologic brain. 

All the patients analyzed here were suitable surgical candidates with intracranial monitoring. While 

network analysis in such cases helps us better understand the pathological network, we can also use such 

analysis in other applications such as electrical stimulation and magnetic stimulation, where accurate 

identification of the seizure onset locations is essential.  
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While the fully developed clinical application of such analyses is yet to be discovered, the current work 

sheds light on pathological brain activity and its unique characteristics compared to normal physiological 

brain activity. Additional work in a similar direction will help us understand the complex dynamics of the 

different neural assemblies of the normal brain and the pathological alteration in conditions such as 

epilepsy. 
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