
Deep Learning-Aided Unimodular Quadratic Programming:

Initialization and Provable Guarantees

BY

AMRUTHA VARSHINI RAMESH
B.E. Electrical Engineering, Sathyabama University, India, 2011

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Chicago, 2021

Chicago, Illinois

Defense Committee:

Dr. Mojtaba Soltanalian (Advisor and Chair)
Dr. Rashid Ansari
Dr. Amit Ranjan Trivedi

Copyright by

Amrutha Varshini Ramesh

2021

To Vignesh and Adhwaith

iii

ACKNOWLEDGMENTS

First and foremost I would like to thank my advisor and mentor Dr. Mojtaba Soltanalian,

whose expertise was invaluable in formulating my research problem and solutions. I thank him

for providing a great deal of support and opportunity to further my research, throughout the

Masters program, especially during the pandemic.

I thank Dr. Rashid Ansari and Dr. Amit Trivedi for accepting to be a part of my thesis

committee.

I thank my husband, Dr. Vignesh Ganapathiraman for his wise counsel, sympathetic ear

and being there for me always. I could not have completed this thesis without his unconditional

support.

I thank all my family members especially my parents and in-laws. I have always been able

to count on them during trying times and they have never failed me. I thank them for the trust

they have on me.

I thank my team members and friends for all the stimulating discussions and fun conversa-

tions.

Finally, I would like to thank my one year old son Adhwaith Vignesh, for cooperating with

my odd schedules while conducting my research, and cheering me up during difficult times.

AR

iv

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION TOUNIMODULARQUADRATIC PROGRAM 1
1.1 Introduction . 1
1.2 Unimodular Quadratic Program 2
1.3 Speed vs Accuracy . 7
1.4 Contributions of this thesis . 7

2 PRIOR WORKS ON UQP . 9
2.1 Introduction: . 9
2.2 Semidefinite relaxation (SDR) . 9
2.3 Power method like iterations (PMLI) 10
2.4 MERIT . 12
2.4.1 MERIT for UQPs . 14
2.4.1.1 Equivalence characterization for UQP problem instances 14
2.4.1.2 Sub-problem construction . 16
2.5 Other notable methods . 16
2.6 Cost vs reliability trade-off . 18

3 BLACK-BOX COMPUTATIONAL SOLUTIONS FOR COMMON
SIGNAL PROCESSING PROBLEMS 19
3.1 Introduction . 19
3.2 Optimization for training machine learning models 22
3.2.1 Characterizing solutions of optimization 24
3.3 Poor training guarantees and model interpretability 25
3.4 Overfitting in deep learning training 26
3.5 Speed vs. accuracy trade-off for black-box models 28
3.6 Hybrid computational models using deep unfolding 29

4 PROPOSED METHOD - DEEP-PMLI 31
4.1 Challenges in developing deep learning model for UQP 31
4.2 Data generation for training deep learning models for UQPs . . 32
4.2.1 Data generation using globally optimal characterizations of

some UQPs. 32
4.3 Φphase- A UQP-tailored Unimodular Activation Function 34
4.4 Our proposed method: Deep-PMLI 35
4.4.1 Training and inference of Deep-PMLI 36
4.4.2 Metrics . 38
4.5 Experiments and Results . 38

v

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4.6 Discussion . 39

5 PROPOSED METHOD: DEEP-INIT 41
5.1 MERIT iterations . 41
5.1.1 “Warm-starting” MERIT for faster convergence 42
5.1.2 Training details . 44
5.1.3 Defining the prediction function f 46
5.1.4 Loss function . 46
5.1.5 Inference . 46
5.2 Experiments . 48
5.2.1 Experimental setup . 48
5.2.2 Discussion . 52
5.3 Analysis . 54

6 CONCLUSION AND FUTURE WORKS 55
6.1 Future Works . 55

CITED LITERATURE . 57

VITA . 62

vi

LIST OF TABLES

TABLE PAGE

I PERFORMANCEOF DEEP-PMLI ON TEST DATASETWITH SAME
DISTRIBUTION AS TRAINING DATASET. 39

II PERFORMANCE OF DEEP-PMLI ON RANDOM TEST DATASET. . 39

III PERFORMANCE OF DEEP-INIT MODEL’S WARM-START MEA-
SURED BY PERCENTAGE REDUCTION IN NUMBER OF ITERA-
TIONS AND WALL-CLOCK TIME. HERE d IS THE DIMENSION OF
EACH SAMPLE POINT. 52

vii

LIST OF FIGURES

FIGURE PAGE

1 MERIT simultaneously approaching the problem of interest and its global
optimum. The guarantees are produced by acquiring proximity informa-
tion from the space of problem instances. 13

2 Illustration of the overfitting phenomenon in deep learning 27

3 Conventional DNNs vs DUNs. Encoding problem-specific information
inside the layers of a DUN minimizes the number of required trainable
parameters compared to a conventional DNN. 30

4 This figure illustrates the architecture of the proposed Deep-PMLI model
with four Φphase layers. Here, W = [W1,W2,W3,W4] are the weight
parameters to be learned. 36

5 The initial sub-problem constructed by Deep-INIT is “closer” to the
original problem instance than the initial sub-problem constructed by
MERIT. In effect, Deep-INIT achieves local optimum in far lesser num-
ber of iterations than MERIT. The “closeness” between a sub-problem
and the original problem instance is measured using d as in (Equation 5.7) 44

6 An illustration of the training architecture of the proposed Deep-INIT
solver. The top figure shows the high-level architecture of Deep-INIT
training. The model is composed of several MERIT layers, which cor-
responds to a single iteration of the Deep-INIT algorithm. The image
at the bottom gives more details about the MERIT layer. Here Φphase
denotes one iteration of s optimization of MERIT. 47

7 The above figure illustrates the inference stage of the proposed Deep-
INIT solver. The initial variables P0

1,Q
0
1 and s0 of the MERIT algorithm

are initialized using the weights W1 and W2 learnt from the Deep-INIT
training, enabling faster convergence of MERIT algorithm. 48

8 Scatter plot of approximation gap of vanilla MERIT vs Deep-INIT δ
measured for N = {8, 16, 24, 32} after running 1 iteration of truncated
MERIT. Here Deep-INIT is initialized with the learned weights using
warm-start initialization . 53

viii

LIST OF ALGORITHMS

ALGORITHM PAGE

4.1 Method 1: Data generation . 33

4.2 Method 2: Data generation . 34

5.1 MERIT for UQP . 49

5.2 Deep-INIT for UQP . 50

ix

LIST OF ABBREVIATIONS

UQP Unimodular Quadratic Program

DNN Deep Neural Network

DUN Deep Unfolding Network

WSN Wireless Sensor Network

FC Fusion Center

SNR Signal-to-Noise Ratio

ACMA Analytic Constant Modulus Algorithm

ADMM Alternating Direction Method of Multipliers

PMLI Power Method Like Iterations

SDR Semi Definite Relaxation

SDP Semi Definite Program

MERIT Monotonically Error-Bound Improving Technique

ML Machine learning

SGD Stochastic Gradient Descent

x

NOTATIONS

Bold lowercase letters are used to denote the vectors and bold uppercase letters for matrices.

The following mathematical notations are used throughout this thesis:

|x| the absolute value of a scalar x

[x] the integral part of a real scalar x, i.e., the greatest integer ≤ x

{x} the fractional part of a real scalar x, i.e., {x} = x− [x]

xm(k) the kth element of vector xm

[X]i,j the (i, j)th element of matrix X

‖x‖p the lp-norm of x, defined as (
∑

k |x(k)|p)
1
p

‖x‖ the l2-norm of x

x~ y denotes convolution of x and y

< x,y > denotes dot product of x and y

‖X‖F the Frobenius norm of matrix X defined as
√∑m

i=1

∑n
j=1 |[X]i,j |2

X∗ the complex conjugate of the matrix X

XT the transpose of the matrix X

XH the complex conjugate transpose of the matrix X

X† the Moore-Penrose pseudoinverse of the matrix X

Tr (X) the trace of matrix X

xi

NOTATIONS (Continued)

vec (X) the vector obtained by column-wise stacking of matrix X

diag (X) denotes a vector formed by diagonal entries of the matrix X

Diag (x) denotes a diagonal matrix formed by the entries of the vector x

arg (X) the phase angle (in radians) of X

cov (X) the covariance matrix of X

<(X) the real part of X

=(X) the imaginary part of X

σn(X) the nth maximal eigenvalue of X

λn(X) the nth maximal singular value of X

X ⊗ Y the Kronecker product of two matrices X and Y

X � Y the Hadamard product of two matrices X and Y

X � Y X − Y is positive definite

X � Y X − Y is positive semidefinite

In the identity matrix of dimension n

1n the all-one vector of size n× 1

0n the all-zero vector of size n× 1

O the matrix with all elements as zero

en the nth standard basis of Cn or nth column of an identity matrix

xii

NOTATIONS (Continued)

R the set of real numbers

R+ the sets of real non-negative numbers

C the set of complex numbers

N the set of natural numbers

Z the set of integers

BMN the set of binary vectors with size M and N non-zero elements, N ≤M

SM the set of all real symmetric matrices of size M ×M

Fn the n dimensional discrete Fourier transform matrix

E {·} the mathematical expectation of a random variable

Pr {·} denotes the probability of a random event

sign (·) the element-wise signum operator

csign (·) the element-wise complex signum operator as sign (<{·}) + jsign (={·})

N (·, ·) the normal distribution with mean, and covariance as first and second

arguments, respectively

ln a natural logarithm of a, equivalent to loge a

j the imaginary unit i.e., j =
√
−1

⊕ Minkowski’s sum of two sets.

xiii

SUMMARY

Provably optimal algorithms that are also computationally efficient are becoming increas-

ingly critical for several practical signal processing applications. Though such algorithms are

very much in demand, there are only a few prior works that proffer both. This is usually the case

because, strong theoretical guarantees come at the cost of increased computational complexity.

However, in recent times, owing to the surge in technological advancements and increasing de-

mand for large-scale and real-time signal processing systems, there has been a growing interest

in developing faster and reliable algorithms, to cater to this demand.

In this thesis, we study an important optimization problem called “Unimodular Quadratic

Program” (UQP) that has shown its presence in prominent applications such as wireless com-

munication, active sensing, etc. UQP is an NP-hard constrained optimization problem and prior

works that have proposed approximate solutions have generally suffered from the speed versus

reliability trade-off. With the aim of improving the computational efficiency of existing UQP

solutions and equipped with the highly scalable deep learning framework as a backbone, we

propose two novel solvers for UQP. Our first solution is a black-box computational approach,

which we call Deep-PMLI, where the deep learning model learns to predict a solution to a given

UQP based on already seen example UQPs. Deep-PMLI is an attractive solver for applications

that require low-cost solutions but do not require strong guarantees. In our second solution,

Deep-INIT, we propose a novel data-driven strategy to speed-up an existing solver for UQP

xiv

SUMMARY (Continued)

with guarantted performance. Deep-INIT, apart from achieving a significant speed-up over the

underlying UQP solver, also preserves its guarantees.

xv

CHAPTER 1

INTRODUCTION TO UNIMODULAR QUADRATIC PROGRAM

1.1 Introduction

In recent years, signal processing technologies are becoming more and more commonplace.

This surge in usage demands low-cost problem solving algorithms underneath, without compro-

mising on the quality of the solution.

Recently, deep neural network (DNN) (or deep learning) models have been used in a variety

of tasks that involve downstream predictions of some nature, including classification, regression,

metric learning, representation learning and reinforcement learning. DNN models are generally

computationally very efficient and perform well given large amount of training data to learn

from. However, deep learning models are usually difficult to interpret, analyse and thus do not

provide any theoretical guarantees in its original form. But owing to its high computational

efficiency, several signal processing applications have adopted deep learning models.

Recently several works have tried to analyze deep learning models theoretically, under re-

stricted settings. Simultaneously, there have also been works that have made use of deep learning

models purely as a computational workhorse, without providing a rigorous theoretical treatment

to characterize the quality of its solutions. Finally, hybrid models have been proposed that

leverage the computational benefits of deep learning, but are also able to provide theoretical

guarantees.

1

2

In this work, we study an important optimization problem called Unimodular Quadratic

Program (UQP) that has several applications in signal processing. In this thesis, we propose a

novel hybrid solver called Deep-INIT, that makes use of deep learning to automatically learn

“good” initializations for a theoretically principled underlying solver called MERIT. We also

propose a fast black-box solver called Deep-PMLI, which does not provide any guarantees, but

is able to enjoy the scalability benefits of being a pure deep learning-based solver.

1.2 Unimodular Quadratic Program

Unimodular signal design plays an important role in improving the overall performance of

several signal processing applications such as active sensing, wireless communications, phase

retrieval etc. Specifically, unimodular codes are shown to help maximize signal-to-noise ratio

(SNR) of active sensing systems while maintaining an optimal (i.e., unity) peak-to-average-

power ratio (PAR). Unimodular signals also occur naturally in the problem of phase retrieval,

where the aim is to recover a signal x ∈ Cn from the observed magnitude of the same signal

|Ax|, A := [a1, ...,am] ∈ Cm×n and each {aj}mj=1 ∈ Cn. As | < aj ,x > | = | < aj , cx > | for

any unimodular vector c, recovering signal x upto a unimodular constant is the best outcome

phase retrieval can achieve.

Such a wide usage of unimodular signals leads to several applications of the so-called Unimod-

ular Quadratic Program (UQP). An UQP is often formulated as a maximization of a quadratic

form over a set of complex unimodular vectors, more precisely,

max
s∈Ωn

sHRs, (1.1)

3

where R ∈ Cn×n is a given Hermitian matrix, and s is a complex unimodular vector, with each

element lying on the unit circle Ω = {s : |s| = 1}.

Earlier works such as [1,2] show multiple problems from wireless communications and active

sensing which can be formulated as UQPs. For instance, in beamforming for WSNs, the com-

putation of phase-only coefficients in phase-shift-and-forward WSNs turns into an UQP [2, 3].

Consider a distributed network where N single antenna sensors observe a signal yn indepen-

dently. Any sensor n ∈ N observes

yn = θ + un, (1.2)

where θ is an unknown deterministic complex-valued parameter observed by the sensors, un is

a complex-valued gaussian noise variable with variance σ2
n. On each yn, a unimodular beam-

forming weight wn is applied before transmitting it to the Fusion Center (FC) of N antennas.

Assuming coherent multiple access protocol [4], FC receives the signal:

y = Hwθ + HDu + v, (1.3)

where, y = [y1, . . . , yN],H = [h1, . . . ,hN] and each hn ∈ CN×1 is the channel vector between

the nth sensor and FC, D is a diagonal matrix of weights w = [w1, . . . , wN],u = [u1, . . . , uN],v ∈

CN×1 is the gaussian noise vector at FC with covariance matrix σ2
vIN . Here, IN is an N × N

identity matrix. HDu + v is the overall noise term and it is a gaussian with covariance matrix

HUHH +σ2
vIN , where U = E[uuH] is the diagonal matrix of [σ2

u,1, ...σ
2
u,n]. Assuming H,U and

4

σ2
v are known, the maximum likelihood (ML) estimate of the parameter θ and its variance [5]

are given as,

θ̂ML =
wHHH(HUHH + σ2

vIN)−1y

wHHH(HUHH + σ2
vIN)−1Hw

(1.4)

V ar(θ̂ML) = [wHHH(HUHH + σ2
vIN)−1Hw]−1. (1.5)

Now the beamforming weights w need to be designed in order to minimize V ar(θ̂ML). This can

be formulated as the following optimization problem which becomes an UQP:

max
w

1

2
wHQw, (1.6)

s.t. |wi| = 1, i = 1, . . . , N, (1.7)

where Q is HH(HUHH + σ2
vIN)−1H.

Another notable area that uses UQPs, is in the design of radar codes aiming to improve radar

detection performance. Works [1, 6, 7] show that designing radar codes to optimize SNR or the

ratio of power at the target location to that of the interferences, becomes an UQP problem. Let

us consider a monostatic radar that transmits a linearly encoded burst of pulses. The observed

backscattered N-dimensional column vector v can be expressed as,

v = α(c� p + w),

5

where α is a parameter representing both channel propagation and target backscattering effects,

c is a N-dimensional unimodular vector containing the code elements, p = [1, ej2πνd , ..., ej2π(N−1)νd]T

is the temporal steering vector; where νd is the normalized doppler frequency, w is a complex-

valued vector of noise samples and is assumed to be a zero-mean circular gaussian vector. The

positive definite covariance matrix M = E[wwH] is known. The SNR is given by [8] as

SNR = |α|2(c� pH)M−1(c� p)

= |α|2cH(M−1 � (ppH)∗)c

= |α|2cHRc, (1.8)

where, R = M−1 � (ppH)∗. Therefore, the problem of designing c in order to maximize SNR

becomes an UQP.

As we discussed in paragraph 1.2, phase retrieval is another significant area where UQP

occurs naturally [9–13]. Mathematically, phase retrieval can be formulated as

find x (1.9)

s.t. |Ax = b|,

6

where x ∈ Cn is the signal to be recovered and b ∈ R is the observed magnitude of the signal x.

In the noiseless case, (Equation 1.9) can be written as,

min
x,|ui|=1

||Ax−Diag(b)u||22, (1.10)

when Ax = Diag(b)u, where u ∈ Cn. In (Equation 1.10) we optimize over both x and u. Here,

x admits a closed-form solution x = AHDiag(b)u. Now (Equation 1.10) can be reduced to,

min
|ui|=1

||AAHDiag(b)u−Diag(b)u||22

= min
|ui|=1

||(AAH − I)Diag(b)u||22. (1.11)

By assigning M̃ = (AAH − I)H (AAH − I), (Equation 1.11) becomes,

min
|ui|=1

uHDiag(bT)M̃Diag(b)u.

Finally, phase retrieval becomes an UQP by

min uHMu

s.t. |ui| = 1, i = 1, . . . , n,

where M = Diag(b)(I−AAH)Diag(b) is a positive semi-definite Hermition matrix.

7

1.3 Speed vs Accuracy

In recent times, there have been a plethora of practical signal processing applications, whose

mathematical machinery incorporates sub-problems that transform itself as UQPs, including

the above mentioned examples. Most often, these applications demand both high-speed and

accuracy at the same. For example, consider civilian radar systems such as autonomous vehicles,

which are expected to operate in a highly dynamic environment. These systems face intricate

interactions with complex information that are natural to the real world [14]. Yet, the high

(obstacle) detection quality of such radar systems is of paramount importance, as they directly

impact the safety of the vehicles [14]. In (Equation 1.8), we showed the importance of solving

UQP to achieve high SNR. This directly means that, accuracy of the UQP solution in transmit

waveform design of such radar systems directly impact the safety of autonomous vehicles. At

the same time, these radar systems must also detect the obstacles fast, as certain time sensitive

modules like AEB (automatic electronic braking) rely on the obstacle detection of these radar

systems. In a nutshell, there are practical applications of UQP that demand the underlying

solvers to be both accurate and fast at the same time. We will soon see that this is a trade-off

that is challenging to deal with.

1.4 Contributions of this thesis

The key contributions of this thesis work are presented in four chapters. The first and last

chapters serve as the introduction and conclusion respectively.

8

1. In the second chapter, we rigorously survey existing prior model-based methods for

approximately solving UQPs

2. In the third chapter, we review some fundamental ideas behind an important black-

box computational model called deep learning. In that, we discuss the strengths and

limitations of deep learning and end the section by introducing hybrid computational

models that combine model-based algorithms and deep learning for well-known signal

processing applications.

3. We present our first solver called Deep-PMLI - a black-box solver for UQP, in chapter 4.

4. In chapter 5, we introduce our novel hybrid model for UQPs called Deep-INIT that uses

the power of deep learning to automatically find better initializations for a well-known

model based solver for UQP.

CHAPTER 2

PRIOR WORKS ON UQP

2.1 Introduction:

It is a well known fact that UQPs are NP-hard in general [15]. The NP-hardness of the

problem mainly arises due to the unimodular constraint and can be proved by a reduction from

a well-known NP-complete matrix partitioning problem. In effort to provide both provably

optimal and computationally efficient solvers, recently several approximation methods have

been studied for solving UQPs. Some of these methods carefully construct reformulations of

the UQP optimization problem (Equation 1.1) in such a way that the resulting approximate

solutions are guaranteed to be close to the true UQP solution. Other methods focus on cost

efficiency by proposing computational approaches that are faster, but do not provide guarantees.

In this chapter, we will review some of these existing solvers that approximate solutions to UQP.

2.2 Semidefinite relaxation (SDR)

One of the popular methods for approximating UQP solutions is semidefinite relaxation

(e.g. [7,15–24]). To begin with, the canonical UQP optimization problem (Equation 1.1) can be

rewritten as:

max
S

Tr (RS) ; (2.1)

s.t. S = ssH , s ∈ Ωn.

9

10

Note that the above reformulation is possible since sHRs = Tr
(
sHRs

)
= Tr

(
RssH

)
. The

arising problem is non-convex due to the rank constraint on the matrix variable S. Relaxing

the rank constraint gives us the following semidefinite program (SDP):

max
S

Tr (RS) (2.2)

s.t. [S]k,k = 1, k = 1 . . . N ; S � 0

Due to this relaxation, the optimization process can return higher rank solutions, which may

make the optimal solution elusive. Fortunately, interior point methods can be used to solve

the SDP formulation of UQP in polynomial time, thanks to induced convexity [21, 25, 26].

After solving the above SDP, the approximate UQP solutions can be recovered using several

approximation techniques [7,15,22], which are shown to have a sub-optimality guarantee of π/4,

where sub-optimality is measured by

γ =
vSDR
vopt

. (2.3)

γ is the sub-optimality coefficient, vSDR and vopt are objective values at the obtained solution

from SDR and at the optimal value. However, the computational complexity and the large

memory requirements of interior point methods restrict the scalability of the SDR method.

2.3 Power method like iterations (PMLI)

The authors of [1, 27] proposed an iterative algorithm called power method like iterations

(PMLI) to approximate the solution to UQP. With every progressing iteration until convergence

11

to a local optimum, PMLI aims to increase the objective value of (Equation 1.1) by solving the

following nearest-vector problem [14].

min
s(n+1)

||s(n+1) −Rs(n)||2 (2.4)

s.t. |s(n+1)
k | = 1 ∀k.

An analytical solution for the above (Equation 2.4) is provided by [1,27], where

s(n+1) = ej arg(Rs(n)), (2.5)

where s(0) is initialized with any unimodular vector. Here, s(i) is the value of s at iteration i.

In practice, PMLI is generally faster than other popular UQP solvers. The cost efficiency of

PMLI comes from the fact that the analytical solution, as in (Equation 2.5), to the optimiza-

tion problem in (Equation 2.4), clearly encodes the unimodularity constraint of s directly in

computation, unlike other methods that rely on slower and high-cost methods like projection or

restriction of search space. But the quality of solutions that this iterative algorithm converges

to, is primarily dependent on the initialization of s(0) [1]. That is, for two different initializations

of s(0), s1 and s2, PMLI is likely to converge to different local solutions and it is possible that

one solution is better than the other. In general, it is possible that there exists initializations

that can lead PMLI to global optima, but, as the characterization of such initializations are

unknown, no guarantees can be provided about the solution of PMLI. This makes PMLI an

attractive low-cost, but less reliable approach to solve UQPs.

12

2.4 MERIT

The work [1] provided an iterative solution to UQPs based on an algorithm called "MERIT:

A Monotonically Error-Bound Improving Technique for Mathematical Optimization", leading to

tighter sub-optimality guarantees than SDR. MERIT aims to successively approximate (and get

closer to) the original UQP problem instance and its global optimum of interest via constructing

a sequence of problem instances whose corresponding global optima are readily known. Notably,

the authors of [1] were able show that the MERIT solution for UQP enjoys data-dependent sub-

optimality guarantees, which in most cases are better than the π/4 guarantee provided by SDR.

The central idea of MERIT is as follows. Let P(v, x) be an optimization problem structure

with given (a.k.a. problem instance) and optimization variables partitioned as (v, x). For

example:

X = arg max tr(RX)

s.t. tr(QX) ≤ t

variable partitioning−−−−−−−−−−−−→
R,Q, t→ v

X→ x

Now suppose P(v, x) is a difficult (possibly NP-hard) optimization problem for which an

approximate solution is being sought; and that the following viable conditions are met:

• A sequence v0, v1, v2, · · · of v can be constructed such that (i) the associated global optima

of their associated sub-problems, viz. xk = arg maxx P(vk, x), are known for any vk, and

that (ii) the distance D(v, vk) between v and vk is decreasing with k.

• A suboptimality guarantee γk of the obtained solutions {xk} can be efficiently computed

using the known distance between v and {vk}; i.e., there exists an easily computable

13

Space of
problem instances

Solution
search space

Figure 1: MERIT simultaneously approaching the problem of interest and its global optimum.
The guarantees are produced by acquiring proximity information from the space of problem
instances.

function Γ(.) such that γk = Γ(D(v, vk)). This condition may also be interpreted as

establishing an upper bound on the distance d(xopt, xk) between {xk} and the global

optimum of the problem denoted as xopt, namely d(xopt, xk) ≤ Γ′(D(v, vk)).

As a result, one can derive computational/data-aided suboptimality guarantees along with the

approximate solutions {xk} that might:

• Outperform the existing analytically derived suboptimality guarantees, or

• Be the only reliable class of suboptimality guarantees in cases where no non-trivial a priori

known guarantees are available for the given problem.

An intuitive illustration of the proposed idea is presented in Fig. Figure 1. Next, we will discuss

in more detail how [1] applied the MERIT framework to UQPs.

14

2.4.1 MERIT for UQPs

As described in the previous section, careful construction of sub-problems for which the

global optima are known is a key step in the MERIT framework. The sub-problem design is

enabled by the following equivalence characterization in the input matrix R as observed by [1].

In this section, we will briefly describe this characterization and end with the details of the

sub-problem construction and a full summary of the MERIT algorithm for UQP.

2.4.1.1 Equivalence characterization for UQP problem instances

The work [1] first derives an explicit characterization of the input matrix R with given UQP

solutions. Let K(s) represent the set of all matrices R for which a unimodular vector s is the

solution to the UQP. It turns out that K(s) is a convex cone and can be characterized by the

following mapping. If s1, s2 are two unimodular vectors and R ∈ K(s1), then it holds that

R ∈ K(s1)⇔ R� s0s
H
0 ∈ K(s2), where s0 = s∗1 � s2 (2.6)

In particular the above mapping Equation 2.6 implies

R ∈ K(1)⇔ R� ssH ∈ K(s) (2.7)

for any unimodular vector s. Additionally, [1] proposes a computational recipe to approximate

K(s) by the Minowski sum of two particular convex cones. For the sake of completeness, we

present the corresponding theorem from [1] below.

15

Theorem 1. For any given s = (ejφi , . . . , ejΦn ∈ Ωn, let {Bk,l} be a set of matrices defined as

Bk,l = (eke
H
l + ele

H
k)� (ssH)

and Vs = {Bk,l : 1 ≤ k ≤ k ≤ n} ∪ {−In}. Let C(Vs) represent the convex cone associated with

the basis matrices in Vs. Also let Cs represent the convex cone of matrices with s being their

dominant eigenvector. Then for any R ∈ K(s), there exists α0 ≥ 0 such that for all α ≥ α0,

R + αssH ∈ C(Vs)⊕ Cs

For any s̃ ∈ L, where L represents set of all local optima and saddle points of UQP and

arg(s̃) = arg(Rs̃), then s̃ is referred to as an hyperpoint of UQP. As a direct consequence of

Theorem 1, [1] shows that if s is a hyper point of the UQP corresponding to R then the following

equality holds

R + α0ss
H = (Q1 + P1)� (ssH), (2.8)

where Q1 ∈ C1 and P1 ∈ C(V1).

It can be easily verified that s is the UQP solution for all matrices in Cs and C(Vs). Further-

more, the vector s that satisfies (Equation 2.8) is guaranteed to be the global optimum of the

UQP associated with R when α0 = 0, and a local optima when α0 > 0.

16

When α0 = 0, we get the following optimization problem:

min
s∈Ωn,Q1∈C1,P1∈C(V 1)

||R− (Q1 + P1)� ssH︸ ︷︷ ︸
Rs

||F . (2.9)

In the case of α0 > 0, [1] then shows that the local optimum of (Equation 2.8) can be found

iteratively by defining R′ = R + α0ss
H for increasing values of α0 (whose best value is found

using a bisection algorithm) and minimizing the objective (Equation 2.9) while using R′ instead

of R

2.4.1.2 Sub-problem construction

The MERIT algorithm, as given in [1] solves (Equation 2.9) by first performing the opti-

mization processes with respect to Q1 and P1, each of which is convex. The optimization with

respect to s can be done by using power method-like iterations. Note that, (Equation 2.9) en-

sures that the constructed sub-problems always get closer to original problem as characterized

by (Equation 2.8).

2.5 Other notable methods

In this section we would like to briefly review some other notable UQP solvers, for the

interested reader. [28] proposed three heuristic methods - dominant eigen vector matching,

greedy strategy and row-swap greedy strategy to approximate the UQP solution that can be

17

solved in polynomial-time with respect to the problem size. In the dominant eigen vector

matching method, the authors of [28] observed that the objection function

max
|si|=1 i=1,...,N

sHRs,

where R ∈ CN×N is a given Hermition matrix, is maximum for any vector s that has |t(N)|2 = N

and |t(i)| = 0 ∀i < N . Here, t(i) is the ith element of UHs, U being a unitary matrix with

eigen vectors of R as its columns. Therefore, the authors of [28] propose an algorithm to pick a

unimodular vector s that maximizes t(N). In their other two greedy algorithms, [28] maximizes

a partitioned representation of the objective function and optimizes for the unimodular sequence

element-wise. Under a restriction of string-submodularity of the objective function for a given

R, they are able to provide a performance guarantee.

The authors of [2] proposed an ADMM (alternating direction method of multipliers) based

solution for UQP and empirically showed that their proposed approach performs almost identical

to the SDR-based approach with much fewer computations. They do not provide any optimality

guarantees of their solution.

Another approach to solve UQP is an ACMA (analytic constant modulus algorithm) [29]

based technique [2, 3]. ACMA-based solutions may initially appear as an attractive low-cost

approach. However apart from not providing guarantees, they can also perform poorly, especially

with growing size of R.

18

2.6 Cost vs reliability trade-off

Considering the wide spectrum of different approaches to solve UQPs, the ones that provide

strong optimality guarantees and tighter bounds tend to have high computational cost than the

ones that provide little or no theoretical results. For instance, the computational complexity of

SDR based methods are generally high - O(N7) floating point operations [2]. This is because

the original problem dimensions are squared to cast into SDR form. On the other hand, low-cost

solutions such as ACMA provide approximate solutions to UQPs in O(lN2) time, where l is the

related subspace dimension parameter [2, 3]. ACMA-based approaches [3] are computationally

efficient because of the considerably simpler closed-forms on which the methods are built on.

But the approximation quality of ACMA is generally poor and no guarantees on the solutions

are provided.

But as discussed in Chapter 1, there is a strong need for algorithms to be fast and computa-

tionally efficient while being more reliable. One way to achieve this goal is to speed-up existing

methods that provide strong guarantees, while also preserving or tightening the guarantees

wherever possible.

CHAPTER 3

BLACK-BOX COMPUTATIONAL SOLUTIONS FOR COMMON SIGNAL

PROCESSING PROBLEMS

3.1 Introduction

In earlier chapters, we highlighted the fact that there exists practical applications of UQP

where accuracy (theoretical correctness guarantees) and speed are imperative. Akin to this,

there are several other signal processing applications where this trade-off is quintessential. Re-

searchers have recently turned to black-box computational approaches based on deep neural

networks (sometimes called deep learning) to approximate existing computational solutions to

these problems, either in parts or whole.

In this section, we will layout the basics of deep learning-based modeling and motivate how

they can be used as a computational tool for speeding up expensive estimation problems. We

will also discuss some fundamental limitations of deep learning.

Machine learning (ML) systems are typically designed to automatically learn patterns in

the input, which gives them the ability to predict outcomes from previously “unseen” data.

Specifically, given training data S = {(x1, y1), (x2, y2), . . ., (xn, yn); xi∈X ; yi∈Y}, where X is

the set of input training points and Y is the set of labels, an ML model learns a function f :

X→Y, that captures the relationship between xi and yi. For example, in the image classification

task, X could be a set of images and Y could be a set of object names and the ML algorithm

19

20

learns to classify an object in an image, having seen many examples of similar images. Such

ML models that learn in the presence of class labels are called supervised learning models.

Commonly, supervised learning models learn the function f by formulating the learning task as

a mathematical optimization problem, that minimizes a loss function over the input samples,

via the so-called Empirical Risk Minimization (ERM) principle [30]. Here, given an

input x∈X and output y∈Y, drawn from an unknown joint probability distribution D, the goal

is to “learn” a hypothesis (predictor) h : X→Y from a hypothesis space H, that minimizes

the following population risk.

R(h) = E(x,y)∼D`(h(x), y), (3.1)

where `(h(x), y) is a chosen loss function that measures the amount of deviation between the

output predicted by the hypothesis h and the true output label y. The best hypothesis is the

one that minimizes the above risk.

h∗ = argminh∈HR(h). (3.2)

(Equation 3.1) represents the so-called population risk and (Equation 3.2) means that we need to

find a hypothesis that minimizes the expected risk over all (x, y) drawn from D. Unfortunately,

this is an impractical optimization problem, since we do not know the distribution D apriori.

21

Therefore, it is common to solve the empirical version of the above problem, where we minimize

the loss function ` over the given n training samples S∼Dn and |S| = n as,

ĥ∗ = argminh∈H
1

n

n∑
i=1

`(h(x), yi). (3.3)

Finding ĥ∗ amounts to finding (approximately) the h ∈ H, which is often parameterized by a

vector of parameters w, that minimizes the training loss or training error. In other words, we

want a hypothesis that makes the minimum amount of mistakes in predicting the output h(x).

Mathematically, this can be achieved by merely memorizing the patterns between x and y in

the given input training data. Usually, it is more interesting and useful in practice, to find a

hypothesis that makes fewer mistakes on previous unseen “test input”, often referred to as the

test error. Conceptually, reducing the propensity of the ML model to memorize patterns in

the training data, leads to better generalization performance (reduction in generalization error).

This is commonly achieved by imposing restrictions on the class of functions from which the

hypothesis h can be chosen. One way to create this restriction is to bound the norm of the

parameters w of the hypothesis h. Such a restriction expresses the intention that we are only

interested in the restricted class H = {hw : |w| ≤ λ;λ ≥ 0}. The new risk minimization, often

called structural risk minimization (SRM) [30] can be written as,

R̂(h) =
1

n

n∑
i=1

`(h(xi), y) + λi|wi|.

22

Depending on the initial hypothesis class H, the loss function ` and the task at hand, there are

multiple ways to restrict H. While, we want our hypothesis class to be as small as possible in

order to get good generalization performance, we also want H to be sufficiently rich, so that the

“best” hypothesis h ∈ H is able to capture non-trivial patterns in the input. Usually it’s hard

to come up with a general theory on how to choose such a H.

3.2 Optimization for training machine learning models

In the previous section, we introduced some general principles on how to model a predictor

for a supervised ML problem. We will now discuss algorithms, that will help us learn a predictor,

based on these learning principles (ERM and SRM).

Given a set of a predictors {fw}, with parameters w from a function class F , we are interested

in learning the parameters w that minimizes the empirical risk (Equation 3.3) 1. Assuming fw

is differentiable, then the risk (Equation 3.3) is differentiable. When the function f and its

gradients ∇wf can be efficiently computed, a popular optimization algorithm called Gradient

Descent can be employed. This algorithm iteratively updates the parameters of the model, by

taking a “step” opposite to the direction of steepest increase (gradient), in each iteration. The

update rule of Gradient Descent is given by,

wt+1 ← wt − η∇wf(wt),

1Please note the change of notation from the previous section.

23

where, ∇wf(x) is the gradient of the function f at x and η is a hyper parameter called learning

rate, which can be tuned. If f is convex, then the convergence rate of gradient descent is

bounded by,

|f(wt)− f(w?)| ≤ |w0 −w?|2

2tη
,

where t is the number of iterations.

Note that the gradient of f is calculated at the input x, which is the entire dataset. When

the input dataset is huge, its often time consuming / impractical (in some cases) to compute

the full gradient. A slightly modified version of gradient descent, called the stochastic gradient

descent (SGD) [31] computes the gradient of f at a point xi, randomly chosen from the input

data. Another version called the mini-batch stochastic gradient descent, computes the gradient

of a batch of input data. In recent years, with massive amounts of training data being used by

ML models, SGD has become one of the go-to algorithms for ML practitioners. Since the advent

of gradient descent and stochastic gradient descent, numerous other gradient based algorithms

have been proposed. For instance, momementum based methods [32] use past gradients to

explore directions, other than the direction opposite to the gradient, that minimize the objective

function more consistently. The update rule for momentum is given as,

vt = γvt−1 + η∇wf(w)

wt+1 = wt − vt, (3.4)

where vt is called the velocity vector.

24

All the methods mentioned above use gradient information to compute the weight updates in

every iteration. They are sometimes also called “first-order” methods. In the same regard, there

are methods that use the second order derivative (hessian) in their weight update equations.

These are analogously called “second-order” optimization methods. Some examples of second

order method include Newton method, LBFGS etc. Most second order methods also use gradient

information, in addition to the hessian in their optimization routine.

3.2.1 Characterizing solutions of optimization

The training procedure, using any of the gradient based methods, stops when the opti-

mization algorithm reaches the so-called critical point. Critical points of a function can be

characterized by a vanishing gradient i.e. f ′(x) = 0. The question is whether the reached crit-

ical point corresponds to the best solution to our optimization problem. A critical point of a

function could further represent one of the following points in a function.

Local Minima. A local minima is a point where the objective function f(x) is lower (similarly

higher for maximization problems) than all its immediate neighbors.

Global Minima. A global minima is a point where the objective function is the lowest i.e.

f(x) ≤ f(x′), ∀x,x′ ∈ X ; x 6= x′.

Saddle points. Saddle points are critical points where the function has both a local minimum

and a local maximum. Note that since saddle points are critical points, the gradient f ′(x) will

be zero at a saddle point. Therefore for gradient based optimization algorithms such as SGD,

saddle points are indistinguishable from local minimas.

25

In general, it is always desirable to find global solutions (global optimal point) to an

optimization problem (also true in optimization for machine learning). However, it is com-

putationally hard (NP-complete) to find a global minimum of even a “well-behaved” function.

Therefore all we can hope to find is a local solution to the problem. Indeed, most gradient

based methods converge to a local minima, (nowadays despite the presence of saddle points in

the objective). However, local solutions are almost always inferior to global solutions to the

problem.

Interestingly, if the optimization problem is known to be convex, then it is guaranteed (in

theory) that the local optima returned by the algorithm is indeed the globally optimal. Non-

convex methods on the other hand have multiple local minimums. However, obtaining global

solutions to non-convex optimization problems are hard in general.

3.3 Poor training guarantees and model interpretability

In the previous few sections we saw how a typical deep learning model is trained. By

characterizing the solutions to the optimization problem associated with deep learning training,

we noted that the solutions are only guaranteed to be locally optimal. Also, as deep learning

training is hard to analyze from the perspective of optimality (given a local optima, it is hard

to computationally verify its quality), the patterns that these models learn are generally hard

to interpret. Specifically, it is hard to ascertain mathematically what the learned w represents

with respect to the original learning problem. This view is crucial in understanding when and

where the black-box computational solutions provided by deep learning models are useful.

26

Because of the hardness associated with interpretability of deep learning models, practi-

tioners often use deep learning as a black-box computational tool for estimating quantities of

interest. In contrast, most of the algorithms introduced for approximating UQPs in the previ-

ous Section 2 are designed specifically for UQPs and incorporate aspects of the structure of the

UQP problem directly in its problem specification or in its solution. For the rest of the thesis,

we call the algorithms reviewed in Section 2 as model-based methods to contrast them from

black-box deep learning methods.

3.4 Overfitting in deep learning training

Recall how deep learning models typically operate in two phases - training and testing. Just

to recap: during (supervised) training, deep learning models are shown labelled training data

and the weights of the model are optimized from the data using optimization algorithms such as

SGD. After training, at the testing or inference phase, the model is asked to make predictions

on unlabelled and typically unseen test data1. Overfitting occurs when a model is trained “well”

on the labelled training data but performs poorly on test data. All illustration of the overfitting

phenomenon is show in Figure 2. Here as training progresses, the training loss goes down and

approaches 0. This is indicative of the model being well-trained on the training data. Initially,

the model’s predictions on the unseen test data are also quite accurate, as suggested by the

decreasing test loss. After a few training iterations the training error continues to decreases,

1by unseen data we mean data samples that were not used during training

27

Figure 2: Illustration of the overfitting phenomenon in deep learning

however the testing loss begins to increase. This inflection point (marked by a dotted straight

line parallel to the y-axis) is where overfitting starts to occur.

The phenomenon of overfitting and its effects on test loss or corresponding test-time predic-

tion accuracy is even more pronounced when the training and test distributions differ signifi-

cantly. Going back to the image classification example, such a phenomenon might occur when

we train a deep learning model on a training data containing only cat images and then using the

model to make predictions on a test set of dog images. When the model in question is trained

to overfit on cat images, it is likely to perform poorly on the task of predicting dog images. This

problem is sometimes called the data shift or covariate shift problem.

28

3.5 Speed vs. accuracy trade-off for black-box models

As noted in an earlier section in the chapter, several practical signal processing applications

have recently adopted deep learning based learning models to develop approximate solutions

to some of the hard computational problems. An attractive benefit of deep learning models is

indeed its speed. Even a sufficiently “complex” deep learning model after training, can make

predictions much faster than some of the model-based solutions for the same problem, in some

cases by a significant order of magnitude. However, because of the black-box nature of these

models, in addition to their fundamental limitations such as lack of interpretability and over-

fitting, they are generally devoid of the theoretical advantages that model-based methods often

provide. Also, deep learning models typically require large volumes of labeled training data in

order to work well. This requirement is exacerbated by the inherent overfitting problem in deep

networks. Having said that, the speed and scalability benefits of deep learning models make it

an attractive computational solution. With the invention of modern computational hardware,

the scalability advantages of deep learning have only been reinforced and well optimized for

large scale computational problems. Adopting deep learning based solvers and computational

oracles have thus been a fervent venture of researchers in several scientific disciplines.

The question is then, how do we get the best of accurate model-based solutions and scalable

deep learning based models? In the next section, we will explore hybrid models that do exactly

that. Then based on those ideas, we will begin to detail a new hybrid model for approximately

solving the UQP problem.

29

3.6 Hybrid computational models using deep unfolding

Aside from developing new model-based methods that are faster, the scientific community

has been recently looking at data-driven approaches to simply speedup existing model-based

methods, based on the deep unfolding framework among others [33]. The key idea behind

deep unfolding is to “unfold” the iterations of an inference algorithm and restructure them

as layers of a deep neural network. The parameters of the deep network are then learned

using training data in a suitably designed supervised learning framework. Note that this is

different from using conventional deep neural networks as black-box estimators (see Figure 3

that contrasts a conventional feed-forward neural network with that of a deep-unfolding based

network). The layers of a deep unfolding based DNN (abbreviated as DUN) closely follow the

underlying model-based algorithm, thereby preserving the rich problem structure information

that the model unveils. Several model-based methods have benefited from such a learning-based

estimation; see e.g ., [34–37]. Researchers have exhibited that the resulting deep architectures

are able to achieve a performance similar to their model-based counterparts in far fewer number

of iterations (layers) after the training stage.

30

. . .

. . .

General DNNs:

Massive networks,

difficult to train and interpret.

Do not provide guarantees

or quality assurances.

Deep Unfolding (DUNs):

Incorporating problem level

reasoning (models) in the deep

network architecture, leading to

sparser networks amenable to

interpretation and producing

guarantees.

Figure 3: Conventional DNNs vs DUNs. Encoding problem-specific information inside the layers
of a DUN minimizes the number of required trainable parameters compared to a conventional
DNN.

CHAPTER 4

PROPOSED METHOD - DEEP-PMLI

As a first step towards developing a computationally efficient algorithm for finding approx-

imate UQP solutions, we developed a black-box solver based on deep neural networks that

predicts a unimodular vector s for a given UQP. We call this proposed model Deep-PMLI.

In this chapter, we first discuss some of the challenges in developing a deep learning based

solver for UQPs. We then address the challenges and then discuss in detail, the model archi-

tecture and training details. Through our detailed experiments we showcase the benefits and

shortcomings of using a black-box solver for UQPs.

4.1 Challenges in developing deep learning model for UQP

While developing a deep learning based solver for UQP, we were immediately confronted

with a few fundamental challenges that made the task less trivial.

1. No benchmark datasets. Deep learning-based solvers require vast amounts of labeled

training data. Deep learning-based solvers have not been attempted for UQPs before

this work, to the best of our knowledge. As a result, there aren’t any existing bench-

mark datasets for UQP. As another novel contribution to this work, we have developed a

principled dataset generation algorithm in Section 4.2 to train our model.

2. Enforcing unimodularity constraint. As UQPs are fundamentally a constrained op-

timization problem, with an unimodularity constraint on the optimization variable s, we

31

32

had to figure out a way to enforce the unimodularity constraint within the deep learning

architecture. To overcome this difficulty, we have introduced a new activation function in

Section 4.3 that embeds the constraint within the model.

4.2 Data generation for training deep learning models for UQPs

As we mentioned in the previous section, deep learning-based solvers for optimizing UQPs

have not been explored prior to this work and therefore labelled data for training deep learning

models isn’t readily available. Note that the observed input for a given UQP is the positive

semi-definite matrix R and the output is a unimodular s that maximizes the UQP objective.

So a labelled dataset should consist of a collection of R, s pairs.

One way to get around this roadblock is to randomly generate R and use existing UQP solvers

to obtain a unimodular s. Unfortunately, due to the non-convexity of the UQP objective, the s

produced by these solvers cannot be guaranteed to be globally optimal. Certain solvers are able

to provide global optimality guarantees for specialized versions of the general UQP problem.

However deep learning-based solvers that are trained on data generated based on a specialized

version of UQP may not generalize well to other, more general UQP settings. In this section,

we explain a new technique for generating training data for UQPs based on a characterization

of global optima for UQP.

4.2.1 Data generation using globally optimal characterizations of some UQPs.

Some unimodular quadratic forms have analytical characterizations of its global optima and

can be computed quite efficiently. The following theorem from [1] characterizes the global optima

of such R matrices.

33

Theorem 2. Let R be a Hermitian matrix with eigenvalue decomposition R = UΣUH. Suppose

Σ is of the form

Σ = Diag([σ1 . . . σ1︸ ︷︷ ︸
m times

. . . σn−m+1]T) = σ1 > σ2 ≥ . . . σn−m+1,

and let Um be the matrix made from the first m columns of U. Now suppose s̃ ∈ Ωn lies in

the linear space spanned by the columns of Um, i.e. there exists a vector α ∈ Cm such that,

s̃ = Umα, Then s̃ is the global optimizer of UQP.

We refer the reader to [1] for the proof of Theorem 2. Similar to [1] we assume that the

input R matrix is positive semi-definite. If R is not positive semi-definite, then we can perform

a procedure called diagonal loading (R ← R + λI), where λ > −σ(R) to make it positive

semi-definite. It can be shown that this procedure does not change the UQP.

Algorithm 4.1 Method 1: Data generation

1: Input: Σ ∈ Rn×n random diagonal matrix with positive entries
2: Randomly generate si ∈ Ωn, i ∈ {1 . . . n}
3: Define S as a matrix generated by stacking si’s.
4: Compute U = QR(S). . QR(X) performs QR decomposition of X.
5: Construct R← UΣUH , R← RRH . . To ensure R is Hermitian.
6: Return (R, s1).

34

We also propose another algorithm for data generation. This algorithm is motivated by

(Equation 2.6) and the proof is provided in [1]

Algorithm 4.2 Method 2: Data generation

1: Input: (R1 ∈ Rn×n , s1 ∈ Ωn) pair obtained from Algorithm 4.1
2: Randomly generate s2 ∈ Ωn

3: Compute s0 = s∗1 � s2

4: Compute R2 = R1 � s0s
H
0

5: Return (R2, s2).

4.3 Φphase- A UQP-tailored Unimodular Activation Function

Recall that the problem at hand, (Equation 1.1) is a constrained optimization problem

with hard unimodularity constraint on the optimization variable s. As we briefly described in

Chapter 3, deep learning models, in its original form, does not enforce constraints on its learnable

parameters. Also it is not immediately obvious as to how to incorporate the unimodularity

constraint in deep learning. We have absorbed this limitation by introducing a new non-linear

activation function, Φphase that takes in any vector x and gives a unimodular vector s. The

basis for this is type of non-linearity emerges from power-method like iterations PMLI, shown

in (Equation 2.5). As described earlier, [1] showed that by successively applying PMLI, one can

35

effectively search for a local optimum of the UQP. Motivated by this, we define the following

parameterized nonlinear activation function Φphase as follows:

Φphase(s; (W,R)) = ej arg(WRs), (4.1)

where, W is a learnable matrix parameter inside the neural network and R is the given input.

An interesting property of Φphase is that the output of the activation function is inherently

unimodular.

4.4 Our proposed method: Deep-PMLI

With the new nonlinear activation formulated as in (Equation 4.1), we are now ready to

define our black-box solver for UQP. This following model, which we call Deep-PMLI repeatedly

applies the Φphase activation function in (Equation 4.1) on the input, similar to the power

method-like iterations described earlier in (Equation 2.5). The only difference between the

iterations of the PMLI and Deep-PMLI is the fact that Φphase is parameterized by learnable

weight matrices. To fully specify the architecture of Deep-PMLI, we are still to define a suitable

loss function for supervising the training. One possible loss function is to directly compare the

distance between the predicted unimodular vector ŝ and the true s from the generated training

data. However it can be shown that the solution to a given UQP is not necessarily unique.

This can be observed as a corollary of Theorem 2. Therefore, we considered the following loss

function that compares the UQP objectives of s and ŝ. Let f = sHRs and f̂ = ŝHRŝ be the

36

T
ra

in
in

g
da

ta
se

t

Loss layer

Figure 4: This figure illustrates the architecture of the proposed Deep-PMLI model with four
Φphase layers. Here, W = [W1,W2,W3,W4] are the weight parameters to be learned.

UQP objectives corresponding to s and ŝ. The proposed loss functions is basically the squared

loss of their difference.

`UQP = (f − f̂)2. (4.2)

Note that `UQP will penalize the prediction for producing a f that is larger than f̂ . To deal

with this problem one can consider other loss functions; the hinge loss of the difference between

the objectives, for instance, that will only penalize f if it is smaller than f̂ . However, as we will

soon see, the training data {Ri, si} for our experiments are based on an analytical solution to

UQP. This means that f can be guaranteed to be less than or equal to f̂ . Moreover, we found

in our experiments that `UQP trains slightly better than the other loss functions.

4.4.1 Training and inference of Deep-PMLI

Recall that the UQP problem is defined in the complex domain; s and R are both complex.

Therefore it is desirable to construct our deep network as a complex-valued function. Popular

37

deep learning frameworks such as PyTorch [38] and Tensorflow [39] do not support complex

valued inputs and layers out-of-the box as of writing of this thesis. This means that we could

not leverage the autodiff capabilities offered by these packages. To this end, we performed an

unconstrained minimization of `UQP (Equation 4.2) using fminunc 1.

During training, our hypothesis is that the model learns sufficient patterns of R and s

from the labelled traiing data. The number of layers needed by the Deep-PMLI solver for a

given training dataset, correspondingly the number of trainable parameters of the solver, are

hyperparemeters and tuned manually.

During inference, test data is passed through the Deep-PMLI model using the learned weights

W = [W1, . . . ,Wn]. The model predicts ŝ for a given R. We would like to highlight that,

though the Deep-PMLI solver draws motivation from PMLI (Equation 2.5), the theory of PMLI

cannot be applied directly to Deep-PMLI. Specifically, the authors of [1] show local convergence

guarantees for PMLI. However the fact that Deep-PMLI’s layers are additionally parameterized

(recall that this is the key difference between the two solvers), means that the convergence

theory of PMLI no longer applies to Deep-PMLI.

1https://www.mathworks.com/help/optim/ug/fminunc.HTML

38

4.4.2 Metrics

To compare the performance of our model with that of the baselines, we used the metric

“sub-optimality ratio” , λ, where, for a given matrix R, Deep-PMLI model’s prediction ŝ and

baseline model’s prediction sbase,

λ =
ŝHRŝ

sHbaseRsbase
(4.3)

Here, if λ is greater than 1, it means that the Deep-PMLI model is performing better than the

baseline model and vice versa.

Likewise, the solver’s performance can also be compared with gold truth data using a similar

metric, “sub-optimality gap”, γ:

γ =
ŝHRŝ

sHRs
(4.4)

4.5 Experiments and Results

To test the performance of our Deep-PMLI model, we conducted the following experiments.

We trained the model with 5000 data points of dimensionality d = 8 generated by the data

generators 4.1 and 4.2. First, we tested the performance of the model by predicting unimodular

outputs for 50 test points with same d = 8 generated by the same data generators 4.1 and 4.2.

We compared the performances by using “sub-optimality gap”. In our second experiment, we

tested the performance of the model by predicting unimodular outputs of randomly generated

positive semi-definite Hermition matrices set of 50 test points and compared it against the

baseline predictions of PMLI and MERIT given by as given [1]. We used the metric, “sub-

optimality ratio”, λ.

39

Number of Φphase layers Mean γ

1 0.9615
2 0.98
3 0.96

TABLE I: PERFORMANCE OF DEEP-PMLI ON TEST DATASET WITH SAME DISTRI-
BUTION AS TRAINING DATASET.

Mean Number of Power iterations Number of Φphase layers Mean λPMLI λMERIT

37.52 1 0.81 0.81
37.52 2 0.86 0.87
37.52 3 0.80 0.80

TABLE II: PERFORMANCE OF DEEP-PMLI ON RANDOM TEST DATASET.

4.6 Discussion

We see that, while predicting on the test data that lies on the same distribution as that of

the training dataset, Deep-PMLI predicts almost as good as the gold truth with only 2 layers.

But when we try to predict on random data, it performs poorly. Our hypothesis is that this

behavior is due to the deficit in diversity of the data distribution, the model overfits to the

training data distribution which results in poor generalization.

In the future, when more diverse benchmark dataset becomes available for UQP, Deep-PMLI

could perform well on random data, which would make it very attractive for applications that

require low-cost solutions to UQP.

40

Another limitation to this model is that, one cannot provide any theoretical guarantees for

this model. Even when big data for UQP becomes available for the model to be trained , one

cannot theoretically prove the generalization ability of this model, which makes Deep-PMLI less

reliable for applications that require reliability.

This strong need for computational models that are both faster and more reliable motivated

us to pursue further to develop “Deep-INIT ”, which is a deep learning based solution, that

carefully parameterizes only parts of an existing algorithm without disturbing the problem

structure, so that the guarantees are preserved, while significant speed up is achieved. We will

discuss more about Deep-INIT in the next chapter.

CHAPTER 5

PROPOSED METHOD: DEEP-INIT

In this chapter, we discuss the architecture and training methods of our novel DNN solver

for UQP named Deep-INIT.

5.1 MERIT iterations

Recall that the MERIT algorithm for UQP operates in two stages. For ease of explanation,

we explicitly call the stages as Stage 1 and Stage 2.

1. Stage 1 [α0 > 0]. In this stage the algorithm determines a suitable value for the multiplier

α0 in (Equation 2.8).

2. Stage 2 [α0 = 0]. For a chosen α0 from Stage 1, the algorithm optimizes equation

(Equation 2.9) and finds the optimal (s,Q1,P1) to compute Rs. Please see Algorithm

5.1 and [1] more details.

The MERIT algorithm continuously applies Stage 1 and Stage 2 in succession, until the necessary

stopping criteria is met. The algorithm terminates when the estimated ||R′ −R||F ≤ ε; R′ =

Q∗1 + P∗1. Now, note that Stage 2 is in itself another iterative procedure, within the iterates of

Stage 1. Each iteration in Stage 2, which we call as a MERIT iteration, creates a sub-problem

to equation (Equation 1.1) and finds the global optimum for the sub-problem. Specifically, it

does the following:

• Find R1 = P1 + Q1, by optimally solving for P1 and Q1

41

42

• Find the global UQP associated with R1, by employing power method-like iterations.

5.1.1 “Warm-starting” MERIT for faster convergence

A key observation we make here is that the number of iterations required by MERIT to

approximately solve UQP (solution to (Equation 2.9)) depends directly on the proximity of the

initial sub-problem to the original problem instance. Recall that, in each iteration, a new sub-

problem is created by MERIT in such a way that it is closer to the original problem instance

than the sub-problem constructed in the previous iteration. Therefore, one could potentially

speed up MERIT by starting with a sub-problem that is as close as possible to the original

problem instance. Specifically, the question we ask ourselves is, if we can find initializations to

P1,Q1 and s in such a way that the resulting sub-problem is closer to the original UQP problem

instance.

This work approaches this question by parameterizing the initial values of s and Q1 using pa-

rameters θ = [W1,W2] and learning these parameters using a deep network. Given a new UQP

instance, the learned θ can be used to “warm-start” the optimization problem (Equation 2.9), by

setting Q1 = W1Q
rand
1 , s = ej arg(W2srand

1),P1 = |R|�Rc+, whereRc = cos(arg(R)−arg(ssH)).

Our hypothesis is that the sub-problem constructed using the “warm-started” parameters is

closer to the original problem instance, than a random initialization. In the numerical experi-

ments that we conducted, we observe that this is indeed the case.

Initialization methods for non-convex optimization problems have been extensively studied

in the past, aiming to provide faster convergence and/or achieving “better” local optima or

global optimum. [40] and its variants provided an initialization procedure for an alternative

43

minimization algorithm for the phase retrieval problem, where they provided provable statisti-

cal guarantees under restricted settings like resampling requirement in every iteration. [41, 42]

considered the alternating minimization problem for the sparse coding problem, where they

characterised the “basin of attraction”, that is, when the algorithm is initialized in the “basin of

attraction” leads to the true solution. They also provided optimality guarantees under assump-

tions on the problem set up. [43] proposed to solve an unstructured random quadratic system

in linear time through a novel initialization and descent procedure. They performed regulariza-

tion on a spectral initialization procedure that provided them with a tighter initial guess. [44]

proposed an initialization strategy for Non-negative matrix factorization problem and showed

achieve faster convergence and less error.

In this work, we take inspiration from the above mentioned works on initialization methods

for non-convex optimization. However, our motivations and end objectives are fundamentally

different from the methods mentioned above. The key motivation of all of the above mentioned

works is to obtain algorithms that lead to favorable theoretical analysis of convergence or op-

timality. To that end the authors of the above mentioned works often make strong modeling

and data assumptions. The aim of our paper is to develop a data-driven initialization scheme

that enables us to speed-up existing model based solutions to UQP. We make no further as-

sumptions above the problem statement / data than what is already made by the underlying

model-based solution, on which we build our solution. To the best of our knowledge, our work

is one of the first few that proposes a data-driven initialization scheme to accelerate a model-

based algorithm. Although the methods introduced in this work is tailor-made for UQPs, the

44

sub-problems in MERIT

sub-problems in Deep-INIT

Space of problem and sub-problem instances

Distance between and

>

Original problem

 instance

warm-start

initialization

Distance between and

Figure 5: The initial sub-problem constructed by Deep-INIT is “closer” to the original problem
instance than the initial sub-problem constructed by MERIT. In effect, Deep-INIT achieves local
optimum in far lesser number of iterations than MERIT. The “closeness” between a sub-problem
and the original problem instance is measured using d as in (Equation 5.7)

.

techniques proposed in this work can serve as a general recipe for any problem where proper

initialization could potentially speed-up convergence. We now outline the new deep model and

training details.

5.1.2 Training details

Let g(P1,Q1, s) denote the objective function of problem (Equation 2.9).

g(R) = ||R− (Q1 + P1)� ssH︸ ︷︷ ︸
Rs

||F (5.1)

45

Let Q0
1 and s0 denote the initial values of Q1 and s respectively. Specifically, we can define:

Q0
1 = W1Q

rand
1 (5.2)

s0 = exp(j arg(W2s
rand
1))

where, Qrand
1 is a random initial value of Q1 in C(V1) and srand

1 is a random unimodular vector.

Then in principle, the “warm-starting” of MERIT can be specified by the following objective

min
θ

min
P1,Q1,s

g(R)

s.t. Q0
1 = W1Q

rand
1

s0 = exp(j arg(W2s
rand
1))

This however is a computationally expensive learning objective as each forward pass requires

us to evaluate the full MERIT algorithm. Instead, in our experiments, we adopt a truncated

version of g as our forward pass (or prediction function). Specifically let fθ(R; k) denote the

new prediction function of our deep model, which is obtained by running a modified version

of g, exactly k times. k is a hyper parameter which is tuned separately. Let ` denote the loss

function employed by the model during training. Then our overall training objective can be

specified as:

min
θ

min
P1,Q1,s

`(fθ(R; k)). (5.3)

46

5.1.3 Defining the prediction function f .

We chose the prediction function f to resemble a truncated MERIT solver, in that it partially

(for k iterations) runs the optimization over P1 and Q1 with warm-start initialization on Q1 and

s. It then runs the local optimization over s for t iterations, where t is a tunable hyperparameter.

5.1.4 Loss function

The loss function ` that supervises the training of Deep-INIT plays a key role in learning

accurate initializations for UQP. In our experiments we define ` to be a convex combination of

two losses `1 and `2. Motivated by the original UQP objective (Equation 2.9), we define `1 and

`2 as follows,

`1(θ) = ||R− f(R)||F ; `2(θ) = |Ψ(s)−Ψ(s′)|2 (5.4)

where Ψ(x) = xHRx (the original UQP objective). `1 promotes the Deep-INIT to learn

initializations that encourage the initial sub-problems (enabled by the learned initializations) to

be close to the original UQP problem instance. Whereas `2 ensures that the learned solutions

ultimately lead to a good UQP solution. The overall loss function is a mixup of `1 and `2, with

mixing parameter λ.

`(θ) = (1− λ)`1(θ) + λ`2(θ) (5.5)

5.1.5 Inference

At test time, we are given with a new Rtest matrix and we are required to predict the UQP

solution corresponding to Rtest. In order to recover the optimal s, we run the full MERIT algo-

rithm where Q1 and s are initialized using learned weights (Equation 5.2). The expectation is

47

In
it

 l
ay

er

Input layer

Random initialization

 of inputs

k layers

Loss layer

Solve

 for

t layers

MERIT LAYER

T
ra

in
in

g
 d

at
as

et

M
er

it
 l

ay
er

M
er

it
 l

ay
er

= +

Figure 6: An illustration of the training architecture of the proposed Deep-INIT solver. The
top figure shows the high-level architecture of Deep-INIT training. The model is composed
of several MERIT layers, which corresponds to a single iteration of the Deep-INIT algorithm.
The image at the bottom gives more details about the MERIT layer. Here Φphase denotes one
iteration of s optimization of MERIT.

that the learned weights possess sufficient patterns about the sub-problem structure of MERIT,

helping us to “jump ahead” in the iterative sequence of MERIT. Indeed, this is what we observe

in our experiments.

48

Random initialization
 of inputs

Vanilla-MERIT

 until
 convergenceIn

it
 l

ay
er

Input layer

Figure 7: The above figure illustrates the inference stage of the proposed Deep-INIT solver. The
initial variables P0

1,Q
0
1 and s0 of the MERIT algorithm are initialized using the weights W1 and

W2 learnt from the Deep-INIT training, enabling faster convergence of MERIT algorithm.

5.2 Experiments

In this section we will validate our hypothesis that the weights learned through a Deep-INIT

model is able to significantly reduce the number of iterations. We would like to note here that

we do not establish a rigorous theoretical basis for the speed-up benefits provided by Deep-

INIT. However, we empirically validate our intuition that Deep-INIT helps by-pass the first m

iterations of the MERIT algorithm by virtue of smart initialization, as shown in Figure 5.

To that end, in this section, we will show several experiments that corroborate our hypothesis

and intuition as stated above using synthetic UQP data.

5.2.1 Experimental setup

We conduct two numerical experiments to verify the effectiveness of our proposed Deep-INIT

model and training procedure for approximating UQPs. The first experiment Experiment 1 is

49

Algorithm 5.1 MERIT for UQP

The case of α0 = 0

1: Initialize the variables Q1 and P1 with I. Let s be a random vector in Ωn

2: Perform the diagonal loading of input R.
3: Obtain the minimum of (Equation 2.9) with respect to Q1.
4: Obtain the minimum of (Equation 2.9) with respect to P1.
5: Minimize (Equation 2.9) with respect to s.
6: Go to step 3 until a stop criterion is satisfied , e.g ||R− (Q1 + P1)� (ssH)||F ≤ ε0

The case of α0 > 0

7: Initialize the variables (Q1,P1, s) using the results obtained by the optimization of
(Equation 2.9) as in case α0 = 0

8: Set δ (the step size for increasing α0 in each iteration). Let δ0 be the minimal δ to be
considered and α0 = 0

9: Let αpre0 = α0, αnew0 = α0 + δ and R
′

= R + αnew0 ssH

10: Solve
min

s∈Ωn,Q1∈C1,P1∈C(V 1)
||R′ − (Q1 + P1)� ssH︸ ︷︷ ︸

Rs

||F

using steps 3 to 6.
11: If ||R′ − (Q1 + P1)� ssH ||F ≤ ε0 do:

• If δ ≥ δ0, let δ ← δ/2 and initialize (10) with the previously obtained variables
(s,Q1,P1) for α0 = αpre0 . Goto step 9.
• If δ < δ0 Stop

12: Else let α0 = αnew0 and goto step 9

used to validate the speedup benefits of Deep-INIT. Experiment 2 tests our hypothesis that the

warm-start initializations that Deep-INIT provides, creates a sub-problem that is closer to the

original problem instance than random initialization.

Metrics. For each experiment, we measure the following two metrics:

50

Algorithm 5.2 Deep-INIT for UQP
One training iteration of Deep-INIT

1: Initialize: Q0
1 = W1Q

rand
1 , s0 = exp(j arg(W2s

rand
1)) and P0

1 = |R| �Rc+, where Rc =
cos(arg(R)− arg(ssH)), i = 1

2: Perform the diagonal loading of input R.
3: while i < k do
4: i← i+ 1
5: Obtain the minimum of (Equation 2.9) with respect to Q0

1.
6: Obtain the minimum of (Equation 2.9) with respect to P0

1.
7: Minimize (Equation 2.9) with respect to s0 only for t iterations.
8: end while
9: Compute the loss function ` as in (Equation 5.5) and update the weights (W1,W2)

Inference

10: Initialize the variables (Q1,P1, s) as (Q0
1,P

0
1, s0) where (W1,W2) are the learned weights

from the training.
11: Follow steps 8 to 12 from MERIT algorithm 5.1

1. Percentage reduction in iterations (η): As the name suggests, η measures the reduction in

number of iterations of the underlying MERIT procedure after using Deep-INIT. Let nv

and nd denote the number of iterations taken by MERIT and Deep-INIT to converge to

a locally optimal solution for a given UQP problem instance. Then η is defined as:

η =
nv − nd
nv

(5.6)

If Deep-INIT doesn’t reduce the number of iterations compared to MERIT, then η will be

0. On the extreme end, if Deep-INIT converges in the first iteration, then η will be very

close to 1.

51

2. Wall-clock time (t): We use the MATLAB command cputime1 to measure the time taken

(in seconds) by each of MERIT and Deep-INIT.

Experiment 1. We first train our Deep-INIT model with data generated using Algorithm 4.1

and Algorithm 4.2. For inference, we generated random positive definite input matrices. We

train and test the model on four different datasets with varied dimensionality d. Specifically we

generated 500 data points for training and 50 data points for inference with d ∈ {8, 16, 24, 32},

creating a total of four variations. For each variation, we ran the training and testing 10 different

times and recorded the mean and standard deviation of our metrics.

Experiment 2. For this experiment, we fix d = 8 and generate 10 different training (500

points) and test (50 points) sets. For each set, we first train the Deep-INIT algorithm and

obtain the warm-start initializations (Q1, s). Using these learned parameters we run 1 trun-

cated MERIT iteration (function f , defined the previous section). We run another truncated

MERIT iteration with random initializations (no warm-start). In both the cases, we measure

the approximation strength, measured as the difference between the estimated and true R. If

the initial sub-problem is closer to the original problem instance, then we might expect that the

R is well approximated after 1 truncated MERIT iteration. We measure appoximation strength

(δ) as:

δ(R,R′) = ||R−R′||F (5.7)

1https://www.mathworks.com/help/matlab/ref/cputime.html

52

5.2.2 Discussion

The results of Experiment 1 are given in Table III. What we observe is that across all

the variations, Deep-INIT (MERIT with learned parameters used for warm-start) achieves a

significant speed-up over the MERIT, but without sacrificing estimation quality.

The scatter plot in Figure 8 may be interpreted as follows. The y−axis represents the δ

values of Deep-INIT and x−axis denotes the δ values of MERIT. If δ for Deep-INIT is smaller

overall than MERIT, then we expect to see more points below the diagonal reference line on

the scatter plot. This is indeed what we observe from the plots.

d η (%) γDeep-INIT γMERIT tDeep-INIT tMERIT

8 15±6 0.989 0.987 0.33±0.04 0.43
16 19±5 0.954 0.949 17.7±2.64 22.62
24 14±6 0.93 0.924 51.54±4.4 54.8
32 18±7 0.9 0.9 149.18±6 195.47

TABLE III: PERFORMANCE OF DEEP-INIT MODEL’S WARM-START MEASURED BY
PERCENTAGE REDUCTION IN NUMBER OF ITERATIONS AND WALL-CLOCK TIME.
HERE d IS THE DIMENSION OF EACH SAMPLE POINT.

53

(a) N = 8 (b) N = 16

(c) N = 24 (d) N = 32

Figure 8: Scatter plot of approximation gap of vanilla MERIT vs Deep-INIT δ measured for
N = {8, 16, 24, 32} after running 1 iteration of truncated MERIT. Here Deep-INIT is initialized
with the learned weights using warm-start initialization

54

5.3 Analysis

Sub-optimality analysis. The authors of [1] show a data-dependent sub-optimality analysis

of MERIT using the sub-optimality gap γ,

γ =
sHRs

sHRss
= 1− α0n

2

sHRss

where, n is the length of s.

A key feature of the proposed Deep-INIT algorithm is that it is able to preserve the optimality

guarantees provided by the MERIT algorithm [1] during inference. This is because at inference

time, Deep-INIT does not alter the main MERIT algorithm and achieves the speed-up merely by

smart initialization of the optimization variables of the original MERIT algorithm. In future,

we envisage that by carefully studying and reparameterizing the inner layers of the MERIT

algorithm, we could obtain tighter optimality guarantees without sacrificing model performance.

CHAPTER 6

CONCLUSION AND FUTURE WORKS

In this work, we developed two deep learning-based solvers for solving the NP-hard optimiza-

tion problem of Unimodular Quadratic Programming (UQP). First, we proposed a black-box

solver Deep-PMLI, that predicts a unimodular output s, for a given UQP, after learning patterns

from already seen examples. Our second proposed algorithm, Deep-INIT, automatically learns

right initializations for the parameters of a model-based solver for UQP, called MERIT. With

the learned initializations, Deep-INIT provably converges to a locally optimal solution for UQP,

in significantly fewer number of iterations than MERIT. As an added contribution, we also

proposed a novel data generation algorithm for obtaining training data to learn our Deep-PMLI

and Deep-INIT solvers.

6.1 Future Works

In our view, there are two directions where this idea can be extended and used. One is to

extend our proposed models for UQP to produce better UQP solutions or tighter guarantees.

The second is to use our Deep-INIT model on other problems to achieve speed-up.

One way to improve UQP solutions is by improving Deep-INIT through more involved

reparameterization of the MERIT solver and refined analysis of the solution. Specifically, in our

current solution, the initializations of the MERIT solver are learned. In future, other parts of

the underlying MERIT solver, such as the sub-problems can be parameterized and learned from

55

56

data. Furthermore, such a parameterization will demand involved analysis, but has a potential

to provide tighter optimality guarantees.

Another future direction is to improve our Deep-PMLI solver by enhancing its generalization

capabilities. Recall from the numerical experiment section that, Deep-PMLI has the tendency

to overfit to the training data distribution and as a result saw a drop in the test performance.

In future, by making use of recent technological advancements in machine learning like “domain

adaptation”, to align training and test data-distributions close to each other, Deep-PMLI can

be made to generalize better on unseen test data.

Finally, we would like to highlight that the Deep-INIT is a general recipe that could be

potentially used to initialize other non-convex optimization problems, in general. This means

that one could potentially use Deep-INIT on algorithms other than MERIT for other signal

processing problems and reap its theoretical and scalability benefits.

CITED LITERATURE

1. Soltanalian, M. and Stoica, P.: Designing unimodular codes via quadratic optimization.
IEEE Transactions on Signal Processing, 62(5):1221–1234, 2014.

2. Tsinos, C. G. and Ottersten, B.: An efficient algorithm for unit-modulus quadratic pro-
grams with application in beamforming for wireless sensor networks. IEEE Signal
Processing Letters, 25(2):169–173, 2017.

3. Jiang, F., Chen, J., and Swindlehurst, A. L.: Estimation in phase-shift and forward wireless
sensor networks. IEEE transactions on signal processing, 61(15):3840–3851, 2013.

4. Leong, A. S. and Dey, S.: On scaling laws of diversity schemes in decentralized estimation.
IEEE transactions on information theory, 57(7):4740–4759, 2011.

5. Kay, S. M.: Fundamentals of statistical signal processing. Prentice Hall PTR, 1993.

6. Li, H., Chen, C., and Zhu, X.: Unimodular waveform design for mimo radar transmit beam-
forming. In MATEC Web of Conferences, volume 208, page 02003. EDP Sciences,
2018.

7. De Maio, A., Huang, Y., Piezzo, M., Zhang, S., and Farina, A.: Design of optimized radar
codes with a peak to average power ratio constraint. IEEE Transactions on Signal
Processing, 59(6):2683–2697, 2011.

8. De Maio, A. and Farina, A.: Code selection for radar performance optimization. In 2007
International Waveform Diversity and Design Conference, pages 219–223. IEEE,
2007.

9. Wang, Y. and Xu, Z.: Phase retrieval for sparse signals. Applied and Computational
Harmonic Analysis, 37(3):531–544, 2014.

10. Wang, G., Zhang, L., Giannakis, G. B., Akçakaya, M., and Chen, J.: Sparse phase retrieval
via truncated amplitude flow. IEEE Transactions on Signal Processing, 66(2):479–
491, 2017.

57

58

11. Gao, B., Sun, Q., Wang, Y., and Xu, Z.: Phase retrieval from the magnitudes of affine
linear measurements. Advances in Applied Mathematics, 93:121–141, 2018.

12. Waldspurger, I., d’Aspremont, A., and Mallat, S.: Phase recovery, maxcut and complex
semidefinite programming. Mathematical Programming, 149(1-2):47–81, 2015.

13. Tranter, J.: Fast unit-modulus least squares with applications in beamforming and phase
retrieval. 2016.

14. Khobahi, S., Bose, A., and Soltanalian, M.: Deep radar waveform design for efficient au-
tomotive radar sensing. In 2020 IEEE 11th Sensor Array and Multichannel Signal
Processing Workshop (SAM), pages 1–5. IEEE, 2020.

15. Zhang, S. and Huang, Y.: Complex quadratic optimization and semidefinite programming.
SIAM Journal on Optimization, 16(3):871–890, 2006.

16. Jaldén, J., Martin, C., and Ottersten, B.: Semidefinite programming for
detection in linear systems-optimality conditions and space-time decod-
ing. In 2003 IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2003. Proceedings.(ICASSP’03)., volume 4, pages IV–9. IEEE, 2003.

17. Kyrillidis, A. T. and Karystinos, G. N.: Rank-deficient quadratic-form maximization over
m-phase alphabet: Polynomial-complexity solvability and algorithmic developments.
In 2011 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 3856–3859. IEEE, 2011.

18. Verdú, S.: Computational complexity of optimum multiuser detection. Algorithmica, 4(1-
4):303–312, 1989.

19. Ma, W.-K., Vo, B.-N., Davidson, T. N., and Ching, P.-C.: Blind ml detection of orthog-
onal space-time block codes: Efficient high-performance implementations. IEEE
Transactions on Signal Processing, 54(2):738–751, 2006.

20. Cui, T. and Tellambura, C.: Joint channel estimation and data detection for ofdm sys-
tems via sphere decoding. In IEEE Global Telecommunications Conference, 2004.
GLOBECOM’04., volume 6, pages 3656–3660. IEEE, 2004.

21. Boyd, S., Boyd, S. P., and Vandenberghe, L.: Convex optimization. Cambridge university
press, 2004.

59

22. Goemans, M. X. and Williamson, D. P.: Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM
(JACM), 42(6):1115–1145, 1995.

23. Luo, Z.-Q., Ma, W.-K., So, A. M.-C., Ye, Y., and Zhang, S.: Semidefinite relaxation of
quadratic optimization problems. IEEE Signal Processing Magazine, 27(3):20–34,
2010.

24. So, A. M.-C., Zhang, J., and Ye, Y.: On approximating complex quadratic optimization
problems via semidefinite programming relaxations. Mathematical Programming,
110(1):93–110, 2007.

25. Alizadeh, F.: Interior point methods in semidefinite programming with applications to
combinatorial optimization. SIAM journal on Optimization, 5(1):13–51, 1995.

26. Nesterov, Y. and Nemirovskii, A.: Interior-point polynomial algorithms in convex
programming, volume 13. Siam, 1994.

27. Soltanalian, M., Tang, B., Li, J., and Stoica, P.: Joint design of the receive filter and
transmit sequence for active sensing. IEEE Signal Processing Letters, 20(5):423–
426, 2013.

28. Ragi, S., Chong, E. K., and Mittelmann, H. D.: Polynomial-time methods to solve uni-
modular quadratic programs with performance guarantees. IEEE Transactions on
Aerospace and Electronic Systems, 55(5):2118–2127, 2018.

29. Van Der Veen, A.-J. and Paulraj, A.: An analytical constant modulus algorithm. IEEE
Transactions on Signal Processing, 44(5):1136–1155, 1996.

30. Vapnik, V.: The nature of statistical learning theory. Springer science & business media,
2013.

31. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In Proceedings
of COMPSTAT’2010, pages 177–186. Springer, 2010.

32. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of
convergence o (1/kˆ 2). In Doklady an ussr, volume 269, pages 543–547, 1983.

33. Hershey, J. R., Roux, J. L., and Weninger, F.: Deep unfolding: Model-based inspiration of
novel deep architectures. arXiv preprint arXiv:1409.2574, 2014.

60

34. Belanger, D. and McCallum, A.: Structured prediction energy networks. In International
Conference on Machine Learning, pages 983–992, 2016.

35. Borgerding, M., Schniter, P., and Rangan, S.: Amp-inspired deep networks for sparse linear
inverse problems. IEEE Transactions on Signal Processing, 65(16):4293–4308, 2017.

36. Khobahi, S., Naimipour, N., Soltanalian, M., and Eldar, Y. C.: Deep signal recovery
with one-bit quantization. In ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 2987–2991. IEEE, 2019.

37. Khobahi, S. and Soltanalian, M.: Model-aware deep architectures for one-bit compressive
variational autoencoding. arXiv preprint arXiv:1911.12410, 2019.

38. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems, pages
8024–8035, 2019.

39. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine learning.
In 12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), pages 265–283, 2016.

40. Netrapalli, P., Jain, P., and Sanghavi, S.: Phase retrieval using alternating minimization.
IEEE Transactions on Signal Processing, 63(18):4814–4826, 2015.

41. Agarwal, A., Anandkumar, A., Jain, P., Netrapalli, P., and Tandon, R.: Learning sparsely
used overcomplete dictionaries. In Conference on Learning Theory, pages 123–137,
2014.

42. Agarwal, A., Anandkumar, A., Jain, P., and Netrapalli, P.: Learning sparsely used over-
complete dictionaries via alternating minimization. SIAM Journal on Optimization,
26(4):2775–2799, 2016.

43. Chen, Y. and Candes, E.: Solving random quadratic systems of equations is nearly as easy
as solving linear systems. In Advances in Neural Information Processing Systems,
pages 739–747, 2015.

61

44. Gong, L. and Nandi, A. K.: An enhanced initialization method for non-negative matrix fac-
torization. In 2013 IEEE International Workshop on Machine Learning for Signal
Processing (MLSP), pages 1–6. IEEE, 2013.

VITA

AMRUTHA VARSHINI RAMESH

EDUCATION B.E. Electrical and Electronics Engineering, Sathyabama Univer-
sity, Chennai, India.

M.S. Electrical and Computer Engineering, University of Illinois at
Chicago, Chicago, IL, USA.

RESEARCH EXPERI-
ENCE

Research Assitant, University of Illinois at Chicago, Chicago, IL,
USA, Summer 2020.
Advisor: Prof. Mojtaba Soltanalian

INDUSTRY EXPERI-
ENCE

Software Engineer, Agaraz Data Inc., Chicago, IL Jan 2017 -
Nov 2017

Modeling Engineer, Fiat Chrysler Automobiles, Chennai, India,
Aug 2011 - Jul 2015

RESEARCH
PROJECTS

Efficient and guaranteed methods for non-convex optimization,
Chicago, IL, USA, Jan 2018 - Dec 2020

Time-aware recommendation systems, Chicago, IL, USA, Jan 2018
- Dec 2020

62

	to1 Introduction to Unimodular Quadratic Program
	Introduction
	Unimodular Quadratic Program
	Speed vs Accuracy
	Contributions of this thesis

	to2 Prior Works on UQP
	Introduction:
	Semidefinite relaxation (SDR)
	Power method like iterations (PMLI)
	MERIT
	MERIT for UQPs
	Equivalence characterization for UQP problem instances
	Sub-problem construction

	Other notable methods
	Cost vs reliability trade-off

	to3 Black-box computational solutions for common signal processing problems
	Introduction
	Optimization for training machine learning models
	Characterizing solutions of optimization

	Poor training guarantees and model interpretability
	Overfitting in deep learning training
	Speed vs. accuracy trade-off for black-box models
	Hybrid computational models using deep unfolding

	to4 Proposed Method - Deep-PMLI
	Challenges in developing deep learning model for UQP
	Data generation for training deep learning models for UQPs
	Data generation using globally optimal characterizations of some UQPs.

	phase- A UQP-tailored Unimodular Activation Function
	Our proposed method: Deep-PMLI
	Training and inference of Deep-PMLI
	Metrics

	Experiments and Results
	Discussion

	to5 Proposed Method: Deep-Init
	MERIT iterations
	``Warm-starting'' MERIT for faster convergence
	Training details
	Defining the prediction function f.
	Loss function
	Inference

	Experiments
	Experimental setup
	Discussion

	Analysis

	to6 Conclusion and Future Works
	Future Works

	to CITED LITERATURE
	to VITA

