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Key Findings
  �The Social Vulnerability Index 
(SVI) has been a critical 
measure used to identify 
geographic areas with increased 
risk of natural and man-made 
disasters.

  �SVIs are typically derived using 
either transformations or 
principal component analysis 
of the original variables, which 
often misclassify area-level 
vulnerability.

  �The use of disaster loss 
classification (DLC) as a target 
variable in combination with a 
decision tree algorithm creates 
a more accurate SVI measure.

  �Preliminary findings indicate 
that the DLC offers an innovative 
approach to predictive 
performance assessment  
of SVI.
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Summary
The research of climate change examines social vulnerability by looking 
at hazard exposure, susceptibility to that hazard, and emergency response 
capacity. The Social Vulnerability Index (SVI), a composite score identifying 
populations at risk from disasters, is often used to predict vulnerability and 
plan for community-based disaster prevention and emergency response. 
However, current methods for deriving SVI may not adequately capture 
qualitatively different vulnerabilities in different communities. Our study 
introduces a decision tree-based approach to developing an SVI that captures 
the heterogeneity of both vulnerable populations and disasters. Furthermore, 
we demonstrate the importance of incorporating a disaster loss classification 
(DLC) into estimating social vulnerability to increase the predictive 
performance of the model.

We utilized decision tree algorithms to create an SVI. Sociodemographic data 
were retrieved from the U.S. Census for the Houston Metropolitan Statistical 
Area (MSA) and hurricane loss data for Hurricane Alicia in 1983 were obtained 
from the Federal Emergency Management Agency (FEMA) HAZUS program. 1

Findings suggest that the SVI based on the decision tree approach 
dramatically increased the accuracy of predicting high vulnerability areas. The 
predictive performance rate was over 77% for the decision tree approach, 
compared to 35% for the principal component analysis (PCA) method. Our 
SVI based on decision tree methods can more accurately classify area-level 
vulnerability to disasters.

Background 
Vulnerability is a critical concept in understanding the risk and outcomes 
of exposure to hazards. Risk as a technical/mathematical term is narrowly 
defined as value-neutral and free from social, political, cultural, and historical 
contexts. However, the vulnerability of an area is shaped by socioeconomic 
context and political practices. Since the early 1980s, scholars have considered 
vulnerability as a condition of a system that exists before it encounters a 
hazard, and individual social factors exacerbate the effects of disasters.2-6 
Within this conceptualization, even natural disasters are not quite “natural.” 2-4 
To understand more fundamental, upstream causes that determine risk and 
vulnerability to disasters, the concept of social vulnerability was introduced.7,9 
Social vulnerability can be defined as the social, economic, demographic, 
geographic, and political characteristics that shape the capacity of communities 
to deal with, respond to, and recover from environmental hazards.

To quantify overall place vulnerability, the social vulnerability index (SVI) has 
been used.8,10,11 Two dominant approaches to building a composite score of 
SVI are: to add the percentile ranks of the original indicator variables, or to 
utilize in an additive model the principal component scores from 



the application of the principle components analysis (PCA) 
technique to the indicator variables. Indicator variables include 
some variation of area-level estimates by percent: poverty; 
welfare recipients; unemployed; racial/ethnic minorities; 
dependent children; elderly; less than high school education; 
female headed-households; people without private modes of 
transport; and institutionalized individuals. 

The primary limitation of current SVIs is that the derivation 
methods used to construct the indices cannot sufficiently 
account for the multiplicative, non-linear nature of vulnerability. 
Social science scholars have argued that multiple neighborhood 
factors of disadvantage are often spatially concentrated, and 
combined, risk factors produce neighborhood conditions that 
are beyond the additive effect of discrete risks.12-14 For example, 
racial residential segregation intensifies economic difficulty, 
and this “double jeopardy” puts specific neighborhoods into 
greater cumulative vulnerability.15 As one way to explore the 
concentration effects, scholars have grouped SVI scores into 
quartiles, and the highest vulnerability areas are compared 
with the rest of the areas having lower levels of vulnerability. 

However, these index measures are not designed to distinguish 
qualitatively different groups of neighborhoods. This problem 
of mismatch between types of measurements and types of 
phenomena that one attempts to measure may stem from how 
we conceptualize neighborhood context and its effects. 

To address the limitation of constructing SVIs, we introduce a 
new approach, which utilizes a decision tree model to classify 
area-level vulnerability. A decision tree (DT) model is a method 
for classification.16-18 DT methods utilize machine learning 
algorithms that recursively partition the input data based on 
their attributes. The primary aim of the partition process is 
to reach the final partitions of homogenous classes.19 In this 
study, we examined the accuracy of an index created using the 
DT-based derivation approach compared with an SVI-based on 
the PCA derivation approach. Disaster Loss classification (DCL) 
was based on the effects of Hurricane Alicia in 1983 on the 
Houston MSA, which is a known high-risk area for hurricanes, 
tropical storms, and flooding. In particular, Hurricane Alicia 
resulted in 21 deaths and $2 billion in damages.20

Data and Methods
We examined the Houston MSA including Brazoria, 
Chambers, Fort Bend, Galveston, Harris, Liberty, Montgomery, 
and Waller counties. The U.S. Census variables for 1980 
were retrieved at the census tract level. To create the SVIs, 
we used, as a percent of the overall target area characteristic, 
the following 15 sociodemographic indicator variables: 
residents living below poverty; welfare recipients; residents 
with less than high school education; unemployed; median 
housing value; occupied housing units; renter-occupied 
homes; children 5 years and younger; elderly 65 years and 
over; population in group quarters; residents without vehicle 
available; African Americans; Hispanics; female households 
with children under 18 years; and median household income. 
A total of 1,062 census tracts were included in this analysis. 

Hurricane related loss data were retrieved from the FEMA 
HAZUS platform, including the number of displaced 
households, the number of short-term shelters required, and 
total building loss in thousands of dollars. FEMA HAZUS 
is a disaster mitigation strategic tool that uses geographic 
information systems to evaluate potential physical, economic, 
and social impacts and losses caused by earthquakes, 
floods, and hurricanes.21 High-risk locations are illustrated by 
geographic boundaries to show the areas of greatest threat 
visually. Using historical data for Hurricane Alicia retrieved 
from HAZUS, a disaster loss classification (DLC) score for 
each census tract area is generated to test the predictive 
performance of the PCA and DT social vulnerability models. 

We then computed two types of SVIs, one derived from 
the DT model and the other using PCA. For the analyses 
in this project, the IBM SPSS Modeler 15.0 is applied, 
and the DT model is derived with the C5.0 algorithm.22,23 
The performance comparison between the DT and PCA 
approaches for identifying vulnerable areas is achieved 

by using a confusion matrix.24 The confusion matrix 
identifies the number of (in)correctly classified areas from 
two classifiers. In this study, this matrix was used as the 
performance assessment (PA) matrix for the derived SVIs. 
The matching areas are contained in the diagonal elements 
of the PA matrix, cii, providing an overall classification 
performance measure (Figure 1). The sum of the matching 
areas divided by the total number of areas, N, yields an 
overall classification performance (OCP) rate. 25 Similarly, 
the off-diagonal elements, cij, of the PA matrix identify the 
misclassified areas in reference to the vulnerability based 
on the actual DLC. For example, in Figure 1, the bottom row 
of the 1st column indicates the areas with the highest actual 
disaster loss that were predicted to be the lowest vulnerable 

FIGURE 1: �Schematic of metrics derived from performance  
assessment matrix
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areas by the SVI. This specific type of underestimation 
error is termed Classification Failure (CF) to emphasize the 
potential severe consequences. Overall, the cells below the 
diagonal (OCP) on the PA matrix indicate underestimation 
error (UE) of vulnerability. 

On the other hand, the element on the top right-hand 
corner indicates the areas that were predicted to have the 
highest vulnerability but experienced the lowest level of 
disaster loss. Such extreme overestimation error is called 
False Classification (FC1m). The elements above the diagonal 
indicate overestimation error (OE). We pay particular attention 
to CF, compared with FC, because of its potential significant 
public health consequences.

For this study, the sum of the areas in the elements above 
and below the diagonal line divided by N will define, 

respectively, the overall underestimation error (UE) rate, and 
the overestimation error (OE) rate. The following equations 
are used: 

Where:	 m	= �the total number of selected categories, usually 
4 (quartile).

	 i, j	= �the individual row and column, respectively, 
elements, cij, of the matrix. 

Results and Discussion
The PA matrix shows the pattern of matches between the 
two classification methods. For this study, the DT model has 
a better classification performance. The DT model showed 
a CF of 0.7% and an OCP of 77.1%. On the other hand, 
the SVI derived by PCA yielded a CF rate of 3.3% and an 
OCP of 35.0% (Figure 2). To give a sense of the severity 
of misclassification, for example, a 3.3% CF results in 35 
census tracts experiencing disaster losses at the highest 
severity level while being classified to belong to the lowest 
level of vulnerability. 

While the performance of the DT model is superior to the 
PCA model, this performance comes at a cost of complexity 

of the model, since this level of accuracy requires multiple 
partitions. Overfitting can be an issue with some DT 
algorithms; however, several modifications are feasible 
to improve this deficiency.26 Overall, this study raised a 
vital measurement issue concerning social vulnerability. 
We proposed an innovative approach to conduct social 
vulnerability research, which takes advantage of the fast-
developing field of predictive analytics. Our findings show 
that the use of classification modeling offers a more accurate 
way to predict vulnerability to potential disasters and hazards. 
Our approach may contribute to reducing disaster losses 
by improving the ability to predict and prepare for potential 
harms.

FIGURE 2: �Performance comparison between decision tree and principal component analysis-based Social Vulnerability Index models for Hurricane  
Alicia (1983)-related losses in the Houston Metropolitan Statistical Area 
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