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SUMMARY

This thesis consists primarily of anti-saturation results on ideals.

After a brief introduction covering historical context and necessary preliminaries, we extend

an anti-saturation result for ideals on the successors of regular cardinals to inaccessibles:

Theorem. Suppose V is a universe of ZFC + GCH with an inaccessible cardinal κ admitting

κ-complete, normal, κ+-saturated ideals on κ concentrating on inaccessible cardinals below κ.

Then there is a generic extension VQ in which there are no κ-complete, κ+-saturated ideals on

κ concentrating on inaccessible cardinals, but if I ∈ V is a κ-complete, normal, κ+-saturated

ideal on κ concentrating on inaccessible cardinals, then VQ |= ‘‘I is κ+-presaturated".

Theorem. With the same assumptions and the same Q as above, if δ ≥ κ is a inaccessible

cardinal, I ∈ V is a normal, fine, δ-presaturated ideal of uniform completeness κ on some

algebra of sets Z such that: BI preserves the regularity of both κ and δ, BI δ
+ ≤ |j̇I(κ)| < j̇I(κ),

and BI is proper on IA<δ+; then in VQ, I is not δ+-saturated but I is δ+-presaturated.

We then turn to mutually stationary sequences, and prove:

Theorem. Let 〈βα | α < λ〉 be a sequence generic for a Magidor forcing M
(
~U
)

of length λ.

Then there is a cofinite subset K of 〈βα | α < λ,α successor〉 such that every family Sα ⊆ βα ∈ K

of stationary sets is mutually stationary.

Finally we analyze a Magidor-type forcing with interleaved collapses and guiding generics

MC (〈Uη | η < λ〉), ultimately proving the following characterization of genericity theorem:

vi



SUMMARY (Continued)

Theorem. Let ~β = 〈βη | η < λ〉 and ~F = 〈Fη | η < λ〉 be in VMC(〈Uη|η<λ〉). Then (~β,~F) is

MC (〈Uη | η < λ〉)-generic over V precisely when at each limit ordinal η ≤ λ, ~β � η meets

〈Uζ | ζ < η〉 coboundedly often, and 〈Fζ | ζ < η〉 meets the guiding generics coboundedly often.
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CHAPTER 1

INTRODUCTION

Ever since Cohen proved the independence of the Continuum Hypothesis from ZFC, set the-

orists have greatly expanded on his method of forcing to discover ever more complex phenomena

in the multiverse of set theories.

A proof or disproof of the Continuum Hypothesis (CH), the statement that 2ℵ0 = ℵ1,

had been on mathematicians’ radar since the nineteenth century, but Cohen finally proved

its undecidability. In brief, Cohen’s method of forcing starts with a universe V of ZFC and,

using tools entirely within V, interprets a new universe with entirely new objects. Cohen’s

methods allow for the creation of a universe in which CH holds1. Furthermore, forcing with

the combinatorial object Add(ω, 1) can create a new universe VAdd(ω,1) with a real number

not present in V. And forcing with Add(ω,ω2) can create real numbers on a scale hitherto

undreamt of, so much that VAdd(ω,ω2) |= |P(ℵ0)| ≥ ℵ2.

The question then arose of whether similar independence results could hold at other cardi-

nals, and for regular cardinals Easton quickly characterized the exact behavior of the powerset

operator. A regular cardinal κ is one for which any < κ-sized union of < κ-sized sets is of

size < κ. For instance (under ZFC) ω1 is regular, as is ωα+n for any n < ω, however ℵω is

1

1
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not, as ℵω =
⋃
n<ωℵn. So we say that ℵω is singular, with cofinality cf(ℵω) = ω; likewise

cf(ℵω+ω) = ω and cf(ℵω1) = ω1.

In brief, Easton showed, using Cohen’s tools and a universe satisfying GCH (i.e. for every κ,

2κ = κ+), that the following three properties of the powerset function are the only constraints

to its behavior on regular cardinals:

1. (Cantor’s Theorem) 2κ > κ

2. (König’s Lemma) cf(2κ) > κ

3. (Weak Monotonicity) if κ ≤ λ then 2κ ≤ 2λ

For the powerset at singular cardinals, the situation is far more complicated and consistency

results here require large cardinals. Here, we investigate SCH, the principle that if κ is a singular

strong limit cardinal, then 2κ = κ+. Unlike with GCH, Easton’s method preserves SCH. As

Silver showed, the powerset operator on large cardinals is much more restricted, in that if SCH

fails, then the first cardinal at which SCH fails must have countable cofinality. Later results

by Shelah’s PCF theory gave even stronger restrictions. As for the necessity of large cardinals,

Jensen’s Covering Lemma proves that if SCH fails, then many large cardinal hypotheses must

be consistent.

In short, a large cardinal κ is a cardinal so large that Vκ |= ZFC, in particular one

whose existence proves the consistency of ZFC. Since ω’s existence proves the consistency

of ZFC − Infinity, ω may be considered almost a large cardinal. Several large cardinal axioms

are generalizations of compactness-style phenomena holding at ω. For example, weak compact-
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ness, the principle that κ is inaccessible and κ→ (κ)22, is a generalization of Ramsey’s theorem

that ω→ (ω)22.

Combining Cohen’s method of forcing with large cardinals will often partially preserve some

of the large cardinal’s properties in the extended universe. This following example is due to

Mitchell: if κ is weakly compact, then every stationary subset of κ reflects, that is, if S ⊆ κ is

stationary, then there is some α < κ such that S∩α is stationary in α. An appropriate forcing

P in which VP |= κ = ℵ2 will preserve this stationary reflection of κ; conversely, if ℵ2 satisfies

this stationary reflection, then there is a sub-universe in which ℵ2 is weakly compact.

As for ¬SCH, Magidor argued that from a supercompact cardinal κ (a very large cardinal

hypothesis), one can force κ to be singular and SCH to fail at κ; later works by Gitik, Mitchell,

and Woodin optimized this result exactly to κ measurable with o(κ) = κ++.

Sufficiently large cardinals, such as measurable, strong, strongly compact, and supercompact

cardinals, come with a highly complete ultrafilter U that induces a nontrivial elementary self-

embedding of the universe j : V → Ult(V,U) into a well-founded ultrapower model of ZFC

which is isomorphic to a transitive submodel M of V. For a measurable cardinal κ, M will

itself be closed under κ-sequences from V, and j(κ) > κ. Various niceness properties of j(κ)

(e.g. cardinality lower bounds, being a V-cardinal) and how “close” M is to V, increase the

consistency strength of the large cardinal hypothesis.

Combining the method of forcing and the ultrafilter-based embedding methods allow for the

construction of generic ultrapowers, where the embeddings j : V →M lie in a forcing extension

of V. Rather than filters, such constructions are typically phrased in terms of the dual notion
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of ideal : if I is an ideal on some set algebra A in some P(Z), then A/I is a valid notion of

forcing which adds a filter U such that every X ∈ A ∩ V is either in U or its complement is in

U, and so we may construct j : V → Ult(V,U). In the event that A/I only has antichains of

size less than κ, then we say that I is κ-saturated. If κ ≤ |Z|+, then as a result A/I induces a

well-founded generic ultrapower and preserves a large class of cardinals.

A major theme of this thesis is anti-saturation results, that say when an ideal is specifically

not saturated.

Solovay’s Splitting Theorem for stationary sets says that the nonstationary ideal on κ is

not κ-saturated, and counts as the first major anti-saturation result for the nonstationary ideal

on any regular cardinal κ. As for other results about the non-saturation of nonstationary

ideals, Gitik and Shelah showed that when κ > ω1, NSκ is not κ+-saturated. However, it is

consistent (from very large cardinals) that NSω1 is ω2-saturated. Likewise, for λ ≥ κ ≥ ω1,

the nonstationary ideal on Pκ(λ) (for λ ≥ κ) is known not to be κ+-saturated. Burke, Foreman,

Gitik, Magidor, Matsubara, and Shelah proved this over much time and many papers.

Results on any ideal have an equally rich history, which we will cover in Section 3.1.

In proving that the nonstationary ideal on Pω1(λ) is not λcf(λ)-saturated for any singular λ,

Foreman and Magidor introduced the notion of mutually stationary sequence, which acts as a

generalization of stationarity, and of stationary reflection, for singular cardinals.

Paradoxically, although saturation results often have large cardinal consistency strength,

mutual stationarity principles are a strong form of anti-saturation property and also have large

cardinal consistency strength. For instance, a Prikry generic sequence added to a measurable
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cardinal exhibits a mutual stationarity property, and the measurability is known to be necessary.

For mutual stationarity principles at accessible cardinals such as ℵω, even larger cardinals are

necessary.

We now come to where this thesis’s results fit into the above milieu.

Cox and Eskew have a recent anti-saturation result for successors of regular cardinals that

still guarantees many of the corollaries of saturation, such as well-foundedness of the generic

ultrapower and preservation of many cardinals. Chapter 3 generalizes their result to an inac-

cessible, in the form of Theorem 3.1.4 and Theorem 3.1.5.

Concerning mutual stationarity, we extend the mutual stationarity result for Prikry generic

sequences to Magidor generic sequences, which act to singularize a cardinal to uncountable

cofinality in a cardinal-preserving manner. This is the content of Chapter 4, in particular

Section 4.4.

Finally, we develop a Magidor-like forcing MC
(
~U
)

that singularizes a regular cardinal κ

without collapsing κ, and simultaneously collapses cardinals below κ using the method of guiding

generics to turn κ into the extended universe’s ℵω1 . This program takes up Chapter 5, and

culminates in Lemma 5.1.21 and Theorem 5.1.24, which together form an exact characterization

of genericity for MC
(
~U
)

. Given the current approaches to achieving mutual stationarity results

at accessible cardinals, Magidor-like forcings along the lines of MC
(
~U
)

seem necessary for

achieving mutual stationarity results at ℵλ for λ regular uncountable.

The paper is organized as follows. Chapter 2 describes our required preliminaries, including

stationary sets, the basics of forcing, ideals & measures, Mitchell order, Prikry forcing and
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Prikry forcing with collapses, and Magidor forcing. Chapter 3 first appeared on the arXiv (as

(Schoem, 2019)) and covers our extension of Cox and Eskew’s anti-saturation result to inacces-

sibles, in the form of Theorem Theorem 3.1.4 and Theorem 3.1.5. Chapter 4 outlines a brief

history of mutual stationarity results, expounds on how mutual stationarity acts as an anti-

saturation principle for nonstationary ideals, and expounds on indiscernibility-based methods

pioneered by Koepke, and collated in 4.2; we then cover Lemma 4.3.4, a novel simultaneous

indiscernibility result that shows in 4.4 that Magidor generic sequences exhibit mutual station-

arity properties. Finally, Chapter 5 describes a Magidor-type forcing MC
(
~U
)

that turns a

measurable κ into ℵω1 ; we state and prove its relevant Prikry-type lemmas in Lemma 5.1.11

and Lemma 5.1.19 and a complete characterization of genericity in Lemma 5.1.21 and Theo-

rem 5.1.24.

In the preliminaries up through The Prikry forcing section 2.5, we state well-known results,

giving proofs or sketches as needed. In the preliminary Magidor forcing section 2.6, we flesh

out most proofs, as the results are sometimes only implicit in the literature.



CHAPTER 2

PRELIMINARIES

We will cover the necessary background information for reading this thesis. Mostly we cite

well-known results, giving proof sketches or proofs when doing so facilitates better understand-

ing. In Section 2.6 on Magidor forcing, we give more extensive proofs, as results are not as well

known.

Results from Sections 2.1, 2.2, 2.3, and 2.5 are largely found in (Jech, 2003). For forcing

iterations in 2.2, we additionally draw from (Baumgartner, 1983); for Section 2.3, some material

on ideals comes from (Foreman, 2010); for Section 2.4, we pull from (Mitchell, 2010) for Mitchell

rank and order; for Prikry with collapses in Section 2.5, we also cite (Cummings, 2015); and

for Section 2.6, we appeal to Magidor’s original paper (Magidor, 1978) and Fuchs’ recent work

in (Fuchs, 2014).

2.1 Stationary Sets

Solovay’s Splitting Theorem for stationary sets accounts for the first major anti-saturation

result in set theory. We will elaborate on the anti-saturation in Section 2.3 and present the core

concepts and behaviors surrounding closed unbounded sets and stationary sets here; further

elaboration can be found in standard references such as (Jech, 2003), Chapter 8.

Definition 2.1.1. Let κ be a regular uncountable cardinal. Then a C ⊆ κ is

• closed if whenever ρ is a limit ordinal below κ and C ∩ ρ is unbounded in ρ, then ρ ∈ C

7
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• unbounded if whenever ρ < κ there is some ρ ′ ∈ C \ (ρ + 1) (i.e. some ρ ′ > ρ such that

ρ ′ ∈ C)

• club if both closed and unbounded

The intersection of any two clubs is club, and furthermore:

Proposition 2.1.2. Let τ < κ and let 〈Cη | η < τ〉 be a family of club subsets of κ. Then

⋂
η<τ

Cη

is also club.

While the intersection of κ-many clubs is not necessarily club, there is an approximate

version:

Definition 2.1.3 (Diagonal intersection). Let 〈Xη | η < λ〉 be a family of sets of ordinals, with

λ some ordinal. Then their diagonal intersection is

∆
η<λ

Xη := {β ∈ Ord|∀α < β β ∈ Xα}

Proposition 2.1.4. Let 〈Cη | η < κ〉 be a family of club subsets of κ. Then

∆
η<κ

Cη

is also club.
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One may think of the club subsets of κ as the “large” subsets, in a way that will be made

precise in Section 2.3. The “non-small” sets are then the stationary sets, and the “small” sets

nonstationary:

Definition 2.1.5. Let S ⊆ κ. We say S is stationary if for every C ⊆ κ club, S ∩ C 6= ∅; and

we say S is nonstationary if S is not stationary.

Since the intersection of two clubs is club, S ∩C is also stationary for any stationary S and

club C.

Stationary sets admit the following homogeneity result, which, as we will elaborate on in

Section 2.3, is in a sense equivalent to Proposition 2.1.4:

Theorem 2.1.6 (Fodor’s Theorem). Let S be stationary and let f : S → κ be regressive (i.e.

for every α ∈ S, f(α) < α). Then there is some T ⊆ S stationary such that f � T is constant.

We think of stationary sets as “non-small” instead of “large” because any stationary set

splits into two disjoint stationary sets. In fact, more is possible, as first shown in (Solovay,

1971):

Theorem 2.1.7 (Solovay’s Splitting Theorem). For any S a stationary subset of κ, there exists

a family 〈Tα | α < κ〉 of disjoint stationary subsets of S such that

S =
⊔
α<κ

Tα

There are analogous notions of club and stationary on more general set algebras:



10

Definition 2.1.8. Let κ be a regular cardinal and let λ be any cardinal with λ ≥ κ. We write

Pκ(λ) to mean the collection of subsets of λ of cardinality less than κ. Then:

• A collection C ⊆ Pκ(λ) is closed if for any τ < κ and any ⊆-increasing chain 〈xα | α < τ〉

of elements of C, ⋃
α<τ

xα

is also in C

• A collection C ⊆ Pκ(λ) is unbounded if for any x ∈ Pκ(λ) there is some y ∈ Pκ(λ) with

y ⊇ x and y ∈ C

• If C is both closed and unbounded then C is club

• And S ⊆ Pκ(λ) is stationary if S ∩ C 6= ∅ for every club C.

Similar intersection results hold:

Proposition 2.1.9. If τ < κ and 〈Cα | α < τ〉 is a family of clubs then

⋂
α<τ

Cα

is also club.

Fodor’s Theorem, with a modified notion of ∆, also holds:

Definition 2.1.10. Let 〈Xα | α < κ〉 be a family of subsets of Pκ(λ). Then

∆
α<κ

Xα :=

{
x ∈ Pκ(λ)

∣∣∣∣∣x ∈ ⋂
a∈x

Xa

}
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Proposition 2.1.11. If 〈Cα | α < κ〉 is a family of club sets on Pκ(λ) then

∆
α<κ

Cα

is also club.

Theorem 2.1.12 (Fodor’s Theorem). If S is a stationary subset of Pκ(λ), f : S→ Pκ(λ), and

f is regressive (i.e. f(x) ∈ x for every nonempty x ∈ S) then there is a stationary T ⊆ S such

that f � T is constant.

2.2 Forcing

We will assume knowledge of forcing; for a detailed summary, see for instance (Jech, 2003),

Chapter 13. Here we just recall the forcing and iterated forcing specifics necessary for our

purposes.

Just to review, here is the core theorem of forcing:

Theorem 2.2.1 (Forcing and Generic Model Theorem). Let V be a universe of ZFC and let

(P, <) be a notion of forcing. Then there is a universe VP = V [G] of ZFC given by the addition

of a new set G such that

1. OrdV = OrdV[G]

2. If W ⊇ V, W |= ZFC and G ∈W, then V [G] ⊆W

3. G is P-generic over V, that is, for every dense subset (equivalently, every maximal an-

tichain) D of P in V, G ∩D 6= ∅
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And the theory of V [G] may be understood by the forcing relation P, entirely definable in V,

because for each formula ϕ,

V [G] |= ϕ ⇐⇒ ∃p ∈ G p  ϕ

Remark 2.2.2. Here are some notations and conventions:

• We adopt the convention that for p, q ∈ P, q ≤ p means that q is a stronger condition

than p.

• If p, q are compatible, we write p ‖ q to denote this, otherwise p, q are incompatible,

denoted by p ⊥ q.

• If p ‖ q, we use p∧ q to denote the weakest r such that r ≤ p and r ≤ q.

• For any p, q, we use p∨ q to denote the strongest r such that p ≤ r and q ≤ r.

If τ is an ordinal and τ ∈ RegV (i.e. τ is a regular cardinal in V), it is not necessarily the

case that τ ∈ RegVP
(or is even a cardinal). Certain nice combinatorial properties guarantee

that τ remains a cardinal after forcing. We outline some key such properties:

Definition 2.2.3 (Chain condition, presaturation, and closure). Let (P,≤) be a poset and let

τ be a cardinal. We say that:

(i) P has the τ-chain condition (is τ-cc) if every antichain of P is of size less than τ
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(ii) P is τ-directed closed (i.e < τ-directed closed, written τ-dc, < τ-dc) if whenever D ⊆ P is

a directed set1 with |D| < τ, there is a q ∈ P such that whenever p ∈ D, q ≤ p

(iii) P is τ-closed (i.e. < τ-closed) if whenever ρ < τ and 〈pα | α < ρ〉 is a ≤-decreasing

sequence in P, there is a p ∈ P such that p ≤ pα for all α < ρ

(iv) P is τ-distributive if for every ḟ : τ̌ → V̌ in VP, ḟ ∈ V̌; equivalently if the intersection of

τ-many open dense subsets of P is dense2

(v) P is τ-presaturated (i.e. < τ-presaturated) if for every λ < τ and every family 〈Aα | α < λ〉

of antichains, there are densely many p ∈ P such that for all α, {q ∈ Aα | p ‖ q} has

cardinality < τ. Note that τ-cc implies τ-presaturation.

(vi) P is τ-preserving if VP |= ‘‘τ̌ is a cardinal"

Proposition 2.2.4. If P is τ-cc, τ-dc, τ-closed, < τ-distributive, τ-distributive, or τ-presaturated,

then P is τ-preserving.

The proofs are standard; see (Jech, 2003), Chapters 14 and 15, for more details.

The usual posets for collapsing cardinals are the Lévy collapsing posets Col(τ, λ) and

Col(τ,< λ). In brief, Col(τ, λ) is a τ-directed closed, λ+-cc forcing notion such that for every

ρ ∈ CardV ∩ [τ, λ], |ρ]V
Col(τ,λ)

= τ If λ is inaccessible, then Col(τ,< λ) is a τ-directed closed,

λ-cc forcing such that for every ρ ∈ CardV ∩ [τ, λ), |ρ]V
Col(τ,λ)

= τ.

1that is, for all p, q ∈ D, there is an r ∈ D such that r ≤ p, q

2Note this is unlike the other properties here in that this is an = τ principle as opposed to a < τ
principle. We write “< τ-distributive” to mean “for all τ ′ < τ, P is τ ′-distributive”.
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Often, we will wish to force with multiple forcings simultaneously, or in succession. If both

P and Q are in V, then we will want to force with their product ; if instead Q ∈ VP, then we

will use iteration.

(Jech, 2003), Chapter 15, is a standard reference for product forcing. For iteration forcing,

this section draws from (Baumgartner, 1983).

Definition 2.2.5 (Product Forcing). If P and Q are in V, then the poset P × Q consists of

conditions of the form (p, q) where p ∈ P and q ∈ Q, and (p ′, q ′) ≤ (p, q) if p ′ ≤ p and q ′ ≤ q.

The following forcing theorem characterizes what a P×Q-generic looks like:

Theorem 2.2.6 (Product Theorem). Let G ⊆ P×Q. Then G is P×Q-generic over V if and

only if G = G1 × G2 where G1 is P-generic over V and G2 is Q-generic over VP, and in such

case V [G] = V [G1][G2].

Larger products are possible, but beyond our scope. As for properties preserved by product

forcing:

Proposition 2.2.7. Let τ be a regular cardinal, and suppose P and Q are both τ-closed. Then

P×Q is also τ-closed.

Proposition 2.2.8 (Easton’s Lemma, c.f. (Jech, 2003), Lemma 15.19). Let τ be regular, and

suppose P is τ+-cc and Q is τ+-closed. Then in VP, Q remains τ-distributive.

In the event that Q ∈ VP \ V, we may use the notion of two-step iteration:

Definition 2.2.9. The two-step iteration P ∗ Q̇ is given by conditions of the form (p, q̇) where

p ∈ P and p P q̇ ∈ Q̇, and (p ′, q̇ ′) ≤ (p, q) if p ′ ≤ p and p ′ P q̇
′ ≤ q̇
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The following characterizes generic extensions of two-step iterations:

Proposition 2.2.10. Let G ⊆ P ∗ Q̇. Then G is P ∗ Q̇-generic over V if and only if G1 := {p |

∃q̇ ∈ Q̇ (p, q̇) ∈ G} is P-generic over V; and G2 := {q̇ | ∃p ∈ G1 (p, q̇) ∈ G}, as interpreted in

V [G1], is Q-generic over V [G1]. If so, we write G = G1 ∗G2.

Iteration is better behaved than product:

Proposition 2.2.11. If P is τ-cc and 1P P Q̇ is τ-cc then P ∗ Q̇ is τ-cc; the converse is also

true.

The same is also true for τ-closed.

Presaturation can be pushed downwards through a two-step iteration:

Lemma 2.2.12 (Lemma 2.12 of (Cox and Eskew, 2018)). If P ∗ Q̇ is κ-presaturated then P is

κ-presaturated and 1P  Q̇ is κ-presaturated.

Whether the converse holds is, to the author’s knowledge, an open problem; this appears

as Question 8.6 of (Cox and Eskew, 2018).

Longer iterations are possible:

Definition 2.2.13. Let τ be some ordinal. Then a τ-length iteration, written
〈
Pα, Q̇α | α < τ

〉
,

is a notion of forcing for which:

1. P0 ∈ V

2. For all α > 0, Q̇α is a forcing in VPα with Pα+1 = Pα ∗ Q̇α

3. If α is a limit ordinal, then Pα is some α-sequence of Pβ-terms for β < α
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The behavior of a forcing iteration entirely depends on P0, the Q’s, and what exactly happens

at limit stages:

Definition 2.2.14. 1. A forcing iteration is said to be of finite (countable) support if for

each α limit, only finitely (countably) many forcing terms drawn from the Pβ’s, β < α,

are allowed to be nontrivial.

2. A forcing iteration is of direct support at α if only boundedly in α-many forcing terms

drawn from the Pβ’s, β < α, are nontrivial.

3. A forcing iteration is of inverse support at α if (apart from any restrictions placed at limit

stages below α) there are no restrictions placed on the forcing terms drawn from the Pβ’s,

β < α.

4. And a forcing iteration is of Easton support if the iteration is of direct support at regular

cardinals, and of inverse support at singular limit ordinals.

We will care primarily about Easton support products, and have the following theorem

about their preservation of closure and chain condition:

Proposition 2.2.15. Any Easton support iteration of τ-closed forcings is τ-closed.

Proposition 2.2.16. If λ is a Mahlo cardinal (i.e. has stationarily many regular, equivalently

inaccessible cardinals below), then any λ-length Easton support iteration of λ-cc forcings is λ-cc.

2.3 Ideals, Measures, and Ultrapowers

We have already seen clubs and nonstationary sets in Section 2.1. Their properties generalize

to the notions of filter and ideal. See (Jech, 2003), Chapter 7, for further elaboration on filters
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and ideals, and (Jech, 2003), Chapters 10, 12, and 17 for measurable cardinals and ultrapowers.

We summarize the fundamentals here.

Definition 2.3.1. Let F be a collection of subsets of κ (or Pκ(λ)). Then F is a filter if

• κ (or Pκ(λ)) is in F , and ∅ is not in F

• F is upwards closed under ⊆

• whenever A, B are in F then A ∩ B is also in F

We say F is ultra (equivalently, maximal) if for every A ⊆ κ (or Pκ(λ)), either A is in F , or

Ac, its complement, is in F .

And we say F is nonprincipal if there is no X ⊆ κ (or Pκ(λ)) such that for all Y ∈ F , X ⊆ Y.

By the Axiom of Choice, every cardinal and every powerset algebra admits a nonprincipal

ultrafilter.

The dual notion of a filter is an ideal :

Definition 2.3.2. Let I be a collection of subsets of κ (or Pκ(λ)). Then I is an ideal if

• ∅ is in I, and κ (or Pκ(λ)) is not in I

• F is downwards closed under ⊆

• whenever A, B are in I then A ∪ B is also in I

We say I is prime (equivalently, maximal) if for every A ⊆ κ (or Pκ(λ)), either A is in I, or

A{, its complement, is in I.

And we say I is nonprincipal if there is no X ⊆ κ (or Pκ(λ)) such that for all Y ∈ I, Y ⊆ X.
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Remark 2.3.3. Whenever F is a filter, its dual ideal is given by

^
F :=

{
X{ | X ∈ F

}

Likewise, if I is an ideal, its dual filter is given by

^
I :=

{
X{ | X ∈ I

}

For each κ (or Pκ(λ)), the club filter Cκ (CPκ(λ)), consisting of all subsets on κ (or Pκ(λ))

including a club, is a nonprincipal filter.

Likewise, the nonstationary ideal NSκ (NSPκ(λ))) consisting of all nonstationary subsets of

κ (or Pκ(λ)) is a nonprincipal ideal, and furthermore,
^
NSκ = Cκ (and likewise for Pκ(λ))).

Remark 2.3.4. The stationary sets we may write as (NSκ)
+; in general, whenever I is an ideal,

we write I+ to denote the collection of all S such that for every C ∈
^
I , S ∩ C 6= ∅.

Both the nonstationary ideal and the club filter have much stronger closure properties:

Definition 2.3.5 (closure). Let F be a filter and let τ be a cardinal. Then we say that F is

τ-closed if for every ρ < τ and every family 〈Aα | α < ρ〉 of sets in F ,

⋂
α<ρ

Aα

is also in F .
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Likewise, if I is an ideal, then I is τ-closed if for every ρ < τ and every family 〈Jα | α < ρ〉

of sets in I, ⋂
α<ρ

Jα

is also in I.

Both Cκ (CPκ(λ)) and NSκ (NSPκ(λ))) are κ-closed by Proposition 2.1.2, and by Proposi-

tion 2.1.4, are additionally normal :

Definition 2.3.6. If F is a filter on κ (or Pκ(λ), then we say that F is normal if for any

〈Aα | α < κ〉 of sets in F ,

∆
α<κ

Aα

is also in F .

We say that I is normal if its dual filter is normal.

And Fodor’s Theorem generalizes to arbitrary filters and ideals:

Theorem 2.3.7 (Fodor’s Theorem). Let I be a κ-complete ideal. Then I is normal if and only

if for every f : S → κ (Pκ(λ)) regressive with S ∈ I+, there is some T ⊆ S with T ∈ I+ such

that f � T is constant.

As we have seen, the existence of nonprincipal ultrafilters (equivalently prime ideals) and

κ-complete normal filters (ideals) are both theorems of ZFC. Combining the two, however, is a

large cardinal hypothesis:
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Definition 2.3.8. Let κ be a cardinal. Then κ is measurable if there is a normal measure, i.e.

κ-complete normal nonprincipal ultrafilter, U on κ.

From a measurable cardinal, we may build an ultrapower of V as follows:

Definition 2.3.9. Let U be a normal measure on κ. Then Ult(V,U) is the proper class model

of set theory for which:

• the elements are of the form [f]U, the equivalence class of all f : κ→ V where [f]U = [g]U

if for U-many α, f(α) = g(α), i.e. {α < κ | f(α) = g(α)} ∈ U

• and ∈∗, the binary membership relation, is given by [f]U ∈∗ [g]U if for U-many α, f(α) ∈

g(α)

Theorem 2.3.10 ( Loś’ Theorem). For any formula with parameters ϕ(−→x ), for any
−→
[f], Ult(V,U) |=

ϕ(
−→
[f]) if and only if for U-many α, V |= ϕ(

−−→
f(α)).

Since U is countably complete, ∈∗ in Ult(V,U) is well-founded, and therefore, by the

Mostowski Collapsing Theorem, its transitive collapse M is a ∈-model of set theory. By  Loś’

Theorem, M is also a model of ZFC.

Further, M is a class model since the class map ρ 7→ [α 7→ ρ]U maps to M-ordinals and is

injective. By the κ-completeness, for all ρ < κ, [α 7→ ρ]U = ρ; however [α 7→ κ]U > κ. By

normality, κ ∈M since [α 7→ α]U = κ.

There are some additional behavior properties of M that are standard and easy to prove,

which we encapsulate in the following equivalent definition of measurable cardinal:



21

Proposition 2.3.11. A cardinal κ is measurable if and only if there is a transitive class model

M ⊆ V and an elementary map j : V →M such that

• κ is the least ordinal for which j(κ) > κ

• M is closed under κ-sequences from V, i.e. V |= Mκ ⊆M

For the converse, if j : V →M is such an elementary embedding, then U = {A ⊆ κ | κ ∈ j(A)}

is a normal measure on κ.

Even if a nonprincipal filter (e.g. the club filter) is not maximal, we can use forcing to

define a form of ultrapower. We summarize the core ideas and results we need of these generic

ultrapowers; see (Foreman, 2010) for a more comprehensive overview.

Proposition 2.3.12. Let I be a nonprincipal ideal on κ. Then the poset BI , defined by

BI =
{
[A]^
I
| A ∈ I+

}

with partial order [A]^
I
≤ [B]^

I
if B \ A ∈ I, is a separative notion of forcing. Let G be BI-

generic over V. Then for every X ∈ V, X ⊆ κ, either [X] ∈ G or [X{] ∈ G, so G is a V-ultrafilter.

Thus in V [G] we may define Ult(V,G) and obtain an elementary embedding jI : V → Ult(V,G).

Further, if I is κ-complete then G is V-κ-complete, and if I is normal then G is V-normal,

and G = {X ⊆ κ | κ ∈ j(X)}.

We will variously refer to the generic ultrapower as Ult(V,G) or Ult(V, I), depending on

context, and will also write jI to denote jG : V → Ult(V,G) the generic ultrapower elementary

embedding.
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The generic ultrapower is not always well-founded; this is a special property that gets its

own name:

Definition 2.3.13 (Definition 2.4 of (Foreman, 2010)). An ideal I is said to be precipitous if

whenever G is a BI-generic object over V, Ult(V,G) is well-founded.

A cardinal κ admits a precipitous ideal if and only if κ is measurable in some inner model;

however, precipitous ideals need not be prime, and with large cardinals it is possible to force

NSκ to be precipitous.

We now turn to saturation, which in certain cases acts as a strong form of precipitousness:

Definition 2.3.14. Let µ be a cardinal and let I be an ideal. Then we say that I is µ-saturated

if BI has the µ-chain condition; that is, if for any family 〈Jα | α < µ〉 of I+-sets, there are α 6= β

such that Jα ∩ Jβ ∈ I+.

We say that the saturation of I, written sat(I), is the least µ such that I is µ-saturated.

Clearly any ideal on κ is (2κ)+-saturated, and a prime ideal is 2-saturated.

As for why saturation acts as a strong form of precipitousness:

Theorem 2.3.15. Let I be a κ-complete (nonprincipal) ideal on κ. Then if sat(I) ≤ κ+, then

I is precipitous.

Saturated ideals also lead to a measurable-like closure of the generic ultrapower:

Fact 2.3.16. If I is a κ-complete, κ+-saturated ideal in V, and if G is a BI-generic filter over V,

then in V [G], Ult(V,G)κ ⊆ Ult(V,G); that is, Ult(V,G) is closed under κ-sequences from V [G].
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This follows from Propositions 2.9 and 2.14 of (Foreman, 2010).

By the relevant chain condition, we see that if I is precipitous, then I also preserves sat(I);

this motivates a principle intermediate between saturation and precipitousness:

Definition 2.3.17. Let I be a κ-complete (nonprincipal) ideal on κ, and let µ be a regular

cardinal. Then I is µ-presaturated if I is precipitous and BI preserves µ.

We make the following caveat about presaturation for ideals versus presaturation for posets:

Caveat. In contrast to the definition for a general poset in Section 2.2, only for precipitous

ideals I is it the case that I is µ-presaturated if and only if BI is µ-presaturated as a forcing

poset. For precipitous ideals, this result appears as Theorem 4.2 of (Baumgartner and Taylor,

1982).

Solovay’s Splitting theorem can now be rephrased as an anti-saturation result:

Fact 2.3.18. For every stationary S, BNSκ is not κ-saturated below S.

This result can be argued purely using generic ultrapowers. The proof here is in large part

courtesy of (Chen, 2014):

Proof sketch. Suppose for sake of contradiction that NSκ is κ-saturated below S. Suppose that

S ⊆ Reg ∩ κ; then

T := {α ∈ S|S ∩ α ∈ NSα}

is stationary in κ.

Then a V-generic filter G for BNSκ�T is a V-κ-complete V-normal V-ultrafilter with well-

founded ultrapower j : V → Ult(V,G) that is closed under κ-sequences from V [G]. Since we
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forced with BNSκ�T , T ∈ G, hence κ ∈ j(T), and so j(S) ∩ κ = S is no longer stationary in

Ult(V,G), hence is nonstationary in V [G]. But since NSκ was assumed to be κ-saturated, our

forcing has the κ-chain condition and hence Smust be stationary in V [G]; this is a contradiction.

A similar argument holds if S ∩ cof(λ) is stationary for some λ < κ; for if we force in BNSκ

below S ∩ cof(λ), we get that κ ∈ j(S ∩ cof(λ)) and thus cfUlt(V,G)(κ) = λ. But BNSκ is κ-cc, so

preserves the regularity of κ; this is a contradiction.

However, there are still useful arguments that can be written just from having that BNSκ

is precipitous. For example, this simplifies Silver’s original argument in (Silver, 1977) that

if SCH fails at a singular cardinal, then the first singular cardinal at which SCH fails must

have countable cofinality. Precipitousness results concerning nonstationary ideals have a long

history, and are well collated in (Cummings, 2010)) and (Foreman, 2010).

To compute saturation (and other) properties on ideals in generic extensions, we may use

Foreman’s Duality Theorems. Let P be a notion of forcing and let I be a precipitous ideal in

V; we write I to denote {A ∈ VP | ∃X ∈ I A ⊆ X}. Then Foreman’s Duality Theorems (the

many forms of which can be found in (Foreman, 2010), Chapter 7.4) allow for the computation

of various (including saturation) properties of I. We will be using special cases of this fairly

general formulation, which appears as Theorem 7.14 of (Foreman, 2010):

Theorem 2.3.19. Let I be precipitous on a set algebra A, P is a poset, and there is a condition

ṁ ∈ ˙jI(P) such that the embedding

id× j̇I : (A/I)× P→ (A/I) ∗ ˙jI(P)/ṁ
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is regular.

Then there exist conditions R ∈ P ∗ ˙A/I and S ∈ (A/I) ∗ ˙jI(P) such that

(
P ∗ ˙A/I

)
/R ∼=

(
A/I ∗ ˙jI(P)

)
/S

2.4 Mitchell order

By elementary arguments, for any normal measure U, U /∈ Ult(V,U) (c.f. for instance (Jech,

2003), Chapter 17). Thus if U is the only normal measure on κ, then κ is nonmeasurable in

Ult(V,U). So if κ remains measurable in Ult(V,U), then κ must admit two normal measures;

further, by elementarity, U-many cardinals below κ are also measurable. So already the strength

of ‘‘κ is measurable in Ult(V,U)" is much stronger than a single measurable.

Mitchell rank and Mitchell order give a precise notion of this additional large cardinal

strength:

Definition 2.4.1 (Mitchell order). Let κ be a cardinal, and let U0, U1 be normal measures on

κ. Then we say that U0 ≺ U1 if U0 ∈ Ult(V,U1).

Mitchell order admits a notion of Mitchell rank:

Proposition 2.4.2. ≺ is well-founded.

Definition 2.4.3. If κ is a cardinal, then o(κ), the Mitchell order of κ, is the supremum of all

valid order types of ≺-well-ordered sequences on κ.

If o(κ) = 2 witnessed by U0 ≺ U1, then by definition of Ult(V,U1), there is some function r

with domain κ such that [r]U1 = U0.
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In particular, by elementarity, U1-many δ < κ are measurable, with measure r(δ) = {A∩ δ |

A ∈ U0}.

If furthermore o(κ) = 3 witnessed by U0 ≺ U1 ≺ U2, then U2-many δ < κ are measurable

of Mitchell rank 2, and there is a function r on κ that can simultaneously represent both U0

and U1 for U2, and U0 for U1.

For larger Mitchell ranks and orders, we have the following abstraction that generalizes the

above r, which can be found in (Mitchell, 2010).

Definition 2.4.4 (Coherent system of measures). A coherent sequence of measures on (a

measurable) κ (with positive Mitchell order) is a function U for which:

1. U =
〈
U(α,η) | α ≤ κ is measurable, U(α,η) is a normal measure on α, and η < oU (α)

〉
where

oU (α) is some ordinal

2. (Coherence) For all such α, η, if U = U(α,η) then ojU(U)(α) = η and jU(U)(α,ζ) = U(α,ζ) for

all ζ < η.

Coherent systems will become important when we wish to introduce Magidor forcing.

2.5 Singularizing Cardinals via Prikry Forcing

While the Lévy collapses Col(κ, λ) and Col(κ,< λ) require no large cardinal strength (or

only an inaccessible), being able to singularize a cardinal without collapsing any cardinals by

means of forcing requires a ground model with remnants of measurability, as shown by Jensen’s

Covering Lemma (c.f. (Jech, 2003), Chapter 18). The first such forcing comes from work by
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Prikry. A good summary can be found in (Jech, 2003), Chapter 21; as our results depend on

generalizations of Prikry forcing, we summarize the salient points here.

Definition 2.5.1 (Prikry forcing). Let U be a normal measure on κ. Then we define the forcing

P(U) by:

1. Conditions are of the form (s,A) where s ∈ [κ]<ω is strictly increasing, A ∈ U, and

max(s) < min(A)

2. The condition (t, B) ≤ (s,A) if t ⊇ s, B ⊆ A, and for all ρ ∈ t \ s, ρ ∈ A

A generic filter G induces an ω-length sequence 〈βn | n < ω〉 cofinal below κ, given by

〈βn | n < ω〉 =
⋃

(s,A)∈G

s

Thus κ is no longer measurable, as cfV[G](κ) = ω. Remarkably, however, P(U) does not collapse

cardinals, because the measure one components can decide the generic object’s behavior. We

make this precise:

Definition 2.5.2 (Direct and n-step extension). Let (t, B) ≤ (s,A). We say that (t, B) is a

direct extension of (s,A), written (t, B) ≤∗ (s,A), if t = s.

And we say that (t, B) is an n-step extension of (s,A) if |t \ s| = n.

As (s,A) ‖ (s, B) for any A,B (as (s,A ∩ B) = (s,A) ∧ (s, B)), incompatibility is entirely

characterized by the stem and so P(U) is κ+-cc.
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As for preservation of cardinals below κ1, we use the fact that ≤∗ is quite powerful.

Lemma 2.5.3 (Prikry property, open dense version). Let p ∈ P(U), and let D be an open

dense subset of P(U). Then there is a q ≤∗ p and an n < ω such that every n-step extension

of q is in D.

Essentially, this follows from the normality of U. As a corollary, direct extensions are

sufficient to decide sentences in the forcing language:

Corollary 2.5.4 (Prikry property, sentential version). Let p ∈ P(U) and let σ be a sentence

of the forcing language. Then there is an r ≤∗ p such that r decides σ.

Proof sketch. Since the collection of all conditions deciding σ is open dense, there is some q ≤∗ p

and an n such that every n-step extension of q decides σ.

But exactly one of σ and ¬σ is forced measure-one often by the n-step extensions of q, so

there is an r ≤∗ q such that every n-step extension of r decides σ the same way (the fleshed-out

argument proceeds by induction on n). But then by density, r must decide σ that same way.

Corollary 2.5.5. P(U) adds no bounded subsets of κ, and thus preserves cardinals.

Proof sketch. Let p  Ẋ ⊆ τ for some τ < κ. For each α < τ, there is some pα ≤∗ p deciding

‘‘α ∈ Ẋ"; then since U is κ-complete, the greatest lower bound q of 〈pα | α < τ〉 suffices to define

Ẋ entirely within V.

1which is enough to show preservation of κ, as the limit of cardinals is also a cardinal
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Prikry forcing is a key ingredient in proving the consistency of the failure of the Singular

Cardinals Hypothesis, which follows from larger cardinals than a single measurable:

Fact 2.5.6. Let κ be supercompact. Then after forcing to make κ measurable such that 2κ > κ+

and singularizing κ with Prikry forcing, SCH fails at κ.

The argument is originally due to Magidor; subsequent work by Gitik, Woodin, and Mitchell

across several papers showed that the large cardinal hypothesis of κmeasurable with o(κ) = κ++

is necessary and sufficient.

As we will generalize in Section 2.6, Prikry forcing admits a neat characterization of gener-

icity, courtesy of (Mathias, 1973):

Proposition 2.5.7. If 〈βn | n < ω〉 is P(U)-generic then for all A ∈ U, for cofinitely many n,

βn ∈ A.

Conversely, suppose ~γ = 〈γn | n < ω〉 ∈ VP(U) is such that for every A ∈ U, for cofinitely

many n, γn ∈ A. Let

H = {(s,A) | s a finite initial segment of ~γ, A ∈ U, and ∀n ≥ lh(s) γn ∈ A}

Then H is P(U)-generic over V.

If one wishes to simultaneously singularize κ while collapsing cardinals below to make κ into

ℵω, then one may adjust the definition of Prikry forcing to interleave collapses between the

Prikry points. To ensure a Prikry-type property as in Lemma 2.5.3, one may use the technique

of guiding generics. We will generalize this to uncountable cofinality in Section 5.1.
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This particular forcing is well documented in (Cummings, 2015).

Proposition 2.5.8. Let κ be measurable with normal measure U and suppose that 2κ = κ+.

Let j : V → Ult(V,U) be the measure embedding associated with U. Then there is a K ∈ V such

that K is Col(κ+, < j(κ))Ult(V,U)-generic over V.

Proof. Observe that there are at most (2κ)V -many antichains of Col(κ+, < j(κ)) in the ultra-

power; this is since each such antichain is of the form [f], where f is a function with domain κ

such that for all α, f(α) is an antichain of Col(α+, < κ).

Let 〈Aβ|β < 2κ〉 be a V-enumeration of all antichains of Col(κ+, < j(κ)) in the ultrapower.

Since (2κ)V = κ+, we have that |j(κ)| = κ+, and thus there exactly κ+-many antichains of

Col(κ+, < j(κ)) in Ult(V,U). Since Col(κ+, < j(κ)) is κ+ 1-closed and the ultrapower is closed

under κ-sequences, we may iteratively build a descending chain K ′ = 〈pβ|β < κ+〉 such that for

every maximal antichain Aβ in the ultrapower, pβ ∈ Aβ or is stronger than some condition in

Aβ. Then K, the upwards closure of K ′, is as desired.

With such K, we may define a Prikry-type forcing with interleaved collapses chosen from K:

Definition 2.5.9 (Prikry with guided interleaved collapses). Let U be a normal measure on κ,

and let K be as in Proposition 2.5.8. Then we define PC(U) by:

1. Conditions are of the form (s, c,A,C) where

• s ∈ [κ]<ω is strictly increasing and s(0) = ω1

• max(s) < min(A)
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• dom(c) = dom(s), and for each n < lh(s) − 1, c(n) ∈ Col(s(n)+, < s(n + 1)), and

c(lh(s) − 1) ∈ Col(s(lh(s) − 1)+, < κ)

• C is a function with domain A, C(ρ) ∈ Col(ρ+, < κ) for each ρ ∈ A, and [C]U ∈ K

2. We say (s ′, c ′, A ′, C ′) ≤ (s, c,A,C) if

• s ′ ⊆ s

• for each n < lh(s), c ′(n) ≤ c(n) in the relevant collapse forcing

• for each n ∈ [lh(s), lh(s ′)), s ′(n) ∈ A and sup(c(n)) < s ′(n)

• A ′ ⊆ A

• [C ′] ≤ [C]

In the case that s ′ = s, we say (s ′, c ′, A ′, C ′) ≤∗ (s, c,A,C).

In the case that |s ′| = |s|+n, we say that (s ′, c ′, A ′, C ′) is an n-step extension of (s, c,A,C).

Conditions with the same s need not be compatible due to their collapse terms being in-

compatible. However, the use of the guiding generic still grants us a Prikry-type property:

Lemma 2.5.10. For every p ∈ PC(U) and every dense set D there is a q ≤∗ p and an n such

that every n-step extension of q is in D.

Corollary 2.5.11. Let G be PC(U)-generic over V and let

〈βn | n < ω〉 =
⋃

(s,c,A,C)∈G

s

Then each βn and β+
n is preserved, as are all cardinals ≥ κ.
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Further, for every ρ ∈ [β+
n , βn+1] for some n, |ρ|V[G] = β+

n ; hence κ = (ℵω)
V[G].

A proof is outlined in (Cummings, 2015).

Similar to Prikry forcing, we get the following generic object:

Proposition 2.5.12. Let G be PC(U)-generic over V; let

〈βn | n < ω〉 =
⋃

(s,c,A,C)∈G

s

and for each n let

Fn = {c(n) | ∃s,A,C (s, c,A,C) ∈ G and n ∈ dom(c)}

Then

1. for all A ∈ U, for cofinitely many n, βn ∈ A

2. Fn is Col(β+
n , < βn+1)-generic over V and if C ∈ V with [C] ∈ K, then for cofinitely many

n, C(βn) ∈ Fn

Conversely:

Proposition 2.5.13. Work in VPC(U); let ~γ = 〈γn | n < ω〉 be a strictly increasing sequence

with limit κ such that for each A ∈ U, for cofinitely many n, γn ∈ A. Let Gn be Col(γ+n , <

γn+1)-generic over V such that for all C ∈ V with [C] ∈ K, for cofinitely many n, C(γn) ∈ Gn.
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Let

H =

(s, c,A,C) ∈ PC(U)

∣∣∣∣∣∣∣∣
∀n < lh(s) s(n) = γn and c(n) ∈ Gn,

and ∀n ≥ lh(s) γn ∈ A and C(γn) ∈ Gn


Then H is PC(U)-generic over V.

The proof is essentially the argument found in (Sinapova and Unger, 2014).

2.6 Singularizing Cardinals via Magidor Forcing

Magidor forcing is a standard tool for singularizing cardinals to have uncountable cofinality

without collapsing cardinals. The original approach for Magidor forcing found in (Magidor,

1978) uses a system of representatives r for normal measures below κ the measurable cardinal

we wish to singularize to cofinality λ < κ. The relevant properties follow from a coherent system

of measures:

Remark 2.6.1. Let U be a coherent system of normal measures at κ with oU (κ) = λ, and let

α ≤ κ, η < τ < oU (α).

Since Uα,η ∈ Ult(V,Uα,τ), we may fix some rτα,η : κ→ V such that [rτα,η]Uα,τ = Uα,η.

By elementarity, Uα,τ-often below κ, rτα,η(δ) will be a normal measure on δ, and will have

Mitchell rank η among normal measures on δ. So we can further have that for Uα,τ-many η < κ,

for all ζ < η, rτα,ζ(δ) ≺ rτα,η(δ).
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And we can expect even stronger coherence as follows: For every α ≤ κ and every τ < oU (α),

for Uα,τ-many δ, for every ζ < η < τ, we will have that

[rηα,ζ � δ]rτα,η(δ) = r
τ
α,ζ(δ)

as a measure-one reflection of the statement that [rτα,η]Uα,τ = Uα,η

Keeping this in mind, we will fix some measure-one sets witnessing useful coherence prop-

erties for r:

Remark 2.6.2. • Fix ~U = 〈Uξ | ξ < λ〉 a Mitchell-order increasing sequence of normal mea-

sures on κ.

• Observe: for η < ξ < λ, we may let rξη : κ → V represent Uη in Ult(V,Uξ). By elemen-

tarity, we have that for Uξ-many δ, rξη(δ) is a normal measure on δ with Mitchell rank η,

and furthermore this can be witnessed by r; i.e. rξζ(δ) ≺ r
ξ
η(δ) for all ζ < η.

• Fix Xξ to be the set of all such δ < κ as in the above bullet point.

• Fix Y0 = κ ∩ Inacc.

• For Uξ-many δ ∈ Xξ, we have a coherence property among the representatives, in the

sense that whenever ζ < η < ξ, [rηζ � δ]rξη(δ) = r
ξ
ζ(δ).

• Fix Yξ to be the set of such δ < κ as in the above bullet point.

From now on, unless otherwise stated, we will assume our measure one sets are included in

some Yξ, and any ordinal ρ strictly between λ and κ lives in some Yξ.
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Definition 2.6.3 (Magidor forcing, M
(
~U
)

: conditions). Conditions are ordered pairs (f,A)

where:

1. dom(f) ∈ [λ]<ω and dom(A) = λ \ dom(f)

2. For ξ ∈ dom(f), f(ξ) ∈ Yξ, f(ξ) > λ, and f is strictly increasing.

3. For ξ ∈ dom(A) with ξ < maxdom(f), let τ = min{dom(f) \ (ξ + 1)}. Then A(ξ) ∈

rτξ(f(τ)). That is, if f already has already added an ordinal with index above ξ, then

the measure that we’ll be picking the value of f(ξ) from in the future will be a normal

measure on f(τ) (instead of κ) with Mitchell rank ξ.

4. For ξ ∈ dom(A) with ξ > maxdom(f), A(ξ) ∈ Uξ. Letting τ = max(dom(f) ∩ ξ), we

further require that A(ξ) ⊆ Yξ \ (f(τ) + 1).

Definition 2.6.4 (Magidor forcing, M
(
~U
)

: extension). We say that (g, B) ≤ (f,A) if:

1. g ⊇ f

2. Whenever ξ ∈ dom(g) \ dom(f), g(ξ) ∈ A(ξ)

3. Whenever ξ ∈ λ \ dom(g), B(ξ) ⊆ A(ξ)

In the case where g = f, we say that (f, B) is a direct extension of (f,A) and write (f, B) ≤∗ (f,A).

For notational convenience, if p = (f,A) we will say that f is the stem of p, and write

stem(p) to mean f. Additionally, we will say that A is the measure component of p and write

meas(p) to mean A1.

1We will use an alternative convention p = (fp, Ap) in line with (Gitik, 2010) in a future section,
when stem and meas become too cumbersome.



36

Remark 2.6.5. There are several non-obvious reasons why we use 〈Yξ | ξ < λ〉. The clearest

reason, however, is in ensuring that two-step extensions commute, in the following sense: sup-

pose (∅, A) is a condition, ζ < ξ < λ, ρ ∈ Yζ, and σ ∈ Yξ. Then minimally extending to

((ξ, σ), Aξ) ensures that ρ ∈ Aξ(ζ) = A(ζ) ∩ σ ∈ rξζ(σ) so that for minimally extended choice

of B, ((ζ, ρ) _ (ξ, σ), B) is below both ((ζ, ρ), Aζ) and ((ξ, σ), Aξ).

Here’s some heuristic information on how M
(
~U
)

behaves:

• M
(
~U
)

adds a sequence 〈αη | η < λ〉 increasing, normal, and with supremum κ, changing

the cofinality of κ into λ. We obtain 〈αη | η < λ〉 from a generic G by 〈αη | η < λ〉 =⋃
(f,A)∈G f.

• A condition (f,A) in the generic filter has specified a finite subset of the above sequence

where if η ∈ dom(f), then f(η) = αη. Further, if η ∈ dom(A), then (f,A) specifies that

αη ∈ A(η) (and in particular, αη is a V-measurable cardinal with ~U-rank η).

Lemma 2.6.6. M
(
~U
)

has the κ+-cc and thus preserves all cardinals larger than κ.

Proof. As with Prikry forcing, incompatible conditions must have different stems so antichains

are no larger than
∣∣κ[λ]<ω∣∣ = κ.

Crucially, M
(
~U
)

itself factors into different Magidor forcings below each point, as follows:

Definition 2.6.7. Let p = (f,A) ∈M
(
~U
)

and let ξ be a limit ordinal below λ. Then we may

define the following:

• (p)ξ = (f,A)ξ = (f � (ξ+ 1), A � (ξ+ 1))
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• (p)ξ = (f,A)ξ = (f � (λ \ (ξ+ 1)), A � (λ \ (ξ+ 1)))

• M
(
~U
)
(ξ,β)

= {(f,A)ξ | (f,A) ∈M
(
~U
)
, ξ ∈ dom(f), and f(ξ) = β}

• M
(
~U
)(ξ,β)

= {(f,A)ξ | (f,A) ∈M
(
~U
)
, ξ ∈ dom(f), and f(ξ) = β}

Fact 2.6.8. Observe that, for ξ limit, by choice of Yξ’s, relative to the weakest A for which

p = ((ξ, β), A), we have that M
(
~U
)
/p ∼= M

(
~U
)
(ξ,β)

× M
(
~U
)(ξ,β)

, which are themselves

Magidor forcings. In particular,

M
(
~U
)
(ξ,β)

= M
(〈
rξζ(β) | ζ < ξ

〉)

and has the β+-cc.

Additionally,

M
(
~U
)(ξ,β)

= M
(〈
U ′χ | ξ < χ < λ

〉)
where for ξ < χ < λ, U ′χ = {A \ (β + 1) | A ∈ Uχ}. Furthermore,

(
M
(
~U
)(ξ,β)

,≤∗
)

is

< β+-directed closed by closure of the measures and size of the cardinals in each U ′χ.

Note that by Proposition 2.2.8, after forcing with M
(
~U
)
(ξ,β)

, the partial order

(
M
(
~U
)(ξ,β)

,≤∗
)

remains < β+-distributive.

A similar factoring applies to any finite stem, not just (ξ, β).

Magidor forcing admits an analogue of the Prikry lemma. Recall that in Prikry forcing, for

every condition p and every dense subset D, there is an n and a q ≤∗ p such that every n-step

extension of q is in D. For M
(
~U
)

, this lemma takes on a different form; rather than n-step
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extensions, we care about a-step extensions. Whereas an n-step extension of Prikry tacked on

n new ordinals at the end, an a-step extension will specify finitely many new elements of our

generic sequence, with indices coming exactly from a:

Definition 2.6.9. Let a ∈ λ<ω. If (f,A) ∈ M
(
~U
)

and a ⊆ dom(A), we say that (g, B) is an

a-step extension of (f,A) if (g, B) ≤ (f,A) and dom(g) = dom(f) t a.

Before we state and prove Prikry-type lemmas for Magidor forcing, it is worth formalizing

how we may diagonalize over all possible extensions. We will want a notion of minimal exten-

sion, where we wish to extend e.g. (f,A) to (f_ ~ν,A ′) for some ~ν, and A ′ altered as little as

possible from A:

Definition 2.6.10. If p = (f,A), ~ν : a→ κ for some a a finite subset of λ \ dom(f), and there

is some B for which (f _ ~ν, B) is a condition below p, we write p _ ~ν to mean the weakest

such (f _ ~ν,A ′) below p. Namely, for ξ > maxdom(f _ ~ν), A ′(ξ) = A(ξ) \ (f_~v(ξ) + 1),

and for ξ < maxdom(f_ ~ν): for τ being the least domain element of f_ ~ν bigger than ξ:

• if τ ∈ dom(ν), we have that A ′(ξ) = A(ξ) ∩ (~ν(τ)); since [α 7→ A(ξ) ∩ α]rτξ(ν(τ)) = A(ξ)

and ν(τ) ∈ Yτ, A ′(ξ) ∈ rτξ(ν(τ)) and is the ⊆-largest such.

• if τ ∈ dom(f), then A ′(ξ) = A(ξ).

Lemma 2.6.11 (Diagonalization Lemma). Let p = (g,H) ∈M(~U) and let

E =

{
~ν : a→ κ | a ∈ [dom(H)]<ω,~ν ∈

∏
α∈a

H(α), and p_ ~ν is a condition below p

}
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Let 〈p~ν | ~ν ∈ E〉 be some family of conditions such that p~ν ≤∗ p _ ~ν. Then there exists a

q ≤∗ p such that for all ~ν ∈ E for which q_ ~ν is a condition (i.e. ~ν is increasing and lies in∏
ζ∈dom(ν)meas(q)(ζ)), q_ ~ν ≤∗ p~ν.

Proof. For each a ∈ [dom(H)]<ω, let Ea = {~ν ∈ E | dom(~ν) = a}. We will show how to obtain,

for each a, a qa ≤∗ p such that for all ~ν ∈ Ea for which ~ν is a valid extension of qa, qa _

~ν ≤∗ p~ν; we’ll say that such qa is good for p and Ea. Since ≤∗ is λ+-directed closed, (as every

involved measure is λ+-complete), the greatest ≤∗-lower bound q of 〈qa | a ∈ [dom(H)]<ω〉 will

be as desired.

To define qa, we first define qa for |a| = 1 and then will induct on |a|. Without loss

of generality, we may assume that g = ∅; we will justify why we may assume this after the

following claim.

Claim 2.6.12. Suppose g = ∅; then for each α < λ there is some pα ≤∗ p (with pα = (∅, Hα))

that is good for p and E{α}, that is, for all ν ∈ Hα(α), pα _ (α, ν) ≤∗ p(α,ν).

Proof of claim. Let α < λ; it is given that for each ν ∈ H(α), p(α,ν) := ((α, ν), Hν) is ≤∗-below

p_ (α, ν).

We define pα = (∅, Hα) over three separate cases, defining Hα(β) depending on where β

falls relative to α.

Let β < λ. Then to define Hα(β):

Case 1: If β > α, then let

Hα(β) = ∆
ν∈H(α)

Hν(β)
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Case 2: If β < α, consider the map ν 7→ Hν(β), mapping from ν ∈ H(α) to measure one sets

in rαβ(ν). By  Loś’ Theorem and definition of rαβ, [ν 7→ Hν(β)]Uα ∈ Uβ; let Bβ,α = [ν 7→
Hν(β)]Uα . Also, since [rβα]Uα = Uβ, and since Bβ,α = [ν 7→ Bβ,α ∩ ν]Uα , we have that for

some Cβ,α ∈ Uα, for all ν ∈ Cβ,α, Bβ,α ∩ ν = Hν(β). Let

Hα(β) = Bβ,α ∩H(β)

Our final case depends on the use of Cβ,α.

Case 3: Finally, for β = α, let

Hα(α) = H(α) ∩
⋂
γ<α

Cγ,α

which is measure one by the completeness of the relevant measure.

To finish the claim, let α ∈ dom(H) and let ν ∈ Hα(α). Let J = meas(pα _ (α, ν)); our goal

is to show that for each β 6= α, J(β) ⊆ Hν(β).

For β > α, J(β) = Hα(β) \ (ν + 1), which by the choice made in Case 1, is included in

Hν(β).

For β < α, then by the choices made in Cases 2 and 3, ν ∈ Cβ,α and hence J(β) =

Hα(β) ∩ ν ⊆ Hν(β).

Thus Hα is as desired.

Of course, we will want to argue for arbitrary g:
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Claim 2.6.13. For every g and every α < λ there is some pα ≤∗ p (with pα = (∅, Hα)) that is

good for p and E{α}, that is, for all ν ∈ Hα(α), pα _ (α, ν) ≤∗ p(α,ν).

Proof of claim. As in Claim 2.6.12, for each ν ∈ H(α), let p(α,ν) ≤∗ p_ (α, ν), where p(α,ν) =

(g,Hν).

In the event that g = (ξ, ρ), we have two cases, depending on α:

Case 1: If α > ξ, then we may argue as in Claim 2.6.12 for p � (ξ, λ) ∈ M (〈Uγ | ξ < γ < λ〉) to

obtain some

(∅, Hξ α) ∈M(〈Uγ | ξ < γ < λ〉)

such that whenever ν ∈ Hξ α(α), (∅, Hξ α) _ (α, ν) ≤∗ p(α,ν) � (ξ, λ).

As for working below ξ, let ζ < ξ. Then for each ν ∈ Hξ α(α), Hν(ζ) ∈ rξζ(ρ), and

|rξζ(ρ)| = 2
ρ < κ. So by κ-completeness there is an Fζ,α ∈ Uα and some Gζ,α ∈ rξζ(ρ) such

that for all ν ∈ Fζ,α, Hν(ζ) = Gζ,α.

Then our desired pα ≤∗ p is given by

meas(pα)(γ) =



Gγ,α γ < ξ

Hξ α(γ) ∩
⋂
ζ<ξ Fζ,α γ = α

Hξ α(γ) γ > ξ, γ 6= α
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since whenever ν ∈ meas(pα)(ν), by construction we have that (pα _ (α, ν)) � (ξ, λ) ≤∗

p(α,ν) � (ξ, λ), and since ν ∈ Fζ,α for all ζ < ξ, (pα _ (α, ν)) � ξ = 〈Gγ,α | γ < ξ〉 which is

by construction a direct extension of p(α,ν) � ξ.

Case 2: If α < ξ, then H(α) ∈ rξα(ρ) and hence H(α) ⊆ ρ. So working in M
(
~U
)
(ξ,ρ)

, we may

invoke Claim 2.6.12 for (∅, H) � ξ to obtain (∅, G) ∈ M
(
~U
)
(ξ,ρ)

such that for every

ν ∈ G(α), (∅, G) _ (α, ν) ≤∗ p(α,ν) � ξ. But then since there are only ρ-many such ν, for

each such ν and each β > ξ,
⋂
ν∈G(α)Hν(β) ∈ Uβ. So let

pα =

(ξ, ρ), G_

〈 ⋂
ν∈G(α)

Hν(β) | ξ < β < λ

〉

Then pα ≤∗ p and by our construction for pα � (ξ, λ), we have that pα _ (α, ν) ≤∗ p(α,ν)

for every ν ∈ G(α).

For larger g, note that |g| is always finite. So, letting β = maxdom(g), we may recursively

argue exactly as above for p � (β, λ) and p � β.

Hence we now have, for each |a| = 1, some qa good for p and Ea.

For the induction, suppose that we have that for each a of length n some qa ≤∗ p that is

good for p and Ea. Let b be a stem of length n+ 1, let α0 = minb, and let a = b \ {α0}. Then

by induction, for all ν ∈ H(α0), there is some q ′ν ≤∗ p(α0,ν) such that q ′ν is good for p(α0,ν) and

Ea. By the above claim applied to the family 〈q ′ν | ν ∈ H(α0)〉, there is some qb that is good

for p and Eb.
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Lemma 2.6.14 (Prikry-type lemma, open dense version). Let D be an open dense set and

p = (g,H) a condition. Then there is an a ∈ λ<ω and an r ≤∗ p such that every a-step

extension of r is in D.

Proof. Let E be as in Lemma 2.6.11. For every ~ν ∈ E, let

p~ν =


some chosen q ≤∗ p_ ~ν with q ∈ D if such q exists

p_ ~ν otherwise

Of course, by open density, there will always be some q ≤ p _ ~ν with q ∈ D; the point is

we want such q to be a direct extension only.

By Lemma 2.6.11, we obtain, for 〈p~ν | ~ν ∈ E〉, some p ′ ≤∗ p such that for all ~ν, p ′ _ ~ν ≤∗

p~ν. We now claim the following:

Claim 2.6.15. For every a ∈ [dom(H)]<ω, there is a q ≤∗ p ′ such that either every a-step

extension of q is in D, or none are.

Proof of claim. We proceed by induction on |a|.

If a = {i}, then let B+ = {ν ∈ meas(p ′)(i) | p ′ _ (i, ν) ∈ D}, and B− = {ν ∈ meas(p ′)(i) |

p ′ _ (i, ν) /∈ D}. Since B+ t B− = meas(p ′)(i), exactly one of these is measure one with

respect to the relevant measure; let B ′ be whichever one it is. Let H∗ be the function on λ

where H∗(i) = B ′ and when j 6= i, H∗(j) = H(j). Let q = (stem(p ′), H∗). To see that q is

as desired, note that clearly q ≤∗ p ′, and if B ′ = B+, then every {i}-step extension is in D.

If instead B ′ = B−, then let ν ∈ B−. Then q _ (i, ν) ≤∗ p ′ _ (i, ν) ≤∗ p(i,ν) and since
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p ′ _ (i, ν) /∈ D, we must have had that p(i,ν) = p _ (i, ν) which is also not in D. What’s

more, by definition of p(i,ν), no direct extension of p_ (i, ν) lands in D, either. In particular,

no direct extension of q _ (i, ν) is in D. Since ν ranged over all valid i-step extensions of q,

we have shown that no {i}-step extension of q is in D.

Before we move to the general case, we note the following for the case a = {i, j} with i < j.

For each ν ∈ meas(p ′)(i), we may perform the same argument as above for p ′ _ (i, ν) at j to

obtain a qν ≤∗ p ′ _ (i, ν) such that either every {j}-step extension of p ′ _ (i, ν) is in D, or

none are. We will additionally induct on this as well.

For |a| > 1, suppose the claim is true for every b-step extension with |b| = n. Let |a| = n+1,

and let i = min(a). and suppose ν ∈ meas(p ′)(i). By our induction hypothesis, there is a

qν ≤∗ p ′ _ (i, ν) such that either every a \ {i}-step extension of qν is in D, or none are. As in

the |a| = 1 case, let B+ = {ν ∈ meas(p ′)(i) | ∀ a \ {i}-step extensions r ≤ qν, r ∈ D} and let

B− = {ν ∈ meas(p ′)(i) | ∀ a\{i}-step extensions r ≤ qν, r /∈ D}. Since B+tB− = meas(p ′)(i),

exactly one of B+ and B− is measure one; let B ′ be whichever one it is. Then the desired

direct extension q ≤∗ p ′ will be given by meas(q)(i) = B ′, meas(q)(j) = ∆ν∈B ′ meas(qν)(j)

whenever j ∈ a \ {i}, and meas(q)(j) = meas(p ′)(j) otherwise.

To see that q is as desired, note that every a-step extension r of q can be viewed as a

{i}-step extension followed by an a\{i}-step extension; stem(r)(i) ∈ B ′, and for every j ∈ a\{i},

stem(r)(j) ∈ meas(qν)(j). Thus as in the |a| = 1 argument, and by choice of p ′, either every

a-step extension of q is in D or none are.
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And moreover, if i ′ < i, we can inductively argue for p ′ _ (i ′, ν) for each ν ∈ meas(p ′)(i ′)

to obtain qν ≤∗ p ′ _ (i ′, ν) such that either every a-step extension of qν is in D, or none

are.

By iterated use of the above claim, we fix a λ-length enumeration of [dom(H)]<ω and

obtain a ≤∗-decreasing sequence 〈pa | a ⊆ [dom(H)]<ω〉 with pa ≤∗ p ′ such that every a-step

extension of pa is in D or none are.

Let r be a ≤∗-lower bound of the pa’s, obtained by taking λ-sized intersections over the

measure components of the pa’s. Then by construction of r, for any b, every b-step extension

of r is below pb so either every b-step extension of r is in D, or none are.

Since D is open dense, let q ∈ D be below r, and let a be such that q is an a-step extension

of r. Then since some a-step extension of qa is in D, we have that all a-step extensions of qa

are in D and hence so are all a-step extensions of r.

A careful reading of the above argument actually gives something stronger:

Lemma 2.6.16. Let D be an open dense set, p = (g,H) be a condition, and r ≤∗ p be as in

the proof of Lemma 2.6.14. Then for every b ⊆ [dom(H)]<ω, either every b-step extension of

r is in D, or none are.

As with Prikry forcing, the open dense version translates into a sentential version for every

sentence of the forcing language:

Lemma 2.6.17 (Prikry-type lemma, sentential version). Let σ be a sentence of the forcing

language, and let (f,A) ∈M
(
~U
)

. Then there is an (f, B) ≤∗ (f,A) such that (f, B) decides σ.
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The proof may be done by induction: for such (f,A), let (f, B) ≤∗ (f,A) and a ⊆ [λ]<ω be

such that every a-step extension of (f, B) decides σ. The argument then proceeds by induction

on |a|. But the crux of the argument is really a measure-one concentration:

Proof. Since the collection of conditions deciding σ is open dense, by Lemma 2.6.14, there is

some (f,A ′) ≤∗ (f,A) and some a such that every a-step extension of (f,A ′) decides σ. But

then, by a similar argument as in Claim 2.6.15, one of either σ or ¬σ is forced measure one-often

below (f,A ′). So we may shrink the measures in A ′ to some measure-one family B so that every

a-step extension of (f, B) decides σ the exact same way. But then (f, B) decides σ that way as

well.

Further arguments along similar lines as in Lemma 2.6.14 yields an even stronger Prikry-type

lemma in which we may change the initial part of a condition:

Lemma 2.6.18 (Prikry-type lemma, tail-change version). Let D be an open dense set, let

(f,A) ∈ M(~U), and let β ∈ dom(f). Then there is an (f, B) ≤∗ (f,A) such that (f, B)β =

(f,A)β and for every b, if (g,H) is a b-step extension of (f, B) and (g,H) ∈ D, then every

b \ (dom(g) ∩ β)-step extension of (g,H)β _ (f, B)β is also in D.

This appears as Theorem 3.5 of (Fuchs, 2014), and we give a proof here:

Proof. For ease of notation, let f(β) = ρ. For each r ≤ (f,A)β in M(~U)(β,ρ), by Lemma 2.6.16,

let pr ≤∗ r_ (f,A)β (in the full M(~U)) be such that for every b, either every b-step extension of

pr is in D, or none are. By construction, for each such r, (pr)β ≤∗ r and (pr)
β = (f,meas(pr))

β.
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Let qr = (f,A)β _ (pr)
β; note that qr ≤∗ (f,A) by construction. Since there are at most

2ρ-many such r and since ≤∗ on M(~U)(β,ρ) is ρ ′-directed closed for ρ ′ the least inaccessible

above ρ, let (f, B) be the greatest ≤∗-lower bound of the qr’s, where B is given by

B(γ) =


A(γ) γ < β

⋂
rmeas(qr)(γ) γ > β

To complete the argument, if (g,H) ≤ (f, B) and (g,H) ∈ D, let r = (g,H)β and let b be such

that (g,H) is a b-step extension of (f, B). Then by construction, (g,H) ≤ r _ (f, B)β ≤ pr

and by definition of pr, every b-step extension of pr (in particular, any b \ (dom(g) ∩ β)-step

extension of r_ (f, B)β) is also in D.

Lemma 2.6.19 (Prikry-type lemma, tail-change sentential version). Let σ be a sentence of the

forcing language, let (f,A) ∈M(~U), and let β ∈ dom(f). Then there is an (f, B) ≤∗ (f,A) such

that (f, B)β = (f,A)β and if (g,H) ≤ (f, B) and (g,H) decides σ, then (g,H)β _ (f, B)β also

decides σ the same way.

This appears as Lemma 4.5 of (Magidor, 1978), and has a short proof:

Proof. As the collection of conditions deciding σ is open dense, we may re-run the argument of

Lemma 2.6.18, but while invoking Lemma 2.6.17 to ensure that each pr as above also decides σ.

Then define (f, B) as in the proof of Lemma 2.6.18. Then if (g,H) ≤ (f, B) and (g,H) decides

σ, then let r = (g,H)β. As before (g,H) ≤ r _ (f, B)β ≤ pr and pr already decides σ. But
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then pr must decide σ the same way as (g,H), and hence r_ (f, B)β = (g,H)β _ (f, B)β must

also decide σ the same way as (g,H).

Observe that a M
(
~U
)

-generic adds a sequence 〈αη | η < λ〉 =
⋃

(g,H)∈G g strictly increasing,

normal, and with supremum κ. As with Prikry forcing, Magidor forcing preserves cardinals:

Lemma 2.6.20. Let δ ∈ V be a cardinal. Then δ is a cardinal in VM(~U); moreover if δ is

V-regular, δ 6= κ, and δ 6= αη for any limit η then δ remains regular.

The proof is also in (Magidor, 1978). We prove it here, too:

Proof. Since M(~U) is κ+-cc and since κ is a limit of cardinals, we only need to check for δ < κ.

In the event that p  δ ≤ α0, then already M( ~U)(0,α0) is δ+-directed closed and therefore

cannot collapse δ.

Otherwise, without loss of generality (by expanding dom(stem(p)) if need be) let β be least

such that p  (αβ)
+ ≤ δ; by minimality, without loss of generality p  δ ≤ αβ+1.

We will now show that any bounded subset of δ in VM(~U) is added by M(~U)(β,αβ), which

is δ-cc and therefore could not have collapsed (or singularized) δ. Let p  Ẋ ⊆ δ; for each

γ < δ, by Lemma 2.6.19, let qγ ≤∗ p be such that (qγ)β = pβ and if r ≤ qγ and r decides the

statement ‘‘γ ∈ Ẋ", then rβ _ (qγ)
β decides likewise. Let q be a ≤∗-lower bound of the qγ’s;

by construction of q, any M(~U)(β,αβ)-generic including (q)β suffices to define Ẋ, and thus X is

added by M(~U)(β,αβ).

As with Prikry forcing, M(~U) admits a notion of geometricity that characterizes the gener-

icity of the sequence 〈βη | η < λ〉 added. Geometricity for a Magidor generic sequence differs
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from a Prikry generic sequence in that the geometricity reflects to smaller limit ordinals. We

make this precise:

Definition 2.6.21. Suppose in some outer model W of V, some sequence ~β = 〈βη | η < λ〉 ∈W

is increasing, normal, and cofinal in κ.

Then we say that ~β is geometric if for every ξ ≤ λ limit, and every 〈Aη | η < ξ〉 in V with

each Aη ∈ rξη(βη) (and if ξ = λ, then Aη ∈ Uη), for coboundedly many η < ξ, βη ∈ Aη.

Lemma 2.6.22. Let G be M
(
~U
)

-generic over V and let

~β = 〈βη | η < λ〉 =:
⋃

(f,A)∈G

f

Then ~β is geometric.

Proof. When ξ = λ, for each A, the set

D = {(g,H) | ∀η > max(dom(g)), H(η) ⊆ Aη}

is dense by measure-one set intersection; namely if (g,H) ∈M
(
~U
)

, then (g, (H � maxdom(g)) _

〈H(ξ) ∩A(ξ) | ξ > maxdom(g)〉) ∈ D. Thus if (f,A) ∈ D ∩ G, then by definition of ≤, for all

ξ > maxdom(f), βξ ∈ A(ξ).

For ξ < λ limit, the same applies in M(~U)(ξ,βξ): within V, the set

{(g,H) | g(ξ) = βξ and ∀ζ ∈ ((maxdom(g)) ∩ ξ, ξ) H(η) ⊆ Aη}
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is dense in M(~U)(ξ,βξ), hence is dense below the weakest condition p in the full M(~U) with

stem(p)(ξ) = βξ.

The converse is also true in the following sense:

Theorem 2.6.23. Suppose ~β = 〈βη | η < λ〉 is geometric. Let

H =

(f,A) ∈M
(
~U
)∣∣∣∣∣∣∣∣
∀η ∈ dom(f) f(η) = βη

and ∀η ∈ dom(A) βη ∈ A(η)


Then H is M(~U)-generic over V.

A proof can be found in (Fuchs, 2014) that, at its core, makes use of Lemma 2.6.14 and

Lemma 2.6.18. We present a more direct proof here, which better generalizes to more exotic

Magidor-type forcings such as the one we describe in Chapter 5:

Proof. H is a filter, as by construction the empty condition 1M(~U) ∈ H and H is clearly upwards

closed. As for downwards directedness, if p, q ∈ H then stem(p) and stem(q) are finite

segments of the same sequence, hence p ‖ q and the intersection of meas(p) and meas(q)

contains every βη for η /∈ dom(p ∪ q). Thus p∧ q ∈ H.

Genericity is more complicated and proceeds by transfinite induction on the length of ~U

and the factoring of Fact 2.6.8.

Our base case is when λ = ω and we are considering M(〈Un | n < ω〉). Let D ∈ V be open

dense in M(〈Un | n < ω〉). For each g ∈ V a valid M(〈Un | n < ω〉)-stem such that dom(g) is an
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initial subsequence of ω1, by Lemma 2.6.14, let ag, Ag be such that (g,Ag) ≤∗ 1M(~U) _ g and

every ag-step extension of (g,Ag) is in D; without loss of generality, ag = [max(dom(g))+1, kg]

for some kg < ω. Let B be a measure one system given by

B(n) =∆
g

Ag(n) :=

α < κ | α ∈
⋂

max(ran(g))<α

Ag(n)


Since 〈βn | n < ω〉 is geometric, there is some j such that for all n ≥ j, βn ∈ B(n); let g =

〈βi | i < j〉. By definition of B, (g, B � [j,ω)) ≤∗ (g,Ag) and hence for all n ≥ j, βn ∈ Ag(n).

Let p = (g, B � [j,ω)) _ 〈βl | j ≤ l < kg〉. By definition, p is an ag-step extension of (g,Ag) so

lies in D. Furthermore, by definition of H, p ∈ H and thus H ∩ D 6= ∅.

For the successor step, suppose λ = λ̄ +ω for some limit λ̄ such that the result is true for

any Magidor forcing defined on a system of measures of length λ̄. Let 〈βη | η < λ〉 be geometric

for M(〈Uη | η < λ〉). Let g =
〈
(λ̄, βλ̄)

〉
and in line with the factoring of Fact 2.6.8, consider

M(~U)g×M(~U)g. Then M
(
~U
)
g
= M

(〈
rλ̄η(βλ̄) | η < λ̄

〉)
is itself a Magidor forcing of length λ̄,

and by definition of geometricity,
〈
βη | η < λ̄

〉
is geometric over M

(
~U
)
g
. Thus, by induction,

the resulting Hg defined from
〈
βη | η < λ̄

〉
is M

(
~U
)
g
-generic over V. Since

〈
βλ̄+n | n < ω

〉
is geometric over M

(
~U
)g

= M
(〈
Uλ̄+n | n < ω

〉)
, by arguing exactly as in the base case, the

filter Hg defined from
〈
βλ̄+n | n < ω

〉
is M

(〈
Uλ̄+n | n < ω

〉)
-generic over V. However, since

1Since λ = ω, we may without loss of generality extend each g whose domain is a finite subsequence
of ω to some g ′ whose domain is [0,maxdom(g)].
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M
(
~U
)
g

is β+
λ̄

-cc, Hg is actually M
(
~U
)g

-generic over V [Hg] and so by the Product Lemma,

H = Hg ×Hg and is M (〈Uη | η < λ〉)-generic over V.

For the limit case, suppose that λ = supρ<τ λρ for some τ ≤ λ regular, where each λρ is a

limit ordinal; our induction hypothesis is now that for all ρ < τ, whenever ~β is of length λρ

and is geometric for some Magidor forcing M of length λρ, the resulting filter Hρ defined from

~β is M-generic over V. Note furthermore that if ρ < ρ ′ then by the Product Lemma and chain

condition, Hρ ′ = Hρ ×H ′ for some Hρ M(λρ,βλρ )
-generic over V and some H ′ M(λρ,βλρ )-generic

over V [Hρ].

Let D be open dense; for each M
(
~U
)

-stem g, by Lemma 2.6.18, let Ag be such that:

• (g,Ag) is an M
(
~U
)

-condition

• letting δ = maxdom(g), (g,Ag)δ = (1M(~U) _ g)δ
1

• (tail-change property) for every b ⊆ [dom(Ag)]
<ω, if (g ′, H) is a b-step extension of

(g,Ag) and (g ′, H) ∈ D then every b\ (dom(g ′)∩δ)-step extension of (g ′, H)δ _ (g,Ag)
δ

is also in D

By Lemma 2.6.11, let (∅, B) diagonalize the family 〈(g,Ag) | g a stem〉; that is, for every g ∈∏
η<λ B(η), (g, B � (λ \dom(g))) ≤∗ (g,Ag). But then by geometricity, let λρ be the least limit

ordinal such that for all ξ ≥ λρ, βξ ∈ B(ξ).

1Recall from Definition 2.6.7 that (f,A)δ = (f � δ+ 1,A � δ+ 1).
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But then

D ′ :=
{
(f,A)λρ | (f,A) ∈ D, (f,A)λρ ≤ (∅, B)λρ , and f(λρ) = βλρ

}

is open dense in M
(
~U
)
(λρ,βλρ )

, and since ~β � λρ is geometric for M
(
~U
)
(λρ,βλρ )

, by genericity

of Hρ let (f,A) ∈ M
(
~U
)

be such that (f,A) ∈ D, (f,A)λρ ≤ (∅, B)λρ , and (f,A)λρ ∈ Hρ ∩ D ′.

In particular, this means that f � λρ ⊆ ~β � λρ; for all ξ ∈ dom(f) with ξ ≥ λρ, f(ξ) ∈ B(ξ); and

for all ξ ∈ dom(A), βξ ∈ A(ξ).

Let g = f � (λρ + 1); we claim that (f,A) ≤ (g,Ag). To see this, observe that by definition

g ⊆ f. To see that A(ξ) ⊆ Ag(ξ) for all relevant ξ, note that for ξ < λρ, Ag(ξ) = Yξ ∩ g(ξ)

which is maximal, hence A(ξ) ⊆ Ag(ξ), and for ξ > λρ, A(ξ) ⊆ B(ξ) since (f,A)λρ ≤ (∅, B)λρ

and thus A(ξ) ⊆ Ag(ξ). As for the stem extension, if ξ ∈ dom(f) \ dom(g), then ξ > λρ and

therefore, since (f,A)λρ ≤ (∅, B)λρ , f(ξ) ∈ B(ξ) and hence f(ξ) ∈ Ag(ξ).

But (f,A) ∈ D! So let b = dom(f) \ dom(g); then by the tail-change property of (g,Ag),

every b-step extension of (f,A)λρ _ (g,Ag)
λρ = (f,A)λρ _ (∅, Ag)λρ is also in D. Let (h,C) =

((f,A)λρ _ (∅, Ag)λρ) _ (~β � b). Then (h,C) is a b-step extension of (f,A)λρ _ (∅, Ag)λρ , so

lies in D; by construction of f, h is a finite subsegment of ~β; and by construction of A, Ag, and

B, for all relevant ξ, βξ ∈ C(ξ). Therefore, (h,C) ∈ H, and also (h,C) ∈ D as desired.

We additionally have the following lemma that says geometric sequences actually meet V-

measure one systems cofinitely instead of just coboundedly. This will help with arguing mutual

stationarity results for Magidor generics, and may also help with restricted cofinality results



54

below β0, by a lemma from the original mutual stationarity paper of (Foreman and Magidor,

2001).

This also appears as Corollary 7.6 of (Fuchs, 2014); we give our own proof here.

Lemma 2.6.24. Let ~β = 〈βξ | ξ < λ〉 be geometric, and let Z ∈
∏
ξ<λUξ with each Z(ξ) ⊆ Yξ.

Then there is some a ∈ [λ]<ω such that for all ξ /∈ dom(a), βξ ∈ Z(ξ); furthermore, there is

some Z ′ such that (~β � a, Z ′) is a condition and for all ξ ∈ dom(Z ′), βξ ∈ Z ′(ξ) ⊆ Z(ξ).

Proof. We build a by induction. By the definition of Definition 2.6.21 on ~β at λ, there is some

ζ < λ such that for all ξ ∈ [ζ, λ), βξ ∈ Z(ξ). If ζ may be chosen to be a limit ordinal (or 0),

let ζ0 be the least such limit ordinal (or 0) and let a0 = ∅. Otherwise, let ζ ′ be the least such

successor ordinal and let ζ0 be the unique limit ordinal (or 0) and m0 be the unique natural

number such that ζ0 +m0 = ζ
′. Let a0 = [ζ0, ζ0 +m0).

We now proceed inductively; suppose we have defined ζn a limit ordinal and an ∈ [λ]<ω.

By the definition of Definition 2.6.21 on ~β at ζn, there is some ζ < ζn such that for all

ξ ∈ [ζ, ζn), βξ ∈ Z(ξ) ∩ βζn . If ζ may be made limit (or 0), let ζn+1 be the least such, and

let an+1 = ∅. Otherwise, let ζ ′ be the least such successor ordinal, and let ζn+1 be the unique

limit ordinal (or 0) and let mn+1 be the unique natural number such that ζn+1 +mn+1 = ζ ′.

Let an+1 = [ζn+1, ζn+1 +mn+1).

Since Ord is well-ordered, the above must terminate at some n at which ζn = 0. Let

a =
⊔
k≤n ak. Precisely by construction of a, for every ξ /∈ dom(a), βξ ∈ Z(ξ).

Even though ~β � a is not a valid stem extension of (∅, Z), if we mimic the definition of

(∅, Z) _ (~β � a) as in Definition 2.6.10, we obtain (~β � a, Z ′) with Z ′ as desired.



CHAPTER 3

DESTROYING SATURATION WHILE PRESERVING

PRESATURATION

Our first anti-saturation result shows that it is consistent to, with forcing, destroy the

saturation of a large class of ideals while preserving their presaturation. This answers an open

question of (Cox and Eskew, 2018).

This chapter is a modified version of the preprint (Schoem, 2019) on the arXiv.

3.1 Background

Besides results about nonstationary ideals discussed in Section 1, one can also ask whether

there is any ideal on κ that is κ-saturated, κ+-saturated, any amount of presaturated, or even

just precipitous. Results here are well-established and comprehensive.

The existence of exactly κ-saturated or κ+-saturated ideals on inaccessible κ are equiconsis-

tent with a measurable cardinal. This was first shown in (Kunen and Paris, 1971), with weakly

compact being compatible with κ+-saturation (and it was known since early work of Lévy and

Silver that a κ-saturated ideal on κ prevents κ from being weakly compact). Subsequently,

Boos showed that an exactly κ+-saturated ideal on κ can exist at a non-weakly compact κ in

(Boos, 1974).

As for successor cardinals, the consistency results are more striking. Certain arguments

show that if κ carries a κ-saturated ideal, then κ must be weakly Mahlo, and hence not a

55
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successor. Proofs can be found in (Baumgartner et al., 1977) and (Ulam, 1997). However,

κ+-saturated ideals can occur at successor κ; the known ways to achieve this come from forcing

over models with huge cardinals as done by Kunen in (Kunen, 1978) and Laver in (Laver, 1982).

Ideals on arbitrary sets Z project downwards to subsets Z ′ of Z, and it is natural to ask

whether regularity of the inverse embedding implies nice saturation properties of the projected

ideal:

Question 3.1.1 ((Foreman, 2010), Question 13 of Foreman). Let n ∈ ω and let J be an ideal

on Z ⊆ P(κ+(n+1)). Let I be the projection of J from Z to some Z ′ ⊆ P(κ+n). Suppose

that the canonical homomorphism from P(Z ′)/I to P(Z)/J is a regular embedding. Is I

κ+(n+1)-saturated?

The answer is no; prior work in (Cox and Zeman, 2014) established counterexamples. Later

work by Cox and Eskew provided a template for finding counterexamples as follows. We observe

that I a κ+n+1-saturated ideal on κ+n induces a wellfounded generic ultrapower and preserves

κ+n+1. So we will say that an ideal I on κ+n is κ+n+1-presaturated if I induces a wellfounded

generic ultrapower and preserves κ+n+1. Our template is then:

Fact 3.1.2 ((Cox and Eskew, 2018), corollary of Theorem 1.2). Any κ+n+1-presaturated, non-

κ+n+1 saturated ideal on κ+n provides a counterexample to Question 3.1.1.

This makes finding presaturated, nonsaturated ideals an interesting project in its own right.

To construct such ideals for successor cardinals κ = µ+ (with µ regular and mild assumptions

on cardinal arithmetic), (Cox and Eskew, 2018) generalized a forcing of (Baumgartner and

Taylor, 1982) to add a club subset C of κ with < µ-conditions. (The original version in
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(Baumgartner and Taylor, 1982) was for µ = ω.) This C prevented κ+-saturated ideals on κ

from existing in the generic extension. At the same time, their forcing was strongly proper ; with

use of Foreman’s Duality Theorem (Foreman, 2010), a powerful tool for computing properties

of ideals in generic extensions, Cox and Eskew were then able to argue that their forcing

preserved the κ+-presaturation of a large class of ideals (including κ+-saturated ideals) in the

generic extension.

This results in the following:

Fact 3.1.3. Let V be a universe admitting κ-complete, κ+-saturated ideals at κ the successor

of a regular cardinal. Then there is a forcing P such that VP admits no κ+-saturated ideals,

however if I is a κ+-saturated ideal on κ in V, then in VP there is an S ∈ I+1 such that I � S is

κ+-presaturated.

It remained open as to whether the above could be done for κ an inaccessible cardinal; this

was the content of Question 8.5 of (Cox and Eskew, 2018) and further clarifications provided

in (Cox and Schoem, 2018).

Theorem 3.1.4 and Theorem 3.1.5 establish that Question 3.1.1 is consistently false at κ

inaccessible, by way of partially extending the arguments and results of Theorem 4.1 of (Cox

and Eskew, 2018):

1where I is the ideal induced in VP by I and is defined by I = {A ∈ PVP
(κ) | ∃N ∈ I A ⊆ N}.
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Theorem 3.1.4. Suppose V is a universe of ZFC with an inaccessible cardinal κ admitting

κ-complete, normal, κ+-saturated ideals on κ concentrating on inaccessible cardinals below κ

(i.e. such that Inaccκ ∈ I+). Then there is a poset Q such that:

(i) VQ |= ‘‘there are no κ-complete, κ+-saturated ideals on κ concentrating on inaccessible cardinals"

(ii) If I ∈ V is a κ-complete, normal, κ+-saturated ideal on κ concentrating on inaccessible

cardinals, then VQ |= ‘‘I is κ+-presaturated"

where I = {A ∈ PVQ
(κ) | ∃N ∈ I A ⊆ N}.

We can further generalize Theorem 3.1.4(ii) as follows:

Theorem 3.1.5. With the same assumptions, there is a Q such that if δ ≥ κ is an inaccessible

cardinal, I ∈ V is normal, fine, precipitous, δ+-presaturated ideal of uniform completeness κ on

some algebra of sets Z such that:

• BI preserves the regularity of both κ and δ;

• BI δ+ ≤ |j̇I(κ)| < j̇I(κ) where j̇I is a name for the generic elementary embedding jI : V →
M added by BI := P(Z)/I;

• BI is δ+-proper on IA<δ+;

then in VQ,

• I is not δ+-saturated

• but I is δ+-presaturated
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where I is as above.

Here, IA<δ is the collection of internally approachable structures of length < δ; we will give

a precise definition in Section 3.2.

Remark 3.1.6. It will turn out that the same Q will work for both Theorem 3.1.4 and Theorem

3.1.5.

Remark 3.1.7. In (Cox and Eskew, 2018), the analogous theorem (Theorem 4.1(2)) argued that

there is an S ∈ I+ such that I � S is not δ-saturated, but it is δ-presaturated.

The use of such an S was required there due to the forcing involved not being κ-cc.

This chapter is structured as follows. Section 3.2 presents the preliminary definitions and

facts pertinent to this paper. Section 3.3 introduces the forcing iteration Q of Theorems 3.1.4(i),

3.1.4(ii), and 3.1.5. Section 3.4 shows that several saturated ideals are sundered from VQ.

Section 3.5 proves that a portion of presaturated posets remain presaturated in VQ.

3.2 Chapter-specific preliminaries

Much of the necessary background can be found in Chapter 2; we cover more chapter-specific

preliminaries here.

Forcing poset closure, and properness, relate to presaturation; we now summarize what

properness is, and how both closure and properness relate to presaturation.

Let δ be regular uncountable, and let H ) δ. Then we write Pδ(H) for all subsets of H of

size < δ, and P∗δ (H) to denote the set of all x ∈ Pδ(H) such that x ∩ δ ∈ δ.
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Definition 3.2.1. Let P be a notion of forcing, θ sufficiently large so that P ∈ Hθ, and

M ≺ (Hθ,∈,P).

We say that p ∈ P is an (M,P)-master condition if for every dense D ∈ M, D ∩M is

predense below p; equivalently, p P M[ĠP] ∩ V =M.

Additionally, we say that p is an (M,P)-strong master condition if for every p ′ ≤ p, there

is some p ′M ∈M ∩ P such that every extension of p ′M in M ∩ P is compatible with p ′. 1

Further, P is (strongly) proper with respect to M if every p ∈M ∩ P has a q ≤ p such that

q is an (M,P)-(strong) master condition.

We say that P is (strongly) δ-proper on a stationary set if there is a stationary subset S of

P∗δ (Hθ) such that for every M ∈ S, M ≺ (Hθ,∈,P) and P is (strongly) proper with respect to

M.

Note that {M ∈ P∗δ (Hθ) | M ≺ (Hθ,∈,P)} is a club subset of P∗δ (Hθ); so a forcing being

δ-proper on a stationary set really only depends on the properness condition.

The definitions of P∗δ (H) and 3.2.1 are as in (Cox and Eskew, 2018).

Fact 3.2.2. If P is δ-proper on a stationary set, then P is δ-presaturated.

This fact appears as Fact 2.8 of (Cox and Eskew, 2018), with proof; their proof, in turn,

generalizes a result of Foreman and Magidor in the case of δ = ω1 (namely, Proposition 3.2 of

(Foreman and Magidor, 1995)).

1It is straightforward to see that strong master conditions are also master conditions.
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For the posets we will be working with, we will have a specific stationary subset witnessing

δ-properness:

Definition 3.2.3. For δ regular and θ >> δ, we say that IA<δ ⊆ P∗δ (Hθ), the “internally

approachable sets of length < δ”, is the collection of all M ∈ P∗δ (Hθ), with |M| = |M ∩ δ|,

that are internally approachable, i.e. such that there is a ζ < δ and a continuous ⊆-increasing

sequence 〈Nα | α < ζ〉 whose union is M, such that ~N � α ∈M for all α < ζ.

In a sense, internal approachability is preserved by any generic extension, as noted in (Cox

and Eskew, 2018):

Fact 3.2.4. Suppose P is a poset, M ≺ (Hθ,∈,P), 〈Nα | α < ζ〉 witnesses that M ∈ IA<δ, and

G is (V,P)-generic. Then in V [G], 〈Nα[G] | α < ζ〉 witnesses that M[G] ∈ IA<δ. (Without loss

of generality, we may assume that P ∈ N0.)

It is a standard fact that IA<δ is stationary. The following lemma makes clear its utility:

Lemma 3.2.5. Let δ be regular and uncountable. Then:

(i) If P is δ-cc and M ≺ (Hθ,∈,P) is an element of P∗δ (Hθ) (i.e. if M ∩ δ ∈ δ), then 1P is

an (M,P)-master condition; in particular P is δ-proper on (a club subset of) P∗δ (Hθ).

(ii) If Q is < δ-closed then Q is δ-proper on IA<δ.

(iii) If P is δ-proper on IA<δ and P ‘‘Q̇ is δ-cc or P ‘‘Q̇ is < δ-closed then P ∗ Q̇ is δ-proper

on IA<δ.

This is roughly Fact 2.9 out of (Cox and Eskew, 2018). The following proof is largely

reproduced from (Cox and Eskew, 2018) as well.
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Proof. For part (i), let A ∈M be a maximal antichain in P. Since |A| < δ and M ∩ δ ∈ δ, we

have that A ⊆M. Thus 1P M[Ġ] ∩ V̌ =M, so 1P is a master condition for M.

Part (ii) is due to (Foreman and Magidor, 1995).

As for part (iii), let G be P-generic over V. Suppose that M ≺ (Hθ,∈,P∗ Q̇) and M ∈ IA<δ.

By Fact 3.2.4, combined with (i) and (ii), P forces that Q̇ is proper with respect to M[Ġ]. Hence

P ∗ Q̇ is proper with respect to M.

Presaturation comes with some partial cofinality preservation:

Fact 3.2.6. If P is λ-presaturated for λ regular then

P cof
V(≥ λ) = cofV[Ġ](≥ λ)

The above fact has a partial converse. We will not make use of it, but it is another known

way to argue that certain iterations of presaturated forcings are presaturated:

Fact 3.2.7. If P is λ+ω-cc for some regular λ ≥ ω1 and

∀n ∈ ω P cf
V[Ġ]

((
λ+n

)V) ≥ λ
then P is λ-presaturated.

This appears as Fact 2.11 in (Cox and Eskew, 2018), which in turn is a generalization of

Theorem 4.3 of (Baumgartner and Taylor, 1982).
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In line with Section 2.3, if I ∈ V is an ideal on κ and P is a notion of forcing understood

from context, then we will write I :=
{
N ∈ PVP

(κ) | ∃A ∈ I N ⊆ A
}

.

To compute presaturation properties of ideals, these are the two forms of Foreman’s Duality

Theorem that we will use:

Lemma 3.2.8. For a κ-complete, κ+ saturated I ∈ V and a κ-cc poset Q ∈ V, I is κ+-saturated

in VQ if and only if BI j̇I(Q) is κ+-cc.

This appears as Corollary 7.21 in (Foreman, 2010).

Theorem 3.2.9. Let I be a κ-complete normal precipitous ideal in V and Q be a κ-cc poset.

Then I is precipitous and there is a canonical isomorphism witnessing that

B
(
Q ∗ BI

)
∼= B

(
BI ∗ j̇I (Q)

)

where B(P) refers to the Boolean completion of P.

This statement appears in (Cox and Eskew, 2018) as Fact 2.24, and is a corollary of Theorem

7.14 of (Foreman, 2010).

3.3 Iterating the Generalized Baumgartner-Taylor Poset

Through the rest of this paper, fix κ to be a Mahlo cardinal. We do this because by assuming

that V admits a κ-complete, normal, κ+-saturated ideal on κ concentrating on inaccessible

(equivalently regular) cardinals below κ, we have that κ is Mahlo.

Over cardinals below κ, we will define a forcing iteration that will destroy κ+-saturation but

preserve κ+-presaturation for ideals on κ, concentrating on inaccessibles by adding, for each
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µ < κ, µ inaccessible, a club subset Cµ of µ+ using < µ-conditions. This club Cµ will fail to

contain certain ground model sets, in the sense that if X ∈ V and |X| ≥ µ then X 6⊆ Cµ.

Towards this end:

Definition 3.3.1. Let µ < κ be a regular cardinal such that |[µ+]<µ| = µ. Let P(µ) be the

collection of all conditions (s, f) such that:

(1) s ∈ [µ+ \ µ]<µ

(2) f : s→ [µ+ \ µ]<µ and if ξ, ξ ′ ∈ s with ξ < ξ ′ then f(ξ) ⊆ ξ ′.

We say (s, f) ≤ (t, g) if s ⊇ t and whenever ξ ∈ t, f(ξ) ⊇ g(ξ).

For each (s, f) ∈ P(µ), s can be thought of as approximating Ċµ, in the sense that (s, f) 

s ⊆ Ċµ (in fact, we will later define Cµ =
⋃

(s,f)∈G s, for G a P(µ)-generic filter over V).

Additionally, f can be thought of as “banning” certain ordinals from ever appearing in Ċµ,

in the sense that if α ∈ s, β > α, and f(α) 3 β, then:

• it must be the case that s ∩ (α,β] = ∅. Otherwise, if γ ∈ s ∩ (α,β], we would have that

β ∈ f(α) and β /∈ γ. Hence f(α) 6⊆ γ, contradicting conditionhood of (s, f).

• Additionally, (s, f)  Ċµ ∩ (α,β] = ∅. This is since for every (t, g) ≤ (s, f), β ∈ g(α);

hence t ∩ (α,β] = ∅.

Lemma 3.3.2. If µ is a regular cardinal, then P(µ) has the following properties:

(1) |P(µ)| = µ+ hence P(µ) has the µ++-cc.

(2) P(µ) is < µ-directed closed.
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(3) If θ ≥ µ++, M ≺ (Hθ,∈, µ+), and M ∩ µ+ ∈ µ+ ∩ cof(µ), then P(µ) is strongly proper

for M. Hence P(µ) preserves µ+.

(4) If G is P(µ)-generic over V, then in V [G], we have that

Cµ :=
⋃

(s,f)∈G

s

is a club subset of µ+ such that if X ∈ V and |X|V ≥ µ, then X 6⊆ Cµ.

(5) P(µ) is not µ+-cc below any condition.

Proof. The proofs are exactly as in Lemma 4.4 in (Cox and Eskew, 2018).

For the sake of clarity, we will prove (3) and (4).

To see that (3) holds, let θ ≥ µ++, M ≺ (Hθ,∈, µ+), and M ∩ µ+ ∈ µ+ ∩ cof(µ); suppose

that (s, f) ∈ P(µ) ∩M. Observe that µ<µ = µ and M ≺ (Hθ,∈, µ+, µ). Let δ =M ∩ µ+; since

(µ+)<µ = µ+ as witnessed in Hθ, we have that there is a bijection φ : µ+ → [µ+]<µ such that

φ ∈M. Without loss of generality, we may assume that for each β < µ+ with cf(β) = µ, φ � β

surjects onto [β]<µ.

We wish to show that <µ(M∩µ+) ⊆M. Let δ =M∩µ+ and suppose that b ∈ [δ]<µ. Since

cf(δ) = µ, we have that supb < δ. But then by choice of φ, there is an α < supb such that

φ(α) = β, and since supb < δ, α ∈M. Thus b ∈M, and so we have shown

<µ(M ∩ µ+) ⊆M
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Since |s| < µ ⊆M ∩ µ+, we thus have that s ⊆M and hence M ∩ µ+ /∈ s = dom(f). Further,

if ξ ∈ s then f(ξ) ∈M ∩ [µ+]<µ; since µ ⊆M and θ is sufficiently large, f(ξ) ⊆M ∩ µ+.

Thus the following condition (s ′, f ′) extends (s, f):

(s ′, f ′) :=
(
s_

(
M ∩ µ+

)
, f_

(
M ∩ µ+ 7→ {M ∩ µ+}

))

We now must argue that (s ′, f ′) is a strong master condition for (M,P(µ)). Let (t, h) ≤ (s ′, f ′).

Then tM := t∩M is a < µ-sized subset ofM∩µ+, hence tM ∈M. Further, since (t, h) ≤ (s ′, f ′),

we have thatM∩µ+ ∈ t. Hence, as (t, h) is a condition in P(µ) (namely, by part (2) of Definition

3.3.1), (h � tM) : tM → [M ∩ µ+]<µ. Thus (tM, h � tM) ∈M ∩ P(µ).

To complete the proof of strong properness, let (u, g) ∈ M ∩ P(µ), (u, g) ≤ (tM, h � tM).

Then let F : u∪ t→ [µ+]<µ, F(ξ) = g(ξ) if ξ ∈ u, and F(ξ) = h(ξ) otherwise. Then (u∪ t, F) ∈

P(µ) and (u ∪ t, F) ≤ (u, g), (t, h).

Since (u, g) was arbitrary, we have shown that every extension of (tM, h � tM) in P(µ) ∩M

is compatible with (t, h). Thus (s ′, f ′) is a strong master condition. This completes our proof

of (3).

To see that (4) holds, we have three things to show:

(i) Cµ is unbounded in µ+

(ii) Cµ is closed

(iii) If X ∈ V and |X|V ≥ µ then X 6⊆ Cµ
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To see (i), let (s, f) ∈ P(µ) and let α < µ+. By definition of P(µ), |s| < µ and for each

β ∈ s, f(β) is a < µ-sized subset of µ+. Hence supβ∈s sup f(β) < µ+, so let δ be such that

supβ∈s sup f(β) < δ < µ+. Then

p := (s_ δ, f_ (δ 7→ ∅))
is a condition below (s, f) such that p  δ ∈ Ċµ; thus Cµ is unbounded.

To see (ii), we argue contrapositively. Let β ∈ µ+ \ (µ+ 1) and suppose (s, f) ∈ P(µ) is such

that (s, f)  β̌ /∈ Ċµ. We will argue that (s, f)  β̌ /∈ Lim(Ċµ). Observe that there must be an

α ∈ s∩β such that f(α) 6⊆ β; for otherwise, we would have that for all α ∈ s∩β, f(α) ⊆ β, hence

(s_ β, f_ (β 7→ ∅)) would be a condition below (s, f) forcing β ∈ Ċµ. By conditionhood of

(s, f), there is a unique such α and α is the largest element of s∩β. Additionally, no extension

(t, g) of (s, f) can have that t∩(α,β) 6= ∅, and hence (s, f)  ‘‘α̌ is the largest element of Ċµ∩β̌".

Thus (s, f)  β̌ /∈ Lim(Ċµ).

To see (iii), let X ∈ V with |X|V ≥ µ and let (s, f) ∈ P(µ). Observe that without loss of

generality we may assume that X ⊆ µ+ \ (µ + 1). Further, by taking an initial segment of X

we may assume that otp(X) = µ and hence that cf(sup(X)) = µ. Since |s| < µ and sup(X) has

cofinality µ, s ∩ sup(X) is bounded below sup(X).

Now we have two cases. If there is a ξ ∈ s ∩ sup(X) such that f(ξ) 6⊆ sup(X), let ρ ∈

f(ξ)\sup(X). Then (s, f)  Ċµ∩(ξ, ρ] = ∅ and hence (s, f)  ‘‘Ċµ∩X̌ is bounded below sup(X̌)".

Thus X 6⊆ Cµ.
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Otherwise, let ζ = sup{sup f(ξ) | ξ ∈ s∩ sup(X)}. Since each f(ξ) ⊆ sup(X) and µ is regular,

ζ < sup(X). Let p = (s_ ζ, f_ (ζ 7→ {sup(X)})). Then p ≤ (s, f) and p  max(Ċµ∩sup(X)) =

ζ. Hence p  X 6⊆ Ċµ. Thus X 6⊆ Cµ. This completes our proof of (4).

Definition 3.3.3. We define an Easton support iteration forcing Q =
〈
Qµ ∗ Ċ(µ) | µ < κ

〉
as

follows:

For each µ < κ, if µ is inaccessible in VQµ , let C(µ) = P(µ) as above, and otherwise let C(µ)

be the trivial forcing.

Proposition 3.3.4. If ν ≤ κ is regular in V, then ν is still regular in VQν.

Proof. This breaks into three cases:

1. ν = τ+, for τ a regular cardinal

2. ν = λ+, for λ a singular cardinal

3. ν is inaccessible

If ν = τ+ where τ is regular, we may decompose Qν as

Qτ ∗ Ċ(τ)

Since τ is regular, |Qτ| ≤ τ hence is ν-cc. Thus Qτ preserves ν. Either Ċ(τ) is trivial, or is

Ṗ(τ), so by Lemma 3.3.2(3), Ċ(τ) preserves ν. Thus Q̇ν preserves ν.
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If ν = λ+ where λ is singular, we have that Qν = Qλ since none of the ordinals in [λ, ν)

are inanccessible. Here, the situation is more complicated, since now |Qλ| might be equal to

λcf(λ) ≥ ν. So we must verify more directly that ν is preserved.

So observe that if ν is collapsed, then VQλ |= |ν| ≤ |λ| and since λ is singular, we would have

a Qλ-name ḟ : δ̌→ ν̌ for a cofinal sequence in ν̌ for some regular cardinal δ < λ.

But we may decompose Qλ into

Qδ ∗ Ċ(δ) ∗ Q̇>δ+

Now, Q̇>δ+ is < δ+-directed closed, so Q̇>δ could not have added such an f. Additionally, Ċ(δ)

satisfies the δ++-cc, hence is ν-cc. Thus Ċ(δ) also could not have added f. Finally, |Qδ| = δ so

Qδ satisfies the δ+-cc, hence is also ν-cc. Thus Qδ could not have added such an f either.

As in the successor of a regular case, Ċ(ν) and Q̇≥ν preserve ν as well.

And in the case where ν is inaccessible, suppose that in VQν that cf(ν̌) = δ̌ < ν̌. Then Qν

decomposes, as in the successor of a singular case, into

Qδ ∗ Ċ(δ) ∗ Q̇>δ+

The analysis is exactly as in the successor of a singular case.

This shows that whenever ν is regular in V, ν remains regular in VQν . When ν is inaccessible,

we will now write P(ν) rather than C(ν).
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Corollary 3.3.5. Q preserves cardinals.

Proof. Since κ is Mahlo, Q = Qκ is κ-cc hence preserves κ preserves cardinals ≥ κ.

For ν < κ regular, we have that Q = Qν ∗ Ċ(ν) ∗ Q̇>ν. By the preceding proposition, Qν

preserves ν. Either Ċ(ν) is trivial or is Ṗ(ν), and so Lemma 3.3.2(3), Ċ(ν) preserves ν. And

by Lemma 3.3.2(2), Q̇>ν is < ν+-directed closed hence preserves ν.

3.4 Destroying Saturation

Since Q projects to each Qµ ∗ Ṗ(µ), µ < κ inaccessible, we may, for each such µ, let Gµ be

the restriction of the Q-generic G to P(µ) and define Cµ = {ξ | ∃(s, f) ∈ Gµ ξ ∈ s}. By Lemma

3.3.2(4), Cµ is a club subset of µ+ in VQµ∗Ṗ(µ) and for every X ∈ VQµ such that X ⊆ [µ, µ+) and

X has VQµ-cardinality ≥ µ, X 6⊆ Cµ.

As a warmup to proving Theorem 3.1.4(i), we argue the following:

Proposition 3.4.1. Suppose that I ∈ V is κ-complete, normal, κ+-saturated, and concentrates

on Inaccκ. Then in VQ, I is not κ+-saturated.

Before we prove this, it will be helpful to isolate a lemma on what jI(Q) looks like in Ult(V, I):

Lemma 3.4.2. Let I be a κ-complete, normal, fine precipitous ideal concentrating on inacces-

sibles. Then in Ult(V, I), jI(Q) ∼= Q ∗ Ṙ, where Ṙ is a name for an Easton support iteration〈
Rα ∗ Ċ(α) | α ∈ [κ, jI(κ))

〉
, such that if α is Ult(V, I)-inaccessible, C(α) = P(α), and C(α) is

the trivial forcing otherwise.

Proof. This follows from the elementarity of jI, and since I concentrates on inaccessibles, κ is

inaccessible in Ult(V, I).
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And we remark on how Ult(V, I) computes κ+:

Lemma 3.4.3. Let I be as in Lemma 3.4.2, with G a BI-generic over V. Then if I is κ+-

saturated, then (κ+)Ult(V,I) = (κ+)V[G].

Thus for κ+-saturated ideals, we will just write κ+ to mean (κ+)V = (κ+)V[G] = (κ+)Ult(V,I).

Proof. Since I is κ+-presaturated, forcing with BI preserves κ+, hence (κ+)V = (κ+)V[G] ≥

(κ+)Ult(V,I).

To see that (κ+)V[G] = (κ+)Ult(V,I), suppose that α ∈ [κ, (κ+)V[G]). Let this be witnessed by

some κ-sequence f : κ → α a bijection. Since I is κ+-saturated, we have from Fact 2.3.16 that

Ult(V, I) is closed under κ-sequences from V [G], and so f ∈ Ult(V, I). Thus α is not a cardinal

in Ult(V, I).

Remark 3.4.4. As with ultrapowers from a measurable cardinal, we will have that if I is a

κ-complete normal precipitous ideal in V, then in VBI , |jI(κ)| = 2
κ. However, by elementarity,

in Ult(V, I), jI(κ) is inaccessible.

Remark 3.4.5. This is unlike a λ-complete, λ+-saturated ideal J on λ a successor cardinal; for λ

a successor cardinal, we would have that jJ(λ) = λ
+. The argument can be found in (Foreman,

2010).

Proof of Proposition 3.4.1. By Lemma 3.4.2, in VBI , j̇I(Q) ∼= Q ∗ Ṙ, where Ṙ is an Easton

support iteration
〈
Rα ∗ Ċ(α) | α ∈ [κ, jI(κ))

〉
as in the lemma.

Since I concentrates on inaccessibles below κ, κ is still inaccessible in Ult(V, I). Thus C(κ) =

P(κ) which is not κ+-cc. So jI(Q) is not κ+-saturated.
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So by Lemma 3.2.8, in VQ, I is not κ+-saturated.

We now prove Theorem 3.1.4(i).

Proof of Theorem 3.1.4(i). Let G be Q-generic, and suppose that in V [G] there is a κ-complete,

κ+-saturated ideal J on κ concentrating on inaccessible cardinals below κ.

Let U be P(κ)/J -generic over V [G], and let j : V [G] → Ult(V [G], U) be the generic ultra-

power.

Let N =
⋃
α∈ORD j(Vα). Then j(Q) ∈ N and hence Ult(V [G], U) = N[g ′] for some g ′ ∈

V [G ∗U] which is j(Q)-generic over N.

Observe that κ is still inaccessible in N[g ′] by inaccessibility in V [G], by being the critical

point of j, and since J concentrates on inaccessibles. Since j(κ) > κ and j(κ) is a cardinal in

N[g ′], j(κ) > (κ+)N[g ′] ≥ (κ+)V[G] (by κ-closure and κ+-saturation of J ). Further, by the usual

ultrapower argument, |j(κ)| = 2κ.

So j(κ) is not a cardinal in V, but by Fact 2.3.16, N[g ′] is closed under κ-sequences from

V [G].

Work in N[g ′]. Let g ′ be the projection of j(Q) to P(κ), and let

Cκ =
⋃

(s,f)∈g ′

s

Then

N[g ′] |= Cκ is club in κ+ and ∀X ∈ N|X|N ≥ κ, X 6⊆ Cκ (3.1)
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Since V [G ∗U] is a κ+-cc extension of V, we may let D ∈ V be such that in V [G ∗U], D is a

club subset of Cκ. Let E ⊆ D be in V, (o.t.(E))V = κ, α = supE; since cf(α) = κ, let φ : κ→ α

be a normal increasing sequence.

Let E ′ = lim(E) ∩ ran(φ).

Then E ′ ⊆ D and |E ′|V = κ since κ is inaccessible. Further, j(φ) ∈ N and j(φ) � κ : κ→ j"α

is also in N.

Thus ran(j(φ) � κ) ∈ N and j"E ′ ⊆ ran(j(φ) � κ) ⊆ j"α.

But j"E ′ = ran(j(φ) � κ) ∩ j(E ′) ∈ N; and since E ′ = {β ∈ ran(φ) | j(β) ∈ j(E ′)}, we have

that E ′ is a subset of Cκ with |E ′|N = κ and E ′ ⊆ [κ, κ+).

This contradicts Equation 3.1, and hence J cannot be κ+-saturated.

3.5 Preserving Presaturation

We now prove Theorem 3.1.4(ii).

Proof of Theorem 3.1.4(ii). Let I ∈ V be a κ-complete, normal, κ+-saturated ideal in V concen-

trating on inaccessibles. Work in VBI and let U be the generic ultrafilter. Since I is κ-complete,

crit(j̇I) = κ and j̇I � κ = id.

Thus, in Ult(V,U), by Lemma 3.4.2, j̇I(Q) ∼= Q ∗ ˙P(κ) ∗ Ṙ, where Ṙ is an Easton support

iteration 〈Rα ∗ C(α) | α ∈ [κ+, jI(κ))〉, such that if α is inaccessible, C(α) = P(α), and C(α) is

the trivial forcing otherwise.

We will argue that BI ∗ j̇I(Q) is κ+-proper on a stationary set, and hence is κ+-presaturated.
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Observe that BI is κ+-cc. Hence, in V [U] so also in Ult(V,U), Q is still κ+-cc. Thus, in

Ult(V,U), BI ∗Q is κ+-cc and hence is κ+-proper on P∗κ+(Hθ) for all sufficiently large θ.

The difficulty comes in assuring P(κ) ∗ Ṙ preserves the properness on a stationary set. We

will do this by arguing that P(κ) ∗ Ṙ is forced by BI ∗ Q to be κ+-proper on ˙IA<κ+ . Once we

have that, since BI ∗ Q is κ+-cc and forces P(κ) ∗ Ṙ is κ+-proper on a stationary set, the full

forcing BI ∗ j̇I(Q) is then κ+-proper on a stationary set.

Work in Ult(V,U)Q. Here, P(κ) is proper on

S := {M ≺ (Hθ,∈, κ+) | |M| = |M ∩ κ+| = κ and M ∩ κ+ ∈ cof(κ)}

and by the < κ+-directed closedness of Ṙ and Fact 3.2.4, P(κ) Ṙ proper on ǏA<κ+ . But not

only is S stationary, S is a club subset of P∗κ+(Hθ) � cof(κ), and hence S ∩ IA<κ+ is also

stationary.

Thus, by Lemma 3.2.5, after forcing with BI ∗ j̇I(Q), we have that P(κ) ∗ Ṙ is κ+-proper on

the stationary set S ∩ IA<δ+ .

Therefore, BI∗j̇I (Q) is κ+-proper on a stationary subset of P∗κ+(Hθ)
V , hence is κ+-presaturated.

But by Theorem 3.2.9, BI ∗ j̇I (Q) ∼= Q ∗ ḂI; then by Lemma 2.2.12, I is κ+-presaturated.

A more general argument will prove Theorem 3.1.5:

Proof of Theorem 3.1.5. In V, let δ ≥ κ be an inaccessible cardinal, and let I be a normal,

precipitous, fine, δ+-presaturated ideal of uniform completeness κ on some algebra of sets Z
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such that BI preserves the inaccessibility of κ and δ in Ult(V, I); BI δ
+ ≤ |j̇I(κ)| < j̇(κ); and BI

is δ+-proper on IA<δ+ .

Let Q be the forcing from Definition 3.3.3. Recall that Q is κ-cc since Q is an Easton

support iteration of κ-cc posets and κ is Mahlo.

We wish to show that BI is not δ+-saturated, but is δ+-presaturated.

Since BI is precipitous, by Theorem 3.2.9,

B
(
BI ∗ j̇I(Q)

)
∼= B

(
Q ∗ BI

)
(3.2)

Also, since I is κ-complete, crit(jI) = κ and thus jI � κ = id. Since BI preserves the regularity

of κ, we get that j̇I(Q) � κ = Q.

Therefore, jI(Q) = Q ∗ 〈Rα ∗ C(α) | α ∈ [κ, jI(κ))〉, where each Rα is an Easton support

iteration, such that if α is inaccessible, C(α) = P(α), and C(α) is the trivial forcing otherwise.

Since Ult(V, I) |= ‘‘δ inaccessible", we get that C(δ) = P(δ) which is not δ+-cc. Thus
(
Q ∗ BI

)
is not δ+-cc, and since Q is clearly δ+-cc, BI cannot be δ+-saturated.

As for the δ+-presaturation of BI, by Equation 3.2 it suffices to show that BI ∗ j̇I(Q) is

δ+-presaturated.

Work in Ult(V, I). Since BI preserves the regularity of κ, we decompose j̇I(Q) as

j̇I(Q) = Q ∗
(
j̇I(Q) � [κ, δ)

)
∗
(
j̇I(Q) � [δ, jI(κ))

)

and further j̇I(Q)(δ) = Ṗ(δ), so we decompose
(
j̇I(Q) � [δ, jI(κ))

)
as
(
Ṗ(δ) ∗ j̇I(Q) � [δ+, jI(κ))

)
.
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So we may further decompose j̇I(Q) as

j̇I(Q) = Q ∗
(
j̇I(Q) � [κ, δ)

)
∗ Ṗ(δ) ∗

(
j̇I(Q) � [δ+, jI(κ))

)

and we will argue the following items in Ult(V, I):

• Q is δ+-cc

• j̇I(Q) � [κ, δ) is δ+-cc

• Ṗ(δ) is δ+-proper on a stationary set S such that S ∩ IA<δ+ is stationary

•
(
j̇I(Q) � [δ+, jI(κ))

)
is δ+-directed closed and thus is δ-proper on IA<δ+

in such a way that we may conclude that BI ∗ j̇I(Q) is δ+-proper on a stationary set.

We have that Q is κ-cc, hence is δ+-cc.

If δ = κ, then
(
j̇I(Q) � [κ, δ)

)
is trivial so is δ+-cc. Otherwise, δ > κ, and since δ is

inaccessible in Ult(V, I),
(
j̇I(Q) � [κ, δ)

)
is a δ-length direct limit iteration of posets of size < δ.

Thus
(
j̇I(Q) � [κ, δ)

)
has size δ, and so is δ+-cc.

Therefore BI ∗Q ∗
(
j̇I(Q) � [κ, δ)

)
is δ+-cc, so by Lemma , is δ+-proper on P∗δ+(Hθ).

As in the proof of Theorem 3.1.4(ii), P(δ) is proper on a club subset of P∗δ+(Hθ)∩cof(δ) and

so BI ∗ Q ∗
(
j̇I(Q) � [κ+, δ)

)
∗ P(δ) is δ+-proper on the stationary set IA<δ+ ∩ cof(δ). Finally,(

j̇I(Q) � [δ+, jI(κ))
)

is δ+-directed closed and therefore is proper on IA<δ+ , which by Fact 3.2.4,

is absolute between VBI and VBI∗Q∗(j̇I(Q)�[κ+,δ))∗P(δ).
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Thus BI ∗ j̇I(Q) is δ+-proper on the stationary subset IA<δ+ ∩ cof(δ), and therefore is δ+-

presaturated. But then Q ∗ BI is δ+-presaturated as well, and therefore by Lemma 2.2.12,

VQ |= ‘‘BI is δ+-presaturated".



CHAPTER 4

MUTUAL STATIONARITY

Foreman and Magidor first introduced mutual stationarity in (Foreman and Magidor, 2001)

to argue for the non-saturation of certain nonstationary ideals. Mutual stationarity generalizes

stationarity to singular cardinals, and leads to interesting avenues of study in its own right. We

will first define mutual stationarity and summarize prior results, with additional commentary

and detail. This section culminates in the following mutual stationarity property for Magidor

generic sequences: that if 〈κα | α < λ〉 is a Magidor generic sequence for some λ < κ over some

V, then there is a cofinite subset of the Magidor generic sequence K such that any family

Sα ⊆ κα ∈ K of statioary sets is mutually stationary. We spell this out in Section 4.4, with the

core results being Theorem 4.4.5 and Theorem 4.4.6.

4.1 Background

To see that mutual stationarity generalizes stationarity, we recall that the following property

precisely characterizes stationarity:

Proposition 4.1.1. Let κ be a regular cardinal, and let S ⊆ κ. Then S is stationary if and

only if whenever U is an algebra on κ (equivalently on some λ ≥ κ), there is a B ≺ U such that

sup(B ∩ κ) ∈ S.

With this in mind, we may generalize this to sets on larger sequences of cardinals:

78
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Definition 4.1.2. Suppose K := 〈κα | α < µ〉 is an increasing sequence of regular cardinals

with supremum λ of cofinality µ.

We say that a family 〈Sα ⊆ κα | α < µ〉 is mutually stationary if whenever U is an algebra

on λ, there is a B ≺ U such that for all α ∈ B ∩ K, sup(B ∩ κα) ∈ Sα. (Note that any mutually

stationary sequence of sets is necessarily composed of stationary sets.)

We say MS(κα | α < µ) holds if every family 〈Sα ⊆ κα | α < µ〉 of stationary sets is mutually

stationary.

If we restrict our attention to stationary sets of cofinality δ above, we analogously write

MS(〈κα | α < µ〉 , cof(δ)).

By Proposition 4.1.1, any mutually stationary family consists of stationary sets; and the

questions of whether there is a mutually stationary family satisfying certain conditions, and

whether any amount of MS(◦), holds, are both independently interesting questions. We mostly

focus on the consistency of MS(◦)-principles in this chapter.

Many mutual stationarity proofs are analogous to, or generalizations of, the following:

Theorem 4.1.3. Let 〈κα | α < λ,α successor〉 be an increasing sequence of measurable cardinals

with limit κ, and with λ < κ.

Then MS(〈κα | α < λ, α successor〉) holds.

This is stated without proof in (Foreman and Magidor, 2001). The proof is fairly straight-

forward, and proceeds via the use of indiscernibles:
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Definition 4.1.4. Let M be a structure, I a linear order. Then a sequence 〈ai | i ∈ I〉 ⊆ M

is indiscernible1if for every formula φ in the signature of M and every i1 < · · · < in and

j1 < · · · < jn,

M |= φ (ai1 , . . . , ain) ⇐⇒ M |= φ (aj1 , . . . , ajn)

Proof of Theorem 4.1.3. Let A be an algebra on κ; augment A to A ′ with terms for each Sα.

For each α, let Hα be a measure one (with respect to a normal measure on κα) family of A ′-

order-indiscernibles for A ′ ∩ κα. Since Lim(Hα), the collection of limit points of Hα, is then a

club, let γα ∈ Sα ∩ Lim(Hα), let H ′α = Hα ∩ γα, and let M = HullA ′
(⋃

α<λH
′
α | α < λ

)
.

Clearly for each α, M∩ κα ≥ γα. To see that this is an equality, suppose that for some

Skolem term F and some x ∈
[⋃

α<λH
′
α | α < λ

]<ω
, F(x) = β; let α be a successor ordinal such

that β ∈ [κα−1, κα).

Since Hα is unbounded in κα, let δ ∈ Hα ∩ (max{γα, β}, κα). Since x is finite and Hα is

unbounded in γα, let ζ ∈ Hα ∩ (max(x ∩ γα), γα).

By choice of δ, we have that A ′ |= F(x) < δ; but by how we chose δ and ζ, and since

x ∩ [ζ, κα) = ∅, the elements of x bear the exact same order relation to ζ as they do to δ.

2 Therefore, since M |= F(x) < δ and x, δ, ζ are order indiscernibles for M, we have that

M |= F(x) < ζ and ζ < γα.

A largely similar argument works for the points of a Prikry generic sequence:

1Some authors use the term order-indiscernible instead for this concept.

2In time, we will give this a precise name; see Definition 4.2.1 in 4.2.
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Theorem 4.1.5 (Theorem 5.4 of (Cummings et al., 2006)). Let κ be measurable with normal

measure U, let P(U) be Prikry forcing at κ, and let 〈κn | n < ω〉 be Prikry generic. Then in

the generic extension, there is some m < ω such that

MS(〈κn | m ≤ n < ω〉)

holds.

This theorem originally appeared in (Cummings et al., 2006). But, in ways we will see in

4.2, Theorem 4.1.5 was anticipated much earlier by results in (Koepke, 1984).

Proof sketch. With the use of the Prikry property, the argument of Theorem 4.1.3 readily

adapts to a U-measure one set B of order indiscernibles below κ; then (∅, B ∩ Lim(B)) forces

the desired mutual stationarity property. We will further refine and elaborate on this argument

in 4.2.

The following lemmas make working with mutually stationary sequences and mutual sta-

tionarity principles easier.

Lemma 4.1.6 (Folklore). 1. Any subsequence of a mutually stationary family of sets is also

mutually stationary.

2. If 〈Sα | α < µ〉 is mutually stationary with each Sα ⊆ κα ∩ cof(≤ ν) and ν < κ0 then the

mutual stationarity can be witnessed by an elementary substructure of size ν.

(Foreman and Magidor, 2001) cites this as implicit in (Baumgartner, 1991).
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As a corollary, mutual stationarity principles of restricted cofinality (under mild assump-

tions) are preserved under finite changes:

Lemma 4.1.7 (Lemma 23 of (Foreman and Magidor, 2001)). Let 〈Sα | α < µ〉 be mutually

stationary with each Sα ⊆ κα ∩ cof(≤ ν), with ν < κ0. Suppose λ0, . . . , λn are all greater than

ν, not equal to any κα, and Sλi ⊆ λi ∩ cof(≤ ν).

Then

〈Sα | α < µ〉_ 〈Sλi | i < n〉

is also mutually stationary.

As for consistency results:

Theorem 4.1.8 (Theorem 7 of (Foreman and Magidor, 2001)). Let 〈κα | α < µ〉 be any family

of regular cardinals. Then

MS(〈κα | α < µ〉 , cof(ω))

Theorem 4.1.9 (Theorem 24 of (Foreman and Magidor, 2001)). In L, for all k ∈ ω,

¬MS(〈ℵn | n > k〉 , cof(ωk))

Further inner model theoretic results showed that mutual stationarity principles for fixed

uncountable cofinality requires large cardinals incompatible with L:
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Theorem 4.1.10 (Theorem 1.4 and Corollary 1.5 of (Koepke and Welch, 2007)). If k < ω

and MS(〈ℵn | n > k〉 , cof(ωk)), then there is an inner model in which each ℵVn has stationarily

many measurable cardinals of Mitchell order ωn−2.

As of writing, the best known argument in the other direction comes courtesy of (Ben-Neria,

2019):

Theorem 4.1.11 (Theorem 1.3 of (Ben-Neria, 2019)). Assume GCH and let 〈κn | n < ω〉 be

a sequence of cardinals with κ0 = ω, and with limit κω such that each κn is κ+ω-supercompact.

Then after forcing with a full-support iteration of Col(κn, < κn+1), for each k < ω,

MS(〈ℵn | n > k〉 , cof(ωk))

holds.

Mutual stationarity results at every other ℵn require much weaker large cardinal assump-

tions. For instance:

Theorem 4.1.12 (Theorem 1.6 of (Koepke, 2007); Theorem 1 of (Koepke and Welch, 2006)).

The principle

MS(〈ℵ2n+3 | n < ω〉 , cof(ω1))

and the existence of a measurable cardinal are equiconsistent.

and for larger cofinality:
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Theorem 4.1.13 (Theorem 1.4 of (Ben-Neria, 2019)). It is consistent, relative to a sequence

〈κn | n < ω〉 with each κn being κ+n -supercompact with a κ+n−1-Mitchell sequence of such mea-

sures, that every sequence Sn ⊆ ℵ2n+3∩cof(< ℵ2n+2) of stationary subsets is mutually station-

ary.

In particular, for all k < ω,

MS(〈ℵ2n+3 | k < 2n+ 3 < ω〉 , cof(ωk))

This family of consistency results demonstrate thatMS principles has large cardinal strength,

often follows directly from large cardinals and, failing that, in a forcing extension, and fails in

L. However, relationships between square principles and mutual stationarity are not straight-

forward. The arguments of (Koepke and Welch, 2007) use global � in the Dodd-Jensen core

model K to construct inner models for large cardinals from MS principles, but relationships

between MS principles and failures of � remain uninvestigated.

We conclude our background section by elaborating on how we may view mutual stationarity

principles as a strong form of anti-saturation.

Its introduction implicitly takes this view in the form of the following (a weaker version of

which appears as Theorem 7 and Corollary 8 in (Foreman and Magidor, 2001)):

Theorem 4.1.14. Assume δ is the successor of a regular cardinal and λ is a singular cardinal

with cf(λ) = µ > δ. Let 〈κα | α < µ〉 be a cofinal sequence of cardinals in λ and suppose

MS(〈κα | α < µ〉 , cof(< δ)). Then the nonstationary ideal on Pδ(λ) is not λµ-saturated.
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Under ¬SCHλ with λ of uncountable cofinality, this would give a more impressive anti-

saturation result for the nonstationary ideal on (Pδ(λ)) than previously known. Thus compat-

ibility of mutual stationarity principles with ¬SCH are of independent interest.

Proof of Theorem 4.1.14. Let 〈Sα ⊆ κα ∩ cof(< δ) | α < µ〉 be a sequence of stationary sets.

By Solovay’s Splitting theorem, for each α let
〈
Tαβ | β < κα

〉
be a pairwise disjoint sequence of

stationary subsets of Sα.

For each f ∈
∏
α<µ κα, let Sf = {M ∈ Pδ(λ) | α ∈M =⇒ sup(M ∩ κα) ∈ Tαf(α)}.

We claim that the family
〈
Sf | f ∈

∏
α<µ κα

〉
is an antichain for the nonstationary ideal

on Pδ(λ). To see this, since
〈
Tαf(α) | α < µ

〉
is mutually stationary, each Sf is stationary in

Pδ(λ). To argue that Sf ∩ Sg is nonstationary for distinct f, g, fix f 6= g. Then there is some

α for which f(α) 6= g(α); hence for such α, Sαf(α) ∩ S
α
g(α) = ∅. Thus Sf ∩ Sg misses the club

{M ∈ Pδ(λ) | α ∈M}.〈
Sf | f ∈

∏
α<µ κα

〉
is an antichain for the nonstationary ideal on Pδ(λ), of cardinality∏

α<µ κα = λµ.

However, very little is known about mutual stationarity principles with ¬SCH.

The argument of (Koepke, 2007) does not depend on cardinal arithmetic, so should readily

achieve MS(〈ℵ2n+3 | n < ω; cof(≤ ω1)〉) + ¬SCHℵω).

The arguments of (Ben-Neria, 2019) assume GCH, but suggest a framework for achieving

mutual stationarity principles with the failure of GCH.
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4.2 The Koepke Approach

In this section, we flesh out Koepke’s argument for Theorem 4.1.5, that Prikry generics

achieve MS on a tail. Koepke’s argument uses mutual Ramseyness, an alternative and more

general way to think about the proof of Theorem 4.1.5. As our arguments on Magidor generics

also utilize mutual Ramseyness, we will explain here what mutual Ramseyness is, why mu-

tual Ramseyness holds for Prikry generics on a tail, and why that implies mutual stationarity

principles.

Definition 4.2.1 (Definition 2.2 of (Koepke, 2007)). Suppose that κ is a limit cardinal with

cf(κ) = λ, and let 〈κα | α < λ〉 be a normal cofinal sequence of cardinals below κ.

1. Let x ∈ [κ]<ω. Then type(x) = 〈|x ∩ κα| | α ∈ λ〉.

We’ll say that t ∈ [ω]λ is a type if for some x, t = type(x).

We’ll additionally say that the instances of t are inst(t) := {x ∈ [κ]<ω | type(x) = t}

2. We say that a sequence of sets 〈Iα | α ∈ λ ∩ Succ〉 with each Iα ⊆ κα is mutually homo-

geneous for a function F : [κ]<ω → κ if for every x, y ∈
[⋃

α∈λ∩Succ Iα
]<ω

, we have that

F(x) = F(y) whenever type(x) = type(y) and x ∩ (F(x) + 1) = y ∩ (F(x) + 1).

3. We say that 〈κα | α < λ〉 is mutually Ramsey if for all F : [κ]<ω → κ, there is a mutually

homogeneous for F sequence 〈Iα | α ∈ λ ∩ Succ〉 such that |Iα| = κα.

Remark 4.2.2. 1. For x ∈ [κ]<ω, type(x) is the (non-decreasing, eventually stabilizing) se-

quence that tells you, at point α, how many elements of x there are below κα.
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2. In the definition of mutually homogeneous, the restriction x ∩ (F(x) + 1) = y ∩ (F(x) + 1)

is equivalent to F(x) < min(x∆y) (the symmetric difference).

The idea here is that a sequence is mutually homogeneous for F if F’s values on the (finite

subsets picked from the) sequence depend only on type and a generalization of regressive-

ness. In a sense, this is exactly the behavior one would want out of a Skolem function

on a structure with many large order-indiscernibles, which is exactly how Theorem 4.1.3

and Theorem 4.1.5 proceed.

Our use case for mutually homogeneous sequences is to build order indiscernibles for a given

model M. This is implicit in (Koepke, 2007):

Definition 4.2.3. Let θ ≥ κ, and letM be a model of domain Vθ (or Hθ or θ) with signature

of size less than κ0. Suppose that M has a term F which is a Skolem function for M (i.e.

F : [dom(M)]<ω → θ and for every X ⊆ κ, X ⊆ F"[X]<ω ≺ M). Then we say that I :=

〈Iα | α ∈ λ ∩ Succ〉 is mutually homogeneous for M and F if

• I is mutually homogeneous for F

• for each formula φ in the signature ofM, if x, y ∈
[⋃

α∈λ∩Succ Iα
]<ω

are of the appropriate

arity for φ and type(x) = type(y), then M |= φ(x) ⇐⇒ M |= φ(y)

• for each term definable inM viewed as a map g : [κ]<ω → κ, I is mutually homogeneous

for g; that is, if x, y ∈
[⋃

α∈λ∩Succ Iα
]<ω

with type(x) = type(y) and x ∩ (g(x) + 1) =

y ∩ (g(x) + 1) then g(x) = g(y)
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Remark 4.2.4. If 〈κα | α ∈ λ ∩ Succ〉 is mutually Ramsey such that each Iα ⊆ κα may be

chosen to be club (or measure one for some appropriate notion of “measure one”) in κα, then

constructing a mutually homogeneous system forM is straightforward, albeit with the following

adjustment needed for the formulas φ:

We may view each formula φ restricted to parameters chosen from [κ]<ω as a function

φ : [κ]<ω → {0, 1, 2} defined by:

φ(x) =



0 |x| is inappropriate for use in φ

1 M |= ¬φ(x)

2 M |= φ(x)

Then as long as we have that 〈Iα | α ∈ λ ∩ Succ〉 is mutually homogeneous for φ and that

0, 1, 2 /∈ I0, we have that y∩(φ(x)+1) = ∅ for every x, y ∈ [κ]<ω; therefore, if type(x) = type(y)

then φ(x) = φ(y).

So to obtain a mutually homogeneous system for M, we construct mutually homogeneous

systems of clubs (or measure one sets) for F and for each φ and each g as in Definition 4.2.3,

of which there will be less than κ0-many, and take their intersection.

Theorem 4.1.5, the result on Prikry generics in (Cummings et al., 2006), fundamentally

relies only on arguments involving such F : [κ]<ω → κ. Koepke has arguments pertaining to

such F and in a much earlier paper (Koepke, 1984) proved the following:
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Theorem 4.2.5 ((Koepke, 1984); also Proposition 2.3 of (Koepke, 2007)). Let V [G] be a Prikry

generic model for κ over V, and let 〈κn | n < ω〉 be a Prikry generic sequence for κ. Then in

V [G], for some m, 〈κn | m ≤ n < ω〉 is mutually Ramsey. Furthermore, the sequence of In’s

witnessing this in V [G] may be chosen to be stationary subsets of each κn consisting only of

inaccessibles chosen from some σ-closed filter.

The proof is fundamentally exactly as in (Cummings et al., 2006). The fact that each In

may consist only of inaccessibles comes from observing that measure-one (hence stationarily)

many cardinals below a measurable are Mahlo.

Corollary 4.2.6. If 〈κn | n < ω〉 is a Prikry generic sequence over V in V [G], then in V [G],

MS(〈κn | n < ω〉) holds on a tail.

Proof. Let ~S = 〈Sn | n < ω〉 be a family of stationary sets on 〈κn | n < ω〉; without loss of

generality, all of 〈κn | n < ω〉 is mutually Ramsey.

LetM be a structure on κ with Skolem function F and, without loss of generality, terms for

each Sn; by mutual Ramseyness of κ, let 〈In | n < ω〉 be a mutually homogeneous for M and

F family of stationary sets on each κn.

Since each In is unbounded in κn, let γn ∈ Sn ∩ Lim(In), and let

U = F"

[ ⋃
n<ω

In ∩ γn

]<ω

Since F is a Skolem function and since γn ∈ Lim(In), U ≺M and sup(U ∩ κn) ≥ γn.
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To see that sup(U ∩ κn) ≤ γn, let x ∈ [
⋃
n<ω In ∩ γn]<ω be such that F(x) = α ∈ [κn−1, κn)

for some n.

Since In is unbounded in κn, let δ ∈ In∩(max{γn, α}, κn); since x is finite and In is unbounded

in γn, let ζ ∈ In ∩ (max(x ∩ γn), γn).

We now have that M |= F(x) < δ by choice of δ. Additionally, by choice of δ and ζ, and

since x ∩ [ζ, κn) = ∅, the elements of x bear the same order relation to ζ as they do to δ, and

in particular type(x ∪ {δ}) = type(x ∪ {ζ}).

Thus by mutual homogeneity applied to the formula ‘‘F(~a) < b",M |= F(x) < ζ and observe

that this implies F(x) < γn.

Therefore sup(U ∩ κn) = γn as desired.

4.3 An Indiscernibility Result Applicable to Magidor Forcing

To argue for the mutual stationarity property for Magidor generic sequences, we need an

as of yet unpublished simultaneous homogeneity result for multiple normal measures on κ. We

first argue an “easy” version for [κ]<ω that pulls at most one ordinal from each measure on κ,

and then generalize to larger sequences.

Definition 4.3.1. Let 〈Xi | 0 ≤ i < n〉 be sets of ordinals. Then we write

↑∏
0≤i<n

Xi

to denote all n-length increasing sequences β0 < · · · < βn−1 where βi ∈ Xi.
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Lemma 4.3.2. Suppose λ is a regular cardinal below κ and
−→
U = 〈Uα | α < λ〉 is a sequence of

normal measures on κ and suppose that f : [κ]<ω → κ is regressive, i.e. for all x, f(x) < min(x).

Then there is an
−→
H = 〈Hα | α < λ〉 where each Hα ∈ Uα, such that for every n and every

α0 < · · · < αn−1,

f �
↑∏

0≤i<n
Hαi

is constant.

Proof. We proceed by induction on n, for all such f simultaneously. The need for all functions

simultaneously will be apparent during the inductive step.

If n = 1, then we need
−→
H1 =

〈
H1 α | α < λ

〉
such that for each α, f � H1 α is constant. This

follows readily by Fodor’s theorem, since all the Uα’s are κ-complete and normal.

For the induction hypothesis, suppose that for every g : [κ]k → κ regressive, there is an
−→
Hk

such that for each α0 < · · · < αk−1, g �
∏↑
0≤i<k H

k
αi

is constant.

For each β0 < κ, let fβ0 : [κ \ {β0}]
k → κ, fβ0 (X) = f({β0} t X).

Since f is regressive, so is fβ0 ; so by the induction hypothesis, for each β0, there is a sequence

−→
Hkβ0 such that for each α1 < α2 < · · · < αk, fβ0 �

∏↑
1≤i<k+1 Hkβ0 αi

is constant, say with value

γα1,...,αk(β0).

Let gα1,...,αk : κ→ κ, gα1,...,αk(β) = γα1,...,αk(β); observe that gα1,...,αk is regressive.

Fix an α < λ; we now wish to define Hk+1
α.

By regressiveness of gα1,...,αk , for each α1 < · · · < αk in [λ \ (α + 1)]<ω, there is an

Aαα1,...,αk ∈ Uα such that gα1,...,αk is constant on Aαα1,...,αk , say with value δαα1,...,αk .
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Let

Bα =

 ⋂
α<α1<···<αk<λ

Aαα1,...,αk


For each β < κ, let Hk

′
β α = Hkβ α ∩ Bα and define

Hk+1
α = ∆β<κ H

k ′
β α

Then Hk+1
α is in Uα, and we now verify that

−→
Hk+1 has the appropriate homogeneity. Sup-

pose that α0 < · · · < αk. We wish to verify that for every βi ∈ Hk+1
αi

, βi < βi+1, we

have f({β0, . . . , βk}) = δα0α1,...,αk . To see this, observe that for each possible choice of β0,

f({β0, . . . , βk}) = fβ0 ({β1, . . . , βk}); since βi < βi+1, for i ≥ 1 we have that βi ∈ Hkβ0 αi
. Hence

f({β0, . . . , βk}) = γα1,...,αk(β0). But since β0 ∈ Bα0 , we have that in fact γα1,...,αk(β0) = δ
α0
α1,...,αk

as desired.

In the end, our desired Hα is
⋂
n<ω Hn α.

While Lemma 4.3.2 has some utility, we will need the following more general multi-arity

version:

Definition 4.3.3. Let 〈Xi | 0 ≤ i < n〉 be sets of ordinals and let k0, . . . , kn−1 be natural num-

bers. Then we write ↑∏
0≤i<n

Xkii

to denote the collection of all
−→
β0, . . . ,

−−→
βn−1 which are k0, . . . , kn−1-ary increasing sequences such

that
−→
βi ⊆ Xi and max

−→
βi < min

−−→
βi+1.
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Lemma 4.3.4. Suppose λ is a regular cardinal below κ and
−→
U = 〈Uα | α < λ〉 is a system of

normal measures on κ and suppose that f : [κ]<ω → κ is regressive.

Then there is an
−→
H = 〈Hα | α < λ〉 where each Hα ∈ Uα, such that for every n and for

every k0, . . . , kn−1, for every α0 < · · · < αn−1,

f �
↑∏

0≤i<n
Hkiαi

is constant.

There was nothing saying that a normal measure can’t repeat itself in the statement of

Lemma 4.3.2. That leads to the following short proof, where we repeat the same normal

measure ω-many times consecutively:

Proof. Apply Lemma 4.3.2 to the sequence ~U ′ =
〈
U ′ω·α+k | k < ω,α < λ

〉
where U ′ω·α+k = Uα

for all k.

This gives a sequence
〈
H ′ω·α+k | k < ω,α < λ

〉
with the homogeneity result for ~U ′ as in

Lemma 4.3.2. To obtain homogeneity as desired for ~U, we will have thatHα =
⋂
k<ωH

′
ω·α+k.

4.4 Mutual Stationarity for Magidor Generics

We now generalize Koepke’s approach to Magidor forcing. Before we do so, we have an

ancillary lemma that will come into play. Note that Prikry forcing preserves the stationarity of

sets of size less than κ, because Prikry forcing adds no new bounded subsets of κ. We need a

different argument for Magidor forcing.
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For this section, let ~U = 〈Uα | α < λ〉 be a Mitchell order increasing sequence of normal

measures on κ of length λ, for some λ < κ. Recall that VM(~U) denotes a generic extension after

forcing with M
(
~U
)

, as defined in Section 2.2.

Lemma 4.4.1. Let δ be a cardinal in V, let and suppose that in VM(~U), 〈κα | α < λ〉 denotes

the Magidor generic sequence added by M
(
~U
)

. Suppose that δ = κα+1 for some α. Let S ⊆ δ

be stationary in V. Then S is stationary in VM(~U).

Proof. It is enough to show that S is stationary after forcing with M
(
~U
)
(α+1,δ)

×M
(
~U
)(α+1,δ)

.

To see that S is stationary in V
M(~U)

(α+1,δ) , let 1 ≤ n < ω be such that α + 1 = β + n for

some β limit (or 0). Then densely often (by extending the stem such that β+k is in the domain

of the stem, for all k ≤ n), we may assume we’re forcing with M
(
~U
)
(β,ξ)

for some ξ, which is

ξ+-cc, and hence is δ-cc as well. Thus S is stationary in V
M(~U)

(α+1,δ) .

Since the direct extension order on M
(
~U
)(α+1,δ)

remains δ-closed after forcing with M
(
~U
)
(α+1,δ)

,

S remains stationary in the full generic extension.

Note that since mutually stationary sequences of sets are only defined for families of regular

cardinals, we don’t have to concern ourselves with sets cofinal in the cardinals singularized by

the Magidor forcing.

Theorem 4.4.2. Let λ < κ and let G be Magidor generic over V with 〈κα | α < λ〉 the induced

Magidor generic sequence. In V [G], let f : [κ]<ω → κ.
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Then there are δ < λ and 〈Aα | δ < α < λ, α successor〉 such that each Aα is stationary

in κα and on which f is mutually homogeneous, that is, whenever x, y ⊆ [
⋃
δ<α<λAα]

<ω with

type(x) = type(y) and x ∩ (f(x) + 1) = y ∩ (f(x) + 1), we have that f(x) = f(y).

Moreover, each Aα ∈ rλα(κα), where rλα(κα) is a Mitchell-rank α measure on κα and r is the

coherent system of representatives for 〈Uα | α < λ〉.

Proof. Work in V; let (g,H)  ḟ : [κ]<ω → κ. For each stem g ′ extending g, and each x ∈ [κ]<ω

strictly increasing with min(x) > max ran(g), let F(g ′, x) be defined by

F(g ′, x) =


β ∃E (g ′, E)  ḟ(x) = β

∅ otherwise

Since ~U is a family of normal measures on κ, applying Lemma 4.3.4 to F yields a family X ∈∏
maxdom(g)<α<λUα of order indiscernibles for F. What that precisely means is that whenever

g1, g2 are finite extensions of g with the same domain such that, above maxdom(g), gi �

(maxdom(g), λ) =
〈
κiα0 , . . . , κ

i
αn

〉
such that each κiαj ∈ X(αj), and x1, x2 are in [κ]<ω with

min(xi) > max ran(g) such that xi =
〈
xiβ0 , . . . , x

i
βm

〉
where xiβj ∈ X(βj), and x1 bears the

same order relations to ran(g1) as x2 bears to ran(g2), and (ran(g1) ∪ x1) ∩ (F(g1, x1) + 1) =

(ran(g2)∪ x2)∩ (F(g1, x1)+ 1)1, then F(g1, x1) = F(g2, x2). We may further constrain X so that

for β > maxdom(g), X(β) ⊆ H(β).

1Recall that x∩ (h(x) + 1) = y∩ (h(x) + 1) amounts to saying that h(x) < min(x∆y), so amounts to
asserting that h is regressive on an appropriate subcollection of κ.
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Let Y with dom(Y) = dom(X) be such that for β < maxdom(g), Y(β) = H(β); and for

β > maxdom(g), Y(β) is the collection of stationary reflection points in each X(β), i.e.

Y(β) = X(β) ∩ {γ < κ | γ ∩ X(β) stationary in γ}

For each β > maxdom(g), Y(β) ∈ Uβ; this is a consequence of the fact that the collection of

stationary reflection points below a measurable cardinal is measure one. Thus (g, Y) is in fact

a condition.

We wish to verify that (g, Y) forces the desired property for ḟ; by the Generic Model The-

orem, it suffices to show the desired property is true in V [G] whenever (g, Y) ∈ G. Let G be

M
(
~U
)

-generic over V with (g, Y) ∈ G; let ~κ = 〈κα | α < λ〉 be the G-generic Magidor sequence.

This buys for us that for all α < λ with α > maxdom(g), κα ∈ Y(α). Let δ = maxdom(g)

and let 〈Aα | δ < α < λ, α successor〉 be given by Aα = X(α) ∩ κα. Each Aα is V-stationary in

κα since κα ∈ Y(α), and by Lemma 4.4.1, Aα remains stationary in κα.

From here on out, unless otherwise noted, we work in V [G]. We will verify that

〈Aα | δ < α < λ, α successor〉 witnesses the desired conclusion.

Suppose x, y ⊆
[⋃

δ<α<λ, α successorAα
]<ω

are such that type(x) = type(y) and x∩(ḟ[G](x)+

1) = y∩(ḟ[G](x)+1). Let β be least such that x, y ⊆ κβ; since x, y finite, we have that β = α+1

for some α. Furthermore, since x, y are finite, type(x) = type(y), and x ∩ (ḟ[G](x) + 1) =

y ∩ (ḟ[G](x) + 1), we may extend (g, Y) to some (g ′, Y ′) ∈ G such that:

• β ∈ dom(g ′) and g ′(β) = κβ
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• since lh(x) = lh(y) = n, if we write x = 〈xi | i < n〉 and y = 〈yi | i < n〉 in increasing

order, then for each i such that xi, yi < κα, there exists some γ ∈ dom(g ′) such that

xi, yi ∈ (κγ, κγ+1)

• (g ′, Y ′) decides the values of both ḟ(x) and ḟ(y)

But type(x) = type(y), and min(x) and min(y) are both above κδ. Thus x bears the exact

same order relations to the elements of ran(g ′) as does y. Furthermore, since x∩(ḟ[G](x)+1) =

y ∩ (ḟ[G](x) + 1) is true in V [G], we have that (ran(g ′) ∪ x) ∩ (F(g ′, x) + 1) = (ran(g ′) ∪ y) ∩

(F(g ′, x) + 1) in V. Since x, y, and g ′ � (δ, λ) were all picked from X, by choice of X we have

that F(g ′, x) = F(g ′, y).

But then by definition of F(g ′, x) and F(g ′, y), without loss of generality there is some E

such that (g ′, E)  ḟ(x) = F(g ′, x) = F(g ′, y) = ḟ(y). While (g ′, E) is not necessarily in G, we

have that (g ′, E) ‖ (g ′, Y ′) and both (g ′, E) and (g ′, Y ′) decide the values of ḟ(x) and ḟ(y). But

then by compatibility, (g ′, E) and (g ′, Y ′) must decide the values of ḟ(x) and ḟ(y) the same way,

and so (g ′, Y ′)  ḟ(x) = ḟ(y). But then (g ′, Y ′) ∈ G so V [G] |= f(x) = f(y).

Theorem 4.4.2 gives a per-function mutual homogeneity on a tail of the Magidor generic

sequence, but to achieve mutual stationarity, we need a uniform version. Fortunately, Theo-

rem 4.4.2 can be uniformized below a single condition, which then forces that the entire Magidor

sequence is mutually Ramsey. This isn’t particular to the complexities of mutual homogeneity

or Ramseyness, but rather arises from the forcing apparatus itself:
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Lemma 4.4.3. There is a single p ∈MC
(
~U
)

such that

p  ‘‘ ˙〈κα | α < λ, α successor〉 is mutually Ramsey as witnessed by Ǎα ∈ rλα (κ̇α) "

Proof. For the sake of contradiction, suppose otherwise. By unpacking the definitions of 6 and

of mutually Ramsey, we have that below every p there is a q such that

q ‘‘∃ḟ : [κ]<ω → κ for which there is no family of Ǎα ∈ rλα (κ̇α) on successors

witnessing mutual homogeneity for f"

(4.1)

Without loss of generality, each such q has a name ḟq such that q forces ḟq to witness the

criterion in Equation 4.1.

By choosing a maximal antichain A of such q and then by applying the Mixing Lemma to

〈fq | q ∈ A〉, there is a name ġ such that

1M(~U) ‘‘ġ : [κ]<ω → κ admits no family of Ǎα ∈ rλα (κ̇α) on successors

witnessing mutual homogeneity for ġ"

(4.2)

But then by the argument of Theorem 4.4.2, since stem
(
1M(~U)

)
= ∅, there is a condition (∅, Y)

such that

(∅, Y)  ‘‘∃ ˙Aα | α < λ successor, Aα ∈ rλα (κ̇α) , that is mutually homogeneous for g"
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This contradicts Equation 4.2.

Due to Lemma 2.6.24, we can adjust our Magidor generic sequence on a finite set to meet

whatever condition we want, including the p from Lemma 4.4.3:

Lemma 4.4.4. Let q ∈ M
(
~U
)

, and let G be M
(
~U
)

-generic over V. Then there is a G ′ also

M
(
~U
)

-generic over V such that q ∈ G ′ and V [G] = V [G ′].

Proof. Let q = (g,H), and let 〈κα | α < λ〉 be the Magidor generic sequence induced by G. By

Lemma 2.6.24, there exists a finite b ⊆ dom(H) such that for all α ∈ dom(H) \ b, κα ∈ H(α).

Thus, let q ′ = (g ′, H ′) be a b-step extension of q such that for all α ∈ dom(H ′), κα ∈ H ′(α).

Then let 〈κ ′α | α < λ〉 be given by κ ′α = g ′(α) if α ∈ dom(g), and κ ′α = κα otherwise. Since

〈κα | α < λ〉 is geometric, so is 〈κ ′α | α < λ〉, and so by Theorem 2.6.23, let G ′ be the generic

filter induced by 〈κ ′α | α < λ〉.

By construction of G ′, q ′ ∈ G ′ since 〈κ ′α | α < λ〉 � dom(g ′) = g ′ and for all α ∈ dom(H ′),

κ ′α ∈ H ′(α). Thus q ∈ G ′ as q ′ ≤ q. But since 〈κα | α < λ〉 and 〈κ ′α | α < λ〉 differ only on a

finite subsequence, both are equidefinable from each other and therefore V [G ′] = V [G].

As a consequence, we have that Magidor generic sequences are mutually Ramsey on a cofinite

set:

Theorem 4.4.5. Let G be M
(
~U
)

-generic over V, and let 〈κα | α < λ〉 be its induced generic

sequence. Then there is a cofinite subset K of {α < λ | α successor} such that 〈κα | α ∈ K〉 is

mutually Ramsey as witnessed by a family of Aα ∈ rλα(κα).
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Proof. Let p ∈M
(
~U
)

be as in Lemma 4.4.3, and by Lemma 4.4.4, let G ′ be generic such that

p ∈ G ′ and V [G] = V [G ′].

Then by Lemma 4.4.3, the V [G ′]-generic sequence 〈κ ′α | α < λ〉 is mutually Ramsey on the

κ ′α for which α is a successor, as witnessed by elements of rλα(κ
′
α).

But by the proof of Lemma 4.4.4, 〈κα | α < λ〉 and 〈κα | α < λ〉 agree on a cofinite subse-

quence K ′. Then K = K ′ ∩ {α ∈ Ord | α successor} is as desired.

As for Prikry generics, (c.f. Corollary 4.2.6), from the mutual Ramseyness we obtain mutual

stationarity:

Theorem 4.4.6. Let G be M
(
~U
)

-generic over V, let 〈κα | α < λ〉 be its induced generic se-

quence, and let K be as in Theorem 4.4.5. Then

MS(〈κα | κα ∈ K〉)

holds.

Proof. Let 〈Sα | α ∈ K〉 be a system of stationary sets with each Sα ⊆ κα, letM be a structure

κ with countable signature and with Skolem function F. Since M has only countably many

functions in its signature, let 〈Aα | α ∈ K〉 be mutually homogeneous for M and F with each

Aα stationary in κα.

For each relevant α, since Lim(Aα) is club in κα let γα ∈ Sα ∩ Lim(Aα), and let

U = F"

[ ⋃
δ<α<κ, α successor

Aα ∩ γα

]<ω
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Then since F is a Skolem function, U ≺ M, and by the exact same logic as in Corollary 4.2.6,

for each relevant α, sup(U ∩ κα) = γα for every α ∈ K.



CHAPTER 5

A MAGIDOR FORCING WITH COLLAPSES

Section 4.1 covered prior results on mutual stationarity principles at ℵω. To push mutual

stationarity principles down to larger accessible cardinals, especially of uncountable cofinality,

we want tools to singularize a large cardinal κ while also collapsing below to make κ into ℵλ

for some λ.

To that end, we now describe a Magidor-type forcing with interleaved guided collapses

MC
(
~U
)

that singularizes a measurable cardinal κ to cofinality λ and collapses cardinals below.

We state and prove Prikry-type lemmas (Lemma 5.1.11 and Lemma 5.1.19).

The main result of ths chapter is a characterization of genericy for MC
(
~U
)

, spanning

Lemma 5.1.21 and Theorem 5.1.24.

In the event that λ = ω1, we will further get that κ becomes the new ℵω1 .

5.1 Defining the Forcing

Throughout this section, suppose GCH. We fix ~U = 〈Uξ|ξ ≤ λ〉 a Mitchell order-increasing

system of measure, λ < κ, 〈Yξ | ξ < λ〉, and
〈
rαβ

∣∣∣β < α < λ〉 as in Section 2.61.

Work in Ult(V,Uλ) and consider Col(κ+, < jUλ(κ)) = [Col(α+, < κ)]Uλ .

Lemma 5.1.1. There is a K ∈ V which is Col(κ+, < jUλ(κ))-generic over Ult(V,Uλ).

1In brief, this assures that the ordinals in each Yξ is measurable of Mitchell order ξ, as witnessed by
the r-sequence of measure representatives, and with reflection in the r-measures.

102



103

Proof. This is Proposition 2.5.8.

Lemma 5.1.2. Furthermore, for every α ≤ λ there is a Kα ∈ V which is Col(κ+, < jUα(κ))-

generic over Ult(V,Uα), such that:

1. whenever α < β ≤ λ, Kα ∈ Ult(V,Uβ)

2. there is a family of functions
〈
k
β
α

∣∣∣α < β < λ〉 such that Kα = [η 7→ k
β
α(η)]Uβ

3. in particular, for some Zβ ∈ Uβ, for every η ∈ Zβ, kβα(η) is a Col(η+, < j
r
β
α(η)

(η))-generic

over Ult(V, rβα(η)) and [Kα � η]rβα(η) = k
β
α(η); furthermore, this reflects downwards through

r.

Proof. The existence of Kα can be argued exactly as in Lemma 5.1.1.

As for obtaining that Kα ∈ Ult(V,Uβ), observe that since Uα ∈ Ult(V,Uβ) (and by GCH),

we simply have that |jUα(κ)|
Ult(V,Uβ) = 2κ = κ+ (by mapping κκ onto jUα(κ) by f 7→ [f]Uα ,

see for instance (Jech, 2003), Chapter 17, for details). Furthermore, since Uα ∈ Ult(V,Uβ),

not only is Col(κ+, < jUα(κ))
Ult(V,Uα) in Ult(V,Uβ), but so is the entire enumerated family〈

Aρ
∣∣ρ < (2κ)Ult(V,Uβ)

〉
of Ult(V,Uα)-antichains of Col(κ+, < jUα(κ))

Ult(V,Uα).

Recall that since Ult(V,Uα) is closed under κ-sequences, in V we enumerate K ′α = 〈pα | α < κ+〉

a descending chain of Col(κ+, < jUα(κ))
Ult(V,Uα) such that for every Aρ, either pρ ∈ Aρ or pρ is

below some element of Aρ. Since K ′α is definable entirely from the enumerated antichains and

Uα, K ′α ∈ Ult(V,Uβ), and hence so is Kα the upwards closure of K ′α.

The second and third items are measure-one reflections of the first.



104

Remark 5.1.3. Our only use of GCH is to construct the sequence 〈Kα | α ≤ λ〉 via the appropriate

closure of measure ultrapowers. In the absence of GCH, stronger large cardinal hypotheses

suffice to have ultrapowers with the appropriate closure.

The above coherent family of ultrapower collapse-generics allows us to define a Magidor-

style forcing with interleaved collapses, where the collapses are “guided” by the ultrapower

generics. In summary, conditions will similar to Magidor forcing to add a sequence 〈κα|α < λ〉

with supremum κ, but:

• κ0 will be the new λ++,

• between any two adjacent Magidor points κα and κα+1 we will also force with Col(κ+α , < κα+1),

• extension will be as in Magidor forcing, but additionally we may strengthen collapses,

and we don’t allow already-collapsed ordinals to become future Magidor points,

• when we add new points to the growing finite subfamily of the Magidor sequence, we must

also choose new collapse terms to be below some condition below the relevant guiding

generic in a sense;

• and the conditions are restricted in such a way as to ensure that no Magidor sequence

point gets collapsed, and that the poset still has a Prikry-type property.

Definition 5.1.4. MC
(
~U
)

: conditions are of the form (f, c,A,C) where:

1. dom(f), dom(c) ∈ [λt{−1}]<ω, dom(f) = dom(c), and dom(A) = dom(C) = λ\dom(f),

and f(−1) = λ+. We will write dom+(f) to mean dom(f)∩Ord, and similarly for dom(c).

2. For ξ ∈ dom+(f), f(ξ) ∈ Zξ, f(ξ) > λ+, and f is strictly increasing
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3. for ξ ∈ dom(A) with ξ < maxdom+(f), let τ = min{dom+(f) \ (ξ + 1)}. Then A(ξ) ∈

rτξ(f(τ)).

4. For ξ ∈ dom(A) with ξ > maxdom+(f), A(ξ) ∈ Uξ; with τ = max(dom+(f) ∩ ξ), we

further require that A(ξ) ⊆ Zξ \ (f(τ) + 1).

5. For each α ∈ dom(c), c(α), if (dom(f) \ (α + 1)) 6= ∅, is a Col(f(α)+, < f(min(dom(f) \

(α+ 1))))-condition; otherwise is a Col(f(α)+, < κ)-condition

6. for each α ∈ dom(A), for each β ∈ dom(A)∩α, A(α)∩sup c(β) = ∅, that is, no collapsed

ordinals will ever become Magidor points;

7. C acts as a measure-one system of future choices for c; that is, for each relevant α, C(α)

is a function with domain A(α) such that

• if δ ∈ A(α), then C(α)(δ) ∈ Col(δ+, < κ) if δ > maxdom(f); otherwise, letting

ξ = min(dom(f) \ (α+ 1)), is in Col(δ+, < f(ξ))

• if α > maxdom(f), then [C(α)]Uα ∈ Kα; otherwise, letting ξ = min(dom(f)\(α+1)),

we have that [C(α)]
rξα(f(ξ))

∈ kξα(f(ξ)).

We say that the condition (f ′, c ′, A ′, C ′) ≤ (f, c,A,C) if

1. f ′ ⊇ f and if α ∈ dom+(f ′) \ dom+(f), then f ′(α) ∈ A(α)

2. for each α ∈ dom(c), c ′(α) ≤ c(α) in the relevant collapse forcing

3. for each α ∈ dom+(c ′) \ dom+(c), c ′(α) ≤ C(α)(f ′(α))

4. for all α ∈ dom(A ′), A ′(α) ⊆ A(α)
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5. for all α ∈ dom(C ′), C ′(α)(δ) ≤ C(α)(δ) for all δ ∈ A ′(α)

As for our definition of direct extension, we will say that (f ′, c ′, A ′, C ′) ≤∗ (f, c,A,C) if f ′ = f;

note that we may still strengthen collapse terms in a direct extension.

Remark 5.1.5. For ease of notation, and in accordance with conventions found in (Gitik, 2010),

we may write a condition p ∈MC
(
~U
)

as

p = (fp, cp, Ap, Cp)

We’ll say that the stem of p is fp.

Observe that MC
(
~U
)

has the κ+-cc essentially for the same reasons as classical Magidor

forcing. Note that two conditions with the same Magidor stem need not be compatible due to

their collapse terms being incompatible:

Proposition 5.1.6. MC
(
~U
)

has the κ+-cc.

Proof. Observe that if p, q are conditions such that both fp = fq and cp = cq, then p ‖ q; simply

strengthen Ap, Aq, Cp, Cq accordingly. Thus there are only κ-many choices of incompatible

stems and collapses.

As with Magidor forcing, we have notions of how to project conditions, and a factoring

property:

Definition 5.1.7. Let p = (f, c,A,C) ∈ MC
(
~U
)

and let ξ < λ. Then we may define the

following:
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• (p)ξ = (f, c,A,C)ξ = (f � (ξ+ 1), c � (ξ+ 1), A � (ξ+ 1), C � (ξ+ 1))

• (p)ξ = (f, c,A,C)ξ = (f � (λ \ (ξ+ 1)), c � (λ \ (ξ+ 1)), A � (λ \ (ξ+ 1)), C � (λ \ (ξ+ 1)))

• MC
(
~U
)
(ξ,β)

=
{
(f, c,A,C)ξ | (f,A) ∈MC

(
~U
)
, ξ ∈ dom(f), and f(ξ) = β

}
• MC

(
~U
)(ξ,β)

=
{
(f, c,A,C)ξ | (f,A) ∈MC

(
~U
)
, ξ ∈ dom(f), and f(ξ) = β

}
Fact 5.1.8. As with vanilla Magidor forcing (c.f. Fact 2.6.8), due to our use of the reflected

guiding generics
〈
kξα
∣∣α < ξ, ξ < λ〉, for each ξ a limit point below λ and each β ∈ Yξ, relative

to the weakest p for which fp(ξ) = β,

MC
(
~U
)
/p = MC

(
~U
)
(ξ,β)
×MC

(
~U
)(ξ,β)

so MC
(
~U
)

factors.

In particular,

MC
(
~U
)
(ξ,β)

= MC
(〈
rξα(β) | α < ξ

〉)

with guiding generics
〈
kξα(β) | α < ξ

〉
, and

MC
(
~U
)(ξ,β)

= MC (〈Uγ | ξ < γ < λ〉)

(restricted to stems above ρ+) with guiding generics 〈Kγ | γ < λ〉.

As with M
(
~U
)

, due to the factoring of Fact 5.1.8, many preservation arguments that work

for MC
(
~U
)

still reflect downwards. The factoring will also allow us to inductively prove a

characterization of genericity for MC
(
~U
)

in Theorem 5.1.24.
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The Diagonalization Lemma for MC
(
~U
)

requires more assumptions than with M(~U); due

to the introduction of collapse terms, not every indexed family of step extensions below p can

be diagonalized.

However, a Prikry-type property still holds, and through its proof we can extract a partial

Diagonalization Lemma.

As with Magidor forcing, the step extensions in question for the Prikry lemma are a-step

extensions:

Definition 5.1.9. Let a ∈ [λ∪ {−1}]<ω, let b ⊆ a∪ {−1}, and let p, q be conditions with q ≤ p.

We’ll say that q is an a-step extension of p if dom(fq) = dom(fp) t a.

Note that a-step extensions, like direct extensions, may additionally extend the c-terms.

Also as with Magidor forcing, we want a notion of minimal extension p _ ~ν for which

fp_~ν = fp _ ~ν:

Definition 5.1.10. Let p be a condition, let α ∈ dom(Aq), and let ν ∈ Aq(α). Then we may

define the condition p_ (α, ν) as the weakest extension q of p such fq(α) = ν, namely:

• fp_(α,ν) = fp _ (α, ν)

• cp_(α,ν) = cp _ (α,Cp(α)(ν))

• For β > α, Ap_(α,ν)(β) = Ap(β) \ sup(Cp(α)(ν)) and Cp_(α,ν)(β) = Cp(β) � Ap_(α,ν)(β)

• For β < α, Ap_(α,ν)(β) = Ap(β)∩ν∩{µ ∈ Zβ∩ν | supCp(β)(µ) < ν}; by Lemma 5.1.2(3),

this is in rαβ(ν)
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• and for β < α, Cp_(α,ν)(β) = Cp(β) � Ap_(α,ν)(β); by Lemma 5.1.2(3), [Cp_(α,ν)(β)]rαβ(ν) ∈

kαβ(ν) as needed

For longer ν, we define, for each a ∈ [dom(Ap)]<ω and each strictly increasing ~ν ∈∏
α∈aA

p(α), p_ ~ν similarly.

Lemma 5.1.11 (Prikry-type lemma, open dense version). If p is a condition and D is an open

dense set, then there is a direct extension r ≤∗ p and an a ∈ [λ]<ω such that every a-step

extension of r is in D.

Before we prove this, we will introduce some terminology for families of direct extensions of

a fixed condition:

Definition 5.1.12. Let p ∈MC
(
~U
)

, let D be an open dense set, and let

E =

{
~ν : a→ κ

∣∣∣∣∣a ∈ [dom(Ap)]<ω,~ν ∈
∏
α∈a

Ap(α), and p_ ~ν is a condition below p

}

and for each a ∈ [λ]<ω such that there are valid a-step extensions of p, let

Ea = {~ν ∈ E | dom(~ν) = a}

Let 〈p~ν|~ν ∈ Ea( or E)〉 be an Ea (or E)-indexed family of conditions. We say that such a family

meets D below p if possible if for each ~ν ∈ Ea (or E), p~ν ≤∗ p_ ~ν and if there is some r ≤∗ p~ν

such that r ∈ D, then p~ν ∈ D as well.
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Proof of Lemma 5.1.11. We proceed in a series of claims. Let E, and Ea for each a ∈ [dom(Ap)]<ω,

be as in Definition 5.1.12; note that for each α ∈ dom(Ap), E{α} = A
p(α).

Claim 5.1.13. For each α ∈ dom(Ap), there is a family
〈
p(α,ν)

∣∣ν ∈ Ap(α)〉 that meets D below

p if possible such that

[ν 7→ cp(α,ν)(α)] ∈ Kα

(or kβα(ρ) if applicable).

Proof of Claim 5.1.13. Without loss of generality, we argue for α > maxdom(fp); for smaller

α, due to Fact 5.1.8, we may factor and work over MC
(
~U
)
(α,fp(α))

and MC
(
~U
)(α,fp(α))

.

Let D∗ ⊆ Col(κ+, < jUα(κ))Ult(V,Uα) be given by

D∗ =
{
[ν 7→ cp(α,ν)(α)]Uα

∣∣〈p(α,ν)∣∣ν ∈ Ap(α)〉 meets D below p if possible
}

Then D∗ is dense below [Cp(α)]. To see this, let [b] ∈ Col(κ+, < jUα(κ))
Ult(V,Uα) be below

[Cp(α)]; simply because [b] ≤ [Cp(α)], (on a measure one collection of ν ∈ Ap(α)) we may

straightaway let p(α,ν) be such that p(α,ν) ≤∗ p _ (α, ν), cp(α,ν)(α) ≤ b(ν), and if some

r ≤∗ p(α,ν) is in D, then p(α,ν) is already chosen to be in D. Then
〈
p(α,ν)

∣∣ν ∈ Ap(α)〉 meets D

below p if possible and by construction, [ν 7→ cp(α,ν)(α)] ≤ [b].

Thus by the genericity of Kα, D∗ ∩ Kα 6= ∅ and therefore there is some
〈
p(α,ν)

∣∣ν ∈ Ap(α)〉
that meets D below p if possible such that [ν 7→ cp(α,ν)(α)]Uα ∈ Kα.

Having the family’s collapse terms at α in Kα in the ultrapower allows us to diagonalize:
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Claim 5.1.14. Let
〈
p(α,ν)

∣∣ν ∈ Ap(α)〉 be as in Claim 5.1.13. Then there is a pα ≤∗ p such

that 〈pα _ (α, ν)|ν ∈ Apα(α)〉 meets D below p if possible.

Proof of Claim 5.1.14. Without loss of generality, we argue for p such that fp = 〈(−1, λ)〉; we

can handle larger stems by factoring and measure one concentrations as per Fact 5.1.8. In this

reduced case, it suffices to define Apα , Cpα , and cpα(−1).

Observe that for each ν ∈ Ap(α), cp(α,ν)(−1) ∈ Col(λ+, < ν) which is of cardinality ν. Thus

we may view the map ν 7→ cp(α,ν)(−1) as a regressive map on Ap(α), and so by the normality

of Uα and Fodor’s Theorem, there is some A ′ ∈ Uα, A ′ ⊆ Ap(α), and some c ′ ∈ Col(λ+, < κ)

such that for all ν ∈ A ′, cp(α,ν)(−1) = c ′.

Let

cpα(−1) = c ′

For β > α, observe that for each ν ∈ A ′, [Cp(α,ν)(β)]Uβ ∈ Kβ, and thus {[Cp(α,ν)(β)]Uβ |

ν ∈ A ′} is a κ-sized downwards directed subset of Kβ. Thus, by the κ+-distributvity Col(κ+, <

jUβ(κ))
Ult(V,Uβ), we may find some [C ′] such that [C ′]Uβ ≤ [Cp(α,ν)(β)]Uβ as witnessed by Wν ∈

Uβ, for all ν ∈ A ′ 1. We let

Apα(β) = A ′ ∩ ∆ν∈A ′Wν

1This is a widely applicable forcing result: let P be κ+-distributive, let G be P-generic, and let
〈pα | α < κ〉 be a downwards directed subset of G. Then there is a p ∈ G that is a lower bound of
〈pα | α < κ〉. To see this, note that by distributivity, 〈pα | α < κ〉 is in the ground model and D := {q |

∀α q ≤ pα or ∃α p ⊥ pα} is dense. Let p ∈ D∩G. Since each pα ∈ G, p ‖ pα for all α and thus p ≤ pα
for all α.
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and let

Cpα(β) = C ′ � Apα(β)

For β < α, recall that each Ap(α,ν)(β) ∈ rαβ(ν), and each Cp(α,ν)(β) is a map with domain

Ap(α,ν)(β) such that

• for each µ ∈ Ap(α,ν)(β), Cp(α,ν)(β)(µ) ∈ Col(µ+, < ν)

• [Cp(α,ν)(β)]rαβ(ν) ∈ k
α
β(ν)

Let Bβ,α = [ν 7→ Ap(α,ν)(β)]Uα ∈ Uβ and let Xβ,α = [ν 7→ Cp(α,ν)(β)]Uα . By elementarity and the

measure coherence, Bβ,α ∈ Uβ; by the guiding generic coherence of Lemma 5.1.2, [Xβ,α]Uβ ∈ Kβ.

So let Fβ,α be a Uα-measure-one collection of ν ∈ A ′ such that

• Bβ,α ∩ ν = Ap(α,ν)(β)

• Xβ,α � Ap(α,ν)(β) = Cp(α,ν)(β)

Let

Apα(β) = Bβ,α ∩Ap(α)

and let

Cpα(β) = Xβ,α � A
pα(β)

We will need Fβ,α for the next case.

For β = α, by the result of Claim 5.1.13, [ν 7→ cp(α,ν)(α)]Uα ∈ Kα so let C ′′ be such that

[C ′′] = [ν 7→ cp(α,ν)(α)] and let A ′′ be a measure one set witnessing this equality.
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Let

Apα(α) = A ′′ ∩A ′ ∩
⋂
β<α

Fβ,α

This ensures that for every ν ∈ Apα(α), (pα _ (α, ν)) � α behaves as described above.

Let

Cpα(α) = C ′′

Then pα is as desired.

Claim 5.1.15. For all a ∈ [dom(Ap)]<ω, there is a pa ≤∗ p such that

〈pa _ ~ν|pa _ ~ν is a valid condition〉

meets D below p if possible.

Proof of Claim 5.1.15. We induct on |a|; Claim 5.1.13 and Claim 5.1.14 show how to find such

pa for |a| = 1.

As for the induction, suppose without loss of generality that fp = 〈(−1, λ)〉 as before; suppose

the above statement is true for every a with |a| = n. Let α = min(a) and let b = a \ {α}. Then

by the induction hypothesis, for (measure one many) µ ∈ Ap(α), there is some qµ ≤∗ p_ (α, µ)

such that

〈qµ _ ~ν|qµ _ ~ν is a valid condition〉
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meets D below p if possible. By the same argument as in Claim 5.1.13, we may assume that

[µ 7→ cqµ(α) | α ∈ Ap(α)]Uα ∈ Kα, and thus by the same argument as in Claim 5.1.14, we have

some q ≤∗ p such that q _ (α, µ) ≤∗ qµ whenever µ ∈ Aq(α) and 〈q_ (α, µ)|µ ∈ Aq(α)〉

meets D below p if possible1.

But then by construction, 〈q_ ~ν|~ν ∈ Ea〉 meets D below p if possible, and so q is our

desired pa.

By enumerating over all a for which p has valid a-step extensions (that is, a ∈ [dom(Ap)]<ω),

we may additionally construct the 〈qa | a ∈ [dom(Ap)]<ω〉 such that for each α ∈ dom(fp),

{cqa(α) | a ∈ [dom(Ap)]<ω} forms a directed system in the relevant collapse forcing of size less

than λ+.

Therefore, by invoking the λ+-closure of each relevant measure to shrink the measure terms

Aqa , the λ+-directed closure of each relevant collapse forcing to shrink the cqa ’s, and the κ+-

directed closure of Col(κ+, < jUα(κ))
Ult(V,Uα) on the Cqa ’s, we may let q be a lower bound of

〈qa|a ∈ [dom(Ap)]<ω〉.

By Claim 5.1.15, we have that

〈
q_ ~ν

∣∣∣ν ∈ [∏Aq(α)
]<ω

increasing
〉

1Note that the same Fodor’s Theorem argument works to concentrate Aq(α) so that for every µ ∈
Aq(α), the map µ 7→ cqµ(−1) ∈ Col(λ+, < µ) is constant.
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meets D below q if possible. That means that for each applicable ~ν, if some direct extension

of q_ ~ν lies in D then q_ ~ν ∈ D already.

We will now find homogeneous families of such ν, in the following sense. Let h : [
∏
Aq(α)]<ω →

{0, 1}1,

h(~ν) =


1 q_ ~ν ∈ D

0 otherwise

By Lemma 4.3.22, there is some r ≤∗ q with cr = cq such that for every a ∈ [dom(Ar)]<ω,

h �
↑∏
α∈a

Ar(α)

is constant.

But then r is finally as desired, as there is some a so that every a-step extension of r is in D.

To see this, observe that by density, there must be some ~ν such that some direct extension of

r_ ~ν ∈ D; but then r_ ~ν ∈ D, and since r_ ~ν ≤∗ q_ ~ν, by construction of q, q_ ~ν ∈ D,

so h(~ν) = 1. Let a = dom(~ν); by the homogeneity of h, every a-step extension of r is in D.

Combining elements of the aforementioned proof yields the following restricted Diagonal-

ization Lemma:

1h as defined is not exactly a map on this domain, but rather is a map on increasing finite sequences
drawn from the measure one family of Aq(α)’s.

2Technically, Lemma 4.3.2 applies independently to h on each sub-interval between points in
dom(fq) ∪ {κ}, taking reflected measures as needed.
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Lemma 5.1.16 (Diagonalization Lemma). Let p ∈MC
(
~U
)

; let

E =

{
~ν : a→ κ

∣∣∣∣∣a ∈ [dom(Ap)]<ω,~ν ∈
∏
α∈a

Ap(α), and p_ ~ν is a condition below p

}

Let 〈p~ν|~ν ∈ E〉 be a family such that:

1. p~ν ≤∗ p_ ~ν

2. for all a, for all α ∈ dom(a), there is a t : Ap(α) → {p~ν | ~ν ∈ E} such that t(µ) is some

~ν such that dom(~ν) = a, ~ν(α) = µ, and

[µ 7→ cpt(µ)(α)] ∈ Kα( or kβα(ρ))

Then there is some q ≤∗ p such that whenever q_ ~ν is a valid condition, q_ ~ν ≤∗ p~ν

And in the course of proving Lemma 5.1.11, we obtain simultaneous homogeneity for all

step extensions:

Lemma 5.1.17. Let D be open dense, let p be a condition, and let r ≤∗ p be as in the proof

of Lemma 5.1.11. Then for every b ∈ [λ]<ω for which p admits b-step extensions, either every

b-step extension of r is in D, or none are.

And as with vanilla Magidor forcing, we obtain the sentential version of the Prikry lemma.

The proof is functionally the same as in Lemma 2.6.17:

Lemma 5.1.18 (Prikry-type lemma, sentential version). Let p ∈ MC
(
~U
)

, and let σ be a

sentence of the forcing language. Then there is some r ≤∗ p such that r decides σ.
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Proof. Since the collection of conditions deciding σ is open dense, by Lemma 5.1.11, there is

some q ≤∗ p and some a such that every a-step extension of q decides σ.

We argue for the case of a = {α}; the rest are by induction and proceed much like in vanilla

Magidor forcing (c.f. Lemma 2.6.17).

Let

Aσ = {ν ∈ Aq(α) | q_ (α, ν)  σ}

and let

A¬σ = {ν ∈ Aq(α) | q_ (α, ν)  σ}

Exactly one of Aσ and A¬σ is measure one; if without loss of generality Aσ is measure one, then

let

A ′(β) =


A(β) β 6= α

Aσ β = α

and for each β ∈ dom(A ′), let C ′(β) = C(β) � A ′(β). Then every a-step extension of

(fr, cr, A ′, C ′) forces σ, and thus (fr, cr, A ′, C ′)  σ. Note that no extension is needed to

cr; thus the induction steps may proceed only on the A◦-component with appropriate domain

restriction on the C◦-component.

Further arguments along the lines of Lemma 2.6.18 yield a tail-change version:

Lemma 5.1.19 (Prikry-type lemma, tail-change version). If p is a condition, D is an open

dense set, and β,β + 1 ∈ dom(fp), then there is a direct extension q ≤∗ p such that (q)β+1 =
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(p)β+1 and whenever a ∈ [dom(Ap)]<ω, if q ′ is an a-step extension of q and q ′ ∈ D, then

every a \ (dom(fq
′
) ∩ (β+ 1))-step extension of (q ′)β+1 _ (q)β+1 is also in D.

The proof is almost identical to the analogue for M
(
~U
)

(c.f. Lemma 2.6.18). The core

difference here is in assuring that the collapse terms are compatible.

Proof. For ease of notation, let fp(β) = ζ and let fp(β + 1) = ρ. Recall that both ζ and ρ are

inaccessible, and so ζ < 2ζ < ρ.

For each r ≤ (p)(β+1,ρ) in MC
(
~U
)
(β+1,ρ)

, by Lemma 5.1.17, let pr ≤∗ r _ (p)β+1 (in the

full MC
(
~U
)

) be such that for every b, either every b-step extension of pr is in D, or none are.

By construction, for each r, (pr)β+1 ≤∗ r and (pr)
β+1 = (fp, cpr , Apr , Cpr)β+1.

We will additionally need that the cpr ’s are all compatible on [β+1, λ). If there are ρ-many

such r, then since ≤∗ on MC
(
~U
)(β+1,ρ)

is ρ+-directed closed, we may recursively construct the

pr’s along a well-ordering of all such r of order type ρ, so that the sequence of (pr)
(β+1,ρ)’s forms

a ρ-length descending chain.

We claim that there are ρ-many such r. To see this, note that our choices for fr consist

of elements of [ζ]<ω, of which there are ζ < ρ-many, and choices for Cr and Ar range over

measures and families of collapses up to and including ζ, of which there are 2ζ < ρ-many.

Finally, for cr: below β, collapse terms are bounded in ζ, so there are at most ζ-many, and at

β, cr(β) ∈ Col(ζ+, < ρ) and so there are ρ-many. Thus, there are ρ-many such r.

Thus the family of (pr)
β+1’s forms a ρ-length descending chain in ≤∗, the ρ+-closed direct

extension order on MC
(
~U
)(β+1,ρ)

. For each r, let qr = (p)β+1 _ (pr)
β+1; then by construction

there is a ≤∗-lower bound q of the qr’s.
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But then q is as desired. To see this, suppose q ′ ≤ q and q ′ ∈ D. Let r = (q ′)β+1, and let

b be such that q ′ is a b-step extension of q. Then by construction, q ′ ≤ r_ (q)β+1 ≤ pr, and

by definition of pr, every b-step extension of pr, and hence any b \ dom(fr)-step extension of

r_ (q)β+1, is also in D.

Likewise, we have a similar sentential version with tail changes:

Lemma 5.1.20 (Prikry-type lemma, tail-change sentential version). Let σ be a sentence of the

forcing language, let p ∈MC
(
~U
)

, and let β,β+1 ∈ dom(fp). Then there is some q ≤∗ p such

that (q)β+1 = (p)β+1 and if q ′ ≤ q is such that q ′ decides σ, then (q ′)β+1 _ (q)β+1 decides σ

the same way.

This proof is identical to the analogous argument for M
(
~U
)

(c.f. Lemma 2.6.19):

Proof. For ease of notation, let fp(β + 1) = ρ. As the collection of conditions deciding σ is

open dense, we may re-run the argument of Lemma 5.1.19, but while invoking Lemma 5.1.18

to additionally ensure that each pr as above also decides σ.

Since ensuring that each pr decides σ only involves shrinking the A◦ and C◦ components,

the family of (pr)
β+1’s still forms a ρ-length descending chain, and we may define q a ≤∗-lower

bound of the qr’s as in the proof of Lemma 5.1.19.

But then if q ′ ≤ q and q decides σ, then if we let r = (q ′)β+1, we have that q ′ ≤ r _

(q)β+1 ≤ pr; since pr already decides σ, q ′ and q must decide σ the same way, and hence

r_ (q)β+1 must also decide σ the same way as q ′.
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As for cardinal arithmetic in VMC(~U), an MC
(
~U
)

-generic object adds a Magidor sequence

〈βη|η < λ〉, and collapses cardinals in (β+
η , βη+1) for every η ∈ λ ∪ {−1}:

Lemma 5.1.21. Let G be MC
(
~U
)

-generic. Let

~β = 〈βη|η < λ〉 =
⋃
p∈G

fp

and for each η < λ, let

Fη =
⋃

p∈G,η∈dom(fp)

cp(η)

Then

1. ~β is increasing, normal, and has supremum κ

2. for all 〈Aη|η < λ〉 ∈ V with each Aη ∈ Uη, for coboundedly many ζ < λ, βζ ∈ Aζ

3. for all η, Fη is Col(β+
η , < βη+1)-generic over V

4. for all 〈Cη|η < λ〉 in V with each Cη a map from a measure one set in Uη to collapses

such that each [Cη] ∈ Kη: for coboundedly many ζ < λ, Cζ(βζ) ∈ Fζ

5. and the above items reflect down to each limit ordinal η < λ with respect to the reflected

measures r and reflected guiding generics k. More precisely, if η is a limit ordinal below

λ, then:

(a) 〈βζ | ζ < η〉 is increasing, normal, and has supremum βη;

(b) for each 〈Aζ | ζ < η〉 in V with each Aη in rηζ(βη), for coboundedly many ζ, βζ ∈ Aζ;
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(c) for all 〈Cζ | ζ < η〉 in V with each Cζ a map from a measure one set in rηζ(βη) to

collapses such that each [Cη] ∈ kηζ(βη): for coboundedly many ζ < η, Cζ(βζ) ∈ Fζ

Proof. Items 1, 2, 5a, and 5b are exactly as in the standard density and/or factoring arguments

for Magidor forcings (c.f. Lemma 2.6.22). For completeness, we argue Item 2. For each such

〈Aη | η < λ〉 with each Aη ∈ Uη, the set

D2 = {p | ∀η > maxdom(fp) Ap(η) ⊆ Aη}

is open dense; simply take, for each such p, the weakest direct extension q ≤∗ p where for

each such η, Aq(η) = Ap(η) ∩ Aη. Then if r ∈ D2 ∩ G, by definition of β, βη ∈ Aη for all

η > maxdom(fr).

In the case of 5b, we factor to MC
(
~U
)
(η,βη)

= MC
(〈
r
η
ζ(βη) | ζ < η

〉)
, which is its own

Magidor forcing with guided interleaved collapses, and argue similarly as for Item 2.

Item 3 follows since below the weakest p for which fp(η) = βη and fp(η + 1) = βη+1, the

map

q 7→ cq(η) with domain q ≤ p

is a projection map from MC
(
~U
)
/p to Col(β+

η , < βη+1).

Item 4 follows from the fact that given such 〈Cη|η < λ〉, since the guiding generics are filters,

D4 =

p ∈MC
(
~U
)∣∣∣∣∣∣∣∣
∀η ∈ dom(Ap) \ (maxdom(fp) + 1) [Cp(η)]Uη ≤ [Cη]Uη

as witnessed by Ap(η)
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is dense, as whenever p is a condition and η > maxdom(fp), [Cp(η)] ∈ Kη hence [Cp(η)] ‖ [Cη].

So let r ∈ D4 ∩ G. For each η > maxdom(fr) such that βη ∈ Ar(η), by genericity, there must

be some r ′ ≤ r such that r ′ ∈ G and both η and η+ 1 are in dom(fr
′
). But then by genericity,

cr
′
(η) ∈ Fη, and since r ′ ≤ r, we get that Fη 3 cr

′
(η) ≤ Cr(βη) ≤ Cη(βη) ∈ Fη.

Finally, Item 5c follows from reflection and factoring: let η be a limit point and work in

MC
(
~U
)
(η,βη)

. Then

D5c =

p ∈MC
(
~U
)
(η,βη)

∣∣∣∣∣∣∣∣
∀ζ ∈ dom(Ap) \ (maxdom(fp) + 1) [Cp(ζ)]rηζ(βη)

≤ [Cη]rηζ(βη)

as witnessed by Ap(η)


is dense in MC

(
~U
)
(η,βη)

, and we may argue as in Item 4.

As a result, we have the following cardinal arithmetic in VMC(~U):

Lemma 5.1.22. Let δ be a V-cardinal and let 〈βη|η < λ〉 be the Magidor sequence added by

some MC
(
~U
)

-generic G. Then:

1. If δ ∈ (β+
η , βη+1) for some η, then δ is collapsed to size β+

η

2. If δ = βη for some η or δ = κ, then δ is preserved

3. If δ = βη+1 for some η or δ = β0 or δ ≤ λ+ or δ > κ, then δ is V [G]-regular.

Thus if λ is below the first fixed point of the map θ 7→ ℵθ, then in V [G], κ = (ℵλ)
V[G]. In

particular, if λ = ω1 then κ = (ℵω1)
V[G].
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The collapsing part is easy to see from Lemma 5.1.21, asG adds Col(β+
η , < βη+1)-generics for

every η. Much as in vanilla Magidor forcing, the preservation argument emulates Lemma 2.6.20

with the help of Lemma 5.1.20.

As for a characterization of genericity along the lines of Theorem 2.6.23, we have that the

Magidor generic sequence is geometric, along with a geometricity notion for the collapses, as

follows:

Definition 5.1.23 (Geometricity). A sequence ~β = 〈βη | η < λ〉 of ordinals cofinal in κ and a

family of Col(β+
η , < βη+1)-filters 〈Fη | η < λ〉 living in some outer model of V is geometric if the

conclusions of Lemma 5.1.21 hold for ~β and 〈Fη | η < λ〉.

Theorem 5.1.24. Suppose in some outer model of V that ~β = 〈βη | η < λ〉 is increasing, nor-

mal, and has limit κ, and for each η, suppose Fη be Col(β+
η , < βη+1)-filters. Suppose furthermore

that ~β, 〈Fη | η < λ〉 is geometric (note that this means each Fη is Col(β+
η , < βη+1)-generic over

V1).

Define

H =


(f, c,A,C) ∈MC

(
~U
)
∣∣∣∣∣∣∣∣∣∣∣∣

∀η ∈ dom(f) f(η) = βη,

∀η ∈ dom(f) c(η) ∈ Fη,

and ∀η ∈ dom(A), βη ∈ A(η) and C(η)(βη) ∈ Fη



1Note that since Col(β+
η , < βη+1) is βη+1-cc, we have that whenever η < η ′, Fη ′ is Col(β+

η ′ , <

βη ′+1)-generic over V[Fη]. So no additional work is needed to attain mutual genericity for the Fη’s.
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Then H is MC
(
~U
)

-generic over V.

To emphasize the complexity of this proof here, note that (Fuchs, 2014) proves a similar

characterization of genericity for vanilla Magidor forcing M
(
~U
)

. The crux of the proof below is

in having a good Diagonalization Lemma, such as Lemma 5.1.16, and a Prikry-type tail-change

lemma as in Lemma 5.1.19.

Proof. As with the characterization of genericity for Magidor forcing (c.f. Theorem 2.6.23), the

proof is by induction on the length of ~U.

Our base case is when λ = ω, and our forcing is MC (〈Un | n < ω〉); let 〈βn | n < ω〉,

and Fn for each n < ω, be such that the conclusions of Lemma 5.1.21 apply. Let D ⊆

MC (〈Un | n < ω〉) be open dense. Without loss of generality, we work over g’s that are valid

stems with domain [−1,m] for some m < ω. By Lemma 5.1.19, fix some condition pg ≤

1MC(~U) _ g such that (pg)maxdom(g) = (1MC(~U) _ g)maxdom(g) and if r ≤ pg is a b-step

extension and r ∈ D, then every b-step extension of (r)m _ (pg)
m is also in D.

For each g, cpg is trivial by construction, hence satisfies the hypothesis of our Diagonalization

Lemma (Lemma 5.1.16). Thus by Lemma 5.1.16, there is a condition p with fp = ((−1, λ))

such that for every g for which p_ g ≤ p, p_ g ≤∗ pg.

What we actually need is a q ≤∗ p with the following property: for any g, (1MC(~U) _ g) _

(q)maxdom(g) ≤∗ pg. To attain this, we define fq = fp and cq = cp. As for Aq and Cq, let

B(n) = Ap(n) ∩∆
g

Apg(n) = Ap(n) ∩ {α < κ | ∀g |g| < n,max ran(g) < α =⇒ α ∈ Apg(n)}



125

For all n observe that {[Cpg(n)] | |g| < n} forms a κ-sized directed set in a κ+-distributive collapse

forcing. So let C ′(n) be such that [C ′(n)] is a lower bound of the [Cpg(n)]’s as witnessed by

Wn. Then let Aq(n) = B(n)∩Wn, and let Cq(n) = C ′ � Aq(n). Then by construction, for any

g, (1MC(~U) _ g) _ (q)maxdom(g) ≤∗ pg.

By geometricity for ~β (namely Item 2) and for the collapses (Item 4, there is an m ∈ ω

such that for all n ≥ m, βn ∈ Aq(n) and Cq(n)(βn) ∈ Fn.

Let g = ~β � [−1,m− 1]. By construction, (1MC(~U) _ g) _ (q)m−1 ≤ pg. Since D is dense,

let r ≤ (1MC(~U) _ g) _ (q)m−1 be such that r ∈ D. By geometricitity, item 3, the projection

of D to Col(β+
n , < βn+1), for each n < m, is open dense in Col(β+

n , < βn+1), so we may without

loss of generality have that for each n < m, cr(n) ∈ Fn. Also without loss of generality, let

b = dom(fr) \ [−1,m− 1] = [m,m+ k] for some k < ω. Then by definition of pg, every b-step

extension of (r)m−1 _ (q)m−1 is in D, so let r ′ =
(
(r)m−1 _ (q)m−1

)
_ ~β � [m,m + k]. Then

r ′ ∈ D.

But then r ′ ∈ H. To see this, note that by construction, for all n > m + k, βn ∈ Aq(n) =

Ar
′
(n) and Cq(n)(βn) = Cr

′
(n)(βn) =∈ Fn. Also by construction, fr

′
� m = g = ~β � m and

cr
′
� m = cr � m ∈

∏
n<m Fn. And for n ∈ [m,m + k], we explicitly defned fr

′
(n) = βn, and

cr
′
(n) = Cq(n)(βn) ∈ Fn.

Therefore r ′ ∈ H ∩ D, and so this concludes the base case.

For the successor step, suppose that λ = λ̄+ω and suppose the result is true for any forcing

of the form MC
(〈
U ′η | η < λ̄

〉)
. Let ~U = 〈Uη | η < λ〉, and let ~β = 〈βη | η < λ〉 and 〈Fη | η < λ〉

be geometric for MC
(
~U
)

, with induced filter H. Let g =
〈
(λ̄, βλ̄)

〉
, and in line with the
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factoring of Fact 5.1.8, consider MC
(
~U
)
g
×MC

(
~U
)g

. Then the induction hypothesis applies

to MC
(
~U
)
g
= MC

(〈
rλ̄η(βλ̄) | η < λ

〉)
, and since

〈
βη | η < λ̄

〉
and

〈
Fη | η < λ̄

〉
are geometric

for MC
(
~U
)
g
, the resulting forcing Hg defined from

〈
βη | η < λ̄

〉
and

〈
Fη | η < λ̄

〉
is generic

over V. Since MC
(
~U
)g

= MC
(〈
Uλ̄+n | n < ω

〉)
, by arguing exactly as in the base case, the

filter Hg defined from
〈
βλ̄+n | n < ω

〉
and

〈
Fλ̄+n | n < ω

〉
is MC

(
~U
)g

-generic over V. But

since MC
(
~U
)
g

is β+
λ̄

-cc, and MC
(
~U
)g

is β+
λ̄

-distributive, Hg is actually MC
(
~U
)g

-generic

over V [Hg] and so H = Hg ×Hg is MC
(
~U
)

-generic over V. This concludes the successor step.

For the limit step, let λ = supρ<τ λρ with each λρ a limit ordinal. Our induction hy-

pothesis is now that for each ρ < τ and for each 〈βη | η < λρ〉 and 〈Fη | η < λρ〉 geometric for

some Magidor collapse forcing MC (〈Uη | η < λρ〉), the resulting filter Hρ is MC (〈Uη | η < λρ〉)-

generic over V; note that if ρ < ρ ′ then by the Product Lemma and appropriate chain con-

dition, Hρ = Hρ ′ × H ′ for some Hρ ′ MC
(〈
Uη | η ≤ λρ ′

〉)
(λρ,βλρ )

-generic over V and some H ′

MC
(〈
Uη | η ≤ λρ ′

〉)(λρ,βλρ )-generic over V [Hρ].

Let 〈βη | η < λ〉 and 〈Fη | η < λ〉 be geometric for some Magidor collapse forcing MC (〈Uη | η ≤ λ〉).

Let D be dense in MC (〈Uη | η ≤ λ〉). By applying Lemma 5.1.19 to the trivial condition,

for each g a stem such that maxdom(g) = δ + 1 for some δ such that δ ∈ dom(g), take

pg ≤∗ 1MC(〈Uη|η<λρ〉) _ g such that

• (pg)δ+1 =
(
1MC(〈Uη|η<λ〉)

)
δ+1

_ g; in particular cpg consists only of trivial collapse terms

• (tail-change property) for every b ⊆ [dom(Apg)]<ω, if q is a b-step extension of pg and

q ∈ D then every b \ (dom(fq) ∩ (δ+ 1)-step extension of (q)δ+1 _ (pg)
δ+1 is also in D

(Note that before we used the notation ~ν for g.)
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Since each cpg consists only of trivial collapse terms, the family of pg’s satisfies the hypothe-

ses of Lemma 5.1.16. So by Lemma 5.1.16, let p be such that fp = 〈(−1, λ)〉 and whenever g is

a valid stem by which to extend p, p_ g ≤∗ pg.

By the exact same logic as in the base case, we may further refine Ap and Cp to a q ≤∗ p

such that cq consists of trivial collapse terms and whenever g is a stem with δ+1 = maxdom(g)

and δ ∈ dom(g), then
(
1MC(〈Uη|η<λ〉) _ g

)
δ+1

_ (q)δ+1 ≤∗ pg.

By geometricity, let ρ be an ordinal such that for all η ≥ λρ, βη ∈ Aq(η) and Cq(η)(βη) ∈ Fη.

By the induction hypothesis applied to 〈βη | η < λρ〉 and 〈Fη | η < λρ〉, we induce Hρ a

MC
(〈
r
λρ
η (βλρ) | η < λρ

〉)
-generic filter over V .

Let D ′ be a subset of MC
(〈
r
λρ
η (βλρ) | η < λρ

〉)
× Col(β+

λρ
, < βλρ+1) defined by

D ′ =
{
(r)λρ × cr(λρ) | r ∈ D, (r)λρ ≤ (q)λρ , and fr(λρ) = βλρ and fr(λρ + 1) = βλρ+1

}

(Recall that (r)λρ is essentially r � (λρ + 1); see Definition 5.1.7 for a complete description.)

Since cq � (λρ + 1) consists only of trivial collapse terms, D ′ is open dense in

MC
(〈
r
λρ
η (βλρ) | η < λρ

〉)
× Col(β+

λρ
, < βλρ+1). So let r ∈ D be such that r ≤ q, cr(λρ) ∈ Fλρ ,

and (r)λρ ∈ Hρ ∩ D ′. Note that by definition, fr(λρ) = βλρ and fr(λρ + 1) = βλρ+1. Since

(r)λρ ∈ Hρ, by the induction hypothesis we have that whenever ξ < λρ, either fr(ξ) = βξ and

cr(ξ) ∈ Fξ, or βξ ∈ Ar(ξ) and Cr(ξ)(βξ) ∈ Fξ. Let g = fr � (λρ + 2).

Claim 5.1.25. r ≤ pg.
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Proof of claim. By definition of g, fr ⊇ g = fpg ; since cpg consists only of trivial collapse terms,

cr � dom(cpg) ≤ cpg .

Taken together with the facts that (r)λρ ≤ (q)λρ and λρ+1 = maxdom(g) and λρ ∈ dom(g),

we further have that

r ≤
(
1MC(〈Uη|η<λ〉) _ g

)
λρ+1

_ (q)λρ+1 ≤∗ pg

Furthermore, r ∈ D, so letting b = dom(r) \ dom(g), by the tail-change property of pg,

every b-step extension of (r)λρ+1 _ (pg)
λρ+1 is also in D.

Let r ′ = ((r)λρ+1 _ (q)λρ+1) _ (~β � b). By definition of q, (r)λρ+1 _ (q)λρ+1 ≤ pg, so r ′

is also a b-step extension of (r)λρ+1 _ (pg)
λρ+1. Therefore r ′ ∈ D. As soon as we show that

r ′ ∈ H, we have completed the limit step.

Claim 5.1.26. r ′ ∈ H.

Proof of claim. By construction, fr
′
is a finite subsegment of ~β, as fr

′
� (λρ+2) = fr � (λρ+2) =

g which is a finite subsegment of ~β, and fr
′
� [λρ + 2, λ) = ~β � b.

For cr
′
: let ξ ∈ dom(cr

′
). If ξ ≤ λρ + 1, then cr

′
(ξ) = cr(ξ) ∈ Fξ by definition of r. And if

ξ > λρ + 1, then cr
′
(ξ) = Cq(ξ)(βξ) ∈ Fξ by construction of q.

As for Ar
′
, for ξ < λρ, we have that Ar

′
� λρ = Ar so βξ ∈ Ar

′
(ξ). And for ξ > λρ,

Ar
′
(ξ) = Aq(ξ) so by definition of q and λρ, βξ ∈ Ar

′
(ξ).
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Finally, for Cr
′
, if ξ < λρ then Cr

′
(ξ)(βξ) = Cr(ξ)(βξ) ∈ Fξ by construction of r, and if

ξ > λρ then Cr
′
(ξ)(βξ) = C

q(ξ)(βξ) ∈ Fξ.

Therefore by definition of H, r ′ ∈ H.

This completes the limit step, as we have now found an r ′ ∈ H ∩ D.

Therefore, by induction, for any limit λ, H is MC (〈Uη | η < λ〉)-generic over V.

5.2 Future Directions

Investigating Magidor-like forcings with collapses, and their characterizations of genericity,

was motivated by the question of mutual stationarity properties at ℵω1 .

In particular, one might hazard the following mutual stationarity property at every other

ℵ below ℵω1 :

Conjecture 5.2.1. Suppose V |= ZFC + GCH, and let ~U be an (ω1)-length Mitchell order

increasing system of measures on κ, with Uω1 Mitchell order above ~U giving rise to guiding

generics for ~U.

Then in VMC(~U),

MS(〈ℵ2n+3 | n < ω〉_ 〈ℵα+2n | α < ω1 limit, 0 < n < ω〉 ;ω1)

holds.

One possible idea would be to emulate the proof of MS(〈ℵ2n+3 | n < ω〉 ;ω1) in (Koepke,

2007).
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Future work could include mutual stationarity principles of larger fixed cofinality or at every

ℵα below ℵω1 , perhaps using supercompact versions of MC
(
~U
)

.
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