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SUMMARY

There is a significant correlation between changes in mechanical properties and disease or

injuries. For this reason were developed techniques, such as biopsy and manual palpation, to

detect tissue’s mechanical structure.

These latter techniques are characterized by a lot of disadvantages. For instance, a biopsy is

invasive and not reliable, and manual palpation is qualitative, superficial, and operator depen-

dent.

As a consequence of these drawbacks, two non-invasive techniques were developed: Ultrasound

Elastography and Magnetic Resonance Elastography.

This work is based on Magnetic Resonance Elastography, which can provide motion encoding

simultaneously in three directions, is not depth-limited and provides a good resolution. This

imaging technique utilizes standard MRI equipment and equipment and an actuator to generate

vibrations transmitted to the analyzed tissue.

In a method developed by researchers at UIC a decade ago, high frequency vibratory shear

waves are induced and imaged in a small sample within a test tube by axially driving the test

tube in the MRI system. This motion of the test tube, using a piezoelectric actuator, results

in radially converging (geometrically focused) axially-polarized shear wave motion within the

sample. More recently, using the same setup with a sample in the test tube, torsional vibratory

motion has been induced in the test tube using a stepper motor, in order to drive torsionally-

xiv



SUMMARY (continued)

polarized geometrically focused shear waves, which when compared to axially-polarized waves

in the same sample, may elucidate it’s anisotropy.

In the present study, two innovations to this setup are considered. (1) In order to extend the fre-

quency range of the torsional approach, which in turn improves its resolution, the stepper motor

is replaced with two piezoelectric actuators that are configured in a way to induce torsional

motion. (2) In order to investigate the effect of tensile pre-stress on shear wave motion in a

sample, a new arrangement is designed, whereby the test tube is removed and the cylindrically-

shaped sample hangs freely in the MRI and can be subjected to different known axial tensile

pre-stresses while simultaneously performing MRE studies using both axially-polarized and

torsionally-polarized shear waves. The measurements obtained using MRE are wave images

representing the displacement field in cross-sectional and sagittal slices within an isotropic

cylindrical phantom under different pre-stresses. Experimental measurements are compared to

computer simulations of the experiment using finite element analysis (FEA).
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CHAPTER 1

INTRODUCTION

Traditionally, to evaluate diseases physicians take advantage of the four senses: hearing,

sound or ausculation, visual perception, smell or olfaction, and manual palpation.

In particular, manual palpation is a useful method to assess biological tissue. Indeed, by the

sense of touch physicians can estimate qualitatively the response to deformation of the tissue

that is evaluated, since mechanical properties of tissues are different among physiological and

pathological conditions [1].

Even though this is a powerful method, it is restricted to the body surface; hence the location

of pathologies inside the body cannot be located. Besides, this technique is characterized by

intraobserver and interobserver variability.

The gold standard to determine hepatic fibrosis grade is liver biopsy. This method is a pro-

cedure characterized by the removal of a small piece of liver tissue, so it is analyzed under a

microscope for signs of damage or disease [2]. In particular, the stiffer is the liver, the higher is

the grade of fibrosis; on the other hand, a less stiff tissue represents a better condition of the

liver.

Liver biopsy is characterized by sampling errors given by the small size of the hepatic samples

and the non-homogeneity of liver fibrosis. Other limits of this technique are the intraobserver

variability and the risk for the patient since it can cause pain, making the subject uncomfort-

able. Moreover, after the biopsy can occur bleeding and some bacteria might penetrate the

1



2

abdominal cavity leading to infection [2].

The method’s limitations mentioned have led to the development of different methods such as

Elastography.

Elastography is a non-invasive and quantitative remote palpation technique, it is very sensi-

tive to pathological changes since it can evaluate stiffness deep inside the tissue. Therefore

the mechanical properties of biological tissue are a fundamental aspect for diagnosis. In the

case of elastography, the main approaches to provide imaging of the mechanical properties are

ultrasound elastography and magnetic resonance elastography (MRE).

Ultrasound Elastography is not expensive and is versatile. This method works by combining

traditional ultrasound technique with mechanical vibration to the tissue examined, such that

stiffness can be assessed.

Regarding the measured physical quantity, this method can be divided into strain imaging and

shear wave imaging [3]. In the first category, the normal strain is evaluated by applying normal

stress to the tissue. Instead, in shear wave imaging is used a mechanical vibrating device to

apply dynamic stress to the tissue considered. In this way, the shear wave speed and shear

modulus are measured [3].

MRE is a dynamic and quantitative imaging technique that evaluates the shear modulus (stiff-

ness) of biological tissues through the analysis of mechanical waves with a particular magnetic

resonance technique [1]. Exploiting harmonic mechanical excitation shear waves are created;

thus, they propagate in-depth in the biological tissue, and the shear modulus of tissue is esti-

mated.
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Moreover, knowing that the stiffness is a function of density and the mechanical wave speed;

the stiffer is the material, the larger is the wavelength, hence the faster is the velocity of prop-

agation of the wave through the tissue.

In this work is used a Benchtop MRI system found in the Motion Encoding Laboratory at UIC,

composed by different components that will be described in details later on. This system gives

the oppurtunity to examinate in a non-destructive way biological samples.

The Table Top system is then integrated with one new set up that analyzed the vibrational

torsion and other two set ups.

The aim of the following work is to develop a new setup in which an isotropic phantom is

directly attached to the setup considered. In this case is not present a traditional test tube,

but there is a system through which the sample does not require the test tube. The purpose

of doing so is then to have the possibility to hang, directly to the phantom, different weights,

being able then to analyze the sample’s mechanical behaviour at different pre-strain values

through Magnetic Resonance Elastography. The innovation of the sample it is investigated by

implementing both axial and torsional excitation.

This research study is focused better on torsional vibration, exploiting a Stepper Motor setup.

It was also developed a new setup, composed of two piezoelectric actuators placed in counter-

phase, with the objective to cross validate vibration on the torsional direction and understand

if it is more efficient than the Stepper Motor in causing a displacement on the phantom.

Finally, the different systems are validated to understand if it reasonable to obtain informa-
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tion about the mechanical behaviour of the phantom through the Table Top System, when the

phantom is at rest and when is elongated.



CHAPTER 2

MAGNETIC RESONANCE ELASTOGRAPHY

MRE is an effective method able to analyze quantitatively the image of mechanical prop-

erties of many tissues. The first successful clinical application of MRE is the assessment of

liver fibrosis; but other tissues can be examined like the brain, lungs, pancreas and kidneys [4].

This method is precise, it does not depend on the operator and it has the ability to obtain

information about tissues that are not reachable by touch.

MRE is a phase-contrast MRI technique capable to develop quantitative maps depicting the

mechanical properties of biological tissues [1]. The main steps of MRE techniques are, the ap-

plication of a harmonic force to the tissue; measurement of the resulting internal displacements

of the tissue and lastly, determining the viscoelastic properties of the biological tissue by solving

the equation of motion that replicate the behaviour of the tissue of interest. Depending on the

tissue that needs to be analyzed the set up changes.

For instance, in a conventional MRE experiment in the human brain, the experimental setup

is composed of the scanner, an operating console, where it is observed the experiment and an

additional hardware that introduce mechanical vibration onto the region of interest of the tis-

sue. The MRI sequence is triggered to a waveform generator, then the oscillations are amplified

through an audio amplifier and later they are transferred to a vibration generator, such that

5
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the vibration is transmitted to the region of interest [5].

2.1 MRI physics

It is important to underline what are the main basics that characterize MR physics. Mag-

netic Resonance Imaging is a non-invasive imaging technique that can be used to evaluate soft

tissues of the body, like the brain, spinal cord and liver. The technique is based on the inter-

action between an external magnetic field and nuclei.

The human body is mostly composed of water molecules, consisting of hydrogen and oxygen

atoms. These atoms are characterized by protons that possess a spin which involves a magnetic

moment meaning that each spin can be taken as a mini magnet.

Supposing that there is not an external magnetic field applied to the system the spins of the

protons are subjected to a random motion (Figure 1), which means that the sum of the micro-

scopic magnetic moment vectors, the so called macroscopic bulk magnetization , is null [6].

The macroscopic bulk magnetization ~M is constituted by a longitudinal and transverse com-

ponent. In the case of thermal equilibrium, the overall magnetization corresponds to the lon-

gitudinal magnetization, which is parallel to the static magnetic field ~B0, while the transverse

component is equal to zero [7]. Since in MRI technique is evaluated the transverse component

of the macroscopic bulk magnetization it is essential to apply an RF-pulse with the Larmor

frequency, which is:

ω = γB0 (2.1)
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Figure 1: Behaviour of spins of the protons: On the left it is shown the case when it is not
present an external magnetic field, characterized by a caotic motion. On the right instead,
there is the behaviour when there is an external magnetic field H0 and the spins are aligned to
it

where γ is the gyromagnetic ratio, a constant identified by spinning subatomic particles and in

the case of the proton of hydrogen is equal to 2π42.58 MHz/T.

The condition for exciting transverse magnetization in a slice is called, resonance condition:

ωRF = ω = γB0 (2.2)

Once the RF-pulse is applied the macroscopical magnetization tilts such that the two compo-

nents of the bulk magnetization are generated [8]. In particular, the longitudinal component

~ML is parallel to the z-axis, corresponding to the direction parallel to the magnetic field ~B0, the

transverse component ~MT , is parallel to the xy-plane, which is perpendicular to the direction
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Figure 2: Representation of the two components, ~ML and ~MT , that constitute the macroscopic
bulk magnetization. In which the absolute value | ~M | corresponds to the the magnitude and θ
is the phase of the vector. Lecture notes, BioE 594 ”Elastography”, Instructor: Dieter Klatt,
Fall 2020, University of Illinois at Chicago

of the external magnetic field, as it is shown in Figure 2.

Another important parameter to consider is the angle by which the macroscopical bulk

magnetization is tilted when is applied a radiofrequency pulse[9]. This latter component is

called ‘flip angle’ and is equal to:

α =

∫ τ

0
Ω1(t) dt = γ

∫ τ

0
B1(t) dt (2.3)

In which τ is the duration of the RF-pulse, Ω1 is the frequency of the RF-pulse and B1 is the

amplitude of RF-pulse. Subsequently, through different relaxation processes the nuclei, that

were perturbed due to the introduction of the RF energy, align again and in doing so RF energy

is emitted.
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The introduction of one single RF-pulse causes the generation of a free induction decay, and

with two RF-pulses a spin echo is generated.

In MRI two parameters determine tissue contrast. The first one is the Repetition Time (TR),

which corresponds to the time between consecutive pulse sequences implemented to the same

slice [10]. The second one is the time corresponding to the moment of measurement of the echo

signal given by the spinning protons and it is called Echo Time (TE) [11].

Usually, in MRI there is a 90°-pulse that inclines the spins into the transverse plane, then a

180°-pulse tips over the entire system. There is the possibility to introduce a different com-

bination of angles and RF-pulses, that causes signal dephasing and rephasing in a controlled way.

Human tissue is composed by two relaxation times: T1 and T2. T1 is also called the

longitudinal relaxation time and corresponds to the time constant that characterizes the rate

at which the excited nuclei return to equilibrium, meaning that the spins realign to the external

magnetic field. On the other hand T2, the transverse relaxation time, represents the rate at

which nuclei dephase, thus to lose phase coherence among nuclei spinning that are perpendicu-

lar to the main field. T2 can be equal or less to T1 since when the return of magnetization to

the z-direction occurs, in the xy-plane there is a a loss of magnetization.

These two parameters create contrast in MRI images since different tissues relax at different

times. For example, fat is composed of hydrogen and carbon and therefore has a short longi-

tudinal relaxation time. Instead, water, which is characterized by hydrogen and oxygen, has

a longer T1 than fat due to its high molecular mobility that causes the recovery of the net
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magnetization vector to be less efficient [12].

Once the emitted signal is measured, is applied an inverse Fourier transformation that decom-

poses the MR echo signal and different intensity shades of grey are obtained [10].

2.2 Driver Devices

MRE includes the generation of mechanical vibrations, which are created by the applica-

tion on the system of external driver devices. To develop an electrical signal is used a signal

generator, which is triggered by and coincident to the MR pulse sequence, which is fed into the

mechanical driver and then, through an audio amplifier, the MR pulse sequence is increased[1].

MRE actuators differ from the type of vibration source is used to create motion. One of the

requirements for these driver systems is to not cause an interaction with the magnetic fields,

present in the MRI system.

Another aspect to consider is that the radiofrequency and gradient coils generate time-varying

magnetic fields, that could lead to the presence of eddy currents in some electrically conductive

components of the transducers. These eddy currents create image artefacts and heat of the

transducers.

Typical excitation frequencies used in MRE for clinical applications range from 20 to 100 Hz

[13]. Since it is important to guarantee a proper transfer of the wave energy onto the region of

interest of the tissue are necessary a high wave amplitudes. Hence, regarding the tissue that is

analyzed, the position and the design of the transducers vary.
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Different types of driver systems can be utilized and the most common are [1]: an electrome-

chanical driver, which its functioning is based on the Lorentz force; a piezoelectric stack driver

system, that exploits the piezoelectric property of a specific material. And lastly, there is the

application of an acoustic speaker, which uses the motion of voice coils to create motion. The

vibrations are generated by the Lorentz force and the static magnetic field is generated from a

magnet placed in the acoustic speaker. For this reason, the speakers must be located outside

the main MR magnet, inducing the use of a supplementary component, called passive driver.

Because of it, the vibrations generated by the speakers to the region of interest of the tissue

are coupled [14][1] (Figure 3).

In general in clinical MRE, the set up and the driver system has to be easy to control by

physicians, should not cause any harm to the operator and must be characterized by patient

comfort.

2.3 Acquisition of wave images

MRE is based on encoding information on coherent tissue vibration into the phase of MRI

signal. Thus MRE sequence diagram is composed by the typical MRI sequence, characterized

by a radio frequency pulse waveform, slice-selection gradient and frequency-encoding gradient.

Aside from the MRI sequence, it is composed by two more components, one indicates the

vibration that causes the vibration generator and the second one is an additional gradient,

called Motion Encoding Gradient (MEG) (Figure 4).
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Figure 3: Example of a system for MR Elastography in which is analyzed the abdomen. In
the top row are represented the hardware elements: far from the magnetic field generated by
the MRI scanner is placed the active driver, which is transmitted through a conductive tube to
the passive driver placed on the tissue interested. On the left bottom part it is shown where is
placed the passive driver and on the right bottom the whole MRE examination set up.

MEG is included between excitation and signal read out to encode tissue oscillation into the

signal phase. The concept is that the vibration motion is generated by the MR scanner that

sends a trigger signal to the vibration generator.

To allow the mechanical wave to propagate into the region of interest, the imaging sequence is

begun after a certain delay τ and then a single image is acquired. This process is repeated with

different delays such that different wave phases are taken. If N corresponds to the number of

wave phases acquired, f is the frequency of the mechanical wave, τ is reduced N times in steps
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Figure 4: MRE sequence with the traditional gradient echo sequence with motion-encoding
gradient (MEG) applied along the slice selection direction to capture motion in the direction
of the through-plane. Lecture notes, BioE 594 ”Elastography”, Instructor: Dieter Klatt, Fall
2020, University of Illinois at Chicago

of ∆τ = 1
f∗N ; such that one vibration cycle is sampled with N equidistant data points [13]. τk

represents the rate of duration of the Motion Encoding Efficiency and can be expressed as:

τk =
2πq

ωk
(2.4)

where q is the MEG number of cycles and ωk is the angular frequency of MEG. MEG is always

bipolar, symmetric and it can be defined as a sinusoidal, step or trapezoidal function.

Furthermore, depending on the direction the gradient can point into any arbitrary direction in
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3D space. Thus it is feasible to have access to any vibration direction.

The phase of the transverse macroscopic magnetization is a function of the MEG that starts at

time t = s:

ϕ(s, ~r) =

∫ s+τ

s
ωL(t) dt = γ

∫ s+τ

s
B(t, ~r) dt = γ

∫ s+τ

s
K(t)u(t, ~r) dt (2.5)

In which ωL is the Larmor frequency, γ the gyromagnetic ratio, B(t, ~r) is the external magnetic

field applied to the system and K(t) is the Motion Encoding Gradient.

In (2.5) is illustrated the magnetic field written as a scalar product of two vectors. The first

vector represents the MEG and the second vector describes the vibrational displacement, which

is represented as a sinusoidal function and they are written respectively as:

K(t) = K0 sinωkt+ θk (2.6)

In which θk = −ωks is the initial condition and as

un(t) = Yn sinωnt+ θn (2.7)
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Where Yn is the initial amplitude of the displacement and n represents the nth excitation

frequency. In the case of multi-frequency signals the displacement u becomes:

u(t, ~r) =
∑
n

un(t, ~r) (2.8)

Now, consider to solve the equation 2.5 the phase is equal to:

ϕ(s, ~r) = ϕ0
n sinωns+ θn + ∆θn (2.9)

ϕ0
n and ωn are costant and ∆θn is space independent representing the phase shift. Considering

the sum of the phase corresponding to each frequency the overall MR signal phase is:

ϕ(s, ~r) =
∑

ϕn(s, ~r) (2.10)

To obtain the wave image, the encoding efficiency is an important parameter to define. It is

proportional to the number of motion encoding gradient cycles and can be seen as the ratio

between the amplitude of the MRI signal phase divided by the amplitude of the mechanical
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vibration. Therefore, the motion encoding efficiency states with how many radiant one meter

of vibration displacement is encoded into the MRI signal phase:

ξn =
ϕ0
n

Yn
(2.11)

Considering now a mechanical wave that is propagating within the sample in a specific direction,

the first step to obtain the complex wave image U is to acquire the phase images at different

times by introducing a phase offset between MEG and the mechanical vibration. Subsequently,

various MR acquisitions are collected and in the case of multifrequency signals a Discrete Fourier

Transform is applied along the start time of MEGs.

The Shannon Theorem is applied to evaluate the Nyquist frequency and scaling it with the

encoding efficiency [15], the complex wave image is given (Figure 5):

Figure 5: Steps applied in MRE to obtain the wave image. Starting from the application of
the 1D Fourier Transform along s to MR signal phase ϕ, and then scaling with the encoding
efficiency ξ.



17

In MR Imaging, a continuous body is discretized into a set of cubic voxels with finite vol-

umes [13] and each voxel is represented by a contrast-generating physical quantity.

In MRE is assumed intravoxel coherent motion of proton’s spins. By introducing a mechan-

ical wave that propagates through the tissue, the single voxel over time oscillates along the

direction defined by the polarization of the magnetic wave, but the positions of the individual

spins relative to each other are static (Figure 6). Intravoxel spins feature the same precessing

macroscope magnetization within one voxel meaning that they precess coherently.

The displacement of each voxel is given by the phase shift in the MR signal generated by the

motion of the individual spins [16]. Since in the shear wave voxels move perpendicular to the

direction of the wave propagation, motion encoding gradient is synchronized with the vibration

of the actuator, meaning it is possible to read the movement in the MRI phases, where it is

considered only the transverse magnetization. Hence MEG can be seen as a snapshot of the

mechanical wave and the wave propagation in the tissue can be pictured as wave images, that

reflects the displacement of spins.

2.4 Mechanical parameters assessment

The wave images that are estimated could be used as a powerful tool to calculate mechani-

cal properties using mathematical inversion algorithms, described more in details later on [8].

Among the mechanical properties, for clinical application, it is estimated the shear modulus

of a medium represented as a complex quantity, in which the real part is the storage modulus

and the imaginary part is the loss of modulus that represents the attenuation of the considered
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Figure 6: Description of voxels displacement in the ROI, in which is valid the assumption of
intravoxel coherent motion, meaning voxels are characterized by stationary spins.

viscoelastic sample[1].

The shear modulus is given by the product between the density (in MRE for a tissue is around

1000 Kg/m3) and the wave speed. Since the speed wave is the product between the operating

frequency and the spatial wavelength of the shear wave, the algorithms are implemented to

estimate the wavelength such that the shear modulus can be assessed.

In MRE the result of the mechanical properties of tissue considered are images, called elas-

tograms, that represent both the real and imaginary components of the shear modulus.



CHAPTER 3

PROPAGATION OF WAVES

The following chapter covers how the equation of motion and viscoelastic properties of soft

tissues are acquired. First, is gained the wave equation of a linear elastic continuum and af-

terwards the concept is extended to a transversely isotropic model, that mimics the skeletal

muscle.

In nature are present two types of body waves, shear and compression waves. In MRE solely

the analysis of shear waves is significant, since compression waves cannot be detected in the

ROI of the medium considered.

To obtain the complex shear modulus is applied a Discrete Fourier Transform to the equation

of motion, such that mechanical properties are determined.

Additionally, to reproduce the viscoelastic behaviour of the muscle, different viscoelastic models

will be explored. Thus, tissue properties are estimated.

3.1 Body Waves

MRE can measure the mechanical properties of the tissue considered, through wave equa-

tions, which describe how mechanical waves propagates in the material.

The equation of motion is characterized by different solutions. For this reason, it is neces-

sary to describe the different types of mechanical waves, which differentiate how they propagate

19
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in the solid. There can be found body waves and surface waves [17]. The two most basic types

of body waves in a continuum are shear and compression waves.

Compression waves are also called longitudinal waves. Once the wave propagates, the volume

of the basic elements changes and the particle displacement is parallel to the direction of prop-

agation. In particular, considering a one-dimensional longitudinal wave that propagates in a

tube, the particles oscillate back and forth about their individual equilibrium positions.

In shear waves, while the wave propagates through a medium, the volume elements that com-

pose a wave, do not change. They are also called transverse waves and the particle displacement

is perpendicular to the direction of the wave propagation, meaning that, while the wave passes

by, the particles oscillate up and down about their individual equilibrium positions.

On the other hand, surface waves are a combination of longitudinal and transverse waves, and

in a solid, there are Rayleigh and Love waves [18]. Rayleigh waves are identified by a retrograde

elliptical depolarized movement of particles. This implies that the horizontal component of the

motion of the particle is in the opposite direction to the propagation direction of the wave. In

addition, with the increase of the depth into the solid the wave attenuates very rapidly since

the width of the elliptical path decreases.

The Love waves occur when a layer with high density is positioned over a layer with lower den-

sity. They oscillate in the left-right direction with regards to the direction of propagation [19].

In biological tissues the wave speed of compression waves is around 1500 m/s and giving its high

velocity, its wavelength is longer and faster than shear waves. Indeed, the wave speed in shear

waves is slower, around 1-10 m/s, they have a shorter wavelength, and they are more damped
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than compression waves. These different characteristics between compression and shear waves

underline that just shear waves are relevant in MRE experiments. Differently, compression

waves are neglected, due to their high value of wavelength, and therefore they cannot be seen

in the region of interest of the soft tissue considered.

3.2 Linear Elastic Waves

The change of body configuration and position is represented by translation, rotation and

deformation. In particular, deformation is the only type of change in body configuration that is

considered to describe mechanical waves, that propagate through a material. Translation and

rotation are not relevant.

This deformation is represented by a tensor, which is symmetric in 3D space and so it has

six independent components (εij=εj i):

εij =


ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33


=

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.1)

The diagonal elements εii describe the relative change in length in i-direction respectively;

instead, the off-diagonal elements εij define the angle around which i- or j- axis is rotated, and

they are also referred as the shear components of displacement.



22

To determine the quantitative and analytical description of wave equations another parameter

has to be taken into account: The stress tensor.

As for the deformation tensor, it has six independent components and it is symmetric

(pij = pj i). The stress tensor describes the inner forces inside a body and it is calculated over

the matrix product of stress tensor pij with the surface normal vector nij :

Pj = pij ∗ nj (3.2)

The relation between the deformation and the stress is governed by the mechanical properties

and it is described by the generalized Hook’s Law:

pij = fij(ε11, ε12, ε13, ..., ε33, T, t, etc.) (3.3)

In this matter, each stress tensor component pij is a function of all strain tensor components

εij , and it could be a function of other parameters such as temperature, time or electric voltage

[8].

Since in this case, the body considered is ideal linear elastic there are some assumptions

to take into account: Stress tensor depends only on strain tensor components, there is no
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deformation when there is no stress and vice versa, small deformations are considered and the

relation between stress and strain is linear. Considering these aspects the Hook’s Law becomes:

Pij = cijkl ∗ Ekl (3.4)

Where cijkl represents a complex 3x3x3 stiffness tensor with 81 components, called Elasticity

tensor that relates the tensor of strain with the tensor of stress [20]. Considering that pij and

εij are both symmetric, the independent components are 36 and accounting for the fact that

the elastic deformation energy is conserved, the maximum number of independent components

of cijkl of an anisotropic body becomes 21. Therefore the 4th degree Elasticity tensor can be

transformed into a 2nd degree tensor, by using a different matrix notation, such that both strain

and stress tensors are converted into vectors: ij → q and kl→ p; and thus the Elasticity tensor

is symmetric and written as: cijkl →Cqp.
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In the case of an isotropic linear elastic body, the stress-strain relation is:



p1

p2

p3

p4

p5

p6



=



2µ+ λ λ λ 0 0 0

λ 2µ+ λ λ 0 0 0

λ λ 2µ+ λ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ





ε1

ε2

ε3

ε4

ε5

ε6



(3.5)

The (3.5) can be written also in in a more compact form by using the index notation:

pij = λθδij + 2µεij (3.6)

In which δij is the Kronecker delta and equal to:

δij =


1, if i = j,

0, if i 6= j.

(3.7)
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and θ = εii = ε11 + ε22 + ε33 is the cubic dilatation, which is given by the sum of the diagonal

components of the deformation tensor. In the case the material is not compressible, θ is equal

to zero and the stress in (3.6) would dependent only on the shear modulus µ.

Lastly, from (3.5) and (3.6) is evident that an isotropic linear elastic body depends on only two

parameters, the so-called Lamé-constants λ and µ.

3.2.1 Equation of motion for a linear elastic continuum

In a continuum the body forces ~F and the surfaces forces ~P must be in equilibrium:

∫
V

~F dv =

∫
S

~P ds = 0 (3.8)

The relation (3.8) must holds for each component in Cartesian coordinates. Then, by applying

the Gauss’s law (3.8) is written as:

∫
V

(Fi + (∇ ∗ ~P )i) dv = 0 (3.9)
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And (3.9) must be hold for an arbitrary small volume inside a continuum [21]. Then by using

the second Newton’s law to express the force, the equation of motion is:

ρ
∂2ui
∂t2

=
∂pij
∂xj

(3.10)

With p the stress applied on the continuum and x the position in space, the relation (3.10) is

valid only considering small deformations.

Including now the assumption of linear stress-strain relation for an isotropic linear elastic body

representend in (3.6), the relation in (3.10) becomes:

ρ
∂2ui
∂t2

=
∂

∂xj
(λθδij + 2µεij) (3.11)

Assuming local homogeneity, such that the material properties (λ and µ) do not change in a

local small area of the model considered, the equation can be written as:

ρ
∂2ui
∂t2

= λ
∂

∂xi
θ + 2µ

∂

∂xj
εij (3.12)
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Finally, inserting (3.1) in (3.12) the equation of motion is obtained:

ρ
∂2ui
∂t2

= λ
∂

∂xi

(
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

)
+ µ

[
∂2ui
∂x21

+
∂2ui
∂x22

+
∂2ui
∂x23

+
∂

∂xi

(
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

)]
(3.13)

And (3.13) can be written also in vectorial notation:

ρ
∂2~u

∂t2
= (λ+ µ)∇∇~u+ µ∇2~u (3.14)

Where ρ is the mass density (Kg/m3), λ and µ are the 1st and 2nd Lamé parameters respectively,

u is the displacement field, and t represents the time.

To solve the equation of motion for harmonic boundary condition, in general the plane wave

solution is:

~u(~r, t) = u0exp

(
iω

(
t− ~n ∗ ~r

c

))
~eu with the position vector ~r =


x1

x2

x3


(3.15)

In (3.15) u0 corresponds to the amplitude of the oscillation, ~n is the wave normal vector, ω

expresses the angular frequency (rad/s) and ~eu is the unit vector in the displacemnet direction.
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The phase velocity is represented by c in (3.15) and it is directly proportional to its wavelength

λ, such that, for a given frequency the faster is the waves the longer the wavelength:

c =
λω

2π
(3.16)

In the case of a compression wave the displacement oscillation is parallel to the direction of prop-

agation ~n and so by defining ~e‖~n as the unit vector parallel to the direction of wave propagation,

the (3.15) is written as:

~u(~r, t) = u0exp

(
iω

(
t− ~n ∗ ~r

cp

))
~e‖~n (3.17)

For a shear wave, the displacement oscillation is perpendicular to the direction of propagation

~n, so naming ~e⊥~n as the unit vector perpendicular to the direction of the propagation:

~u(~r, t) = u0exp

(
iω

(
t− ~n ∗ ~r

cs

))
~e⊥~n (3.18)
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Furthermore can be defined the phase speed for each type of wave [22]. In particular, for a

longitudinal wave the phase speed corresponds to:

cp =

√
λ+ 2µ

ρ
(3.19)

For a transverse wave, the phase speed expression is:

cs =

√
µ

ρ
(3.20)

Lastly, (3.19) and (3.20) show how the two types of wave differ from each other. Indeed, as

already mentioned, compression waves are characterized by a much longer wavelength than

shear waves, therefore they are faster.

The two Lamé parameters are difficult to assess simultaneously since λ >>> µ. For this reason,

it is possible to partially filter out, with the use of a high filter, the influence of longitudinal

wave because its spatial frequency is close to zero and it doesn’t carry useful information to

assess the mechanical property of tissue. Another solution is to apply a curl-operator, which is

used to filter the contributions of the compression wave.
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3.3 Torsional and Longitudinal case

It is fundamental to determine the effects of waves in a circular cylindrical rod, which

represents the interested phantom, in both axial and torsional case. From [18] is possible to

obtain the displacements and stresses as potential functions Φ and H, that satisfy the scalar

and vector wave equations.

Cylindrical coordinates are used in this case and the scalar components for u are:

ur =
∂Φ

∂r
+

1

r

∂Hz

∂θ
− ∂Hθ

∂z
(3.21)

uθ =
1

r

∂Φ

∂θ
+
∂Hr

∂z
− ∂Hz

∂r
(3.22)

uz =
∂Φ

∂z
+

1

r

∂rHθ

∂r
− 1

r

∂Hr

∂θ
(3.23)

Consider τ as the stress, the boundary conditions for this problem are given by:

τrr = τrθ = τrz = 0, r = a (3.24)

Using these conditions and note that harmonic waves may propagate in a cylinder, the resulting

displacements and stresses are gained.
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In particular, for torsional modes only uθ displacement exists. And this displacement field is

gained only if Hz 6= 0, resulting in:

uθ[x, r, t] =


Brei(ξx−ωt), if β = 0

BJ1(βr)e
i(ξx−ωt) if β > 0

(3.25)

Where B represents the amplitude and

β2 + ξ2 = k2f =
ω2ρ

µ⊥(1 + φ) + T
(3.26)

The boundary condition for the torsional case is τrθ = 0, the frequency equation for torsional

waves is:

βaJ0[βa] = 2J1[βa] (3.27)
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In (3.7) a corresponds to the radius of the considered cylinder. In the general case then, the

steady state wave motion is

uθ[x, r, t] = B0re
i(ξx−ωt) +

∞∑
n=1

BnJ1[βnr]e
i(ξnx−ωt) (3.28)

For longitudinal modes uθ = 0 and the boundary conditions are

τrr = τrz = 0, r = a (3.29)

and the displacements for this mode are represented by

ur[x, r, t] = (−AJ1[r] +BiξJ1[βr])e
i(ξx−ωt) (3.30)

ux[x, r, t] = (AiξJ0[r]−BβJ0[βr])ei(ξx−ωt) (3.31)
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Where A and B represents both amplitude and the ration is equal to:

A

B
= −

(
β

α

)2 β2 − ξ2

2ξ2
J1[βa]

J1[αa]
(3.32)

Moreover

α2 + ξ2 = k2p =
ω2ρ

k
(3.33)

Where k is the bulk modulus of biological tissue and is 4 to 6 order of magnitude greater than

µ⊥ and is reasonable to take α << 1 and α << β.

In this case J0[αr] ' 1 and J1[αr] ' αr/2 and equation (3.30) and (3.31) can be simplified to

the following

ur[x, r, t] = (−Aα2r/2 +BiξJ1[βr])e
i(ξx−ωt) (3.34)

ux[x, r, t] = (Aiξ −BβJ0[βr])ei(ξx−ωt) (3.35)

3.4 Scalar Helmholtz Equation

MRE is used to evaluate viscoelastic shear properties of biological tissues by applying me-

chanical vibrations to them and detect then the response of the tissue through MRI.

Data processing in this case is characterized always by an inverse problem, obtaining informa-

tion about the spatial distribution of elastic parameters from the displacement field [23]. There



34

are different methods to reach this objective, and they differ from noise, boundary conditions

and also the property parameters of the tissue, such as viscosity, anisotropy and heterogeneity

[24].

There are two types of approaches: the direct problem and the inverse problem. The direct

problem can estimate the behaviour of a medium if the parameters µ, λ and the boundary

conditions of the surface of the system are known [23]. Inversion techniques are iterative re-

constructions or a direct inversion. In iterative reconstruction is determined the solution of the

inverse problem and then the result is transformed in a repeated calculation of the correspond-

ing direct problem. In this case, is used a finite-element model to assess the displacement field

ucalc, such that it can be measured the difference between ucalc and umeas, corresponding to the

measured displacement field. Subsequently, there is an update of the parameter estimate, which

is the input of FEM and is given by considering the information about boundary conditions and

mechanical vibration path. The operation ends when the difference between ucalc and umeas is

lower than a predetermined threshold [23].

The main limits of this method are the high computational and the high dependecy on bound-

ary consitions that are not derived through experiments. The most used inverse method is

the scalar Helmholtz equation that determines shear modulus which is related with the phase

velocity of the wave equation.

In MRE the inverse problem can be solved by taking into account the tissues as a linear-

elastic isotropic body, characterized by local homogeneity, such that boundary conditions and
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stress field are neglected. The wave equation (3.14) needs the knowledge of 3D displacement

because the equation for the individual components is coupled [25].

Transforming (3.14) into the frequency domain through the Discrete Fourier Transform and by

assessing the elastic-viscoelastic analogy, which affirms that if the elastic solution of the wave

equation is available, then the viscoelastic solution can be obtained in the frequency domain by

replacing the elastic moduli with the corresponding complex (viscoelastic) moduli:

−ρω2~U(ω) = (GL(ω) +GS(ω))∇(∇ · ~U(w)) +GS(ω)∆~U(ω) (3.36)

In which GL(ω) and GS(ω) are the complex moduli representing the 1st and 2nd Lamé pa-

rameters respectively, ω the angular mechanical frequency and ~U(ω) is the Discrete Fourier

Transformation of the displacement [8].

Assuming incompressibility (∇ · ~U(w) = 0), (3.21) becomes:

−ρω2~U(ω) = GS(ω)∆~U(ω) (3.37)
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This relation must be hold for every direction in 3D space. Then, (3.22) is rearranged and the

shear modulus is obtained:

GS(ω) =
−ρω2~U(ω)

∆~U(ω)
(3.38)

The latter relation represents the scalar Helmholtz inversion. It is used by assuming the out of

phase plane displacement into two-dimensional elastography and it returns an exact solution

to the inverse problem considering the isotropy of the medium and local homogeneity.

In the 3D case to eliminate the contribution of the compression wave is used the curl oper-

ator in both sides of the equation (3.22). Since when the curl operator is applied to a gradient

field the result is zero. So (3.22) becomes:

−ρω2 ~Q = GS(ω)∆ ~Q (3.39)

In this case ~Q = ∇× ~U represents a vector in each point in space (x,y,z) and only one parameter

is unknown, which is the complex shear modulus. Hence, (3.24) illustrates an overdeterminated

problem and the exact solution do not exist. From linear algebra [26] it can be obtained the

least-square solution, which is given by rewriting the complex shear modulus and substituting

it in (3.24):

GS(ω) = −ρω2[(∆ ~Q)T (δ ~Q)]−1((δ ~Q)T ~Q = ∆((∇× ~U) (3.40)
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This relation does not equalize all three equations, but the error between the right and left side

of (3.24) is minimized.

3.4.1 Multiparameter Inversion

In more realistic models the scalar Helmholtz inversion can not be used; since models are

dependent on two or more parameters. In this case, another inversion technique is exploited and

it is called AIDE (Algebraic inversion of the differential equation). Starting from MRE scan,

this method is able to obtain different model parameters with independent parameters assuming

local homogeneity [27],[28]. For example, considering a two-parameters Naiver equation:

ρü = (λ+ µ)∇(∇u) + µ∆u (3.41)

Considering now, the latter equation in the frequency domain. Through the derivative property

of the Fourier Transform and by rearranging the right-hand side, equation (3.26) is written as:

−ρω2ũ = λ · ∇(∇ · ũ + µ · (∇(∇ · ũ) + ∆ũ) (3.42)
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Indicating the right hand-side in vector notation:

−ρω2ũ = A ·

λ
µ

 (3.43)

In which A is a 3x2 matrix, characterized by 2nd-order equation derivates of the displacement

field:

A = [∇(∇ · ũ),∇(∇ · ũ) + ∆ũ] =


∂
∂x∇ · ũ,

∂
∂x∇ · ũ + ∆ũ1

∂
∂y∇ · ũ,

∂
∂y∇ · ũ + ∆ũ2

∂
∂z∇ · ũ,

∂
∂z∇ · ũ + ∆ũ3


(3.44)

The elastic parameter it is solved using (3.28) such that [27]:

λ
µ

 = −ρω2 · (ATA)−1AT · u (3.45)

Finally, this procedure consider also the displacement caused by the longitudinal wave in the

system, since the 1st Lamé parameter is present.



39

3.5 Discretization and Noise

Once discrete data are measured, there is a chance to encounter discretization and noise,

which lead to possible errors. Different measurements parameters can cause noise, including

vibration amplitude and frequency, MR sequence sensitivity and other components related to

MR sequence.

Furthermore, in the post-processing steps, in which is applied the inversion algorithm, is re-

quired the calculation of spatial derivatives. This process influences noise, amplifying it, because

they act as a high-pass filter [27].

This behaviour is more present if the displacement has a low signal to noise ratio (SNR) and

to overcome this problem must be applied a spatial filter that filter out the noise.

As mentioned, discretization leads to error in the displacement field. Indeed, considering a

snapshot of a mechanical wave over space along a profile x, the length of a pixel spacing δx can

affect the error and the calculation of spatial derivatives is falsified.

Discretization leads to an overestimation of wavelength. For instance, when two-dimensional

mechanical wave is projected on a one-dimensional plane, the wave fronts of equal phase that

passes through the plane, gives an overestimation of the measured wavelength. This is the

main problem in wave theory, in which a lower dimensionality conduct to the danger in over-

estimating the wave length, unless the lower dimensionality is parallel to the direction of wave

propagation [29].
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Figure 7: Illustration of the consequences of noise and discretization. The graph shows the wave
speed (m/S) in relation to the resolution (pixel per wavelength). In the case of low resolution
there is an overestimation by discretization and for higher resolution there is an underestimation
given by noise

Finally, is observed from Figure 7 that for low resolution are dominant errors caused by dis-

cretization and elastic mosulus is overestimated; on the other hand in case of high resolutions,

noise occur effecting an underestimation of wave speed and elastic modulus [30].

3.5.1 Equation of motion for skeletal muscle

MRE investigates skeletal muscle, which is considered as one of the most plastic tissue

present in human body[31]. Skeletal muscle possesses different functions. For instance, it con-

verts chemical energy into mechanical energy to generate force, sustain posture and to create

movements that affect daily-life activities. Additionally, skeletal muscle has a role in basal
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energy metabolism, being storage for substrates, like carbohydrates, generating heat for the

maintenance of temperature and oxygen consumption during physical activity [31].

Another important function is to be a reservoir of amino acids, which are used by other tissues

for the synthesis of organ-specific proteins [32].

Skeletal muscle is constituted by a particular arrangement of muscle fibers and the respective

connective tissue [31]. Muscle fibers are multi nucleated and each nucleus controls the type of

protein synthesized in a nuclear domain which is a particular region of the cell. Between the

sarcolemma and the basal lamina there are adult stem cells. They can proliferate and differen-

tiate into new muscle fibers [33] have the function of muscle growing, repair and regeneration

[31].

As it is indicated in Figure 8 an individual skeletal muscle is composed by hundreds or even

thousands of muscle fibers bundled together in a connective tissue covering [34]. There are four

main connective tissues that form the muscle. The Epimysium that surrounds each muscle,

the fascia outside the Epimyium which separates the muscles. Then, inside the Epimysium the

muscle is separated into compartments, and each of them contains a bundle of muscle fibers

[34]. The Perimysium is the connective tissue that covers each bundle of muscle fiber and finally

every muscle fiber is surrounded by the Endomysium.

A single muscle fiber has a length around 1 cm and a diameter of 100 µm and each muscle fiber

is surrounded by a cell membrane called Sarcolemma [31].

There are present different models that replicate skeletal muscle behaviour and their validity

mainly depends on the material properties used to obtain model parameters. The architecture
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Figure 8: The figure illustrates the basic components of a skeletal muscle. Starting from the
external layer, there is: the Epimysium, Perimysium that surrounds the muscle fibers and the
Endomysium that covers each muscle fibers. Inside the Endomysium there is the Sarcolemma,
which is the cell membrane. Finally inside the Sarcolemma there are Myofibrills that are
constituted by two main proteins: Actin and Mysosin.

of skeletal muscle characterized by the parallel bundling of muscle fibers arranged serially, makes

consider that the muscle can be transversely isotropic material, with the plane of symmetry

defined by the longitudinal fiber axis [35].

Since MRE is capable of measuring different parameters of the tissue vibration anisotropy

can be defined, through two-dimensional wave images. Furthermore the anisotropic material

properties are obtained from wave patterns if the wave propagation is not restricted by the

geometry of the excitation source and also if boundary conditions are non-reflecting [36].
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Figure 9: In figure (a) is represented the experimental shear waves in the case of agarose. On
the left-hand side of (b) and (c) are illustrated the magnitudes of MRE representations. On
the right-hand side of (b) and (c) are showed the experimental shear waves in a skeletal muscle
of a right arm of the same subject, in sagittal and coronal slice position, respectively.

The waveform obtained in MRE acquisition is different depending on the elastic properties of

the material analyzed. Precisely, from Figure 9 it is observed that in agarose for example the

waveform is circular concentric and for a skeletal muscle is a V-shaped waves [36].

Consider now a Cartesian axes (x1, x2, x3) the transverse isotropic model is showed in Figure 10

and it is described by positioning the principal axis of symmetry x3 parallel to fibers of the

muscle [36].
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Figure 10: Representation of the tendon with actuator at the distal tendon. The image plane
coincides with the stress plane, obtaining a planar stress situation. f = [fρ, f3] is the resulting
force vector and

The stress-shear relation for transverse isotropic linear elastic material is reduced to five inde-

pendent material components.
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with σik the stress tensor and uik being the strain tensor. These five material parameters are

µ⊥ and µ‖,that symbolize the two shear moduli, representing the shear wave that propagates

in the paralle and perpendicular direction of the fiber [37]. The other three parameters λM , λ‖

and λ⊥ describe different directions of propagation of the longitudinal wave. The (3.31) can be

written also exploiting the displacement vector u:

ρ∂2t ui =
∂σik
∂xk

+ ζ∂t∇2ui + (ξ + ζ)
∂3uk

∂t∂xi∂xk
(3.47)

In which ζ figures the shear viscosity and ξ is the viscosity of the longitudinal wave, which

is neglected at lower frequencies. Also, ζ, ξ and ∇u are small quantities, such that the third

part on the right-hand side of the equation is neglected as well. Inserting (3.31) in (3.32) the

equation of motion is:

ρ∂2t u = µ⊥∇2u + (λ+ µ⊥)∇(∇u) + τ


∂2ux
∂z2

+ ∂2uz
∂x∂z

∂2uy
∂z2

+ ∂2uz
∂y∂z

∇2uz + ∂z(∇u)


+ ζ∂t∇2u (3.48)

In the latter equation τ = µ‖ + µ⊥ and assuming an incompressible medium it can be stated

that λ = λ‖ = λ⊥ = λM . Moreover, in case of isotropy τ = 0 and (3.33) is valid for both
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components ur (the divergence-free part of the displacement field) and uL (curl-free part of

displacement field) [37].

τ is in the order of the shear modulus and assuming a steady state (3.33) can be expressed

using PDE considering only the transverse contribution:

−ρω2uT ' µ⊥∇2uT + τ



∂2uTx
∂z2

+ ∂2uTz
∂x∂z

∂2uTy
∂z2

+ ∂2uTz
∂y∂z

∇2uTz


+ ζω∇2~uT (3.49)

~uT represents the displacement vector shifted by t = π/2ω in time. Ultimately, to solve (3.34)

is needed the knowledge of uT and it is valid when axis of the fiber and the z-axis of the coor-

dinate system are coincident. Further insights are explored and analyzed in [37].

In general, for a incompressible, transversely isotropic material there are three independent

parameters by combining two tensile and shear moduli, E⊥, E‖, µ⊥ and µ‖ respectively [38].

In particular, E⊥ and µ⊥ are perpendicular to the direction of the fibers and so parallel to

the plane of isotropy, on the other side E‖ and µ‖ are parallel to the fibers. Take into consid-

eration a shear wave propagating in an arbitrary direction equivalent to an angle θ from the

direction of the fibers and through a material incompressible transversely and isotropic. The

displacement of the shear wave is polarized in two different independents components: a shear
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and a fast wave. The slow shear wave presents the direction of polarization perpendicular to

the direction of the fiber and also of the propagation. Therefore, the polarization is in the z

direction, considering the fibers in the y direction and propagation in the x-y plane [38].

The speed of the shear is:

c2s =
µ⊥
ρ

(1 + φcos2[θ]) (3.50)

In which Φ represents the shear anisotropy and is equal to φ = µ‖/µ⊥ - 1.

The slow shear wavelength λs= cs/f ,in which f is the frequency in Hertz. The ratio between

the slow shear wavelength that it is parallel to the fibers λs‖ and the one perpendicular to the

fibers λs⊥ corresponds to λs‖/λs⊥ =
√

1 + φ. Regarding, the fast shear waves, characterized by

a polarization direction that is not perpendicular to the fiber direction, have speed cf given by:

c2f =
µ⊥
ρ

(1 + φcos2[2θ] + ζsin2[2θ]) (3.51)

Where ζ corresponds to the tensile anisotropy, and corresponds to ζ=E‖/E⊥-1. The fast shear

wavelength λf corresponds to the ratio between the speed wave cf and frequency f : λf = cf/

f .

Consider now, T as the amplitude of an uniaxial initial or pre-stress, parallel to the axis of
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isotropy. By neglecting higher order and nonlinear effects due to the deformation caused by T,

the speed of slow and fast shear waves can be expressed as:

c2s =
µ⊥
ρ

(1 + φcos2[θ] +
T

2µ⊥
cos2[θ]) (3.52)

c2f =
µ⊥
ρ

(1 + φ+
T

2µ⊥
cos[2θ] + (ζ − φ)sin2[2θ]) (3.53)

With these two latter equations a relationship between the pre-stress T and the intrinsic

material viscoelastic properties µ⊥, φ and ζ can be defined.

3.6 Viscoelastic models for biological tissue

In MRE experiments at multiple frequencies are exploited specific viscoelastic models, in

order to obtain more accurate information about mechanical properties and to reproduce the

viscoelastic behaviour of the muscle. These rheological models can be of two, three or four

independent constitutive parameters [39][40]. Depending on the imaging data obtained each

model affects tissue property estimation. More specifically, models with a lower number of free

parameters are preferred [40], because they can recognize with more sensitivity and specificity

viscoelastic changes. Thus, they can be a powerful tool for clinical perspective.

A harmonic plane wave (3.15) is written also as a function of the wave speed c and the wave
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damping coefficient γ [40], such that they can be related to complex shear modulus G discussed

in paragraph 3.3:

u = u0exp
[
iω
(n · r

c
− t
)
− γn · r

]
(3.54)

Putting together (3.35) and (3.23) the wave speed and the wave damping are respectively equal

to:

c(ω) =
1

R
[√

ρ
G(ω)

] and γ(ω) = ωI
[√ ρ

G(ω)

]
(3.55)

In which, R and I express the real and imaginary part of a complex number. Using now

different rheological models the complex shear wave modulus is characterized by different values

of elasticity and viscousity. The most used models are listed in Figure 11 with their respective

complex shear modulus value.

The main elements that compose all these models are a spring, which represents the energy

storage of the system, a dashpot that characterizes the damping part of the system, and then

a springpot, which is an interpolation between a spring and a dashpot.

Voigt and Maxwell’s models require just the knowledge of the shear modulus (µ) and shear

viscosity (η) [39].

The Springpot model instead, intrinsically associates the dynamics of the complex shear mod-

ulus to the fractal geometry of components that build the mechanical scaffold of tissue. In

particular, this model is characterized by two free parameters, k and α, which leads to predict
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Figure 11: Illustartion of the most used viscoelastic models with the respective value of the
complex shear modulus: Maxwell, Voigt, Zener, Jeffreys and fractional Zener. Below that are
represented the rheological elements from the spring, dashpot and springpot, a combination
between the spring and dashpot.

the changes of two fractions over frequency ω.

In this case, the stress and deformation relation in the frequency domain corresponds to:

σ(ω) = µ1−αα (iωη)αε(ω) (3.56)

µα and α are assigned to principal patterns of structural changes, therefore these parameters

have a physical meaning related to the structural properties of the model, highlighting a re-

lationship between histology and Elastography parameters. The stiffness is represented by µα

and it is the viscoelastic connectivity between the individual elements and the stiffer is the
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tissue the higher is the value of µα. Differently, α is a weighting factor and describes the matrix

geometry, meaning that is related to the geometrical reordering of the structure [16]. Its value

is 0 ≤ α ≤ 1. Specifically, for α = 0 the springpot becomes a spring and for α = 0 it is reduced

to a dashpot. Overall, the more parameters are used in a model the more components and

aspects of soft tissues can be considered. On the other hand, more free parameters lead to

more sensitive fitting process and it could bring noise. Thus, in an Elastography clinical study

is important to find a right compromise between number of parameters, obtaining a stable and

accurate system [40].



CHAPTER 4

STATE OF THE ART

4.1 Torsional Actuation experiments

A previous work has been done at the University of Illinois at Chicago, in which it was

assessed the mechanical properties of a phantom through torsional vibration with a Table Top

MRI System [41]. The torsional vibration was generated through the same Stepper Motor,

provided by the German company Pure Devices. The set up was characterized by a black rod,

which was connected to a rotating disk that created the torsional vibration of the sample. In

the study, to reduce attenuation at higher frequencies, it was used a steel coupler composed

of two sets of screws on its top and bottom end, such that the first pair was connected to

the rotating shaft and the second pair is attached to a component made of V eroClear. The

other half of this latter piece was wrapped around the plastic rod, used to hold the test tube.

Inside the test tube, there was inserted a sample, which was placed at a certain height in the

region of interest of the Table Top System. The set up was then constituted by the Stepper

Motor attached to an acrylic support base, that is then leaned to the Table Top MRI System

(Figure 12).

In this study, were analyzed different samples: an isotropic gelatin sample, an anisotropic

sample containing carbon fibers in a soft plastic matrix, to simulate real muscle structure, and

52
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Figure 12: Setup composed by Stepper motor, with the black plastic rod, the Vera clear com-
ponent that connect the coupler to the rod and the acrylic support base

also it was considered muscle samples extracted from a calf and a thigh of a mouse.

Results showed that were not present clear wave-fronts for both isotropic and anisotropic

samples and this could be because of very little ROI. Furthermore, it was understood that to

obtain a better number of wave-fronts, higher frequencies need to be applied to the system,

considering also that as the frequencies increase the attenuation is more evident [41].

4.2 Table Top System

In general a Table Top MRI scanner is a tool that demonstrates different concepts like

magnetic resonance, spatial encoding or Fourier transform [42]. Indeed in MRE is used in com-

bination with a mechanical vibration in order to estimate elastograms.
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There are different types of low-cost Table Top imaging systems. In this work is exploited Pure

Device 0.5T Table Top system from Germany. The device is for both scientific and industrial

applications. Moreover, the efficient and compact design give the opportunity to be used also

in laboratory settings, since it gives the chance to examine different samples [43].

The all system is then characterized by different components [42],[44]. First, the magnet with

a magnetic field of 0.5T, then the Gradient coils used for imaging. Indeed, they produce a

magnetic field in the z direction that changes linearly with position. Other components are

the Gradient Power Amplifier (GPA) which is needed to supply current to the gradient coils,

and the RF subsystem to guarantee RF transmission and reception. Lastly, there is a Matlab

software able to conduct experiments.

4.3 Phantom

Different materials can be taken into account when it come to create a sample. Particularly, in

this work it has been used EcoflexTM (SMOOTH-ON, INC., USA).

EcoflexTM is a versatile platinum-catalyzed silicone and it is useful in MRE experiments since

it is a material that tends to change less over time compared to water-based gelatin or agar gel.

EcoflexTM over time has good durability and reasonable stability [40]. Moreover, its deforma-

tion response is close to soft biological tissue. Indeed, the mechanical behaviour of EcoflexTM

tends to yield a linear strain limit near to soft biological tissue. For instance, the mechanical

behaviour of EcoflexTM tends to yield a linear strain limit near to 30% at a strain rate of 50

mm/min considering a dumbbell specimen with 30 mm in length when it is in tension [45].
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Exist different types of hardness of EcoflexTM (00-10, 00-20, 00-30 and 00-50) and the higher

is the number that characterized the type of EcoflexTM the stiffer is the phantom. Hence, by

changing the material stiffness mechanical properties can be controlled.



CHAPTER 5

MATERIAL AND METHODS

5.1 Preparation of the isotropic phantom

The phantom used in this work is made of EcoflexTM 00-30, a material soft enough to

mimic the muscle and soft biological tissue. In order to obtain the sample, the first step was

to stir Part A and Part B, then in a container was poured and mixed a 1A:1B by volume or

weight mix ratio. After about three minutes of mixing, there was a vacuum degassing phase,

to eliminate entrapped air.

Figure 13: Diagram of the mold used to create the EcoflexTM 00-30 phantom. The dark grey
component is the Endcap, the grey part is the Anchor and in yellow is represented the Ecoflex
phantom, which is placed inside the mold.

56
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When this last phase was finished, the mixture was poured on a designed mold and it was cured

for four hours at room temperature with negligible shrinkage. The phantom at the top features

a flange, so that the phantom can be grabbed by an Adapter, that will be described further on.

Moreover, while it cures at the bottom part was inserted a little Anchor, that also will be

described in more details in the following section.

The phantom has a length of 120 mm a diameter of 8 mm with the flange has a 12 mm diameter.

A diagram of the whole phantom setup is represented in Figure 13, characterized by the Anchor,

the Endcap and the EcoflexTM 00-30.

5.1.1 Anchor and Endcap

The Anchor showed in Figure 14 is 30 mm long, made of Siraya Tech Fast created with

PhotoT Mono SE 3D printer by Anycubic. It was directly inserted into the phantom during

its curing, so that there was no need of any additional component to bond them together. In

addition, to make sure that the Anchor was fixed to the bottom part of the sample, it was

applied a Silicone modified conformal coating by MGchemicals
®

to the Anchor.

The purpose is to hang through a fishing line (KastKing Superpower F ishing Line, 6LB

327Y DS) different bullet weights, in order to analyze how shear waves propagates in a pre-

strain sample.



58

Figure 14: 3D illustration of the weigth anchor.

It is created an Endcap (Figure 15), made of the same material and with the same 3D

machine of the mold and of the Anchor. The Endcap is an additional system to guarantee the

attachment of the Anchor to the phantom.

Figure 15: 3D illustration of the Mold Endcap .
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5.1.2 Weights

The bullet weights (Figure 16) are made of lead, a non-magnetic material, thus it was

possible to hang them to the anchor, through a fishing line, causing an elongation of the

sample. The elongations observed in this study were of 10% and 20%, by using and combining

together lead weights of 0.48oz, 0.68oz and 1.05oz.

Figure 16: Lead bullet weights used in the setup.

5.2 Setup mechanics

The setup used it is characterized by the MRI Benchtop 0.587T system (Pure Devices

GmbH, Würzburg, Germany) that comprise of:

1. The Control driver;

2. The 0.587T (25MHz) magnet (magspec);

3. The pre-amplifier;
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4. The high-power gradient amplifier (DC-600);

5. The RJ-45 adapter connected to the actuator;

6. The actuator supports and sample holder.

The setup is characterized by a Matlab software that derives wave images. The Magnet case

is not perfectly symmetric with respect to the bore and the reference of the system has the y

axis aligned with the axis of the sample considered (Figure 17).

Figure 17: Reference system in the Table Top MRI Scanner.

5.2.1 Actuators

The actuators exploited to transmit motion to the phantom were a piezoeletric actuator

PAHL60/20 (Piezosystem jena) which creates an axial displacement and a Stepper Motor

actuator 14HS13− 0804S (Stepperonline) for torsional vibration.
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5.3 Preliminary testing

At the beginning of the study, the experiments were focused on the Stepper Motor. Ac-

cordingly to fix the phantom to the rest of the setup was designed another piece: the Adapter.

Its length is 31mm and it is made of Siraya® Tech Fast and it is constituted by two equal and

symmetric parts, such that when the phantom was ready, the two pieces were glued together

Figure 18.

Figure 18: 3D illustration of the 3D stepper Motor adapter.

A steel coupler is utilized to bind the rod to the Stepper Motor, since it is constituted by

two sets of screws on both top and bottom end. In particular, the top pairs were attached to

the protruded rotating shaft of the actuator and the bottom part coupled the rod.

The diameter of the elongated rod is 5 mm, length 21 mm and it is screwed with a M4 thread.
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The Stepper Motor is placed then on the magnet through a pre-existing acrylic support base

(267 mm x 115 mm x 92 mm), built utilizing clear scratch and UV resistant cast acrylic sheet

made in the Acoustic and Vibrations Laboratory at UIC, showed in Figure 20.

This set up with the phantom at the rest position (meaning that no weight was hung to the

system) has been implemented with the Table Top MRI scanner for a preliminary testing. It was

used a frequency of 500Hz and from the wave images obtained it was showed that attenuation

was strongly present.

Figure 19: Representation of the Stepper Motor setup with the sample.
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5.4 Stepper Motor and Piezoeletric setup

A possible solution to overcome the attenuation was to idealize an extension of 60 mm to

the Adapter mentioned in Section 5.3, as showed in Figure 20.

Figure 20: Illustration of the new design of the phantom, realized with the new adapter.

In this case, the new phantom has been tested by using both the Stepper Motor and the Piezo

actuator. For this reason the rod of the new Adapter was made with a M4 thread, so that it

could be screwed into the Piezoelectric actuator.

This modification has led to change also the Stepper Motor setup. Indeed, there was the

introduction of a new part already available in the laboratory, a V eroClear piece, that allowed

the connection of the new threaded hole to the steel coupler: one side of the component is
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inserted inside the coupler and the other side is fixed to the new rod of the Adapter, that grabs

the phantom. The two actuators are connected to a pre-existing acrylic structure made of clear

scratch and UV resistant cast acrylic sheet with different dimensions. The one for the Stepper

Motor has been already described in Section 5.3 and it is represented also in Figure 21. The

other one, considered for the Piezo actuator, has a dimension of 267 mm x 60 mm x 85 mm

and it is illustrated in Figure 22.

5.5 Setup with two piezoactuators

To compare and cross-validate the results obtained by the Stepper Motor, for a torsional

vibration it has been idealized another setup. The support structure is the same one used from

the previous Stepper Motor setup.

Two P − 842.10 (PI) piezoelectric actuators are combined together in a counter-phase configu-

ration, generating a torsional vibration.

Particularly, P − 842.10 is sensitive to bend forces. A possible solution to avoid them is to

screw onto the tips of the piezoactuators a corresponding 176.50 flexible tips (Figure 23).
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Figure 21: Stepper Motor actuator 14HS13− 0804S with the respecting acrylic structure. On
the left is showed the top view and on the right side the front view.

Figure 22: Piezoelectric actuator PAHL60/20 with the respecting acrylic structure. On the
left is showed the top view and on the right side the front view.

Figure 23: Top view and front view of the setup with two piezoactators.
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The main components of this new setup are:

1. Two M8 screws screwed on the two piezos to fix the system;

2. Two washers, previously present in the laboratory, screwed to the M8 screws with the

purpose of protection of the material and antiloosening of the system;

3. A solid acrylic structure, glued on the support base, positioned between the two M8 screws

and the two actuators, allowing for a more stabilized structure;

4. The two piezos P − 842.10 connected to the two 176.50 flexible tips;

5. The holder, a 3D printed component, 33mm long and a width of 20 mm (Figure 24). It

is inserted in the support base and exhibits two holes to allow the junction of two M5

plastic screws with the two flexible tips, by using M5 screws. The holder is not fixed,

and connects together the phantom to the rest of the system, such that when the two

actuators are activated, the motion is transmitted to the phantom. Indeed at the bottom

of the holder has a M4 screw hole screwed such that it is screwed the rod of the adapter.

Moreover, for this setup the rod attached to the phantom was made of a stronger resin, Siraya®

Tech Blu, instead of Siraya® Tech Fast as it showed Figure 25. This choice was made in order

to guarantee a more secure connection between the rod and the adapter glued to the phantom.

Moreover the rod itself, it is M4 thread screwed, so it can inserted in the holder.
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Figure 24: Representation in 3D of the holder component on the right. On the left it is
illustrated the top view of it, with the respective measurements

Figure 25: Phantom with the new adapter.
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5.6 MRE computational study

The results obtained from the experimental setup were compared with the results of compu-

tational study. The MRE finite elements simulations were done using COMSOLMultiphysics®

5.3a (Stockholm, Sweden).

The phantom used for the measurements was imported from SolidWorks, with a length of

120mm and a diameter of 8mm.

Once the geometry is defined, the next step is to implement the material properties that reflect

the examined phantom in the experimental analysis.

The input parameters are the mechanical properties of the EcoflexTM 00-30 and the complex

shear modulus acquired considering the Fractional Voigt viscoelasticity model, described in [46]

and metioned in Chapter 3.5 (Table I).
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Parameters (symbol) Expression Value

Radius (r) 0.004 m 0.004 m

Length (L) 120 mm 0.12 m

Density (ρ) 1000 Kg/m3 1000 Kg/m3

Frequency (f) 500 Hz 500 Hz

Young’s modulus (E) 5.4214·105 Pa 5.4214·105 Pa

First Fractional Voigt model (µα) 1.956 Pa 1.956 Pa

Second Fractional Voigt model (α) 0.34 0.34

Poisson’s ratio (ν) 0.4999913 0.4999913

Tensile strength (µ0) 1.379·106Pa 1.379·106Pa

Real shear modulus (µRe) µ0 + µα· 2πf cos(απ/2) 1384289.22 Pa

Imaginary shear modulus (µIm) µα· 2πf sin(απ/2) 3128036.7 Pa

Complex shear modulus (µ) µRe + µIm 1384289.22 + i3128036.7 Pa

Bulk modulus (k) E(1−ν)
(1+ν)(1−2ν) 5.99·106 Pa

Displacement (k) 11.6·10−6 m 11.6·10−6 m

TABLE I: Input parameters in COMSOL
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For all simulations it was exploited a Finer mesh, and as for the experimental setup, were

considered strain of 0%, 10% and 20% with respect of the length of the phantom when it is at

rest.

Moreover were considered both, axial and torsional excitation. Therefore for the axial vibration,

it was applied to the entire lateral surface of the geometry a uniform boundary condition of

11.6 µm harmonic shear displacement in the y direction. On the other hand, for the torsional

displacement, the displacement was still 11.6 µm but applied in the x and z direction.

Finally, the frequencies investigated are the same used for the experimental setup, thus 200Hz,

400Hz, 600Hz, 800Hz and 1000Hz.



CHAPTER 6

RESULTS AND DISCUSSION

6.1 Examination of motion

Once the setup is ready, it is important to examine if there is actual motion transmitted to

the sample during the analysis. For this reason, to examine the Stepper and the Piezoelectric

setups, it has been used a more sensitive system than the MRE itself, which is the Polytec

PDV − 100 Portable Digital Vibrometer (Figure 26). It is a portable digital laser vibrometer

and it gives accurate and precise measurements of the vibration velocities in a frequency range

that reaches 22 kHz. One of the main advantage was also that it can be used without being in

contact with the sample [47].

Figure 26: Representation of the Polytec PDV − 100 Portable Digital Vibrometer.
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In general, a Laser Doppler Vibrometer (LDV) is a tool capable of making vibration evalu-

ations being non-in-contact with the surface considered. The working principle of the LDV is

based on the Doppler effect, which allows to acquire the vibration velocities.

The laser beam projected by the LDV is aimed at the sample’s surface and this causes a shift of

the Doppler frequency of the reflected laser beam because of the vibration of the sample itself.

In the end, the result is a voltage value directly proportional to the velocities of the target over

the laser beam’s direction [48].

A reflective tape was attached to the sample, so that the light beams are reflected and

measurements can be done, in order to analyze vibration.

The LDV is connected then to a dynamic signal analyzer Agilent 35670A that evaluates me-

chanical vibration applied on the phantom and characterizes control systems or network anal-

ysis. Indeed, for this study in the display were illustrated two graphs: one in time domain

that shows the wave form of the signal, comparing sinusoidal versus distorted signal; and the

other one in frequency domain, to validate that the system is working at the expected frequency.

6.1.1 Axial excitation

First it was evaluated the piezoelectric setup. Once the phantom was connected to the

system and the whole setup was placed outside the magnet, the laser beam of the LDV was

focused towards the reflective tape attached to the phantom.

In order to confirm motion of the phantom, experiments at different frequency were considered.

Figure 27 represents an example of what was obtained after running the setup at 200 Hz. In
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the top graph is represented the peak amplitudes values (pk) over time (s), in the second one

at the bottom, there is the root-mean-square value (rms) over frequency (Hz).

Figure 27: Representation of displacement and frequency values using Agilent 35670A.

The LDV was done also taking into account other frequencies and the respective displacement

was measured. The values are illustrated in Table II below:
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Frequency [Hz] Amplitude [mm/s] Displacement [mm]

200 2.1806 0.00174

300 0.1556 0.00008

400 2.1449 0.00085

500 4.7794 0.00150

TABLE II: Displacement measured from the results obtained by the Agilent 35670A for 200,
300, 400, 500 Hz using the Piezoelectric.

Using both graphs it was possible to demonstrate that there was enough motion transmitted

to the phantom, since the values obtained were of the order of micrometers, and that frequen-

cies corresponded to the one expected from each experiment.

6.1.2 Torsional excitation

The same application and measurements were done for the torsional vibration using the

Stepper Motor setup. The results are represented in Table III.

From the table it was clear to notice that the displacement values are much lower that the axial

vibration, but still good enough to use the setup for MRE experiments.
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Frequency [Hz] Amplitude [µm/s] Displacement [µm]

200 20.15 0.0160

300 123.92 0.0657

400 215.73 0.0687

500 16.42 0.0052

TABLE III: Displacement measured from the results obtained by the Agilent 35670A for 200,
300, 400, 500 Hz using the Stepper Motor.

6.2 MRE experiments

6.2.1 Piezoelectric actuator

The piezoelectric setup was not used for further experiments since, with the new phantom

setup, axial excitation will mainly drive quasi-longitudinal waves along the axis of the phantom.

These considerations can be showed in Figure 28, in which experiments have been done through

the Table Top by using a frequency of 200 Hz. It is represented the real and imaginary part of

the complex displacement of the wave images with the different frequencies along the columns.

The second figure illustrates the absolute and the phase of the complex wave images with the

different frequencies along the columns.
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Figure 28: On the left is showed the real (top) and imaginary (bottom) part; on the right the

absolute (top) and the phase (bottom) values of the complex wave image for 200Hz.

6.2.2 Stepper Motor actuator

Experiments were done then with the Stepper Motor setup and shear waves were analyzed

at 200Hz, 400Hz, 600Hz and 800Hz and 1000Hz. The results are showed in Figure 29, Figure 30,

Figure 31, Figure 32 and Figure 33 in which the real-imaginary part and absolute-phase part

are represented in x and z direction respectively.
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Figure 29: Waves images for 200Hz. On the left, top row: real part and top bottom: Imaginary

part. On the right, top row: absolute values and top bottom: phase values

Figure 30: Waves images for 400Hz. On the left, top row: real part and top bottom: Imaginary

part. On the right, top row: absolute values and top bottom: phase values
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Figure 31: Waves images for 600Hz. On the left, top row: real part and top bottom: Imaginary

part. On the right, top row: absolute values and top bottom: phase values

Figure 32: Waves images for 800Hz. On the left, top row: real part and top bottom: Imaginary

part. On the right, top row: absolute values and top bottom: phase values
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Figure 33: Waves images for 1000Hz. On the left, top row: real part and top bottom: Imaginary

part. On the right, top row: absolute values and top bottom: phase values

As already mentioned, MRE sequence is characterized by the sequence diagram typical of

the MRI with the addition of the vibration and the motion encoding gradient. This can be done

for various acquisitions, because in MRE the acquisition is not just a snapshot of the mechanical

wave, but there is the possibility to acquire multiple images at different time points.

The time points depend on the number of frequencies used: the higher the number of ac-

quisitions, the easier to filter out higher frequency noise after applying the Discrete Fourier

Transform. In general, 4 or 8 time steps are used.

Therefore, to better understand the meaning of the images, both magnitude and phase at each

time instance were obtained. In this specific case, the time steps correspond to 8.

In Figure 34 and Figure 35 are showed the magnitude and phase of the mechanical waves for
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400Hz, respectively. In Figure 36 and Figure 37 are represented the magnitude and phase

images for 600Hz, respectively.

Figure 34: Magnitude images for each time steps at 400Hz.
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Figure 35: Phase images for each time steps at 400Hz.

Figure 36: Magnitude images for each time steps at 600Hz.
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Figure 37: Phase images for each time steps at 600Hz.

Motion is detected for both 400Hz and 600Hz. In particular, for 400Hz the magnitude is

characterized by a lot of vibrations, but the motion of the displacement is coherent with the

direction of motion encoding. This means that the energy used during the experiment should

be reduced.

Regarding the magnitude at 600Hz, at the first time step there is motion coherent with the mo-

tion encoding direction. From the second to the last one instead, it seems that a problem with

the actuator was detected, and for this reason there is no motion transmitted to the phantom.

A lot of phase wraps are present in the phase images, an unwrapping algorithm was used to
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remove phase wraps, but on some images it was not possible to remove them.
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6.2.2.1 Excitation with prestrains

The setup was also analyzed by elongating the phantom by 10% and 20% of its initial length

with the lead weigths, using the anchor attached to the phantom, as showed in Figure 38.

Figure 38: Stepper Motor Setup with the weights for a 10% prestrain.

The motion has been analyzed for the same range of frequency from 200 to 1000Hz, with a

10% elongation from the initial length of the phantom. In Figure 42 are illustrated the wave

images in the x and z direction for 400 Hz and 800 Hz.
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Figure 39: Waves images for 400Hz. On the left, top row: real part and top bottom: Imaginary

part. On the right, top row: absolute values and top bottom: phase values

Figure 40: Waves images for 800Hz. On the left, top row: real part and top bottom: Imaginary

part. On the right, top row: absolute values and top bottom: phase values

Then, the phantom has been analyzed for 20% elongation. The results gained are pictured

in Figure 41 and Figure 42
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Figure 41: Waves images for 400Hz. On the left, top row: real part and top bottom: Imaginary

part. On the right, top row: absolute values and top bottom: phase values

Figure 42: Waves images for 800Hz. On the left, top row: real part and top bottom: Imaginary

part. On the right, top row: absolute values and top bottom: phase values
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In this case, the diameter of the phantom is reduced, because of the application of the weights.

6.3 COMSOL analysis

To validate and get a better understanding of the experimental results, a comparison with

the computational study has been made.

The results represent the absolute value of the wave images in the x and z direction of the axial

slices of the phantom, such that they could be compared with the setup, and of the sagittal

slices to better understand how the mechanical waves propagate through the whole phantom.

In addition, as a consequence of the experimental results it was analyzed also the axial dis-

placement for both axial and sagittal slice.

The experiments are done for 200Hz, 400Hz, 600Hz, 800Hz and 1000Hz.

Regarding the axial displacement, results are showed in Figure 43, Figure 44, Figure 45 and

Figure 46. The above mentioned images depict the axial and sagittal slices in both the x and

z direction for 400Hz at 0%, 10% and 20% elongation.
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Figure 43: From the left to the right: axial slices in the x-direction of wave images for 0%, 10%

and 20% elongation for 400Hz.

Figure 44: From the left to the right: axial slices in the z-direction of wave images for 0%, 10%

and 20% elongation for 400Hz.
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Figure 45: From the left to the right: axial slices in the z-direction of wave images for 0%, 10%

and 20% elongation for 400Hz.

Figure 46: From the left to the right: axial slices in the z-direction of wave images for 0%, 10%

and 20% elongation for 400Hz.
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For torsionally-polarized excitation we’d want to have a sagittal slice in the x-y plane with

motion encoded in the z direction, or a slice in the z-y plane with motion encoded in the x

direction.

The results gained by applying a torsional vibration instead, are showed in Figure 47,

Figure 48, Figure 49 and Figure 50, depicting the axial and sagittal slices in both the x and z

direction for 400Hz at 0%, 10% and 20% elongation.

Figure 47: From the left to the right: axial slices in the x-direction of wave images for 0%, 10%

and 20% elongation for 400Hz.
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Figure 48: From the left to the right: sagittal slices in the x-direction of wave images for 0%,

10% and 20% elongation for 400Hz.

Figure 49: From the left to the right: axial slices in the z-direction of wave images for 0%, 10%

and 20% elongation for 400Hz.
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Figure 50: From the left to the right: sagittal slices in the z-direction of wave images for 0%,

10% and 20% elongation for 400Hz.



CHAPTER 7

CONCLUSION

The aim of this research study was to design and test a new experimental configuration

to generate and measure torsionally-polarized and axially-polarized radially-converging shear

wave motion in a cylindrcially shaped soft tissue phantom under varying axial tensile pres-stress

conditions.

This involved developing a new tissue phantom fixture that allowed for controlled simultaneous

tensile pre-stress and a new mechanism for torsional excitation to improve upon the bandwidth

limitation of the current stepper motor configuration.

The planned experimental approach also was computationally simulated using finite element

analysis (FEA) to gain insight into how different parameters affect the generated shear wave

field in the phantom.

The torisonally-polarized motion detection can be broken down into two Cartesian directions

in the tabletop MRI system, the x (1) direction and the z (3) direction. Initial motion encoding

measurements in these directions using the stepper motor have identified some challenges as-

sociated with the new phantom configuration. Slight eccentricity in the phantom geometry or

how it’s affixed to torsional driver can result in rocking or other types of non-torsional motion

that will need to be reduced and/or filtered out to improved measurement capability.

Additionally, the vibration was not sufficiently transmitted to the phantom at higher frequen-

cies of interest, because of low resonance frequency of the system. For this reason, a new setup
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was designed consisting of two piezoelectric actuators with the aim to improve the transmission

of torsional vibration to the phantom, to gain better wave images and to eliminate or improve

the noise; while the design of this new system is complete, delay on shipment of one necessary

component has meant that it cannot be evaluated experimentally.

There are some improvements and considerations that can be made in this study. First of all,

in order to understand better the behaviour of the phantom during torsional excitation more

experiments and analysis should be done. The acquisition of the images of the mechanical

waves needs improvement as noted above.

Also, in this study EcoflexTM 00-30 was used, but in future studies it would be useful and

important to analyse lower stiffness phantom materials, such as EcoflexTM 00-20, since it may

be closer to biological soft tissue properties.

Further analysis, should focus also on anisotropic phantoms, in order to mimic in a better

way the mechanical properties of, for example, striated muscle tissue and brain white matter.

Finally, once the new setup is validated for transmitting torsional vibration, few upgrades can

be made in its design. For example, a better means of coupling the specimen, whether it be

a phantom or excised biological tissue, to the actuator could improve measurements. For soft

tissue specimens a alternate way of securing an anchor to the tissue is needed to stretch it for

tensile loading. For any design improvements one must remember to utilize only non magnetic

components and to keep in consideration the design constraint of fitting things within the 10

mm vertical bore of the tabletop MRI.
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Appendix A

TECHNICAL DATA OF ACTUATORS

In this appendix, it is presented the datasheets and the technical drawings of the actuators

used for the present work.
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Appendix A (continued)

Figure 51: Datasheet of the Piezoelettric actuator 60/20
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Appendix A (continued)

Figure 52: Datasheet of the Stepper Motor 14HS13-0804S
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Appendix A (continued)

Figure 53: Datasheet of the Piezoeletric P842.10
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Appendix A (continued)

Figure 54: Technical Drawing of the Piezoeletric P842.10
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Appendix A (continued)

Figure 55: Datasheet and technical drawing of the flexible tip P176.50
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