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SUMMARY

For an elliptic curve E defined over Q and for a rational prime p of good reduction, one can

define an integer ap related to the number of Fp-points lying on the reduction of E modulo p

as ap = p + 1 −#E(Fp). The integer ap, called the Frobenius trace of E modulo p, lies in the

interval (−2
√
p, 2

√
p) and has several other remarkable properties. In this thesis, we study the

arithmetic properties of ap, specifically how often ap is prime.

Using heuristical reasoning similar to that used in formulating the Hardy-Littlewood Con-

jecture regarding the number of twin primes up to a bound x, it is natural to formulate a

conjecture for the asymptotic growth of the number of primes p ≤ x for which ap is also prime.

As evidence in support of this conjecture, we prove two main results, each in the case when E is

without complex multiplication and under the θ-quasi Generalized Riemann Hypothesis. First,

we establish an upper bound for the number of primes p ≤ x for which ap is prime; this bound

has the correct order of magnitude, as predicted by the aforementioned conjecture. Then we

prove a lower bound, also with the correct order of magnitude, for the number of primes p ≤ x

such that ap is “almost” prime, in the sense of having at most a certain fixed number of prime

factors, distinct or indistinct.
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CHAPTER 1

INTRODUCTION

1.1 General notation

∅ denotes the empty set.

N denotes the set of natural numbers, including 0.

Z denotes the set of integers.

Q denotes the set of rational numbers.

R denotes the set of real numbers.

C denotes the set of complex numbers. For s ∈ C, we write Re(s) to denote the real part of

s and |s| to denote the absolute value of s.

For a finite set S, #S denotes the cardinality of S.

Unless stated otherwise, p and ℓ are rational primes, k, m, and n positive integers, and x

and z positive real numbers.

Z/nZ denotes the set of residue classes modulo n.

Zp denotes the set of p-adic integers.

Ẑ denotes the profinite completion of the integers.

Z[X] denotes the set of polynomials in X with coefficients in Z.

Fp denotes the field of p elements.

1
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For a, b, c ∈ Z with c ̸= 0, we write c | a to mean c divides a, and c | a∞ to mean c divides

an for some n. We write a ≡ b (mod c) to mean c | (a−b), and gcd(a, b) to mean the greatest

common divisor of a and b.

ω(n) denotes the function that counts the distinct prime factors of n, i.e. the prime factors

of n without multiplicity. Ω(n) denotes the function that counts the prime factors of n with

multiplicity. τ(n) denotes the function that counts the number of positive divisors of n.

µ(n) denotes the Möbius function, defined by

µ(n) :=



1 if Ω(n) = ω(n) = 2m for some m ∈ N,

−1 if Ω(n) = ω(n) = 2m+ 1 for some m ∈ N,

0 if Ω(n) > ω(n).

Unless otherwise stated, ϕ(n) denotes Euler’s totient function, defined by

ϕ(n) :=
∑

1≤m≤n
gcd(m,n)=1

1 = n
∏
p|n

(
1−

1

p

)
.

[x] denotes the integer part of x.

We write ex to denote the exponential function, log x to denote the natural logarithm, and

li(x) to denote the logarithmic integral, defined by li(x) :=
∫x
2

1
log tdt.

For real valued functions f(x) and g(x) with g(x) ̸= 0 for all large enough x, we write

f(x) ∼ g(x)
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to mean lim
x→∞ f(x)

g(x) = 1, and

f(x) = o(g(x))

to mean lim
x→∞ f(x)

g(x) = 0. If g(x) is positive valued, we write

f(x) = OA(g(x))

to mean there exist positive constants x0 = x0(A) and c = c(A) depending on some quantity

or object A such that, for all x ≥ x0, |f(x)| ≤ c(A)g(x). If f(x) is also positive valued, we write

f(x) ≪A g(x)

or

g(x) ≫A f(x)

to mean f(x) = OA(g(x)). We write

f(x) ≍A g(x)

to mean f(x) ≪A g(x) ≪A f(x). If the constants x0(A) and c(A) are both absolute, we simply

omit the A from the above notation.

For a group G and a subset H of G, we write H ≤ G to mean H is a subgroup of G, and

H � G to mean H is a normal subgroup of G. We denote by [G : H] the index of H in G. If

H�G, we denote the quotient group of G modulo H by G/H or G
H .
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For a unitary ring R, we denote the group of units of R by R×. We write M2×2(R) to denote

the the ring of 2 × 2 matrices with entries in R, and we write GL2(R) to denote the general

linear group of 2× 2 invertible matrices with entries in R. We denote by I the identity matrix,

and we write PGL2(R) to denote the projective linear group, defined by

PGL2(R) :=
GL2(R)

{αI : α ∈ R×}
.

We recall

#GL2(Z/nZ) = n4
∏
p|n

(
1−

1

p

)(
1−

1

p2

)
,

and

#PGL2(Z/nZ) = n3
∏
p|n

(
1−

1

p2

)
.

For a field K, we write K to denote the algebraic closure of K.

For fields K and L, we write L/K to mean L is an extension of K. We denote the degree of L

over K by [L : K]. If L is Galois over K, we denote its Galois group by Gal(L/K). For a subgroup

H of Gal(L/K), we write LH to denote the subextension of L fixed by H.

For a number field K, we denote by OK the ring of integers of K, by nK or [K : Q] the degree

of K over Q, by dK the discriminant of K over Q, and by NK/Q the norm of K over Q. For

an extension of number fields L/K, we denote by nL/K or [L : K] the degree of L over K, by

disc(L/K) � OK the discriminant ideal of L over K, and by NL/K the norm of L over K. For
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nonzero ideals I and J of OK and a nonzero integer n, we write I | J to mean J ⊆ I, and I | n to

mean I | nOK.

1.2 Primes

The study of rational primes dates back to the ancient Greeks, some of the earliest known

mathematicians. Notably, the sieve of Eratosthenes, which we will talk about more later, gave

us the first algorithm for finding primes; even more notably, Euclid’s Elements provided a proof

that there are infinitely many prime numbers.

This early study of primes led naturally to two questions:

1. How many primes are there up to a fixed bound?

2. Are there any patterns of primes that show up in infinite numbers?

To help answer the first question, we introduce the notation

π(x) := #{p ≤ x : p is prime},

where x is an arbitrary positive real number. One can calculate a lower bound for π(x) from

Euclid’s proof, deducing the growth π(x) ≫ log log x, which is far from the truth. Carl Friedrich

Gauss is believed to be the first person to suggest the correct answer in 1792, namely that, as

x→ ∞,

π(x) ∼
x

log x
.
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Although this statement is true as written, Gauss would only later refine his guess for the

growth of π(x) to the better estimate

π(x) ∼ li(x) :=

∫x
2

dt

log t
, (1.1)

which yields a better error than x/ log x does. Called the Prime Number Theorem, (Equa-

tion 1.1) was first proved by Jacques Hadamard and Charles Jean de la Vallée Poussin inde-

pendently in 1896, each using techniques from complex analysis based on the work of Bernhard

Riemann from his celebrated 1859 paper, Über die Anzahl der Primzahlen unter einer gegebe-

nen Grösse. Notably, in 1848, Chebychev proved, using elementary methods, a result almost

as strong as (Equation 1.1): there exists positive constants c1 and c2 such that, for any x > e,

c1
x

log x
< π(x) < c2

x

log x

(for example, we may take c1 = 0.92129... and c2 = 1.10555...).

Our second question is expansively vague, but the general answer is yes, there are many

patterns of primes that show up in infinite numbers. The pattern of primes we are interested

in currently is called twin primes, i.e. primes p, for which p + 2 is also a prime. It has been

conjectured for centuries, if not millennia, that there are infinitely many such primes. Similarly

to π(x), we consider

πtwin(x) := #{p ≤ x : p, p+ 2 are both prime}.
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Heuristically, one can argue based on the Prime Number Theorem, as G. H. Hardy and John

Littlewood did in 1922, that the probabilities of p being prime and p + 2 being prime are

each approximately 1/ log p, so that the probability of p being a twin prime is 1/(log p)2.

However, since the events of p and p+2 being prime are not independent, Hardy and Littlewood

introduced a correction factor and formulated the following conjecture, which is a specific case

of what is now referred to as the Hardy-Littlewood Conjecture.

Conjecture 1 (Hardy-Littlewood Conjecture on Twin Primes (HaLi22), 1922)

As x→ ∞,

πtwin(x) ∼ Ctwin
x

(log x)2
,

where

Ctwin := 2
∏

p prime
p≥3

(
1−

1

(p− 1)2

)
.

Although Conjecture 1 is almost universally believed to be true, its proof currently remains

an open question. However, much progress has been made since Hardy and Littlewood put

forward their conjecture. An upper bound of the right order of magnitude x/(log x)2 is now

known for πtwin(x),

πtwin(x) ≤ 7.8342 · Ctwin
x

(log x)2
, (1.2)
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while, concerning lower bounds, it is known that there are infinitely many primes p, such that

p+ 2 is “almost” prime, in the following sense: as x→ ∞,

#{p ≤ x : p prime,Ω(p+ 2) ≤ 2} ≥ 0.899 · Ctwin
x

(log x)2
, (1.3)

where, for a positive integer n, Ω(n) denotes the number of prime factors of n, counted with

multiplicity. Both results are derived from sieve methods and, as written, are due to Jie Wu

((Wu04) and (Wu08)); the former originates in the celebrated work on twin primes of Viggo

Brun from 1919, and the latter is a variant of a celebrated result proven by J.R. Chen in 1966

(see (Ch73)). The next major breakthroughs on the study of twin primes came in 2009, when

D.A. Goldston, J. Pintz and C. Y. Yildirim proved that there are infinitely many consecutive

primes that have an arbitrarily small gap compared to the average gap (see (GoPiYi09)); in

2014, when Yitang Zhang proved that, for some positive integer N ≤ 7×107, there are infinitely

many primes p such that p + N is also a prime (see (Zh14)); and in 2015, when J. Maynard

proved that N above may be taken to satisfy N ≤ 600 (see (Ma15)). The polymath project has

also contributed significant improvements on these techniques (see (Polymath14)).

In this thesis, while we are not interested in the ambitious goal of improving further upon

the above results, we use them as motivation to investigate pairs of primes that occur in the

setting of elliptic curves. For more background on questions about primes, we refer the reader

to (Ap76), (Da00), (HaRi85), (HaWr08), (So07), and (Te15).
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1.3 The Riemann Hypothesis

The two main new results to be proven in this thesis will depend on an important conjecture

in mathematics, called the Generalized Riemann Hypothesis. As such, our goal in this section

is to explain the statement of this conjecture.

Observant readers will recognize the name Riemann from the previous section, in which we

explained that Hadamard and de la Vallée Poussin built upon the work of Riemann to prove

the Prime Number Theorem. Indeed, Riemann’s paper upon which they based their proofs was

the same paper in which the Riemann Hypothesis was first stated. However, the story of the

Riemann Hypothesis really begins a century prior with Leonhard Euler, who, in 1737, studied

sums of the form ∑
n≥1

n−s

for real numbers s > 1. Euler cleverly factored these sums into what are now called Euler

products: ∏
p prime

(1+ p−s + p−2s + ...) =
∏

p prime

1

1− p−s
.

When one examines such a sum, it is very important that s > 1, since otherwise the series

would diverge, and so any manipulations one might make to the sum would cease to have

meaning. Undeterred by this fact, Euler made his manipulations with s = 1 anyway, and,

despite the lack of rigor, came to the correct conclusion that

∑
p prime

1

p
= log log∞, (1.4)



10

or, as we would state it today, ∑
p≤x

p prime

1

p
∼ log log x.

Although Euler ended up obtaining a correct statement, his proof of this result, of course, was

not valid, and it would not be proven rigorously until 1874 by Franz Mertens. However, Euler’s

approach clearly influenced Riemann, as we will explain shortly.

Now, Riemann must have been inspired by the work of Euler, because he too chose to study

sums of the form (1.3), but with the key alteration of allowing s to be a complex number rather

than only a real number. With this in mind, one can define a complex-valued function

F(s) :=
∑
n≥1

n−s,

which is analytic on the half-plane Re(s) > 1 but undefined for Re(s) ≤ 1, since the series

diverges in that region. However, one can use techniques from complex analysis to analytically

continue F(s) to a unique, meromorphic function, called the Riemann zeta function, ζ(s), which

agrees with F(s) on Re(s) > 1, but is defined on the whole complex plane except for a simple

pole at s = 1. Riemann was able to prove that this function satisfies the functional equation

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s). (1.5)

Here,

Γ(s) :=

∫∞
0

xs−1e−sdx
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when Re(s) > 0, and, starting from this half-plane, Γ(s) can be continued to a function that is

meromorphic on the whole complex plane.

Examining (Equation 1.5), it is fairly easy to see from the sin(πs2 ) factor that ζ(s) will have

zeros at s = −2n for each n ∈ N \ {0}. These are known as the trivial zeros of the Riemann

zeta function. It can be proven that there are no other zeros in the region Re(s) < 0. Since

ζ(s) =
∑
n≥1 n

−s when Re(s) > 1, we see from the Euler product formula that there are no

zeros in the region Re(s) > 1. Thus, the only area that remains a mystery in regards to the

zeros of the Riemann zeta function is the critical strip, {s ∈ C : 0 ≤ Re(s) ≤ 1}. The Riemann

Hypothesis predicts where these nontrivial zeros lie. What may be viewed as a more relaxed

variation of this hypothesis is referred to as a quasi Riemann Hypothesis.

Conjecture 2 (The θ-quasi Riemann Hypothesis)

There exists θ ∈ R with 1
2 ≤ θ < 1 such that each nontrivial zero of the Riemann zeta function

(i.e., each zero in the critical strip) satisfies Re(s) ≤ θ.

When θ = 1
2 , the above conjecture is known as the Riemann Hypothesis and is denoted RH.

Let us remark that, by virtue of symmetry, the Riemann Hypothesis claims that each nontrivial

zero of the Riemann zeta function satisfies Re(s) = 1
2 .

Although the Riemann Hypothesis is widely believed to be true, and there is a large amount

of numerical evidence supporting it, this conjecture remains an open question, perhaps the most

famous open question in all of mathematics. It was one of David Hilbert’s 23 unsolved problems

and is also one of the Clay Mathematics Institute’s million dollar Millennium Prize problems.
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To see one example of the powerful consequences of the Riemann Hypothesis, let us return

to the Prime Number Theorem. In the previous section, we gave the growth of π(x) as li(x),

but neglected to say anything regarding the error in this estimate. We now see the growth of

the difference between the two functions, with and without the Riemann Hypothesis, as follows.

Theorem 3

(i) Unconditionally, there exists a positive constant A such that, for any sufficiently large

positive real number x,

|π(x) − li(x)| ≪ x

log x
e−A

√
log x.

(ii) Assuming the Riemann Hypothesis, for any sufficiently large positive real number x,

|π(x) − li(x)| ≪ x1/2 log x.

The Riemann Hypothesis reduces the exponent of x occurring in the growth of the error

term |π(x) − li(x)| by a full 12 . By itself, this is already a powerful consequence (and, in fact, is

equivalent to the Riemann Hypothesis), but the Riemann Hypothesis has other wide-ranging

consequences as well.

We stated at the beginning of this section that we will need the Generalized Riemann

Hypothesis (GRH) rather than the Riemann Hypothesis itself to prove our new results, so we

will now briefly explain exactly how we need the Riemann Hypothesis to be generalized. In

short, we need the statement of the Riemann Hypothesis to hold not just for the Riemann
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zeta function, but also for generalizations of the Riemann zeta function, called Dedekind zeta

functions.

For a number field K, the Dedekind zeta function is defined by

ζK(s) :=
∑
I�OK

|OK/I|−s

for Re(s) > 1, where the sum ranges over all nonzero ideals, I, of the ring of integers, OK, of K.

Besides being initially defined as a series which only converges for Re(s) > 1, this function

shares many other properties with the Riemann zeta function. It can be written as an Euler

product,

ζK(s) =
∏
p�OK

1

1− |OK/p|−s
,

where the product ranges over all nonzero prime ideals p of OK; it satisfies a certain functional

equation; it has an analytic continuation which is meromorphic on the whole complex plane

with only a simple pole at s = 1; it has trivial zeros at each negative even integer (and each

negative odd integer as well, unless K is a real extension).

Once again, the mystery is where the zeros lie within the critical strip, {s ∈ C : 0 ≤ Re(s) ≤

1}. The Generalized Riemann Hypothesis predicts where these nontrivial zeros lie. In fact, the

quasi Generalized Riemann Hypothesis makes the same assertion regarding the zeros of ζK(s)

as the quasi Riemann Hypothesis.
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Conjecture 4 (The θ-quasi Generalized Riemann Hypothesis)

There exists θ ∈ R with 1
2 ≤ θ < 1 such that each zero of ζK(s) within the critical strip

satisfies Re(s) ≤ θ.

As with the Riemann Hypothesis, the Generalized Riemann Hypothesis predicts that θ = 1
2 .

This is the statement we will need in order to prove the best versions of our main results.

1.4 Elliptic curves

The study of elliptic curves began motivated by interest in Diophantine equations. Over

time, it distinguished itself as its own subject thanks to remarkable properties displayed by

equations defining elliptic curves that other types of Diophantine equations did not display.

Namely, one could impose a group structure on the points of an elliptic curve, as we will

explain below.

There are many ways to define elliptic curves; we will follow the most naive and historical

approach. We start with a field K and an equation called a long Weierstrass equation,

y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6,

with each ai ∈ K. If the characteristic of K is not 2 or 3, then through a little algebra and

a change of variables, this equation can be rewritten into a form called the short Weierstrass

equation,

y2 = x3 +Ax+ B, (1.6)
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again with A,B ∈ K. This is the most common way to see the equation of an elliptic curve

written. The elliptic curve, E, will consist of all points P(x, y) with coordinates in an extension

L ⊇ K that satisfy the equation, along with one additional point that we will introduce shortly.

We denote this set of points by E(L). Additionally, we define the discriminant of E (rather, the

discriminant of (Equation 1.6)) by

∆E := −16(4A3 + 27B2),

and make the assumption that

∆E ̸= 0.

If we were to have ∆E = 0, this would cause the right hand side of (Equation 1.6) to have a

multiple root, which would lead to E having a point that we call a singularity. In this case, we

call E a singular curve. Depending on whether the multiple root is a double or a triple root, we

classify the singularity as either a cusp or a node, but in both cases, it cannot fit into any group

structure on E. If we exclude the singularity, we can actually still impose a group structure on

the rest of the points of E. However, we nevertheless omit singular curves from our definition

of elliptic curves.

We will now discuss the method by which we can combine two points on E to obtain a third

point also on E, which will soon help us define a group operation for the points of E. For this

discussion, K can be any field with characteristic not 2 or 3, but it will be easiest to imagine
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that K = R. This will allow us to visualize the way the third point is found as a geometric

process called the chord and tangent method.

Let P1(x1, y1) and P2(x2, y2) be two points on E with coordinates in an extension L ⊇ K.

Assume that x1 ̸= x2. Then, since we also assume ∆E ̸= 0, we know that the line through P1

and P2 intersects E at a distinct third point, P3(x3, y3). Since P3 must satisfy both the equation

of the line and the equation of the curve, we have that x3 must be a solution of the equation

(m(x− x1) + y1)
2 = x3 +Ax+ B, (1.7)

where

m :=
y2 − y1
x2 − x1

.

After some rearranging, we see that

0 = x3 −m2x2 + ...,

so then m2 must be the sum of the roots of (Equation 1.7). We know one of the roots is x3,

but since P1 and P2 are also on the intersection of the line and the curve, the other two roots

must be x1 and x2. Hence,

x3 = m
2 − x1 − x2

and

y3 = m(x3 − x1) + y1.
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Thus, given two points on E, we have found a third point also on E, and we can see from the

formulas that since the coordinates of P1 and P2 are in L, the coordinates of P3 will be in L as

well. At this point, it might be tempting to define the group operation on E(L) by P1+P2 = P3.

However, for reasons that will become clear shortly, we will actually need to define the group

operation by

P1 + P2 = P
′
3,

where

P ′
3 = (x3,−y3),

i.e., we define the sum of P1 and P2 to be the reflection of the point we found above over the

x-axis.

Adding a point to itself follows a similar process except, as one might expect, we use the

tangent line to the point rather than a chord.

Now, in order to have a group structure on E(L), we also need an identity element and

inverses. It is not immediately clear what the identity element would be, and, in fact, there is

no affine point P0 on the curve that would satisfy P + P0 = P0 + P = P for all points P ∈ E(L).

To remedy this, we define a new point to be on the curve that we call the point at infinity and

denote by O. For our purposes, this can be thought of as merely a formal symbol invented

to make our calculations work out. However, it will be easier to accept and understand if we

attach some physical intuition to it: one can think of the point at infinity as a terminal point
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that every vertical line eventually reaches as it goes both up and down, as if the real plane were

a sheet of paper folded back on itself with the top and bottom ends glued together.

Although we simply define P+O = O+P = P for any P ∈ E(L), the aforementioned physical

interpretation of the point at infinity O makes it intuitive why that would be the case. The

line through P and O is simply the vertical line through P, the third point the line intersects

the curve is P’s reflection in the x-axis, and the reflection of that point is P itself. Similarly,

if P and P ′ are reflections of each other over the x-axis, we can simply define P + P ′ = O (so

−P = P ′), but again our physical interpretation makes this choice intuitive. The line through

P and P ′ is vertical, so the third point on the intersection of the line with the curve is O, and

the reflection of O in the x-axis is still O.

We also remark that the group operation + on E(L) is clearly commutative, and it will turn

out to be associative as well. Overall, we can summarize the above discussion succinctly in the

following theorem.

Theorem 5

Let K be a field of characteristic not 2 or 3, and let L ⊇ K be a field extension. Suppose an

elliptic curve, E, is defined by the equation

y2 = x3 +Ax+ B,
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where A,B ∈ K are such that ∆E := −16(4A3+27B2) ̸= 0. For any field extension L ⊇ K, define

E(L) := {O} ∪ {(x, y) ∈ L2 : y2 = x3 +Ax+ B}.

Then, with the group operation defined above, E(L) is an abelian group.

Since we now know that elliptic curves form groups, we might expect that there are group

homomorphisms between elliptic curves, or, as we will focus on currently, endomorphisms from

an elliptic curve to itself. More specifically, for an elliptic curve E defined over Q, we are

interested in the structure of its endomorphism ring, EndQ(E).

For n ∈ Z and for P ∈ E(Q), we use nP to denote adding P to itself n times if n is positive,

adding −P to itself |n| times if n is negative, and O if n is 0. We see immediately that, for any

n ∈ Z, ϕn : E(Q) → E(Q) defined by ϕn(P) := nP for each P is an endomorphism of E. Thus,

EndQ(E) ⊇ Z.

If EndQ(E) ̸= Z, i.e., if E has an endomorphism that is not simply multiplication by an

integer, we say that E has complex multiplication or that E is with complex multiplication.

Otherwise, it will be the case that EndQ(E) = Z, and we say that E does not have complex mul-

tiplication or that E is without complex multiplication. The results presented in this thesis will

focus entirely on elliptic curves without complex multiplication. For a thorough introduction

to the theory of elliptic curves, we refer the reader to (Si00) and (Wa03).
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1.5 Reductions modulo primes of an elliptic curve

In this section, our main goals are to explain some of the nuances of reducing an elliptic

curve over Q modulo a rational prime p and to define the associated Frobenius trace ap, which

our new results will be about.

Fix a prime p ∈ N and an elliptic curve E/Q, defined by the Weierstrass equation

y2 = x3 +Ax+ B (1.8)

for some A,B ∈ Q. First, note that we may actually assume A,B ∈ Z, since otherwise the

change of variables x = u−2x̂ and y = u−3ŷ, where u is the least common multiple of the

denominators of A and B, would yield the new Weierstrass equation

ŷ2 = x̂3 + u4Ax̂+ u6B,

which does have integral coefficients. At this point, we can obtain a Weierstrass equation for

a curve, Ep defined over Fp, by simply reducing the coefficients of (Equation 1.8) modulo p.

Similarly, one can define a homomorphism, E(Q) → Ep(Fp), by reducing the coordinates of each

point P ∈ E(Q) modulo p, provided both coordinates do not contain p in their denominators.

If one or both of the coordinates of P do contain p in the denominator, then such a reduction

is impossible; in this case, these points are sent to the point at infinity.

Note that in the above discussion, we called Ep merely a curve defined over Fp, not an elliptic

curve over Fp. Indeed, it will sometimes occur that the reduction of an elliptic curve modulo
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p turns out to be a singular curve. If Ep is an elliptic curve, then we say p is a prime of good

reduction for (Equation 1.8); otherwise, we say p is a prime of bad reduction for (Equation 1.8).

Since we assumed the coefficients A and B were integers, we will have that the discriminant,

∆E, is an integer as well, and so we can find the discriminant of Ep by reducing ∆E mod p.

Thus, from our discussion in Section 1.3, we know that if ∆E ̸≡ 0 (modp), then p will have

good reduction for (Equation 1.8). Counterintuitively, the converse is not true. This is because

the discriminant is not an invariant of the curve. It depends on the Weierstrass equation, but

the same curve can be described by many different Weierstrass equations. One can imagine

that with the right change of variables, we may find an equation for which ∆E ̸≡ 0 (modp)

even though ∆E ≡ 0 (modp) for some initial equation. Fortunately, there is a quantity called

the conductor of E, denoted NE, which is an invariant of E and encodes whether each prime is

of good or bad reduction, as well as the extent of badness, in a certain sense, for those of bad

reduction. For our purposes, we only need the following result.

Proposition 6

Let E/Q be an elliptic curve with conductor NE, and let p be a rational prime. Then, p has

good reduction for any Weierstrass equation of E if and only if p ∤ NE.

Next, we will examine the order of the group Ep(Fp), which we will see is intimately con-

nected to ap, the quantity our new results are concerned with.
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For an odd prime p of good reduction (for any Weierstrass equation of E), denote by Ã and

B̃ the reductions of A and B modulo p. Then, the Weierstrass equation of Ep can be given by

y2 = x3 + Ãx+ B̃. (1.9)

From this equation, it is easy to see that, for any x0 ∈ Fp, the number of y0 ∈ Fp such

that (x0, y0) satisfies the equation will be determined by the value of the Legendre symbol(
x30+Ãx0+B̃

p

)
. If x30 + Ãx0 + B̃ is a quadratic residue modulo p, then there will be two such y0.

If x30 + Ãx0 + B̃ is zero modulo p, then there will be one such y0. If x
3
0 + Ãx0 + B̃ is a quadratic

non-residue modulo p, then there will be no such y0. Remembering that O is included in

Ep(Fp), we then see that the size of Ep(Fp) is given by

#Ep(Fp) = 1+
∑
x0∈Fp

(
1+

(
x30 + Ãx0 + B̃

p

))

= 1+ p− ap,

where

ap := −
∑
x0∈Fp

(
x30 + Ãx0 + B̃

p

)
.

Now, in principle, we could have |ap| as large as p, but one would probably expect there to

be some cancellation in the sum above. The question is, how much? In 1933, Helmut Hasse

proved the best bound as follows, and this result was later generalized by André Weil.
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Theorem 7

For an elliptic curve E/Q and a prime p of good reduction, with ap defined as above, we have

|ap| ≤ 2
√
p. (1.10)

There are many other questions about ap that might spark curiosity (and, indeed, have

sparked curiosity), such as the famous Sato-Tate Conjecture from 1960 on the distribution of

the angles arccos
(
ap
2
√
p

)
(see (Ca08) and (Cl06)), and the Lang-Trotter Conjecture from 1976

on the asymptotic behavior of the counting function #{p ≤ x : p ∤ NE, ap = α} (see (LaTr76)).

In the next section, we will discuss yet another question about the integers ap and present the

main results of this thesis.

1.6 Main results of the thesis

For an elliptic curve E defined over Q, of conductor NE, and without complex multiplication,

we are interested in counting primes p ≤ x such that ap is prime. Inspired by a heuristical

reasoning similar to the one used for twin primes, we investigate:

Main Conjecture

Let E be an elliptic curve defined over Q, of conductor NE, and without complex multiplication.

Then, as x→ ∞,

#{p ≤ x : p ∤ NE, ap is prime} ∼ C(E)
x

(log x)2
, (1.11)
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where C(E) is a non-negative constant defined in terms of E. More precisely, the constant is

explicitly defined as

C(E) := 2· mE

ϕ(mE)
·# {M ∈ Gal(Q(E[mE])/Q) : gcd(trM,mE) = 1}

#Gal(Q(E[mE])/Q)
·
∏
ℓ∤mE

ℓ prime

(
1−

1

ℓ3 − ℓ2 − ℓ+ 1

)
,

(1.12)

where mE is the torsion conductor of E/Q and Gal(Q(E[mE])/Q) is the Galois group of the mE-

division field of E, whose elements are viewed in the matrix group GL2(Z/mEZ) (see Section

2.3).

Related to this conjecture, we will prove the following results, which are the main theorems

of this thesis.

Our first result is reminiscent of the upper bound (Equation 1.2) on twin primes.

Main Theorem A

Let E be an elliptic curve defined over Q, of conductor NE, and without complex multiplication.

Assume that there exists some 1
2 ≤ θ < 1 such that the θ-quasi Generalized Riemann Hypothesis

holds for Dedekind zeta functions. Then, for all sufficiently large x,

#{p ≤ x : p ∤ NE, ap is prime} ≤
(

3

1− θ
+ o(1)

)
C(E)

x

(log x)2
, (1.13)
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where C(E) is the explicit constant introduced in (Equation 1.12). In particular, when θ = 1
2 ,

(Equation 1.13) becomes

#{p ≤ x : p ∤ NE, ap is prime} ≤ (6+ o(1))C(E)
x

(log x)2
. (1.14)

As a corollary to this theorem we obtain the convergence of the sum of reciprocal primes p

for which ap is a prime, a result reminiscent of the famous theorem of Viggo Brun (Br19) on

twin primes that
∑

p prime
p+2 prime

1

p
< ∞, but drastically different from Euler’s result (Equation 1.4)

on the divergence of the sum of reciprocal primes.

Corollary A’

Let E be an elliptic curve defined over Q, of conductor NE, and without complex multiplication.

Assume that there exists some 1
2 ≤ θ < 1 such that the θ-quasi Generalized Riemann Hypothesis

holds for Dedekind zeta functions. Then

∑
p∤NE

ap prime

1

p
<∞.

More precisely, for each ε > 0, there exists x0 = x0(E, θ, ε) such that

∑
p≥x0

ap prime

1

p
≤
(

3

1− θ
+ ε

)
C(E)

1

log x0
,

where C(E) is the explicit constant introduced in (Equation 1.12).
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Our second result is reminiscent of the lower bound (Equation 1.3) related to twin primes.

Main Theorem B

Let E be an elliptic curve defined over Q, of conductor NE, and without complex multiplication.

Assume that there exists some 1
2 ≤ θ < 1 such that the θ-quasi Generalized Riemann Hypothesis

holds for Dedekind zeta functions. Then, for all sufficiently large x,

#{p ≤ x : p ∤ NE, ap ̸= ±1,ω(ap) ≤ r1} ≥
3

1− θ
(0.00692...+ o(1))C(E)

x

(log x)2
, (1.15)

and

#{p ≤ x : p ∤ NE, ap ̸= ±1,Ω(ap) ≤ r2} ≥
3

1− θ
(0.3162...+ o(1))C(E)

x

(log x)2
, (1.16)

where C(E) is the explicit constant introduced in conjectural (Equation 1.11), and where

r1 = r1(θ) := 1+

[
1

0.83

(
3

2(1− θ)
−
1

6

)]
,

r2 = r2(θ) := 1+

[
5

2(1− θ)
−
5

12

]
.

In particular, when θ = 1
2 , (Equation 1.15) and (Equation 1.16) become

#{p ≤ x : p ∤ NE, ap ̸= ±1,ω(ap) ≤ 4} ≥ (0.0415...+ o(1))C(E)
x

(log x)2
,
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and

#{p ≤ x : p ∤ NE, ap ̸= ±1,Ω(ap) ≤ 5} ≥ (1.8972...+ o(1))C(E)
x

(log x)2
.

1.7 Further motivation for our main results

As we mentioned in Section 1.4, the properties of the integers ap defined by the reductions

modulo primes p of an elliptic curve E defined over Q have attracted the interest of several

prominent mathematicians and have been the main objects of study in now-famous problems

in arithmetic geometry, such as the Sato-Tate Conjecture and the Lang-Trotter Conjecture.

In addition to the above two problems, the study of the arithmetic properties of the sequence

ap, e.g., understanding the asymptotic behavior of the functions ω(ap), Ω(ap), and τ(ap) as

p varies, has been of increasing interest to number theorists. For example, in (MuMu84), the

authors proved that, under GRH, the sequence ω(ap) defined by an elliptic curve E/Q without

complex multiplication has normal order log log p, while in (CoDaSiSt16), the authors showed

that the aforementioned normal order result is a particular instance of a much more general

phenomenon in the theory of abelian varieties.

The study of the prime factors of ap naturally leads to the study of the primality of ap

pursued in this thesis. Under the guidance of A.C. Cojocaru, the primality of ap was priorly

pursued by Matthew Lane in (La05). While in Lane’s thesis only a weak version of the conjec-

tural asymptotic formula (Equation 1.11) was stated (that is, no constant was predicted, nor

discussed, there), in (La05) an investigation of the primality of ap, based on sieve methods,
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was pursued in analogy with classical investigations of the primality of p + 2. In particular, it

was shown that, under GRH and for any elliptic curve E/Q without complex multiplication,

#{p ≤ x : p ∤ NE, ap is prime} ≪E
x

(log x)2
,

#{p ≤ x : p ∤ NE,ω(ap) ≤ 5} ≫E
x

(log x)2
, (1.17)

#{p ≤ x : p ∤ NE,Ω(ap) ≤ 7} ≫E
x

(log x)2
. (1.18)

Our results, Main Theorem A and Main Theorem B, improve upon the above in several

aspects, such as the following: the bounds exhibit an explicit relation between the ≪ and ≫

constants and the conjectural constant C(E) predicted in (Equation 1.12); the bounds refine

the lower bounds (Equation 1.17) and (Equation 1.18) from ω(ap) ≤ 5 and Ω(ap) ≤ 7 to

ω(ap) ≤ 4 and Ω(ap) ≤ 5, respectively; finally, each of our results is accompanied by a version

that assumes only a quasi-GRH instead of the full GRH.

To achieve the above improvements, our techniques differ from those in (La05) through the

employment of more powerful sieves, and, most importantly, through a more refined treatment

of the divisibility condition m | ap for an arbitrary positive integer m.



CHAPTER 2

PRELIMINARIES

2.1 Sieve basics

The first basic notion of a sieve as used in number theory dates all the way back to the

ancient Greeks with the sieve of Eratosthenes. In its simplest application, one starts with a set

of positive integers, each at most x for some positive real number x, then successively removes

from this set all multiples of p for each prime p ≤
√
x. The remaining numbers are then all

guaranteed to be prime. Thus, this process gives us a slightly easier way to find all the primes

in a given set than checking whether each number in the set is prime one by one.

The sieve of Eratosthenes was not rigorously formalized and generalized until the early

twentieth century, starting with the work of Viggo Brun. Since then, through the use of some

clever ideas and tricks, several mathematicians created improved sieves and used them to prove

results about primes and irreducibles in a variety of settings. In particular, sieves have been

used to prove results relating to the Twin Prime Conjecture, such as those we mentioned in

Chapter 1.

The general setup for most sieves is the same, although the definitions are usually left vague

intentionally in order to maintain flexibility. We have a multiset A ⊂ Z (i.e., a set of integers

which can contain multiple instances of the same element), usually defined to depend in some

way on a real number x > 0 that is thought to grow to infinity. Additionally, we have a set of

29
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primes, P. Ideally, the goal of a sieve would be to find all elements of A that are coprime to

each “small” prime in P. However, that goal is too difficult in practice, so instead the goal is

merely to estimate the number of such elements in A, i.e., to estimate the cardinality

S(A,P, z) := #{a ∈ A : gcd(a, P(z)) = 1},

where z > 0 is a parameter and

P(z) :=
∏
ℓ∈P
ℓ<z

ℓ.

To that end, we define, for each prime power, ℓr, with ℓ ∈ P,

Aℓr := {a ∈ A : a ≡ 0 (mod ℓr)}

and, for each square-free d ∈ N \ {0} consisting only of products of primes in P,

Ad :=
⋂
ℓ|d

Aℓ = {a ∈ A : a ≡ 0 (mod d)}.
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Having defined Ad as an intersection in the above, it is easy to see that we can use the

inclusion-exclusion principle to calculate S(A,P, z). We have that

S(A,P, z) = #
(
A \

⋃
ℓ|P(z)

Aℓ
)

= #A−
∑
ℓ|P(z)

#Aℓ +
∑

ℓ1ℓ2|P(z)
ℓ1 ̸=ℓ2

#Aℓ1ℓ2 − ...

=
∑
d|P(z)

µ(d)#Ad,

where

A1 := A.

This observation forms the starting point for all of sieve theory. It should come as no surprise,

then, that sieves require accurate estimates for the sizes of the subsets Ad.

While the exact assumptions about the #Ad’s vary, nearly always we write

#Ad =
w(d)

d
X+ Rd, (2.1)

where w : N \ {0} → R is a multiplicative function, X > 0 is defined in terms of x and is thought

to approximate #A, and Rd is some remainder term.

In order to prove the upper and lower bounds stated in our two main results, we will use

the Selberg sieve and the weighted Greaves’ sieve, which we will recall at the time of their
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use. These sieves have very similar setups and assumptions. For Greaves’ sieve, in addition to

(Equation 2.1), we will need the similar assumption that, for each ℓ ∈ P,

#Aℓ2 =
w
(
ℓ2
)

ℓ2
X+ Rℓ2 . (2.2)

Both sieves will also require the somewhat less common assumptions that:

1. for each ℓ ∈ P and some fixed ε > 0,

0 ≤ w(ℓ)

ℓ
≤ 1− ε; (2.3)

2. there exist L,A ≥ 1 such that, for all z1, z2 with 2 ≤ z1 ≤ z2,

−L ≤
∑

z1≤ℓ<z2

w(ℓ)

ℓ
log ℓ− log

z2
z1

≤ A. (2.4)

As well as sharing these assumptions, both sieves will estimate the size of the sifted set in terms

of the product

V(z) :=
∏
ℓ∈P
ℓ<z

(
1−

w(ℓ)

ℓ

)
. (2.5)

For more on sieve theory, we refer the reader to (Gr00) and (HaRi85).
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2.2 Classical analytic estimates

In many sieves, including the ones we will be using, there are some assumptions on the

function w(·) mentioned in the previous section. To help us verify one such assumption, we

will need the following theorem due to Mertens.

Theorem 8 (Mertens’ First Theorem, 1874)

For all x > e, ∣∣∣∣∣∣
∑
p≤x

log p

p
− log x

∣∣∣∣∣∣ ≤ 2.
Now, remaining in the general sieve setting of the previous section, we note that, intuitively

we might expect the proportion of A that is not divisible by a prime, ℓ, to be approximately

1 − 1
ℓ , and thus the proportion of A without small prime factors to be something akin to∏

ℓ<z

(1−
1

ℓ
). This naive line of reasoning will turn out to come fairly close to the truth. In both

of the sieves we will use, the main term will consist of a product similar to this times X. In

order to estimate this product, we employ another of Mertens’ theorems.

Theorem 9 (Mertens’ Third Theorem, 1874)

lim
x→∞(log x) ·

∏
p≤x

(
1−

1

p

)
= e−γ,

where γ is Euler’s constant.
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There is, of course, a Mertens’ Second Theorem, but we will not need to make use of it.

However, the following property of convergent products will also be helpful in dealing with the

product we mentioned above.

Lemma 10

Suppose a series
∑
n≥1

an converges absolutely. Define F(x) :=
∑
n≥x

|an|. Then, for large enough

x, ∏
n≥x

(1+ an) = 1+O(F(x)).

Proof. We start by taking the log of the product. Then, provided x is large enough, we will

be guaranteed to have |an| < 1, so that we can rewrite log(1+an) as a power series. We obtain

∣∣∣∣∣∣log
∏
n≥x

(1+ an)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
n≥x

log(1+ an)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
n≥x

∑
k≥1

(
−
(−an)

k

k

)∣∣∣∣∣∣
≤

∑
n≥x

∑
k≥1

|an|
k

≪ F(x).

This then tells us that
∏
n≥x

(1 + an) = eO(F(x)) = 1 + O(F(x)). Note that we know F(x) = o(1)

since we assumed that
∑
n≥1

an converges absolutely, so we are able to rewrite eO(F(x)) in this way.

□
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Finally, the following computational lemma will also be helpful in calculating the error terms

in the sieves we will use.

Lemma 11

Let r ∈ R with r > −1 and let s ∈ N \ {0}. For each y > e, we have

∑
n≤y

nrsω(n) ≪r,s y
r+1(log y)s−1. (2.6)

Proof. We will first prove the formula when r = 0 by inducting on s. The base case, s = 1, is

clear. Note that, for any s ∈ N \ {0},

sω(n) ≤
∑

d1d2...ds=n

1. (2.7)
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Now, assume that (Equation 2.6) holds for r = 0 and some fixed s. Then we see from (Equa-

tion 2.7) above that

∑
n≤y

(s+ 1)ω(n) ≤
∑
n≤y

∑
d1...ds+1=n

1

=
∑

ds+1≤y

∑
n≤y
ds+1|n

∑
d1...ds=n/ds+1

1

=
∑

ds+1≤y

∑
k≤y/ds+1

∑
d1...ds=k

1

≪s

∑
ds+1≤y

y

ds+1

(
log

y

ds+1

)s−1

≪s y(log y)
s.

This completes the induction, so we have verified the formula for r = 0. To prove it for r ̸= 0,

we start by fixing an r > −1 and s ∈ N \ {0}. Then, using partial summation we obtain

∑
n≤y

nrsω(n) = yr
∑
n≤y

sω(n) − r

∫y
1

tr−1
∑
n≤t

sω(n)dt

≪r y
r+1(log y)s−1 +

∫y
1

tr(log t)s−1dt.

The integral above can be evaluated through repeated uses of integration by parts and will also

turn out to be ≪r,s y
r+1(log y)s−1, which gives us the overall statement. □
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2.3 Division fields of elliptic curves

Let E be an elliptic curve defined over Q, of conductor NE, and let m be a positive integer

m. We denote by E[m] the group of Q-rational points of E of order dividing m and by Q(E[m])

the field obtained by adjoining to Q the x and y coordinates of the points of E[m]. We recall

from the theory of elliptic curves that the group E[m] is isomorphic to (Z/mZ)2, that the field

extension Q(E[m])/Q is finite and Galois, and that the rational primes that ramify in Q(E[m])

are among the prime factors of mNE.

By fixing a Z/mZ-basis of E[m], we obtain a Galois representation

ρE,m : Gal(Q/Q) −→ GL2(Z/mZ)

having the property that

Q(E[m]) = QKer ρE,m . (2.8)

The representation ρE,m is referred to as the residual modulo m Galois representation of E/Q.

Taking the inverse limit over m of the representations ρE,m, we obtain a continuous Galois

representation

ρE : Gal(Q/Q) −→ GL2
(
Ẑ
)
,
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referred to as the absolute Galois representation of E/Q. Setting m to be powers ℓk of a fixed

prime ℓ and taking the inverse limit over k of the representations ρE,ℓk , we obtain a continuous

representation

ρE,ℓ : Gal(Q/Q) −→ GL2 (Zℓ) ,

referred to as the ℓ-adic Galois representation of E/Q.

We recall that, for each prime p ∤ mNE, the p-Weil polynomial

PE,p(X) := X
2 − apX+ p ∈ Z[X]

satisfies the congruence

PE,p(X) ≡ det

(
XI2 − ρE,m

((
Q(E[m]/Q

p

)))
(modm),

where
(
Q(E[m]/Q

p

)
denotes the Artin symbol at p in Q(E[m])/Q. Thus, we always have the

congruences

tr ρE,m

((
Q(E[m]/Q

p

))
≡ ap (modm) (2.9)

and

det ρE,m

((
Q(E[m]/Q

p

))
≡ p (modm).
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Congruence (Equation 2.9) suggests that the field extension Q(E[m])/Q plays a crucial role

in the study of the arithmetic properties of ap. In what follows, we record additional properties

of this extension.

Thanks to (Equation 2.8), the Galois group Gal(Q(E[m])/Q), which we will denote by

GE(m) := Gal(Q(E[m])/Q),

may be identified with a subgroup of GL2(Z/mZ):

GE(m) ≃ ρE,m (GE(m)) ≤ GL2(Z/mZ).

As a consequence, the degree of the extension Q(E[m])/Q has the natural upper bound

[Q(E[m]) : Q] ≤ #GL2(Z/mZ) = m4
∏
ℓ|m

(
1−

1

ℓ

)(
1−

1

ℓ2

)
≤ m4. (2.10)

If E/Q is without complex multiplication, then Serre’s Open Image Theorem for elliptic

curves (Se72) implies the existence of a smallest positive integer mE having the property that,

upon writing the fixed arbitrary integer m uniquely as

m = m1m2 (2.11)
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for some positive integers m1,m2 such that

m1 | m
∞
E and gcd(m2,mE) = 1,

there exists a subgroup HE,m1
≤ GL2(Z/m1Z) such that

GE(m) ≃ HE,m1
×GL2(Z/m2Z). (2.12)

Following (Jo10), we will refer to mE as the torsion conductor of E/Q. For future purposes,

let us note that mE is an even positive integer (see (Jo10)).

As a consequence of (Equation 2.12), if E/Q is without complex multiplication, then the

degree of Q(E[m])/Q is the product of the function of m1 defined by [HE,m1
: Q] and the

function of m2 defined by #GL2(Z/m2Z). In particular, the degree of Q(E[m])/Q obeys the

lower bound

m4
2

∏
ℓ|m2

(
1−

1

ℓ

)(
1−

1

ℓ2

)
= #GL2(Z/m2Z) ≤ [Q(E[m]) : Q] .

Our approach to studying the prime factors of ap will rely mostly on the properties of a

particular subfield of the division field Q(E[m]), defined as follows. Upon identifying GE(m)
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with its image under ρE,m in GL2(Z/mZ), we set Jm to be the subfield of Q(E[m]) fixed by the

scalar subgroup ScalGE(m) of GE(m), that is,

Jm := Q(E[m])ScalGE(m) ,

where

ScalGE(m) := GE(m) ∩


a 0

0 a

 ∈ GL2(Z/mZ) : a ∈ (Z/mZ)×

 .
We observe that

ScalGE(m)�GE(m)

and deduce that Jm/Q is a finite Galois extension. We will call its Galois group

ĜE(m) := Gal(Jm/Q).

Moreover, we observe that

Jm = QKer ρ̂E,m ,

where

ρ̂E,m : Gal(Q/Q) −→ PGL2(Z/mZ)
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is the Galois representation obtained by composing the natural projection GL2(Z/mZ) →
PGL2(Z/mZ) with ρE,m. As a consequence, we obtain that the degree of Jm/Q satisfies the

upper bounds

[Jm : Q] ≤ #PGL2(Z/mZ) = m3
∏
ℓ|m

(
1−

1

ℓ2

)
≤ m3. (2.13)

If E/Q is without complex multiplication, then, using factorization (Equation 2.11) of m

and invoking Serre’s Open Image Theorem as before, we deduce that

ĜE(m) ≃ GE(m)

ScalGE(m)
≃ HE,m1

ScalHE,m1

× PGL2(Z/m2Z). (2.14)

Consequently, the degree of Jm/Q is the product of the function of m1 defined by
#HE,m1

#ScalHE,m1

and the function of m2 defined by #PGL2(Z/m2Z). With additional work, by starting from

the group isomorphism(Equation 2.14), it can be shown (see (CoJo21)) that the degree of Jm/Q

obeys the lower bound m3 ≪E [Jm : Q].

2.4 Applications of the Chebotarev Density Theorem for division fields of elliptic

curves

As in Section 2.3, let E be an elliptic curve defined over Q, of conductor NE, and let m

be an arbitrary positive integer. Throughout this section, we always assume that E is without

complex multiplication and we use the notationmE for its torsion conductor, that is, the integer

whose existence is ensured by Serre’s Open Image Theorem for elliptic curves, as mentioned in

Section 2.3. Similarly to the previous section, we use factorization (Equation 2.11) for m and

we appeal to the group isomorphism (Equation 2.12), whenever needed.
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Crucial to our analytic study of the primality of the Frobenius traces ap of E are applications

in the setting Q(E[m])/Q and Jm/Q of an effective version of the Chebotarev Density Theorem,

which we now recall.

Let L/K be a Galois extension of number fields, with G := Gal(L/K), and let ∅ ≠ C ⊆ G be a

union of conjugacy classes of G. We denote by [L : K] the degree of L over K, by disc(L/K)�OK

the discriminant ideal of L/K, and by dL ∈ Z and dK ∈ Z the discriminant of an integral basis

of the ring of integers OL of L, respectively of the ring of integers OK of K. We set

πC(x, L/K) :=
∑
p�OK

p∤disc(L/K)
NK/Q(p)≤x

δC

((
L/K

p

))
,

where δC(·) is the characteristic function of C, the sum is over non-zero prime ideals p of OK

which are unramified in L/K and have norm NK/Q(p) ≤ x, and
(
L/K
p

)
⊆ G is the Artin symbol

at p in L/K.

The Chebotarev Density Theorem asserts that, as x→ ∞,

πC(x, L/K) ∼
#C
#G

π(x) ∼
#C
#G

li(x). (2.15)

In studies such as ours, the above asymptotic formula is needed in a formulation that high-

lights the dependence of the growth of the error term
∣∣∣πC(x, L/K) − #C

#Gπ(x)
∣∣∣ on the extension

L/K and on the set C. For this purpose, we introduce

P(L/K) := {p : ∃ p non-zero prime ideal of OK such that p | p and p | disc(L/K)}
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and

M(L/K) := 2[L : K]|dK|
1

[K:Q]

∏
p∈P(L/K)

p,

and we recall that

log
∣∣NK/Q(disc(L/K))∣∣ ≤ ([L : Q] − [K : Q])

 ∑
p∈P(L/K)

log p

+ [L : Q] log[L : K] (2.16)

(see (Se81, Proposition 5, p. 129)).

With this notation, we are now ready to state the effective version of (Equation 2.15) that

we will be using in the proofs of our main results.

Theorem 12 (Lagarias - Odlyzko; Serre)

Let L/K be a Galois extension of number fields, with G := Gal(L/K), and let ∅ ≠ C ⊆ G be a

union of conjugacy classes of G. Assume that, for some 1
2 ≤ θ < 1, the θ-quasi-GRH holds for

the number field L. Then there exists an absolute constant c > 0 such that, for any x > e,

∣∣∣∣πC(x, L/K) − #C
#G

π(x)

∣∣∣∣ ≤ c#C
#G

xθ (log |dL|+ [L : Q] log x) .

Proof. The original reference is (LaOd77). For this variation, see (Se81, Théorème 4, p. 133).

□

The particular elliptic curve settings of Theorem 12 of relevance to our study are

L = Q(E[m])), K = Q, C = CE(m,α)
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for a fixed α ∈ Z, and

L = Jm, K = Q, C = ĈE(m, 0),

where

CE(m,α) := {M ∈ GE(m) : trM ≡ α (modm)}

and

ĈE(m, 0) :=
{
M̂ ∈ ĜE(m) : trM ≡ 0 (modm)

}
,

withM ∈ GL2(Z/mZ) denoting an arbitrary representative of a given coset M̂ ∈ PGL2(Z/mZ).

Observe that the group isomorphism (Equation 2.12) gives rise to the bijection

CE(m,α) → CE(m1, α)× C(m2, α) (2.17)

M 7→ (M1,M2) ,

where

CE(m1, α) := {M1 ∈ HE,m1
: trM1 ≡ α (modm1)} ,

C(m2, α) := {M2 ∈ GL2(Z/m2Z) : trM2 ≡ α (modm2)} ,

and that the group isomorphism (Equation 2.14) gives rise to the bijection

ĈE(m, 0) → ĈE(m1, 0)× Ĉ(m2, 0) (2.18)

M̂ 7→ (
M̂1, M̂2

)
,
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where

ĈE(m1, 0) :=
{
M̂1 ∈ HE,m1

/ScalHE,m1
: trM1 ≡ 0 (modm1)

}
,

Ĉ(m2, 0) :=
{
M̂2 ∈ PGL2(Z/m2Z) : trM2 ≡ 0 (modm2)

}
,

with M1 ∈ HE,m1
an arbitrary representative of a given coset M̂1 ∈ HE,m1

/ ScalHE,m1
and with

M2 ∈ GL2(Z/m2Z) an arbitrary representative of a given coset M̂2 ∈ PGL2(Z/m2Z).

With this notation, we are ready to write two particular cases of Theorem 12.

Theorem 13

Let E be an elliptic curve defined over Q, of conductor NE, without complex multiplication,

and of torsion conductor mE. Let m = m1m2 be a positive integer such that m1 | m∞
E and

gcd(m2,mE) = 1.

(i) Let α ∈ Z. Assume that, for some 1
2 ≤ θ < 1, the θ-quasi-GRH holds for Q(E[m])/Q.

Then

# {p ≤ x : p ∤ mNE, ap ≡ α (modm)}

=
#CE(m1, α) ·#C(m2, α)

#HE,m1
·#GL2(Z/m2Z)

π(x) +OE

(
#C(m2, α) x

θ log(mNEx)
)
.

(ii) Assume that, for some 1
2 ≤ θ < 1, the θ-quasi-GRH holds for Jm/Q. Then

# {p ≤ x : p ∤ mNE, ap ≡ 0 (modm)}

=
#ĈE(m1, 0) ·#ScalHE,m1

·#Ĉ(m2, 0)

#HE,m1
·#PGL2(Z/m2Z)

π(x) +OE

(
#Ĉ(m2, 0) x

θ log(mNEx)
)
.
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Proof. Recalling (Equation 2.13) and that the ramified primes of Q(E[m])/Q, hence of Jm/Q,

are among the prime factors ofmNE, by applying (Equation 2.10), respectively (Equation 2.16),

we deduce that

log |dQ(E[m])|

[Q(E[m]) : Q]
≤

∑
p∈P(Q(E[m])/Q)

log p+ log[Q(E[m]) : Q] ≪ log(mNE)

and

log |dJm |

[Jm : Q]
≤

∑
p∈P(Jm/Q)

log p+ log[Jm : Q] ≪ log(mNE).

The asymptotic formulae claimed in the statement of the theorem now follow from Theorem

12 by using these estimates, along with (Equation 2.17) and (Equation 2.18). □

It is clear that any application of the above theorem will require a better understanding

of the matrix counts that occur in both the main term and the error term of each of the two

asympotic formulae. We record such counts below.

Lemma 14

Let ℓ be an odd prime and let α ∈ Z. Then

#C(ℓ, α) =


ℓ3 − ℓ2 − ℓ if α ̸≡ 0 (mod ℓ),

ℓ3 − ℓ2 if α ≡ 0 (mod ℓ);

(2.19)

#C
(
ℓ2, α

)
= ℓ6 − ℓ5 if α ≡ 0 (mod ℓ); (2.20)

#Ĉ(ℓ, 0) = ℓ2; (2.21)
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#Ĉ
(
ℓ2, 0

)
= ℓ4. (2.22)

Proof. Let us focus on proving formula (Equation 2.19) for #C(ℓ, α) in the case α ≡ 0 (mod ℓ).

First, we see easily that there are ℓ3 matrices with trace 0 in M2×2(Z/ℓZ); but how many have

determinant 0 (mod ℓ)? Any matrix M ∈ M2×2(Z/ℓZ) with trace 0 can be written in the form

M =

a b

c −a



for some a, b, c ∈ Z/ℓZ. For a fixed pair b, c ∈ Z/ℓZ, there will be 1 + (−bcℓ ) possible a such

that detM ≡ 0 (mod ℓ), where ( ·ℓ) is the Legendre symbol. Thus, the number of matrices

M ∈ M2×2(Z/ℓZ) with trM ≡ detM ≡ 0 (mod ℓ) will be given by

∑
b,c∈Z/ℓZ

(
1+

(
−bc

ℓ

))
= ℓ2 +

∑
b∈(Z/ℓZ)×

∑
c∈(Z/ℓZ)×

(
−bc

ℓ

)
= ℓ2.

We deduce that

#{M ∈ GL2(Z/ℓZ) : trM ≡ 0 (mod ℓ)} = ℓ3 − ℓ2 = ℓ2ϕ(ℓ), (2.23)

establishing formula (Equation 2.19) for #C(ℓ, α) in the case α ≡ 0 (mod ℓ).
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Now, let us focus on proving formula (Equation 2.19) for #C(ℓ, α) in the case α ̸≡ 0 (mod ℓ).

Note that, for any α1, α2 ∈ (Z/ℓZ)×, by setting β := α2α
−1
1 , the map

GL2(Z/ℓZ) −→ GL2(Z/ℓZ)

M 7→ βM

induces a bijection

{M ∈ GL2(Z/ℓZ) : trM = α1} −→ {M ∈ GL2(Z/ℓZ) : trM = α2}.

This observation leads to formula (Equation 2.19) for #C(ℓ, α) in the case α ̸≡ 0 (mod ℓ).

Next, observe that we can write any M ∈ M2×2(Z/ℓ2Z) with trM ≡ 0 (mod ℓ) uniquely in

the form

M =

a0 + a1ℓ b0 + b1ℓ

c0 + c1ℓ −a0 − a1ℓ


for some a0, a1, b0, b1, c0, c1 ∈ Z/ℓZ. From here, the calculation is identical to the one for

formula (Equation 2.19) for #C(ℓ, 0), except for taking into account that we have three com-

pletely free variables in a1, b1, c1, so both the number of matrices with trace 0 and the number

of matrices with trace and determinant 0 increase by a factor of ℓ3. We deduce that

#
{
M ∈ GL2

(
Z/ℓ2Z

)
: trM ≡ 0

(
mod ℓ2

)}
= ℓ6 − ℓ5 = ℓ4ϕ

(
ℓ2
)
. (2.24)
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From (Equation 2.23) and (Equation 2.24), respectively, we conclude that

#Ĉ(ℓ, 0) = #C(ℓ, 0)
ϕ(ℓ)

= ℓ2

and

#Ĉ(ℓ2, 0) = #C(ℓ2, 0)
ϕ(ℓ2)

= ℓ4.

□

Of primary interest to us is the following application of part (ii) of Theorem 13.

Theorem 15

Let E be an elliptic curve defined over Q, of conductor NE, without complex multiplication, and

of torsion conductor mE.

(i) Let d be a squarefree positive integer such that gcd(d,mE) = 1. Assume that there exists

some 1
2 ≤ θ < 1 such that the θ-quasi-GRH holds for Jdk/Q for all positive squarefree

integers k with k | mE. Then

# {ap : p ≤ x, p ∤ NE, gcd(ap,mE) = 1, ap ≡ 0 (modd)}

=
1

d

∏
ℓ|d

(
1−

1

ℓ2

)−1
C1(E)π(x) +OE

(
d2xθ log(dx)

)
,

where

C1(E) :=
# {M ∈ GE(mE) : gcd(trM,mE) = 1}

#GE(mE)
. (2.25)
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(ii) Let ℓ be a prime such that ℓ ∤ mE. Assume that there exists some 1
2 ≤ θ < 1 such that the

θ-quasi-GRH holds for Jℓ2/Q. Then

#
{
ap : p ≤ x, p ∤ NE, gcd(ap,mE) = 1, ap ≡ 0

(
mod ℓ2

)}
=

1

ℓ2 − 1
· C1(E)π(x) +OE

(
ℓ4xθ log(ℓx)

)
,

with C1(E) defined as in (Equation 2.25).

Proof. Let m be a positive integer with gcd(m,mE) = 1, so that, in the notation m = m1m2

of Theorem 13, m1 = 1 and m2 = m. We want to estimate the cardinality of the set

Am := {ap : p ≤ x, p ∤ NE, gcd(ap,mE) = 1, ap ≡ 0 (modm)} (2.26)

when m is an odd squarefree positive integer such that, for some 1
2 ≤ θ < 1, the θ-quasi-GRH

holds for Jmk/Q for all positive squarefree integers k with k | mE, and when m = ℓ2 for some

odd prime ℓ such that, for some 1
2 ≤ θ < 1, the θ-quasi-GRH holds for Jℓ2/Q.

Before making these particular choices of m, let us observe that
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#Am = # {ap : p ≤ x, p ∤ NE, gcd(ap,mE) = 1, ap ≡ 0 (modm)}

= # {ap : p ≤ x, p ∤ mNE, gcd(ap,mE) = 1, ap ≡ 0 (modm)}+O(logm)

=

( ∑
p≤x

p∤mNE
ap≡0 (modm)

∑
k≥1

k|gcd(ap,mE)

µ(k)

)
+O(logm)

=

∑
k≥1
k|mE

µ(k)# {p ≤ x : p ∤ mNE, ap ≡ 0 (modm), ap ≡ 0 (modk)}

+O(logm)

=

∑
k≥1
k|mE

(µ(k)# {p ≤ x : p ∤ mkNE, ap ≡ 0 (modmk)}+O(log k))

+O(logm)

=

∑
k≥1
k|mE

µ(k)# {p ≤ x : p ∤ mkNE, ap ≡ 0 (modmk)}

+O(log x),

where, to pass to the second and fifth lines, we used that for any positive integer n, ω(n) ≤

2 logn; and to pass to the fifth line, we used that gcd(m,k) = 1 since k | mE and gcd(m,mE) = 1.

By invoking part (ii) of Theorem 13 under the assumption of a θ-quasi-GRH for Jmk/Q for

all positive squarefree integers k with k | mE, we obtain that

#Am =
#Ĉ(m, 0)

#PGL2(Z/mZ)

∑
k≥1
k|mE

µ(k)
#ĈE(k, 0) ·#ScalHE,k

#HE,k

 π(x)+OE

(
#Ĉ(m, 0) xθ log(mNEx)

)
.

(2.27)
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Now, let us analyze the summation over k | mE. Observe that, for each such k, we have

#ĈE(k, 0) ·#ScalHE,k
= # {M ∈ GE(k) : trM ≡ 0 (modk)} .

Furthermore,

# {M ∈ GE(k) : trM ≡ 0 (modk)}

#HE,k
=

# {M ∈ GE(k) : trM ≡ 0 (modk)}

#GE(k)

=
# {M ∈ GE(mE) : trM ≡ 0 (modk)}

#GE(mE)
.

Then

∑
k≥1
k|mE

µ(k)
#ĈE(k, 0) ·#ScalHE,k

#HE,k
=

1

#GE(mE)

∑
k≥1
k|mE

µ(k)# {M ∈ GE(mE) : trM ≡ 0 (modk)}

=
# {M ∈ GE(mE) : trM ̸≡ 0 (mod ℓ) ∀ℓ | mE}

#GE(mE)

= C1(E).

Plugging this in (Equation 2.27), we obtain that, under the assumption of a θ-quasi-GRH for

Jmk/Q for all positive squarefree integers k with k | mE,

#Am =
#Ĉ(m, 0)

#PGL2(Z/mZ)
· C1(E)π(x) +OE

(
#Ĉ(m, 0) xθ log(mNEx)

)
.

Next, let us specialize (Equation 2.27) to our two desired types of m.
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(i) In (Equation 2.27), take m = d for some odd squarefree positive integer d coprime to

mE. The claimed estimate for #Ad follows by invoking the Chinese Remainder Theorem and

by recalling that, from Lemma 14, for any odd prime ℓ we have #Ĉ(ℓ, 0) = ℓ2.

(ii) In (Equation 2.27), take m = ℓ2 for some odd prime ℓ ∤ mE. The claimed estimate for

#Aℓ2 follows by recalling that, from Lemma 14, #Ĉ
(
ℓ2, 0

)
= ℓ4. □

We end this section with an application of part (i) of Theorem 12, which we will need in

the proof of our two main theorems:

Proposition 16

Let E/Q be an elliptic curve without complex multiplication, of conductor NE, and of torsion

conductor mE. Assume that there exists some 1
2 ≤ θ < 1 such that the θ-quasi-GRH holds for

the division fields of E. Then, for any α ∈ Z with α ̸= 0,

# {p ≤ x : p ∤ NE, ap = α} ≪E
x1−

1−θ
4

(log x)
1
2

, (2.28)

and

# {p ≤ x : p ∤ NE, ap = 0} ≪E
x1−

1−θ
3

(log x)
1
3

. (2.29)

Proof. Let ℓ be a prime such that ℓ ∤ mE. Then

# {p ≤ x : p ∤ NE, ap = α} ≤ # {p ≤ x : p ∤ NE, ap ≡ α (mod ℓ)}
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and, for the latter, we invoke part (i) of Theorem 13. By also using (Equation 2.19) of Lemma

14, we obtain that

# {p ≤ x : p ∤ NE, ap ≡ α (mod ℓ)} ≪E
x

ℓ log x
+ ℓ3xθ log(ℓx).

Choosing ℓ ≍ x
1−θ
4

(log x)
1
2

gives us the desired upper bound for # {p ≤ x : p ∤ NE, ap = α}.

When α = 0, the result can be strengthened by invoking part (ii) of Theorem 13 and

(Equation 2.21) of Lemma 14, leading to the upper bounds

# {p ≤ x : p ∤ NE, ap = 0} ≤ # {p ≤ x : p ∤ NE, ap ≡ 0 (mod ℓ)} ≪E
x

ℓ log x
+ ℓ2xθ log(ℓx).

Choosing ℓ ≍ x
1−θ
3

(log x)
2
3

gives us the desired upper bound for # {p ≤ x : p ∤ NE, ap = 0}. □

Note that much better conditional results are known regarding upper bounds for

# {p ≤ x : p ∤ NE, ap = α}

(e.g., see (MuMuSa88) for better conditional bounds, and (CoWa21, Section 1) for a recent

account of the best such bounds as of the writing of this thesis). For the purpose of our two

main theorems, the weaker upper bound (Equation 2.28) of Lemma 16, under the assumption of

a θ-quasi-GRH and not of the full GRH, suffices. Note also that a stronger unconditional result

is known only for α = 0, and in that case the weaker conditional upper bound (Equation 2.29)

of Lemma 16 is superfluous (see (El91)).



CHAPTER 3

MAIN THEOREMS

3.1 Heuristical reasoning for the conjectural asymptotic formula

Let E be an elliptic curve over Q, of conductor NE, without complex multiplication, and of

torsion conductor mE. To count the number of primes p ∤ NE such that ap is prime, we outline

the heuristical approach of (Co21).

Recalling that, for each prime p ∤ NE, we have |ap| < 2
√
p, we consider a naive probabilistic

model in which the integer ap is replaced with a random integer rp in the interval (−2
√
p, 2

√
p).

Observing that, for any ε > 0,

lim
p→∞

#
{
rp ∈ (−2

√
p, 2

√
p) ∩ Z : |rp| ≤ p

1
2
−ε
}

#
{
rp ∈ (−2

√
p, 2

√
p) ∩ Z

} = 0,

we deduce that for all but a zero density set of primes p (within the set of primes) we have

that, as p→ ∞,

Prob (rp is prime) ∼
1

log
√
p
=

2

log p
.

56
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As such, it is natural to predict that, as x→ ∞,

# {p ≤ x : p ∤ NE, rp is prime} ∼

∫x
2

1

log t
· 2

log t
dt

= 2

∫x
2

1

(log t)2
dt

∼
2x

(log x)2
.

Let us note that in the above discussion we replaced the Frobenius trace ap with a random

integer rp in the interval (−2
√
p, 2

√
p). However, according to (Equation 2.9), for any positive

integer m, the probability that ap is coprime to m equals

# {M ∈ GE(m) : gcd(trM,m) = 1}

#GE(m)
,

while, from elementary number theory, the probability that rp is coprime to m equals

ϕ(m)

m
.

Thus, in our previous naive probabilistic model, for each m we should introduce the correction

factor

f(m) :=
m

ϕ(m)
· # {M ∈ GE(m) : gcd(trM,m) = 1}

#GE(m)
.
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As a consequence of Serre’s Open Image Theorem for E/Q and on matrix counting arguments

in GL2(Z/mZ), upon taking mn :=
∏
ℓ≤n

ℓ prime

ℓ, the limit lim
n→∞ f(mn) exists and equals C(E)

2 , where

C(E) := 2 · mE

ϕ(mE)
· # {M ∈ GE(mE) : gcd(trM,mE) = 1}

#GE(mE)
·

∏
ℓ∤mE

ℓ prime

(
1−

1

ℓ3 − ℓ2 − ℓ+ 1

)
,

as introduced in (Equation 1.12). Therefore, it is now natural to predict that, as x→ ∞,

# {p ≤ x : p ∤ NE, ap is prime} ∼
C(E)

2
·# {p ≤ x : p ∤ NE, rp is prime} ∼ C(E)

x

(log x)2
,

as claimed in (Equation 1.11).

Remark. We tested the above prediction using the elliptic curve

E/Q : y2 = x3 + 6x− 2,

for which NE = 26 · 33. This is an elliptic curve without complex multiplication for which

mE = 6. We obtained that

C(E) = 2 · 6
2
· 36
144

·
∏
ℓ≥5

ℓ prime

(
1−

1

ℓ3 − ℓ2 − ℓ+ 1

)
= 1.476318...

and that

#
{
5 ≤ p ≤ 108 : ap is prime

}
C(E)

∑
p≤108

1

log p

= 1.070829...
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In future work, we plan to test our prediction on a wider sample of elliptic curves and on a

wider sequence of primes.

3.2 Sieve commonalities for elliptic curve setting

In the proofs of our two main theorems, we apply the Selberg sieve and the weighted

Greaves’ sieve, respectively, in the following setting. We fix an elliptic curve E/Q, of conductor

NE, without complex multiplication, and of torsion conductor mE, and we assume that there

exists some 1
2 ≤ θ < 1 such that the θ-quasi-GRH holds for Q(E[m])/Q and Jm/Q for all

positive integers m. We fix x > 0, to be thought of as going to infinity, and we take

A := {ap : p ≤ x, p ∤ NE, gcd(ap,mE) = 1} ,

P := {ℓ : ℓ ∤ mE} .

With these definitions, we see that, for each positive squarefree d with gcd(d,mE) = 1,

Ad = {ap : p ≤ x, p ∤ NE, gcd(ap,mE) = 1, ap ≡ 0 (modd)},

and that, for each prime ℓ ∤ mE,

Aℓ2 = {ap : p ≤ x, p ∤ NE, gcd(ap,mE) = 1, ap ≡ 0 (mod ℓ2)}.

In this sieve setting, it remains to identify X, w(·), and the growth of |Rd| and |Rℓ2 |, which is

what we do next.
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Recalling that these were the sets introduced in (Equation 2.26) of Subsection 2.4, from

Theorem 15 we deduce that

#Ad =
1

d

∏
ℓ|d

(
1−

1

ℓ2

)−1
C1(E)π(x) +OE

(
d2xθ log(dx)

)
(3.1)

and

#Aℓ2 =
1

ℓ2 − 1
· C1(E)π(x) +OE

(
ℓ4xθ log(ℓx)

)
.

From the above observations, we conclude that, in our particular sieve setting, we may take

X := C1(E)π(x) (3.2)

and

w(d) :=
∏
ℓ|d

(
1−

1

ℓ2

)−1

, (3.3)

in which case

|Rd| ≪E d
2xθ log(dx) (3.4)

and

|Rℓ2 | ≪E ℓ
4xθ log(ℓx). (3.5)

We emphasize that the exponent θ reflects the assumption of the θ-quasi-GRH.
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Using (Equation 3.3), for z > mE the function V(z) defined in (Equation 2.5) of Section 2.1

becomes

V(z) :=
∏
ℓ<z
ℓ∤mE

(
1− ℓ−1

(
1−

1

ℓ2

)−1
)

=

∏
ℓ<z
ℓ∤mE

(
1−

1

ℓ

) ·

∏
ℓ<z
ℓ∤mE

(
1−

1

ℓ3 − ℓ2 − ℓ+ 1

)
=

∏
ℓ<z
ℓ|mE

(
1−

1

ℓ

)−1

 ·

(∏
ℓ<z

(
1−

1

ℓ

))
·

∏
ℓ∤mE

(
1−

1

ℓ3 − ℓ2 − ℓ+ 1

) ·

∏
ℓ≥z

(
1−

1

ℓ3 − ℓ2 − ℓ+ 1

)−1

=
mE

ϕ(mE)
·

(∏
ℓ<z

(
1−

1

ℓ

))
·

∏
ℓ∤mE

(
1−

1

ℓ3 − ℓ2 − ℓ+ 1

) ·

∏
ℓ≥z

(
1+

1

ℓ3 − ℓ2 − ℓ

)
=

mE

ϕ(mE)
·

∏
ℓ∤mE

(
1−

1

ℓ3 − ℓ2 − ℓ+ 1

) ·

(∏
ℓ<z

(
1−

1

ℓ

))
·
(
1+O

(
1

z2

))

=
mE

ϕ(mE)
·

∏
ℓ∤mE

(
1−

1

ℓ3 − ℓ2 − ℓ+ 1

) ·
(
e−γ

log z
+ o

(
1

log z

))
.

Here, we have used Lemma 10 to pass from the fourth line to the fifth, and Mertens’ Third

Theorem 9 to pass from the fifth line to the sixth.

For later purposes, let us record the above calculation as

V(z) = C2(E) ·
(
e−γ

log z
+ o

(
1

log z

))
, (3.6)

where

C2(E) :=
mE

ϕ(mE)
·
∏
ℓ∤mE

(
1−

1

ℓ3 − ℓ2 − ℓ+ 1

)
. (3.7)
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We can now verify that the sieve assumptions mentioned previously, (Equation 2.3) and

(Equation 2.4), which will be required for both the Selberg sieve and the Greaves sieve, are

satisfied. Firstly, w(·) is easily seen to be decreasing on prime values, so that for any prime, ℓ,

0 ≤ w(ℓ)

ℓ
≤ 2

3
.

Therefore, the first assumption is satisfied. Now, for the second assumption, fix z1 and z2 with

2 ≤ z1 ≤ z2. Then

∑
z1≤ℓ<z2

w(ℓ)

ℓ
log ℓ =

∑
z1≤ℓ<z2

(
1− 1

ℓ2

)−1
ℓ

log ℓ

=
∑

z1≤ℓ<z2

ℓ

ℓ2 − 1
log ℓ

=
∑

z1≤ℓ<z2

log ℓ

ℓ
+

∑
z1≤ℓ<z2

log ℓ

ℓ(ℓ2 − 1)
. (3.8)

Using Mertens’ First Theorem 8, we see that the first sum in line (Equation 3.8) differs from

log z2z1 by at most 4. Extending the range of the second sum to all primes ℓ ≥ 2 yields a series

that converges to a value less than 1, so that

∣∣∣∣∣∣
∑

z1≤ℓ<z2

w(ℓ)

ℓ
log ℓ− log

z2
z1

∣∣∣∣∣∣ < 5. (3.9)

Thus, the second assumption, (Equation 2.4), holds in this setting as well.
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3.3 Proof of Main Theorem A

To prove Main Theorem A, we will use a simplified version of the Selberg sieve as presented

in (HaRi74, Thm. 8.3, p. 231).

Theorem 17 (Selberg Sieve)

Assume the setting described at the beginning of Section 2.1. In particular, with notation as

described in that section, assume that for any squarefree d composed of primes in P, #Ad can

be written in the form

#Ad =
w(d)

d
X+ Rd

for some X > 0, some remainders Rd, and some multiplicative function w(·) which satisfies the

assumptions (Equation 2.3) and (Equation 2.4) from Section 2.1. Then

S(A,P, z) ≤ XV(z)
(
eγ +

BL

(log z)1/14

)
+

∑
d≤z2
d|P(z)

3ω(d)|Rd|, (3.10)

where γ is Euler’s constant, B > 0 is some absolute constant, L ≥ 1 is the constant appearing in

assumption (Equation 2.4), and V : N \ {0} → R is, as before, given by V(z) =
∏
ℓ∈P
ℓ<z

(
1−

w(ℓ)

ℓ

)
.

Proof. See (HaRi74). □

Before we begin proving Main Theorem A, it is worth remarking on an interesting wrinkle

that arises from the set of ap’s being a true multiset, i.e. that certain values of ap can and do

repeat for different values of p. The Selberg sieve, as well as sieves in general, are designed to

detect each a ∈ A whose only prime factors are large, and so the sieve only bounds the number
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of large primes appearing in A. In particular, it gives us no information about the small primes

appearing in A. When A is a set (that is, has no repeated elements), this is not a problem

since, in that case, we can write

#{a ∈ A : a prime} = #{a ∈ A : a prime, |a| < z}+#{a ∈ A : a prime, |a| ≥ z}

≤ 2z+ S(A,P, z).

Thus, since z is chosen to be of negligible size, the sieve on its own is enough to obtain an upper

bound for the number of primes appearing in A. However, when A is a multiset, we cannot

bound #{a ∈ A : a prime, |a| < z} by 2z since A could contain 2, or any other small prime,

infinitely many times. In this way, the sieve itself is not enough to bound the number of primes

in A. We need more information about A to bound the number of small primes appearing

in it (and so the number of primes overall). In our case, this means that we need a partial

Lang-Trotter result under θ-quasi GRH, such as Proposition 16 of Section 2.3, to bound the

number of p such that ap is a small prime.

Proof of Main Theorem A. As in Section 3.1, we define

A := {ap : p ≤ x, p ∤ NE, gcd(ap,mE) = 1},

where NE is the conductor of E, and we define

P := {ℓ prime : ℓ ∤ mE},
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where mE is the torsion conductor of E. With these choices, we showed in (Equation 3.1),

(Equation 3.2), (Equation 3.3), (Equation 3.4), and (Equation 3.6) of Section 3.2 that

#Ad =
1

d

∏
ℓ|d

(
1−

1

ℓ2

)−1
C1(E)π(x) +OE

(
d2xθ log(dx)

)
,

X = C1(E)π(x),

w(d) =
∏
ℓ|d

(
1−

1

ℓ2

)−1

,

|Rd| ≪E d
2xθ log(dx),

and, for z > mE,

V(z) = C2(E) ·
(
e−γ

log z
+ o

(
1

log z

))
.

Furthermore, we showed that w(·) satisfies the assumptions (Equation 2.3) and (Equation 2.4),

so that we fulfill all the requirements to use Theorem 17.

Let z = z(x) > mE be a parameter to be chosen optimally later. At this point, using the

shorthand

πtwin,E(x) := #{ap : p ≤ x, p ∤ NE, ap prime},
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we can apply the definition of S(A,P, z), Proposition 16, and Theorem 17 to write

πtwin,E(x) = #{ap : p ≤ x, p ∤ NE, ap prime, |ap| ≥ z}+#{ap : p ≤ x, p ∤ NE, ap prime, |ap| < z}

≤ S(A,P, z) +OE

(
x1−

1−θ
4 z

(log x)
1
2

)

≤ XV(z)
(
eγ +

5B

(log z)1/14

)
+

∑
d≤z2

gcd(d,mE)=1

3ω(d)|Rd|+OE

(
x1−

1−θ
4 z

(log x)
1
2

)
. (3.11)

Now, in order for the last inequality to be meaningful, we will need both of the error terms

to be o
(

x
(log x)2

)
. We claim this will be the case if we choose

z :=
x

1−θ
6

(log x)2
, (3.12)

For the first error term, using our aforementioned bound (Equation 3.4) for Rd and Lemma 11

from Section 2.2, we obtain

∑
d≤z2

gcd(d,mE)=1

3ω(d)|Rd| ≪E

∑
d≤z2

d23ω(d)xθ log x

≪ xθz6 log x(log z)2

≪ x

(log x)9
,
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so the first error term is negligible in comparison to the main term. For the second error term,

we see immediately that

x1−
1−θ
4 z

(log x)
1
2

≪ x1−
1−θ
12

(log x)5/2
.

Thus, choice (Equation 3.12) of z makes the last two terms on the right hand side of inequality

(Equation 3.11) be o
(

x
(log x)2

)
.

Finally, we examine the first term on the right hand side of inequality (Equation 3.11).

Recalling the aforementioned expressions (Equation 3.2) and (Equation 3.6) for X and V(z), we

see that

XV(z)eγ = C1(E)C2(E)π(x)

(
1

log z
+ o

(
1

log z

))
=

(
3

1− θ
+ o(1)

)
C(E)

x

(log x)2
, (3.13)

where C(E) is as in the conjectural (Equation 1.11).

Overall then, we can substitute (Equation 3.13) into our initial inequality (Equation 3.11)

and gather all the error terms into the little o-notation to obtain

πtwin,E(x) ≤
(

3

1− θ
+ o(1)

)
C(E)

x

(log x)2
.

This completes the proof of Main Theorem A. □

Lastly, we can now prove our analogue to Brun’s Theorem about the convergence of the

sum of the reciprocal primes p having the property that the Frobenius trace ap is also a prime.
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Proof of Corollary A’. Fix ε > 0. Then, by Main Theorem A, there exists x0 = x0(E, θ, ε)

such that for all x ≥ x0,

πtwin,E(x) ≤
(

3

1− θ
+ ε

)
C(E)

x

(log x)2
.

By using partial summation and the above inequality, we deduce that

∑
p≥x0

ap prime

1

p
=
πtwin,E(t)

t

∣∣∣∣∞
x0

+

∫∞
x0

πtwin,E(t)

t2
dt

≤
(

3

1− θ
+ ε

)
C(E)

1

log x0
−
πtwin,E(x0)

x0

≤
(

3

1− θ
+ ε

)
C(E)

1

log x0
.

□

3.4 Proof of Main Theorem B

In order to prove Main Theorem B, we will largely follow the approach of David and Wu in

(DaWu12), including using the version of the weighted Greaves’ sieve presented as in (HaRi85,

Theorem A) with the simplifications E = V and T = U. Once again recalling the setting outlined

at the beginning of Section 2.1, we state the sieve theorem in the proceeding discussion. We

note that, rather than estimating the size of the sieve S(A,P, z) directly, the Greaves’ sieve

theorem provides a lower bound for a weighted sifted function, defined as follows.
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For real parameters z > 0 and u, v satisfying

0.074368... =: v0 < v ≤
1

4
,

1

2
≤ u < 1, u+ 3v ≥ 1, (3.14)

we define

H(A,P, zv, zu) :=
∑
a∈A

G(gcd(a, P(zu))),

where

G(n) :=

{
1−

∑
ℓ|n
ℓ∈P

(1−W(ℓ))

}+

(3.15)

with

{x}+ := max{0, x}

and

W(ℓ) :=


1
u−v

(
log ℓ
log z − v

)
if zv ≤ ℓ ≤ zu

0 otherwise.

(3.16)

It is this function, H(A,P, zv, zu), that the theorem will estimate.

We need some more notation, as follows. We set

h2r(t) :=

∫
. . .

∫
t < t2r < . . . < t1

3t2i + . . .+ t1 ≥ 1 ∀1 ≤ i ≤ r− 1
3t2r + . . .+ t1 ≥ 1

t2r < 1− t− t1 − . . .− t2r

1

1− t− t1 − . . .− t2r
· dt1 . . . dt2r
t1 . . . t2r

,

h(t) :=
∑
r≥1

h2r(t),
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ψ(t) :=
1

1− t
− h(t) for 0 < t ≤ 1

4
.

Note that, for t ≥ v0,

ψ(t) ≥ 0

(see (HaRi85, p. 205)). Following Greaves, Halberstam, and Richert, we also set

α(v) :=

∫ 1
4

v

ψ(t) dt

and

β(v) :=

∫ 1
4

v

ψ(t)
dt

t
.

As pointed out in (DaWu12, p. 115), we have that, for 1
6 ≤ v ≤

1
4 ,

α(v) = log
4(1− v)

3
−

∫ 1
v

4

(
2

t
log(2− tv) + log

1− 1
t

1− v

)
log(t− 3)

t− 2
dt, (3.17)

β(v) = log
1− v

3v
−

∫ 1
v

4

(
log(2− tv) + log

1− 1
t

1− v

)
log(t− 3)

t− 2
dt. (3.18)

Now, we can state the sieve theorem.

Theorem 18 (Weighted Greaves’ sieve)

Assume the setting described at the beginning of Section 2.1. In particular, with notation as
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described in that section, assume that for any squarefree d composed of primes in P, #Ad can

be written in the form

#Ad =
w(d)

d
X+ Rd

for some X > 0, some remainders Rd, and some multiplicative function w(·) which satisfies the

assumptions (Equation 2.3) and (Equation 2.4). Then

H(A,P, zv, zu) ≥ 2eγXV(z)
(
J(u, v) +O

(
log log log z

(log log z)1/5

))
−(log z)1/3

∣∣∣∣ ∑
m<M

∑
n<N

mn|P(zu)

αmβnRmn

∣∣∣∣,
(3.19)

where γ is Euler’s constant; M, N are any real numbers satisfying M > zu, N > 1, and

MN = z; αm, βn are certain real numbers satisfying |αm|, |βn| ≤ 1; V : N \ {0} → R is, as

before, given by V(z) =
∏
ℓ∈P
ℓ<z

(
1−

w(ℓ)

ℓ

)
; additionally,

J(u, v) :=
1

u− v

(
u log

1

u
+ (1− u) log

1

1− u
− log

4

3
+ α(v) − v log 3− vβ(v)

)
.

It is not immediately clear that the inequality in the above theorem will give us the desired

result. In light of this, we will prove the following lemma that shows how the sieve leads to a

lower bound on almost primes. The lemma is similar to Lemma 4.1 in (DaWu12), except that

it is stated in a more general setting.
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Lemma 19

In the setting of Theorem 18, suppose that, for each a ∈ A, if ℓ | a, then ℓ ∈ P. Also, suppose

that there exists x0 > 0 and r ∈ N such that for all x ≥ x0,

max
a∈A

|a| ≤ zru+v, (3.20)

and

H(A,P, zv, zu) ≥ f(x) (3.21)

for some f : R>0 → R. Then

#{a ∈ A : ω(a) ≤ r} ≥ f(x). (3.22)

Moreover, if ∑
zv≤ℓ<zu
ℓ∈P

#Aℓ2 = o(f(x)), (3.23)

then

#{a ∈ A : Ω(a) ≤ r} ≥ f(x) + o(f(x)). (3.24)

Proof. We start by establishing two properties of G(n), first that 0 ≤ G(n) ≤ 1 for all n ∈ N.

First, note that if n is not divisible by any ℓ ∈ P, then we clearly see from (Equation 3.15) that
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G(n) = 1. Additionally, if n is divisible by some ℓ ∈ P outside of the range zv ≤ ℓ ≤ zu, we see

that G(n) = 0. Now, fix ℓ ∈ P with zv ≤ ℓ < zu. Then

v ≤ log ℓ

log z
< u,

so that

0 ≤ 1

u− v

(
log ℓ

log z
− v

)
< 1.

Since the middle expression in the above inequality is the definition of W(ℓ), we have

0 < 1−W(ℓ) ≤ 1,

which implies for any n ∈ N such that ℓ | n,

1−
∑
ℓ|n
ℓ∈P

(
1−W(ℓ)

)
< 1.

Thus,

0 ≤ G(n) < 1.
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The second property that we will need is that if gcd(n, P(zv)) > 1, then G(n) = 0. We will

prove this claim directly, so assume that, for some fixed n ∈ N, gcd(n, P(zv)) > 1. Then, we

can fix ℓ ∈ P such that ℓ | n and ℓ < zv. By definition, that means W(ℓ) = 0, so that

∑
ℓ|n
ℓ∈P

(
1−W(ℓ)

)
≥ 1

since we have shown that each summand is nonnegative. We see immediately that

1−
∑
ℓ|n
ℓ∈P

(
1−W(ℓ)

)
≤ 0,

so then G(n) = 0.

Next, putting together the first property we proved above with the assumption (Equa-

tion 3.21), we have

∑
a∈A

G(gcd(a,P(zu)))>0

1 ≥
∑
a∈A

G(gcd(a, P(zu))) (3.25)

= H(A,P, zv, zu)

≥ f(x).

However, we claim that each a counted in the left hand sum above satisfies that ω(a) ≤ r and,

further, if assumption (Equation 3.23) holds as well, that the number of a in that sum such
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that Ω(a) > r is o(f(x)). We first introduce new notation that will be useful in verifying this

claim.

ω(n;y) :=
∑
ℓ|n

1+
∑
ℓk|n
ℓ≥y
k≥2

1

Now, assume for a fixed a ∈ A, G(gcd(a, P(zu))) > 0, so that from our discussion above,

we know gcd(a, P(zv)) = 1. We will show ω(a) ≤ r. From the definitions (Equation 3.15) and

(Equation 3.16), we have

0 < 1−
∑
ℓ|a
ℓ≤zu

(
1−

1

u− v

(
log ℓ

log z
− v

))

= 1−
1

u− v

∑
ℓ|a
ℓ≤zu

(
u−

log ℓ

log z

)

≤ 1− 1

u− v

∑
ℓ|a
ℓ≤zu

(
u−

log ℓ

log z

)
−

1

u− v

∑
ℓk|a
ℓ≥zu
k≥2

(
u−

log ℓ

log z

)

≤ 1− u

u− v
·ω(a; zu) +

1

u− v
· loga
log z

.

Following some algebraic manipulations, we then obtain

u ·ω(a; zu) < u− v+
loga

log z
.
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Recalling assumption (Equation 3.20), we then see

u ·ω(a; zu) < u− v+ (ru− v)

= u(r+ 1).

Dividing by u gives us ω(a; zu) < r+1, so that ω(a; zu) ≤ r, and since clearly ω(a) ≤ ω(a; zu),

this yields ω(a) ≤ r, as desired. Overall then, we see that

#{a ∈ A : ω(a) ≤ r} ≥
∑
a∈A

G(gcd(a,P(zu)))>0

1

≥ f(x),

completing the first part of the lemma.

For the second part of the lemma, we start by rewriting the left hand sum of (Equation 3.25)

as follows, ∑
a∈A

G(gcd(a,P(zu)))>0

1 =
∑
a∈A

G(gcd(a,P(zu)))>0
Ω(a)=ω(a;zu)

1 +
∑
a∈A

G(gcd(a,P(zu)))>0
Ω(a)>ω(a;zu)

1.

Now, since we showed that each a in the left hand sum above must have ω(a; zu) ≤ r, we

see that the first sum on the right is clearly smaller than #{a ∈ A : Ω(a) ≤ r}. On the

other hand, for an a to be counted in the second sum, there must be an ℓ < zu such that
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ℓ2 | a since Ω(a) > ω(a; zu). However, such an ℓ must also have ℓ ≥ zv since we showed that

G(gcd(a, P(zu))) would be 0 otherwise. Therefore,

∑
a∈A

G(gcd(a,P(zu)))>0
Ω(a)>ω(a,zu)

1 ≤ #{a ∈ A : ∃ℓ ∈ P with zv ≤ ℓ < zu and ℓ2 | a}

≤
∑

zv≤ℓ<zu
ℓ∈P

#Aℓ2

= o(f(x)), (3.26)

provided the assumption (Equation 3.23) holds. Thus, (Equation 3.26) combined with (Equa-

tion 3.25) yields

#{a ∈ A : Ω(a) ≤ r} ≥
∑
a∈A

G(gcd(a,P(zu)))>0

1+ o(f(x))

≥ f(x) + o(f(x)),

completing the second part of the lemma as well. □

Having proved the lemma, we now move to proving the main result.

Proof of Main Theorem B. Again, just as in the proof of Main Theorem A, we will use the

setup described in Section 3.2. Namely, we take

A := {ap : p ≤ x, p ∤ NE, gcd(ap,mE) = 1},
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P := {ℓ prime : ℓ ∤ mE},

and, for each ℓ ∈ P,

Aℓ := {ap ∈ A : ap ≡ 0 (mod ℓ)},

Aℓ2 :=
{
ap ∈ A : ap ≡ 0

(
mod ℓ2

)}
.

Recall once again that, with these choices, we showed in (Equation 3.1), (Equation 3.2), (Equa-

tion 3.3), (Equation 3.4), and (Equation 3.6) of Section 3.2 that

#Ad =
1

d

∏
ℓ|d

(
1−

1

ℓ2

)−1
C1(E) +OE

(
d2xθ log(dx)

)
,

X = C1(E)π(x),

w(d) =
∏
ℓ|d

(
1−

1

ℓ2

)−1

,

|Rd| ≪E d
2xθ log(dx),

and, for z > mE,

V(z) = C2(E) ·
(
e−γ

log z
+ o

(
1

log z

))
.

Furthermore, we showed that w(·) satisfies the assumptions (Equation 2.3) and (Equation 2.4),

so that we fulfill all the requirements to use Theorem 18. Thus, Theorem 18 yields

H(A,P, zv, zu) ≥ 2C1(E)C2(E) ·
π(x)

log z
(J(u, v) + o(1)) − (log z)1/3

∣∣∣∣ ∑
m<M

∑
n<N

mn|P(zu)

αmβnRmn

∣∣∣∣.
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Recalling that the constant C(E) of conjectural (Equation 1.11) is

C(E) = 2C1(E)C2(E),

we rewrite the above inequality as

H(A,P, zv, zu) ≥ C(E) · π(x)
log z

(J(u, v) + o(1)) − (log z)1/3
∣∣∣∣ ∑
m<M

∑
n<N

mn|P(zu)

αmβnRmn

∣∣∣∣. (3.27)

We can now turn our attention to applying Lemma 19. Note that since we have defined

A to include only those ap coprime to mE and, similarly, defined P to include only those ℓ

coprime to mE, we know if ℓ | ap, then ℓ ∈ P, as required by the lemma. We set

z :=
xξ

(log x)2
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and we wish to find values for the parameters u, v, ξ, and r that minimize r while still satisfying

the assumptions of the lemma and guaranteeing that the error in (Equation 3.27) is negligible

in comparison to the main term. Remembering that MN = z and |αm|, |βn| ≤ 1, we see that

∣∣∣∣ ∑
m<M

∑
n<N

mn|P(zu)

αmβnRmn

∣∣∣∣ ≤ ∑
d≤z
d|P(zu)

2ω(d) |Rd|

≤
∑
d≤z

2ω(d)d2xθ log x

≤ xθz3 log x log z

≪ x3ξ+θ

(log x)4
,

so that the error term will be negligible provided

ξ ≤ 1− θ

3
.

Next, from the Hasse bound, we have that |ap| ≤ 2
√
p ≤ 2

√
x. Hence, the assumption

(Equation 3.20) will be satisfied if

2
√
x ≤

(
xξ

(log x)2

)ru+v
.

Examining the exponents of x on each side, we see that this inequality will hold if

1

2
< ξ(ru+ v),
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i.e., if

r >
1

u

(
1

2ξ
− v

)
. (3.28)

From this last relation, we see that if any two of the three parameters, u, v, and ξ are held

constant, then r will be minimized when the third parameter takes its largest possible value.

For the case of minimizing the distinct prime factors of ap, there are no other restrictions

on u and v beyond (Equation 3.14) stated at the beginning of this section and the fact that,

in order to have a meaningful result, we will need J(u, v) > 0. In the region 1
6 ≤ v ≤ 1

4 ,

J(u, v) can be numerically approximated via the simplified integral formulae (Equation 3.17)

and (Equation 3.18) that are valid for v in that range. The numerical data suggests that for

u, v satisfying J(u, v) = 0 in this region, |1 − u − v| < 0.0005, so that the curve J(u, v) = 0 can

be closely approximated by u = 1 − v. Under this constraint, with ξ held constant, we find

that the right hand side of (Equation 3.28) is minimized when u = 5
6 and v = 1

6 . However, this

choice of u and v would result in J
(
5
6 ,
1
6

)
= −0.00109... < 0, so we make the adjustment

u := 0.83 and v :=
1

6
,

which results in

J

(
0.83,

1

6

)
= 0.00692... > 0.

Then, we can set

ξ :=
1− θ

3
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and

r1 := 1+

[
1

0.83

(
3

2(1− θ)
−
1

6

)]
.

With the above choices, the error term in (Equation 3.27) is negligible, J
(
0.83, 16

)
> 0, and

the assumption (Equation 3.20) in Lemma 19 is satisfied. As a result, Lemma 19 gives us

#{ap : p ≤ x, p ∤ NE, gcd(ap,mE) = 1,ω(ap) ≤ r1} ≥
3

1− θ
(0.00692...+ o(1))C(E)

x

(log x)2
.

(3.29)

Since removing the gcd condition will only make the set larger, we achieve the first part of the

desired result.

The choices of parameters above will be approximately optimal within the region 1
6 ≤ v ≤

1
4 .

For v0 < v <
1
6 , the simplified integral formulae (Equation 3.17) and (Equation 3.18) are not

valid, so a more careful analysis of J(u, v) will be required in order to find the optimal choice

of parameters in that range of v.

Now, when we move toward proving the result with multiplicity, the situation regarding the

parameters u and v becomes clearer since we also need to satisfy the additional assumption,

(Equation 3.23), in Lemma 19. Using part (ii) of Theorem 15 of Section 2.4, we deduce that

∑
zv≤ℓ<zu
ℓ∈P

#Aℓ2 ≪E

∑
zv≤ℓ≤zu

(
π(x)

ℓ2
+ ℓ4xθ log x

)

≪ x1−ξv

(log x)1−2v
+

x5ξu+θ

(log x)10u−1
.
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Since ξ and v are both positive, clearly the first term in the above will be o(x/(log x)2). In

order for the second term to also be o(x/(log x)2), we will need

5ξu+ θ ≤ 1,

i.e.

u ≤ 1− θ

5ξ
.

Thus, if we take

ξ :=
1− θ

3
,

we can set

u :=
3

5
.

Since we have now fixed u and ξ, we know the right hand side of (Equation 3.28) will be

minimized when we choose the largest possible v, i.e.

v :=
1

4
.

Then the assumption (Equation 3.20) from Lemma 19 will be satisfied for

r2 := 1+

[
5

2(1− θ)
−
5

12

]
.
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Once again, with these choices, we also have that the error term in (Equation 3.27) is

negligible, and that

J

(
3

5
,
1

4

)
= 0.3162... > 0.

Overall then, the second part of Lemma 19 now yields

#{ap : p ≤ x, p ∤ NE, gcd(ap,mE) = 1,Ω(ap) ≤ r2} ≥
3

1− θ
(0.3162...+ o(1))C(E)

x

(log x)2
.

(3.30)

Again, removing the gcd condition only makes the set larger, so we have now essentially proven

the second desired result as well.

We now make one final remark. While we have demonstrated that the bounds are true

as written, one may worry that the statements are misleading since they seem to offer lower

bounds for the number of p such that the integer ap is almost prime, but the p being counted

would include those for which ap = ±1 as well. This inclusion has a negligible affect on the

final result, however, since we know from our partial Lang-Trotter result, Proposition 16, that

the number of p ≤ x such that ap = ±1 is ≪E x
1− 1−θ

4 = o(x/(log x)2). Thus, (Equation 3.29)

and (Equation 3.30) give

#{ap : p ≤ x, p ∤ NE, gcd(ap,mE) = 1, ap ̸= ±1,ω(ap) ≤ r1} ≥
3

1− θ
(0.00692...+o(1))C(E)

x

(log x)2
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and

#{ap : p ≤ x, p ∤ NE, gcd(ap,mE) = 1, ap ̸= ±1,Ω(ap) ≤ r2} ≥
3

1− θ
(0.3162...+o(1))C(E)

x

(log x)2
.

This completes the proof of Main Theorem B. □
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