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SUMMARY

After observing the Higgs boson by the ATLAS and CMS experiments at the LHC, accurate

measurements of its properties, which allow us to study the electroweak symmetry breaking

mechanism, become a high priority for particle physics. The most promising of extracting the

Higgs self-coupling at hadron colliders is by examining the double Higgs production, especially

in the bb̄γγ channel. In this work, we presented full loop calculation for both SM and New

Physics effects of the Higgs pair production to next-to-leading-order (NLO), including loop-

induced processes gg → HH, gg → HHg, and qg → qHH. We also included the calculation of

the corrections from diagrams with only one QCD coupling in qg → qHH, which was neglected

in the previous studies. With the latest observed limit on the HH production cross-section, we

studied the constraints on the effective Higgs couplings for the LHC at center-of-mass energies

of 14 TeV and a provisional 100 TeV proton collider within the Future-Circular-Collider (FCC)

project. To obtain results better than using total cross-section alone, we focused on the bb̄γγ

channel and divided the differential cross-section into low and high bins based on the total

invariant mass and pT spectra. The new physics effects are further constrained by including

extra kinematic information. However, some degeneracy persists, as shown in previous studies,

especially in determining the Higgs trilinear coupling. Our analysis shows that the degeneracy

is reduced by including the full NLO corrections.

xii



CHAPTER 1

INTRODUCTION

In 2012, a new scalar resonance [4, 5] with a mass of 125.09± 0.24 GeV [6] was discovered

at the Large Hadron Collider (LHC). After analyzing all the Run I data, the Standard Model

(SM) Higgs boson provides best explanation for the measured properties of the new particle [7,

8, 9, 10, 11, 12]. Since then, high priority analyses at the Large Hadron Collider (LHC) always

include the detailed study of the properties of this particle.

Theoretical uncertainties limit the reachable accuracies at the LHC. However, a wider range

of Higgs couplings investigated at the LHC, and the increase of the variety of processes that

involves the Higgs boson can partially compensate for this restriction. The most constrained

condition is the gauge-Higgs coupling Cv ≡ g = 0.94 + 0.11, which is very close to the SM

expectation. Furthermore, due to the fact that the observed Higgs candidate particle is pro-

duced at roughly the SM rate, the extensions of the Higgs sector beyond the Standard Model

are extremely constrained.

A simple model with a fourth generation of heavy quarks, for example, is excluded by the

limits on Higgs production for any Higgs mass below around 600 GeV [13, 14] since such model

predicts large deviations in the Higgs production rates from SM value [15, 16, 17, 18, 19]. Unlike

Cv, the Yukawa couplings of top-Higgs and bottom-Higgs are not constrained precisely by the

data up to date. Moreover, they are within 30− 40% of the SM expectations [20, 21].
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Testing the Higgs boson’s self-interactions is particularly interesting. It is the only un-

measured experimentally property of the Higgs boson and provides the only window to probe

the Higgs scalar potential, which is the origin of spontaneous symmetry breaking of the gauge

symmetry and the origin of the particle masses in the Standard Model.

1.1 Trilinear Higgs Coupling

One of the most promising probes is Higgs pair production at the LHC. These processes

provide direct measurements of the trilinear Higgs self-couplings at leading-order. Moreover,

these processes complement indirect effects caused by the self-interactions of Higgs bosons in

single-Higgs processes and radiative corrections to electroweak observables [22, 23] contaminated

by possible interference effects with different models of New Physics.

Unfortunately, the Standard Model expectation of this production rate is only 0.034 pb at

the Large Hadron Collider with CM energy equal to 14 TeV [24]. One of the reasons for such

a low rate is that the SM contributions from the box diagram in Figure 3(a) and the triangle

diagram in Figure 3(b) interfere destructively near kinematic threshold [25]. However, the

Standard Model cross-section rises dramatically to 1.54 pb at a future 100 TeV proton-proton

collider since the luminosity increases in the parton distribution function of gluon at lower x,

the Bjorken scale, which provides a chance to measure the Higgs self-couplings precisely [26, 27].

The SM Higgs potential describes the self-interactions of Higgs bosons, and it reads

V =
λ

2

(
φ†φ− v2

2

)2

, (1.1)
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where v denotes the vacuum expectation value (vev) , and λ is the strength of SM Higgs field

self-interaction and φ is the Higgs doublet, which reads

φ =


0

v +H√
2

 (1.2)

in unitary gauge with H denoting the physical Higgs field. In the Standard Model, the Higgs

mass is mH =
√

2λv2. By expanding Equation 1.1 around the vev in terms of the Higgs field,

we can write the Higgs self-couplings as

gH3 = 3
m2
H

v
, gH4 = 3

m2
H

v2
, (1.3)

where gH4 , and gH3 are the quartic and trilinear Higgs self-coupling, respectively.

Four major classes of processes are responsible for the production of Higgs pair at hadron

colliders. First, we have gg → HH, the gluon fusion process, with a loop of heavy quark, which

has a strong coupling to the Higgs boson [28, 29, 30, 31]. The second class is qq′ → qq′V ∗V ∗ →

qq′HH (V = Z,W ), the vector bosons fusion (VBF) processes, which generate two jets and

two Higgs bosons in the final state [28, 32, 33, 34, 35]. The third class is qq̄′ → V ∗ → V HH

(V = Z,W ), the double Higgs–strahlung process, where a vector boson, W or Z, radiates the

Higgs bosons [36]. The last one has associated producing a pair of top quarks with two Higgs

bosons, pp→ tt̄HH [37].
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Compared to single Higgs production, these processes have at least two orders of magnitude

smaller production cross-sections as the phase space is small since the final state consists of two

heavy particles. They have electroweak couplings of higher-order. Besides, other topologies

which are irrelevant to the trilinear Higgs coupling, where the gauge boson or fermion lines

radiate both Higgs bosons, which produce the same final state as the diagrams with H∗ → HH

splitting. Thus, these topologies pollute the correlation between the gH3 coupling and the double

Higgs production rate. It is extremely difficult to measuring the trilinear Higgs coupling, and

very high energies along with very high collider luminosities are therefore required.

1.2 Next-to-Leading Order and Beyond Standard Model

It is almost impossible to measure the quartic Higgs coupling, gH4 , in the near future as

an extra v further suppresses it in the denominator compared to the triple Higgs self-coupling,

and the smallness of the triple-Higgs production rate prohibit it from being probed directly [38,

39, 40, 41, 42]1. We can directly measure the trilinear Higgs coupling through Higgs-pair

production, where Higgs pairs are dominantly produced in the gluon-fusion process mediated

mainly by top-quark loops while the contribution of b-quark loops is negligible. Two types

of diagrams, triangle, and box, contribute to the gluon-fusion process gg → HH, where the

triangle diagrams involve the trilinear Higgs coupling, and the interference between the one-loop

box and triangle diagrams are destructive [29, 31]. The dominant contributions to the cross-

section come from the box diagrams. The approximate relation, ∆σ/σ ∼ −∆gH3/gH3 , gives a

1The quartic Higgs coupling is indirectly constrained by Higgs pair production [43, 44, 45].
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rough estimate of the correlation of the size of the trilinear Higgs self-coupling in the vicinity

of the SM value of gH3 and the cross-section. Therefore, small uncertainties of the relevant

cross-section, which can be achieved by calculating higher-order corrections, are required to

determine the trilinear Higgs coupling. The next-to-leading order (NLO) QCD corrections [46,

47, 48] and next-to-next-to-leading order (NNLO) corrections, which adopt heavy top quark

approximation [49, 50, 51], are fully known. The NLO corrections are significant, and therefore

must be included. Comparing NLO corrections, the NNLO contributions are much smaller but

still considerable. The QCD next-to-next-to-next-to-leading order (N3LO) corrections to the

effective couplings of Higgs and Higgs-pair to gluons are recently computed in heavy top quark

approximation limit [52] and lead to a minor modification to the cross-section [53, 54, 55]. The

LO contributions and the higher-order corrections contribute equally to the total production

rate. Lately, the NLO results have been matched to parton showers [56, 57], and the NLO mass

effects with the additional top-mass effects in the double-real corrections have been merged

with the full NNLO QCD results in the heavy-top limit [58]. The full NLO QCD corrections

to the production of Higgs pair with the anomalous trilinear Higgs self-coupling effects have

been calculated in [24]. In this work, we calculated full NLO results, including weak interaction

contributions from qg → HHq.

Although verifying that a scalar vev spontaneously breaks the electroweak symmetry is

crucial, discovering new physics beyond the SM is always the final goal. Multiple new physics

that could potentially affect this specific channel must be considered while analyzing the double

Higgs production. One possible new physics from a new diagram involving the anomalous
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quartic coupling, HHtt̄t, as shown in Figure 3(c) could give significant effect [59, 60, 61]. The

presence of this quartic coupling makes the total production rate insensitive to the Higgs self-

coupling and makes measuring this coupling incredibly difficult [62],.

1.3 Recent Searches in a Rare Particle Decay

The most significant double Higgs decay channel in the important low-mass region is the

bottom quark pair plus photons pair channel, HH → γγbb̄. Recently, new analysis techniques

for searching this rare process have been developed by physicists in ATLAS collaboration. To

optimize the sensitivity to the self-coupling of Higgs bosons, they first split the pp collision events

into low and high invariant mass groups. After that, they used a multivariate discriminant

(Boosted Decision Tree) to separate the events that can be categorized as the HH → γγbb̄

process from those that can not. Finally, the Higgs-pair production rate is determined first,

and then they observed how the production rate varies as a function of the Higgs boson self-

coupling to its SM value ratio λ/λSM . By using the above procedures, the ATLAS team

constrained the self-coupling of Higgs boson and allowed it to vary between −1.5 and 6.7 times

the SM value. Physicists, therefore, can set a currently best limit on the Higgs pair production

rate of 4.1 times the SM value.

However, the work is far from being done. A huge amount of data is required to precisely

measure the Higgs self-coupling and see if it were close to its SM value. The High-Luminosity

upgrade of the LHC, scheduled to be operational in the late 2020s, is planned to operate at

higher collision energy and deliver a dataset 20 times larger than used in this analysis. The

Higgs pair production will be observed in this huge dataset if the Higgs pair production indeed
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behaves as predicted by the Standard Model, and a more quantitative statement will be made

on the strength of the Higgs boson self-coupling.

1.4 Overview of This Thesis

This paper aims to learn how multiple new physics effects interplay in different kinematic

distributions and the total cross-section at next-to-leading order. To research the topic more

thoroughly, we also study the distributions of differential cross-sections, especially the invariant

mass of the Higgs pair, mHH , and the transverse momentum pT . We study the LHC at

center-of-mass energies of 14 TeV and a planning 100 TeV pp collider in the project of Future-

Circular-Collider (FCC) [2, 3].

This thesis is organized as follows. In Chapter 2, we introduce the Glashow-Salam-Weiberg

model and the Standard Model Lagrangian. In Chapter 3, we discuss the required techniques

and relevant formulas to compute one-loop integrals. In Chapter 4, the notation and the details

of our calculation at LO and NLO are presented. We then perform the numerical analysis in

Chapter 5. Finally, the conclusions are given in Chapter 6.



CHAPTER 2

THE STANDARD MODEL

In present-day particle physics, the Standard Model is the most successful theory that

describesthe electromagnetic, weak, and strong interactions, except the gravitational force, in

the universe and governs elementary particles discovered. The Standard Model was developed

in stages throughout the latter half of the 20th century through many scientists worldwide.

In the mid-1970s, experimental confirmation of the existence of quarks finalized the current

formulation. The modern form of quantum electrodynamics (QED) has been established by

Feynman [63], Tomonaga [64], and Schwinger [65] in the late ’40s, which is still the most

precise known physics theory. The abelian gauge theory, was extended to non-abelian groups

to explain strong interactions by Chen Ning Yang and Robert Mills [66] in 1954. Although

the non-abelian gauge theory was first designed for strong interaction, it was also used for

describing weak interaction. At low energies, the electromagnetic can be accurately described

by the quantum electrodynamics (QED) while the weak interactions can be described by the

Fermi model. Nevertheless, it turns out that these two interactions can be described by a

single model, the Glashow-Salam-Weinberg (GSW) model, which was proposed by Glashow

[67], Salam [68], and Weinberg [69] in the 60s. Until now, it is still the most comprehensive

theory that unifies electromagnetism with weak interaction. The GSW model is self-consistent

and minimal, since the known experimental results of electroweak origin can be described by

this model with the fewest necessary degrees of freedom.

8
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The last piece of the Standard Model is strong interaction. The theory of the strong in-

teraction, quantum chromodynamics (QCD), contributed by many, acquired its modern form

in 1973 when asymptotic freedom was proposed [70, 71] and experiments confirmed that the

hadrons were composed of fractionally charged quarks.[72, 73]

The term ”Standard Model” was first proposed by Abraham Pais and Sam Treiman in 1975,

regarding the electroweak theory with four quarks (up, down, charm, and strange quarks).

Initially, SU(2)W × U(1)Y , used to describe unified electroweak interactions, gives rise

to the massless gauge bosons. However, we know from the experiment that there are four

gauge bosons, three are massive, and the other is massless. To resolve this inconsistency,

the Higgs mechanism [7, 8, 9, 10, 11, 12], is introduced. The Higgs mechanism gives rise to

the masses of all the elementary particles, including the masses of the W and Z bosons, and

the masses of the fermions, i.e., the quarks and leptons. The gauge symmetry of non-abelian

SU(2)W×U(1)Y is spontaneously broken by introducing a scalar field which preserves invariance

under the transformation of electromagnetic subgroup, U(1)em, and has a non-vanishing vacuum

expectation value. Due to different representations of the gauge group for left-handed and right-

handed fermions, the Standard Model is chiral. In the symmetric theory, fermion masses are

forbidden, but they can be recovered by introducing spontaneous symmetry breaking. We

obtain the quark mixing matrix, also called the CKM matrix, which is the reason for CP-

violation by diagonalizing the fermion mass matrices. Although the model does not fix the

number of generations of fermions, only three generations of quarks with light neutrinos are

allowed due to the experiment constraints [74].
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The Standard Model is free of anomalies and renormalizable, as proved by ’t Hooft [75, 76],

and therefore allows the perturbative computation of unique quantum corrections for observable

quantities with finite number of input parameters.

The classical Lagrangian LC of the SM is composed of gauge invariant sectors and can be

written as

LC = LG + LH + LF , (2.1)

where G, H and F denote Gauge field, Higgs, and Fermion field Lagrangians respectively.

2.1 The Gauge Field Lagrangian

The gauge field Lagrangian is

LG = −1

4

(
∂µW

a
ν − ∂νW a

µ + g2ε
abcW b

µW
c
ν

)2
− 1

4
(∂µBν − ∂νBµ)2 , (2.2)

where the isosinglet Bµ and the isotriplet W a
µ , a = 1, 2, 3 associates to the weak hypercharge

YW of the group U(1)Y and the generators IaW of the weak isospin group SU(2)W , respectively,

and εabc are the totally antisymmetric structure constants of SU(2). The four gauge fields

transform according to the adjoint representation SU(2)W × U(1)Y . The covariant derivative

is given by

Dµ = ∂µ − ig2I
a
WW

a
µ + ig1

YW
2
Bµ, (2.3)

where g1 and g2 are the U(1)Y and SU(2)W gauge coupling.
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From the Gell-Mann Nishijima relation, we can write Q, the electric charge operator,in

terms of the weak hypercharge and the weak isospin generator I3
W .

Q = I3
W +

YW
2
. (2.4)

2.2 The Higgs Lagrangian

The Higgs Lagrangian can be written as

LH = (DµΦ)† (DµΦ)− V (Φ), (2.5)

where φ is a complex SU(2)W doublet field with hypercharge YW = 1

Φ(x) =


φ+(x)

φ0(x)

 , (2.6)

and the Higgs potential has the following form

V (Φ) =
λ

4

(
Φ†Φ

)2
− µ2Φ†Φ. (2.7)

To create spontaneous symmetry breaking, the parameters λ and µ are chosen to minimize the

potential V (Φ) with non-zero vacuum expectation value, 〈Φ〉, for the Higgs field.



12

2.3 Spontaneous Symmetry Breaking

The Standard Model is constructed so that the following relation is satisfied for the classical

ground state of the scalar field.

|〈Φ〉|2 =
v2

2
=

2µ2

λ
6= 0 . (2.8)

The field expands around the ground state in perturbation theory while the phase of the field

is chosen to preserve electromagnetic gauge invariance U(1)em, and the doublet Higgs field can

be written as

Φ(x) =


φ+(x)

1√
2

(
v +H(x) + iχ(x)

)
 , (2.9)

where H, χ, and φ+ are chosen to have zero vacuum expectation values. It is possible to

eliminate the unphysical fields φ± and χ by properly chose gauge transformation, i.e., the

unitary gauge. The physical scaler field, H, has mass

MH =
√

2µ. (2.10)
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By inserting Equation 2.9 into LC and diagonalizing the corresponding mass matrices, the

physical gauge boson and fermion fields can be written as follows

W±µ = 1√
2

(
W 1
µ ∓ iW 2

µ

)
,


Zµ

Aµ

 =


cW sW

−sW cW




W 3
µ

Bµ

 ,

fLi = Uf,Lik f ′Lk ,

fRi = Uf,Rik f ′Rk ,

(2.11)

where

cW = cos θW =
g2√
g2

2 + g2
1

, sW = sin θW , (2.12)

while f stands for fermions, l, ν, u or d, and θW is the weak mixing angle, also called Weinberg

angle. The masses can be defined as

MW = 1
2g2v, MZ = 1

2

√
g2

1 + g2
2 v,

Mγ = 0, mf,i = Uf,Lik GfkmU
f,R†
mi

v√
2
.

(2.13)

From Equation 2.12 and Equation 2.13, we have

cW =
MW

MZ
. (2.14)
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The neutrino masses would become nonzero, which contradict current experimental results,

if we added the right-handed neutrinos into the model. Therefore, there is no right-handed

neutrinos in the Standard Model.

The coupling of the electron to the photon field Aµ can be identified as the electrical charge,

e =
√

4πα. This yields

e =
g1g2√
g2

1 + g2
2

. (2.15)

The unitary quark mixing matrix is introduced by diagonalizing the fermion mass matrices.

Vij = Uu,Lik Ud,L†kj (2.16)

For the lepton sector, there is no corresponding matrix. Therefore, Uν,L is entirely arbitrary,

and we can choose Uν,L to cancel U l,L. From the relations in (Equation 2.10, Equation 2.13,

Equation 2.15, and Equation 2.16), we can replace the original set of parameters parameters

λ, µ2, g1, g2, G
l, Gu, Gd (2.17)

by the physical parameters

MH , MW , MZ , mf,i, e, Vij . (2.18)

Thus the Lagrangian Equation 2.1 can be expressed in terms of physical fields and parameters.
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2.4 Fermion Field Lagrangian

The fermion field Lagrangian reads

LF =
∑
i

(
L′
L
i iγ

µDµL
′L
i +Q′

L
i iγ

µDµQ
′L
i

)

+
∑
i

(
l′
R
i iγ

µDµl
′R
i + u′

R
i iγ

µDµu
′R
i + d′

R
i iγ

µDµd
′R
i

)

−
∑
ij

(
L′
L
i G

l
ijl
′R
j Φ +Q′

L
i G

u
iju
′R
j Φ̃ +Q′

L
i G

d
ijd
′R
j Φ + h.c.

)
,

(2.19)

where, L and Q denotes lepton and quark SU(2)W doublets (the colour index are dropped out

for simplicity), respectively,

Q′
L
j = PLQ

′
j =


u′Lj

d′Lj

 , L′
L
j = PLL

′
j =


ν ′Lj

l′Lj

 , (2.20)

and the superscripts L, R denote the chirality. The explicit form of right-handed fermion

singlets are

u′
R
j = PRu

′
j , d′

R
j = PRd

′
j , l′

R
j = PRl

′
j , (2.21)

where Φ̃is the charge conjugation of the Higgs field,n
(
φ0∗,−φ−

)T
, and φ− = (φ+)

∗
. The right-

handed(left-handed) states are obtained by acting the right-handed(left-handed) projection

operator, PR(L) = 1+(−)γ5
2 , on a spinor. u, d, ν and l denote up quarks and down quarks,
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leptons, and neutrinos, respectively, while i, j are the generation indexes. The term involving

g2 is absent in Dµ for right-handed fermions as they are SU(2)W singlets.

The covariant derivatives are diagonalized by defining the weak eigenstates of the fermions

as the primed fermion fields. Glij , G
u
ij and Gdij are the Yukawa coupling matrices that determine

the fermion masses.

2.5 Gauge fixing

To calculate LC to higher-order, the gauge needs to be fixed. We choose a renormalizable

Feynman-’t Hooft gauge, which equals to Ξ = 1 in RΞ gauge, where most computations of

Quantum Field Theories are simplest in this gauge.

RΞ gauge has the following linear gauge fixings.

F± = (ξW1 )−
1
2∂µW±µ ∓ iMW (ξW2 )

1
2φ±,

FZ = (ξZ1 )−
1
2∂µZµ −MZ(ξZ2 )

1
2χ,

F γ = (ξγ1 )−
1
2∂µAµ.

(2.22)

The gauge fixing Lagrangian can be written as

Lfix = −1

2

[
(F γ)2 + (FZ)2 + 2F+F−

]
. (2.23)
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To maintain the consistency of the path integral formulation, Faddeev Popov ghosts uα(x),

ūα(x) (α = ±, γ, Z) is introduced with the Lagrangian

LFP = ūα(x)
δFα

δθβ(x)
uβ(x), (2.24)

where Fα is the gauge fixing operators and the infinitesimal gauge transformations is charac-

terized by θβ(x).

Notice that poles of transverse gauge fields at the lowest order coincide with the correspond-

ing poles of the longitudinal gauge fields, ghost fields , and unphysical Higgs fields.

Finally, the complete renormalizable Lagrangian for the Standard Model is

LSM = LC + Lfix + LFP . (2.25)



CHAPTER 3

ONE-LOOP INTEGRALS

The methods of calculating loop integrals are first developed by Passarino and Veltman[77,

78], ’t Hooft and Veltman [79], and Melrose [80]. They are further extended by Denner [81, 82,

83, 84]. In this chapter, we show the classification of these loop integrals and the techniques

required.

3.1 Definitions

In quantum field theory (QFT), the generic one-loop computations have the following form

TN ∼
∫

d4q

(2π)4

N (q)

((q + p0)2 −m2
0)((q + p1)2 −m2

1)....((q + pN−1)2 −m2
N−1)

, (3.1)

where the number of external particles is denoted by N (see Figure 1), and the momentum

of external particles are defined as

pi0 = pi and pij = pi − pj . (3.2)

The integral TN will be ultraviolet (UV) divergent if N (q) has the loop momentum q in a

high enough power. By naive power counting, we can easily see that the ultraviolet divergence

occurs when N (q) has rank r tensor integrals, where r + 4 ≥ 2n for an n-point integral.

Moreover, two- and one-point scalar integrals diverge in the ultraviolet region. Notice that n

18
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is the highest possible rank for an n-point one-loop integral. Therefore, n-point integrals can

only be UV-divergent when n < 5, and they are always UV-finite when n ≥ 5. The most

common way to regulate the loop integrals is the dimensional regularization [85], regularizes

the ultraviolet divergences by setting the dimensionality D = 4−2ε and takes the limit ε→ 0 at

the final step. This regularization method generalizes the dimensionality of the loop momentum

q to D and the integration in Equation 3.1 becomes Equation 3.3

d4q

(2π)4
→ dDq

(2π)D
. (3.3)

For example if we have an q4 integral with N (q) = qµqνqρqδ. The divergence is insensitive to

external kinematic parameters since the power counting shows that it is logarithmic. Therefore,

we can isolate the divergence by using

q4 →
∫

dDq

(2π)D
qµqνqρqδ
[d(q)]4

=
(gµνgρδ + gµρgνδ + gµδgνρ)

D(D + 2)

∫
dDq

(2π)D
q4

[d(q)]4
, (3.4)

where d(q) = q2 − µ2 and the kinematic invariant, µ, is used to regularize the divergences at

small q2. We can calculate the integral by using the following equation

∫
dDq

iπD/2
(q2)r(

q2 − µ2
)m =

ΩD

πD/2
(−1)r−mµD+2r−2m

∫ ∞
0

dx
x2r+D−1

(1 + x2)m

= (−1)r−mµD+2r−2mΓ(r +D/2)Γ(m− r −D/2)

Γ(D/2)Γ(m)
, (3.5)
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where ΩD is the D-dimensional solid angle, and ΩD = 2πD/2/Γ(D/2). ForD 6= 4 with m = 4

and r = 2, Equation 3.5 gives a finite result. We can therefore regularize ultraviolet divergences

from one-loop diagrams by using dimensional regularization. The parameter µ plays the role of

a renormalization scale that keeps track of the correct dimension of the integral in D space-time

dimensions.

Another type of singularity, collinear and soft divergences, occurs when the massless particles

present appear when multiple propagators simultaneously are on the mass shell in the integrand

and can also be regularized dimensionally.

Therefore, UV-divergent one-loop integrals with massless particles can be treated economi-

cally by using dimensional regularization with only one parameter ε = (4−D)/2. In this work,

dimensional regularization is assumed to be applied to every loop integrals.

In the limit ε → 0, we can express TN in terms of the scalar integrals including one- two-,

three- and four-point integrals, and the rational part, R, which is the remnant of dimensional

regularization.

TN = c4;jI4;j + c3;jI3;j + c2;jI2;j + c1;jI1;j +R+O(D − 4). (3.6)

In Equation 3.6, we evaluate the coefficients cN,j (N = 1, . . . 4 in D = 4 without dependence

on ε. IL;j denotes the type j L-point scalar integral. The type j indicates the combinations of

the external momenta pii−1 that compose the qi entering the main integrals in the right hand

side of Equation 3.6. We can obtain Equation 3.6 by using the following two conditions:
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First, the nature of four-dimensional space-time allows us to reduce Higher n-point scalar

integrals to sums of four-point integrals, box diagrams. Second, the Lorentz invariance that

makes decomposing tensor integrals to invariant form factors becomes possible. Thus, we

can write a D-dimensional scalar five-point integral, pentagon diagram, as the sum of the

five four-point integrals, obtainable by removing one propagator while neglecting O(D − 4)

terms. [80, 86, 87]. Similarly, we can recursively obtain the one-loop N -point function in D-

dimensional spacetime, where D = 4−2ε, as a linear combination of pentagon integrals [80, 86]

for N ≥ 6. From Equation 3.6, we can reduce the calculation of any one-loop integral to

determining both the coefficients cL;j and the rational part R once we know every one-loop

scalar integral with N ≤ 4. As we will discuss in Section 3.6, we can also obtain the rational

part and the reduction coefficients efficiently by numerical methods.
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pNN−1

q + pN−2

q

q + pN+1

q + p2

p21

q + p1
p1

pN−1N−2

Figure 1. The generic N-point integral.

The general one-loop tensor integral shown in Figure 1 are defined as

TNµ1...µr(p1, . . . , pN−2, pN−1,m0, . . . ,mN−2,mN−1) =
(2πµ)4−D

iπ2

∫
dDq

qµ1 · · · qµr
D0D1 · · ·DN−1

(3.7)

with

D0 = q2 −m2
0 + iε, Di = (q + pi)

2 −m2
i + iε, i = 1, . . . , N − 1, (3.8)
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which is originated from the propagators in the Feynman diagrams. The tensor integrals are

fully symmetric in the Lorentz indices µk. The singularities of the integral are regulated by

introducing an infinitesimal imaginary part, iε. The specific choice of this iε ensures causality

and makes the logarithms and dilogarithms have correct imaginary parts after integration.

Conventionally, TN is denoted by the N -th character in alphabetical order, i.e. A ≡ T 1,

B ≡ T 2, . . . , where the index 0 denotes the scalar integrals.

The tensor integrals are Lorentz covariance, which allows the metric tensor, gµν , and the

external momenta, pi, as well as symmetric coefficient functions TNi1...ir to reconstruct these

tensor integrals.

For the lowest order integrals, the explicit Lorentz decompositions are

Bµ = p1µB1,

Bµν = gµνB00 + p1µp1νB11,

(3.9)
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Cµ = p1µC1 + p2µC2 =
2∑
i=1

piµCi,

Cµν = gµνC00 + p1µp1νC11 + p2µp2νC22 + (p1µp2ν + p2µp1ν)C12

= gµνC00 +

2∑
i,j=1

piµpjνCij ,

Cµνρ = (gµνp1ρ + gνρp1µ + gµρp1ν)C001 + (gµνp2ρ + gνρp2µ + gµρp2ν)C002

+ p1µp1νp1ρC111 + p2µp2νp2ρC222

+ (p1µp1νp2ρ + p1µp2νp1ρ + p2µp1νp1ρ)C112

+ (p2µp2νp1ρ + p2µp1νp2ρ + p1µp2νp2ρ)C122

=

2∑
i=1

(gµνpiρ + gνρpiµ + gµρpiν)C00i +

2∑
i,j,k=1

piµpjνpkρCijk,

(3.10)



25

Dµ =
3∑
i=1

piµDi,

Dµν = gµνD00 +
3∑

i,j=1

piµpjνDij ,

Dµνρ =
3∑
i=1

(gµνpiρ + gνρpiµ + gµρpiν)D00i +
3∑

i,j,k=1

piµpjνpkρDijk,

Dµνρσ = (gµνgρσ + gµρgνσ + gµσgνρ)D0000

+
3∑

i,j=1

(gµνpiρpjσ + gνρpiµpjσ + gµρpiνpjσ

+ gµσpiνpjρ + gνσpiµpjρ + gρσpiµpjν)D00ij

+

3∑
i,j,k,l=1

piµpjνpkρplσDijkl.

(3.11)

To concisely write the terms that contain gµν , we introduce an artificial momentum p0. The

tensor integrals now reads

TNµ1...µr(p1, . . . , pN−1,m0, . . . ,mN−1) =
N−1∑

i1,...,ir=0

TNi1...irpi1µ1 · · · pirµr . (3.12)
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We can rewrite terms that involve gµν and products of even numbers of p0’s by the corresponding

totally symmetric tensor structures of gµν , e.g.

Odd numbers of p0 → 0,

p0µ1p0µ2 → gµ1µ2 ,

p0µ1p0µ2p0µ3p0µ4 → gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3 ,

(3.13)

and removing all terms with products of odd number of p0’s. In four dimensional space, the

terms involving gµν can be omitted for N > 4, and we can use at most four Lorentz vectors

in the decomposition Equation 3.12 since four Lorentz vectors can span the four dimensional

space. For N larger or equal to five in four dimensions, the Lorentz decomposition of tensor

integrals reads

TNµ1...µr(p1, . . . , pN−1,m0, . . . ,mN−1) =
4∑

i1,...,ir=1

TNi1...irpi1µ1 · · · pirµr , (3.14)

where pi1 , . . . , pip is composed of any four linearly independent vectors out of p1, . . . , pN−1. It

can be easily seen that exchanging of the propagators will not change the result of the inte-

grals. Consequently, the scalar coefficient functions is invariant under exchange the arguments

(pi,mi)↔ (pj ,mj) with corresponding indices switch i↔ j, and we have the following relations
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TN... i...i︸︷︷︸
n

... j...j︸︷︷︸
m

...(p1, . . . , pi, . . . , pj , . . . , pN−1,m0, . . . ,mi, . . . ,mj , . . . ,mN−1)

= TN... i...i︸︷︷︸
m

... j...j︸︷︷︸
n

...(p1, . . . , pj , . . . , pi, . . . , pN−1,m0, . . . ,mj , . . . ,mi, . . . ,mN−1),

(3.15)

e.g.

C1(p1, p2,m0,m1,m2) = C2(p2, p1,m0,m2,m1),

C00(p1, p2,m0,m1,m2) = C00(p2, p1,m0,m2,m1),

C12(p1, p2,m0,m1,m2) = C12(p2, p1,m0,m2,m1).

(3.16)

3.2 Tensor integral reductions

It has been shown that we can iteratively reduce the invariant functions TNi1...ir to the scalar

integrals TN0 by using Equation 3.12 [77, 78] . The product of an external momentum with the

integration momentum qµ can be rewritten as a combination of the denominators

q · pk =
1

2
[(q + pk)

2 − q2 − p2
k] =

1

2
[Dk −D0 − fk], (3.17)

where

fk = p2
k −m2

k +m2
0. (3.18)
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Multiplying Equation 3.7 with pk and substituting Equation 3.17 yields

RN,kµ1...µr−1 = TNµ1...µrp
µr
k

=
1

2

(2πµ)4−D

iπ2

∫
dDq

[
qµ1 . . . qµr−1

D0 . . . Dk−1Dk+1 . . . DN−1

− qµ1 . . . qµr−1

D1 . . . DN−1
− fk

qµ1 . . . qµr−1

D0 . . . DN−1

]

= 1
2

[
TN−1
µ1...µr−1

(k)− TN−1
µ1...µr−1

(0)− fkTNµ1...µr−1

]
,

(3.19)

where k indicates that Dk was cancelled. To bring TN−1
µ1...µr−1

(0) to the form Equation 3.7, a shift

of the integration momentum (q → q − p1) is required in TN−1
µ1...µr−1

(0), the first propagator of

which has an external momentum. As a result, the number of Lorentz index for tensor integrals

on the RHS of Equation 3.19 is less than the original tensor integral by one. For r ≥ 2, we have

an extra relation by contracting Equation 3.7 with gµν and using

gµνqµqν = q2 = D0 +m2
0. (3.20)
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This gives

RN,00
µ1...µr−2 = TNµ1...µrg

µr−1µr

=
(2πµ)4−D

iπ2

∫
dDq

[
qµ1 . . . qµr−2

D1 . . . DN
+m2

0

qµ1 . . . qµr−2

D0 . . . DN

]

=
[
TN−1
µ1...µr−2

(0) +m2
0T

N
µ1...µr−2

]
.

(3.21)

For the coefficient functions, we can obtain a set of linear equations by using the Lorentz

decomposition Equation 3.12 with Equation 3.19 and Equation 3.21.

For each tensor integral, we can decompose this set into several independent sets of N − 1

equations. Combining with Equation 3.12, the Lorentz decomposition of TN , RN,00, and RN,k

reads

RN,kµ1...µr−1 = TNµ1...µrp
µr
k =

M∑
i1,...,ir−1=0

RN,ki1...ir−1
pi1µ1 · · · pir−1µr−1 ,

RN,00
µ1...µr−2 = TNµ1...µrg

µr−1µr =
M∑

i1,...,ir−2=0

RN,00
i1...ir−2

pi1µ1 · · · pir−2µr−2 .

(3.22)

Inserting these decomposition into the first lines of Equation 3.19 and Equation 3.21 TNi1...ir

becomes

TN00i1...ir−2
=

1

D + r − 2−M

[
RN,00
i1...ir−2

−
M∑
k=1

RN,kki1...ir−2

]
,

TNki1...ir−1
=

(
X−1
N−1

)
kk′

[
RN,k

′

i1...ir−1
−

r−1∑
r=1

δk
′
irT

N
00i1...ir−1ir+1...ir−1

]
.

(3.23)
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We stress tha the factor, F + r − 2−M , is always positive while r ≥ 2 and D > M . Here

XN−1 =



p2
1 p1p2 . . . p1pN−1

p2p1 p2
2 . . . p2pN−1

...
...

. . .
...

pN−1p1 pN−1p2 . . . p2
N−1.


(3.24)

If the matrix X−1
N−1 is invertible, the Lorentz indices of the invariant functions TNi1...ir can be

reduced(See Equation 3.23 and Equation 3.25). By making this reduction iteratively, all tensor

integrals can be expressed as a combination of scalar integrals TL0 with L ≤ N . However,

the reduction algorithm breaks down provided the matrix XN−1 becomes singular (i.e., the

determinant equal to zero). The collinearity of pi usually occurs at the edge of the phase

space, and this leads to the singularity. On the other hand, the singularity caused by the linear

dependence of the momenta can be removed by excluding the vectors of the set p1, . . . , pN−1

that is linear dependent in the Lorentz decomposition, and we can build a reduced matrix, XM ,

where M < N − 1. The reduction works again if XM is nonsingular.

In Section 3.4, we will discuss a different reduction algorithm [80, 88] required if the deter-

minant of XN−1 vanishes while all momentum are linear independent.
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Using the third lines of Equation 3.19 and Equation 3.21 , we can express the R’s in terms

of TNi1...ir−1
, TNi1...ir−2

, and TN−1
i1...iq

, with q < r as follows

RN,00
i1...iqM...M︸ ︷︷ ︸

r−2−q

= m2
0T

N
i1...iqM...M︸ ︷︷ ︸

r−2−q

+ (−1)P−q

T̃N−1
i1...iq

(0) +

(
r − 2− q

1

)M−1∑
k1=1

T̃N−1
i1...iqk1

(0)

+

(
r − 2− q

2

) M−1∑
k1,k2=1

T̃N−1
i1...iqk1k2

(0) + . . .

+

(
r − 2− q
r − 2− q

) M−1∑
k1,...,kr−2−q=1

T̃N−1
i1...iqk1...kr−2−q

(0)

 ,

RN,ki1...iqM...M︸ ︷︷ ︸
r−1−q

=
1

2

{
TN−1
ĩ1...̃iq M̃...M̃︸ ︷︷ ︸

r−1−q

(k)θ(k | i1, . . . , iq,M, . . . ,M︸ ︷︷ ︸
r−1−q

)− fkTNi1...iqM...M︸ ︷︷ ︸
r−1−q

(3.25)

−(−1)r−1−q

T̃N−1
i1...iq

(0) +

(
r − 1− q

1

)M−1∑
k1=1

T̃N−1
i1...iqk1

(0)

+

(
r − 1− q

2

) M−1∑
k1,k2=1

T̃N−1
i1...iqk1k2

(0) + . . .

+

(
r − 1− q
r − 1− q

) M−1∑
k1,...,kr−1−q=1

T̃N−1
i1...iqk1...kr−1−q

(0)

}



32

where i1, . . . , iq 6= M and

θ(k | i1, . . . , ir−1) =


1 ir 6= k, r = 1, . . . , r − 1,

0 else.

(3.26)

The tilde in T̃ denotes that the integration variable has been shifted as q → q − pM to retain

the standard form of the integrals. The shifted terms, which also makes M asymmetric in

index in the above equations, are gathered together in the square brackets of Equation 3.25.

Different shifts can also cause a similar result. The i-th momentum of the corresponding TN

are denoted by ĩ. Note that if i > k, TN equals to the (i− 1)-th momentum of TN−1(k), where

the argument, k, indicates the cancelled propagators.

The coefficients Ti1...ir are determined by the above recursion formulae regardless of their

symmetries. Therefore, we can use different ways to obtain coefficients whose indices are not

equal, allowing for validation of the analytical results and numerical stability.

If the dimension of space-time equals the number of linear independent momenta, D = M ,

then the terms in the Lorentz decomposition that contain gµν need to be removed, since gµν

can be written in terms of the D momenta. Thus we can obtain coefficients TNi1...ir from the

second equations of Equation 3.23 and Equation 3.25 with TN00i1...ir−2
= 0 in this case.

3.3 Scalar one-loop integrals

As discussed in the last section, the one-loop integrals are combinations of the scalar inte-

grals, TN0 provided the determinants of matrices XM are nonvanishing. For A0, B0, C0 and D0,
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general analytical results were derived in [79], and the numerical calculation algorithms based

on the analytical results have been developed in [89]. All rresults for A0, B0, C0 and D0 are

listed in this section.

3.3.1 Scalar one-loop one-point integral

The one-point integral is given by

A0(m) = −m2(
m2

4πµ2
)
D−4
2 Γ(1− D

2
) = m2(∆− log

m2

µ2
+ 1) +O(D − 4), (3.27)

where γE is Euler’s constant, and the UV-divergence is included in

∆ =
2

4−D − γE + log 4π. (3.28)

The O(D − 4) terms are only applicable for the calculations with order two or higher.

3.3.2 Scalar one-loop two-point integral

The two-point integral reads

B0(p10,m0,m1) = ∆−
∫ 1

0
dx log

[p2
10x

2 − x(p2
10 −m2

0 +m2
1) +m2

1 − iε]
µ2

+O(D − 4)

= ∆ + 2− log
m0m1

µ2
+
m2

0 −m2
1

p2
10

log
m1

m0
− m0m1

p2
10

(
1

r
− r) log r

+O(D − 4),

(3.29)
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where r and 1
r are determined from

x2 +
m2

0 +m2
1 − p2

10 − iε
m0m1

x+ 1 = (x+ r)(x+
1

r
). (3.30)

The derivative of B0 with respect to p2
10, which can be obtained by differentiating Equa-

tion 3.29, is required for the field renormalization constants.

∂

∂p2
10

B0(p10,m0,m1) = −m
2
0 −m2

1

p4
10

log
m1

m0
+
m0m1

p4
10

(
1

r
− r) log r

− 1

p2
10

(
1 +

r2 + 1

r2 − 1
log r

)
+O(D − 4).

(3.31)

3.3.3 Scalar one-loop three-point integral

The scalar three-point integral calculated by [79] is valid for physical masses and momenta.

It has the following symmetric form

C0(p10, p20,m0,m1,m2) =

−
∫ 1

0
dx

∫ x

0
dy[p2

21x
2 + p2

10y
2 + (p2

20 − p2
10 − p2

21)xy

+ (m2
1 −m2

2 − p2
21)x+ (m2

0 −m2
1 + p2

21 − p2
20)y +m2

2 − iε]−1 (3.32)

=
1

α

2∑
i=0

{∑
σ=±

[
Li2

(y0i − 1

yiσ

)
− Li2

( y0i

yiσ

)
+η
(

1− xiσ,
1

yiσ

)
log

y0i − 1

yiσ
− η
(
−xiσ,

1

yiσ

)
log

y0i

yiσ

]

−
[
η(−xi+,−xi−)− η(yi+, yi−)− 2πiθ(−p2

jk)θ
(
− Im(yi+yi−)

)]
log

1− yi0
−yi0

}
,
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with cyclic i, j, k = 0, 1, 2, and

y0i =
1

2αp2
jk

[
p2
jk(p

2
jk − p2

ki − p2
ij + 2m2

i −m2
j −m2

k)

−(p2
ki − p2

ij)(m
2
j −m2

k) + α(p2
jk −m2

j +m2
k)
]
,

xi± =
1

2p2
jk

[
p2
jk −m2

j +m2
k ± αi

]
,

yi± = y0i − xi±, (3.33)

α =
√
λ(p2

10, p
2
21, p

2
20),

αi =
√
λ(p2

jk,m
2
j ,m

2
k) (1 + iεp2

jk), ‘

and

λ(x, y, z) = x2 + y2 + z2 − 2(xy + yz + zx). (3.34)

The definition of the dilogarithm function Li2(x), also called Spence function, is

Li2(x) = −
∫ 1

0

dt

t
log(1− xt), |arg (1− x)| < π. (3.35)

The cut crossings on the Riemann surface of the logarithms and dilogarithms are compensated

by η function defined by

log(ab) = log(a) + log(b) + η(a, b). (3.36)
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Notice that η functions in (Equation 3.32) vanish if the masses mi and α are all real, which

occurs for all on-shell scattering and decay processes.

3.3.4 Scalar one-loop four-point integral

Compared to 24 dilogarithms solusions for D0 given in [79], a new formula involving only

16 dilogarithms given in [81] will be presented in what follows. Here are some useful functions

and variables needed to be introduced first. We define

kij =
m2
i +m2

j − p2
ij

mimj
, i, j = 0, 1, 2, 3, (3.37)

and r̃ij and rij by

x2 + (kij − iε)x+ 1 = (x+ r̃ij)(x+ 1/r̃ij). (3.38)

and

x2 + kijx+ 1 = (x+ rij)(x+ 1/rij), (3.39)

The rij ’s locate either on the complex unit circle or on the real axis for real kij . Moreover,

P (y0, y1, y2, y3) =
∑

0≤i<j≤3

kijyiyj +
3∑
j=0

y2
j , (3.40)

Q(y0, y1, 0, y3) = (1/r02 − r02)y0 + (k12 − r02k01)y1 + (k23 − r02k03)y3, (3.41)

Q(y0, 0, y2, y3) = (1/r13 − r13)y3 + (k12 − r13k23)y2 + (k01 − r13k03)y0. (3.42)
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and x1,2 is defined by

r02r13

x

{[
P (1,

x

r13
, 0, 0)− iε

][
P (0, 0,

1

r02
, x)− iε

]
−
[
P (0,

x

r13
,

1

r02
, 0)− iε

][
P (1, 0, 0, x)− iε

]}
(3.43)

= ax2 + bx+ c+ iεd = a(x− x1)(x− x2),

where

a = k23/r13 + r02k01 − k03r02/r13 − k12,

b = (r13 − 1/r13)(r02 − 1/r02) + k01k23 − k03k12,

c = k01/r02 + r13k23 − k03r13/r02 − k12,

d = k12 − r02k01 − r13k23 + r02r13k03. (3.44)

Moreover, we define

γkl = signRe[a(xk − xl)], k, l = 1, 2, (3.45)
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and

xk0 = xk, s0 = r̃03,

xk1 = xk/r13, s1 = r̃01,

xk2 = xkr02/r13, s2 = r̃12,

xk3 = xkr02, s3 = r̃23.

(3.46)

as well as

x
(0)
kj = lim

ε→0
xkj as rij = lim

ε→0
r̃ij . (3.47)

Finally we need

η̃(a, b̃) =



η(a, b) for b not real,

2πi
[
θ(−Im a)θ(−Im b̃)− θ(Im a)θ(Im b̃)

]
for b < 0,

0 for b > 0

(3.48)

where b = limε→0 b̃.

Then for real r02, the result can be written as
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D0(p10, p20, p30,m0,m1,m2,m3) =
1

m1m2m3m4a(x1 − x2){
3∑
j=0

2∑
k=1

(−1)j+k
[
Li2(1 + sjxkj) + η(−xkj , sj) log(1 + sjxkj)

+ Li2(1 +
xkj
sj

) + η(−xkj ,
1

sj
) log(1 +

xkj
sj

)

]
+

2∑
k=1

(−1)k+1

[
η̃(−xk, r̃02)

[
log(r02xk) + log

(
Q(

1

x
(0)
k

, 0, 0, 1)− iε
)

+ log
(Q(0, 0, 1, r02x

(0)
k )

d
+ iεγk,3−ksign(r02Im r̃13)

)]
+ η̃(−xk,

1

r̃13
)

[
log
( xk
r13

)
+ log

(
Q(

r13

x
(0)
k

, 1, 0, 0)− iε
)

+ log
(Q(1, 0, 0, x

(0)
k )

d
+ iεγk,3−ksign(Im r̃13)

)]
−
[
η̃(−xk,

r̃02

r̃13
) + η(r̃02,

1

r̃13
)

] [
log
(r02xk
r13

)
+ log

(
Q(

r13

x
(0)
k

, 1, 0, 0)− iε
)

+ log
(Q(0, 0, 1, r02x

(0)
k )

d
+ iεγk,3−ksign(r02Im r̃13)

)]
+ η(r̃02,

1

r̃13
)η̃(−xk,−

r̃02

r̃13
)

]}
. (3.49)

In the case that |rij | = 1 for all rij , the result reads:
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D0(p10, p20, p30,m0,m1,m2,m3) =
1

m1m2m3m4a(x1 − x2){
3∑
j=0

2∑
k=1

(−1)j+k
[
Li2(1 + sjxkj) + η(−xkj , sj) log(1 + sjxkj)

+ Li2(1 +
xkj
sj

) + η(−xkj ,
1

sj
) log(1 +

xkj
sj

)
]

+
2∑

k=1

(−1)k+1

[
η(−xk,

1

r13
)

[
log
( r13

x
(0)
k

P (1,
x

(0)
k

r13
, 0, 0)− x

(0)
k

r13
εbγk,3−k

)
+ log

(x(0)
k

r13

)]

+ η(−xk, r02)

[
log
( 1

r02x
(0)
k

P (0, 0, 1, r02x
(0)
k )− r02x

(0)
k εbγk,3−k

)
+ log(r02x

(0)
k )

]

−
[
η(−xk,

r02

r13
) + η(r02,

1

r13
)

][
log
( r13

r02x
(0)
k

P (0, 1,
r02x

(0)
k

r13
, 0)− r02x

(0)
k

r13
εbγk,3−k

)
+ log

(r02x
(0)
k

r13

)]
+
(

1− γk,3−ksign(b)
)
η(−xk,−

r02

r13
)η(r02,

1

r13
)

]}
,

where ε is infinetesimal.

3.4 Tensor integrals reduction for zero Gram determinant

The scalar five-point integral can be written in terms of five scalar four-point integrals

[80, 89] in the four-dimensional spacetime. Moreover, when the Gram determinant of the

external momenta of TN is zero, we can still express tensor integral, TN , in terms of N integrals

TN−1

|XN−1| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p2
1 p1p2 . . . p1pN−1

p2p1 p2
2 . . . p2pN−1

...
...

. . .
...

pN−1p1 pN−1p2 . . . p2
N−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (3.50)
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The Gram determinant is always zero for N ≥ 6, since any five momenta must be linearly

dependent in the four-dimensional spacetime.

3.4.1 The tensor five-point integral reductions

In this subsection, we show the reduction of tensor five-point integrals while strictly following

the notation of [90, 91]. The four and five-point integrals are defined as

D (p1, p2, p3,m0,m1,m2,m3)

=
(2µπ)(4−D)

iπ2

∫
dDq

product of q’s

D0D1D2D3
,

E (p1, · · · , p4,m0,m1, · · · ,m4)

=
1

iπ2

∫
d4q

product of q’s

D0D1D2D3D4
. (3.51)

Here the underscore denotes all possible Lorentz indices (0, µ, µν, µνρ, µνρσ, µνρστ etc...) with

the corresponding product of q’s (1, qµ, qµqν , qµqνqρ, qµqνqρqσ, qµqνqρqσqτ etc..), and the denom-

inator factors. In four dimensions, D = 4, all above tensor integrals apart from Dµνρσ and

Dµνρστ are finite.

We can reduce five-point functions to four-point functions as following equations due to the

fact that q can be spanned by pi [80] in four dimensions.
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0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2q2 2qp1 . . . 2qp4

2p1q 2p1p1 . . . 2p1p4

...
...

. . .
...

2p4q 2p4p1 . . . 2p4p4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2D0 + Y00 2qp1 . . . 2qp4

D1 −D0 + Y10 − Y00 2p1p1 . . . 2p1p4

...
...

. . .
...

D4 −D0 + Y40 − Y00 2p4p1 . . . 2p4p4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.52)

with

Yij = m2
i +m2

j − (pi − pj)2, i, j = 0, . . . , 4. (3.53)

Equation 3.52 implies

0 =
1

iπ2

∫
d4q

qµ1 . . . qµr
D0D1 · · ·D4

−Λ2

q2 − Λ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2D0 + Y00 2qp1 . . . 2qp4

D1 −D0 + Y10 − Y00 2p1p1 . . . 2p1p4

...
...

. . .
...

D4 −D0 + Y40 − Y00 2p4p1 . . . 2p4p4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (3.54)

where r is the number of integration momenta in the numerator. By expanding the determinant,

ultraviolet divergences that happen in intermediate steps are regularized with Λ → ∞, which

utilize the four-dimensionality of space-time. For all considered five-point integrals, r ≤ 4, this

approach is valid. The Laplace expansion along the first column gives
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0 =
[
2D(Λ)

µ1...µr(0) + Y00E
(Λ)
µ1...µr

]
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2p1p1 . . . 2p1p4

...
. . .

...

2p4p1 . . . 2p4p4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

4∑
i=1

(−1)i
{
D(Λ)
αµ1...µr(i)−D(Λ)

αµ1...µr(0) + (Yi0 − Y00)E(Λ)
αµ1...µr

}

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2pα1 . . . 2pα4

2p1p1 . . . 2p1p4

...
. . .

...

2pi−1p1 . . . 2pi−1p4

2pi+1p1 . . . 2pi+1p4

...
. . .

...

2p4p1 . . . 2p4p4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (3.55)

where D
(Λ)
µ1...µr(i) is the four-point integral that comes from E

(Λ)
µ1...µr by omitting the ith propa-

gator N−1
i . The superscript (Λ) indicates the regularization as introduced in (Equation 3.54).

For all E integrals, we can omit omit the superscript (Λ) directly by taking the limit Λ → ∞
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since all five-point functions appeared are UV finite due to the fact that rank ≤ 5. Similarly,

the UV-divergent four-point functions can be split as follows,

lim
x→∞

D(Λ)
µ1...µr = D(fin)

µ1...µr + ∆µ1...µr , (3.56)

where D
(fin)
µ1...µr denotes the UV-finite part in D dimensions defined in (Equation 3.51). As in

the MS scheme, the UV divergence is subtracted from Dµ1...µr .

By plugging (Equation 3.56) into (Equation 3.55) and taking Λ asymptotically large, we

have
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0 =
[
2D(fin)

µ1...µr(0) + 2∆µ1...µr(0) + Y00Eµ1...µr

]
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2p1p1 . . . 2p1p4

...
. . .

...

2p4p1 . . . 2p4p4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

4∑
i=1

(−1)i
{
D(fin)
αµ1...µr(i)−

[
D(fin)
αµ1...µr(0) + p1αD

(fin)
µ1...µr(0)

]
+ p1αD

(fin)
µ1...µr(0)

+ ∆αµ1...µr(i)−∆αµ1...µr(0) + (Yi0 − Y00)Eαµ1...µr

}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2pα1 . . . 2pα4

2p1p1 . . . 2p1p4

...
. . .

...

2pi−1p1 . . . 2pi−1p4

2pi+1p1 . . . 2pi+1p4

...
. . .

...

2p4p1 . . . 2p4p4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.(3.57)

Notice that we can simplify the contributions to four-point functions involving pjα as follows.

The extra terms involving ∆µ1...µr contribute for r = 4 , but are dropped out in the final result

for r = 3, and are absent for r ≤ 2 which does not contain UV-divergent integrals.
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The Lorentz-covariant decompositions has the following forms

D(fin)
αµ1...µr(i) = [D(fin)

αµ1...µr(i)](p) + [D(fin)
αµ1...µr(i)](g), i = 0, . . . , 4,

[D(fin)
αµ1...µr(i)](p) =

4∑
j=1
j 6=i

pjαXj,µ1...µr(i),

[D(fin)
αµ1...µr(i)](g) =

r∑
j=1

gαµjYj,µ1...µj−1µj+1...µr(i),

[D(fin)
αµ1...µr(0) + p1αD

(fin)
µ1...µr(0)](p) =

4∑
j=2

(pj − p1)αZµ1...µr . (3.58)

The superscript “(p)” denotes operation isolating any tensor structure which have its first

Lorentz index on a vector momentum. The remaining are the tensor structures with a su-

perscript “(g)” since they have their first Lorentz index on the metric tensor. By performing

a shift q → q − p1 in the integral, we can derive the last decomposition in (Equation 3.58).

From (Equation 3.58), we can see that the terms in (Equation 3.57) involving [D
(fin)
αµ1...µr(i)](p)

are removed when multiplied with the vanishing determinants. Similarly, we can drop out the

terms proportional to [D
(fin)
αµ1...µr(0) + p1αD

(fin)
µ1...µr(0)](p) after i aresummed up. After that, the

term p1αD
(fin)
µ1...µr(0) remains only when i = 1, where we can combine this term with the first

term in (Equation 3.57). We can rewrite the equation
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

(2πµ)4−D

iπ2

∫
dDq

qµ1 . . . qµr
D0D1 · · ·D4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D0 + Y00 2qp1 . . . 2qp4

Y10 − Y00 2p1p1 . . . 2p1p4

...
...

. . .
...

Y40 − Y00 2p4p1 . . . 2p4p4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



(fin)

= Vµ1...µr + Uµ1...µr .

(3.59)

Here we introduced

Vµ1...µr = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 2pα1 . . . 2pα4

Dαµ1...µr(1) 2p1p1 . . . 2p1p4

...
...

. . .
...

Dαµ1...µr(4) 2p4p1 . . . 2p4p4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
4∑

i,j=1

(−1)i+j det(Ẑ
(4)
ij ) 2pαjDαµ1...µr(i)

(3.60)

with

Dαµ1...µr(i) = [D(fin)
αµ1...µr(i)−D(fin)

αµ1...µr(0)](g), i = 1, . . . , 4 (3.61)

All terms containing [D](g) are collected by Equation 3.61. For the scalar five-point integral

reduction, the extra term V is vanished because of the term Dα = [Dα](p). The four-dimensional

Gram matrix gives the three-dimensional matrices, Ẑ
(4)
ij by dropping out both the ith row and

jth column.
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Z(4) =



2p1p1 . . . 2p1p4

...
. . .

...

2p4p1 . . . 2p4p4


(3.62)

The UV divergences gives the term Uµ1...µr , which has the following form

Uµ1...µr = −2∆µ1...µr(0) det(Z(4)) +
4∑

i,j=1

(−1)i+j det(Ẑ
(4)
ij ) 2pαj [∆αµ1...µr(i)−∆αµ1...µr(0)].

(3.63)

The detailed derivation of Uµ1...µr are given in [82] which yield

Uµ1...µr =


−det(Z(4))

48 (gµ1µ2gµ3µ4 + gµ1µ3gµ4µ2 + gµ1µ4gµ2µ3) for r = 4,

0 for r ≤ 3.

Terms for r ≥ 5 are not included here. By using the following relations

2qpj = Dj −D0 + Y0j − Y00, 2pipj = Yij − Yi0 − Y0j + Y00, (3.64)



49

, and adding the first column of the determinant in (Equation 3.59) to the remaining columns,

we can expand the determinant by one row and one column, and have Vµ1...µr + Uµ1...µr equals

to ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Y00 . . . Y04

0 D
(fin)
µ1...µr(0) + Y00Eµ1...µr . . . D

(fin)
µ1...µr(4) + Y04Eµ1...µr

0 Y10 − Y00 . . . Y14 − Y04

...
...

. . .
...

0 Y40 − Y00 . . . Y44 − Y04

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.65)

The determinant in above equation can be rewritten as

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Eµ1...µr −D(fin)
µ1...µr(0) . . . −D(fin)

µ1...µr(4)

1 Y00 . . . Y04

1 Y10 . . . Y14

...
...

. . .
...

1 Y40 . . . Y44

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.66)
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Therefore, the tensor five-point function, Eµ1...µr , can be reduced to five tensor four-point

functions

Eµ1...µr = −
4∑
i=0

det(Yi)

det(Y )
D(fin)
µ1...µr(i) +

4∑
i,j=1

(−1)i+j
det(Ẑ

(4)
ij )

det(Y )
2pαjDαµ1...µr(i)

+
1

det(Y )
Uµ1...µr . (3.67)

Here Y is a short hand of the 5-dimensional Cayley matrix, Yij , i = 0, . . . 4. Yi is obtained by

setting Yij = 1 for j = 0, . . . 4.

3.4.2 The coefficients of five-point tensor integrals

The tensor decompositions can be written in a compact way with the notations, introduced

in [18],

T [µ1...µr] = Tµ1...µr + Tµ2...µrµ1 + . . .+ Tµrµ1...µr−1 , (3.68)

where the square brackets with Lorentz indices within denote the sum of all cyclic permutations

of tensors. For instance, g[µνgρ]σ = gµνgρσ + gνρgµσ + gρµgνσ.

We can also use this notation recursively, for example,

T [α[βγ]] = T [αβγ] + T [αγβ] (3.69)

= Tαβγ + T βγα + T γαβ + Tαγβ + T γβα + T βαγ . (3.70)
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The tensor integrals after canceling the denominator D0 are not in the standard form, but

we can express these tensor integrals as combinations of standard integrals by performing the

shift q → q − p1. Therefore we have the forms for the four-point integrals

D̃ (0) =
(2πµ)(4−D)

iπ2

∫
dDq

product of q’s

D̃1D̃2D̃3D̃4

,

D̃i = (q + pi − p1)2 −m2
i + iε, i = 1, . . . , 4, (3.71)

where the underscore denotes all possible Lorentz indices (0, µ, µν, µνρ, µνρσ, µνρστ) with pos-

sible product of q’s (1, qµ, qµqν , qµqνqρ, qµqνqρqσ, qµqνqρqσqτ ). The tilde on D0, D00 and D0000

can be omitted since these functions are invariant under this shift. The following shorthand for

shifted indices are introduced in the decomposition of D (i) with i = 1, . . . , 4

ji =


j for i > j,

j − 1 for i < j.

(3.72)

Eq (Equation 3.67) now reads

Eµ1...µr = −
4∑
i=0

ηiD
(fin)
µ1...µr(i) + 2

4∑
i,j=1

ζij p
α
j Dαµ1...µr(i) +

1

det(Y )
Uµ1...µr , (3.73)
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where the following shorthand notations are used to simplify the result

δ̄ij = 1− δij , (3.74)∑
i

δ̄ij(. . . ) =
∑
i 6=j

(. . . ) , (3.75)

ηi =
det(Yi)

det(Y )
, i = 0, . . . , 4, ζij = (−1)i+j

det(Ẑ
(4)
ij )

det(Y )
= ζji, i, j = 1, . . . , 4. (3.76)

The covariant decompositions are list as follows

Rank zero tensor integral / Scalar integral

E0 = −
4∑
i=0

ηiD0(i), (3.77)

which is found in Refs. [80, 86, 90, 91].
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Rank one tensor integrals / Vector integral

Eµ =
4∑
j=1

pµjEj ,

Dµ(i) =
4∑
j=1
j 6=i

pµjDji(i), i = 1, . . . , 4,

Dµ(0) = −pµ1D0(0) + D̃µ(0) = −pµ1D0(0) +
4∑
j=2

(pj − p1)µD̃j−1(0),

Dαµ(i) = gαµ[−D00(0) +D00(i)]. (3.78)

We can insert these into (Equation 3.73) for the vector integral to get

Ej = −
4∑
i=1

ηiDji(i)δ̄ji − η0Dj(0) + 2

4∑
i=1

ζji[D00(i)−D00(0)], j = 1, . . . , 4, (3.79)

with

D1(0) = −D0(0)−
3∑
j=1

D̃j(0), (3.80)

where Dj(0) = D̃j−1(0), j = 2, 3, 4.
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Rank two tensor integrals

Eµν =
4∑

j,k=1

pµj p
ν
kEjk + gµνE00,

Dµν(i) =
4∑

j,k=1
j,k 6=i

pµj p
ν
kDjiki(i) + gµνD00(i), i = 1, . . . , 4,

Dµν(0) = −p[µ
1 D̃

ν](0) + pµ1p
ν
1D0(0) + D̃µν(0)

= gµνD00(0) + pµ1p
ν
1D0(0) +

4∑
j,k=2

(pj − p1)µ(pk − p1)νD̃j−1,k−1(0)

−
4∑
j=2

p
[µ
1 (pj − p1)ν]D̃j−1(0),

Dαµν(i) =
[
−Dαµν(0) +Dαµν(i)

](g)

=
[
−D̃αµν(0) + D̃α[ν(0)p

µ]
1 +Dαµν(i)

](g)

=
4∑
j=1
j 6=i

gα[µp
ν]
j D00ji(i)−

4∑
j=2

gα[µ(pj − p1)ν]D̃00,j−1(0) + p
[µ
1 g

ν]αD00(0). (3.81)

Notice that the E00 is redundant since we can use four linearly independent vectors, pk, to

express gµν up to O(D − 4),

gµν =
4∑

j,k=1

2pµj p
ν
k(Z(4))−1

jk +O(D − 4). (3.82)

Therefore, we can define the coefficient E00 to avoid det(Z(4)).

From Equation 3.73, we have
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E00 = −
4∑
i=1

ηiD00(i)− η0D00(0),

Ejk = 2

{
4∑
i=1

ζji[−D00k(0) +D00ki(i)δ̄ki] + (k ↔ j)

}

− η0Djk(0)−
4∑
i=1

ηiDjiki(i)δ̄jiδ̄ki, j, k = 1, . . . , 4, (3.83)

with

Djk(0) = D̃j−1,k−1(0),

Dj1(0) = −D̃j−1(0)−
3∑

k=1

D̃j−1,k(0),

D11(0) = D0(0) +
3∑

j,k=1

D̃jk(0) + 2
3∑
j=1

D̃j(0),

D001(0) = −D00(0)−
3∑
j=1

D̃00j(0),

D00j(0) = D̃00,j−1(0), j, k = 2, 3, 4. (3.84)
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Rank three tensor integrals

Eµνρ =
4∑

j,k,l=1

pµj p
ν
kp
ρ
lEjkl +

4∑
j=1

g[µνp
ρ]
j E00j ,

Dµνρ(i) =
4∑

j,k,l=1
j,k,l 6=i

pµj p
ν
kp
ρ
lDjikili(i) +

4∑
j=1
j 6=i

g[µνp
ρ]
j D̃00ji(i), i = 1, . . . , 4,

Dµνρ(0) = D̃µνρ(0)− p[µ
1 D̃

νρ](0) + p
[µ
1 p

ν
1D̃

ρ](0)− pµ1pν1pρ1D0(0)

= −
4∑
j=2

g[µν(p1 − pj)ρ]D̃00,j−1(0)

− p[µ
1

4∑
j,k=2

(p1 − pj)ν(p1 − pk)ρ]D̃j−1,k−1(0)− p[µ
1 g

νρ]D00(0)

− p[µ
1 p

ν
1

4∑
j=2

(p1 − pj)ρ]D̃j−1(0)− pµ1pν1pρ1D0(0)

−
4∑

j,k,l=2

(p1 − pj)µ(p1 − pk)ν(p1 − pl)ρD̃j−1,k−1,l−1(0),

Dαµνρ(i) =
[
−Dαµνρ,(fin)(0) +Dαµνρ,(fin)(i)

](g)

=
[
−D̃αµνρ,(fin)(0) +Dαµνρ,(fin)(i) + D̃α[νρ(0)p

µ]
1 − D̃α[ρ(0)pµ1p

ν]
1

](g)

=
4∑

j,k=1
j,k 6=i

gα[µpνj p
ρ]
k D00jiki(i) + gα[µgνρ][D

(fin)
0000(i)−D(fin)

0000(0)]

−
4∑

j,k=2

gα[µ(p1 − pj)ν(p1 − pk)ρ]D̃00,j−1,k−1(0)

− p[µ
1

4∑
j=2

(p1 − pj)[νgρ]]αD̃00,j−1(0)− gα[µpν1p
ρ]
1 D00(0). (3.85)

Again the redundancy of the coefficients E00j are applied. We then have
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E00j = −
4∑
i=1

ηiD00ji(i)δ̄ji − η0D00j(0) + 2
4∑
i=1

ζji[D
(fin)
0000(i)−D(fin)

0000(0)],

Ejkl =

{
2

4∑
i=1

ζji[−D00kl(0) +D00kili(i)δ̄kiδ̄li] + (k ↔ j) + (l↔ j)

}

− η0Djkl(0)−
4∑
i=1

ηiDjikili(i)δ̄jiδ̄kiδ̄li j, k, l = 1, . . . , 4, (3.86)

with

Dj11(0) = D̃j−1(0) +
3∑

k,l=1

D̃j−1,kl(0) + 2
3∑

k=1

D̃j−1,k(0),

Djk1(0) = −D̃j−1,k−1(0)−
3∑
l=1

D̃j−1,k−1,l(0),

Djkl(0) = D̃j−1,k−1,l−1(0),

D111(0) = −
3∑

j,k,l=1

D̃jkl(0)− 3
3∑

j,k=1

D̃jk(0)− 3
3∑
j=1

D̃j(0)−D0(0),

D0011(0) =
3∑

j,k=1

D̃00jk(0) + 2
3∑
j=1

D̃00j(0) +D00(0),

D00jk(0) = D̃00,j−1,k−1(0),

D00j1(0) = −
3∑

k=1

D̃00,j−1,k(0)− D̃00,j−1(0). (3.87)
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Rank four tensor integrals

Eµνρσ =
4∑

j,k,l,m=1

pµj p
ν
kp
ρ
l p
σ
mEjklm +

4∑
j,k=1

(g[µνp
ρ]
j p

σ
k + gσ[µpνj p

ρ]
k )E00jk + g[µνgρ]σE0000,

Dµνρσ,(fin)(i) =
4∑

j,k,l,m=1
j,k,l,m 6=i

pµj p
ν
kp
ρ
l p
σ
mDjikilimi

(i) +
4∑

j,k=1
j,k 6=i

(g[µνp
ρ]
j p

σ
k + gσ[µpνj p

ρ]
k )D00jiki(i)

+ g[µνgρ]σD
(fin)
0000(i), i = 1, . . . , 4,

Dµνρσ,(fin)(0) = pµ1p
ν
1p
ρ
1p
σ
1D0(0)− p[µ

1 p
ν
1p
ρ
1D̃

σ](0) + pσ1p
[µ
1 D̃

νρ](0) + p
[µ
1 p

ν
1D̃

ρ]σ(0)

− p[µ
1 D̃

νρσ](0) + D̃µνρσ,(fin)(0)

=
4∑

j,k,l,m=2

(p1 − pj)µ(p1 − pk)ν(p1 − pl)ρ(p1 − pm)σD̃j−1,k−1,l−1,m−1(0)

+
4∑

j,k=2

[g[µν(p1 − pj)ρ](p1 − pk)σ + gσ[µ(p1 − pj)ν(p1 − pk)ρ]]D̃00,j−1,k−1(0)

+ g[µνgρ]σD
(fin)
0000(0) + p

[µ
1

4∑
j,k,l=2

(p1 − pj)ν(p1 − pk)ρ(p1 − pl)σ]D̃j−1,k−1,l−1(0)

+ p
[µ
1

4∑
j=2

g[νρ(p1 − pj)σ]]D̃00,j−1(0)

+

4∑
j,k=2

[p
[µ
1 p

ν
1(p1 − pj)ρ](p1 − pk)σ + pσ1p

[µ
1 (p1 − pj)ν(p1 − pk)ρ]]D̃j−1,k−1(0)

+ (p
[µ
1 p

ν
1g
ρ]σ + pσ1p

[µ
1 g

νρ])D00(0)

− p[µ
1 p

ν
1p
ρ
1

4∑
j=2

(pj − p1)σ]D̃j−1(0) + pµ1p
ν
1p
ρ
1p
σ
1D0(0),

(3.88)
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Dαµνρσ(i) =
[
−Dαµνρσ,(fin)(0) +Dαµνρσ,(fin)(i)

](g)

=
[
Dαµνρσ,(fin)(i)− D̃ασ[ρ(0)pµ1p

ν]
1 − D̃α[νρ(0)p

µ]
1 p

σ
1

+ D̃α[σ(0)pµ1p
ν
1p
ρ]
1 + D̃α[νρσ,(fin)(0)p

µ]
1 − D̃αµνρσ,(fin)(0)

](g)

=
4∑

j,k,l=1
j,k,l 6=i

gα[µpνj p
ρ
kp
σ]
l D00jikili(i) +

4∑
j=1
j 6=i

gα[µg[νρp
σ]]
j D

(fin)
0000ji

(i)

+

4∑
j,k,l=2

gα[µ(p1 − pj)ν(p1 − pk)ρ(p1 − pl)σ]D̃00,j−1,k−1,l−1(0)

+

4∑
j=2

gα[µg[νρ(p1 − pj)σ]]D̃
(fin)
0000,j−1(0)

+ p
[µ
1 g

[νρgσ]]αD
(fin)
0000(0) +

4∑
j,k=2

p
[µ
1 (p1 − pj)[ν(p1 − pk)ρgσ]]αD̃00,j−1,k−1(0)

+
4∑
j=2

[
p

[µ
1 p

ν
1(p1 − pj)ρ]gσα + p

[µ
1 p

ν
1g
ρ]α(p1 − pj)σ

+ pσ1p
[µ
1 (p1 − pj)[νgρ]]α

]
D̃00,j−1(0) + p

[µ
1 p

ν
1p
ρ
1g
σ]αD00(0). (3.89)
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With the freedom of choosing the coefficients E00jk and E0000, we have

E0000 = −η0D
(fin)
0000(0)−

4∑
i=1

ηiD
(fin)
0000(i)− 1

48

det(Z(4))

det(Y )
,

E00jk = −η0D00jk(0)−
4∑
i=1

ηiD00jiki(i)δ̄jiδ̄ki

+

{
2

4∑
i=1

ζji[−D(fin)
0000k(0) +D

(fin)
0000ki

(i)δ̄ki] + (j ↔ k)

}
,

Ejklm = −η0Djklm(0)−
4∑
i=1

ηiDjikilimi
(i)δ̄jiδ̄kiδ̄liδ̄mi

+

{
2

4∑
i=1

ζji[−D00klm(0) +D00kilimi
(i)δ̄kiδ̄liδ̄mi]

+ (k ↔ j) + (l↔ j) + (m↔ j)

}
, j, k, l,m = 1, . . . , 4, (3.90)
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with

Djklm(0) = D̃j−1,k−1,l−1,m−1(0),

Djkl1(0) = −D̃j−1,k−1,l−1(0)−
3∑

m=1

D̃j−1,k−1,l−1,m(0),

Djk11(0) = D̃j−1,k−1(0) +

3∑
l,m=1

D̃j−1,k−1,lm(0) + 2

3∑
l=1

D̃j−1,k−1,l(0),

Dj111(0) = −
3∑

k,l,m=1

D̃j−1,klm(0)− 3

3∑
k,l=1

D̃j−1,kl(0)− 3

3∑
k=1

D̃j−1,k(0)− D̃j−1(0),

D1111(0) =

3∑
j,k,l,m=1

D̃jklm(0) + 4

3∑
j,k,l=1

D̃jkl(0) + 6

3∑
j,k=1

D̃jk(0) + 4

3∑
j=1

D̃j(0) +D0(0),

D00jkl(0) = D̃00,j−1,k−1,l−1(0),

D00jk1(0) = −
3∑
l=1

D̃00,j−1,k−1,l(0)− D̃00,j−1,k−1(0),

D00j11(0) =
3∑

k,l=1

D̃00,j−1,kl(0) + 2
3∑

k=1

D̃00,j−1,k(0) + D̃00,j−1(0),

D
(fin)
0000j(0) = D̃

(fin)
0000,j−1(0),

D
(fin)
00001(0) = −

3∑
j=1

D̃
(fin)
0000j(0)−D(fin)

0000(0),

D00111(0) = −
3∑

j,k,l=1

D̃00jkl(0)− 3
3∑

j,k=1

D̃00jk(0)− 3
3∑
j=1

D̃00j(0)−D00(0),

(3.91)

where j, k, l,m = 2, 3, 4.
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3.4.3 The N-point functions with zero Gram determinant

For vanishing Gram determinant, |XN−1|, the following relation holds if the Lorentz decom-

position of the appearing tensor integrals contains only momenta and no metric tensors, which

is the case for N ≥ 6 or r = 0 (scalar integrals)

(2πµ)4−D

iπ2

∫
dDq

qµ1 · · · qµr
D0D1 · · ·DN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D0 + Y00 2qp1 . . . 2qpN−1

Y10 − Y00 2p2
1 . . . 2p1pN−1

...
...

. . .
...

YN−10 − Y00 2pN−1p1 . . . 2p2
N−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (3.92)

Performing the same manipulations of the determinant as in Equation 3.92 to Equation 3.77

above this results in

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

TNµ1...µr −TN−1
µ1...µr(0) −TN−1

µ1...µr(1) . . . −TN−1
µ1...µr(N − 1)

1 Y00 Y01 . . . Y0N−1

1 Y10 Y11 . . . Y1N−1

...
...

...
. . .

...

1 YN−10 YN−11 . . . YN−1N−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (3.93)
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valid for |XN−1| = 0 and r = 0 or N ≥ 5. Notice that the momenta are not shifted for the

tensor integral TNµ1...µr(0) in Equation 3.93. If the determinant of the matrix Yij is nonvanishing,

TNµ1...µr in terms of TN−1
µ1...µr(i), i = 0, . . . , N − 1 is determined by Equation 3.93. It is clear that

TN−1 does not contain the leading Landau singularity of TN , which leads to the vanishing of

this determinant Therefore, we have to calculate TN directly [88] for this case. For N ≤ 4,

Equation 3.93 is valid only at the edge of phase space which consist of some collinear momenta

pi that lead to a vanishing Gram determinant. For r = 0 and N = 5, Equation 3.93 coincides

with Equation 3.77. For N > 6, arbitrary six denominator factors can be chosen to give further

reductions. Because in these special situations, we can reduce all integrals to tensor integrals

with smaller N and obtain simpler results compared to the general case [92, 93]. Note that the

reduction could generate tensor integrals with r > N since r is not simultaneously reduced.

3.5 UV-divergent parts

Isolating the UV-divergent parts from the tensor integrals is useful in practical calculation.

We therefore list common divergent one-loop tensor integrals below
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A0(m) = m2

ε ,

B0(p10,m0,m1) = 1
ε ,

B1(p10,m0,m1) = −1
2ε ,

B00(p10,m0,m1) = −1
12ε(p

2
10 − 3m2

0 − 3m2
1),

B11(p10,m0,m1) = 1
3ε ,

C00(p10, p20,m0,m1,m2) = 1
4ε ,

C00i(p10, p20,m0,m1,m2) = −1
12ε ,

D0000(p10, p20, p30,m0,m1,m2,m3) = 1
24ε .

(3.94)

All other scalar coefficients defined in Equation 3.10 and Equation 3.11 are UV-finite.

3.6 The OPP method

Besides the analytical reduction of tensor integrals, which have been discussed in Section 3.2,

a new development called OPP method for calculating loop integrals has been introduced. In

this new method, the computation of tensor integrals is replaced by numerically finding the

coefficients of the corresponding scalar n-point functions since Boxes, Triangles, Bubbles, and

Tadpoles one-loop integrals form the basis of one-loop amplitudes. For arbitrary one-loop

amplitude, we can write down the following equations



65

M =
∑
i

di Boxi +
∑
i

ci Trianglei +
∑
i

bi Bubblei +
∑
i

ai Tadpolei + R , (3.95)

where di, ci, bi and ai are the coefficients to be determined.

3.6.1 Introduction

The OPP [94] reduction method is developed for the numerical computation of (sub-)amplitudes

with one-loop N -point functions.

M̄(q̄) =
N̄(q̄)

D̄0D̄1 · · · D̄m−1
, D̄i = (q̄ + pi)

2 −m2
i , p0 6= 0 . (3.96)

Here, dimensional regularization is imposed on Equation 3.96, and symbols with a bar indicate

n-dimensional objects with n = 4 + ε. We have q̄2 = q̃2 + q2, where q̃ is ε-dimensional vector

and q̃ · q = 0. Similarly, we can split the numerator function N̄(q̄) into two parts

N̄(q̄) = N(q) + Ñ(q, q̃, ε) . (3.97)

N(q) is 4-dimensional while the ε-dimensional term Ñ(q, q̃, ε) leads to the R2 rational terms

which will be discussed in Section 3.6.3

The N(q) can be written in terms of Di = (q + pi)
2 −m2

i , the 4-dimensional denominators,

as
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N(q) =
m−1∑

i0<i1<i2<i3

[
d(i0i1i2i3) + d̃(q; i0i1i2i3)

] m−1∏
i 6=i0,i1,i2,i3

Di

+

m−1∑
i0<i1<i2

[c(i0i1i2) + c̃(q; i0i1i2)]

m−1∏
i 6=i0,i1,i2

Di

+

m−1∑
i0<i1

[
b(i0i1) + b̃(q; i0i1)

] m−1∏
i 6=i0,i1

Di

+
m−1∑
i0

[a(i0) + ã(q; i0)]
m−1∏
i 6=i0

Di

+ P̃ (q)
m−1∏
i

Di . (3.98)

We can decompose scalar m-point functions with m > 4 into boxes which contribute at order

O(ε), therefore Equation 3.98 only has terms up to 4 poles. The contribution of the last term

,P̃ (q) , has no poles, vanishes in practical calculations when λ → ∞ since N(λq) → λm for

large lambda. We can further split the coefficients of the poles into two parts. The first part

is independent of q (terms like a, b, c, d). The other part is q-dependant (the terms ã, b̃, c̃, d̃),

and they vanish after integration due to the Lorentz invariance. We can always perform such

a separation, as shown in [94]. In addition, we can interpret the first part of coefficients as an

ensemble of all possible one, two, three, four-point one-loop integrals’ coefficients that contribute

to the amplitude with this choice. The task of computing the one-loop amplitude can be

simplified to finding the best fitting of coefficients d, c, b, a algebraically as long as Equation 3.98

is established. To fit the coefficients, we can evaluate N(q) multiple times with different q

and then solve for the linear equations. Notice that we can perform such an algorithm at
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the amplitude level. Repetitive computations of Feynman diagrams are not needed if we can

evaluate N(q) numerically. Moreover, n-dimensional denominators D̄i appear in Equation 3.96,

that differ from their 4-dimensional counterparts by an amount q̃2

D̄i −Di = q̃2 (3.99)

The Rational Part is from the terms survive after the cancelling the 4-dimensional terms of the

OPP expansion, Equation 3.98, and the n-dimensional denominators of Equation 3.96, which is

the result of Equation 3.99. By inserting Equation 3.99 into Equation 3.98, we can decompose

N(q) into n-dimensional denominators to restore the exact cancellation. However, an extra

term, f(q, q̃), will be added for such decomposition. The R1 rational terms are defined as

R1 ≡
1

(2π)4

∫
dn q̄

f(q̃2, q)

D̄0D̄1 · · · D̄m−1
. (3.100)

We can rewrite any denominator appearing in Equation 3.96 and explicitly obtain the

function, f(q, q̃), as follows

1

D̄i
=
Z̄i
Di

, where Z̄i ≡
(

1− q̃2

D̄i

)
. (3.101)
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This leads to

M̄(q̄) =
N(q)

D0D1 · · ·Dm−1
Z̄0Z̄1 · · · Z̄m−1 +R2 , (3.102)

where R2 is the integrand function came from the ε-dimensional term Ñ(q̃2, q, ε) in Equa-

tion 3.97 , which will be discussed in Equation 3.112. Then, by inserting Equation 3.98 in Equa-

tion 3.102, one obtains

M̄(q̄) =
m−1∑

i0<i1<i2<i3

d(i0i1i2i3) + d̃(q; i0i1i2i3)

D̄i0D̄i1D̄i2D̄i3

m−1∏
i 6=i0,i1,i2,i3

Z̄i

+
m−1∑

i0<i1<i2

c(i0i1i2) + c̃(q; i0i1i2)

D̄i0D̄i1D̄i2

m−1∏
i 6=i0,i1,i2

Z̄i

+
m−1∑
i0<i1

b(i0i1) + b̃(q; i0i1)

D̄i0D̄i1

m−1∏
i 6=i0,i1

Z̄i

+
m−1∑
i0

a(i0) + ã(q; i0)

D̄i0

m−1∏
i 6=i0

Z̄i

+ P̃ (q)
m−1∏
i

Z̄i +R2 . (3.103)

The q̃2 dependence from the various Z̄i in Equation 3.103 gives rise to R1 after integrating over

dnq̄. This procedure is utilized in [95], where all required integrals are explicitly computed and

classified.
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However, the derivation of R1 shown above has two disadvantages. One disadvantage is that

the information of the spurious terms 1 is required. The other is that when calculating combined

diagrams, new rational parts may arise due to terms that contain q̃2 appear in the numerator

when taking common denominators. Calculating these new rational part is equal to treating

each diagram separately, which jeopardize the ability to deal with the amplitude for the OPP

technique in 4-dimensional spacetime. Therefore, we need a different way to solve this problem

without relying on spurious terms. In the next section, we will introduce this new method,

which allows the combination of diagrams without fitting the coefficients a, b, c, d presented.

This second method, which has already been successfully implemented in Fortran [96], is proved

better for numerical implementation.

3.6.2 R1 rational terms

We can compute the R1 rational terms by rebuilding powers of q̃2, i.e., finding the implicit

mass dependence, in the coefficients b, c, d, where q̃2 is reentered by shifting mass

m2
i → m2

i − q̃2 . (3.104)

This procedure is formally equivalent to the applications of n-dimensional cuts in the gener-

alized unitarity framework and is obtained by decomposing Equation 3.98 into n-dimensional

denominators in Equation 3.99. By performing the decomposition, all coefficients of the OPP

1After multiplication with the Z̄i, they give nonvanishing contributions.
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expansion start depending on q̃2. Due to Lorentz invariance, the spurious terms vanish. The

coefficients b, c, d give the following integrals [94]

∫
dnq̄

q̃2

D̄iD̄j
= − iπ

2

2

[
m2
i +m2

j −
(pi − pj)2

3

]
+O(ε) ,∫

dnq̄
q̃2

D̄iD̄jD̄k
= − iπ

2

2
+O(ε) ,∫

dnq̄
q̃4

D̄iD̄jD̄kD̄l
= − iπ

2

6
+O(ε) .

(3.105)

We can prove the following relations

b(ij; q̃2) = b(ij) + q̃2b(2)(ij) ,

c(ijk; q̃2) = c(ijk) + q̃2c(2)(ijk) . (3.106)

Moreover, by applying Equation 3.104, we can define the first line of Equation 3.98 as

D(m)(q, q̃2) ≡
m−1∑

i0<i1<i2<i3

[
d(i0i1i2i3; q̃2) + d̃(q; i0i1i2i3; q̃2)

] m−1∏
i 6=i0,i1,i2,i3

D̄i , (3.107)

and

D(m)(q, q̃2) =
m∑
j=2

q̃(2j−4)d(2j−4)(q) , (3.108)
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where the last coefficient is q independent. We therefore have

d(2m−4)(q) = d(2m−4) . (3.109)

Practically, as long as we have determined the 4-dimensional coefficients, we can simply use

different values of q̃2 to find new d(2m−4), c(2)(ijk) and b(2)(ij), the coefficients of the three

extra scalar integrals shown in Equation 3.105. We have

R1 = − i

96π2
d(2m−4) − i

32π2

m−1∑
i0<i1<i2

c(2)(i0i1i2)

− i

32π2

m−1∑
i0<i1

b(2)(i0i1)

(
m2
i0 +m2

i1 −
(pi0 − pi1)2

3

)
. (3.110)

The other way of evaluating d(2m−4), also implemented in the code of [96], is

d(2m−4) = lim
q̃2→∞

D(m)(q, q̃2)

q̃(2m−4)
. (3.111)

3.6.3 The origin of R2

Ñ(q̃, q, ε) in Equation 3.97 leads to the R2 rational terms, which can be defined as

R2 ≡
1

(2π)4

∫
dn q̄

Ñ(q̃2, q, ε)

D̄0D̄1 · · · D̄m−1
≡ 1

(2π)4

∫
dn q̄R2 . (3.112)
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The separation in Equation 3.97 need to be studied further to obtain Ñ(q̃, q, ε) explicitly. From

the integrand, M̄(q̄), which is obtained by splitting the n-dimensional metric tensor ḡµ̄ν̄ , γ

matrices γ̄µ̄, integration momentum q̄, and the numerator function as follows

ḡµ̄ν̄ = gµν + g̃µ̃ν̃ ,

q̄ = q + q̃ ,

γ̄µ̄ = γµ + γ̃µ̃ . (3.113)

We stress that the 4-dimensional part is selected automatically when the external 4-dimensional

vector vµ is contracted with the n-dimensional index. For example

/̄v = /v and v · q̄ = v · q . (3.114)

µ

Q̄2

γ

2

Q̄1

1

q̄

γ

Figure 2. One-loop QED electron vertex diagram in n dimensions.
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With all ε-dimensional terms included by using γ-algebra 1, the numerator reads

N̄(q̄) ≡ e3
{
γ̄β̄ (/̄Q1 +me) γµ (/̄Q2 +me) γ̄

β̄
}

= e3
{
γβ(/Q1 +me)γµ(/Q2 +me)γ

β

− ε (/Q1 −me)γµ(/Q2 −me) + εq̃2 γµ − q̃2 γβγµγ
β
}
, (3.115)

The first term on RHS of Equation 3.115 corresponds to N(q), while Ñ(q, q̃, ε) is the sum

of the other three terms. Inserting Ñ(q, q̃, ε) to Equation 3.112 and using the the following

relations

∫
dnq̄

q̃2

D̄0D̄1D̄2
= − iπ

2

2
+O(ε) ,∫

dnq̄
qµqν

D̄0D̄1D̄2
= − iπ

2

2ε
gµν +O(1) , (3.116)

gives

R2 = − ie
3

8π2
γµ +O(ε) . (3.117)

In general, we can reduce the calculation of R2 to a tree-level one. Therefore, the full

R = R1 + R2 can be determined and we can calculate any Feynman amplitude as long as

1The ε-dimensional γ matrices anti-commute with 4-dimensional γ matrices : {γ̃ν , γµ} = 0.
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corresponding R2 terms are precalculated. In dimensional regularization, only the full rational

term R composes a physical gauge-invariant quantity.



CHAPTER 4

DOUBLE HIGGS PRODUCTION

Scientists have finished the first step of probing of the mechanism giving rise to the spon-

taneous symmetry breaking and generating the masses of gauge bosons and fermions after the

ATLAS and CMS Collaborations at the LHC [4, 5] discovered a boson-like particle with the

mass around 125 GeV, and the properties consistent with the long-sought Standard Model

Higgs boson [7, 8, 7, 10]. Now, an equally important task is to determine the properties of the

bosonic particle precisely. It is crucial to confirm that this particle is indeed the Higgs boson

we are seeking and, eventually, to discover the new physics effects. To verify the Standard

Model prediction that the masses of fermions and gauge bosons are indeed proportional to its

couplings to the Higgs boson, a precise determination of these couplings are required. Further-

more, the only method of reconstructing the scalar potential, H, and then the Higgs doublet

field Φ, which leads to spontaneous electroweak symmetry breaking, is through measuring the

Higgs self-interactions.

VH = −µ2Φ†Φ +
1

2
λ(Φ†Φ)2 ;λ =

m2
H

v2
and µ2 =

1

2
m2
H , (4.1)

75
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where H is the physical Higgs field and v ≈ 246 GeV is the vacuum expectation value (vev). By

expanding the Higgs field around its vev, the Higgs self-interactions, including the corresponding

permutations, are

gH3 = 3
m2
H

v
, gH4 = 3

m2
H

v2
, (4.2)

where gH3 and gH4 represent the trilinear and quartic Higgs self-coupling, respectively. The

trilinear Higgs self-coupling can only be directly accessed through Higgs-pair production [97,

98, 99, 100, 101, 102]. Thus, we need to consider the process that the singly produced off-shell

Higgs boson splits into two on-shell Higgs bosons.

g

g

g

t

H

H

H

(c)

g

g t

t

H

(b)(a)

H

gH

Figure 3. Feynman diagrams for loop-induced Higgs pair production through gluon fusion.
Diagrams (a), b are SM diagrams, where (c) is BSM diagram with anomalous HHtt coupling.

4.1 Leading-order Cross-section

SM contributions to calculations of Higgs pair production have been made a while back

in [29, 31]. Also, the extra contribution from the anomalous HHtt coupling has been studied

in [59, 60]. At the leading-order, the production of the Higgs pair through gluon fusion is shown
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in Figure 3, including each permutation of the external lines. The box diagram has no Higgs

self-coupling, and the triangle diagram involves the Higgs trilinear coupling via an s-channel

Higgs exchange. The matrix element of g(p1)g(p2)→ H(p3)H(p4) at LO can be written as

M(gagb → HH) = −i GFαs(µR)m2
HH

2
√

2π
Aµνε1µε2νδab

with Aµν = F1T
µν
1 + F2T

µν
2 ,

F1 =

(
gH3

1

ŝ−m2
H

gHtt + gHHtt

)
v2

mt
F4 + g2

Htt

v2

m2
t

F� , (4.3)

F2 = g2
Htt

v2

m2
t

G� ,

where mHH is the invariant mass of the Higgs pair, a, b are the color indices of the initial

gluons, GF is the Fermi constant, and αs(µR) is the strong coupling evaluated at the renormal-

ization scale µR.

The couplings gH3 , gHtt and gHHtt are the trilinear Higgs coupling, the top-Higgs coupling,

and the anomalous nonlinear HHtt coupling, respectively. The Lagrangian that involves these

couplings reads

1

3!
gH3 H3 + gHttHt̄t+

1

2!
gHHttH

2t̄t . (4.4)

Therefore in the SM we have

g
(SM)
H3 =

3m2
H

v
, g

(SM)
Htt =

mt

v
, g

(SM)
HHtt = 0 , (4.5)
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where v = 246 GeV is vacuum expectation value of the Higgs field.

The contributions of the two tensor structures, Tµν1 , correspond to the total angular-

momentum states with Sz = 0 while Tµν2 corresponds to Sz = 2,

Tµν1 = gµν − pν1p
µ
2

(p1 · p2)
,

Tµν2 = gµν +
M2
Hp

ν
1p
µ
2

p2
T (p1 · p2)

− 2
(p2 · p3)pν1p

µ
3

p2
T (p1 · p2)

− 2
(p1 · p3)pν3p

µ
2

p2
T (p1 · p2)

+ 2
pν3p

µ
3

p2
T

with p2
T = 2

(p1 · p3)(p2 · p3)

(p1 · p2)
−M2

H , (4.6)

where pT is the transverse momentum of each Higgs boson in the final-state.

Here we follow the notations used in [31], the form factors for gg → HH are
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F4 =
2

S
[2 + (4− S)m2

tC12]

F� =
1

S2

{
4S + 8S m2

t C12 − 2S mt4 (S − 8 + 2R2
H/t)(D123 +D213 +D132)

+(2R2
H/t − 8)m2

t [T̄ (C13 + C24) + Ū(C23 + C14)

−(TU −R4
H/t)m

2
tD132]

}
G� =

1

S(TU −R2
H/t)

{
(T 2 − 8T +R2

H/t)m
2
t (C12 + T̄ (C13 + C24)− STm2

tD213)

+m2
t (U

2 − 8U +R2
H/t)(SC12 + Ū(C23 + C14)− SUm2

tD123)

−m2
t (T

2 + U2 − 2R2
H/t)(T + U − 8)Ccd

−2m2
t (TU −R2

H/t)(D123 +D213 +D132)
}
,

where

ŝ = (p1 + p2)2, t̂ = (p3 − p1)2, û = (p3 − p2)2

S = ŝ/m2
t , T = t̂/m2

t , U = û/m2
t

RH/t = m2
H/m

2
t , T̄ = T −RH/t, Ū = U −RH/t, ,
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and the scalar integrals:

Cij =

∫
d4q

iπ2

1

(q2 −m2
Q)
[
(q + pi)2 −m2

Q

] [
(q + pi + pj)2 −m2

Q

]

Dijk =

∫
d4q

iπ2

1

(q2 −m2
Q)
[
(q + pi)2 −m2

Q

] [
(q + pi + pj)2 −m2

Q

] [
(q + pi + pj + pk)2 −m2

Q

]
Notice that the loop function of the single Higgs production from the gluon fusion appears

again in both Figure 3(b) and Figure 3(c). Only the SM top quark loops are considered in this

work due to the smallness of Higgs couplings to other quarks.

For the three diagrams in Figure 3, we can therefore express the partonic differential cross-

section as

dσ̂(gg → HH)

dt̂
=

G2
Fα

2
s

512(2π)3

×
[∣∣∣∣(gH3

1

ŝ−m2
H

gHtt + gHHtt

)
v2

mt
F4 + g2

Htt

v2

m2
t

F�

∣∣∣∣2 +

∣∣∣∣g2
Htt

v2

m2
t

G�

∣∣∣∣2
]
. (4.7)

In the SM (Equation 4.7) reduces to

G2
Fα

2
s

512(2π)3

[∣∣∣∣ 3m2
H

ŝ−m2
H

F4 + F�

∣∣∣∣2 + |G�|2
]
. (4.8)

We can parameterize (Equation 4.7) with three dimensionless coefficients

dσ̂(gg → HH)

dt̂
=

G2
Fα

2
s

512(2π)3

[∣∣∣∣(c3H
3m2

H

ŝ−m2
H

+ cHHtt

)
F4 + cHttF�

∣∣∣∣2 + |cHttG�|2
]
.(4.9)
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In SM, these coefficients reads

c
(SM)
3H = 1 , c

(SM)
Htt = 1 , c

(SM)
HHtt = 0 . (4.10)

The definition of these coefficients are1

c3H = gH3 gHtt
v2

3m2
Hmt

, cHHtt = gHHtt
v2

mt
, cHtt =

(
gHtt

v

mt

)2

. (4.11)

Only gauge-invariant operators of dimension-6 or higher lead to new physics effects of low-energy

Higgs observables in the effective theory framework. We expect the importance of operators

with mass dimensions greater than four to become less for lower energy scale. For dimension-6

operators, we have

δc3H,Htt,HHtt ∼ O
(
v2

Λ2
np

)
, (4.12)

where v = 246 GeV, and Λnp denotes the generic scale of new physics. A bottom-up approach

is adopted in this work while c3H , cHtt, and cHHtt are allowed to vary, without the constraints

of the power counting in Equation 4.12.

Equation 4.9 is a quite general expression and includes new physics effects from various

models. Provided that there are fermions with new color while coupled to the Higgs strongly. In

that case, we can include the contributions from these new colors to gg → HH by applying the

1Comparing the notations in [103] to our result, we have c3H = c4, cHtt = c�, and cHHtt = cnl.
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mass eigenvalues in the loop functions and calculating the Higgs couplings from the eigenbasis of

masses. It is known that the mt →∞ limit gives good approximations in F4 but works terribly

in F� and G� [104, 105]. It is known that the mt →∞ limit gives good approximations in F4

but works terribly in F� and G� [104, 105]. Roughly speaking, this is because the partonic CM

energy, is the Higgs pair invariant mass, ŝ, and is always above 4m2
h, the kinematic threshold,

while the relation ŝ� 4m2
t is required in the low-energy Higgs theorems [106]. Therefore, the

complete mass dependence must be kept in the loop functions for scenarios with new colored

particles, which have been studied thoroughly in [59, 105].

4.2 Corrections up to next-to-leading-order

Generically, the cross-section of double Higgs production up to next-to-leading-order can be

expressed as [24]

σNLO(pp→ HH +X) = σLO + ∆σvirt + ∆σgg + ∆σgq + ∆σqq̄ .

Here we define

σLO =

∫ 1

τ0

dτ
dLgg
dτ

σ̂LO(Q2 = τs) ,

∆σvirt =
αs(µR)

π

∫ 1

τ0

dτ
dLgg
dτ

σ̂virt(Q
2 = τs) , (4.13)

∆σij =
αs(µR)

π

∫ 1

τ0

dτ
dLij
dτ

∫ 1

τ0/τ

dz

z
σ̂ij(Q

2 = zτs) (ij = gg, gq, qq̄) ,



83

where σ̂LO/virt/ij(Q
2) denote the partonic cross-sections. The parton-parton luminosities are

denoted by dLij/dτ (i, j = g, q, q̄). which is defined as

dLgg
dτ

=

∫ 1

τ

dx

x

[
g(x, µF )g

(τ
x
, µF

) ]
,

dLgq
dτ

=
∑
q,q̄

∫ 1

τ

dx

x

[
g(x, µF )q

(τ
x
, µF

)
+ q(x, µF )g

(τ
x
, µF

) ]
,

dLqq̄
dτ

=
∑
q

∫ 1

τ

dx

x

[
q(x, µF )q̄

(τ
x
, µF

)
+ q̄(x, µF )q

(τ
x
, µF

) ]
, (4.14)

where q(x, µF ) and g(x, µF ) are the quark and gluon densities at the factorization scale µF .

Typical virtual corrections shown in Figure 4 involves two-loop diagrams, which reduce the

overall cross-section by about 11% [107], is not supported by MG5 aMC@NLO. Therefore we skip

the virtual corrections in our calculations and use the equation below to reclaim full NLO results

σNLO ≈ σNLOw/o virt × σLOFT /σLOHEFT , (4.15)

where σLOFT is leading-order full theory calculation with virtual corrections and σLOHEFT is

leading-order cross-section approximation based on the Higgs-gluon effective field theory with-

out virtual corrections.
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Figure 4. Examples of typical virtual diagrams contributing to Higgs-pair production at NLO.

4.2.1 g g → H H g

Figure 5 to Figure 7 show the generic diagrams for gg → HHg channel. For diagrams

shown in Figure 5, Figure 6 (a), and Figure 6 (b), the matrix elements can be easily obtained

by replacing one on-shell gluon, εν , with a gluon propagator and attaching the other end to a

tri-gluon vertex in Equation 4.4. The generic amplitude for these contributions can be written

as

M(gc11 g
c2
2 → HHgc33 ) = − GFαs(µR)Q2

2
√

2π

∑
i,j,k

f ci,cj ,ckAραεiµεjνεkα
4παs

(pi + pj)2

×[gµν(pi − pj)ρ + gνρ(2pj + pi)
µ − gρµ(2pi + pj)

µ], (4.16)

where gluons are labeled by i, j, k ∈ 1, 2, 3 , ci, pi denotes the color index and the momentum

of gluon labeled by i respectively and Aρα is defined in Equation 4.4.
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Figure 5. Generic triangle diagrams for the partonic gg → HHg channel at NLO in QCD.
Diagram (a) is SM diagrams, where (b) is BSM diagram with anomalous HHtt coupling.

Each gluon can be one of the two incoming gluons or the outgoing gluon.
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Figure 6. Generic box diagrams for the partonic gg → HHg channel at NLO in QCD.

Diagrams (a) and (b) are SM diagrams, where (c) is BSM diagram with anomalous HHtt

coupling. Each gluon can be one of the two incoming gluons or the outgoing gluon.
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Figure 7. Generic SM one-loop pentagon diagrams for the partonic gg → HHg channel at

NLO in QCD. Each gluon can be one of the two incoming gluons or the outgoing gluon.

4.2.2 q g → H H q and q q̄ → H H g

Although the contributions from qg → HHq and qq̄ → HHg are very different, as we will

see in the next section, they share the same diagrams. Therefore, we only need to compute the

matrix elements for qg → HHq which can be easily converted to corresponding matrix elements

for qg → HHq. For contributions shown in Figure 8, similar to the process gg → HHg, the

matrix elements can be easily obtained by replacing the only incoming gluon, εν , with a gluon

propagator and attaching the other end to two fermions in Equation 4.4. The amplitude for

contributions shown in Figure 8 can be written as

M(q(p1)g(p2)→ q(p3)HH) = − GFαs(µR)Q2

2
√

2π
Aµνεµv̄(p3)γνu(p1)

√
4παs

(p3 − p1)3
, (4.17)
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Figure 8. Dominant one-loop box and triangle diagrams for the partonic channels qg → HHq.

Other than the common one-loop diagrams shown in Figure 8. We also calculate the contri-

butions from diagrams with only one strong coupling, which has not been studied before. We

denote contributions from loop diagrams with more than one strong couplings as QCD2 contri-

bution and contributions from diagrams with only one strong coupling as QCD1 contribution.

As we will see in the next chapter, QCD1 contribution is smaller compare to QCD2 contribu-

tion due to the suppression from the weak coupling. For the production processes, qg → HHq,

tree-level diagrams are generally too small due to the smallness of the qqH coupling. There-

fore, tree diagrams are usually dropped, and only the loop diagrams are considered. However,

it turns out that we still have to consider tree diagram for b(c)g → b(c)HH shown in Figure 9

since the contributions from loop diagrams are small and the bbH or ccH couplings are just

large enough to make these tree diagrams contribute at similar order to loop-induced QCD1

contributions.
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Figure 10. Generic pentagon diagrams with different numbers of quarks and gauge bosons in
the loop.

q

H

H
q

H

q

g

g

(b)(a)

q

H

Figure 9. Tree diagrams for b(c)g → b(c)HH.

Again all diagrams to one loop level for qg → HHq can be categorized into the pentagon,

box, and triangle diagrams. The pentagon, box, triangle diagrams are shown in Figure 10

to Figure 12 , where solid lines and the wavy represent fermions and vector bosons (W , Z) or

corresponding Goldstone boson(G+/−, G0), respectively.

For contributions from gg → HHg and qg → HHq, we generate the full analytical one-loop

matrix elements by using FeynArts [108] and FormCalc [109]. The tensor reduction performed

by FormCalc is using the techniques developed in [89, 82, 83, 84], while the numerical results of
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Figure 11. Generic box diagrams with different numbers of quarks and gauge bosons in the
loop.

the scalar integrals [79] are evaluated with LoopTools [109]. As cross-check, the analytic matrix

elements for pentagon diagrams with two quark propagators in the loop, box diagrams with

one quark propagator, and triangle diagrams are also calculated by hand. The results of matrix

elements compute by hand, and matrix elements generated with FeynArts and FormCalc are

in agreement with the numerical results generated by MG5 aMC@NLO [110], which is the primary

tool for the computations of cross-sections and the generation of hard events in this article.
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Figure 12. Generic triangle diagrams with different numbers of quarks and gauge bosons in the
loop.



CHAPTER 5

NUMERICAL ANALYSIS

We use the same workflow introduced in Section 5.1.1, and adopt only PDF4LHC15 [111] to

generate partonic events. For hadron level analysis, we feed the unweighted partonic events

file into Pythia 8 [112] to generate a large number of simulated collision events. To promptly

analyze such a huge amount of simulated collision events, we adopt Delphes [113], which provides

a fast multipurpose detector response simulation to reconstruct events into jets such as b jet

and lepton jets, etc. All parameters are kept the same as what we use in Equation 5.3, and

renormalization scale µR and factorization scale µF both equal to mHH .

We analyzed the final results in detail for the total cross-section and the differential cross-

section in the invariant mass of Higgs-pair.

5.1 Kinematic Distributions

For the double Higgs production with at most one extra jet, pp→ HHj, the SM expectation

for this production cross-section is only 0.031 pb in the Large Hadron Collider with CM energy

at 14 TeV. At the potential 100 TeV hadron collider, the expected SM cross-section increases

significantly to 1.543 pb since the luminosity of gluon PDF at lower Bjorken scale, increases.

91
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By convoluting the gluon and quark PDF’s with the partonic cross-section in a hadron

collider, we can obtain the differential cross-section in the lab frame

d2σ(pp→ HH)

dmHH dpT
=

∫ 1

τ

dx

x
g(x, µF )g

(τ
x
, µF

) 2mHH

s

dσ̂(gg → HH)

dpT
, (5.1)

where pT is the transverse momentum of the Higgs boson, s is the CM energy of head-on

hadrons, and τ = ŝ/s, mHH =
√
ŝ,

p2
T =

ût̂−m4
H

ŝ
. (5.2)

In this section, we firstly adopt MG5 aMC@NLO [110] with a custom UFO model [114] including the

anomalous Higgs-top coupling, HHtt, and corresponding R2 and UV counterterms to generate

matrix elements. We then adopt two different PDF sets, PDF4LHC15 [111] and MSTW 2008 LO

4F [115], to generate partonic events. In this work, we draw all plots by using the framework

above with the following parameters

mt = 173GeV , mH = 125GeV. (5.3)

The input value αs(MZ) is determined by the PDF set used, where αs(MZ) = 0.118 for

PDF4LHC15 and αs(MZ) = 0.13355 for MSTW 2008 LO 4F. We set the factorization and

renormalization scales to µF = µR = mHH .
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5.1.1 Leading-order Contribution

In Figure 13 we show the leading-order distributions of mHH and pT for the Standard Model

gg → HH process in a proton-proton collider at CM energies of 14 and 100 TeV. We can see

that the general shapes are insensitive to the CM energy of the pp collider for these kinematic

distributions. The kinematic distributions peak at mHH ∼ 420 GeV for the invariant mass of

the Higgs pair, and pT ∼ 150 GeV for the transverse momentum of the single Higgs boson. The

numerical results obtained using MSTW 2008 LO 4F are identical to the results in [103].

The invariant mass of most events is remote above 2mH , the kinematic threshold of two

outgoing Higgs bosons. Therefore, the low-energy Higgs theorem is invalid for gg → HH, as

mentioned at the end of Section 4.1. The contribution from c3H rises significantly as mHH ∼

2mH since the coefficient of the loop function F4 is

c3H
3m2

H

ŝ−m2
H

+ cHHtt . (5.4)

As a result, cHHtt could become dominant over c3H at large mHH . Unfortunately, the total

cross-section contribution from c3H will be suppressed since most of the events have mHH �

2mH , which was concluded in [62]. Therefore, it will be very difficult to measure a truly

model-independent Higgs trilinear coupling solely from the total cross-section of double Higgs
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production. In Figure 14 and Table I we show the individual contribution from Triangle, Box

and HHtt, defined in Equation 5.6, and compare them with the SM expectation.

Triangle : c3H = 1, cHtt = 0, cHHtt = 0

Box : c3H = 0, cHtt = 1, cHHtt = 0 (5.5)

HHtt : c3H = 0, cHtt = 0, cHHtt = 1

The total cross-section contribution from the SM diagrams is relatively small when c3H ∼ cHtt

due to the nature of destructive interference between the triangle and box diagrams, which

can be inferred from Figure 14. Consequently, the measurement of c3H would be significantly

impacted by turning on a small cHHtt. Although there is a 30% difference in the total cross-

section between two PDF sets, the general shapes of the kinematic distributions are not sensitive

to the PDF set we use, and we will only show the results with PDF4LHC15 from now on.
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Figure 13. The SM expectation of LO mHH and pT,H distributions at
√
s = 14 and 100 TeV.

σ [pb]

MSTW 2008 LO 4F PDF4LHC15

Total Triangle Box HHtt Total Triangle Box HHtt

14 TeV 0.01956 0.00567 0.04125 0.04999 0.0167 0.004692 0.0349 0.0424

100 TeV 1.0001 0.2252 1.946 2.800 0.6923 0.146 1.32 1.987

TABLE I

Individual contribution of cross-section from Triangle, Box and HHtt in 14 and 100 TeV

hadron colliders.
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Figure 14. Individual contribution from Triangle, Box, HHtt to the LO mHH and pT,H
distributions in a hadron collider at

√
s = 100 TeV. The results obtained by adopting MSTW

2008 LO 4F are in the upper row while the results obtained by adopting PDF4LHC15 are in the
lower row of the figure.

For pT spectrum of individual contribution, G� has a strong pT dependence, and pT de-

pendence in F� is not as strong as G� while F4 has no pT dependence. This is because the

projection of the angular momentum of head-on gluons with the same helicity on the beam axis

is zero, Jz = 0, which corresponds to F4 and F�. On the other hand, G� has Jz = 2 on the

beam axis resulted from opposite helicity gluons [29, 31]. Nevertheless, only the S-wave orbital

angular momentum is contained by F4 since only the scalar Higgs couplings are included in Fig-

ure 3(a) and Figure 3(c). In other words, F4 is pT independent. Therefore, the phase space
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is the only source of all the pT dependence in the c3H and cHHtt. However, the higher-order

terms of ŝ/m2
t expansion for the Jz = 0 component of the D-wave angular dependence leave

some pT dependence for F� [105]. G� has a strong pT dependence due to the D-wave nature.

Furthermore, the difference of the angular momentum projection between F4/F�, and G� also

explains the lack of interference between the two contributions in (Equation 4.7). In Figure 14

we also show the pT spectrum of individual contribution from Triangle, Box and HHtt. The

contribution from Triangle are suppressed in general, as in the mHH distribution since the Higgs

propagator in Figure 3(b) is off-shell.

5.1.2 g g → H H g Contribution

Numerical calculations of gg → HHg are performed in 14 and 100 TeV hadron colliders.

The standard model (SM) expectation of the cross-section at a 14 TeV pp collider for this

channel is 0.014 pb. At 100 TeV, the SM rate rises significantly to 0.85 pb. The contribution

of the double Higgs production from gg → HHg is comparable to LO gg → HH, 0.0167 pb

and 0.692 pb at 14 and 100 TeV, respectively, and consists half the total production rate.

In Figure 15, we present the SM mHH and pT distributions for gg → HHg in 14 and 100

TeV hadron colliders. Since the dominant contributions come from one loop triangle and box

diagrams shown in Figure 5 and Figure 6, repectively, which has the same loop function as

gg → HH channel. We therefore expect the general shapes of kinematic distributions shown

in Figure 17 are insensitive to the center-of-mass energy of the hadron collider and share some

similarity to Figure 13. Indeed, comparing to LO counterpart, the general shapes are very

similar except they are wider.
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Figure 15. Kinematic distributions for gg → HHg in the SM at
√
s = 14 and 100 TeV.
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Figure 16. Individual contribution from Triangle, Box, Pentagon and HHtt to the kinematic

distributions for gg → HHg in the SM at
√
s = 100 TeV.
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The invariant mass distribution peaks at slightly lowermHH ∼ 380 GeV, while the maximum

of pT distribution is still at pT ∼ 150 GeV. Unlike the gg → HH counterpart, we can easily

see the peaks in Figure 13 move to the right slightly and get wider as the CM energy of

the head-on hadrons increases. There are even more events that have mHH � 2mH . Hence

the contribution to the total cross-section from c3H will be further suppressed as we already

discussed in Section 5.1.1.

In Figure 16 we show the individual contribution of gg → HHg channel from Triangle, Box,

Pentagon, and HHtt diagrams, shown in Figure 5 to Figure 7 , in the mHH and PT distribution

while comparing them with the SM expectation. Triangle, box, pentagon contributions come

from SM diagrams, while HHtt is the contribution from diagrams with anomalous HHtt cou-

pling. As we can see, gg → HHg have similar kinematic distributions and similar reactions to

the parameters, c3H , cHtt and cHHtt, due to the same loop function in Equation 4.7. The c3H

contribution to the total cross-section is still suppressed when c3H ∼ cHHtt, and cHHtt would

have a significant impact on the cross-section of gg → HHg process as we saw in the LO case.

5.1.3 q g → H H q Contribution

Again we perform numerical simulation for qg → HHq in 14 and 100 TeV hadron colliders.



100

300 400 500 600 700 800
mHH [GeV]

0.000

0.001

0.002

0.003

0.004

1
d dm

H
H

 [G
eV

1 ]

s=100 TeV

s=14 TeV

(a)

0 100 200 300 400 500 600
PT, H [GeV]

0.000

0.001

0.002

0.003

0.004

0.005

1
d dP

T,
H

 [G
eV

1 ]

s=100 TeV

s=14 TeV

(b)

Figure 17. Kinematic distributions for qg → HHq in the SM at
√
s = 14 and 100 TeV.
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Figure 18. Individual contribution from QCD1, QCD2, HHtt to the kinematic distributions

for qg → HHq in the SM at
√
s = 100 TeV.
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In Figure 17, we show the kinematic distributions, including mHH and pT , for SM qg →

HHq in the hadron collider at CM energies 14 and 100 TeV. Since the dominant contributions

come from one loop triangle and box diagrams shown in Figure 8, which has the same loop

function as gg → HH, we expect Figure 17 to share some similarity to Figure 13. Comparing

to gg → HH counterpart, the general shapes are very similar except they are wider. The

maximum for invariant mass and pT distributions are still the same, mHH ∼ 420 GeV and

pT ∼ 150 GeV, respectively. For most events, the invariant mass is far above the threshold,

2mH as we already discussed in Section 5.1.1. Unlike gg → HH counterpart, we can easily see

the peaks in Figure 13 move to the right slightly and get wider as the CM energy of the hadron

collider increases. This means even more events have mHH � 2mH .

Figure 18 shows the individual contribution of qg → HHq from QCD2, QCD1, and HHtt

in the mHH and PT distribution while comparing these contributions with the SM expectation.

QCD2 is the contribution from diagrams with more than one gluon coupling as shown in Fig-

ure 8. QCD1 contribution includes all the rest of SM diagrams for qg → HHq, including tree,

triangle, box, and pentagon diagrams, while HHtt contribution comes from diagrams with an

HHtt coupling. As we can see, QCD2 is the dominant contribution of qg → HHq since weak

couplings suppress QCD1 contributions. Again we can expect gg → HH, qg → HHq have

similar kinematic distributions and similar reactions to the parameters, c3H , cHtt and cHHtt,

due to the same loop function in Equation 4.7. We find the CM energy insensitivity of the

general shapes of these distributions. Therefore, in what follows, we only present the result for

√
s = 100 TeV. As we saw in the gg → HH channel, the contribution from diagrams that in-
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volve the trilinear Higgs is still suppressed when c3H ∼ cHHtt, and cHHtt would have significant

effects on the cross-section of qg → HHq process.

For QCD1 contribution, more events have lower invariant mass, mHH , and transverse mo-

mentum, pT . The peak of invariant mass distribution is atmHH ∼ 280 GeV, while the maximum

of pT distribution is at pT ∼ 60 GeV. Hence, the QCD1 contribution at small invariant mass,

mHH ∼ 2mH , is more important than the QCD2 contribution, which is dominant at large

mHH .
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Figure 19. Individual QCD1 contribution from tree, triangle, box, pentagon diagrams to the

kinematic distributions for qg → HHq in the SM at
√
s = 100 TeV.

In Figure 19, for completeness, we further divide the QCD1 contribution into the individual

contribution from the tree, triangle, box, pentagon, and HHtt contributions from corresponding
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diagrams and compare them with the total QCD1 contribution. We can categorize individual

contributions shown in Figure 19 into two groups. Group one consists of tree and box diagrams,

while group two consists of the triangle and pentagon diagrams. As a result, the interference

between the contribution from group one and group two is destructive, which can also be inferred

from Figure 19. The HHtt contribution when cHHtt = 1 comes from diagrams with only one

gluon coupling, as shown in Figure 11 and Figure 12 is very small compared to the QCD1

contribution, which is already small. However, the HHtt contribution shown in Figure 18 is

dominant over SM value. Therefore, most of HHtt contribution to qg → HHq channel comes

from diagrams shown in Figure 8.

5.1.4 NLO

In Figure 20, we show the individual SM contributions from all processes up to NLO,

including gg → HH, gg → HHg, qg → HHq and qq → HHg, while comparing them with the

total NLO SM contributions in the mHH and PT distribution.

We can see that gg → HH and gg → HHg contributions are equivalently dominant while

qg → HHq only contributes about 10% of the total cross-section. Similar kinematic distri-

butions to gg → HH contribution are found in gg → HHg and qg → HHq contributions.

We can therefore expect the full NLO contribution have similar kinematic distributions and

similar reactions to the parameters. As expected, The peaks of invariant mass and pT are still

at mHH ∼ 420 GeV and pT ∼ 150 GeV, respectively.

The parameters we previously used, c3H , cHtt and cHHtt, have to be generalized since the

contributions from diagrams such as Figure 11 do not have HHH, Htt, or HHtt couplings. By
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following the same idea, we can create a new parameter set based on all Higgs couplings c3H ,

cHtt, cHHtt, cHWW , cHZZ , cHZZ,Htt, and cHbb(cc) such that

M = c3HM3H + cHttMHtt + cHttMHHtt + cHWWMHWW

+cHZZMHZZ + cHZZ,HttMHZZ,Htt + cHbb(cc)MHbb(cc), (5.6)

where

c3H = gH3gHtt
v2

3m2
Hmt

, cHHtt = gHHtt
v2

mt
, cHtt =

(
gHtt

v

mt

)2

cHbb(cc) =

(
gHbb(cc)

v

mb

)2

, cHWW =

(
gHWW

v

2m2
W

)2

, cHZZ =

(
gHZZ

v

2m2
Z

)2

cHWW,Htt =

(
gHWW gHtt

v2

2m2
Wmt

)2

.

Mx is amplitude of diagrams with coupling x while MHWW,Htt/MHZZ,Htt is amplitude of

diagram with HWW/HZZ and Htt couplings. If we adopt this new set of parameters into

gg → HH channel, we can see that

c3H = c3H , cHtt = cHtt and cHHtt = cHHtt. (5.7)

Figure 21 shows the individual contribution from c3H , cHtt, cHHtt, and the distribution of

SM expectation in the mHH and pT,H distribution. The Higgs low-energy theorem breaks down

since most events have an invariant mass much higher than the kinematic threshold at 2mH

as discussed at the end of Section 4.1. We note that cHHtt is even more dominant over c3H at
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large mHH in Figure 20 compare to gg → HH counterpart shown in Figure 14. Turning on

a small cHHtt would significantly impact the measurement of c3H when c3H ∼ cHtt since the

contribution from the Higgs trilinear coupling to the total cross-section is relatively small, and

the destructive interference between the box and triangle diagrams. These facts make a truly

model-independent Higgs trilinear coupling measurement from the total rate of the Higgs pair

production challenging since most of the events have mHH � 2mH , the contribution of the

total cross-section from c3H will be suppressed.
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Figure 20. Individual contribution from gg → HH, gg → HHg, qg → HHq to the kinematic

distributions for double Higgs production in the SM at
√
s = 100 TeV.
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Figure 21. Individual contribution from c3H , cHtt and cHHtt to the kinematic distributions for

double Higgs production at
√
s = 100 TeV.

5.2 The bb̄γγ Decay Channel

In this section e investigate HH → bb̄γγ channel, which is the process that has the highest

signal significance and in SM has the most sensitivity to the trilinear Higgs self-coupling as

pointed out in the literature. Earlier studies can be found in [116, 117, 118, 119, 26]. Recent

searches [120] for pairs of Higgs bosons in HH → γγbb̄ process have narrowed the upper bound

of the Higgs pair production rate down to 4.1 times the SM expectation, created a portal

of better understanding into the fundamental Higgs mechanism. We perform the partonic

event generation for the signal and backgrounds by using MadGraph5 aMC@NLO with the parton

density functions PDF4LHC15 [111]. We include the effects of full NLO corrections for the signal,
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H(bb̄)H(γγ). The background signal is generated at LO with the finite-top-mass effects and

rescaled by a K-factor afterward (See Table Table II).

We include the following major backgrounds in the analysis: the resonant processes , tt̄γγ

and tt̄H(γγ) with t → bW subdecay , as well as bb̄H(γγ) and Z(bb̄)H, and the non-resonant

processes bb̄γγ, bb̄jγ (with one fake photon), bjγγ, jjγγ (with one and two fake b-jets). The

bb̄jj background is not included since it is negligible compared to other faked backgrounds after

selection cuts. The MLM matching is applied to all background processes with at most one

extra parton to avoid double-counting.

We generate events with exclusive cuts for signal and background processes. In what fol-

lows, the acceptance cuts are applied to each final state for each plot. Here is the detailed

event selection: We require exactly two b quarks and two photons in the final state with

the following cuts pT,b > 30 GeV, |ηb| < 2.5 and ∆R(b, b) > 0.4, where the distance is de-

fined as ∆R =
√

(∆η)2 + (∆φ)2. For leptons, the allowed soft transverse momentum and

the allowed pseudorapidity are set to pT,` > 20 GeV and |η`| < 2.5, respectively, to dimin-

ish the tt̄H background. Moreover, the select events are selected to satisfy |ηjet| < 2.5 and

pT,jet > 20 GeV for QCD jets to diminish the tt̄H background further. The two photons has

to fulfill ∆R(γ, γ) > 0.4, |ηγ | < 2.5, andpT,γ > 30 GeV. To reconstruct the Higgs bosons, the

allowed invariant masses are within a range of 25 GeV, 112.5 GeV < Mbb̄ < 137.5 GeV for

the b quark pair, and a smaller range of 10 GeV, 120 GeV < Mγγ < 130 GeV for the photon

pair. In addition, we induce ∆R(γ, b) > 0.4 to isolate the b quarks with the photons.
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Besides the acceptance cuts shown above, more advanced cuts have been applied based on

the distributions shown in Figure 22 for the parton-level analysis. First, we select the events

with a reconstructed invariant mass of the Higgs pair that satisfy mHH > 300 GeV. Moreover,

we select events that satisfy PT,H > 100 GeV. We also require ∆R(b, b) < 2.5 to divide the two

b jet and require the reconstructed Higgs boson to have the pseudorapidity |ηH | < 2.

For the bb̄γγ final state, a realistic estimation of the diphoton fake rate is the most important

factor of an accurate assessment for measuring the signal since the production of multijet, which

is the dominant background in this case, give rise to this fake rate.

To gain more reliable results and verify if any promising feature can be found in real experi-

ments, we include showering and hadronization effects by using the Pythia 8[112] package [112]

for the signal and background samples. Detector simulation effects based on the current per-

formance of ATLAS and CMS are included by using the Delphes [113] package. We follow the

parameter settings and the cut selections in [61]. We chose the operation points of b-tagging

to have 18.8%, 75%, and 1% for charm, bottom, and light quark jets in the central region,

|η| < 2.5 and PT,j > 50 GeV, respectively. The photon identification efficiency is about 80%

for photons with PT,γ > 50 GeV and |η| < 2.5 . For the background with fake photons from

misidentified jets, we assign a mistag rate of fj = 0.0093 exp(−PT /27) as a function of PT in

GeV of the jet with the fake photon energy equal to the jet energy scaled by 0.75± 0.12 [121].

At Mh = 125 GeV, the mass resolution is 17 GeV for h→ bb̄ and 2 GeV for h→ γγ . In order

to be consistent with the signal, the isolated photon pair and two tagged b-jets in the final

states are selected to satisfy PT > 25 GeV and |η| < 2.5 .
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√
s [TeV] HH bb̄γγ tt̄H ZH bb̄H γγjj bb̄jγ

100 1 1.0 1.3 1.2 0.87 1.43 1.08

TABLE II

K–factors for ZH, bb̄γγ and tt̄H production at
√
s = 100 TeV [1].

Observables Acceptance cuts

Total number n of jets (j, γ, l) n < 7 in each event

Pseudorapidity ηb,γ < 2.5

Invariant mass

120 < mbb̄ < 130 GeV,
122 < mγγ < 128 GeV,
mbb̄γγ > 300 GeV

Transverse momentum pTγ,b > 35 GeV, pTγγ,bb̄ > 100 GeV

∆R 0.4 < ∆R(b, b) < 2.0, 0.4 < ∆R(γ, γ) < 2.5

TABLE III

List of observables and acceptance cuts used for the analysis.

The cuts for mass-window are further applied to the invariant-masses of the two photons and

two b-jets. For the photon pair, we impose 122 GeV < Mγγ < 128 GeV on the invariant-mass

window. The invariant-mass window for the two b-jets is 120 GeV < mbb̄ < 130 GeV.

The final value, shown at the bottom of Table IV, is S/
√
B = 16.1 for the integrated

luminosity,
∫
L = 3 ab−1. Therefore this channel seems promising in the future upgrade of the

LHC (HE-LHC) or Future-Circular-Collider (FCC).
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Figure 22. Normalized signal and backgrounds distributions of PT,H , mHH , Rbb and ηH in the
bb̄γγ channel at a

√
s = 100 TeV pp collider.

5.3 Sensitivity to effective self-couplings of Higgs bosons

In this section, the characteristic distributions of the double Higgs production for several

observables are studied with different c3H .

Figure 23, shows the distributions of the invariant mass mHH , the transverse momentum

PT,H , the pseudorapidity ηH , and the rapidity yHH of the Higgs pair with the area under the

SM curve normalized to unity. Each observable distribution is shown for c3H = 0.5, 1, 2.5, and

-1.
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TABLE IV

The table consists of σ × Br , acceptance, and the expected events for signal and background
processes at a proton-proton collider with CM energy of 100 TeV and integrated luminosity of

3 ab−1.

Samples σ×BR (fb) Accept Expected

h(bb̄)h(γγ) (SM) 3.50 0.0403 420± 7

bb̄h(γγ) 51.8 0.00069 107.6± 13.4

Z(bb̄)h(γγ) 7.73 0.00082 19.0± 0.7

tt̄h(γγ) 32.0 0.00161 155± 14.3

tt̄γγ 347.4 6.63×10−6 6.88± 6.88

tt̄γ 101176 4.78×10−8 14.5± 3.2

bb̄γγ 5050 1.41×10−5 212± 65.6

bb̄jγ 8840000 4.83×10−9 128± 31.9

jjγγ 171600 6.93×10−8 35.7± 2.4

Total background − − 677.3± 69.0

S/
√
B (S/

√
B+S ) − − 16.1 (12.5)

As in the PT,H distribution plot of Figure 23 with the distribution max at PT,H ∼ 150 GeV,

The Higgs bosons from the production of inclusive Higgs pair are usually boosted. The pseu-

dorapidity of the Higgs pair shown in the lower left of Figure 23 is low and has a typical

symmetric distribution with the maximum close to zero due to the high transverse momentum

spectrum. For c3H = 2.5, the interferences between the box and the triangle diagrams are

destructive. This explains the dip in the PT,H distribution. Comparing to a lower peak value

of MZH & 250 GeV for the background shown in Figure 22, the peak value is mHH & 420 GeV
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for the signal. Again, this destructive interference also causes a significant depletion in the

signal when c3H = 2.5. For smaller c3H = 0.5, the destructive interference is diminished, and

the signal is stronger than the SM expectation value for each distribution. For c3H = −1, the

differential cross-sections for all observables are enhanced significantly since the box diagram

interferes constructively with the triangle diagram when c3H becomes negative. For yHH and

ηH distribution, the overall shape is the same for different trilinear Higgs coupling values. We

can infer that the yHH distribution is significantly wider for the ZH background than for the

signal shown in Figure 22.
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Figure 23. Distributions of PT,H , ηH , mHH and yHH for c3H = 0.5, 1, 2.5,−1.
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A similar distribution analysis is shown in Figure 24 for cHHtt = -0.5, 0.5, 1 and 0, the SM

value.

For cHHtt > 0, the destructive interference between the box and the HHtt diagrams explains

the dip in the distribution of PT,H and mHH . We can see a significant depletion in the signal

for cHHtt = 1, and the destructive interference further depletes the signal for cHHtt = 0.5.

Peaks for PT,H and mHH stay the same as SM expectations, PT,H & 150 and mHH & 420. For

cHHtt < 0, the differential cross-sections for all observables are enhanced due to the constructive

interference between the HHtt diagram and the box diagram. The enhancement is large even

when cHHtt is just -0.5. For yHH and ηH distribution, the overall shape is the same for different

values of the HHtt coupling.
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By using the parameterization introduced in Equation 5.6, the total cross-section of Higgs

pair production can be written as

σ = σSM
[
c2

3H |M3H |2 + c2
Htt|MHtt|2 + c2

HHtt|MHHtt|2 + c2
HWW |MHWW |2

+c2
HZZ |MHZZ |2 + c2

HWW,Htt|MHWW,Htt|2 + c2
Hbb|MHbb|2 + c2

Hcc|MHcc|2

+2 c3HcHtt|M3HMHtt|+ 2 c3HcHHtt|M3HMHHtt|+ 2 c3HcHWW |M3HMHWW |

+2 c3HcHZZ |M3HMHZZ |+ 2 c3HcHWW,Htt|M3HMHWW,Htt|

+2 c3HcHbb|M3HMHbb|+ 2 c3HcHcc|M3HMHcc|

+2 cHttcHHtt|MHttMHHtt|+ 2 cHttcHWW |MHttMHWW |+ . . . (5.8)

This expression is lengthy and hard to analyze the effect of changing parameters. Fortunately,

MHWW , MHZZ , MHWW,Htt, MHbb and MHcc are very small compare to M3H , MHtt and

MHHtt since they comes from QCD1 contributions. We can therefore safely drop these terms

without change the overall properties, and we can write the total cross-section in the following

form

σ = σSM
[
c2

3H |M3H |2 + c2
Htt|MHtt|2 + c2

HHtt|MHHtt|2 + 2 c3HcHtt|M3HMHtt|

+2 c3HcHHtt|M3HMHHtt|+ 2 cHttcHHtt|MHttMHHtt|] (5.9)
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For all contributions to the Higgs pair production including gg → HH, gg → HHg, qg →

HHq and qq̄ → HHg, we have

σ = σSM [1.8590 c2
Htt + 0.21485 c2

3H + 2.9524 c2
HHtt − 1.0739 cHttc3H (5.10)

−4.1431 cHttcHHtt + 1.2271 c3HcHHtt].

A similar result for the LO gg → HH at
√
s = 100 is calculated in [103]. For the LHC

with
√
s = 14, similar numerical coefficients are found. We stress that the coefficient of c2

3H

is around one order of magnitude lower than those of c2
Htt and c2

HHtt, which agrees with the

observation made in [62]. Figure 25 visualize Equation 5.10 by showing new physics effects in

the total rate of Higgs production rate to the SM expectation ratio. Recently, the upper bound

of the Higgs pair production rate was set to 4.1 times the SM value [120]. In the following

discussion, the parameters are allowed to vary between −3 and 3 for cHtt and cHHtt, while c3H

is allowed to vary between −8 and 8. In Figure 25(a), cHtt is fixed to unity, its SM value,

while cHHtt is allowed to vary. The green region shows the resulting total rate variation, and

a strong enhancement can be found on all allowed regions. When c3H . −1.5 or c3H & 4.1,

the production rate is always enhanced. The red dash-dotted, blue-dashed, and black-solid

curves represent three reference cases in the plot for cHHtt = −1, cHHtt = 0, and cHHtt = 1,

respectively. The yellow band shows where cHHtt is within ±0.1 of its expected SM value.

Even with vanishing or negative, opposite sign to the SM expectation, trilinear Higgs boson

coupling, we can see a large area of the parameter space in cHtt and c3H , which reproduce
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Figure 25. (a) The ratio of σ/σSM , with varying cHHtt and c3H while fixing cHtt at unity, are
shown as the green region. The yellow band denotes the region where cHHtt is within ±0.1 of
its expected SM value. cHHtt is allowed to vary from -3 to 3 and c3H is allowed to vary from
-8 to 8. The SM rate is the dashed horizontal line. (b) Same as (a), but with cHHtt along the

horizontal axis. (c) cHHtt = 0 with cHtt and c3H varying from −3 to 3 and −8 to 8
respectively. The yellow band denotes the region where cHtt is within ±0.1 of its expected SM

value.
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the same cross-section of the Higgs pair production as in the SM. For the case that cHHtt and

cHtt are both close to their SM value, the small area around two intersections of the yellow

band and the gray dashed line indicates two possible regions of parameter space that allows

c3H to produce the expected SM cross-section value. We can set the allowed limit for SM

parameter c3H by finding where the SM curve, blue-dashed curve, reaches the observed limit

of production cross-section, 4.1 times the Standard Model prediction. Our result agrees with

the finding of [120], −1.5 < cSM3H < 6.7, and we can easily see that cHHtt parameter greatly

expand the allowed limit of c3H to −5 < c3H < 8 In Figure 25(b), cHtt is still fixed to unity, but

with cHHtt along the horizontal axis. The production cross-section is always enhanced when

cHHtt . −0.4 or cHHtt & 1.1. The yellow band for c3H within ±0.1 of its expected SM value

is very narrow due to the fact that c3H contribution is very small compare to cHtt and cHHtt

contributions when c3H = 1 (See Figure 21). Again, two possible regions of parameter space

allow cHHtt to produce the expected SM cross-section value when c3H and cHtt are both close

to their SM value.

In Figure 25(c), we fix cHHtt to be its SM value, zero, and cHtt and c3H are both allowed

to vary. The black-solid curve in Figure 25(c) is for the SM cHtt that corresponds to the blue-

dashed curve in Figure 25(a). The minimum σ/σSM ratio occurs at c3H . 2.5 and has a value

around 0.45, which agrees with the finding of [24]. Notice that zero production cross-section

can only occur trivially when three parameters are all zero, and it becomes a minimum point

when we vary cHHtt since each contribution can not cancel each other at every phase space



119

3 2 1 0 1 2 3
c3H

3

2

1

0

1

2

3

c H
tt

/ SM with cnl = 0 25% 50%

/ SM<-50%

/ SM>50%

/ SM>50%

(a)

3 2 1 0 1 2 3
c3H

3

2

1

0

1

2

3

c H
H

tt

/ SM with cHtt = 1 25% 50%

/ SM<-50%

/ SM>50%

/ SM>50%

(b)

3 2 1 0 1 2 3
cHHtt

3

2

1

0

1

2

3

c H
tt

/ SM with c3H = 1 25% 50%

/ SM

 <-50%

/ SM>50%

(c)

Figure 26. Cross-section contour plot for gg → hh→ γγbb̄ channel after including the veto
cuts in Table III. The parameter space that match the expected SM values within 25% and

50% are indicated by cyan and yellow areas, respectively. The red cross marks the SM value.

point, as we can see in Figure 23. The SM total rate for the Higgs pair production could be

again reproduced by a large area of the parameter space in c3H and cHtt.

We have discussed that it is possible to discover the Higgs pair production in a 100 TeV pp

collider which was already shown in [26, 27, 61]. Then, we study how the event selections affect

the extraction of new physics effects in the Higgs pair production. In what follows, the event
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selections Table III was imposed again. For the signal analysis, full simulations are performed

for parameters within the range −3 < c3H,Htt,HHtt < 3. Then, as the partonic case, we can

fit the number of selected signal events by a similar function shown in Equation 5.10. The

contributions of different diagrams would cause different selection efficiency due to the fact

that the kinematic distributions are different for each diagram. However, we can still factor out

the parameters cHtt, c3H and cHHtt during the calculations, and this will again give a simple

parameterization:

σ = σSM [3.1265 c2
HHtt + 1.5332 c2

Htt + 0.072904 c2
3H − 3.7322 cHttcHHtt (5.11)

−0.60614 c3HcHHtt + 0.81739 c3HcHtt].

In Figure 26, we consider constraints on cHtt, c3H and cHHtt from measurements of the total

cross-section at CM energy of 100 TeV with contour lines go along 25% and 50% deviations

from the SM value. For each plot in Figure 26, we vary two of c3H , cHtt and cHHtt and fix the

rest to the SM value. For example, in Figure 26(a), cHtt and c3H are allowed to vary within

the interval (−3, 3), while cHHtt = 0 as in the SM. The cyan and yellow bands represent the

parameter spaces that match the result of SM within 25% and 50%, respectively. We see that

the sensitivity of cross-section to c3H is low. The same insensitivity persists in Figure 26(b),

where we set cHtt = 1 as in the SM.
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In Figure 26(c), where c3H = 1 takes the SM value and cHtt, cHHtt are varying within the

interval (−3, 3). Moreover, due to the destructive interference between the triangle and box

diagrams, increasing cHHtt can offset any effect of increasing cHtt. Therefore, to explain the

various contributions of new physics in double Higgs production, total cross-section alone is not

sufficient, and further studies for additional kinematic information are needed.
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Figure 27. Contour plots for the cross-sections of a high energy and a low energy bin. Bin I:

350 GeV < mHH < 550 GeV and Bin II: mHH > 550 GeV. The cross-section matching the

value of SM within 25% is shown as the cyan region for Bin I and the region between two

solid-black curves for Bin II. The cross-section that is within 25− 50% of SM expectation is

shown as the yellow region for Bin I and the region between solid and dashed curves for Bin

II. The red cross mark the SM value.
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As we have already seen, the contributions of cHtt, c3H and cHHtt have very different dis-

tributions of phT and mHH . The c3H component peaks at low mHH , the cHtt peaks at a higher

mHH , and the cHHtt shifts the mHH distribution to even larger values. (See Figure 21). Fol-

lowing the analysis in [103], we divide the mHH and pT distributions into a low bin and a high

bin, and the differential cross-section in each bin is used to constrain cHtt, c3H , and cHHtt. We

note that fitting the two pT bins and the two mHH bins give quite similar constraints, which

are consistent with the results of [103]. Therefore, in the following, we only show the contour

plots of the constraints from fitting the two mHH bins. From Figure 20, the following two mHH

bins are chosen in our analysis.

Bin I : 350 GeV ≤ mHH ≤ 550 GeV

Bin II : 550 GeV ≤ mHH

For Bin I and Bin II, the parameterizations of the cross-sections with respect to cHtt, c3H and

cHHtt are given in Equation 5.11.

σI = σSMI [2.1837 c2
HHtt + 1.6984 c2

Htt + 0.10647 c2
3H − 3.6533 cHttcHHtt

−0.80491 c3HcHHtt + 0.71334 c3HcHtt].

σII = σSMII [4.2030 c2
HHtt + 1.3446 c2

Htt + 0.03458 c2
3H − 3.8224 cHttcHHtt

−0.37915 c3HcHHtt + 0.93621 c3HcHtt]. (5.12)
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Figure 27 shows the constraints from the differential cross-section, which lie within 25% and

50% of SM expectations in each bin. Again, two of cHtt, c3H , and cHHtt are allowed to vary,

while the other is fixed at the SM value. In Figure 27(a), where cHHtt is fixed while c3H and

cHtt are allowed to vary, this set of contours has the largest overlap among all three sets of

contours. In Figure 27(b), where c3H = 1, we see that there is only a small overlap between the

contour from Bin I and Bin II, and the degeneracies in c3H and cHHtt are broken effectively by

the measurements in the two bins. In Figure 27(c), where cHtt is allowed to vary, along with

cHHtt, we see the non-overlapping region becomes larger than in Figure 27(b). However, the

change of cHtt from its SM value is expected to be small due to the precise weak interaction

measurements already done. Therefore, the relation present in Figure 27(c) may not be as

useful as in Figure 27(b). Our results shown in Figure 27(a) and Figure 27(c) are similar

to the finding of [103] by using LO with Higgs effective theory corrections to calculate the

cross-section. For the contour shown in Figure 27(b), on the other hand, we have a much larger

non-overlapping region near SM expectation compare to the finding of [103]. Therefore full NLO

calculations are required due to the effects of event selections on gg → HHg and qg → HHq

channels. Nonetheless, we note that some degeneracy remains when the differential cross-

sections in the low and high bins meet the expected SM values. When it comes to constraining

c3H , the situation worsens. However, a significant improvement in constraining c3H from using

the measurement of total cross-section alone can still be achieved by including the kinematic

information from both low and high mHH bins.



CHAPTER 6

CONCLUSION AND OUTLOOK

In this work, we investigated the use of the kinematic distribution to reveal the new physics

effects in the Higgs pair production, including LO channel, gg → HH, and all NLO channels,

gg → HHg, qg → HHq, and qq → HHg. We showed that three dimensionless coefficients,

cHtt, c3H , and cHHtt, can be used to parameterize the differential cross-section with various new

physics effects. We investigated the interactions of different contributions in the pT spectra and

the invariant mass spectra of the Higgs pair. We then numerically study the constraints of

these parameters in a 100 TeV proton-proton collider under planning by finding the best fit

for the differential rates in a low and a high mHH as well as pT bins. The constraints from

low and high bins ended up being very similar to those from the two pT bins. Finally, it

was found that we can constrain cHtt and cHHtt effectively, despite some degeneracy persists.

Moreover, the coefficient c3H , which directly reveals the effect of trilinear Higgs self-coupling,

is less constrained. This is roughly consistent with the earlier result in the LO gg → HH

channel [103], full NLO calculations that more effectively break the degeneracy in c3H and

cHHtt are therefore required.

Nonetheless, the extra kinematic information from the two invariant mass bins still gives

much better results than the total cross-section alone.

Measurements of the trilinear Higgs coupling should be a top priority in upcoming research

programs on the Higgs boson, since only the properties of Higgs self-interaction of the 125 GeV

125
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Higgs boson have not been thoroughly tested experimentally. Recent searches [120] for pairs

of Higgs bosons in HH → γγbb̄ process set a limit on the double Higgs production rate of

4.1 times the SM value and created a portal to better understanding the fundamental Higgs

mechanism.

The work is far from done. Much more work needs to be done in the phenomenology of

double Higgs production. The Matrix Element Method based multivariate analysis [122], which

has been applied to the Higgs discovery in the 4` channel [123, 124, 125, 126, 127, 128] and

the top quark analyses [129, 130, 131, 132, 133] can be performed to exploit the full kinematic

information in the future . Also, the recent search for the Higgs pair performed by the ATLAS

collaboration, which applied multivariate analysis based on Boosted Decision Trees (BDT) to

event selection in the SM process, obtained the best limit for the double Higgs boson production

currently. The same technique can be applied to searches for new physics in the future.
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measurement of the Higgs self-coupling at the LHC: Theoretical status, J. High Energy
Phys. 2013 (2013), 1212.5581.

[27] W. Yao, Studies of measuring Higgs self-coupling with HH → bb̄γγ at the future hadron
colliders 1, 8 (2013), 1308.6302.
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