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SUMMARY 

 

A time series is an ordered collection of data points collected by observers or sensing 

devices. Time series classification aims to label time series instances based on previously seen 

examples. The two primary goals of time series classification are to obtain highly accurate results 

while reducing the time of calculations. 1-Nearest-Neighbor Dynamic Time Warping (1-NN 

DTW) is the most widely used classification method on time series and serves as a benchmark 

when compared to emerging techniques. Several studies have shown that for the task of time series 

classification, 1-NN DTW is hard to beat with respects to both goals. 

Although 1-NN DTW achieves accurate results, it comes with a high cost of processing. 

With the increased need for machine learning based algorithms to run on edge devices (low 

capacity), there is a need to reduce the processing requirements of classification algorithms. The 

focus of this dissertation is to reduce the processing time of time series classification algorithms. 

This is achieved through a method called Network Based Sampling (NBS), which limits the 

number of training examples used to classify each instance.  

Network Based Sampling is a preprocessing attachment that can be used in conjugation 

with any classification algorithm. NBS works by analyzing the training data of a time series 

classification problem to rank each training instance. The ranking process first generates a network 

of all training instances based on their class labels and Euclidean distances to each other. Then the 

most prominent instances are determined through an analysis of the network connections. From 

this network, the training set is sampled from based on a percentage specified by the user that 

corresponds to the average time savings.  
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The effectiveness of NBS is tested as an attachment on 1-NN DTW time series 

classification. The 85 time series benchmarks from the University of California, Riverside (UCR) 

archive is used as a source of data for classification evaluation.  
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1 INTRODUCTION 
 

This chapter introduces Time Series Classification (TSC) and the significance of efficient 

classification algorithms. 

 

1.1 Time Series Classification 

The modern age has seen a drastic increase in the digital sensing devices that has resulted 

in the continuous growth of sensed data (Gregor, 2016), a significant portion of which is in the 

form of time series. These sensing devices include robot sensors, wearable sensors, smart meters, 

satellites, smart phones, and more. This growth in data has resulted in the improvement of querying 

methods (Wilson, 2017) (Wang, Mueen, Ding, Trajcevski, Scheuermann and Keogh, 2013), 

approaches to data transformation (Nair, Kumar, Sakthivel and Vipin, 2017) (Lin, Keogh, Lonardi 

and Chiu, 2003) (Liao, 2005), and data mining techniques (Keogh and Kasetty, 2003) (Fu, 2011). 

Time series data is used for analysis (including forecasting, anomaly detection, signal estimation, 

etc.) and classification. With the increase in time series data, the field of time series classification 

(TSC) has undergone a surge of importance as data accumulates from sensing in personalized 

medicine (The BIDMC Congestive Heart Failure Database, 2014), and human walking motions 

(CMU Graphics Lab Motion Capture Database, 2014), for example. TSC seeks to establish 

machine learning models that can replicate human like understanding of similarities between 

ordered data series. 

At a high level, effective models for preforming TSC seek to achieve a high prediction 

accuracy (Xing, Pei, Yu and Wang, 2011) while providing a quick modeling and/or testing time. 

When exploring the world of TSC models, one of the most predominantly used methods is 1-

Nearest Neighbor Dynamic Time Warping (1-NN DTW) (Berndt and Clifford, 1994). 1-NN DTW 
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has been a difficult algorithm to beat in terms of both accuracy and speed. Algorithms that aim to 

decrease the processing time of traditional time series classification algorithms are introduced in 

the next subsection.  

Several methods have been introduced in the past year that sacrifice speed with the aim of 

increasing accuracy. An example of such methods includes various of Symbolic-Fourier-

Approximations like WEASEL, BOSS, and BOSSVS introduced by Patrick Schafer’s group 

(Schafer and Leser, 2017) (Schafer, 2016) (Schafer, 2015). Schafer’s methods rely on a 

transformation of time series data and the ensembling of methods with varying parameters to 

increase classification accuracy. The current most successful time series classification algorithm 

for classification accuracy is a neural network architecture introduced in (Karim, Majumdar, 

Darabi and Chen, 2018). This architecture uses a combination of Convolutional Neural Networks 

and Long Short-Term Memory Networks to effectively learn to classify time series classification 

problem in spite of the limited training instances. 

 

1.2 Importance of Efficiency 

Where 1-NN DTW can be beaten, it is usually by a slight margin of accuracy compared to 

the added cost of processing time. The core drawback of DTW is its computational complexity. A 

high complexity makes methods like 1-NN DTW impractical on low resource devices like tablets, 

smart phones and other portable devices that are prominent in today’s world.  

There have been several approaches tested to overcome the shortcoming of 1-NN DTW: 

pruning techniques in calculation of the exact DTW, feature selection, and DTW approximation. 

Lower bounding methods such as Kim, Yi, and Keogh lower bounding (Ding, Trajcevski, 

Scheuermann, Wang and Keogh, 2008) (Keogh, Wei, Xi, Vlachos, Lee and Protopapas, 2009) 
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(Keogh and Ratanamahatana, 2005) (Tavenard and Amsaleg, 2015) reduce processing time by 

limiting distance calculations preformed in the classification process. Upper bounding techniques 

eliminates calculations in 1-NN DTW by first calculating the Euclidean distance between time 

series to prune unpromising warping paths in the DTW matrix, are examples of pruning techniques 

in calculation of the exact DTW. Shapelets (Ye and Keogh, 2009) are an example of the feature 

selection framework in time series classification. In Shapelets, each class of a time series 

benchmark is analyzed to find the predominant selection of data to represent each class. Different 

approximation methods have been developed to make DTW faster while maintaining its accuracy, 

including FastDTW (Salvador and Chan, 2007a), BDTW (Sharabiani, Darabi, Harford, Douzali, 

Karim, Johnson and Chen, 2018), 3D DTW (Sharabiani, Darabi, Rezaei, Harford, Johnson and 

Karim, 2017), and more (Salvador and Chan, 2007b) (Keogh and Pazzani, 2000) (Chu, Keogh, 

Hart and Pazzani, 2002) (Tavenard and Amsaleg, 2015). Incorporating constraint bands to limit 

the search area in DTW matrix (Constrained warping) and using DTW on reduced representation 

of the time series are examples of these approximation methods. The use of the Network Based 

Sampling framework aims to reduce the time required for computation by only analyzing 

necessary training instances within a time series database. This eliminates the need to process 

training instances of little importance while maintaining preformation. This is especially important 

in settings where real time classification of incoming data is required from a massive training 

database. 
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1.3 Chapter Synopsis 

The rest of this research is organized as follows: In Chapter 2, background and related works 

are reviewed. Chapter 3 explains the Network Based Sampling framework. Chapter 4 goes over 

the results of Network Based Sampling on a time series benchmark. Finally, Chapter 5 concludes 

the thesis and talks about future work. 
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2 LITERATURE REVIEW 
This chapter introduces relevant terminology, time series classification algorithms, and speed 

up methods in time series classification algorithms.  

 

2.1 Graph Terminology 

A graph is a set of connected nodes and links. In graph theory, a directed graph 

(digraph) is a graph where the links point from one node to another (Cook and Holder, 2006). 

Formally, a digraph is an ordered pair G = (V, A) where V is a set of nodes and A is a set of ordered 

pair representing links. Digraphs are used to express the relationship between training instances. 

 

2.2 Distance Metrics 

 This subsection introduces relevant distance metrics used in the field of time series 

classification.  

2.2.1. Euclidean Distance (ED) 

A time series, T = t1, t2, … tn, is defined as an ordered list of observations made at successive 

equally spaced points in time. For two time series X = x1, x2, … xn and Y = y1, y2, …yn both of 

length n, the most common and intuitive method to measure their distance is referred to as the 

Euclidean Distance (Kalpakis, Gada and Puttagunta, 2001). ED is derived based on the square root 

of the sum of squared differences. 

!"($, &) = 	*+(,! − .!)"
#

!$%
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2.2.2. Dynamic Time Warping (DTW) 

Dynamic Time Warping is a distance metric used to non-linearly align two time series. The 

non-linearity allows for time series of different lengths to be compared. DTW outputs a matrix of 

the distance path and the shortest distance between series (Keogh and Ratanamahatana, 2005). For 

two time series X = x1, x2, … xn and Y = y1, y2, …ym of lengths n and m respectively, a DTW 

matrix can be calculated of size n x m. Each cell of the DTW matrix represents an alignment 

between two points of the corresponding time series. Matrix calculations must follow the following 

conditions: 

Boundary Condition: The paths should start from the beginning of each time series (x1; 

y1) and finish at the last point of each time series (xn, ym). 

 Continuity Condition: The paths should have no jumps in steps; the points to consider for 

distance at the (i, j) point are (i-1, j), (i, j-1), and (i-1, j-1). 

Monotonicity Condition: The warping paths can only go forward in time.  

P is defined as a continuous path of cell in the matrix from (x1, y1) to (xn; ym). The sth 

element of P is defined as ps = d(i, j)s; where d(i, j) = (xi - yj)2, S is the length of P = p1, p2, …pS. 

The distance for DTW is equal to sqrt(D(n,m)), where the distance of each cell is as follows: 

"(/, 0) 	= 	 1,! 	− 	.&2
"
	+ 	4/5["(/	– 	1, 0	 − 	1), "(/	– 	1, 0), "(/, 0	 − 	1)] 

Initiated by the following conditions: 

"(1, 1) 	= 	0; 		"(1, 2… .4) 	= 	1; 			"(2	 …5; 	1) 	= 	1 

An example of the DTW matrix between two short time series is presented in Figure 1.  
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Figure 1. DTW Example (left) Distance of each individual cell (right) Matrix with path sums 
presented 

 

2.3 Review of Time Series Classification Algorithms 

 This subsection introduces relevant algorithms used in the field of time series 

classification.  

2.3.1 K- Nearest Neighbor Classification 

KNN classification is a simple classification algorithm that as proven very effective 

in time series classification. KNN is a type of instance-based learning where the function is only 

approximated locally, and all computations are deferred until classification. The algorithm works 

by finding the K nearest training instances to the test instance. Time series classification literature 

has found that a K = 1 is generally effective. With a K of 1, the algorithm finds the single closest 

training instance, based on the selected distance metric, and assigns the label of that training 

instance to the corresponding test instance.  

 Several variations from the classic 1-NN DTW have been introduced that aim to give a 

better approximate of the distance between two series. Some of the variations include: 

-Complexity Invariant Distance (CID) (Batista, 2014): CID computes complexity differences 

between time series pairs, then uses it as a correction weight in the distance calculation. The 

complexity is calculated using the sum of squares of the first difference of time series. As the 

difference in complexity of time series increase, the distance also increases. 

1 5 4 3 2 4 1 1 5 4 3 2 4 1
2 1 9 4 1 0 4 1 2 1 10 14 15 15 19 20
5 16 0 1 4 9 1 16 5 17 1 2 6 15 16 32
3 4 4 1 0 1 1 4 3 21 5 2 2 3 4 8
2 1 9 4 1 0 4 1 2 22 14 6 3 2 6 5
1 0 16 9 4 1 9 0 1 22 30 15 7 3 11 5
3 4 4 1 0 1 1 4 3 26 26 16 7 4 4 8
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-Derivative DTW (DDDTW) (Gόrecki, 2013): The DDDTW uses a weighted combination of 

original time series distances and first order differences in a nearest neighbor classification. These 

two distances are combined with a weighted parameter that is determined by through leave-one-

out cross validation. 

-Derivative Transform Distance (DTDc) (Gόrecki, 2014): DTDc is an extension of DDDTW that 

uses DTW in conjuncture with derivatives. 

-Move-Split-Merge (MSM) (Stefan, 2013): MSM distance offers a measure that is like common 

distance-based approaches, where similarity is determined through Move and Split operations to 

transform a given time series.  

-Time Warp Edit (TWE) (Marteau, 2009): TWE is an elastic distance matric that contains features 

of the longest common subsequence and DTW. It contains a stiffness parameter that controls the 

elasticity. This parameter allows TWE to be a middle ground between the stiff Euclidian distance 

and the flexible DTW.  

-Weighted DTW (WDTW) (Jeong, 2011): WDTW is a form of DTW that adds a weight to nearer 

neighbors. This weight depends on the difference of phases between a reference point and a query 

point. WDTW penalizes the points distances according to the phase difference. 

2.3.2 Bag of Word Classifiers 

 Several time series classification algorithms work by first transforming time series data 

into bag of words approximation, then performing a classification method. Such methods include 

-Shotgun Classifier (Schafer, 2014): The Shotgun classifier is based on 1-NN classification with a 

Shotgun distance. The shotgun distance between two time series is given by aggregating the 

minimal Euclidean distance between each disjoint query window and each offset, represented by 

the sliding windows.  
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-Shotgun Ensemble Classifier (Schafer, 2014): Shotgun Ensemble classifier ensembles over the 

Shotgun classifier with varying windowing parameters for each component of the classifier.  

-BOSSVS Classifier (Schafer, 2015): The BOSSVS classifier is an ensemble classier that uses a 

set of windowing parameters to bin the time series data using equal-depth binning. Windowing 

parameters that prove promising through cross validation are used for 1-NN classification where 

the distance metric compares bags of words based on Euclidean distance. 

-BOSS Ensemble Classifier (Schafer, 2016): BOSS Ensemble classification is similar to BOSSVS. 

The primary difference between the two methods is that BOSSVS uses fewer windowing 

parameters to decrease the modeling time. The increased number of windowing parameters allows 

for the BOSS Ensemble classifier to provide a higher accuracy. 

-WEASEL Classifier (Schafer, 2017): The WEASEL classifier is a bag of word classifier that has 

two main improvements over the BOSS Ensemble classifier. First, the binning process is 

calculated using information gain. Second, the 1-NN classification process is substituted for a 

Linear SVM classifier. 

-MUSE Classifier (Schafer, 2017): The MUSE classifier is an implementation of the WEASEL 

classifier that is used of multivariate time series datasets.  

2.3.3 Shapelet Based Classifiers 

Shapelets are time series subsequences that are discriminatory of the membership to a class. 

Shapelets can be used as the splitting criterion when applying a decision tree for classification. 

-Fast Shapelets (FS) (Rakthanmanon , 2013): FS is an extension of the decision tree shapelet that 

accelerates shapelet discovery. In FS a frequency count histogram is built using multiple random 

projections. 
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-Shapelet Transform Ensemble (ST) (Bagnall, 2015): ST splits the shapelet discovery by finding 

the top k shapelets on each run. ST can be utilized using k-NN, Naïve Bayes, decision tree, support 

vector machine, etc. Each classifier is assigned a weight based on the cross-validation training 

accuracy. 

-Learned Shapelets (LS) (Grabocka, 2014) [55]: LS finds k shapelets using k-means clustering of 

candidates from the training data. A logistic loss function is the objective function according to a 

logistic regression model for each class. The weights of the regression and shapelets are learned 

by the algorithm. A check is performed at certain intervals as to whether divergence has occurred. 
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3 Network Based Sampling 

This chapter introduces Network Based Sampling (NBS), a method of reducing the 

processing time of time series classification algorithms.  

Network Based Sampling is a method of determining which training instances in a dataset 

have the highest priority when used for classification. NBS works by constructing a network based 

on the training instances, then sampling from the training instances based on the network 

connections. Figure 1 illustrates how NBS fits into the typical classification pipeline. The 

following subsections detail the procedure within the Network Generation block and the NBS 

block. 

Figure 2. NBS Classification Framework 

3.1 Training Network Generation 

The network generation works by computing the distance of each training instance 

to all other training instances excluding itself. This distance is computed using Euclidean Distance. 

ED is used for network generation because it is inexpensive to compute, relative to DTW. 

Following the distance calculating in the network generation process, there is a need for a 

parameter k. k is the number of nearest training instances the network maintains for each instance. 

Parameter k is calculated as: 

?	 = 	@AB5C(log'(G@H/5	/5IGH5JKI) + log%((IK@/KI	LK5MGℎ))	 
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Algorithm 1 gives the full process of generating the training network. The network contains 

the k nearest training instances to each instance. The network is stored as a digraph, where 

connections point toward the instances that they are closest. 

 

Figure 3. Algorithm 1 Network Generation of Training Instances 

3.2 Sampling and Classification 

The next step in the classification process is to sample from the training set based on the 

generated network, the training labels, and p (percent of the training set to keep). The value of p is 

calculated as follows, where n1 is the number of test instances, n2 is the number of training 

instances, and m is the series length.  

O	 = 	@AB5C P
51 ∗ 	52 ∗ 4" − 	52 ∗ 52 ∗ 4

51 ∗ 52 ∗ 42
, 2R − 	Gℎ@KIℎALC 
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The threshold parameter of the p calculation corresponds to the expected time savings in 

the classification process. The value of threshold must follow 0<threshold<1. As a base the 

threshold is set to 15% in our tests, however the value is up to the user based on the required time 

savings. Algorithm 2 goes through the process for Network Based Sampling. NBS starts by 

calculating a limit to the number instances per each class in the sampled training set, c limit. This 

limit is used to ensure that the class weight is similar to that of the original training set. The need 

for this constraint is apparent in classification examples where there exists a clear minority class. 

In this case, the NBS algorithm would likely eliminate the instances of the minority class during 

sampling. NBS then goes through every training instance and assigns a weight based on the number 

of indegree instances that point to this training instance and have the same class label. Given the 

weights and sampling constraints, the algorithm then determines which training instances to 

maintain. The output of this algorithm is the indices of the training set that should be kept for 

classification. The full classification process with NBS is expressed in 

Algorithm 3. 
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 Figure 4. Algorithm 2 Network Based Sampling 
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 Figure X. Algorithm 3 Classification Process with Network Based Sampling 

 



16 
 

4 Experiments and Results 

The NBS framework is tested on the UCR Time Series Classification Archive (Chen, 

Keogh, Hu, Begum, Bagnall, Mueen and Batista, 2015). The UCR archive consists of 85 time 

series classification benchmarks from a variety of fields. These benchmarks vary widely in terms 

of time series length, training size and testing size. NBS is applied to benchmark training sets and 

used to evaluate the classification accuracy of testing sets. The NBS framework is implemented in 

both Python (3.5.2) and Julia (0.6.2). All experiments were performed using a single core on an 

Intel Xeon CPU E5-2620 processor sing the Julia code base. 

 

4.1 UCR Archive Results 

Table 1 summarizes the results obtained from various threshold on NBS classification. 

Figure 2 [left] illustrates how NBS preforms in terms of both accuracy and time. At a threshold of 

15% NBS improves in both speed and accuracy of 39 datasets, improves accuracy but not speed 

in 1 dataset, and improves time but not accuracy in 45 datasets. Increasing the threshold to 30% 

and 50% results in a decrease in classification accuracy but a clear increase in the speed of the 

NBS algorithm. Figure 2 [right] illustrates these results in a different way. In this representation, 

green points undergo an expected reduced in the time saved. Formally, with a threshold of 15%, 

the classification time of green data point is < 85% the time required for the full 1-NN DTW 

classification. 
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Table 1: NBS Classification Results 50words-Lightning2 

 

 

 

 

 

Name ACC_Full Time_Full ACC_15 Time_15 ACC_30 Time_30 ACC_50 Time_50
50words 0.69 304.622 0.655 283.578 0.662 194.997 0.644 160.359

Adiac 0.604 106.803 0.578 87.031 0.558 63.638 0.509 48.897

ArrowHead 0.703 8.789 0.697 7.35 0.714 5.692 0.629 4.029

Beef 0.633 4.447 0.567 3.271 0.567 2.778 0.567 1.926

BeetleFly 0.7 2.782 0.7 1.985 0.65 1.674 0.6 1.268

BirdChicken 0.75 2.446 0.75 1.926 0.75 1.428 0.65 1.319

Car 0.733 25.581 0.6 21.907 0.55 16.507 0.567 11.868

CBF 0.997 12.415 0.997 10.033 0.997 8.361 0.999 5.921

ChlorineConcentration 0.648 1415.462 0.595 1040.274 0.555 789.754 0.534 579.331

CinC_ECG_torso 0.651 3209.453 0.528 2616.455 0.499 1867.744 0.4 1401.87

Coffee 1 1.442 1 1.332 1 1.061 0.929 0.822

Computers 0.7 714.255 0.648 578.058 0.656 432.063 0.632 298.244

Cricket_X 0.754 277.754 0.718 227.934 0.71 192.018 0.649 147.538

Cricket_Y 0.744 290.162 0.715 226.567 0.679 172.951 0.654 146.607

Cricket_Z 0.754 278.96 0.733 227.983 0.726 173.366 0.726 147.927

DiatomSizeReduction 0.967 12.518 0.967 10.222 0.892 7.985 0.892 5.093

DistalPhalanxOutlineAgeGroup 0.793 9.87 0.783 6.907 0.838 5.534 0.825 4.28

DistalPhalanxOutlineCorrect 0.768 28.214 0.773 19.357 0.772 19.039 0.78 15.056

DistalPhalanxTW 0.71 9.988 0.735 6.09 0.738 6.536 0.748 4.481

Earthquakes 0.742 272.592 0.752 204.178 0.711 152.925 0.711 131.046

ECG200 0.77 2.29 0.79 2.115 0.8 1.374 0.78 1.233

ECG5000 0.924 1086.667 0.936 875.29 0.94 727.349 0.922 523.387

ECGFiveDays 0.768 9.461 0.753 7.271 0.741 6.238 0.721 4.665

ElectricDevices 0.596 16684.002 0.589 11799.963 0.584 9159.576 0.564 6379.88

FaceAll 0.808 418.951 0.778 379.234 0.802 269.745 0.793 236.4

FaceFour 0.83 6.398 0.648 4.527 0.648 4.026 0.625 2.707

FacesUCR 0.905 195.734 0.895 169.703 0.878 123.348 0.818 91.514

fish 0.823 143.039 0.817 111.776 0.783 82.38 0.754 61.902

FordA 0.562 25796.179 0.549 19554.312 0.524 14441.847 0.524 12917.324

FordB 0.594 15926.718 0.578 12223.279 0.584 10918.759 0.572 8012.09

Gun_Point 0.907 3.803 0.907 3.414 0.86 2.352 0.773 1.768

Ham 0.467 49.9 0.505 40.227 0.486 30.112 0.59 23.587

HandOutlines 0.798 54819.232 0.809 46841.018 0.805 30448.548 0.806 25356.591

Haptics 0.377 1097.398 0.403 1011.903 0.409 652.622 0.416 546.489

Herring 0.531 22.644 0.547 16.73 0.547 13.343 0.547 10.832

InlineSkate 0.384 3746.995 0.349 3431.861 0.365 2383.038 0.329 1619.196

InsectWingbeatSound 0.355 643.968 0.352 504.557 0.358 410.906 0.332 314.118

ItalyPowerDemand 0.95 2.436 0.944 0.816 0.941 0.632 0.93 0.601

LargeKitchenAppliances 0.795 1534.486 0.789 1291.902 0.773 902.402 0.763 703.216

Lighting2 0.869 34.348 0.869 27.481 0.869 19.656 0.869 14.982
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Table 2: NBS Classification Results Lightning7-yoga 

 

 

Name ACC_Full Time_Full ACC_15 Time_15 ACC_30 Time_30 ACC_50 Time_50
Lighting7 0.726 12.061 0.712 9.323 0.699 6.549 0.616 5.559

MALLAT 0.934 3162.481 0.919 2608.97 0.815 1867.846 0.819 1424.846

Meat 0.933 16.092 0.933 12.881 0.933 9.646 0.933 6.981

MedicalImages 0.737 70.059 0.7 50.995 0.659 42.359 0.642 35.053

MiddlePhalanxOutlineAgeGroup 0.75 9.632 0.75 8.34 0.745 6.518 0.75 5.197

MiddlePhalanxOutlineCorrect 0.648 27.258 0.678 23.487 0.682 20.888 0.637 16.157

MiddlePhalanxTW 0.584 9.561 0.584 7.747 0.584 7.912 0.576 5.868

MoteStrain 0.835 4.749 0.837 3.367 0.865 3.537 0.904 1.858

NonInvasiveFatalECG_Thorax1 0.79 39048.467 0.781 34746.679 0.777 24282.966 0.757 19376.977

NonInvasiveFatalECG_Thorax2 0.865 38538.87 0.863 29608.566 0.85 24184.046 0.831 17993.307

OliveOil 0.833 6.469 0.833 4.684 0.833 4.278 0.833 2.816

OSULeaf 0.591 198.668 0.55 163.329 0.521 118.985 0.512 84.94

PhalangesOutlinesCorrect 0.728 264.333 0.76 142.969 0.745 154.909 0.746 163.957

Phoneme 0.228 11077.128 0.222 9449.488 0.228 7464.473 0.206 5256.398

Plane 1 5.441 1 4.785 1 3.218 1 2.52

ProximalPhalanxOutlineAgeGroup 0.805 12.677 0.849 9.531 0.844 6.373 0.844 7.003

ProximalPhalanxOutlineCorrect 0.784 27.264 0.825 23.22 0.814 14.18 0.808 16.588

ProximalPhalanxTW 0.738 12.791 0.77 13.114 0.765 8.598 0.8 7.008

RefrigerationDevices 0.464 1562.009 0.48 1378.232 0.464 1007.618 0.445 706.55

ScreenType 0.397 1373.522 0.4 1037.923 0.411 799.273 0.411 706.759

ShapeletSim 0.65 25.068 0.622 21.909 0.656 16.968 0.667 11.725

ShapesAll 0.768 2229.043 0.742 1853.537 0.71 1354.149 0.678 1022.99

SmallKitchenAppliances 0.643 1471.849 0.656 1223.359 0.645 904.487 0.621 676.039

SonyAIBORobotSurface 0.725 2.042 0.73 1.298 0.681 1.055 0.699 0.709

SonyAIBORobotSurfaceII 0.831 3.54 0.805 2.456 0.773 1.889 0.771 1.746

StarLightCurves 0.907 182185.837 0.913 144017.825 0.918 106812.766 0.918 81469.584

Strawberry 0.94 276.657 0.91 204.167 0.884 174.152 0.886 134.878

SwedishLeaf 0.792 109.736 0.795 103.368 0.787 86.546 0.766 59.035

Symbols 0.95 84.47 0.94 69.874 0.944 50.816 0.927 37.859

synthetic_control 0.993 12.339 0.993 8.627 0.99 4.282 0.99 5.707

ToeSegmentation1 0.772 15.141 0.772 13.631 0.746 12.566 0.754 7.304

ToeSegmentation2 0.838 11.477 0.815 10.774 0.808 9.038 0.8 5.597

Trace 1 17.931 0.97 14.182 0.97 10.757 0.95 8.231

Two_Patterns 1 1805.672 1 1527.167 1 1184.738 1 850.14

TwoLeadECG 0.904 4.905 0.822 3.728 0.829 3.076 0.773 2.217

uWaveGestureLibrary_X 0.728 7026.19 0.722 5606.22 0.716 4390.115 0.702 3172.555

uWaveGestureLibrary_Y 0.634 6690.92 0.635 5960.82 0.626 4364.935 0.608 3202.459

uWaveGestureLibrary_Z 0.658 6064.547 0.661 4802.642 0.656 3649.945 0.656 3263.36

uWaveGestureLibraryAll 0.892 56138.737 0.881 47549.629 0.87 36970.035 0.837 25150.741

wafer 0.98 3001.005 0.974 2468.341 0.972 2074.744 0.97 1544.846

wine 0.574 3.626 0.519 2.765 0.463 2.318 0.481 1.823

WordsSynonyms 0.649 229.946 0.641 196.324 0.614 178.662 0.578 132.32

Worms 0.464 256.086 0.481 220.94 0.442 155.234 0.453 116.935

WormsTwoClass 0.663 256.583 0.685 210.014 0.657 154.356 0.608 118.077

yoga 0.837 3531.35 0.806 3007.693 0.785 2098.382 0.77 1607.097
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Figure 6. NBS Classification Results of threshold of 15% 
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Figure 7. NBS Classification Results of threshold of 30% 
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Figure 8. NBS Classification Results of threshold of 50% 
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5 Conclusion 

This dissertation introduces Network Based Sampling for time series classification as a 

method of reducing computation in traditional classification algorithms. The developed framework 

is applicable on any time series database. NBS is tested on the 85 benchmarks available in the 

UCR Time Series Archive. Our results indicate that the framework improves or maintains accuracy 

for 39 out of 85 datasets at a threshold of 15% with an expected time savings that linearly 

corresponds to the threshold. This ratio decreases as the threshold is increased, but there is a benefit 

of faster classification time. 

 

 5.1 Future Work 

 Future improvements to NBS may be accomplished by the following: 

Optimizing parameter selection: The NBS framework relies on several parameters the influence 

the potential time saved and effects on classification accuracy. In practice, optimizing parameters 

would allow for sufficient time savings while maintaining the required accuracy for a give 

situation. 

Multivariate time series adjustment: The NBS framework can to extended to accommodate 

multivariate time series data sources. The investigation of this extension can be considered part of 

this studies future work. 
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