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EXECUTIVE SUMMARY

Data exploration stands to benefit from environments that permit users to examine and

juxtapose many views of data, particularly views that present diverse selections of data values

and attributes. Large, high-resolution environments are capable of showing many related views

of data, but efficiently creating and displaying visualizations in these environments presents

significant challenges. In this dissertation, I will present my research on “multi-view data

exploration interactions” that enable users to create sets of views with coherent data value and

attribute variations, through multi-modal speech and mid-air pointing gestures in large display

environments. This work enables users to rapidly and efficiently generate sets of views in

support of multi-view data exploration tasks, organize these views in coherent collections, and

operate on sets of views collectively, rather than individually, to efficiently reach large portions

of the ’data and attribute space’. I will present three contributions: 1) an observational study of

data exploration in a large display environment with speech and mid-air gestures, 2) ’Traverse’,

an interaction technique for data exploration, based on this study, which uses natural language

to create and pivot sets of views, and 3) ’Ditto’, a multi-modal speech and mid-air pointing

gesture interactive environment, which utilizes the multi-view data exploration technique, in

large display environments.

xxii



CHAPTER 1

INTRODUCTION

We live in a data-driven world, where our lives increasingly intersect with large and opaque

data, so we need technical and computational approaches that help us grapple with this com-

plexity in ways that keep humans ’in the loop’ with their data (2). Visualization is a key tool

in empowering people to manage and command data-driven problems (3). However, as data

grows in scale and complexity, new visualization and interaction approaches may be needed.

J. Tukey describes exploratory data analysis (EDA) as a process of ”looking at data to see

what it seems to say” (4). EDA is important in helping us grapple with data, because it aims

to allow analysts to approach data prior to statistical analysis, and prior to having precisely

formed analysis goals. Through EDA, analysts first develop an understanding of data, and then

use this understanding to develop computational or statistical approaches (5). Through EDA,

analysts often approach a large dataset incrementally, by segmenting data into meaningful

partitions and representing these parts in multiple, related views (6). EDA proceeds from both

targeted questions, open-ended inquiry and observation driven steps through a dataset, and the

analyst gradually shifts between points of interest based on prior knowledge, evolving goals and

observations (7). In exploring data, users develop an understanding of a dataset incrementally.

From a visual design standpoint, this means that the goal is not to present data in a single,

comprehensive overview, instead the goal is to enable users to create many views of their data,

that show varied selections of data values and attributes, and make it easy for users to transition

1
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from one set of interests to another (8). Through this process, users can build a mental model

of the data as they expand the focus of their exploration to new portions of the ’data and

attribute space’ (5; 9; 10; 11).

However, a major obstacle for exploratory data analysis is visualization construction, which

has been found to be complex and error-prone with users facing obstacles to selecting appro-

priate templates and mapping data to visual elements (12). EDA entails multiple rounds of

visualization construction, which requires users to repeatedly translate their questions about

the data into concrete representations, on top of already complex sensemaking tasks such as

insight and goal formation (5; 8; 11).

One approach to this challenge is to enable users to directly specify intended visualizations,

using interaction modalities beyond mouse and keyboard (13). The idea driving this line of

research is that other interaction modalities might be more expressive, and may enable users

to translate their intentions more easily into visualizations, allowing them to focus on their

data, their questions and their analysis tasks. Natural language has been of particular interest,

because it allows users to pose high-level questions without manually specifying data encodings

and visual templates, or learning a complex graphical interface. There has been tremendous

growth in this research area, with promising results (14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24;

25; 26; 27; 28; 29).

In parallel, researchers have considered how to provide an environment for creating and

displaying multiple views of data to support exploratory data analysis. One approach is to

provide an environment for EDA that externalizes the incremental and evolving exploratory
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process. The idea here is to capture transitions between points of interest, so that users can

review and revisit their process (11). Often this takes the form of a flexible space, such as a large

virtual canvas, where visualizations can be created, freely positioned and juxtaposed to enable

sensemaking over many views. Techniques for creating visualizations in these contexts often

employ methods to act directly on prior views in order to create new ones, such as duplicating

and pivoting a visualization from one set of interests in the data to another, creating a trail of

exploratory steps (30; 31; 32; 33; 34; 28) .

Research on large displays have proceeded in a related direction. Interest in large displays

grew out of findings that analysts use abundant display spaces to organize analysis artifacts

into conceptually meaningful configurations in support of sensemaking tasks(35). Large displays

have also been found to provide cognitive benefits, such as using spatial memory and embodied

cognition to navigate large data spaces (35; 36; 37). In addition, large displays allow users

to organize visualizations into meaningful configurations (38; 39), and develop complex and

integrative insights across multiple views of data (40).

However, interaction in large display environments can pose challenges, and more research

is needed to develop interaction techniques that take advantage of the unique properties of

large displays for visual data exploration. Input modalities beyond mouse and keyboard, such

as speech, mid-air gestures, touch, proxemics and mobile devices, are promising methods for

interaction with large displays, but there are things we do not fully understand about how to use

these modalities and how to accommodate the potential synergy between multiple interaction

modalities in real data analysis scenarios (41).
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1.1 Overview of Contributions

One vision for addressing interaction challenges for exploratory data analysis in large dis-

play environments is an ‘Attentive Space’. This environment would responds to a range of

inputs from users, particularly inputs such as speech and mid-air gestures that allow users

to move around and engage in collaborative discussion with others, and create visualizations

of their data on-the-fly without breaking ‘the flow’ of data exploration. An attentive space

would leverage the cognitive and perceptual benefits of large displays for sensemaking in data

exploration (35; 42; 40; 43), while also addressing visualization creation challenges in this en-

vironment (41), by offloading visualization construction and refinement onto a system that

responds more directly to their exploratory interests. While these ambitious goals are not fully

realized in this dissertation, it contributes to this long-term effort.

In this dissertation, I first set out to understand how people use large display environments

to explore data, in particular how they might use conversational speech and gestures to con-

vey their intentions to a ’smart assistant’, who could act on their behalf and respond to their

requests. With my collaborators, I conducted an observational, exploratory study to examine

this more closely, and we found that participants in our study adopted an interaction style that

was effective in requesting many views of data, that could be arranged in coherent configura-

tions, and that supported complex tasks that spanned more than one view of the data, using a

combination of ’targeted’ requests, ’cast-a-net’ requests- through which participants expressed

multiple, complex points of interest in one command, and ’referential requests’, which utilized

prior views as templates for requesting new visualizations. We describe these findings in more
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detail in Chapter 3, and in our publication (44), as well as in our publications within the natural

language processing research community (20; 21; 22; 23).

This initial study raised a set of questions, because the interaction approach expressed by

participants was not reflected in current data exploration techniques. First, we needed to figure

out an approach for using natural language to create not just one view, in targeted requests,

but potentially many views at once, based on multiple expressed points of interest (cast-a-net

requests). This presented challenges because prior work in this area did not offer formalisms

for translating multiple data value and attribute interests into coherent sets of views, and this

had not been explored for natural language inputs. Second, we needed to develop approaches

for characterizing the ’referential actions’ we observed in our initial study. Addressing these

questions involved designing novel interactions in support of multi-view exploratory tasks. We

present our designs and an implemented system ’Traverse’, which takes natural language com-

mands about interests in the data, and creates coherent sets of views, that we term ’view

collection.’ These view collections can then be referenced and acted upon, either expanded or

copied and pivoted, to help users ’traverse’ a dataset, through multiple, evolving points of inter-

est. We found that participants were able to efficiently use both direct and referential actions,

to create multiple views, and views with diverse compositions of data values and attributes,

and that many found data exploration in this context to be enjoyable and easy to learn. This

design process is described in Chapter 4.

Finally, we returned to the large display and multi-modal speech and mid-air gesture context,

and considered how to realize the interaction approach we observed in the first study. This
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entailed both building an input system to accommodate multi-modal speech and mid air gesture

interactions, and considering how to combine these inputs together for data exploration tasks.

We also needed to consider the role of spatial positioning and custom configurations of views,

that are useful in a large display environment for complex sensemaking tasks. We evaluated

these design choices in a system we call ’Ditto’, which was a name chosen to highlight the

core ’duplicate and pivot’ mechanism of our technique for multi-modal speech and mid-air

gestures. We observed that participants used both direct and referential actions, and used

our multi-modal speech and gesture input system, to create and then copy and pivot sets of

views to explore data. Participants organized these views into meaningful groups on the large

display, using touch, and then indicated one or many of the views, to duplicate and pivot in

new exploratory directions. In addition, participants dynamically referenced views from prior

points in their exploration, which suggests that the large display, and the ability to reference

prior visualizations, enabled exploration of complex and evolving points of interest. These

contributions are described in Chapter 5.

To my knowledge, this dissertation, and closely coupled prior work completed

with my collaborator Abhinav Kumar (20; 21; 22; 45; 23; 44), contributes the

first multi-modal speech and mid-air gesture system for large displays and for

data exploration. This realizes a longstanding ambition in human computer interaction,

dating back to work from MIT media lab in the late 1970s and 1980s in ’Put that there’ (46).

Given the trajectory of large displays, which are becoming easier to build and drive with

a single machine (47; 42), as well as the trend toward capturing and responding to natural



7

language spoken inputs (48), as well as in capturing detailed physical movements of people

in environments through depth sensors (49), I anticipate that interest in multi-modal speech

and mid-air gestures for visualization in large display environments will increase in the next

few years. The contributions of this dissertation will further efforts to leverage the combined

properties of abundant display space, and natural language spoken inputs with mid-air gestures,

for new approaches to longstanding challenges in data visualization.



CHAPTER 2

RELATED WORK

Data exploration is an iterative process of generating insights about a dataset, prior to

in-depth analysis involving statistical models or hypothesis testing (4). Exploring a dataset

involves a combination of open-ended inquiry, where there may not yet be a precisely formulated

goal, as well as focused inquiry, based on the knowledge or interests of the user (7). Visualization

is an essential part of data exploration, because it can present data in an accessible format that

leverages the powerful human visual system for identifying interesting patterns or features

within the data - essentially using vision to think (3). When visualization is used to support

data exploration, the exploratory process can be ‘bottom-up’, grounded in observed features in

the data. The end point of data exploration can be a precisely formed analysis goal, that can

be addressed through computational or statistical approaches (5).

With large and complex data, it is difficult to construct perceptually meaningful and ac-

cessible visual overviews, which presents problems for the canonical information visualization

paradigm ’overview first, zoom and filter, details on demand’ (50; 51; 52). One approach to

visual data exploration is to instead segment data into small and meaningful selections, based

on user interests and data driven observations, allowing a user to gain familiarity with the data

incrementally, and identify potential analysis methods and priorities (30; 39).

There are several major approaches in visualization research that aim enable visual data

exploration.

8



9

The first considers reducing challenges in constructing visualizations (12). This includes an

overview of view construction models and theory, as well as tool sets and graphical interfaces

that make it easy to construct a view of data (53; 54; 55; 56; 57; 58; 59). If it is easy to visualize

data, then it will be possible for people to construct views in support of their exploratory tasks.

I will refer to this as Area 1, and will provide an overview of this work.

The second approach considers ways to use interactions ’beyond mouse and keyboard’, or

’post-WIMP’- post windows, icons, menus and points- to enable users to construct visualiza-

tions more naturally, and without learning how to navigate a complex graphical interface (13).

While this includes interaction modalities such as sketching (60; 61), tangibles (62), direct ma-

nipulation (27) and touch (63; 64), among others, we will focus on natural language interaction

to generate views of data (14; 15; 16; 26; 25; 20; 21; 23; 22; 45). I will refer to this as Area 2.

The third considers ways to externalize the visual data exploration process, and directly

support exploratory tasks. Many of these adopt a ’flexible canvas’ environments for displaying

visualization, which also retains a history of incremental exploratory actions- ’mutating’ steps

through different selections of data values and attributes (30). These approaches also provide

an environment that accommodates more than one view of the data- to show exploration history

across a series of views (30; 31; 32). The benefit of this approach is that analysts can offload

memory onto perception (65). I will refer to this as Area 3.

The fourth approach considers the benefit of large display environments for visual data

exploration and sensemaking (35). In particular, how abundant display space allows users to

externalize many views of data produced during the exploratory process and perform tasks that
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span more than one view, and arrange these views into conceptually meaningful groups (38; 39),

that can be viewed both up-close and at a distance (66). There is also work in this area that

relates to area 2- post-WIMP interactions- where new interaction modalities are considered in

response to specific interaction challenges pertaining to large display environments (41; 49). I

will refer to this as Area 4.

The fifth approach focuses on guidance and recommendation for data visualizations (6).

This includes helping users consider next steps in their exploration of data (1), and includes

avoiding fixation and rabbit holes, that may lead to erroneous conclusions (67). While our

work does not directly contribute to research in visualization recommendation, it is informed

by theory about the recommendations for users based on likely next steps in typical exploratory

processes (1). I will refer to this as Area 5.

Area 1 Visualization Construction 2.1

Area 2 Natural Language Interaction 2.2

Area 3 Data Exploration 2.3

Area 4 Large Displays 2.4

Area 5 Visualization Recommendations 2.5

This research began with a novel observational study which combined aspects of several

of these areas. The observation study was conducted in a large display environment (Area

4), where users requested views of data in support of data exploration using combined speech

and mid-air gestures (Area 1 and Area 2), and responses were visualizations that externalized
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their exploration process (Area 3). These combined factors led to observations of interaction

approaches that were not well characterized or reflected in current visual data exploration tools.

In this section I will discuss major research contributions in each of these areas and how

they relate to the contributions of this dissertation.

2.1 Visualization Construction Challenges and Approaches

Visualization construction, broadly, may target a variety of goals (68), including tasks that

contribute to developing an understanding of a data set in a larger exploratory process. In

this section, I will discuss the view construction process, view construction roadblocks and

challenges, and briefly mention tools for manual view specification, that are designed to make

visualization construction easier.

2.1.1 View construction and roadblocks

When creating a visualization, raw data needs to be transformed into a visual encoding and

presented to the user. There are several models for this process, but the model from Card et al.

is prominent. It presents a step-wise model for visualization construction. First, data must be

transformed from its raw format, filtered and aggregated, into data tables. These data tables

are then mapped to visual templates, such a bar charts or line charts, so that the data can be

visually represented to the user. After rendering the view, users might interact to transform

the view by zooming or changing the level of abstraction (3). Other models include Chi’s data

state model (69), and Ware’s model incorporating the human perceptual system (70). But,

these models share an emphasis on step-wise transitions from data, to abstractions, to visual

encodings that can be represented to the user.
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In practice, view construction can be difficult and error prone. Grammel et al. performed

an empirical study of visualization construction. In this work, ’infovis novices’, those not

trained in visualization construction, were recruited to participate in a laboratory study, where

they verbally specified intended views to a remote mediator, who translated their requests into

realized views using Tableau.

The first outcome from this study was a model of the view construction process. They found

an iterative process in designing views: data attribute selection, visual template selection, visual

mapping specification. This process may proceed in different orders, as illustrated in the state

diagram depicting these activities.

The second outcome from this study were descriptions of view construction roadblocks, or

places where participants struggled to describe intended views. Infovis novices struggled to

translate questions into appropriate visualizations, including template selection, choosing map-

pings, layouts and encodings. In addition, they found that partial specification was common,

and the authors list different partial specification types (such as failing to specify visual map-

pings for selected data attributes or failing to specifiy abstractions and groupings, such as levels

of abstraction for temporal variables). Grammel et al. argue that partial specification arises

because the users’ mental models are simplistic and they omit elements that are assumed to be

inferred from the present context in which their query is posed (eg. the current view or prior

views provided).

The take-away from this study is that even when a user interface is intuitively designed,

and when there is no need for the user to learn coding or scripting for visualization creation,
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users may still make errors, and that tools should make some of these selections for users by

supplying defaults or providing view suggestions.

This dissertation focuses on enabling users to generate views of their data. However, I

focus less on overcoming visualization construction roadblocks, and more on enabling breadth

in data exploration- a diversity of data value and attribute selections- and repeated cycles

of visualization construction. However, I build on Grammel et al.’s finding that participants

often utilized visual templates or prior views in posing requests for specific visualization. This

finding provides additional empirical support for the ’referential operations’ described in this

dissertation.

2.1.2 Tools to facilitate view creation

There are a variety of tools that assist with visualization construction. In many contexts

users specify views manually, through direct interaction with a graphical interface or through

specifying view components directly. With these tools and languages, users select data variables

(eg. columns from a tabular dataset) as well as data transformations, such as aggregation or

binning, and apply filters to select subsets of the data of interest. Users then select a template

(such as a bar or line graph) through which to visually encode the data, and then may apply

colors and scales and for the selected data and view, producing the final result.

This can be done through high-level languages- such as protovis (53), d3 (54), ggplot2

(55)- high-level coding grammars, such as Vega (57), vegalite (56) or through interaction with

a visualization generation interface such as through Polaris/Tableau (59), ivisdesigner (58),

and lyra (71). Graphical-interface based view generation allow users to select data variables
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through selections within a menu or through drag-and-drop operations. These actions translate

into queries on databases, which in the case of Tableau produce views that can be seen one-at-

a-time or in multi-view dashboards.

Polaris, which is a foundation of Tableau, a widely adopted software for view generation, uses

a drag-and-drop interaction style to facilitate view creation without coding. The user selects

view templates through a menu and maps data variables to axes, shapes or colors. Tableau has

added additional features, such as natural language view creation, to lower the barrier to view

construction. (59).

2.2 Natural Language Interaction With Visualizations

In the previous section, I discussed research suggesting that visualization construction can

be difficult and error prone. One approach to address this challenge is to consider visual-

ization generation through alternate interaction modalities that are more expressive. These

include sketching interfaces that combine pen and touch interactions (60; 61), interactions with

tangibles (62). and direct interaction (27).

Natural language queries also present a promising alternative to manual specification, by al-

lowing users to directly pose questions without translating high-level queries into low-complexity

interaction primitives with a potentially complex visual interface. There has been grow-

ing interest in natural language interfaces (NLI’s) for visualization systems and applications,

both focusing on database queries (72; 73; 74; 75; 76; 77; 78) and for visualization applica-

tions (14; 15; 16; 17; 18; 19; 20; 21; 24; 25; 26; 27; 28; 29).
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In this section, I will give a brief overview of recent work toward NLIs for visualization. This

dissertation primarily contributes toward the design of novel interactions for data exploration,

and it utilizes an NL approach. However, the primary contribution is not toward robust NL

interpretation, or a contribution to natural language research areas. Our contribution is towards

how NL might enable breadth in data exploration, and coupling NL and mid-air pointing

gestures for large display interactions. Using the terminology presented in Srinivasan et al., this

dissertation presents a restricted NLI, which responds to a small range of NL commands (25).

In this section, I will present other recent work in NL techniques for data visualization, with

a focus on the target application or problem area, to put the work of this dissertation into

context.

Srinivasan et al. reviews NLIs for data visualization, and characterizes them by three

dimensions: visualization capabilities, which allow users to specify visualizations, data focused

capabilities, which allow users to pose questions about a dataset, and system control capabilities,

which allow users to move windows among other features (48).

Articulate was an early tool that provided visualization capabilities, and it provided several

alternate charts in response to user queries (14). Eviza and Evizeon focused on conversational

requests, and on iterative refinement of a visualization’s design (16; 79). DataTone presented a

technique for resolving ambiguity in visualization queries (15). A number of other approaches

combine database queries with NL and provide visualizations (80), or use recurrent neural

networks to generate visualizations (81). NL4DV is a toolkit for generating visualization speci-

fications based on user queries, and is designed to be adaptable for diverse application contexts.
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However, it only accommodates requests for new visualizations, not requests to modify or ref-

erence a prior visualization (29).

There are a number of commercial tools that integrate NLIs, such as Power BI, IBM Watson

and Ask Data feature in Tableau (82). Arklang is used by Ask Data to describe NL queries in

a structured format, which can be understood by VizQL for Tableau (24; 83).

InChorus focuses on multi-modal pen and touch and speech interactions. InChorus also

presents an argument in favor of creating restricted NLIs, in which the focus of the research

is on interface or interaction design, rather than complex parsing of NL queries. They found

that users were able to use a restricted NLI, which responded to a set of specific NL query

formats, leaving as future work the possibility of building more complete NLIs for their novel

multi-modal interaction technique (25).

This dissertation adopts the approach of InChorus, to focus on novel challenges posed by

NLIs for visualization problems by using a restricted NLI command interface. This approach

allows us to explore a specific interesting issue, with the development of a more robust NL

interpretation technique as future work.

I have collaborated to work in the area of NL for data visualization, in collaboration with

Abhinav Kumar and Abeer Alsairi, with Andrew Johnson, Jason Leigh, and Barbara DiEugenio,

and our has been presented in visualization and natural language processing venues (45; 84;

20; 21; 23; 22).
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2.3 Externalizing Data Exploration

One approach to enabling data exploration addresses cognitive challenges in data explo-

ration, by focusing on externalizing the exploration process.

Visual exploration can be cognitively intensive. It is an iterative process, involving multiple

rounds of actions, toggling between view construction activities and observation and insight

generation activities (9; 10; 11). One particular challenge is memory. An analyst needs to

be able to recall previous findings, to make decisions on what to explore next. They need to

be able to return to past visualization states, and iterate on them (85; 30). They need to

be able perform tasks that span more than a single view- such as comparing or correlating

results (86; 39).

To address this challenge, a variety of interaction techniques have been developed in recent

years that focus on a particular environment for displaying visualizations histories- a flexible

canvas environment. This environment often consists of a virtual canvases with pan and zoom

interaction. In other cases, it consists in a large display with abundant space for showing many

views of data at once (38). We will discuss the particular features of large display cases in

the section on large displays and data exploration, and focus here on flexible canvases more

generally.

Broadly, virtual canvas tools aim to enable users to generate multiple views of their data,

and position these views freely. The goal is to allow users to view their data from different

perspectives and arrange views to reflect their sensemaking process. These environments are

motivated by the finding in Andrews et al., where analysts performing sensemaking tasks over
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large volumes of text documents within a large display environment used ‘space to think’, by

offloading conceptual relationships between analysis artifacts onto the display through spatial

positioning (35). The large, flexible display area allowed the analysts to flexibly express con-

ceptual schema. For instance, analysts might cluster groups of related documents, or construct

timelines.

In this section, I will describe several prominent flexible canvas environments, both ones

designed for virtual canvases and ones designed for large display environments. I will describe

how views are created and utilized to create more views, as well as design decisions about view

composition, management and layout.

2.3.1 Systems to support data exploration

First, I will describe the contributions of Javed et al, in Explates (30). ExPlates targets

exploratory data analysis. The authors note that exploratory data analysis can involve high

cognitive load activities, including use of memory and reasoning. The tool aims to externalize

and spatialize the EDA process, and help analysts with recall and reflection.

Referring to the Card et al. pipeline (3), they define views as a tuple of D,M,V, where D

represents data transformation, M represents visual mappings, and V represents view transfor-

mations (eg. Navigation). Each data transformation, which they term a mutating interaction,

produces a new view of the data, because this stores a history of exploratory steps where the

representation or the underlying data changes.

Components of their technique also reference a ‘data flow’ style interface. They show two

kinds of plates- data plates, which depict data transformations, and visualization plates, which
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show the views. They use the technique of showing data wires and data anchors to visually

depict the flow from one view to another. Data plates include database actions, as well as

operations like filter, join, intersect, sort. Visualization plates include major view types (scat-

terplot, line graph, pie chart, bar chart, tag cloud, world map, US map). New plates are created

either by selecting data or visualization plates from a menu, or by mutating operations within

an existing view.

They provide automatic layout, using a grid-based layout algorithm. The algorithm focuses

on showing the history as a branching tree, with space for the wires and anchors. In the case

of mutating operations, views are positioned next to the parent view. In the case of new views,

the user can position them or the algorithm finds a free space. Users can re-position views,

through dragging interactions, and views the intersect are shifted aside and the algorithm works

to keep the layout intact.

We utilize the idea of presenting visualizations where the data state has changed as separate

views. We differ in that we focus on actions to modify the data state in multiple views. We

also focus on an NL approach to this task, and a large display environment, which produces a

large volume of views than is seen in ExPlates.

There are several other prominent data exploration systems that utilize the flexible canvas

metaphor in support of data exploration.

In Gratzl et al, they present Domino (31). Domino consists in a visualization technique for

exploring related subsets in a multivariate dataset. The focus is on enabling users to examine

and manipulate subsets of interest across multiple views, with metavisualization techniques to
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connect subsets across multiple, related views. Specifically, the application shows subsets of

the data, data associated with those subsets, and relationships between subsets. Domino uses

blocks, or rectangular regions, to represent subsets of the data. These blocks can be related

using different techniques- including parallel coordinates or sets. Users can interact with items

or interact with blocks. This thesis does not target between-view relations at the level of

granularity shown in Domino. In addition, while Domino is in a flexible canvas environment,

the authors do not focus on flexible canvas interaction, view organization, or view scalability.

Zgraggen et al. present PanoramicData (32), which uses a boundless canvas, basic views

and connections that are boolean expressions. PanoramicData presents to the user a scheme

viewer, which contains the attributes for the user to select from. They drag and drop attributes

onto the display, and each are depicted in a separate view. For instance, a user may select

marital status and salary less than 50k, and each will appear in a view. These two attributes

can then be connected, and one chart can be filtered on the other when the user makes a

selection. Users can also drop selections onto existing views, and there are two drop targets for

attributes: the group target, which allows users to specify what is summed over, and the color

target which specifies how entities ought to be colored. Handwritten tags can be added, with

notes to be returned to later.

The PanoramicData UI uses pen and touch gestures for interactions. The authors argue that

this gives the user expressive power and reduces the cognitive load in interacting. Panoramic-

Data has a 2d canvas with pan and zoom. The canvas is unbounded and elements can be freely,

and manually, positioned.
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Authors do not explicitly mention scalability, but as with other tools that feature an un-

bounded canvas with manual positioning, as the number of views grows the effort to find specific

views and manage new content will also likely grow.

Bavoli et al, present VisTrails (87). VisTrails focuses on presenting a data flow approach,

where multiple stages of data transformation are shown as a trail. VisTrails allows users to

specify multiple view endpoints for a single trail.

Van den Elzen and Van Wijk focus on exploratory transitions, but in a specific context-

transitioning from large overviews, to small multiples. They pursue this work in a ‘trail-like’

environment, which presents the exploration history. They provide interactions that make

it easy to go from visual overviews to small sets,, in a trail that preserves the exploration

context (34). Our work has similar methods to expand out a visual overview, through a specific

category of referential action, however, we focus on a large, flexible canvas environment, where

views can be freely positioned, and not in a layout that emphasizes visualization provenance.

We also pursue other interaction types, that copy and pivot a target visualization.

2.3.2 Externalizing exploration and this dissertation

This dissertation shares a focus on presenting multiple views, generated over the course of

data exploration, as an approach to externalize the exploratory process, and enable tasks that

span more than one view of data. I pull from this body of work the notion of ‘copying and

pivoting’, as a form of incremental exploration, that is presented visually to the user (30; 31; 32;

33). I also pull from this body of work an understanding of the distinction between mutating
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actions- that alter the underlying data values and attributes presented in a view- from other

kinds of interactions, that alter the encodings and layouts within a view (30).

However, unlike the techniques described above, this dissertation targets inter-

actions that create and spatially organize many views at once, in support of multi-

view analysis tasks. This means that we adapt copying and pivoting approaches

to a multi-view context. In addition, this dissertation focuses both on enabling incremental

steps, which can be understood through a sequence of views, but stresses the need for conceptual

groupings of visualizations, based on common features.

2.4 Large Displays and Visualizations

Large display environments have been found to be beneficial in a variety of contexts rele-

vant to visual data exploration (42). They enable users to leverage movement and embodied

cognition (88; 89; 37), for improved memory in data intensive tasks. With encodings that

are perceptually scalable, research suggests that users can perform visual queries over both

large datasets and many related views(43; 90; 91). In response to these findings, applications

have been designed for large visualization environments viewing at different distances from the

display (92), collaboration (93; 94; 95; 96), presentation of large volumes of data (97; 98), per-

forming complex tasks (99; 98; 40; 96) and integration of 2d and 3d views (47; 95; 100). This

dissertation focuses on benefits for sensemaking and integrative insights across many views of

data, and considers interactions that will support visual data exploration on the display.

There are two issues that I focus on in this dissertation with respect to large displays and

visualization. The first concerns using abundant display space to support sensemaking (35)



23

and data exploration that spans more than one view of data, which includes what we know

about how people organize content on a large display and how to support these actions through

metavisualization (38; 39). The second concerns overcoming interaction challenges with large

displays, with a particular focus on post-WIMP interactions.

2.5 Large Displays, Many Views of Data

In ’Space to Think’ Andrews et al. describe how analysts use abundant display space to

offload their sensemaking process onto the display, by physically grouping conceptually mean-

ingful analysis artifacts together on the display. However, this insight- that spatial organization

on large displays can support sensemaking in the analysis of complex data- has been under-

investigated with respect to information visualizations, rather than text documents (35).

Knudsen et al. extended this idea to look at visualizations and data analysis, focusing on how

analysts used abundant display space to support their tasks. The authors of this work used

whiteboards to elicit interactions, particularly mid-air gestures, and noted that participants

manipulated views to facilitate multi-view comparisons. They note that users wanted to spread

out a set of views, to compare them, often ordering these views or composing these views

into coherent sets, so that they could efficiently reason over them (38). Our findings in our

pre-design evaluation, and in our evaluate of Ditto, echo these observations. In addition, our

approach to providing coherent sets of views to users is consistent with the observed action the

Knudsen et al. study- that abundant display space can be used to segment, and then visually

juxtapose many related views of data.
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Chung et al. discuss considerations in large display environments and describe the value of

juxtaposing many heterogeneous views of data. Their scheme of describing the kinds of coordi-

nated data views mirrors the scheme to be developed in this thesis. They discuss juxtaposing

views to compare, complement to see different aspect of a dataset (similar to the browse

category described in this proposal), split which decomposes visualizations into multiple views,

and two categories of hierarchical views: focus+context and overview+detail. They also dis-

cuss the need for use of space to convey relationships. However, these design considerations are

applied to display ecology scenarios, and not in service of a specific final application (101).

Knudsen and Carpendale explore the topic of abundant display spaces and visualization,

noting that multiple views help us grapple with increasingly large dataset, because they allow

analysts to segment and group data into accessible pieces, breaking down information into

meaningful chunks. Then, people can compare and reason about their data, by considering

different sets of data variations in multiple views. They note that large displays have the

potential to enable these kinds of tasks, with views showing diverse data value and attribute

selections. In particular, large displays have sufficient space and resolution to allow users

to spatially organize information, forming implicit metavisualizations- or visualizations of

visualizations. One of the challenges indicated by this paper is how to use both abundant display

space and human spatial organization capabilities to enable interaction in visual analytics. They

describe the need for ’formalisms’ to develop a better conceptual understanding of the new design

space of large displays (39).
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Metavisualization is explored further by Knudsen et al. in an exploratory study, to capture

design ideas for visually representing between view relations. This work focuses on pair-wise

between view relations (102).

This dissertation aims to contribute toward the effort to develop a better conceptual under-

standing of the new design space for large displays, both in proposing a technique for providing

coherent multi-view responses to data-centered queries, and by using spatial positioning to

enable efficient view creation actions in data exploration. We also contribute formalisms for

multiple views, through our description of view collections, which are sets of views with coher-

ent between-view relationships that are generated by our technique, both for natural language

and for speech with mid-air gestures.

2.6 Large Displays and Interaction

Interaction with large displays presents challenges, and standard approaches, such as inter-

action through mouse and keyboard inputs, prevent users from fully leveraging the cognitive

and perceptual benefits of large displays, described above (13; 41; 49).

David Norman described one of the primary challenges in designing computer systems as

reducing the Gulf of Execution, or the barriers that prevent users from executing actions through

a computer interface (103). Reducing this Gulf of Execution in the context of visual data

exploration for large displays entails interaction design that brings users to their goals more

efficiently and directly, by making it easier to create views of data on the display.

There has been considerable interest in ’Natural User interfaces’ (NUI), that capture and

respond to so called natural user behaviors, such as physical movements or gestures on multi-
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touch displays (49). Realizing these interfaces has been particularly enticing for large and

immersive contexts, where users are physically present within a digital space such that they are

interacting with objects on the display at human scale (42; 41).

Knudsen et al. describe capturing some of these desired interactions, that are embodied and

realized through gestures, in their whiteboard study, noting that participants would gesture to

indicate suggested layouts or ways to manipulate visualizations on the display (38).

There has been research examining interaction in large display environments for visualiza-

tion through multiple devices (104; 105; 95; 100; 94; 106), through touch and direct manipula-

tion (107; 33; 108) , and through proxemic interactions (92; 66; 36). Many of these approaches

for large displays focus on interaction that modifies the presentation of information within a

view, such as zooming or selecting new encodings or layouts.

Several papers consider touch based approaches to generate visualizations for a large display,

such as VisWall and PADE, which use a drag-and-drop style interface to create visualizations,

and direct interaction with visualizations to create new ones (33; 107).

We depart from this line of work in several respects. First, to my knowledge, this is the

first contribution of speech and mid-air gestures for creating visualizations on large display

environments. In the HCI community, there is early work in the 1980s toward multi-modal

speech and mid-air gesture interactions with a large display in Bolt’s work ’Put that There’ and

in Hauptmann’s ”Speech and gestures for graphic image manipulation” (46; 109) In recent years,

researchers have explored this further (110), including for interaction with a smart TV (111).

However, the unique affordances of combined speech and mid-air gestures have not previously
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been considered for visual data exploration on a large display. Given the interest in Natural

User Interfaces, and growing interest in large displays for data exploration, our research stands

to contribute to several important research directions in visualization and human computer

interaction.

2.7 Visualization Recommendations

Given challenges in creating views, there are systems that aim to provide visualization sug-

gestions using mixed-initiative approaches. Mixed Initiative systems aim to reduce work for

users by taking initiative and automatically performing tasks that are difficult for humans to

complete (112). Although this dissertation does not directly contribute to visualization recom-

mendation research, it does have similar motivations- addressing challenges in data exploration-

and use similar models, which seek to understanding data exploration transitions.

2.7.1 Breadth oriented data exploration

Wongsuphasawat et al. present Voyager (6), which targets exploratory visualization and

used mixed-initiative approaches which allow users to explore data without manually specifying

views. Rather than transform raw data into tables, and map the table to visual elements

or templates in specifying views, users select from an interface which displays a schema of

the data, as well as transformations of the data, and then this is used by a visualization

recommendation engine to automatically generate views. Voyager focuses on breadth-oriented

exploration and prioritizes data variation, by supplying views with diverse data selections, over

design variation, which would prioritize alternate representations of a fixed data and attribute

selection. The system uses Vega-Lite (56) which specifies views using a grammar based in
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Grammar of Graphics (113) and VizQL (83). Users can bookmark views that they found

useful, and these are stored in a separate area for later access. Voyager2 builds on this work,

by offering options for partial specification, where gaps are filled in with wildcards.

This dissertation shares a focus on breadth oriented exploration, by supplying many views

of data that feature data and attribute variations. We utilize the terminology developed in this

paper- breadth-oriented exploration and multiple views with data variations- in developing our

design goals.

2.7.2 Other recommendation approaches

There are a number of visualization recommendation systems, some of which focus on

providing users with a broad range of visualizations suggestions, that present diverse selections

of data values and attributes, and also incorporate effectiveness criteria, to constrain the space

of possible visualizations.

Mackinlay et al. designed APT (114), which presents a large space of potential views, by

first enumerating many visual encoding options and then winnowing down the suggestions using

a set of effectiveness criteria from Bertiin et al (115). In Tableau, ”Show me”, adopted similar

features, by providing design suggestions (116). In a similar vein, Sage is a visualization recom-

mendation system that uses a taxonomy of data properties to recommend visualizations (117).

Other work in automatic design of visualizations includes (118; 119; 120; 121; 122; 123; 122).

Approaches that automatically create sets of views on behalf of the user include Design

Galleries (124), which give design variations based on a starting point supplied by the user,
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essentially providing alternate views. VizDeck, provides a gallery of recommended charts, but

focuses on statistical properties, rather than design variations (125).

These approaches share a focus on providing multiple views to users, in support of data

exploration. We add a focus on natural language interaction, translating user interests into sets

of views, and follow-up referential interactions, to extend the exploration focus.



CHAPTER 3

MANY AT ONCE: CAPTURING INTENTIONS TO CREATE AND USE

MANY VIEWS AT ONCE IN LARGE DISPLAY ENVIRONMENTS

This chapter presents a study of visual data exploration in a large display environment,

where participants expressed their exploratory intentions through speech and mid-air gestures.

The analysis of this study informs the subsequent development of the multi-view data explo-

ration technique discussed in Chapters 4 and 5 .

This chapter is published in Computer Graphics Forum 2020 (44), and was presented at

EuroVis 2020. Coauthors of the work include Abeer Alsaiari (AA), Abhinav Kumar (AK),

Barbara Di Eugenio (BDE) and Andrew Johnson (AJ). The contributions from each author

are: AK and I designed and conducted the study, with extensive input from BDE and AJ. AK

and I reviewed the videos and developed an initial coding scheme. I refined and expanded this

coding scheme, in consultation with AA and AK. I wrote the text, and created the images, with

input from AA and AJ. I am the first author of this publication.

3.1 Introduction

Large, multi-view environments present a variety of benefits in visual data exploration (42),

particularly in contexts where users of the environment wish to juxtapose and arrange many

views of data (35; 126), and generate integrative insights across these views (47). However,

interaction in these environments remains an area of active research (127).

30
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In this Chapter, I will describe results from an observational, exploratory study of visual

data exploration in large, multi-view environments, using an approach similar to Grammel et

al. (12), where participants express their intentions to a remote mediator who responds on their

behalf. This approach allowed us to study the intentions of the participants independent of any

particular view generation paradigm or graphical interface, giving us access to what users of

a large, multi-view environment would like to do when unconstrained by the design choices of

existing tools.

Existing large display or virtual canvas environments for visualization (eg. (128; 31; 30; 87;

32; 28; 107; 33)) typically allow users to explore their data by producing one view at a time,

either through drag-and-drop operations through a menu, through actions on elements within

a single view, through trails of copied and pivoted single views, or through data-flow diagrams.

In contrast, we observed that when participants expressed their intentions without con-

straint, they frequently posed requests for many views of data, by asking for many subsets of

the data and many data attributes at once. We term this ‘casting a net’. These requests were

accomplished both through direct queries and by utilizing prior views that were persistently

displayed on the canvas. When using existing views, participants frequently posed requests to

copy and pivot these views, but they often did so in ways that ‘scaled-up’ their inten-

tions, expressing multiple, parallel copy+pivot actions to perform on a single view

target, or by collectively copying and pivoting whole sets of views in one command.

These ‘cast-a-net’ requests enabled participants to efficiently produce sets of views

with conserved features- or features in common across the visualizations- which
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utilized the display space and allowed them to perform tasks that spanned many

views.

In this Chapter, I will present a detailed description of how participants efficiently expressed

intentions to ‘cast a net’ to target many subsets of the data and data attributes. This includes

use collective and parallel actions on prior views on the display. We contribute a description of

how these actions facilitated data exploration and discuss the design implications for multi-view

environments.

3.2 Background

3.2.1 Large Displays

Recent research suggests a variety of potential benefits for information visualization in

large display environments. One of the early findings about large display surfaces is that,

when provided with “space to think”, analysts use large displays to organize analysis artifacts,

encoding conceptual relationships by positioning related text documents together in space (35).

Large displays also enable users to leverage movement and embodied cognition (88; 89) for

improved memory in data intensive tasks. When perceptually scalable encodings are applied

to data attributes, there is evidence to suggest that users can perform visual queries over large

volumes of data, and over many related views of data (43; 90; 91). Finally, given the ability to

display more related views of data (129), users appear to formulate integrative hypothesis that

make use of these views(40). In response to these findings, applications have been designed for

large visualization environments targeting hybrid display of information (92), collaboration (93),

presentation of large volumes of data (97), and integration of 2d and 3d views (47; 95; 100).
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Interaction with visualizations on large displays is understood to present challenges and

opportunities (42; 127). Recent work has examined movement or proxemics as an input to

visualization environments (66; 130), as well as multi-touch (108) and an ecology of devices

through which users interact with the large, shared display (105; 93; 106; 94).

Our work contributes to this body of work by examining use of a large display for a real

visual data exploration scenario, but we capture intentions for views independent of a realized

interface. Some of our findings echo Knudsen et al. (38), where a whiteboard workshop captured

interactions over many visual artifacts on large display surfaces. Our work complements this

analysis by observing similar tasks that spanned many views and utilized large display areas.

3.2.2 View Construction and Multi-View Environments

A variety of flexible canvas environments have been created for information visualization,

including virtual canvases with pan and zoom interaction. Broadly, these tools aim to enable

users to freely generate views of their data and position these views freely, and aim to allow

users to view their data from different perspectives, (eg. (128; 31; 30; 87; 32; 28)). View

creation in these environments have been explored using a variety of interaction techniques.

Initial views are often added to the flexible canvas through interaction with a menu, such as

through drag and drop operations onto the canvas. Alternatively natural language queries can

create views, in systems such as FlowSense, which feature a NLP interface to the data flow

model, where data is selected and transformed through a set of views (28).

Many of these systems also present ways to create new views through actions on existing

views. One approach is to allow participants to copy and pivot a view target, or to create new
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views from selections within an existing view, to drill down into more focused portions of a

dataset. These actions can facilitate the creation of visualization provenance trails, and aim

to enable backtracking and revisions along the trail. (128; 87)). The complexity of multi-

view environments has prompted exploration of multiple coordinate view techniques, which are

summarized in Tobias et al. (64). Given many views, there is also interest in capturing and

visually representing the relationships between views through metavisualization (39; 102).

Our work contributes to this line of research by observing how participants create views

and use existing views as tools or reference points for further view creation.

Grammel et al. explored how “InfoVis Novices” construct visualizations, by asking them

to create views in the absence of a graphical interface, using a remote moderator. View con-

struction was found to pose challenges and be error prone. Vis novices struggled to translate

questions into appropriate visualizations, including template selection, choosing mappings, lay-

outs and encodings. The take-away from this study is that even with robust graphical interfaces,

which remove the need to learn coding or scripting for visualization creation, users may still

make visualization construction errors. (12).

3.3 Methodology

In this section we present the design decisions in our evaluation and how these designs

allowed us to address our research goals. We also discuss limitations and how we address these

limitations in our analysis.

Our research goal was to observe visual data exploration in a large, wall-sized display envi-

ronment to derive design goals for future systems that are grounded in how participants request
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new views, utilize and reference existing views on the display and utilize the display space in

support of data exploration tasks.

Our research questions are :

1. In a multi-view environment how did participants request views?

2. How did participants use existing views to pose subsequent requests for new views?

3. How did the display space support analysis tasks that involved more than one view?

To address these questions, we had three broad goals in our study design: 1) realism:

capture interactive intentions expressed in response to real visualizations of data within a

realistic data exploration scenario in a large display environment; 2) unrestricted expression

of intentions: capture interactive intentions independent of existing interfaces or interaction

modalities, in effect to capture what participants wanted to do when reasonably unconstrained;

3) multiple rounds of view generation: examine these intentions over a complete analysis

session, with many rounds of visualization generation, in support of completing a realistic data

exploration task.

To meet these design goals we conducted an observational exploratory study in a laboratory

setting, using a protocol that mirrored Grammel et al. (12). Recruited participants were given

a data exploration task, and told to verbally express their intentions to a remote mediator, (a

PhD student in data visualization), who was located in an adjacent room monitoring spoken

and gestural communication from the participant over video and audio feeds. By locating the

mediator in a different room, we distanced the participant from the interface used to generate
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new views. This allowed us to examine their behavior in an interface-agnostic setting. Like

Grammel et al. participants were informed that the remote mediator was a person, and we

do not simulate a system as in a Wizard-of-oz study, as is used in other studies of interaction

modalities in InfoVis, [eg. (131)].

Unlike Grammel et al., we use a large, multi-view flexible canvas environment to persistently

display prior responses, allowing us to look at how participants used these past views and the

large display. In addition, we did not ask participants to specify an intended single view, but

rather to ask anything that might aid in the exploration and analysis of the data. Study of

abundant display space mirrors Knudsen et al, but we focus on data exploration tasks and use

a digital environment with real views of data and many cycles of view construction. (38).

3.3.1 Piloting

To arrive at our final study design, we conducted pilots in two phases. In the first piloting

phase, we performed an offline pilot with four remote subjects, who were presented with a

document summarizing the data variables and a data analysis task, and had the opportunity

to pose analysis or clarification questions over a two week period via email. This enabled us

to refine the materials and add focused data exploration sub-tasks. Then, we conducted a

pilot study with five participants in a laboratory environment. We refined our approach to

responding to participant queries, particularly our approach to managing new visualizations as

they were added to the display. We refined the experimental setup by shifting the cameras to

ensure a better view of gestures.
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3.3.2 Participants

14 participants (7 male and 7 female, ages 18 to 34), were recruited for the study, with an

additional 4 participants in the first stage pilot and 5 in the second stage pilot. The participants

were drawn from diverse departments and fields including computer science, communications,

business, speech-pathology education, biology and medicine. Participants had varied experience

with visualization and data analysis, ranging from daily data analysis tasks (close to 50 percent

of participants), to almost never conducting data analysis (20 percent of participants). All

participants were familiar with common data visualization types and used computers daily. A

few participants had used the large display environment for class or meetings, but they had not

used it for data exploration.

Given this diversity, we do not draw conclusions that are specific to any particular back-

ground or level of expertise. Domain experts or novice analysis could be an area of focus in

future work. However, since all participants were either students (10 participants) or profession-

als in data driven fields (4 participants), this group is appropriate to target for future realized

systems.

3.3.3 Apparatus, Environment and Materials

We performed our study in a laboratory setting, allowing us to control the interface and

environment, as well as manage the communication channels between participant and remote

mediator.

We opted to perform this study in a digital context, as opposed to a whiteboard to capture

multiple, continuous rounds of interaction, with visualization responses that were generated
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Participant Data

Participant Requests Visualizations Ratio

#1 11 36 3.27
#2 11 18 1.63
#3 13 23 1.77
#4 13 28 2.15
#5 21 34 1.62
#6 11 25 2.27
#7 23 30 1.30
#8 16 32 2.00
#9 9 35 3.89
#10 32 34 1.06
#11 13 31 2.38
#12 23 35 1.52
#13 24 33 1.375
#14 22 32 1.45

TABLE I: Participant data: number, request count, number of views produced, view:request
ratio.

from real data. The mediator created visualization responses to participant requests using

Tableau and presented these visualizations to the users through SAGE2, a flexible canvas tiled-

display wall collaborative system (93).

The environment for the participants consisted in a large display wall (6.675 by 2.01 meters

and 6144 by 2304 pixels) shown in Figure 1. Participants could refer to onscreen textual

descriptions of 1) the data, including attributes and their values, and 2) the overall goal and

sub-tasks. Paper copies of the task description and data description were removed, so the

participant directed their attention to the display and gestured freely. On the top of the

display we created a status bar, with an animation indicating when the remote mediator was
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working on responding to the request, and a chat box, in which the remote mediator could

enter messages. This is depicted in Figure 1.

The remote mediator was isolated from the participant in a nearby room. As in Grammel

et al. (12), this allowed us to shield the participant from the interface used to generate new

views, avoiding biasing effects and removing the influence of verbal or non-verbal feedback from

the remote mediator.

An in-room aide, a graduate student in computer science, was present in the room with

the participant to explain the study protocol, address technical questions during the study and

conduct the final interview. The remote mediator was not introduced to the participant until

the study was complete. We chose to shield the participant from the mediator to encourage

direct and honest feedback during the final interview.

The remote mediator was provided with two video streams, showing the participant from the

front and from behind, to capture pointing gestures and gaze, as well as facial expressions. The

remote mediator viewed two 4k displays that mirrored the participants large display, enabling

the remote mediator to ensure optimal placement and sizing of the provided views.

The remote mediator generated visualizations using Tableau on a laptop, and dropped ex-

ported static images of these views onto the large display using a collaborative tiled-display wall

middleware, SAGE2 (93), which also supplied a laptop interface for re-sizing and positioning

these views freely. The remote mediator used a chat box, through a live-streamed text editor,

and a status bar, to show when the remote mediator was producing new views in response to

participant queries. This is depicted in Figure 1
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Figure 1: We conducted our study in a laboratory setting with the remote mediator in an
adjacent room. The participant’s environment consisted in the large display, with data and
task description on the left side of the display, and a status bar and chat box at the top. The
remote mediator had access to two video feeds, and two 4k displays mirroring the large display
content. The remote mediator used a laptop to generate views using Tableau, and dropped
them to the user through Sage2.

3.3.4 Task

Their task was to explore crime data from a local, public data repository in order to decide

how to deploy additional policing resources. We chose this task because we believed the data

would be familiar to participants and that they would be motivated to explore this data out of

personal interest. Each crime incident in the dataset included a GPS coordinate; a neigh-

borhood identifier (from one of four local neighborhoods); a date and time, which were used

to infer the time of day, day of the week, month of the year, and year when the crime

took place; a classification of the primary crime type (eg. theft, burglary, assault...); as well
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the primary location type where the incident took place (eg. street, residence, business).

This data is described in detail in Appendix A.

We supplied a list of general sub-tasks (eg. examine changes over time, look for hotspots),

to provide direction and a starting point to the participants. The addition of subtasks was

based on feedback from participants in the first phase pilot.

3.3.5 Procedure

During the instruction phase, the in-room aide provided the data description and analysis

tasks to the participants and instructed them to ’ask anything that would aid in your analysis’,

and were given no restrictions in the kinds of queries they could pose. The aide explained

the interface, pointed out the location of cameras, and demonstrated through a short social

exchange that the remote mediator could respond to spoken and gestural requests. Participants

were encouraged to think aloud and describe their findings as they inspected provided views.

We opted to not include a learning phase in our study. We opted to allow analysts to discover

system capabilities during the session, rather than through a learning phase to give as much

time as possible to a single analysis. We opted to not provide views at the start because we did

not wish to direct the analysis in a particular direction and we wished to capture initial queries

as well as follow-up queries. We did not provide visualization templates, because we wanted

participants to pose questions freely rather than specify views directly, which has already been

investigated by Grammel et al. (12). Participants began with a blank canvas and a data and

task description.
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The remote mediator responded with visualizations where possible, including situations that

could be answered with textual responses (eg. ”which crime occurred the most often?”). When

participants posed a request, the mediator generated one or several views in response to their

request using Tableau. If a request produced a multi-view response, all views were presented at

once. Provided visualizations were numbered by request and given a title that communicated

the subset of the data contained in the view (eg. Theft and Battery), and the visualized data

attributes (eg. Time of the Day). All visualizations were saved and used in our analysis.

In situations where the expected outcome to a request was unclear, the remote mediator

made an appropriate guess rather than asking extensive follow-up questions. We opted for this

response style because we did not want participants to feel that they needed to precisely specify

views. We wanted them to pose requests freely. Participants were instructed to correct the

mediator if the responses were not what they wanted. The mediator would select appropriate

templates for any spoken data attributes, would filter based on selected subsets of the data.

Colors and scales were generally the defaults supplied by Tableau.

The visualizations presented to the participant were static images exported from Tableau,

not interactive views. The benefit of this approach was that it allowed us to focus on view

generation actions in a large display context, and bracket the challenge of view modification

and multiple coordinated views, which would have introduced a large range of design choices

to our study (132). The view coordination problem could be addressed in future work. We

made the decision to respond to all requests for new subsets of the data, new data attributes

or new visual templates with new views. In contrast, when participants wanted to modify
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the encodings, scales or layouts within a view (eg. adding labels, changing color schemes),

we treated these as view modification requests and the old static image with a new static

image reflecting the requested change, and we distinguished between these request types in our

analysis.

The remote mediator had control over view positioning. We opted to position the views

automatically for the user for several reasons. First, we learned during the second phase of

piloting that participants struggled to interpret a set of views and make decisions about where

to position them, and that verbal positioning instructions were time consuming. Second, views

generated during the pilot study very quickly filled the display which made it challenging for

participants to pose new requests. We could have provided a secondary device or interaction

modality for view positioning, but this would have tethered the participants to a device and

we wished to encourage interaction through the mediator. A limitation of this choice is that

we captured fewer view layout requests, and this could be an interesting direction for future

work. The layout protocol involved deciding whether to move aside prior views and arranging

the new views in the central region of the display, which we call the ‘active’ region.

Participants decided when to end the session, based on when they felt they addressed the

initial data exploration task. As seen in table Table I, the mediator provided an average of 30

views to an average of 17 requests. Following the session, the participant took a computerized

survey and completed an interview with the aide. The remote mediator would visibly exit the

session before the participant began the survey by deleting the chat box and status bar, in

order to encourage candid responses during the interview.
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3.3.6 Analysis

We opted for qualitative analysis methods in order to capture rich behavior within a realistic

scenario, and we used a grounded approach (133).

The recorded video was transcribed in full. We also used the stored and numbered static

visualizations and chat transcripts from the sessions. A team of three researchers reviewed a

subset of the participants transcript and video. This team met several times to discuss high-level

themes. We note that 1) participants expressed their intention to generate visualizations either

directly or by utilizing existing views on the display and 2) participants frequently generated

many views that could be arranged into coherent group with relatively few interactions through

the mediator. These themes informed the adopted coding approach.

A primary coder created a visual record of each participant’s sessions. For each request,

a visual ‘scene’ was created that depicted 1) snapshots from the video showing the state of

the display before the request, 2) the transcript of the request, 3) snapshots from the video

showing the participant’s gestures to onscreen views, 4) the images of the views provided to

the participant and 5) snapshots from the video showing the state of the display following

the request. We also created scenes containing changes to the view layouts and participant

think aloud. We adopted this approach because we needed to rapidly review of the transcript

alongside the display state, the provided views and the participant’s movement and actions.

Over 550 scenes were compiled in total, with 23-64 per participant. We isolated from these

scenes 215 scenes which contained requests for new visualizations. These visualization scenes

were the primary unit of analysis.
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The primary coder used an open coding approach to refine a set of codes to apply to the

visualization scenes. Codes were developed through an iterative, multi-pass process. These

codes were discussed with two coding reviewers. The coding reviewers posed questions and

flagged ambiguous cases. After discussion, the codes were modified through several passes.

This review and discussion process was repeated several times, until the codes were relatively

stable and addressed the themes.

The final codes capture both how views on the display were related to participant requests,

and how many data attributes and subsets of the data were requested, an approximation of

how many tasks participants performed that spanned more than one view. We noted unusual

features within what we term referential requests, and developed a set of codes specific to this

request type.

3.4 Findings

In this section we describe our coded observations from participant visual data exploration

sessions.

Our coding scheme is divided into three parts. The first part identifies the ways in which

participants utilized or did not utilize existing views to express their intentions. Essentially,

these codes identify how participants expressed their intentions. We identified three strategies

- direct (41 percent), referential (42 percent), and selection (17 percent). This primary divi-

sion helped us to isolate different strategies participants used to express complex intentions

efficiently.
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The second part of our coding scheme looked at the whether a participant’s request targeted

a single data attribute and a single subset of the data, which we term a targeted request that

could be presented in one view, or whether the request cast a net around several subsets of the

data and/or several data attributes within the information space. We divide cast-a-net requests

into browse, compare and complex multifaceted. This coding gives us access to what multi-view,

multi-subset, multi-data-attribute intentions participants requested through the mediator.

Note: For the purposes of this discussion, we define a subset of the data as a selected set

of rows from a tabular data set, where the rows are selected based on a set of one or several

filters. By data attribute we mean the columns of a tabular data set, such as the day of the

week the crime occurred on, the crime type, the neighborhood of the crime.

These two code parts and their frequencies are summarized in Figure 2.

The third part is applied specifically to referential requests. In this part, we examined

the number of views are that are targeted in a referential request and the number of actions

that are specified on the target(s). This allowed us to concretize our observation that, when

unconstrained, participants ‘scaled-up’ their intentions to create or operate on many views at

once, to extend their exploration to data subsets and data attributes, and to perform tasks that

spanned more than one view.

3.4.1 Direct, Referential and Selection Requests

We observed that participants were able to efficiently pose complex requests through the

mediator. A significant way that they accomplished this was by using existing views, either

as templates or for selection and drill-down. To isolate these requests, we looked at how
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Figure 2: This figure presents an overview of the coded observations of how participants utilized
existing views to pose their requests, and how many data attributes and subsets of the data
they requested in one command.

participants referenced or utilized ‘active views’, or views in the center of the display, in formu-

lating their request, and any verbal or gestural indication toward these views. In cases where

participants referenced view targets in posing their requests, we labeled these as dependent

requests, because they relied in some way on existing views. These constituted 59 percent

of visualization requests. The remainder we termed direct requests. In these requests the

participant specified the intended view with no reference to existing views and they represented

41 percent of view requests.

Of dependent view requests, most were labeled as referential. Referential view requests came

in the form of ”Can I see this, but...”, where participants indicated a view target or targets,

using speech and/or gestures, expressed an action or actions, to perform on the target(s) which
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resulted in the outcome, a new view or views on the display. In effect, participants specified a

desire to copy and pivot the target or targets to a new portion of the “information space”. Of

the 215 visualization requests, 92 were referential requests, around 42 percent.

In the third major category, selection, participant requested a new view that focuses on a

selected region from a target view. For instance, a participant might be looking at a breakdown

of crimes by day of the week, and may then ask to see Friday crimes, selecting the ‘Friday’

subset of the data, by the neighborhood data attribute. These represented 17 percent of all

visualization requests. The resulting trail of views would have a hierarchical relationship which

includes a parent view that is selected from, and a child view which displays the selection.

Given the flexibility in participant requests, we noted 5 cases where participants both used

selection and referential approaches in one command- such copying and pivoting a view to a

filter selected from another view.

3.4.2 Target vs Cast a Net

In the second part of our coded observations, we distinguish requests that were targeted

to a single data attribute (eg. day of the week) and a single subset of the data (eg. Thefts

in 2014), from requests that cast a net over a number of data attributes and subsets of the

data. We observed three major categories of these requests- browse, compare and complex

multifaceted- based on the particular data subsets and attributes enumerated in the request.

These codes captures whether participant explored by expressing a focused question to which

a singular response could be provided, or whether they wished to look across many portions of
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the dataset at once. Most requests were cast-a-net requests, and we explore the implications of

this in the discussion.

3.4.2.1 Targeted

A targeted request is one where the participant specified a single subset of the data and

a single attribute of interest, which could be responded to within a single view. A targeted

request might include asking for a map of thefts or frequencies of thefts by day of the week.

Alternate views could be provided, such as using alternate visual templates, colors, scalings

and other encodings. However, the participant expresses an intention to view one portion of

the dataset with respect to one data attribute. Overall, 35 percent of requests were labeled as

targeted.

3.4.2.2 Cast a net: Overview

The remaining 65 percent of requests overall were requests that spanned more than one

subset of the data and/or more than one data attribute. These requests typically elicited either

a set of views or one or several large multi-faceted views, where several aggregations of data are

presented within one window, such as a divided bar chart or a multi-line chart. We classified

‘cast a net’ requests into 3 categories: compare, browse and complex multifaceted requests,

depicted in Figure 3, Figure 4 and Figure 5.

All referential requests were coded as cast-a-net, even if one new view is produced from

the request. We did this because the new view possessed a relationship to the target and the

participant generally used the resulting pair or set of views to perform tasks that spanned more

than one view.
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Figure 3: In browse cast-a-net requests, a participant would indicate one subset of the data, in
this graphic represented by the long blue bar, with respect to more than one data attribute, in
the graphic represented by the gray square and diamond. Participants used these requests to
focus on a subset of interest, and explore several data attributes.

3.4.2.3 Cast a net: Browse

In browse cast-a-net requests, participants expressed a single subset of the data that they

wished to focus on (eg. Thefts on Saturday), but requested several data attributes within that

subset. In effect, the participant expressed the intention to browse several attributes and views

within a focused area. The resulting views would allow the participant to browse for trends,

features and patterns within the subset of the data of interest. Cast-a-net browse requests

constituted 14 percent of all visualization requests.

3.4.2.4 Cast a net: Compare

In compare cast-a-net requests, participants requested different subsets of the data with

respect to a common data attribute. For example, a request to examine two neighborhoods by

distributions of the types of crime, would be classified as a comparison request, because the
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Figure 4: In compare cast-a-net requests, a participant would indicate one data attribute of
interest, in this graphic represented by the gray square, with respect to more than one subset of
the data, in the graphic represented by the long blue and purple bars. Participants used these
requests to compare subsets with respect to a single data attribute.

participant specified one data attribute and several subsets of the data. Sensible responses to

these requests include multiple views in separate windows or in multifaceted views within the

same window, such as multi-line charts or grouped bar charts. These views allowed participants

to compare distributions, trends, or spatial hotspots across multiple subsets of the data. Cast-

a-net compare requests constituted 24 percent of all visualization requests.

3.4.2.5 Cast a net: Complex Multifaceted

In complex multifaceted requests, participants would express interest in several subsets of

the data and several data variables. Responses to these requests would include multiple views

with permutations of the subsets and variables of interest. At times, participants might request

views that allowed them to simultaneously browse within several subsets of the data, and

compare these subsets against a set of common data attributes, with each dimension presented
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Figure 5: In complex cast-a-net requests, a participant would indicate more than one data
attribute and/or subset of the data. In this graphic they requested two subsets of the data with
respect to two attributes, and the responses were depicted in a grid. Participants used these
requests to explore complex combinations of attributes and subsets.

in a grid. At other times, complex requests might warrant combinations of multifaceted views,

to enable participants to facet the data in different ways. Cast-a-net complex multi-faceted

requests constituted 27 percent of all visualization requests.

3.4.3 Creating Many Views with Referential Requests

Within referential requests, we captured the number of targets, actions and outcomes of

the referential request. Of the 92 referential requests, the majority targeted a single view,

expressed a single operation to perform on that view, producing a single outcome (37 requests).

The remaining referential requests were coded as one-to-many (25 requests), many-to-one (6

requests), and many-to-many (21 requests). These requests enabled participants to efficiently

express desires for complex sets of views.
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3.4.3.1 One-to-One

In one-to-one referential requests, the participant indicated a single view and specified a

single operation to perform on this view, which would produce a single outcome, in our case a

new view on the display. For example, one participant pointed to a multi-line chart, displaying

data by day of the week, and asked ”Can I have a look at this (pointing to the target) by month

of the year?”. By referencing this complex template, the participant was able to shift from one

data attribute (day of the week) to another (month of the year), while still retaining the other

components of the view. The conserved features serve to link these views together.

3.4.3.2 One-to-Many: Parallelized Copy+Pivot

One-to-many referential requests occurred where participants referenced a single view tar-

get, but expressed an intention to perform multiple operations in parallel on this view,

producing a set of views unified by preserved features from the original template. For instance,

in Figure 6, the participant pointed to a view showing thefts by time of the day, asked ”Give

me the same of this (pointing) with battery, deceptive practices, criminal damage and assault,

please”. The mediator took the specified view, preserved the template and x-axis, and repeat-

edly changed the filter from theft to the enumerated crime types, producing a new view for each

of the specified types. The participant then scanned the set of views and identified differences

in the hourly distribute of battery crimes, when compared to the other crime types. Parallel

actions of this kind are highly efficient. Rather than request each new view with a new filter,

when unconstrained participants opted to bundle the actions together within a single request.
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3.4.3.3 Many-to-Many: Collective Copy+Pivot

In 21 cases, we observed participants making referential visualization requests by indicating

many view targets, through pointing or speech, and then expressing one or several operations to

perform collectively on the indicated targets. We term these actions ’many-to-many’, because

many views were targeted by the participant, with the intention to produce many views and

extend the reach of their exploration.

In one case, pictured in Figure 7, the participant points to two views, one of which shows

theft by month and the other theft by day of the week. The participant asks ”Can I get

these same charts but just for battery.” To respond to this request, the moderator pivoted the

two views, producing two new views. When all the views were juxtaposed on the display, the

participant then compared the number of battery and theft crimes by day of the week and

month, and identified several differences.

In many of these cases, participants collectively operated on sets of views with conserved

features. For instance, a set of views with a common set of filters could be pivoted to a new set

of filters. A set of views with a common visual template could be pivoted to a new set of data

attributes. We speculate that these commonalities served to signal to the participants that sets

of views could be referred to collectively and acted on as unit.

3.4.4 How, What and How Many

Examining coded observations in combination, several interesting features emerge. While

direct requests most frequently targeted single views, direct cast-a-net requests were around a

third of all direct requests. Participants would pose direct browse requests either by asking for
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Figure 6: In this one to many referential request, a participant indicates a view target and
expresses multiple operations to perform in parallel on the target, enabling a comparison task
across the resulting views.

general information about their area of interest or by bundling several data attributes together,

often using language that applied to several data attributes (eg. ‘where crimes occur’ included

several data attributes) or by wanting to know when crimes occurred, and failing to specify

temporal aggregation. Direct browse requests could be seen as related to underspecification of

intentions or the high cognitive load of interaction in the absence of a visual interface, which

came up during interviews with participants.

Comparison cast-a-net requests were most frequently accomplished via-reference to existing

views. In these cases, participants might be examining a view and then would ask to pivot to

a new filter. Essentially participants wanted to know if their observations extended to other
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Figure 7: In this many to many referential request, a participants collectively duplicates a pair
of views, and performs tasks on the resulting view grid.

subsets of the data. Complex referential requests frequently involved either faceting the target

view, such as by subdividing the view by an additional data attribute, or by a collective many-

to-many copy and pivot operation, which would produce a grid of views with conserved features

in each dimension, allowing for smooth movement between two different multi-view tasks, one

accomplished by scanning horizontally across views within the grid and the other by scanning

vertically.

While many selection requests were targeted, requesting the selected subset of the data

with respect to a single data attribute, other cases were more complex. In half of the selec-

tion requests, participants created a net around the selection, either requesting several data

attributes for that selection (browse, 25 percent of selection requests), or faceting this selection
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with respect to several data attributes (complex, 17 percent of selection requests). In other

cases, participants made several selections from the target view and compared these selections

across a conserved attribute (12 percent of selection requests).

3.4.5 Cases

We observed that the cast-a-net requests and referential requests produced coherent sets of

views and enabled a variety of analysis tasks that integrated information across many views.

Several participants used repeated requests of these types to efficiently create many views in a

few interactions with the mediator. The views could then be positioning in grids and clusters,

to perform simultaneous multi-view analysis tasks, browsing, comparing, trend identification,

and faceted exploration.

The first case we wished to highlight, involved a participant who used four queries to produce

29 visualizations. She began with a direct browsing request focusing on the neighborhood

around the university, which resulted in 7 views focused on the university. This many-to-many

referential operation was repeated, for two more neighborhoods resulting in a screen state

with 28 views, seven for each neighborhood and four for each attribute, in just 3 requests.

These views were presented in a grid that permitted her to perform a between-neighborhood

comparison task across pairs of views and a within-neighborhood browsing task within several

views showing different data attributes.

In the second case study that we wished to highlight, the participant made a series of refer-

ential requests, resulting in three multi-faceted views that showed a common subset of the data

(crimes in 2014) and a common aggregation in a multifaceted bar chart by the four neighbor-
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hoods. Then in her final request, she targeted 3 views for a collective and parallel copy+pivot

operation to produced 15 views, which collectively covered 4 data attributes within 5 years.

Walking from left to right, and scanning vertically, she could smoothly move between trend

analysis within a neighborhood, comparing trends across neighborhoods, as well as browsing

for interesting patterns within a neighborhood and year. This case is pictured in Figure 8.

Figure 8: In three requests, a participant generates 15 views of their data. In the final request,
the participants references a set of views and poses a complex request to collectively and re-
peatedly copy and pivot these views. The final result is a grid of views, which the participant
used for an integrative data analysis task that spanned the views as a collection.

3.4.6 Interviews and Surveys

Our interview and survey with participants enabled us to examine how participants experi-

enced the data exploration sessions, their subjective impressions of the quality of the visualiza-

tions and their response to exploring data in a large, multi-view, flexible canvas environment.

3.4.6.1 Overall impressions

Many participants directly commented that they they liked the experience. One participant

stated “The experience was amazing. Most of my queries were satisfied through the visual
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presentations. The data provided enough data for my understanding of the visualizations. The

data analysis expert understood all my questions and I got a prompt visual response”.

In the survey the participants responded to a set of questions on a five-point Likert scale.

All of the participants felt that the mediator always or usually understood their requests (50

percent for ’always’ and ’usually’). 66 percent felt that the responses always helped them

analyze the data and the remaining 33 percent felt that the responses usually helped them

analyze the data. 93 percent of participants felt the responses met their expectations all (53

percent) or most (40 percent) of the time.

Participants noted that responses with multiple views were valuable. For example, one

participant stated “It was impressive to see the data and be able to compare & contrast it in

many different ways. Each visual makes you consider a new aspect and/or want to inquire about

new data to find new patterns.” . Another stated, “The multiple responses were very helpful.

Sometimes the additional responses helped answer a complex question, and could be used to

compare more detailed responses to more general ones.” . In survey responses, 60 percent of

participants preferred getting multiple responses, with the remaining either holding no opinion

(33 percent) or preferring one response (7 percent).

3.4.6.2 Blank canvas challenges

Several participants described challenges related to knowing where to start, formulating

requests verbally, and facing a blank canvas. One participant noted “The cognitive load of like

thinking about what I want to visualize and translating that is just more steps vs like, I want to

look at that, click click click, doing it myself.”
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In contrast, some participants appreciated the ability to offload tasks onto the mediator.

One participant stated ”It is much more convenient to just say and get things done, rather than

implementing your own. It lets you, at least in my case, I could completely focus on what I

wanted to do, instead of ‘do I click here, should I draft that?’. What am I trying to solve, that

is all I focused on. I loved that part.”

Another noted that the process of verbalizing their intentions may have helped them with

planning and decision making stating ”...sometimes the act of describing a chart helps you

figure out exactly what you want. Or, in some cases, you realize that what you’re asking for

doesn’t make sense and you change your mind.’

3.4.6.3 View organization challenges

Participants who commented on the window positioning approach adopted in the study,

where the mediator automatically positioned views for the participant, tended to have more

negative impressions. These challenges are noteworthy, because even though the mediator had

extensive experience positioning and displaying views for the participants, and managing large

numbers of views, doing so manually posed challenges and was imperfectly executed at times.

A few participants wanted control over view positioning and suggested a touch screen to

enable this. While this was not possible in our study, it would be sensible in a realized system

to provide some direct control the user in managing the views on screen. However, from the

study pilots, we knew that some automatic decisions in managing the views was needed from

the mediator, otherwise visual clutter was a significant barrier.
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3.5 Discussion

In this section we integrate our coded observations from the data exploration sessions with

participant comments from the interview and survey in order to consider the design implications

of our findings.

3.5.1 Arriving at Many, Not Just One

We found that cast-a-net view generation was a common request style. Multiple view

responses were appreciated by our participants, and we describe many cases where the groups

of views produced from cast-a-net requests enabled tasks that spanned more than one view.

Essentially, this request style allowed participants to create groups of views that were useful

together as a collection.

In contrast, many visualization environments aim to help participants arrive at a single

view, or a series of single views, that address their questions. Some systems do this through

intuitive interface design, such as Tableau and its precursor Polaris (59). In systems where

alternate views are presented (15), often these are framed as alternate options to help users

find useful single views, or as ways to accommodate ambiguity in the expression of intentions.

In other cases, many views are presented to users in order to help guide a faceted exploration

of visualization recommendations, as in Voyager (6). But, since Voyager uses a bookmarking

mechanism, allowing users to mark useful single views, the end goal is still framed as helping

users create a set of useful single views of their data.

Flexible canvas environments often adopt the single view framing, by focusing on how the

environment accommodates the display of a trail of single views (39). But, if we return to the
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original insight from ‘space to think’ (35), the value of a flexible canvas for sensemaking was in

arranging and grouping analysis artifacts around conceptual relationships and these groups of

artifacts were useful when considered together.

We suggest that flexible canvas environments should target more than displaying a chain

of useful views, but instead displaying sets and collections of views that are valuable together.

Developing interactive interfaces that enable cast-a-net view generation would help users arrive

at these sets and collections of views efficiently and leverage the large, flexible display area.

3.5.2 Collective and Parallel Actions

We observed that participants used collective many-to-many copy+pivot referential requests

to create many views of data at once. It is possible that when groups of views have common

features, users might be inclined to act on this set collectively, rather than one at a time. For

instance, when a set of views has a common filter, it may seem intuitive to pivot this set to a

new filter in one command.

Between-view relationships are often framed as an aid to visually presenting views in flexible

canvas environments (102; 39), but these relationships may also be an aid to facilitating efficient

interactions in multi-view environments. Expressing many parallel actions on a single view

target, appeared to be an efficient way to create sets of views for multi-view tasks, such as

comparison. Further exploration of how to enable these efficient interactions, and the contexts

in which users would like to act on sets of views collectively is an interesting area for future

research.
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3.5.3 View organization: Not yet realized

The mediator used flexible positioning of views to create custom groupings and arrangements

that reflected the content of the views. Based on piloting this study, positioning views for the

participants served to help with visual clutter and to communicate complex multi-view responses

using spatial positioning.

However, freely positioning and re-positioning the many views of data generated during each

study posed significant challenges and was imperfectly realized. While it is clear that users of

flexible canvas environments want to have control over view positioning, it is also clear that

free positioning is time consuming and potentially difficult. Algorithmic positioning approaches,

such as tiling, are fast but do not take into account the content of the windows being arranged,

which limits their utility.

It is generally assumed that the benefits of flexible, manual positioning in large, multi-

view environments outweigh the costs, in time and visual clutter. Although this study does

not directly challenge this assumption, we suggest that additional algorithmic view positioning

tools that take into account between-view relations might make it is easier to manage many

views on data.

3.6 Conclusions

We contribute observations of intentions to create many views at once to accommodate

tasks that span more than one view. Using a methodology in which participants explore data

on a large display by directly expressing their data exploration intentions to a remote mediator,

we were able to examine how participants want to explore data independent of realized visual
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interfaces, tools or interaction approaches. We noted that participants posed requests in ways

that cast a net around sets of data attributes and subsets of the data. They accomplished this

both using direct requests, and by referencing and selecting from existing views. We describe

how participants used these actions to create sets of views which accommodated tasks that

spanned more than a single view. The take-aways from this study are that flexible canvas

systems should consider techniques to facilitate creation of many views at once for multi-view

analysis tasks.



CHAPTER 4

TRAVERSE: NATURAL LANGUAGE DATA EXPLORATION

TECHNIQUE FOR CREATING, AND PIVOTING, COHERENT SETS

OF VIEWS

This chapter describes a novel interaction technique, motivated by the findings presented

in the previous chapter. This is primarily my own work. Abeer Alsaiari (AA) helped to refine

the query and response types, and provided input on the design of the interface and the user

study problem description. Moira Zellner (MZ) and Anuj Tiwari (AT) provided a dataset and

decision problem, which enabled me to expand and test the design of the technique, and also

develop a compelling use case for evaluation. Andrew Johnson (AJ) helped me evaluate early

ideas, and refine the overall scope and direction of the project. Discussions with Barbara Di

Eugenio (BDE) and Abhinav Kumar (AK) helped me to define more clearly the distinction

between direct questions, and referential questions, and highlighted the approach of extracting

data values and attributes for NL interpretation.

4.1 Introduction

In data exploration, analysts toggle between open-ended inquiry, targeted questions around

data values and attributes of interest, and incremental steps to new portions of the data and

attribute space, driven by both the interests of the analysts and their observations from gen-

erated views of data (9; 10; 11; 8). In the process, analysts may generate many views of their

65
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data, which show different combinations of filters, data attributes and aggregations (6). By

examining and juxtaposing multiple views that feature data variations- a diversity of data

and attribute selections- analysts can perform exploratory tasks that span more than one view,

such as comparing subsets of the data against each other or putting a focused observation into

a general context (85; 30; 86; 39; 101; 38).

These multi-view exploratory tasks benefit from rapid, on-the-fly view generation and jux-

taposition (30; 31; 32; 33). However, view construction itself can be time consuming and error

prone, with road blocks in selecting appropriate templates and mapping data to visual ele-

ments (12). There has been interest in creating systems that allow users to directly specify de-

sired visualizations using natural language (NL) interactions. By allowing users to express their

desired visualization directly, using NL inputs, users can focus on their data and tasks, rather

than on learning how to navigate a graphical user interface within a visualization tool (48). Re-

cent research has explored NL interactions for view creation and refinement (14; 16; 134; 28; 29),

resolution of ambiguity (28), conversational interaction (135; 20; 21; 22; 23), and multi-modal

interaction combining NL with other modalities, such as touch and pen on tablets (25).

In this Chapter, we present Traverse, an interaction technique to efficiently create

sets of views with coherent data variations for visual data exploration using natural

language commands. The focus of this technique is on rapid, on-the-fly view generation that

supports breadth in data exploration (6)- helping users traverse, or travel through, the data. Our

technique uses a small set of actions, with a corresponding natural language command grammar

to invoke them. This technique responds to requests based on data values and attributes of
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interest- both ’targeted’ requests that can be responded to in a single view, and multi-view

’cast-a-net’ requests. In addition, we create a novel set of ’referential actions’, which

allow users to refer to a prior view or set of views and ask to pivot the targeted visualizations

to new selections of data values and attributes. Our technique also externalizes the exploration

process (30), and preserves a history of the questions posed by the user and the responses

provided by Traverse. These actions together allow users to explore the data based on their

interests, and iteratively expand the focus of their exploration. Our technique is designed to

produce sets of views with coherent between-view relationships (39), that can be arranged in

coherent configurations in support multi-view exploratory tasks.

The Chapter contributes:

• Design decisions in support of a novel interaction technique for data exploration, which

uses natural language commands to create collections of views with coherent data value

and attribute variations.

– A description of targeted and ‘cast-a-net’ requests, connected to a set of responses

that we term ‘view collections’, which contain coherent sets of views that present

both conserved and varied data values and data attributes.

– A description of referential actions, that target these view collections, and then

expand or pivot them to new points of interest- new selections of data values and

attributes - for iterative exploratory interactions.
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• An evaluation of Traverse, a prototype system that implements this technique, examining

how these actions are used together to enable breadth in exploration.

4.2 Background

4.2.1 Data Exploration

First, this work contributes to research in supporting data exploration (5; 9; 10; 11), in

particular externalizing the exploratory process (85), juxtaposing multiple views of data (35;

38), and aiming to support breadth in data exploration (6).

Within this body of research, there have been several techniques to support externalizing

and juxtaposing multiple views of data. These tools (30; 31; 32; 33; 34; 28) enable users to

create views of their data in data exploration by interacting with a graphical interface or through

direct actions with elements in the visualization itself, to create new views of data. Many also

support incremental steps, where a view serves as a starting point and is copied and pivoted to

a new view, which depicts new portions of the data and attribute space.

This work contributes to this body of research in several ways. First, this technique adopts

the approach of copying and pivoting targeted visualizations, for exploring new parts of a large

data set, but applies it this technique to multiple view targets, not just one. The primary way

that it accomplishes this is by representing views in coherent collections, which is a novel direc-

tion for this line of research. Second, it presents a natural language grammar for accomplishing

these copy and pivot actions, along with actions to expand the reach of a view collection,

which reflects exploratory transitions documented in the literature (1). There are benefits to
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considering an NL approach to data exploration, and mapping NL commands to exploratory

transitions, which we accomplish in this work.

4.2.2 Natural Language Interaction

Recognizing that view creation is challenging and error prone (12), there has been interest

in recent years to develop natural language interfaces for data visualization, that allow users to

directly ask for the visualizations that they need, rather than learn a complex interface. Much

of this work is summarized in Srinivasan and Stasko in 2017. (48). This work includes a number

of approaches that address requesting and refining visualizations (14; 16; 80; 29), responding to

ambiguity in visualizations (15), using conversational inputs (20; 21; 23; 22; 135), and enabling

multi-modal pen and touch and speech interactions (25), among others (26). However, natural

language interaction has been under-examined with respect to data exploration, particularly

contexts where users externalize their exploration process, and juxtapose multiple views of their

data.

In the previous chapter, I presented our work published in Aurisano et al. (44), which

examined data exploration in a qualitative, observational study, where participants expressed

data exploration intentions using speech and mid-air gestures, and responses were provided by

a mediator who acted on their behalf. We found that participants used several techniques to

efficiently arrive at sets of views with data variations. First, participants posed direct requests

for new views of the data in ways that ’cast-a-net’ around a set of data values and attributes,

in effect requesting many views of data at once. Because these views were requested in a single

query, they had shared features that allowed them to be presented to the user in coherent
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arrangements, such as in a grid of views. Then, when given these sets of views, participants

in the study would refer to them collectively and ask to see the same thing but with new data

values or attributes, in effect pivoting many views at once to new portions of the data value

and attribute space. This allowed the participants to efficiently express complex intentions,

and perform exploratory tasks that spanned more than one view of the data. This research

suggested an approach for NL for data exploration, which consists in a combination of direct

requests for data values and attributes of interest, and then actions that reference and pivot

existing sets of views. This work suggests that NL interactions with these characteristics can

aid in breadth of exploration arriving at many views of data, in coherent arrangements, with

varied data values and attributes.

In this chapter, we build on the work the findings in the previous chapter, coupling targeted,

cast-a-net and referential operations- to enable efficient expression of complex interests within

the data.

4.3 Usage Scenario

In this section, I will motivate the design of the data exploration technique, and the design

of Traverse- the implemented prototype system that utilizes our technique- through a data

exploration scenario. This scenario is drawn from the work in the previous Chapter, which is

published in (44). This scenario will refer to a dataset of consisting in a table of crime incidents

classified by 1) crime type (eg. theft, assault...), 2) location type (eg. street, residence...), 3)

neighborhood (eg. Downtown, Near East Side...), 4) Time of the day, 5) Day of the week, 6)

Month of the year, and 7) Year. The data consists in thousands of rows (crimes) and 7 data-
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Figure 9: Data used to design the usage scenario, and data used for training in the evaluation
of the technique. A crime dataset with data attributes and values related to crime incidents in
four Chicago neighborhoods.

attribute columns. This ‘crimes’ dataset will be referenced throughout the rest of this section.

This data is shown in Figure 9, and described in Appendix A.

After loading the data, the analyst wants to gain an understanding of the data. They would

want to ask ‘Show me an overview of the data’, and browse a set of representations that show

each of the data attributes in the dataset, in an appropriate visual representation. We term

this a ‘browsing request’- browsing within a set of data attributes across a conserved filter.

So far, she has posed one question, and surveyed 8 views of the data.

Two of the charts in this browsing collection capture her attention- the frequencies of all

crimes broken down by neighborhood, and the frequencies of all crimes broken down by crime

type. Examining the chart showing frequencies of all crimes broken down by crime type, she

may notice that theft is the most common crime type, followed by burglary. She wants to

know if this is true in her neighborhood. She might ask ‘Can I see crimes by crime type in
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the University neighborhood?’. This targeted request has a specific data value and attribute

focus (data value: neighborhood = University; data attribute: month of the year), and could

be responded to in a single view. Now, she has asked two questions and examined 9 views of

her data.

Looking at this single view, she notices that theft and burglaries are most common in the

University neighborhood. She wants to know if this is also true in the downtown neighborhood,

where she often goes on the weekends. She might ask, ‘Can I see this but for the Downtown

neighborhood’. She wants to keep everything about the initial view- the data attribute, crime

types- but now she wants to swap data values (1) through an action that we call a subset-pivot,

with new filter criteria, ‘neighborhood = Downtown’. The resulting new view is similar to

the original, in that both have the same data attribute in the same visual template, but now

they show different selections of data values. We term the result a comparison collection,

because it would enable the analyst to compare two selections of data values, which serve as

filter criteria for each chart, (University neighborhood vs Downtown neighborhood) with respect

to a common data attribute. At this stage, she has posed 3 questions, and explored 9 views of

the data.

The analyst might shift their focus to thefts in the University neighborhood, requesting one

attribute (”Can I see thefts near the University by time of the day?”- targeted request),

then another (”Can I see this but by day of the week?”- referential data attribute pivot),

then another (”Show me this but by month of the year.”). These incremental operations would

retain the filter criteria- thefts in the University neighborhood- but swap data attributes (1).
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The growing set of views would be considered a browsing collection, like the first she generated,

but unlike that first set, she produced this one incrementally. At this stage, she may have posed

6 questions, and will be examining 12 views of her data.

After surveying a set of views, all focusing on the University neighborhood and theft, she

may want to say ”Can I see all these views, but for burglaries”. She would want to swap data

value (1) selections- a component of the filter criteria, the crime type- for a different selection, a

different area of interest. This collective referential action would copy each view the focuses

on thefts, and produce a new view, now that focuses on burglaries. The resulting grid would

line up data attributes and filter criteria, in a ’browse and compare grid’. At this stage she

would have posed 7 questions and generated 15 views of her data.

The analyst may continue her exploration - posing both targeted and ’cast-a-net’ queries,

followed by referential copy and pivot operations- to shift or extend her focus to cover more

data value and attribute selections. The many views she produced have coherent variations in

data value and attribute selections, and they can be presented in coherent juxtapositions- lines

and grid. She also did not need to specify intended visual encodings or layouts, which has been

shown to be difficult for many analysts (12), but she has posed all of her questions around her

interests in the data. By making it possible to create, pivot, expand and group many views

together based on these coherent patterns, the analyst can perform exploratory tasks that touch

on her evolving points of interest, allowing her to incrementally develop an understanding of

interesting features within the data.
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In this short usage scenario, the analyst posed 9 questions, to generate 34 views, each of

which have a unique combination of data value selections, which are used as filter criteria, and

data attributes. The many views she produced have coherent variations in data value and

attribute selections, and they can be presented in coherent juxtapositions- lines and grid. She

also did not need to specify intended visual encodings or layouts, which has been shown to be

difficult for many analysts (12), but she has posed all of her questions around her interests in

the data.

The results visualizations from each question, can be considered collections of views with

different properties- different types of similarities and differences. By making it possible to

create, pivot, expand and group many views together based on these coherent patterns, the

analyst can perform exploratory tasks that touch on her evolving points of interest, allowing

her to incrementally develop an understanding of interesting features within the data.

4.4 Design

In this section, I will describe the design of our natural language (NL) interaction technique

for data exploration, including our design goals, design process our ultimate design decisions.

This design is motivated by the scenario presented in the previous section, and it informs the

implementation of Traverse, which I will describe in the next section.

4.4.1 Design goals

In this section, I describe the design goals that inform the ultimate design of our NL data

exploration technique. I will indicate in the text prior work that we referenced in developing

these goals.
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4.4.1.1 Design Goal 1: Enable exploration by capturing data interests, rather than

design interests

Our first design goal, which guided the development of our technique and implemented

system, Traverse, was to capture and respond to a user’s interests in the data- the

selections of data values and attributes that they wished to examine- rather than

capturing and responding to requests for specific views- interests in visualization

design (1). We prioritize expressions of data interests rather than design interests (6). We will

refer to this as Design Goal 1.

In practice, this meant that we focused on responding to NL queries such as ’Can I see theft

by day of the week”, or ”Can I compare thefts on Tuesday to burglaries, by neighborhood?” or

”Show me some information about crimes that occur on streets in the River East neighborhood.”

We did not focus on enabling queries like ’Show me a heat map colored by number of crimes

from light red to dark red”, or ”Can I have a bar chart showing the frequency of crimes by crime

type, sorted by frequency .” We also did not respond to refinement operations that changed

the template, encodings or layouts within a view, such as ’now change the axis to a logarithmic

scale’, or ’highlight the top 10 crime types, in yellow’.

We chose this goal because, while there is extensive prior work on NL interfaces for specifying

and refining visualizations (14; 15; 16; 24; 28; 25), there is less work that focuses explicitly on

enabling data exploration through NL interaction, specifically enabling rapid creation of sets

of views featuring diverse selections of data values and data attributes. NL presents benefits

for visual data exploration, as it does for view creation. In particular, users can focus on the
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data and their interests, rather than on navigating an unfamiliar user interface or considering

how to map their interests to visualization templates, encodings and mappings, which has been

shown to be challenging and error prone (12).

Our focus on capturing data interests, rather than design interests, allowed us to prioritize

enabling breadth in data exploration (6), in particular enabling users to create many views

reflecting different combinations of filters and attributes. The challenge in our system was to

determine how to automatically and coherently map what users expressed, into views that were

useful for data exploration.

4.4.1.2 Design Goal 2: collections of views

Our second design principle, which guided the developed of our visual data exploration tech-

nique, was that our technique would allow users to express multiple points of interest-

multiple data attributes and data values- in a single command, and the response

will consist in a set of views that cover the range of expressed interests in a co-

herent structure. The goal is to allow users to efficiently express a breadth of exploratory

interests- such as interests in several data attributes and/or several data values. By doing this

repeatedly, users can rapidly cover many combinations of parameters, to identify meaningful

patterns or features in the data. We will refer to this as Design Goal 2.

Some prior systems for view creation in data exploration in multi-view, flexible canvas en-

vironments allow users to create views one at a time, through a graphical interface, selecting a

few data attributes and filters to apply to create a new visualization (33; 30). Other data explo-

ration environments begin with a single point of interest and provide a set of recommendations
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that guide users in their exploratory process (6). Our approach differs from these in part due to

the flexibility of NL expression. In the previous Chapter, and in our publication (44), we noted

that participants expressed intentions for many data attributes and values, when unconstrained

by the design choices of existing interfaces. This mode of ’casting a net’ around a set of interests

within a dataset, allowed participants to communicate efficiently their exploratory intentions.

We term the set of views provided to users in our technique ’view collections’, because

they exhibit coherent variations in data values and attributes. By coherent we mean that there

are conserved data values or attributes, and features that vary according to a comprehensible

pattern or rule. For example, a coherent collection might contain three views, all of which

show crime frequencies by day of the week, but the first shows only crimes classified as thefts,

the second view shows only burglaries and the third shows only trespassing. This example

view collection we call a comparison collection, because it juxtaposes views that vary according

to non-overlapping subsets of the data, to identify similarities and differences between those

subsets, with respect to a common data attribute. We describe the range of view collections

supported in our technique in the next section.

4.4.1.3 Design Goal 3: iterative exploratory steps

Data exploration is a process of iteratively stepping through the data and attribute space.

Users might begin with one focused point of interest, and then wish to step to a new point

of interest. These iterative steps are systematically described in Lee et al. (1). Examples

include adding new filter criteria, or swapping data attributes. These exploratory steps are

beneficial, because they allow users build their understanding of the data incrementally, or to
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spontaneously direct their path through the data based on unexpected observations or insights

that arise from visualizations they create during the exploratory process (5). We will refer to

this as Design Goal 3.

These incremental steps are echoed in the previous chapter, where participants would refer

to prior views, and ask ’Can I see this but...’, with a change to the selection of data values and

attributes. We termed those actions ’referential operations’, a label we will adopt here in

our exploratory technique.

Our technique enables iterative data exploration using ’referential operations’, that

allow users to take an existing view or view collection and extend it to cover new

data values or attributes, or to collectively copy and then pivot the collection to new

selections of data values and attributes. Both operations take advantage of the coherent

structure within the collection- data interests that are conserved, as well as data interests that

vary according to a pattern or a rule.

The benefit of this design approach is that users can extend or shift the focus on their

exploration from one region in the data and attribute space, to another, through a referential

operation. A second benefit is that referential operations allow users to avoid re-articulating

a complex request. Instead, they can say ”Can I see this but...” and express the change they

wish to see enacted on the selected values or attributes within the view. This action furthers

design goal 1 and 2, in that users continue to express multiple points of interest, and the system

continues to respond with collections of views that have coherent structure. It adds the feature
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of iterative steps, because users can chain together multiple referential operations to build large

collections, or iteratively pivot views to new points of interest.

4.4.1.4 Design Goal 4: Use a simple, NL command grammar

Where possible, we opted for a simple NL command structure, to focus on how participants

used different kinds of actions, rather than to enable complex specifications. This is similar to

the approach in InChorus, by Srinivasan et al. (25), which put forward a defense of using a

restricted NLI in order to resolve issues with a new interaction approach.

4.4.2 Design process

Referring to the usage scenario and our design goals, we 1) systematically defined a set

of direct request types, with different numbers of data values and attributes, 2) created a

proposed mapping between these combinations of parameters to view collection responses, and

3) exhaustively considered all actions that would modify the data values or attributes within

each collection.

We focused our work on visualizations with a primary data attribute (such as a bar chart,

or a single line chart), or a primary and secondary data attribute (such as a multi-line chart

or a heat table). These are common and accessible chart types, that apply to many kinds

of data. For the purposes of this work we did not consider view types with a three or more

data attributes- such as a colored scatterplot- but we discuss the extension of this approach to

visualizations like this in our discussion section.

These actions and responses were discussed by a team of two PhD students, and refined

through a formative evaluation with 5 participants, all of whom are PhD researchers in human
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computer interaction. These 5 participants used a prototype version of our system, Traverse,

and offered feedback on the requests and responses. In response to this feedback, we refined our

approach to responding to data attributes and pivoting a secondary data attribute, and refined

the visual templates to make the distinctions between views with different data attributes more

clear.

For our work, we focused on two datasets- a city crime dataset and a Covid19 dataset (136).

We focused on these data because they had varied data attribute and values and mapped to

varied visualization templates, and both were associated with data exploration scenarios that

were accessible and relevant to users in our formal evaluation.

4.4.3 Translating data interests to view collections

Here we describe how we extract data value and attribute interests from the user’s NL query,

considering both ‘targeted’ queries with focused data value and data attribute interests, and

‘cast-a-net’ queries, with a set of data value and attribute interests.

4.4.4 Filters

We focus on enabling users to express data value interests, such as an interest in thefts

and burglaries in the University neighborhood on Saturdays, and our technique automatically

translates these into one view or a set of views in a view collection (Design goal 1). We

allow users to express many data value interests, with the expectation that the system will

automatically translate these into visualizations, to enable breadth of exploration (Design Goal

2). We needed approaches that allowed users to express these interests through simple NL

commands (Design Goal 4).
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Figure 10: When many data value interests expressed by the user, these are translated into
filter criteria. The approach is designed to give multiple views, derived from combinations of
the expressed data interests.

There are several possible options, in our technique, for interpreting data value interests.

First, when a user expresses an interest in one data value, interpretation is straightforward.

This data value servers as a single filter criteria. However, if they express multiple data values,

but all are from different data attributes (eg. ”Can I see theft in the University neighborhood

in 2012?”), this also produces a single filter, but with multiple filter criteria. These are Cases

1 and 2, in Figure 10
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The second option, arises in instances where users mention several data values from the

same data attribute, such as asking to see 3 different crime types, such as ”Can I see theft and

burglary and trespassing...”. We interpret this as a comparison request, and place these three

filter criteria in separate filters. This is Case 3, in Figure 10. We defaulted to this approach,

dividing into separate filters, because it helped enable breadth of exploration (Design Goal 2)

through simple commands around data interests (Design Goal 4).

The third option, applies to cases where users enumerate a complex list of data values,

some of which are from the same data attribute, and some of which are not. An example of

this type is ”Can I see theft and burglary in River East and in 2012?”. We show two examples

of this, Cases 4 and 5, in Figure 10. This approach allows us to give complex combinations

of visualization (Design Goal 2) reflecting diverse points of interest (Design Goal 1), without

expecting users to verbalize complex filter criteria (Design Goal 4).

Finally, we added one option for users to combine filter criteria together, by saying ”Can

I see theft and burglary together in one view”, and our interpreter would recognize that they

wished to combine these criteria in a single filter. This is Case 6 in Figure 10

Future work may consider how to enable efficient expression of more complex filter criteria,

building on prior work from database retrieval through NL (72; 73; 74; 75; 76; 77; 78), though

it is possible that this would be achieved through additional input modalities (41; 25).

After interpreting the enumerated data values, the result is either one list of filter criteria,

which may be applied to one or several views, depending on the data attributes of interest
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expressed by the user. Or, a list of separate filter criteria, with potentially overlapping features,

but that would be used as filters in different views.

4.4.5 Data attributes

As with data values, users can express one or many data attribute interests, such as an

interest in crime types and neighborhoods (Design goal 1). We focus on translating these

points of interest into one or many visualizations, to enable breadth of exploration (Design goal

2).

Requests for a single attribute, are the most straightforward case. Single data attributes

are mapped to a single view type, based on the attribute characteristics, such as whether the

data is categorical, temporal, spatial, etc. In our data, this included bar charts, line charts and

maps.

Our responses to multiple data attributes evolved based on user feedback in formative

evaluations. The main challenge with multiple enumerated data attributes is whether to allow

any of the attributes to be treated as ’secondary’ data attributes, such as asking for a line chart

by year colored by neighborhood, where the primary attribute is ’year’, shown on the x-axis,

and a secondary attribute is ’neighborhood’, reflected in the color scheme. We wanted to avoid

an overly complicated approach, so we opted to capture the enumerated attributes as a list,

by default, which elicited a specific interpretation as a view collection (a complex collection,

which we describe in the next section), or to look for specific keywords that indicated that

users wanted to treat some of the enumerated attributes as secondary attributes. Specifically,

participants in the formative evaluation wanted to express a desire to use language such as
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’versus’, ’colored by’ or ’split’ (as in split this single line into multiply lines), to specifically

treat one of their expressed attribute interests as a secondary attribute. An example of this

kind of query is, ”Can I see crimes by year versus neighborhood”, which we interpreted as a

multifaceted request, where ’year’ is the primary attribute and ’neighborhood’ is the secondary.

Variants of this style of interaction include ’Can I see crimes by year and month colored by

neighborhood”, which would produce a list of two primary attributes (year, month) and one

secondary attribute (neighborhood). These differences are depicted in Figure 11.

4.4.6 View collection creation

After extracting the data value and attribute interests from the user, and considering par-

ticular keywords or regular expressions, our technique would have a list of filters, consisting in

one or several filters with one or several filter criteria, and a list of primary and/or secondary

data attributes. We then mapped the set of interests to a view collection response type. The

specific number of filters, primary data attributes and secondary data attributes, determined

which view collection type to give to the user. The complete description of this approach, and

the types of view collections we provided to users, is depicted in Figure 12.

For each view collection, there was a protocol for translating these lists of filters and at-

tributes into a set of views, often accomplished by creating combinations of filters, primary and

secondary attributes. For each data attribute, or pair of primary and secondary data attributes,

the view creator would assign to a visual template, based on the attribute type (eg. temporal

data to line charts, ordinal categorical data to sorted bar charts, geospatial data to a map).
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Figure 11: When many data attribute interests expressed by the user, these are translated into
different view collections, depending on the number of attributes and other keywords.
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Figure 12: View collection types, depending on the number and composition of data values and
data attributes.
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Figure 13: Figure showing the decision we needed to make on color choices- a neutral, de-
saturated color, for all basic charts- or color schemes for each attribute.

4.4.7 Encoding decisions

A significant design decision involved selecting visual encodings in a way that allowed users

to visually distinguish the visualizations on the display. During our formative evaluation,

participants noted that it was difficult to distinguish charts, particularly as they generated

more views during data exploration. We initially opted to show all single data attribute bar

charts and line charts with a neutral de-saturated blue color. But this resulted in mostly blue

colored charts, which was difficult for users to follow. In response, we applied a unique color

scheme, selected from a color brewer API (137), that would visually distinguish charts with

different data attributes.

We also made some encoding decisions to avoid visual clutter and to make it easier to

examine many views at once. We opted to automatically filter views to show the top 10 of each

category to avoid visual clutter. This approach is depicted in Figure 13.
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4.4.8 Referential actions

Our technique aims to enable data exploration both through direct requests for views of

data, as described in the previous section, and through iterative exploratory actions that extend

and shift the focus of exploration (design goal 3). We accomplished this through what we termed

a ’referential operation’. Referential operations echo the finding in the previous Chapter and

in our publication (44), where participants in an observational study posed requests to expand

or pivot an existing view or set of views, to reach new portions of the data and attribute space.

In our technique, a referential operation is one where a user asks ”Can I see this but....”,

referring to a prior view or set of views, and then they specify a change- a new set of data value

or data attribute interests- that when applied to the referenced views, produce a new area of

focus. The response to this request depends on both interests expressed by the user and the

view or view collection that they referenced. We depict example pivot actions in Figure 14.

To resolve referential operations, we use an approach that involves 2 steps. First, the

detection of data values and attributes of interest. This follows the same approach described in

the previous section, and the result is a set of lists of filter criteria and data attributes. Second,

the challenge is to decide how to use the context, the targeted view collection, to produce an

appropriate response that extends the exploratory focus for the user. The response depends on

the conserved and varied features of the targeted collection.
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Figure 14: This diagram depicts basic pivot examples. Filtering actions, add in filter criteria.
Subset pivots, swap filter criteria, for example from burglaries to thefts. A data attribute pivot
switches the primary data attributes, for example from location type to year. Split referential
actions, introduce a data attribute. Split pivots swap one secondary data attribute (such as
location type) for another (such as neighborhood).
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Figure 15: Data value changes expressed by the user. This figure depicts two types of data
value pivots. In the first transformation (horizontal), there is a data value swap requested, or
a subset-pivot, which exchanges theft for burglary, but retains the rest of the filter criteria.
In the second (vertical), a new filter criteria is added, a filter pivot, with the rest of the
filter criteria retained. This figure also depicts three types of data attribute pivots. First (top
horizontal) a data attribute pivot, from ’day of the week’ to ’month of the year’. Second,
(vertical) a split operation, or enhance operation (1), to add in a new attribute criteria.
Third (bottom horizontal), to exchange secondary attributes, but retain the primary attribute,
which is a split pivot.

4.4.8.1 New data value and attribute interests

One component of referential requests was detecting what users wanted to see altered. The

major types for referential requests are depicted in Figure 15. These operations are related to

the analytical operations in Lee et al. (1), and other work on exploratory analysis.

When users list a new data value interest, that is from the same data attribute as an existing

filter criteria (eg. ”Can I see this but for burglary”, on a set of views that show thefts), we

interpreted these as requests to swap filter criteria. We term this action a ‘subset pivot’, and

it is equivalent to the ‘swap data value’ operation in Lee et al. (1)
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Alternatively, users might ask to add a new filter criteria- from thefts on Saturday, to thefts

on Saturday in 2012. This would apply when users specified a data value from a data attribute

not included as filter criteria in views in the current set. This is a filter operation, similar to

the ‘add data value’ operation in Lee et al. (1)

Referential actions involving data attributes involved several possible response types, as

depicted in Figure 15. Users may ask to swap a data attribute for another, such as from a plot

showing crimes by day of the week, to a plot showing crimes by neighborhood. We termed this

an attribute pivot, and Lee et al. termed this an ‘attribute swap’ (1)

Users may ask to add a new data attribute, which we call a ‘split pivot’. We capture these

actions through a request such as “Can I see this but versus (new attribute)” or “Can I see this

but split by (new attribute)” or “Can I see this but colored by (new attribute)”. We called this a

split operation. In cases where the collection already had a secondary data attribute, a request

to “see this but split by (new attribute)”, would be responded to with a swapped secondary data

attribute.

We found in our formative evaluation that users struggled to distinguish between attribute

pivots and secondary attribute pivots, particularly when the secondary attribute was the most

visually salient, as in colored multi-line charts or colored maps. In this case, users expected a

request for a new data attribute to produce a new secondary attribute, without saying ‘versus’

or ‘colored by’ or ‘split by’. We accommodated this in our technique, defaulting to pivoting the

secondary data attribute, for certain chart types.
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4.4.8.2 Copy and pivot

When the user expresses a change to a conserved feature across the collection, we call this

a ‘copy and pivot’ action. An example of this kind of action is shown in Figure 16. Copy

and pivot actions include the previously described major types - subset pivot, filter, attribute

pivot, split and split pivot.

View collections are characterized as possessing at least one shared data value or data

attribute that unifies the views in the collection. For instance, a browsing collection shares

a common focus- a common subset of the data. A comparison collection shares a common

primary data attribute. A ‘subset+attribute collection’ shares a common set of filter criteria,

and a common data attribute. These similarities can be found in Figure 12. When referential

operations specify a change in a shared feature, our technique translates this into a

collective copy+pivot action, where all views in the collection are duplicated, and

changed to reflect the new interests expressed by the user.

In some instances, this results in an enlarged and re-classified initial collection, that now

has more dimensions of shared features than before the referential action. This could mean a

copy and pivot operation that transforms a single view, into a line of views. Or a copy and

pivot operation that transforms a line of views into a grid of views.

For example, suppose a user referenced a browsing collection that showed a set of views

with a common filter criteria ”theft on Saturday’. Suppose they asked “Can I see this view, but

for burglaries?”. The response would be to copy each view in the initial browsing collection and

pivot it with swapped filter criteria, from theft to burglary, but retaining the rest of the view
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parameters- the data attribute and the filter criteria ‘day of the week=Saturday’. We term this

operation a ‘subset pivot’, since it pivots a set of views with a conserved list of filter criteria-

showing a conserved subset of the data- to another list of filter criteria.

In another example, suppose a user referenced a comparison collection showing theft and

burglary by neighborhood- a shared data attribute with respect to varied filter criteria. A user

may ask ‘Can I see this but for day of the week’. This operation will copy both views in the

comparison collection, and pivot them, keeping the filter criteria in each but swapping data

attributes, from neighborhood to day of the week.

In both of these cases, the new views can be added to the views in the original collection,

but the original collection becomes a new type. In both cases, these collections become ‘browse

and compare’ collections, showing a grid of views, with shared filter criteria and shared data

attributes in each dimension.

4.4.8.3 Extend a collection

In our technique, some referential operations act to extend the reach of an existing collection,

without modifying its underlying type. This occurs when a target collection has varied data

values or attributes, and then the user poses a request for new data attributes or values in a

way that follows the pattern of the target collection.

For example, suppose the user referenced a browsing collection in their request- specifically

a collection of 2 views showing 1) thefts on Saturday by month of the year and 2) thefts on

Saturday by day of the week. They might ask “Can I see this but for year?”. In our technique,

we are retaining the filter criteria in the set, but adding new data attributes. Since the original
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Figure 16: This example highlights two response approaches to referential actions on a target
collection. One which extends an existing collection, another produces a new collection.

collection is extended to enable tasks across a wider set of data value and attribute selections,

we term this an ’extension’ operation. Unlike the copy and pivot operations described above,

this action does not copy each view in the collection, but extends the set. An example extension

operation is shown in Figure 16.

4.4.9 Exploratory paths

When users combine direct and referential operations, both copy and pivot and extension

operations, they can build collections of views with interesting features. There are also multiple

paths to arrive at similar view collection types, depending on the user’s evolving points of

interest. Two example paths through the data are shown in Figure 17 and Figure 18
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Figure 17: In this referential pivot paths, we show alternate routes to different collections of
views. The types on the side and top, are direct question types, and the transitions are different
types of referential actions.
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Figure 18: This is a second example of a set of referential pivot paths. We show alternate routes
to different collections of views. The types on the side and top, are direct question types, and
the transitions are different types of referential actions.
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4.4.10 View Collection Layouts

Visualizations without a view collection are presented in either a line or a grid, with corre-

sponding visualizations juxtaposed together in each dimension. As view collections are updated,

such as expanding to add new visualizations, or transforming from one collection type to an-

other, we ensured that effective layouts were used, for visual comparisons and browsing within

each dimension of a grid.

4.5 Implementation

In this section we describe Traverse, a prototype system which implements our interactive

data exploration technique. We named the system ’Traverse’, because it enables users to ef-

ficiently traverse through many combinations of data values and attributes in exploring the

data. The development of Traverse allowed us to refine and evaluate our approach, and capture

how users explored data using the technique. Our implementation focuses on interactive data

exploration actions, specifically target, cast-a-net and referential pivot and expand actions- to

produce collections of views with coherent data variations. We constructed an interface which

used this technique for view creation around the data value and attribute interests, allowing us

to examine how participants in our evaluation used these actions for data exploration.

Traverse was implemented in Javascript, with a node.js server at the backend that han-

dled data, nlp processing, and generating visualization specifications, in this case VegaLite

specification objects. We used a simple flat table, or set of tables, for our data, and used a

small set simple custom scripts to filter, aggregate and retrieve data values. We focused on

this lightweight solution, for speed and simplicity, to allow us to develop the mechanics of the
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technique. The frontend was implemented in javascript, with visualizations rendered using

VegaLite.

For natural language command interpretation, we used node-nlp to extract attributes and

values from queries, along with a set of manually defined keywords, and regular expressions,

which mapped to specific operations. Traverse is a form of ’restricted’ natural language in-

terface, as is described in Srinivasan et al. (25), which uses simple command grammar. but

explores a novel aspect of NL interaction. There has been significant progress in the visualiza-

tion research around the interpretation of complex, ambiguous or underspecified queries, but we

opted to focus on a restricted NLI for several reasons. First, we wished to focus on our novel in-

teraction technique, rather than NL interpretation challenges, and felt that introducing a more

complex NL system would distract from this core focus. Second, we wanted our users to learn

a specific interaction approach and felt that a simple grammar with a set of clear interaction

rules would be easier to learn in our evaluation. Future work could extend our restricted NLI

to incorporate more complex NL interpretation techniques, such as the techniques developed

in our related work (20; 21; 23; 22).

The Traverse architecture is depicted in Figure 19.

4.5.1 The Traverse User Interface

The traverse interface, depicted in Figure 20, consists in a 1) query entry area, where users

can enter their question, 2) a data value and attribute description panel, where users can explore

and interactively select data attributes and values of interest, and 3) a query and visualization
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Figure 19: The system design of Traverse, which includes a node.js server, an nlp interpreter,
and a view collection creator.
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Figure 20: The traverse user interface consists in a query entry area, an interactive data de-
scription area, a query and view collection response area, with previous collections shown in a
scrolling history. The examples shown above are from the COVID19 data and problem descrip-
tion which is described in detail in Appendix A.

collection scrolling history area, where responses to queries are displayed, in coherent collections,

with a scrolling chat-style history that displays prior queries and collections.

4.5.1.1 Query entry and data value and attribute exploration area

Users can enter their query through typing into a form at the top of the interface. We opted

to use typing rather than speech, because we wanted to focus on user queries and responses

without the complications of speech-to-text translations, particularly since our NLI used a sim-

ple NL grammar rather than conversational inputs. Future research could extend our approach

to spoken interactions, which have different affordances.
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We also supplied a data and attribute exploration panel, which presented an interactive tree

representation of the data. Data attributes could be clicked to reveal assigned data values (eg.

the attribute ’day of the week’ could be clicked to reveal a set of child data values - Monday,

Tuesday....etc). Based on feedback during formative evaluations of the interface, we added a

feature where users could double click to select a data attribute or value, and add it to the

growing query, in the event that users did not want to type a long name.

4.5.1.2 View collection display and history area

After entering their query, the responses are presented in the view collection display and

history area. For queries that produce a new view or a new collection of views, either through

new queries or pivoting queries, these views are presented in a line or a grid, which is delineated

from previous collections by background color. Collections are assigned a background color in

alternating neural shades of gray and white, in order to visually separate the view collections.

The query associated with the new view collection is displayed above the views, on the left, top

side in the view collection area.

For queries that expand this collection, such as adding new views to the line or grid, or

transitioning a linear set to a grid, the collection on the top is updated. For instance, suppose

a user is viewing a collection with one visualization- a display of crimes by crime types in

January. If the participants asks ’Can I see this but for June’, this set will update with a new

view. The view collection is transformed from a targeted collection to a comparison collection,

displaying January and June crimes by crime type. As this collection is updated, the background

is highlighted with a bright gold color, that gradually fades to the previous neutral gray or
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white color, in order to ensure that participants understand that this top collection has been

updated with new views. The views are shown in a new layout- such as in a longer line or a

grid- corresponding to the view collection type. All queries associated with this collection are

displayed in order at the top of the collection, allowing the user to see the iterative process they

used to build the view collection.

If participants express a pivoting query, it is shown in a new collection. Only the query

associated with the new collection directly is shown. Users can scroll down to see the history

of queries that produced the ’parent’ collection from which the new collection was created. We

opted for this approach to displaying the history because we wanted to avoid visual clutter and

prevent any confusion in surveying in the query and collection history.

All prior collections are retained, along with the history of queries, in chronological linear

order. We opted to keep this order fixed, rather than allow users to rearrange the collections.

During formative evaluation of the interface, we observed that participants would copy and

paste a prior query or set of queries they wanted to repeat in order to build a new collection,

and that this action did not interrupt their flow or the ease of use of the interface. Future work

on the design of the interface could explore techniques to go back in the history and create new

branches of exploration, that start from past queries and view collections.

In addition to highlighting updated collections as new views come in, we also implemented

an ’active collection’ highlight on the left side of the collection, in a golden yellow color. This

helped to indicate which collection would be expanded or pivoted for referential actions. As the

user typed their question into the query bar, the page used a simple parsing scheming to detect
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the keywords for a referential operation- for instance detecting ’Can I see this but...”. Upon

detecting these keywords, the active collection indicator would expand, visually indicating that

the system understood that the users was referencing the highlighted question in their query.

4.6 Evaluation

To evaluate our data exploration technique, which we implemented in our prototype system

’Traverse’, we conducted a formal user study. Through our user study, we wished to examine

how participants used both targeted, cast-a-net and referential actions to express their interests

and how they ’traversed’ the data and attribute space.

4.6.1 Participants and Setup

We recruited 10 participants, 5 male and 5 female, ages 19 to 37. Participants were largely

students in computer science and engineering, pursuing bachelor’s (5), masters (1) and PhDs

(4). Participants received a 20 dollar gift card as compensation for their time. This number of

participants allowed us to observe a range of behavior, and gave us enough data to understand

how our technique and system was used for different users, with different exploratory strategies.

Participants reported varied experience with data visualization and data analysis. They self

reported frequency of using or creating visualizations (Daily-1, Weekly-2, Monthly-3, Yearly-3,

Almost never-1), and their frequency in engaging in data analysis or exploration tasks (Daily-

0, Weekly- 4, Monthly- 4, Yearly-1, Almost Never-1). Participants reported having experience

with a range of tools for data visualization and data analysis, such as excel, Tableau, Power BI,

google sheets, d3, and Observable notebooks.
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Our evaluations were conducted through a video conferencing system (Zoom), due to Covid19

precautions. Participants were required to have a desktop or laptop computer, with the Chrome

browser, and they reported their operating system (Windows-7, Mac- 2, Chromebook-1), and

screen resolution (from 1366 x 768 to 3840 x 2160).

4.6.2 Procedure and Tasks

Our study had three phases: a training phase, a data exploration phase, and a survey/de-

briefing phase. The protocol was refined through 5 piloting sessions.

4.6.2.1 Training

Participants first filled out a consent form. Then they walked through a description of the

interaction technique with the researcher. The technique was presented using simple graphics

that explained the principles of expressing their interests and allowing the system to translate

those interests into sets of views. They were told that the goal of the system was not to help

them create a specific desired visualization, but rather to pose questions about parts of the

data that they were interested in learning more about.

Participants were shown the interface and the researcher explained how the different parts

of the interface worked. They were then able to test the interface and system, by entering a

set of scripted examples pertaining to city of Chicago data. By using a script, we were able

to ensure that participants had an opportunity to see the major direct and referential request

types during the training phase. As responses to queries came in, the researcher would explain

the responses, highlighting how the request was translated into a set of views. Participants

were encouraged to ask questions during the training.
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4.6.2.2 Task and Data

After the training, participants were given a new dataset and a prompt for exploring the

data. The dataset pertained to US counties and health and demographic data related to

COVID19. We chose this dataset because we felt it would be of interest to our participants, it

reflected real datasets that could be targeted by our approach, and it had interesting features

that our participants could uncover through exploration.

The data included a county-level measure called a ’COVID19 vulnerability index’, which

was a machine learning prediction of the risk of a county to COVID19 outbreaks, and to

having insufficient resources to address this outbreak (136). Along with this risk prediction, we

also included measures pertaining to health care (doctors per capita, uninsured rate), diseases

associated with COVID19 (cardiovascular disease rates and diabetes rates), poverty rate and

percent of the population over 65. Each county was also classified into a region (Midwest,

Southwest, Southeast...etc), and a county type (rural, urban, suburban and small city). We

also included a time series of COVID19 cases per month, for each county in the US. This data

is described further in Appendix A.

The participants were given an exploratory task to examine differences between the regions

in the dataset, and the county types, with respect to COVID19 vulnerability scores, and health

and demographic data. They had a list of suggested sub-tasks to address, but they were encour-

aged to ask questions about their interests and observations, and to explore freely. Participants

were allowed to explore until they had found interesting features within the data, and had
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suggestions for where to target resources to address COVID19 outbreaks, or to be prepared for

potential future pandemics.

Following the study, participants were given a brief survey, and had the opportunity to

discuss their experience with the researcher.

4.6.2.3 Captured Data

We logged participant queries, as well as the views and view collections Traverse produced

in response to these actions We captured screen shots of their complete data exploration session,

which shows both queries and responses. All sessions were also video recorded, through the

video chat interface, which included the shared screen which depicted the participant’s interface

and webcam recordings of the participant and the experimenter. We conducted a survey at the

end of the session. The researcher also took notes during the study.

4.7 Findings

An overview of the questions, visualization response types and length of the session is in Fig-

ure 21. On average, participants explored the data for 30 minutes (min: 17, max 49), and posed

35 queries (min 21, max 71). These queries generated an average of 56 unique combinations of

data values and attributes (min- 31, max 137), and an average of 80 visualizations that were

preserved by the user in their exploration history (min- 36, max- 162).

Participants utilized a mix of direct requests (63 percent of visualization requests) and

referential requests (37 percent of visualization requests ). Direct requests included targeted

requests (27 percent of direct requests)–one set of filter criteria and one data attribute- or

multifaceted requests (27 percent of direct requests)- combining 2 data attributes together, in
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Figure 21: Breakdown of participant sessions.

one view- as well as ‘cast-a-net’ requests, in which participants asked for many data values and

attributes (46 percent). The proportions of actions are depicted in Figure 22. One question

might be to consider how these breakdowns compare to those in the previous chapter. It is

difficult to direct compare, because we did not classify subcategories of referential actions in

Chapter 3, and we used a slightly different classification scheme to capture ’cast-a-net’ requests.

However, there were more referential requests than direct requests in our pre-design study, and

the opposite is true here. This may be due to differences in the environment or due to how

participants expressed themselves through speech versus a typed interface.

Using logged data, and the captured screenshots of the visualization history, we examined

more closely how participants used these actions together, and how they traversed the data and

attribute space.
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Figure 22: Breakdown of participant actions.

4.7.1 Analysis of exploratory actions

We analyzed the interplay between targeted, cast-a-net and referential requests, in Fig-

ure 23. This figure shows the sequence of actions taken by each participant, colored by whether

the action was a direct or referential request, and with the number of views created visually

indicated, which highlights focused queries versus ones that covered multiple data values and/or

attributes at once.

From this visualization, we can see varying exploratory strategies. At one extreme, par-

ticipant 6 did not use referential operations, and acted almost exclusively through cast-a-net

requests. Looking at this participant’s exploration history we could see that they posed re-

peated browsing cast-a-net requests, in which they selected regions of interest, and then viewed

these regions with respect to multiple data attributes. Other participants, such as participant

3 and 10, used repeated referential actions to extend the focus of their investigation, and build

large view collections, or sets of related view collections.

4.7.2 Analysis of breadth of exploration

We evaluated the breadth of exploration, through a representation that we call an ’ex-

ploratory grid’ Figure 24. For each request posed by the user, we took the visualizations



109

Figure 23: This figure shows how each participant used a combination of direct and referential
actions to explore the data. Each participant’s session begins on the left. Each visualization
produced is shown as a rectangle. Blue rectangles are produced from a direct request. Green
rectangles are visualizations produced from a referential request. If multiple rectangles are in
a stack, they were produced together, from one query. The arcs connect the referenced view or
view collection, to the new views that are created. A sequence of arcs, and a sequence of green
rectangles, indicates that the participant repeatedly used a referential operation to expand or
copy and pivot visualizations, expanding the focus of their exploration.
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created by the system and added a ‘box’ to the grid, and assigned the rows in the grid to

each unique filter criteria created during the session, and each unique single or pair of data

attributes. As the participants retained a focus on a particular filter criteria, but added new

data attributes, this would add new entries to the grid horizontally, filling in spaces from left

to right over time. Alternatively, retaining a focus on a specific data attribute or pair of data

attributes, but examining different filter criteria, would add entries vertically to the grid, filling

in spaces from top to bottom over time. Repeated requests for a particular set of filter criteria,

will add more squares to the assigned row, and the same for each data attribute’s column. Re-

peated requests for the same filter criteria and data attributes, would darken the color in each

grid position. This occurs when participants recreate previous views of the data, in order to

juxtapose this view in a new view collection, or in order to start a collection that they intended

to build in a new exploratory direction.

Some participants explored mostly data attribute variations, focusing on overviews, and

they did not drill down into different subsets of the data. This can be seen in participants with

few columns but many rows in the exploratory grid. Other participants pursued a combination

of data attribute and data value diversity, resulting in patches of filled in data values in the

visualizations. In particular, participant 6, pursued a strategy which ’covered’ selected data

values and attributes evenly. What we mean by this is that participant 6 produced a more

evenly filled in grid, because they posed repeated browsing cast-a-net requests, which covered

a set of selected filter criteria with respect to a consistent set of data attributes. In contrast,

Participant 10 covered a wide range of data attributes, suggested by the length in the vertical
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Figure 24: This figure shows how each participant explored unique sets of data values and
attributes, over the course of their session. Along the x axis, for each participant, are unique
data attributes (either one, or a pair) that traverse produced from the start (left) to the end
(right) of the session. Along the y-axis, are unique filters, from the start of the session(top), to
the end (bottom). Darker colored squares occur when a participant creates that data attribute
and filter more than once.
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Figure 25: Participant Likert score responses to survey questions. 1 is strongly disagree, 5 is
strongly agree. Each question is shown, next to a stacked bar. The color of each bar is based
on the score. Width of the bars is based on the number of participants who responded with
that score.

direction of their exploratory grid, and a variety of different filter criteria. Participant 3 similarly

explored a wide range of selected data attributes, and a smaller set of varied filter criteria.

4.7.3 Qualitative and Quantitative Feedback

Participants responded to survey questions on their experience, and provided 1-5 Likert

score response to express agreement (5) or disagreement(1). They also were given an area to

type comments about their experience, and describe places where we could improve. Figure 25

displays the results of this survey, with participant scores.

4.7.3.1 Feedback on Interaction Using Natural Language

Participants ranked the natural language interpreter highly, indicating that it always (3/10)

or almost always (7/10) understood their questions. They also ranked the experience as ‘very

enjoyable’ (9/10) or ‘somewhat enjoyable’ (1/10). When asked how this compared to previous

experiences they had exploring data, participants ranked it as ‘significantly easier’ (7/10) or
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‘somewhat easier’ (3/10). These responses are echoed in participant comments. One participant

stated “I found it very convenient to type questions and get results. Writing queries in simple

English was very helpful.”

Another participant described a benefit of NL for data exploration, in allowing them to

remain focused on the data and their tasks, rather than on the mechanics of creating visual-

izations. This participant stated “It was interesting to use and was fairly ergonomic to input

commands while maintaining my train of thought.” One participant noted the benefits of NL for

quickly generating visualizations, stating ‘It was moderately expressive and very fast to generate

a lot of charts.’

4.7.3.2 Feedback on View Collection Responses

Participants also scored the responses to their questions, and felt that the responses were

very helpful in exploring the data (7/10) or somewhat helpful (3/10). One participant noted

that the ability to state their general interests and get visualizations in response was helpful

when they were not sure what they were looking for- “I liked that I could just type what I was

thinking without having a real sense of what I was looking for, and the plots produced generally

answered my vague question.” We asked participants about whether they felt the responses

matched their expectations, and the answered that they did ‘most of the time’ (6/10) or ‘some

of the time’ (4/10). Participants were mixed on whether they liked unexpected responses, with

5/10 ‘strongly liking’ and 2/10 ‘somewhat liking’ unexpected responses, and 3/10 feeling neutral

about unexpected responses. One participant noted that they appreciated that the application
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generally attempted to give a response, saying “I also liked how the application always generated

a response instead of a simple ”try again” error.”

4.7.3.3 Feedback on Referential Actions

Participants generally appreciated the referential operations, with 7/10 describing these

as ‘very useful’, 2/10 as ‘somewhat useful’, and 1/10 as neutral. One participant stated “I

liked that you could easily switch the filter for a particular set of data (I want to see this but

for...), that it was easy to compare plots/the data filtered by different attributes . . . ” . Another

commented “I thought the features of the application were pretty amazing (mainly, being able

to pivot).”. A third commented “It felt natural using this to explore data because of the way

you can change the parameters of what data you are seeing”.

4.7.3.4 Reflections on Exploratory Process

We asked participants to discuss issues around the complexity of the questions they could

ask, and how they felt the application responded to simple and complex queries. They ranked

the complexity of their questions as ‘I asked very complex questions’ (2/10), ‘I asked somewhat

complex questions’ (4/10), ‘neutral’ (3/10) and I asked somewhat simple questions’ (2/10).

Participants strongly liked answers to simple questions, with 9/10 saying it answered simple

questions ‘very well’, and 1/10 saying it answered these questions ‘somewhat well’. Participants

were mixed on how well the application responded to complex questions, saying it responded

to complex questions very well (3/10), somewhat well (5/10) and neutral (2/10).
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4.7.3.5 Feedback on Multi-View Responses

Participants had mixed impressions of situations where the application provided multiple

view responses, ranking that they preferred multi-view responses ‘strongly’ (4/10), ‘somewhat’

(2/10), neutral (2/10) or preferred single view responses ‘somewhat’ (2/10). In cases where

the response involved combinations of data attributes, specifically the complex response type,

some participants during the study commented to the experimenter that they wished it only

responded with the multifaceted, two-attribute views, rather than the set of monovariate and

multifaceted views. This may be due to difficulties using the ‘color by’, ‘versus’ or ‘split’

language, or expressing this intention but in a format the interpreter did not understand. One

participant said ‘ I feel like when I wanted to compare two attributes, it would have been more

helpful for the heat map to come up before the bar charts of the individual attributes.” Another

commented “I don’t feel like I used .... ”split by” very often, so I’m not sure how useful they

are.” which suggests that this approach to adding multiple data attributes to a single chart

may be difficult to understand for some users, but that the approach to give both monovariate

and multifaceted responses may be unwelcome, for other users.

4.7.3.6 Feedback on Restricted NLI

Participants also expressed some thoughts about phrasing their questions using our re-

stricted NLI. One participant commented “I feel as if the application was a little constrained in

terms of what you could ask and how you worded it.” Another commented “Sometimes the ver-

biage and figuring out what you want to explore takes a bit to get used to.“ Other participants

echoed this difficulty in knowing what to explore, by asking for guidance from the interface.
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One wanted a feature that ‘suggests graphs or visuals other users have look at in case someone

doesn’t know where to start.’ This interest suggests a potential future area of research, which

is seen in other work on visualization guidance and recommendations (6; 1)

4.7.3.7 Feedback on Uses for Collaboration

Finally, although this study targeted single user exploration, one participant suggests the

value of this approach for collaborative, synchronous data exploration, by noting “This experi-

ence is far nicer and would be much more convenient during a presentation or a meeting when

there are questions and I want to be able to answer them in a visualization quickly.”

4.8 Discussion

Participants largely were able to use our novel NL data exploration technique to explore the

data. They used multiple request types, toggling between direct and referential actions, as well

as targeted and cast a net approaches. Participants gave largely positive feedback with respect

to the interaction approach, and found referential copy and pivot actions to be easy to use in

exploring the data.

4.8.1 Limitations

There were several limitations in our approach to responding to articulated data value and

attribute interests, that would benefit from future work.

One particular difficulty involved resolving multiple data attribute requests. Our response

to this request type contained combinations of parameters, which means that it often also

contained views they did not need. For instance, some participants did not want to include

visualizations that depicted more than one attribute, and others expressed that they only
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wanted to see views with the pairs of data attributes. When these participants in our evaluation

wanted to pivot this collection, they often expressed that they did not want to see the undesired

views. One option would be to respond to some categories of requests, such as multiple data

attributes of interest within multiple response types, and let users select one to keep in the

history. This approach might be worth considering for other request types as well, to generally

allow for more selection in the options provided to users, while still allowing users to express

data interests rather than design interests, using simple commands.

A second limitation, concerns design variations. Although we did not aim to provide design

variations, there are contexts where alternate representations would be valuable. But, view

collections would become crowded, and the coherent structure obscured, if we responded with

alternate representations to user interests. However, perhaps a secondary display area could

include alternative representations, that could be selected by the user.

Finally, some participants expressed difficulty in situations where they wanted to achieve a

specific intended visualization, which was not a design goal for this work. However, it is possible

that this approach could complimented by other techniques to create visualizations.

4.8.2 Future opportunities

Some participants expressed a desire to interact within a window, rather than just produce

new views of the data. For future work, this could be an interesting area to explore, particularly

looking at how the view collection formalism impacts multiple coordinated view approaches (64;

39; 138; 102).
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Participants also suggested that this approach could be valuable in a collaborative context,

since they could explore data without breaking away from the conversation. In a collaborative

context, there are additional questions around co-developing these groups. While this interface

provided a linear history, in a collaborative context it might be valuable to consider a branching

history. Alternatively, this approach could adapted for flexible canvas environments which

give more freedom in terms of the exploratory process, which might be more compatible with

collaborative scenarios.

4.8.3 Accommodating new data

As we noted in our design, we focused on visualization types that presented one or several

views of the data, and did not consider view types with three of more attribute interests. Since

participants had difficult deciding whether to pivot a primary or secondary attribute using our

restricted NLI, future work is needed to determine a cleared approach to communicate data

attribute pivots using NL. One approach could involve iteratively adding data attributes, rather

than directly specifying a primary and secondary attribute. This would mean that some view

collection types would need to be created in multiple NL commands, the first to create views

based on a primary data attribute, and the second to add in a secondary data attribute, and

then a third step to add in a third data attribute. This is an area worth pursuing through

future research.

4.9 Conclusion

Since the motivation for this technique grew from observations in the previous chapter, where

participants posed requests in a large display environment, with a flexible canvas to juxtapose
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many views of data, in the next Chapter I will describe how we adapted this technique to a

large display environment, with a point-and-speak interaction approach.



CHAPTER 5

DITTO: A MULTI-MODAL SPEECH AND MID-AIR POINTING

TECHNIQUE FOR VISUAL DATA EXPLORATION IN LARGE

DISPLAY ENVIRONMENTS

This chapter describes a novel interaction technique with multi-modal speech and mid-air

gesture interactions for large displays, motivated by the findings presented previously, and using

the Traverse view collection generation approach described in the previous chapter.

This research has been collaborative, but I am the project lead for this work. Abeer Alsaiari

(AA) helped to develop the multi-modal interaction system, in particular resolving pointing

gestures. She also assisted with testing of the system and running the evaluation. Arthur

Nishimoto helped with integrating inputs from the Omicron system, and developed the touch

interface. Abhinav Kumar assisted in developing the speech input system, and helped to debug

and test different speech input approaches. Andrew Johnson (AJ) and Barbara Di Eugenio

(BDE) has assisted in the scope and direction of the project. As in the previous chapter, Moira

Zellner (MZ) and Anuj Tiwari (AT) provided a dataset and decision problem, which enabled

me to expand and test the design of the technique, and also develop a compelling use case for

evaluation. A number of undergraduate researchers also contributed to developing the input

system: Vasanna Nguyen, Krupa Patel, Ryan Fogarty, Joseph Borowicz, and Vijay Mahida.
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5.1 Introduction

Visual data exploration is an iterative process, where an analyst toggles between targeted

queries, open-ended exploration, and iterative steps from current points of interest to new ones,

based on observations or evolving exploratory goals (4; 85; 5). During this process, an analyst

may produce many views of their data, that show diverse selections of data values and data

attributes, and that partition a dataset into meaningful pieces (39; 30). After observing one

set of interests, an analyst may wish to pivot to a new set of interests, and juxtapose the

resulting visualizations with the previous ones, so they can perform tasks that span more than

one view, such as comparing or putting a focused observation into context. Through multiple

rounds of view creation, based on evolving points of interest, an analyst gradually expands

the focus of their exploration and incrementally moves through the ‘data and attribute space’

of a large dataset (6; 1). To support this process, analysts need techniques for rapid, on-

the-fly view creation, based on data values and attributes of interest, and an environment for

displaying and juxtaposing multiple views in configurations that support evolving exploratory

tasks (38; 35; 39; 44).

Large display environments present many potential benefits for visual data exploration (44),

because they provide abundant space for displaying and juxtaposing the multiple views pro-

duced during the exploratory process (38; 35; 42). However, interaction in a large display

environments presents significant challenges, and recent research has considered ways to enable

interaction using modalities beyond mouse and keyboard inputs, such as touch (107), proxemic

interaction (66), and external devices (104; 105; 106; 94; 100; 95).
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In this chapter, we present Ditto, an interaction technique for generating many

views of data in visual data exploration on large displays using synchronous speech

and mid-air pointing gestures. Our technique aims to enable analysts to efficiently create

views of data around multiple, evolving points of interest in data exploration. We couple these

multi-modal view creation actions with touch for view organization on the display, which allows

analysts to juxtapose related views, in support of tasks that span more than one view of the

data. We use a set of ’referential view creation actions’, based on the work in the prior chapter,

which are initiated by combined speech and mid-air pointing interactions. These referential

actions take advantage of the potential of users to organize views into conceptually meaningful

groups on the display. We named this system ’Ditto’ because a core feature of our multi-modal

speech and mid-air gesture technique is an efficient set of copy-and-pivot actions, that

enable efficient, iterative steps from old points of interest to new ones, in a way

that leverages the spatial positioning decisions of users. The result is a technique for

rapid, on-the-fly creation of views around diverse combinations of data values and

attributes, to support evolving data exploration goals.

Our primary contributions are:

• Design: We discuss design considerations for multi-modal speech and mid-air pointing

interactions for large display environments, to target data exploration

– We describe how our technique considers the interplay between synchronous speaking

and pointing in communicating visual data exploration intentions, and leverages

abundant display space and human spatial organizational capabilities.
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– We propose a technique which combines: 1) direct requests around data values

and data attributes of interests, 2) view positioning, into meaningful configurations,

and 3) referential ’copy-and-pivot’ requests, to iteratively extend reach of the user’s

exploration into new portions of the ‘data and attribute space’.

• Application: We present an implemented environment and application, called Ditto, which

utilizes our design, and visualizes two data sets, drawn from real world use cases. The

prototype implementation allows us to study exploratory actions of users, both their

requests, their view positioning decisions, and how they used speech and mid-air pointing

gestures together to express their intentions in data exploration.

• User study: we present observations and findings from an empirical study, with recruited

participants, who explore a dataset in the large display environment with multi-modal

speech and mid-air gesture inputs. We discuss how users group and then reference prior

views to create new ones, and how their strategies relate to evolving data exploration

interests.

In this chapter, I will described our work towards designing and implementing this technique,

informed by the findings in our observational study in Chapter 3, and using the natural language

data exploration technique developed in Chapter 4.
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5.2 Background

5.2.1 Large Displays, Visualization and Interaction

Large display environments present many potential benefits for visual data exploration (44).

First, large displays have abundant space that is capable of displaying many views of data at

once, at sufficient resolution (42). Second, large displays can serve as a large, flexible canvas

for creating custom arrangements of visualizations, in configurations that support reasoning

over the varied selections and combinations of data values and attributes produced during the

exploratory process (38; 35; 42). These features of large displays- abundant display space and

human spatial organizational capabilities- (39) have been examined with respect to supporting

sensemaking over large volumes of analysis artifacts (35), for visualizing between-view relations

through metavisualization (102), and for research in coordinated multiple views (39).

However, interaction with large display environments presents challenges. Traditional modal-

ities for interaction in visualization, such as mouse and keyboard, are ill-suited to large displays,

because they require a user to be tethered at one location (36; 37; 88; 89). This limits mobility

and reduces the opportunity to fully utilize the display space. As a result, there is grow-

ing interest in input modalities for large displays beyond mouse and keyboard. In the data

visualization research community, researchers have examined touch (107; 108; 33), proxemic

interaction (66), and separate devices (104; 105; 106; 94; 100; 95). Since these modalities have

varied affordances, there are many open questions around how to select and combine multi-

ple input modalities together in ways that leverage the benefits of large displays, for diverse

visualization tasks (41).
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5.2.2 Gestures, proxemics and multi-modal interaction

(130) suggested an implicit interaction with visualizations on large displays using body po-

sition, orientation, and movement. These proxemic attributes can be used to implicitly trigger

specific tasks like zooming, selection and navigation. (127) designed a hybrid approach that

utilizes both proxemics and gestures and found that gestural interaction is suitable for direct

actions while proxemics interaction is beneficial for tasks such as navigation and collaboration.

In both studies, proxemic inputs and mid-air gestures are employed for a limited set of visu-

alization tasks, and are not envisioned as a larger part of the visualization process, which is

the focus of our study. Our work does not directly examine proxemics, but mid-air gestures as

explicit interactions with the system, in concert with speech.

Multi-modal natural language and gesture has been examined in ’Put that there’ (46) in

1980, describing a system which allowed users to place objects on a large display using a mid-air

pointer, controlled through gesture, and spoken inputs, which was echoed in Hauptmann et al’s

work in 1989 (109).

5.3 Motivating Scenario

To motivate our design, we consider an exploratory data analysis scenario in a large display

space where users could make use of multi-modal speech and mid-air pointing gestures for ex-

ploratory interactions. This usage scenario will help define the requirements for our interaction

technique. We will describe this scenario using the dataset about crimes in a major US city,

as in prior Chapters, where an analyst has been tasked with exploring the data and identifying

differences in crime patterns between neighborhoods. This data consists in a list of crime in-
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cidents, with fields that include- the neighborhood name, the crime type (theft, burglary. . . ),

the location type (street, sidewalk. . . ), the day of the week, the time of the day, the month of

the year, and the year. This dataset is depicted in Figure 9.

Suppose the analyst wishes to explore the data in the crimes dataset, beginning by looking

at their neighborhood- the university neighborhood. They may want to first understand which

types of crime are most common in the university neighborhood. Then, they may want to look

at what time of the day crimes typically occur in that neighborhood, followed by what day of the

week. These three questions focus on a common exploratory thread- interest in the University

neighborhood. In effect, they want to retain the focus on the university neighborhood, but

pivot their focus to new data attributes.

After creating these three views of the data- one for each data attribute, and all filtered to

just show crimes near the university- they might position the views in the center of the display,

surveying to see if any significant features stand out. They make three observations: 1) crime

is low late at night and in the early morning, and then rises over the day, peaking at noon, 2)

crime peaks on Friday near the university, but is otherwise relatively stable, and 3) thefts are

most common in the university neighborhood.

The analyst may then wonder if these observed features in the data are shared by the

downtown neighborhood, which is adjacent to the university neighborhood. They would want

to take the same plots but see all of them for the new filter (neighborhood=downtown). They

would want to duplicate each view, and swap one filter criteria for another (1). These three

new plots might then be situated by the user next to the prior ones, in a grid of views, with rows
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defined by the different neighborhoods and columns defined by the different data attributes (139;

38).

Suppose the analyst wanted to continue comparing neighborhoods, but with respect to two

new data attributes, such as the month of the year that crimes occur, and the location type

(street, sidewalk, etc). In effect, they want to retain two points of focus (the two neighborhoods)

and pivot to look at two new data attributes. They would want to select two of the views, and

duplicate these but swap data attributes (1), creating 4 new views of the data, that can be added

to the existing grid view at the center of the display.

Their exploratory process may then continues in a new direction, looking at particular crime

types or location types, and they create new sets of views in support of these questions. Then,

after a time, they may wish to return to their initial thread- comparing neighborhoods- and

take this inquiry in a new direction. They might, for example, return back and ask to see the

grid of views and want to retain the current data values and attributes represented in this set,

but add new filter criteria (1)- thefts on Friday- based on their new findings. They want to

retain the focus on the two neighborhoods, and the data attributes, but they want to pivot to

add new points of interests. The resulting views could be placed in a separate grid, or could be

juxtaposed with respect to either collection of views on the display.

This process might repeat itself, where analysts wish to explore the data with respect to

different exploratory threads. They want to retain aspects of prior views, but copy and pivot

these views to new points of interest. By preserving prior views of the data, arranged in coherent
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groupings on the display, they can follow multiple threads, and keep their exploration history

and findings visible.

There are aspects of this process that would be difficult to accomplish on a small display,

where it is difficult to display more than a few visualizations at once, at sufficient resolution.

However, on the large display, an interaction approach is needed to support view cre-

ation, in particular the action of duplicating and pivoting views to new points of

interest. Otherwise, the analyst would need to engage in lots of view construction actions,

which can be time consuming and error prone (12).

5.4 Design Considerations

In this section, we use the motivating scenario described previously, to generate a set of

design considerations, focusing on the combined affordances of speaking, mid-air pointing ges-

tures, and organizing views on a large display. Several of these design goals are shared by our

work in the previous chapter, but I will describe them below, in the context of the large display

and multi-modal interaction environment.

5.4.1 Design Goal 1: Focus on enabling breadth in data exploration, and evolving

points of interest

In our multi-modal speech and mid-air gesture interaction technique, we focus on data

exploration. In particular, we focus on initial exploration of a dataset, where a user wants to

gain basic familiarity with the features of the data, and select potential targets for a subsequent

focused analysis. We therefore focus on allowing users to express their interests in particular
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data values and attributes that they wish to explore, and we designed our system to translate

these interests automatically into appropriate views of the data.

We specifically focus on enabling breadth in data exploration through multi-modal speech

and mid-air gestures on the large display. By exploration breadth, we mean enabling users

to examine many views with diverse data values and attributes, rather than design breadth,

where many varieties of visual encodings are provided to the user. This is our focus for several

reasons. First, it is a good target for large displays. Large displays are capable of showing many

views of data, at high resolution, and they present benefits in contexts where users can spatially

organize views into conceptually related groups, for sensemaking tasks (35; 38; 44). This fits

with the demands of data exploration, where users consider many views with ’data variations’-

or varied combinations of filter criteria and data attributes. Second, data exploration is an

excellent target for natural language interactions, since it allows users to directly express their

interests, without learning a complex graphical interface (12; 41)

We also focus on evolving points of interest in data exploration. Enabling users to generate

diverse views in support of following evolving threads of interest, is a good target for large

displays, where visualizations from prior threads can be persistently accessed and displayed (30;

85).

We do not focus on interactions in support of view coordination in this work. The reason for

this is that it is difficult to precisely target entities within a visualization- such as visual entities

like bars or lines- using mid-air pointing gestures at a distance (49; 41). This is better suited

to other interaction modalities, such as touch (107; 33), where users can interact up close to
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the display with precision, or through a secondary device (94). We also do not focus explicitly

on guidance or recommendation in support of data exploration (6; 1), though there are avenues

for this contribution in future work, which we touch on in the discussion section.

5.4.2 Design Goal 2: Leverage combined features of mid-air pointing gestures, NL

commands, and large display areas

We focus in this Chapter on enabling users to explore data by communicating their intentions

through speaking, and through synchronous speaking and pointing toward visualizations on a

large display. There is prior work examining NL interaction for visualization (14; 15; 16; 17;

18; 19; 20; 21; 24; 25; 26; 27; 28; 29), as well as prior work examining physical movement

for large display interaction (66; 130), and prior work on using large displays in information

visualization (129; 97; 42; 92; 43; 90; 96; 95). Considering multiple factors together presents an

opportunity to explore novel interactions.

Items on a large display are effectively in our world at human scale (42), and we routinely

point to items in real physical spaces when communicating our intentions to others. So, it

is reasonable to consider how this real-world interaction style can be ported to visual data

exploration for a large display. In addition, this style of interaction may be conducive to collab-

orative contexts, where users may want to create visualizations of their data without disrupting

the flow of the collaborative discussion. Although we do not explicitly target collaboration in

this work, it is reasonable to explore interaction approaches that are compatible with potential

future use cases.
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5.4.3 Design Goal 3: Design to enable multi-view exploratory tasks

Our design focuses on providing multiple view responses to situations where users express

multiple data value and attribute interests. We make this a design goal because users may

express multiple points of interests in data exploration (38). In our previous work, we found

that users in a large display context frequently expressed a desire for multiple views of data,

through expressing many data values and attributes interests in a single request. Responding

to these kinds of requests with multiple views, with diverse but coherent combinations of data

values and attributes, is an excellent target for large display environments. The display can

accommodate many views, and if these views have coherent similarities and differences they

can be arranged by the user in configurations that support tasks across the set of views (44).

This design goal is appropriate because it targets the large display and multi-modal speech+mid-

air gesture interactions, that are the focus of this work. Systems that aim to help users arrive at

an optimal single view response are better suited to small displays, rather than large displays.

Single view responses are also better suited to contexts where users have a specific desired

visualization in mind, rather than for an exploratory data analysis scenario. In addition, this

approach leverages the affordances of spoken interactions, where users frequently express vague

or general questions that are best responded to with multiple views. Speech also may not be the

best approach for contexts where users have a highly specific intended visualization in mind,

and a graphical interface or sketching interface might be more appropriate.
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5.4.4 Design Goal 4: Leverage human spatial organization for collective copy-and-pivot

referential actions

Large displays provide users with a large flexible canvas for positioning many views of

data, and there are suggestions that users organize views on the display to reflect meaningful

relationships or groupings that aid in sensemaking (35; 38). One of our design goals is to take

this feature of large displays into account, but use it to enable multi-modal speech and mid-air

pointing interactions.

Our technique allows users to indicate groups of views on the display through pointing, and

pose spoken requests for new views of data based on the indicated views. This ’copy-and-pivot’

approach has been explored for ”flexible canvas” style systems (33; 30; 32; 107), but because

these systems target mouse and keyboard, touch, or pen-and-touch interactions, they typically

allow users to target a single view at a time. However, through speech and mid-air pointing

gestures users are capable of indicating several views at once, particularly if they are located

near each other on the large display. Our interaction technique allows users to gesture

over a set of views, and pose requests that copy-and-pivot the indicated set of

views collectively, not just individually. We will describe the mechanics for enabling users

to perform these referential requests, to target, and then ask to copy and pivot sets of views

with similar features that have been positioned together.

Spatial organization has typically been considered as beneficial for reasoning and sensemak-

ing on large displays (35; 38). In our technique we focus on how positioning decisions by users

can also aid in view creation actions for data exploration.
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One of the consequences of this design goal, is that we do not provide algorithmic positioning

options, or provide fixed view locations. Supplying these options would potentially constrain or

overly guide user choices, and we wanted to capture their view positioning decisions in relation

to our point-and-speak interaction technique.

5.5 Design

After presenting our design goals for point-and-speak data exploration interactions in the

previous section, we will now present our interaction technique, which is used in our imple-

mented system ‘Ditto’.

We envision this technique working for large display walls, that can accommodate 50+

visualizations, with an aspect ratio that accommodates multiple groupings of visualizations,

based on user interests. We also assume the room allows for movement in front of the display,

and is capable of tracking pointing gestures, from a distance of 1-4 meters from the display, and

capabilities to respond to touch interactions for view positioning. Details of our implementation

and physical environment are in the next section, but these are the assumed environment

characteristics for our technique.

There are three main components of our technique:

• Direct requests to create visualizations, based on user expressed points of interest in

the data. We focus on responding to both focused requests, which we call ‘targeted

requests’, as well as ‘cast a net’ requests, which include open-ended queries and queries

that express multiple simultaneous points of interest. This component is accomplished
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through speech only. These queries are comparable to the direct requests described in the

previous chapter, for the Traverse system.

• User spatial organization of views into conceptually meaningful arrangements. These

actions are accomplished through touch gestures on the large display.

• Referential ‘copy and pivot’ actions, to use existing views as templates for new views,

allowing users to efficiently specify their intentions, and incrementally extend the focus of

their exploration. These actions are performed through synchronous spoken queries and

mid-air pointing gestures. We accommodate both referential actions that target a single

view, and referential actions that target many views at once. If the request is for several

views at once, we determine how these views are similar in order to properly respond to

the participant’s request.

These approaches are drawn from our prior observational study (44), the previous chapter

developing Traverse, and the exploration actions from Lee et al. (1). We also consider the

multi-modal affordances for immersive analytics, described in Badam et al (41).

Although I have described some of these actions previously, In the next section, I will

describe each of these action types in more detail, relate these to our design considerations,

particularly how they utilize the large display and the multi-modal speech and mid-air gesture

inputs, and I will explain how they address varied data exploration tasks.
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5.5.1 Direct Requests

Visualization construction can be challenging and error prone (12), and there is extensive

work on creating individual views through graphical interfaces (53; 71; 58; 59), sketch (131), or

through NL inputs (14; 15; 16; 17; 18; 19; 20; 21; 23; 22; 24; 25; 26; 27; 28).

In a large display context, view construction is also challenging. First, the user needs

to be able to get visualizations onto the display, ideally without being tethered to a fixed

device. In many cases in prior work, researchers focus on interactions when visualizations

are already present on the display, and they do not consider how the views are created and

organized (106; 94). This suggests that visualization creation for large display environments

is a potentially under-explored topic. In our design, we aim to reduce the barrier to creating

visualizations on the display, by allowing users to directly express their interests in the data

through speech, by listing data values and attributes that a user wants to explore, and we then

use Traverse to respond, and populate the display with one or several visualizations.

Spoken interactions allow users to enumerate multiple points of interest- both data values

and attributes. We use the approach described in Traverse, to respond to these multiple points

of interest with sets of views that contain coherent data value and attribute variations. As

in the previous chapter, we term these sets ‘view collections’, to highlight that they contain

multiple views and at times have coherent between-view relationships.

We made a few changes to this technique for Ditto. First, we added some additional

options for expressing multiple data attributes, based on user feedback on Traverse. Users can

ask questions such as “Can I see (data attribute) for each of the (data attribute)”, which we
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found was a desired interaction approach in our evaluation in the previous chapter. Second, we

adapted our response to queries with multiple data attributes. If a participant asked, ”Can I

see (data attribute) and (data attribute)”, we opted to default to a list of views for each data

attribute, and would only give the multifaceted responses with multiple data attributes when

participants asked to see views ’colored by’ or ’split by’ or ’versus’ a secondary parameter. These

changes were made in response to user feedback, and to accommodate the new environment.

5.5.2 Referential ”Copy and Pivot” Commands

Ditto enables copy-pivot actions that combine speaking and pointing interactions. This

work builds on our pre-design study in Chapter 3, where participants would indicate a prior

view and say ‘Can I see this but. . . ” for a new data value and/or data attribute. The user’s

intention in this request was to make a new visualization that retained features from the view

they targeted, but with a change in filter or data attributes. These actions to make small

changes to the data values and attributes in a target visualization or set of visualizations, are

part of incremental exploratory tasks, and are described the typology of Lee et al. (1).

There has been interest in previous work in externalizing the exploration process, through

large, flexible canvas systems where a ’trail’ of visualizations are displayed, and each view

reflects these incremental steps. In these systems, users can take an existing visualization as a

starting point, and then duplicate it using a graphical interface, and make modifications to the

copy. This is a helpful interaction technique for data exploration, because it allows the user to

pivot from one set of interests to another. The new visualization can be juxtaposed with the
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prior visualization, and used for tasks that span more than one view (30; 107). We apply this

approach in our technique, with some adaptations for the environment and input modality.

5.5.3 Referential actions: multiple targets, multiple pivots

In our design, we extend this copy and pivot idea to multi-modal speech and mid-air gesture

inputs. Through referential actions, we enable a user to indicate a view of interest through

mid-air pointing, and then pose their request to see this view but with a change in the data

represented in the view. In addition, we enable referential actions that target more than one

visualization. We allow users to specify multiple view targets and/or to specify multiple parallel

actions (pivots) to perform on the targets, to copy and pivot many views at once, or to copy

and pivot a single view repeatedly in one command. To target multiple views, a user has to

point to more than one visualization. To express multiple actions, a user needs to enumerate

multiple data value and/or data attribute interests.

We can classify referential actions as:

• ’One-to-One’, for a single view target and a single pivot actions

• ’One-to-Many’, for a single view target, and multiple pivots, producing multiple views

• ’Many-to-One’, for multiple view targets and one new view, which extends the collection

by one view

• ’Many-to-Many’, for multiple view targets, with one or multiple collective pivots

Some examples of these referential action types are shown in Figure 26.
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Figure 26: Figure depicting referential interactions of different types. Some target a single view,
to produce a single new view (One to One). Others target one view, but express multiple pivots
producing multiple views (One to Many) Finally, some referential interactions target several
views and express a collective copy and pivot action on the targeted set (Many to many).

In the previous chapter, we described the mechanics for executing these actions. Here we

add in the ability for users to create their own sets of views, that can copied and pivoted. This

is enabled by spatial positioning decisions, described below.

5.5.4 Role of spatial positioning

Andrews et al. established that analysts examining large numbers of text documents tended

to use spatial positioning to group related items together, in ways that reflected conceptual

relationships (35) Applying this principle to information visualization, has been of recent inter-

est (38; 102; 39). Typically, these groupings are seen as a way to help build an understanding

of the data, because users can freely juxtapose and arrange views, in configurations that allow

for tasks that span more than one view, such as comparisons.
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In this dissertation, we use spatial positioning as a feature to enable view creation for data

exploration, an example of which is shown in Figure 27. Items near each other are easier

target with a mid-air pointing gesture. These items may be produced together, for instance

in a cast-a-net direct request. They may be produced completely independent of each other,

through separate direct requests. Or they may be from a referential request, to copy and pivot

a prior view (which we will describe in the next section). In all of these cases, we needed to

design actions to take custom sets of views, that a user may target, and provide an appropriate

response.

Because users can freely position visualizations on the display, they can create custom view

collections and request collective pivots on these self-defined view collections. This differentiates

our interaction technique from Traverse, where views were created in collections in temporal

order, and it was not possible to freely return to prior collections or individual views.

In Ditto, users can position views that were created at different stages of the analysis

together. They can then refer to these views together, to copy and pivot them at the same

time. Because users can cluster views together based on conceptual relationships, not their

order of creation, we aim to allow them to move between threads of their analysis more easily.

In effect they can explore one set of interests, and then another, and return to the first thread

later. Or weave together multiple analysis threads.

5.5.5 How to copy and pivot self-defined collections

After users have requested an action on a self-defined set of views, our system needs to

determine what features these views have in common. These shared features provide informa-
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Figure 27: Spatial positioning decisions of the user can enable our technique, because adjacent
visualizations are easy to point to. The figures are ordered 1 to 6. In the first scene, the user
moves one the visualization closer to another, both figures are about the university (1). Then,
they can reference this pair of views to copy and pivot them to a new subset of the data, the
Downtown neighborhood (2 and 3). Then, these views can be grouped together in a grid (4).
Then, in this grouping, the user can point to views with a common data attribute (the bar
charts), and pivot them to a new set of data values (5 and 6).
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Figure 28: Context dependent responses to the same referential request, involving new data
values of interest. Three different cases, with three different responses, that depend on the
targeted views, and an assessment of their common and varied features

tion about how the user expects the system to respond to their referential action. To respond

to self-created collections, we first determine how the referenced views are similar, and classify

them into a collection type. Then, responses proceed as in Traverse, with a few examples shown

in Figure 28, Figure 29 and Figure 30.
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Figure 29: Context dependent responses to the same referential request, involving new data
attributes of interest. Two different cases, with two different responses, that depend on the
targeted views, and an assessment of their common and varied features

Figure 30: Context dependent responses to the same referential request. Two different cases,
with two different responses, that depend on the targeted views, and an assessment of their
common and varied features. In these cases, the user indicated views that did not have clear
conserved features, but Ditto can respond with filter and split actions in some cases.
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If this set of views cannot be classified in a collection, we classify it as other, and attempt

to respond to the request. Filter requests can typically be performed on any set of views Fig-

ure 30. Adding a data attribute (a split operation) can be performed on views with single data

attributes Figure 30.

5.6 Implementation

In this section, I will describe our implementation of our multi-modal speech and mid-air

gesture data exploration technique, which we call Ditto. Ditto is a colloquial term, originally

from Italian ’detto’ meaning ’said’, and is used to convey ”the same thing again”, or to indi-

cate that something already said applies again. This name reflects the core mechanics of our

technique- to refer to onscreen views, which are themselves the product of something previously

said, and which show one particular selection of data values and data attributes, and to repeat

this but with a change, with new selections of data values or attributes. I will describe how

we translated our design goals into implementation requirements, and the decisions we made

to realize these requirements.

5.6.1 Implementation requirements

Based on the design goals, we developed a list of implementation requirements.

First, we needed a speech input system, capable of capturing spoken ‘actionable’ requests

from the user, and isolating these requests from other speech that might occur in the room. Since

the user would be using this system repeatedly, it needed to be easy to active, and activation

should have minimal errors. It needed to capture short, actionable segments of speech with

reasonably high fidelity.
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Second, we needed a pointing detection system, capable of capturing pointing gestures, and

the onscreen targets of pointing gestures. These pointing gestures need to be precise at the

level of whole visualizations, not entities within visualizations. We do not need to record all

pointing gestures, just pointing gestures that co-occurred with spoken, actionable requests.

Third, we needed a touch system, that allowed users to position views on the display. We

did not focus on other uses for touch gestures- such as interaction within a visualization, to

change encodings or layouts, or to select elements within a visualization. This work would

fall under the umbrella of multiple coordinate view research, and is out scope for this research

contribution.

Fourth, we needed a display platform, capable of showing visualizations, in user-defined

layouts. This platform needed to also allow us to display information about the state of the

system, and the queries and responses, in a chat-box history.

Fifth, we need a view generator system, that would interface with these components, and

supply visualizations in response to user queries and the targets of their pointing gestures. This

generator needed to supply one or several views, and respond to referential operations as well,

and referential operations on user-defined collections of views.

5.6.2 Implementation of the input system

Based on our design goals, we isolated a set of implementation decisions that pertained

to our input system, which were resolved through formative evaluations with users. Here we

will describe these decisions and how we resolved them. An overview of this system design is

presented in Figure 31.
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Figure 31: A diagram of the speech input system, and the speech and mid-air gesture input
system.

5.6.2.1 Capturing spoken requests

We needed an input system which captured spoken ‘actionable’ requests (20; 44; 45), and

distinguished these requests from other spoken utterances that might occur during data explo-

ration. There are two basic approaches to capturing spoken requests from the user.

The first approach that we tested used continuous listening, and would use some approach

to decide when the user wanted a response from the system. At the moment, separating

‘actionable’ speech from non-actionable think aloud, is an ongoing research question (23). So,

to accomplish this for our system, we tested continuous listening systems with keyword-based

activation, such as Alexa or Google Home. In these tests, the user would say ’Computer’ in

order to signal that they were going to pose a request, and then would use language to direct the

request to our visualization generator server, by saying ’Ask Ditto to....”. However, we found

in testing that there were frequent missed requests, and misunderstood requests. Sometimes

the Alexa would not detect the first query (Ok computer) and then other times it would miss

the request to direct the query to the our visualization generation system. In addition, it was
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very wordy to express requests in this, for example “Ok Computer, ask (name of system) Can

I see a chart for thefts in the Loop?”. Due to these combined difficulties, we did not pursue

further development with continuous listening, keyword activated platforms (22).

Next, we tested interfaces that gave users direct control over the activation of speech-to-text

transcription. We tested two approaches, both of which used an interface on an Android phone.

The first required users to control both the start of recording and the end of recording. The

second required users to activate recording, and then recording would stop when users stopped

speaking. During pilot studies of the interface (with 4 participants) we found that participants

strongly preferred the second approach- direct activation and with recording halted by pausing

speech. One of the limitations of this decision, is that the recording may deactivate before the

user has completed their request, such as if they pause in the middle of deciding what to ask.

This was a source of some errors for users, which we discuss in our results section.

The visual interface for spoken interactions is depicted in Figure 32. It consists in the

activation button, which changes color when listening and transcribing spoken requests, and

an area to display the transcribed text. Once activated, it will send any captured spoken

utterances to the system. Our interface also supplies a sound when activated and deactivated,

for an additional source of feedback.

5.6.2.2 Capturing pointing gestures

We needed an input system to capture references to onscreen targets while participants

spoke. We used a Kinect mounted to the center of the display, which captures a user’s skeleton

data. Kinect data was captured with the Omicron multiple input and devices framework (140).
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Figure 32: Three different states of the input interface, that runs on a mobile device.

Skeleton data consists in a set of joint positions in 3d space, with axes expressed relative to the

Kinect device.

The Kinect on the display is directed at a 45 degree downward angle, from vertical, capturing

the user from above. We perform a transformation on skeleton joint coordinates, to put the

skeleton in a coordinate system that is relative to the display, and is easier to work with. This

means that we first rotate the skeleton, so skeleton positions are parallel to the display, and

lateral movements of the user to either side of the display are recorded as changes in x position,

vertical changes in the position of a joint, such as raising an arm, are recorded as as changes in

y position, and moving towards or away from the display are recorded as changes in z position.

This is accomplished by considering the floor plane, and applying a rotational matrix, based on
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the angle of the Kinect relative to the floor plane. We also take into account the display size,

and position, and the height and position of the Kinect.

The skeleton is continuously tracked, but we begin to detect pointing gestures when the

user of the system raises their right arm away from their sides, above a threshold angle of 90

degrees. When we believe that the user is pointing, we activate an onscreen visual pointer,

to provide visual feedback. This visual pointer can be seen in Figure 33 and the approach we

adopt is shown in Figure 34.

As the user moves their raised arm, we move the on-screen pointer. Movements of the arm

are related to movements on the screen, by creating a virtual display around the user. This

virtual display is in proportion to their head, the length of their arms and the distance of their

arm toward the display, relative to their torso joints. As users reach the edge of this virtual

screen, they also reach the edge of the large display, and as their movements reach the center of

their virtual screen, it also reaches the center of the large display (141). We also used a 1Euro

filter, to smooth the skeleton data, and smooth the pointer movement on the display (142).

Logging the window targets of the participant’s pointing gestures is based on whether the

onscreen pointer has brushed over the window during the user’s spoken inputs. Logging these

targets begins when the user activates the speech input system, to meet our goals of capturing

synchronous point and speak interactions.

We wanted to capture these gestures without requiring users to wear a motion tracking

device. Based on initial tests, the Kinect could track movements of users skeletons with sufficient

precision to allow for clear detection of point targets.
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Figure 33: A participant in our study points to an onscreen visualization, to perform a referential
operation using the targeted view.

Figure 34: An illustration of how we mapped mid-air pointing movements to an on-screen
pointer.
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5.6.2.3 Display environment and Touch inputs

Ditto runs within the SAGE2. SAGE2 is an application for visualization and multi-user

interaction with visualizations on large, collaborative displays. SAGE2 is a web-based frame-

work, consisting in a node.js server and and html/javascript front end (93). Ditto uses a custom

branch of Sage2, to integrate our system for synchronous pointing and speaking inputs, and

to accommodate visualization creation through an external view creation server, Traverse, de-

scribed in the previous chapter. Touch events are detected within Omicron (140), and we use

the SAGE2 touch manager, to enable users to position views on the display.

5.6.3 Display interface

The display interface for Ditto was in SAGE2, and is shown in Figure 35. The main

application, displayed within SAGE2, consisted in a scrolling chatbox, that displays query

history, and some responses from the Traverse view collection generator. It shows user queries

in green, and system responses in either blue, for a normal system state, or red to report an

error. The chat interface presented both the user’s queries and the visualization identifiers of any

views they referenced in their questions, and responses from the system, such as ‘Processing’,

‘Done’ and “Error’.

The visual interface for SAGE2, consists in the display area, and windows that can be

freely positioned by the user. A colored ’pointer’ object was shown when participants would

raise their right arm, and this pointer would visually highlight windows as it passed over them,

changing the color of the title bar.
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Figure 35: A screenshot from a study session, showing the different portions of the display, and
the visual interface.

5.6.4 Traverse+ Natural Language data exploration system

Spoken inputs were sent to Traverse+, an augmented version of our NL for data exploration

system that we described in the previous chapter. Traverse+ responds to direct requests, both

targeted and ‘cast-a-net’ requests, and responds to referential pivots.

Traverse+ differs from Traverse, in that it allows users to send custom sets of views, for

pivoting actions, and the system attempts to assign this collection of views to one of the existing

view collection types, to generate an appropriate response. In the event that views cannot be

assigned to a view collection type, Traverse+ has an additional approach to decide whether to

respond. This implementation executes the design principles presented in the previous section.

We also augmented Traverse to include window positioning requests to ’move views to the

side’, or requests to ’undo’ an action or ’delete’ a visualization.
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5.6.5 Formative Evaluation

We conducted an early evaluation of our interaction technique, where we refined the input

speech system, and established that participants could speak and point comfortably. The results

of this evaluation are presented in Kumar et al (21; 22).

5.7 Evaluation

We conducted a user study of our implemented multi-modal speech and mid-air gesture data

exploration technique for large displays. We were interested in understanding how participants

created views directly and how they used speech and gestures together to reference and then

copy and pivot the referenced views. We wanted to see whether participants used the display

space to enable referential interactions, and used both referential actions with a single target

and many targets, as well as referential commands with one expressed pivot operation, as well

as many.

We designed an evaluation around a data exploration scenario, to explore how recruited

participants utilized our interaction technique. Participants engaged in a brief training, to

learn how to use our interaction technique, and then they completed an open exploration of a

data set. Our experimental setup and study protocol was refined through a pilot evaluation with

4 participants. In the pilot study, we clarified our user instructions and task description, and

tested different arrangements of study materials on the display wall. We also refined thresholds

for marking targets of pointing gestures- to limit unintentional selections of views- and improved

options for closing and moving visualizations to the side.
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5.7.1 Participants

We recruited 8 participants (4 M and 4 F), ages 24 to 33, pursuing PhDs (7) or MS degrees

(1), from largely computer science or engineering fields. They had reported using data visual-

izations daily (3), weekly (2), monthly (2) or yearly (1). Participants all were fluent in English,

though 6 of the participants were from a non-English speaking backgrounds.

5.7.2 Apparatus

Our study was conducted in a laboratory setting, on a 24 x 6.75 feet (7.3 x 2 meters) ,

37MPixel display wall. A Kinect, centered and angled downward, tracked participant move-

ments, and detected mid-air pointing gestures with the right hand. Participants were given an

Android Pixel 2 phone (5-inches (130 mm) with a resolution of 1920 × 1080), which connected

with the sage2 node.js server, through wireless internet.

Two experimenters observed and guided the participants in the study. The first was seated

behind the user. The second observed the sessions via a laptop Zoom interface. Both experi-

menters assisted with training and documenting user behavior.

On the display was the chat interface, which presented both the user’s queries, the visualiza-

tion identifiers of any views they referenced in their questions, and responses from the system,

such as ‘Processing’, ‘Done’ and “Error’. This interface was on the left side of the display.

Next to the chat interface, were two documents describing the data and the tasks. During the

training phase, participants were also shown a list of scripted examples to follow, on the wall

near the center of the display, slightly to the right and near the top.
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The center of the display was reserved for new visualizations. Participants could ask to

move views to the side, through the pointing and speaking interface, and the minimized views

were moved to the right hand side, in a descending stack of visualizations. New views were

positioned in a horizontal stack at the bottom, center of the display.

5.7.3 Procedure

The study was conducted in 4 phases: 1) explanation of the data exploration technique and

input system, 2) training, 3) open exploration and 4) survey and debrief.

5.7.3.1 Training

During the training phase, participants were given an explanation of the interaction tech-

nique, by looking at a document that presented a set of example queries and simple graphics

of example responses. Participants were told that the environment was designed to provide

simple visualizations in response to their interests in the data. They were given an explanation

about asking focused questions vs ‘cast a net’ questions vs referential questions, with a set of

examples.

Then participants were shown the large display and the phone interface, and they were

given a set of instructions for using the environment. The experimenter would perform a

couple of example queries, showing the participant how to activate the speech to text listening

system through the phone interface and showing the participant how to indicate on-screen

visualizations, with examples of point-and-speak referential interactions. They demonstrated

use of the touch screen, to position views on the display.
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Participants were then given a list of queries and referential interactions to perform, in order

to become familiar with the interface and with the kinds of data exploration NL commands

Ditto could accommodate. This portion used the city crime dataset, described in our usage

scenario. This portion of the study lasted an average of 30 minutes.

5.7.3.2 Exploration

After training, participants were given a description of an exploratory problem and a dataset,

described below. They were instructed to explore the data freely. They were given a set of

sub-tasks, which were persistently visible on the display, on the left hand side. They were told

that the sub-tasks were suggestions, and that they could also explore based on their interests

and observations.

Participants were told to position visualizations as they came in using touch, and to choose

whatever configuration supported their understanding of the data. We asked participants to

think-aloud, and relay their observations and thought process. We told participants that at the

end we wanted them to tell us a bit about what they found, through the visualizations they

created.

We provided the participants with some visualization arrangement aids- in particular the

ability to point at a visualization or a set of visualizations to close them, and the ability to

move a visualization or a set of visualizations ‘to the side’.

5.7.4 Task and Data

Participants explored a COVID19 related dataset about US counties, which was used in the

evaluation of Traverse in the previous chapter. It consisted in a county classification, as rural,
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urban, suburban or small city, a regional classification (Midwest, Southeast. . . ), and county-

level Centers for Disease Control health indices (poverty rate, diabetes rate, cardiovascular

disease rate, percent over 65, uninsured rate, primary care doctors per capita), and county-

level COVID19 case numbers for each month from April 2020 until January 2021. In addition,

for each county we used a machine learning prediction for ‘COVID19 vulnerability’ (136), and

instructed participants to examine this machine learning based prediction with respect to the

provided county-level health, demographic and COVID19 case data, and to look for interesting

features by region or county type (rural, urban. . . ). This data is described in greater detail in

Appendix A.

5.7.5 Captured Data

We collected video and audio from the sessions. We captured a complete screenshot of the

display after the participant organized new visualizations, and if they made significant changes

to visualization positioning between queries. We also captured a complete log of participant

queries, pointing gesture targets, the responses of Traverse+ to these multi-modal inputs. This

included visualization responses, requests to position visualizations or delete them, undo actions,

and errors.

5.8 Results

5.8.1 Analysis methods

We analyzed survey responses and logs of participant queries, referenced views and system

actions and related these logs to the captured screenshots and videos, along with notes captured

during the study. We found that participants used direct targeted and ‘cast-a-net’ queries in
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concert with referential actions, to explore the data. In the next section we will describe

how participants used the technique, how referential actions appear to have enabled iterative

exploration, that picked up on current and prior points of interest. We also describe how

participants were able to use referential actions that targeted both single views and sets of

views, and expressed one or several simultaneous pivot actions, to rapidly create views in

support of exploring multiple points of interest.

5.8.2 Overview of participant exploration actions

Using logged participant actions, captured screenshots of the display after every query+position

cycle, and open coding, we captured an overview of how participants used the available NL in-

teraction command types.

In Figure 36 we present the frequencies of different action types, broken down by major

category and participant.

We captured a total of 307 visualization queries with responses from Ditto. Of these, around

responded to 55 percent (168) were ‘direct’ queries, where participants only used speech to

express their intentions, and 45 percent (139) were ‘referential’, involving simultaneous speech

and mid-air pointing gestures. Of the direct requests, 21 percent (36) were ‘cast-a-net’ queries,

where participants expressed several points of interest, and Ditto provided several views.

Within referential requests, participants expanded their exploration to new data value in-

terests, through ‘subset pivots’ and ‘filter’ operations (29 percent of referential operations), and

through data attribute pivots or additions through the ‘split’ operation (69 percent of referential

operations).
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Figure 36: An overview of participant actions and system responses.
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Participants on average used both direct requests, that are posed through speech, and

referential point-and-speak requests. Some participants strongly favored direct requests (par-

ticipants 4 and 5), others used both equally, and a few used referential requests more often

(participants 1, 2 and 8). In the next section, we will focus on how participants wove between

direct and referential questions during data exploration.

5.8.3 Referential operations, and evolving points of focus

In order to understand how participants used referential operations to explore the data, we

created the visualization in Figure 37. To generate this view, we took logged interaction data

and visually represented the session as a sequence of views provided in response to user queries,

and arcs to show when a view is referenced, and copied to produce a new view. Arcs show

how a referential request takes an indicated view or views, and produces a new visualization.

The gray boxes show when a group of views is produced in response to one query, such as

in a cast-a-net request, or a copy-and-pivot operation with a single view target and multiple

pivots, or a copy-and-pivot operation with multiple view targets that are copied and pivoted

collectively.

One observation that we can make from these figures is that our participants often referenced

views from early in their data explorations session, to copy and pivot in new directions later

in the session. For example, we can see from this visualization that participant 7 referenced

the very first view they produced, to copy-and-pivot it in their very last query of the session.

Participant 2, referenced their first two visualizations repeatedly, which means they copied and

pivoted these two views repeatedly, to extend this initial focus in a new direction. This data
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Figure 37: A visualization of participant actions. For each participant, we show a list of
visualizations, blue circles, in the order they were created. Arcs connect visualizations that
were referenced, copied and pivoted. Views that were created together in one action, such as a
cast-a-net action or a many-to-many or one-to-many referential action, are shown with a gray
box.
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exploration style suggests that participants may have started to explore a particular set of data

and attribute interests, creating a set of views at one point in their session, and then moved to a

new thread of their analysis, creating a different set of visualizations, but participants returned

later to their initial exploration thread. The large display accommodates this data exploration

pattern, because views can remain persistently present on the display wall, and can be returned

to later.

We can also see instances where participants repeatedly pivoted a single view target, to

produce many new visualizations. In effect, after finding a visualization that suited their inter-

ests, they incrementally extended the focus of their exploration, either through repeated single

pivots (one to one) or multiple parallel pivots (one to many).

5.8.4 Referential operations, one to one, one to many, many to many

Using our logged data, we found that participants most frequently used one-to-one refer-

ential operations (75 percent of referential operations) specifying a single view target, through

pointing, and a new data attribute and/or value interest, which Ditto responds to with a single

view. Participants would often use repeated referential one-to-one operations to incremen-

tally build up a set of views, which contained both conserved and varied features. We can

see instances of this in Figure 37. For example, Participant 3, used this one-to-one referential

interaction style repeatedly, referencing their second visualization, to create 3 new visualiza-

tions, and referencing their eighth visualizations to create 7 more, only one of which was a

’one-to-many’ operation (which is evident from the pair of views in the gray box).
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Participants occasionally performed ‘one-to-many’ pivots, (6 percent of referential interac-

tions) where they indicated a single view target and asked for multiple new data values and/or

attributes, which Ditto would use as a basis for providing a set of views.

Participants performed many-to-many pivots for around eighteen percent of referential in-

teractions, pointing to several views during their spoken command, and indicating a new data

value and/or attribute interest. Because they indicated several view targets, Ditto would copy

and pivot each indicated view to the new points of interest, producing a set of duplicated and

pivoted views. In effect, users could express a ‘batch action’, that operated on several views at

once.

5.8.5 Case Study: Targeted and Referential, For Evolving Exploration Goals

We present a case study, showing one participant’s use of space and a combination of direct

and referential actions to explore the data. We used captured screenshots from the session,

along with captured screenshots from the video recording, to construct this description of her

exploratory actions. A photo of the final state of her session is displayed in Figure 38.

This participant created 66 views of the data, in 69 minutes, using 20 direct (39 percent

of visualization requests) and 31 referential (61 percent of visualization requests) interactions.

Overall, she mostly employed targeted or multifaceted (eg. two data attributes) (85 percent

of direct interactions) and one-to-one referential requests (80 percent of referential requests),

employing an iterative exploration approach. She created a total of 6 partially overlapping

exploratory clusters, depicted in Figure 39. The evolution of her analysis and her use of space

can be seen in Figure 40, which contains a sampling of snapshots from her session.
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Figure 38: The final state of one participant’s analysis session, which we focus as a case study
to illustrate how targeted and referential actions enabled her to build coherent sets of views,
which she positioned in coherent groups on the large display.

Figure 39: This participant generated several clusters of visualizations (A-F), which are coherent
view collections, using our data exploration technique. She created these views largely through
targeted and one-to-one referential actions.
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Figure 40: This figure shows selected snapshots from the video recording, ordered in time from
the start in the upper left to the end in the lower right. The evolution of the participant’s
exploratory session can be seen. She dynamically followed evolving threads, based on her
interests, frequently returning to earlier threads.
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At the start (scenes 1 through 4), she created a set of views starting point visualizations,

getting familiar with the data. Then she began to focus on exploring maps, colored by data

attributes of interest. She expressed this intention first with a direct , targeted request (”Can I

see a map of Covid19 risk?”). Then she followed up on this map, through a set of referential one-

to-one operations, performed in between other requests, generating maps of access to doctors,

uninsured rate, elderly population, cardiovascular disease rate, poverty rate and diabetes rate.

These were all one-to-one referential operations, and she gradually build her view collection of

maps, colored by varied secondary attributes. She positioned these in a loose cluster.

In between creating maps, she also asked questions about the correlation between Covid19

risk scores versus regions (”Can I see covid risk index by ridge(sic) versus region”), in a targeted

direct request. She returned to this line of inquiry, after following another analysis thread, to

ask a second targeted direct request about correlation. Then she returned to this analysis thread

in the second half of her session, to create several more of these plots, first through another

targeted, direct request, and then through a series of referential one-to-one and one-to-many

pivots, targeting the existing views in this cluster to create more. She placed these carefully in

a cluster, after each was created.

Early in the session, she created a set of visualizations showing Covid19 risk index for each

of the regions (Cluster C) (one to many, referential subset pivot). She selected plots associated

with the southeast and southwest from Cluster C, and used these as a starting point for the

plots in Cluster D, followed by Cluster E. In between, she explored Covid19 cases, by date

versus other secondary attributes.
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This case illustrates use of targeted and one-to-one referential actions to build sets of views.

This participant also illustrates use of the display to externalize their interests, and then be-

cause they are visible throughout the session, she returns to them later, to extend them. This

participant generally positioned views that she referenced, near other views, because she was

using these one-to-one referential actions to expand a prior collection.

5.8.6 Case Study: Many to Many referential operations

Several participants used many-to-many referential operations to duplicate a set of views.

One example, involves a participant who had just created 4 visualizations showing maps colored

by elderly population, in the Midwest, one showing all Midwest counties, and the others filtered

by the three of the four county types in the dataset (rural, urban, suburban, small city). These

four maps had been generated by a targeted direct request (”Can I see a map for elderly

percentage in the Midwest), followed by three one-to-one referential pivots, which filtered the

map by three of the county types (”Can I see this but for rural counties?”, ”Can I see this but

for Suburban?”, ”Can I see this word(sic) for Urban?”). Then, the participant pointed to all

four of the maps, and asked ”Can I see these but for the Pacific?”. The resulting 4 plots were

placed in a grid, so the participant could compare the geographic distribution of high and low

elderly populations, in different regions and in counties of different densities.

5.8.7 Errors: Observed points of difficulty

In addition to logging user requests and Ditto’s responses, we also automatically logged

errors. We focus on situations where the Ditto could not offer a response. We reviewed the

logged data, and coded the non-response cases, based on the primary issue that led to the
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Figure 41: A participant in the study first points to a set of visualizations, containing a custom
set of views, all showing Midwest counties colored by elderly population, but varying in filter
criteria around county types. The participant asks to see these views but for a different region
”Can I see this but for Pacific?”, and Ditto provided four visualizations that were duplicates of
the original, but displaying the Pacific region, rather than the Midwest region.
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system error. We used an open coding approach, and applied these codes through multiple

passes of the logged data.

We found that the most frequent sources of error involved the speech input system. Close

to 40 percent of the errors, were due to speech to text interpretation issues. This is where the

spoken request of the user is mis-transcribed by the speech to text interpreter.

Speech to text issues will likely resolve as speech to text translation systems improve. Given

the interest in natural language interfaces, there are likely to be improvements in these systems

in the next few years. In addition, in future work in this area, we could explore training the

speech to text interpreter on each participant’s voice and accent, and augmenting interpretations

with a corpus related to the data, so keywords that are most critical to interpretation of a user’s

intent are easier to detect.

System input errors typically involved the time-out feature on the listening system. This is

where speech to text transcription ends when the user pauses for a few seconds. The represented

28 percent of the non-response cases. We believe that this is an interesting challenge for spoken

NL systems, which is addressed in my colleague Abhinav Kumar’s forthcoming thesis, and in our

prior work (23; 22). As described in the implementation section, we tested several approaches

for capturing spoken inputs, and we found that participants in early pilots of our interface did

not find other approaches to be easy to use- including alternate input devices (Alexa, Google

home..) or input capturing methods - involving both direct activation or listening and direct

activation of terminating listening. It is possible that for data exploration scenarios, users need
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more time to formulate their query, and the standard APIs for capturing spoken inputs may

time out too soon.

In an additional 27 percent of the cases, the system was not designed to respond to the

question users posed (out of scope), such as asking about population data or for specific visu-

alization types not currently available in our implementation, or the question posed by users

was unclear to the NL interpreter, and a response could not be provided.

Pointing detection errors were less frequently a source of non-responses. This includes

situations where users intended to point to a view, but it was not detected, and situations

where the system detected a pointing action to a visualization that the user did not intend,

such as accidentally brushing over a view during the pointing gesture.

5.8.8 Feedback

After the study ended, participants were given a set of survey questions allowing them to

comment on aspects of the data exploration experience with Ditto. They were provided a set of

questions, which they scored on a 1-5 Likert score, to express agreement (5) or disagreement(1).

They also were given a set of questions with an area to type more extensive comments. In this

portion, we asked them to comment on their experience, and discuss places where we could

improve. Figure 42 displays the results of this survey, with participant scores.

5.8.8.1 Feedback on exploration and responses

Participants largely felt that Ditto helped them explore the data, with 2/8 participants

ranking it was ‘very helpful’ and 6/8 ranking it as ‘somewhat helpful’. Participants also ranked

the experience as ‘enjoyable’, with 5 out of 8 participants ranking it as ‘very enjoyable’, 2 in
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Figure 42: Participant Likert score responses to survey questions. 1 is strongly disagree, 5 is
strongly agree. Each question is shown, next to a stacked bar. The color of each bar is based
on the score. Width of the bars is based on the number of participants who responded with
that score.

8 ranking it as ‘somewhat enjoyable’, and 1 in 8 neutral. Many of the participants found date

exploration easier with Ditto, when compared against their prior experiences, with 2/8 saying

it was much easier with Ditto, 5/8 saying it was somewhat easier.

Participants also ranked the copy and pivot, referential operations highly, with 6/10 saying

the pivot operations were ‘very helpful’, 1/8 ‘somewhat helpful’ and 1/8 ‘neutral’. One partic-

ipant commented “I liked that I can create a lot of visualizations quickly and also can create

new charts from existing ones. This seems to help me in understanding which data attributes

I would like to have . . . “.

Participants generally felt that the responses to their questions matched their expectations,

with 1/8 saying this was true ‘all the time’, 6/8 saying this was true some of the time, and 1

participant neutral. Participants generally were not unhappy with unexpected results, with 4
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out of 8 somewhat liking unexpected results, 2/8 neutral, and 1 out of 8 disliking unexpected

results ‘somewhat’.

5.8.8.2 Feedback on input system

Some participants felt that the combinations of inputs addressed their needs. One partici-

pant commented “The combination of gestures (touch and mid-air) and voice worked smoothly.

It was easy to learn and use.” In the rankings, participants had mixed reviews of how well the

pointing and speaking interactions worked for them. 1/8 felt these interaction were very easy

to learn, 2/8 felt they were somewhat easy to learn, 4/8 were neutral and 1/8 ranked these

interactions as somewhat difficult to learn.

Some participants were unsure about how long you needed to point to a visualization in

order for their pointing gesture to be registered. One participant commented “ For gestures,

you needed to point to a chart for during the whole command to avoid giving the command

to other charts by accident. This could be a little tiring.” Another commented “I also think

that maybe the pointing gesture could be shorter delay so there is less fatigue.” The duration

of time that a view needed to be indicated is short in practice, but from these comments it

appears that participants needed better visual feedback on this action, to know that they have

successfully indicated a particular view. Although the visualization title bar would change

color, when the participant’s pointing gesture brushed over the view, this signal may not have

been strong enough, to register with the participants. Future work on visually indicating and

controlling pointing actions could help address this challenge.
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5.8.8.3 Feedback describing challenges

Participants expressed mixed responses to aspects of data exploration using Ditto. Partic-

ipants ranked the NL experience as understanding their questions ‘some of the time’ (2/8) or

neutral (6/8). This issue could be related to the speech to text interface, as in did the speech to

text capture their intention correction, or it could relate to the interpretation of their request,

as in deciding what response to provide.

With respect to the speech to text input system, participants commented on challenges with

this system. One wrote “I found it interesting but also frustrating. Speaking-wise, the system

had a bit of trouble with my accent and the time-frame given to record the command seemed

short; hence, I found myself having to close many charts and re-doing the process.” Another

participant commented “The interval for voice input can longer, there were couple of times that

it stopped listening while I was just remembering a particular property. .” As we discussed in

the previous section on system errors, this was a frequent source of error, and addressing this

should be addressed in future work.

Participants also commented on challenges with formulating questions using the NL com-

mand structure that Ditto supported. One participant commented “Deciding how to word

commands was the more difficult part. Especially if the system failed to produce the expected

result. “ One participant noted that they had particular desired visualizations they wanted to

create, something that Ditto is less well suited to, and they commented “Finally, i’d think of

a way to remember the commands or the keywords to use to trigger the chart that I want. As

it was open-ended, I found myself forgetting how to trigger the chart that I wanted or how to
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match a variable to the desired color or axis.” Some participants suggested better visual inter-

face to help users remember the kinds of queries Ditto responds to. One participant commented

“I think a wider wording flexibility will be helpful especially if the users are non-native speaker

like myself. A work around that I am thinking of is having hints open on the large display. I

think the speech to text interpreter worked fine, a little bit less fine than my Google assistant,

so it could use a nudge.”

5.8.8.4 Feedback on Large Display

Many of the participants commented that they appreciated the large display and the ability

to position multiple views in different arrangements on the display. One participant commented

“The system was easy to bring up visualizations and spread them across the wall.”. Another

noted the ability to return back to prior views, writing “Having the big display helps in having

a lot of views at the same time so it’s easy to go back to refer to others and also compare.”.

But participants expressed mixed reactions to managing views on the large display, and

the multi-view responses to queries from Ditto. One participant commented “I found that

I spent a lot of time dragging and resizing the graph windows.” It is possible that this is

one of the reasons that participants had mixed rankings for multi-view responses, with 4/10

strongly preferring multi-view responses, 2/10 somewhat preferring multi-view responses, 2/10

somewhat preferring single view responses and 1/10 strongly preferring single view responses.

Participants discussed view positioning challenges, and offered ideas for how to address

these challenges in future. One participant commented “Touch worked well to reorganize, but

some more initial grouping might be helpful. I.e. generated next to related graph that was
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referenced.” Another offered the suggestion to provide options to re-organize views from a

distance, saying “I would focus on gesturing actions that can accelerate how to place elements

on the screen as dragging the charts one-by-one seem slow. For instance, I’d like to use a lasso

tool to then show the items in a grid or select all filtered by the same attributes and apply

a change of location to all of them. “ Another suggested, “ I would have preferred if charts

popped up into already empty space by default and were bigger by default. Having preset sizing

options (say big, medium, small) could also help in addition to having manual resizing “.

5.9 Discussion

Based on the feedback and the usage patterns, we can see that aspects of our design for

multi-modal speech and mid-air gestures for data exploration on large displays was successful.

Participants in our study were able to learn the technique, after a short training, and use both

direct requests and referential requests to generate sets of views. Participants used both one-

to-one referential actions, targeting a single view to create a new view of the data, showing a

new selection of interests, as well as many-to-many referential actions, which acted to copy and

pivot sets of views collectively. We also noted that participants returned to prior views, later

in their session, suggesting that externalizing their exploratory process on the display allowed

them to pursue evolving points of interest and follow different exploratory threads.

5.9.1 Addressing speech and mid-air gesture input challenges

There were some limitations with the technique, that involved the input technology and

points of error, such as mis-translating a request or not capturing an intended target of a mid-

air gesture. There are several ways to address these limitations. First, the trajectory for speech
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to text translation is promising, and likely there will be improvements in this area in the next

few years. Second, future work with this approach could use training or augment the speech

to text with a corpus of keywords, to improve accuracy (25). Finally, it may be possible to

explore using the speech and pointing together in ways that account for potential errors, such

as inferring the a missed pointing gesture from context, or inferring a mis-transcribed spoken

request using the pointing gesture targets as context. This would be valuable to consider as

future work.

In addition, there may be design decisions that could improve aspects of the user experience.

Some users suggested circling sets of visualizations, in a lasso gesture, rather brushing over

them, which would be a great approach. Second, there may be ways to highlight groups of

views visually, and then users could point to a smaller target area when referring to a group

of views. Third, sophisticated natural language processing techniques could resolve references

and detect referential requests better, than with our reduced NLI system (20; 21; 22; 23). In

addition, we could explore ways to visually highlight the targets of pointing gestures more

clearly.

Finally, we could explore using other devices or other approaches to capture spoken in-

puts, such as a watch or a microphone, or in-room microphones that persistently listen and

detect requests. This would allow for device-less speech inputs, which might reduce issues with

activation and de-activation of the speech-to-text input system.
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5.9.2 Visualization organization and metavisualization

In addition, participants suggested that view positioning presented challenges, and they

could see the need or value for future work that assisted with this time-consuming task. This

is an interesting finding, because there is a assumption in our community that free positioning

of visualizations is optimal, because users can then express their idiosyncratic sensemaking

process through positioning decision. However, as the number of visualizations on the display

grows, it becomes more difficult to manually position content. Several of the suggestions, such

as positioning views next to the referenced target, or using an algorithm to find an available

space for new visualizations, are a good direction for future research in this area. This is an also

a design challenge where our view creation technique, Traverse, might be able to help. Traverse

generates line and grid layouts for visualizations, that were used in our previous chapter. Future

work could examine how to utilize these layouts in a flexible canvas environment, in conjunction

with user decisions about visualization positioning.

In addition, there has been recent interest in metavisualization, which considers how to

effectively show between view relations in large, multi-view environments. Our work considers

a group-wise approach to between-view relations, as opposed to a pair-wise approach, which

may have benefits for coherently displaying visualizations. Future work is needed to explore

how to use this group membership formalism for metavisualization to assist with tasks that

span more than one view of data.
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5.9.3 Future work

There are several important directions for future work. First, considering a collaborative

context, and whether the ability to use natural language and mid-air gestures assists in col-

laborative data exploration. In a collaborative context, the ability to pose questions about

visualizations on the fly, and generate views of data without stepping away from a collaborative

discussion, could be quite powerful. However, the challenge in this context is in disambiguating

multiple input signals, particularly if collaborators toggle between independent and collabora-

tive work using the speech and mid-air gesture system.

There could be value integrating other input modalities, such as pen and touch, with speech

and mid-air gestures, as well as portable devices. These input modalities offer varied affordances,

and would likely compliment each other (41; 95; 100).

Finally, future work could consider how to use spoken inputs along with large displays to

capture analysis provenance. In non-natural language interaction contexts, the challenge for

analysis provenance involves inferring high-level sensemaking tasks from low-level actions with

a graphical interface. In a context where most actions occur through speech, it is possible

to capture and visually represent a data exploration session, without making inferences. This

would be a valuable direction for future research.

5.10 Conclusion

In conclusion, in this chapter we present a multi-modal interaction technique that combines

speech and mid-air gestures for data exploration in large display environments. This work is

motivated by the findings in 3, and utilizes Traverse, the technique for data exploration in
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support of breadth in exploration. Through our design, implementation and evaluation, we

found that participants used speech, mid-air pointing gestures and touch interaction modalities

to generate multiple views of data, position these views on the display, and the point and speak

to reference and then copy and pivot views, based on evolving data exploration interests.



CHAPTER 6

DISCUSSION

6.1 Multiple Views, Large Displays, and Cognitive Load

Environments that accommodate the display and juxtaposition of multiple views of data

have generally presented advantages for complex data exploration scenarios. For example, the

ability to select and segment data, and represent in multiple views, allows users to explore based

on their interests and view data from different vantage points. However, recent work by Chen at

al., on multi-view layouts in visualization literature, has identified potential limits on the number

of views that users prefer and limits on how many views are typically utilized in published

visualization applications. This work considers the possibility that more visualizations might

be overwhelming for a user, and they may prefer small sets of 5-6 views (143).

This presents challenges for large display environments, which often consider scenarios in-

volving dozens of views of data (94; 129; 144; 38; 40). The technique presented in this dis-

sertation accounts for this potential preference for small sets of visualizations in several ways.

First, the selection and arrangement of visualizations with our technique in Ditto is under user

control. Although the Traverse view generator provides visualizations automatically in response

to user interests, views can be filtered and arranged by the user, which means they can exert

their preferences in the number of views they retain and consider, reducing the risk of cognitive

overload.

179
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Second, we noted that participants clustered visualizations into meaningful groups during

their exploratory sessions. This was typically accomplished through either cast-a-net requests,

or referential requests, to create small sets of views. Our technique is therefore less an approach

for filling the display with many visualizations automatically, such as generating a grid with

dozens of small multiple views, for example, and instead a technique that allows users to create

custom groupings. Our work is not inconsistent with the finding that users prefer small sets

of related views, and we could frame this contribution as enabling users to arrive at several

meaningful sets of views on the large display.

Finally, to address the potential of cognitive overload on large displays it is essential to

explore techniques for view generation in this environment, not just interaction or view coor-

dination. Systems that begin with a pre-populated set of visualizations, where the user can’t

control the number and arrangement of views, may be overwhelming to the user. In addition,

the ability to select and then group visualizations into related clusters may have implications for

other interaction problems, such as multiple coordinated views. Potentially, users may consider

visualizations in small groups, and only want to see coordinated actions, such as coordination in

brushing and filtering actions, within the group. The work of this dissertation may contribute

to large questions around interaction with multiple visualizations on large displays (39).

6.2 Exploration Risks

This technique focuses on data exploration where vews are provided based on user interests

that are expressed on-the-fly. By using a restricted natural language interface, this work aims

to overcome some roadblocks in visualization construction that have been documented in the



181

literature, such as difficulties selecting a visual template or navigating an unfamiliar graphical

interface (12). However, there are still potential avenues for error.

First, users may misinterpret the provided visualizations. This may arise from unfamiliarity

with specific view types or lack of experience with data visualizations. However, this may

also arise in our technique from the fact that users do not manually specify visualizations.

In other systems, a user may select filters, visual templates, data attributes and aggregation

methods themselves (59). For Traverse and Ditto, participants need to read titles and axes

labels to fully understand what the visualization is presenting. There were instances in both

the pre-design study, and in evaluation of Traverse ad Ditto, where participants did not fully

read the information on a provided visualization and then they misunderstood what the chart

depicted. Accounting for interpretation errors may be a valuable direction for future work,

either by listening for these errors in spoken think-aloud, or by providing help and guidance

after presenting the user with visualizations.

Another potential source of error is in following exploratory paths based on biases or pre-

conceived ideas, or potentially posing questions based on tunnel vision rather than based on

observations from the data itself. These issues have been explored previously (67; 145; 146;

147; 148; 149), and they present significant challenges to the data visualization community as

a whole. These issues may arise with the data exploration technique presented in this disser-

tation. For instance, users may view focused selections of the data, without first viewing the

context for these selections. leading to drill-down errors, which arise when users fail to put

an observation into context. Second, users might follow a path in which they fail to consider
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alternative ideas. For instance, perhaps a user explores to support a particular hypothesis, but

does not explore in a way that would consider alternate explanations, and they may arrive at

erroneous conclusions.

This challenge might be interesting to consider in future work. The large display environ-

ment presents space to present alternative suggestions, or comments from the system to help

steer the user away from these errors. Second, there may be potential in the future to de-

tect these issues through overhearing systems, that listen continuously to user think-aloud or

collaborative dialogue.

6.3 Integration with other interaction modalities

This work focuses on data exploration through rapid view generation, in response to on-the-

fly queries. The reason for this focus is that we want to be responsive to high-level questions,

which a user may form quickly. In addition, although a collaborative context is not explicitly

evaluated, the ability to generate views rapidly during discussions around data is a potential

use case for this technique in future work. Another motivation for providing rapid responses to

questions is the goal of helping users avoid visualization construction roadblocks and errors that

they may encounter in systems that require manual specification (12), or to avoid difficulties

learning to navigate a complex graphical interfaces.

However, not all interaction modalities aim at rapid visualization generation, or visualization

generation around points of interest in the data. A number of techniques focus on manual

creation activities, such as sketching (60; 131) or direct manipulation (27) or bottom-up view

creation (150) through manipulation of tangibles (151). These techniques can be slower, are
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require more deliberate and sustained effort, but also potentially provide an opportunity for

the user to realize visualizations that may not be produced by more rapid techniques. It

would be interesting, as future research, to explore the interplay between fast and slow, and

the interplay between a modality like speech and a modality like sketching, for data exploration

on a large display Sketching interactions require users to express a visualization that they

can envision, whereas speech requires users to express questions and points of interest. They

address different needs, and might complement each other in interesting ways. One potential

result for this interplay could be precise development of a specific view, through sketch, followed

by rapid iteration through referential interactions expressed using speech. Or, rapid generation

of initial visualizations through speech, followed by slower refinement through sketching. This

interplay has been explored on tablet devices (25), but it would be interesting to consider this

interplay on a large display.

6.4 Future Work

There are several next steps for this work. The first is to extend this technique to new

datasets, and to new user communities, which will enhance our understanding of data explo-

ration using natural language and multi-view interactions. The second is to expand upon the

multi-modal interaction environment, and consider how to use our view collections formalism

to address challenges in multiple coordinate views on large displays and in metavisualizaiton,

to more effectively organize visualizations and highlight between view relations. The third, is

to consider how this technique adapts to a collaborative context, to see how multiple users

coordinate data exploration activities when they are able to offload visualization construction
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tasks onto a virtual collaborator, who provides visualizations on their behalf. Finally, a next

step may be to consider how additional interaction modalities, such as pen and touch, as well as

incorporating new systems for natural language interpretation for visualization, such as work

by my collaborator Abhinav Kumar, to resolve references and disambiguate actionable from

non-actionable utterances (20; 21; 22; 23) or work such as NL4DV (29), can allow for more

expressive visualization construction and refinement tasks.



CHAPTER 7

CONCLUSION

In this dissertation I set out to contribute to our understanding of data exploration in large

display environments and using multi-modal speech and mid-air gesture inputs.

The contributions of this dissertation are:

• An observational exploratory study characterizing how participants expressed their data

exploration intentions through speech and mid-air gestures

• Development of a technique for data exploration using natural language commands, tar-

geted breadth of exploration and multi-view responses

• Development of a multi-modal speech and mid-air gesture interaction technique for data

exploration in large display environments

This dissertation, along with work conducted with my collaborator Abhinav Kumar, presents

the first multi-modal speech and mid-air gesture technique for data exploration for large display

environments. This work contributes toward the vision of realizing an attentive environment for

data visualization, which couples abundant display spaces, with multi-modal interactions that

allow for movement and collaboration and are conducive to interactions with multiple views, and

that leverage technical trends towards larger, higher resolution display environments, systems

that respond to natural language inputs and sensors that track user movement and behavior.
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Appendix A

DATA AND PROBLEM DESCRIPTIONS

There are two datasets and problems that were used in the development of this dissertation.

The description of these datasets is provided below.

A.1 Chicago crime data

In the pre-design study, described in Chapter 3, participants explored a city of Chicago

crime dataset. Their task was to explore this data, and to identify spatial or temporal hot

spots, along with interesting patterns of features in the data. This data consisted in a table of

crime incidents, each of which contained the following fields:

• An identifier for each crime incident

• A neighborhood: either UIC, the Loop, the Near West side or River North

• A crime type- such as theft, assault, battery, burglary, deceptive practice.

• A location type- such as street, sidewalk, residence, department store, CTA bus stop

• Year, from 2010-2015

• Month (eg. Jan-Dec)

• Day of the week (Mon-Sun)

• Time of the day (either hourly, or morning, afternoon, evening and night).

• GPS coordinate of the crime incident
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This dataset was also used in the development of Traverse, described in Chapter 4 and of

Ditto, described in Chapter 5, and was used in the training. For these applications, single

data attributes and pairs of data attributes were associated with a visual template and data

retrieval and aggregation method. Categorical attributes (Neighborhood, Crime type, location

type) were assigned to frequency bar charts, temporal attributes (year, month of the year, day

of the week, time of the day) are assigned to a frequency line chart. Pairs of attributes are

assigned to a visual template as well- two categorical attributes are assigned to a frequency

heat table, pairs of temporal attributes are assigned to a multi-line chart, and a categorical and

temporal pair are assigned to a multi-line chart.

A.2 COVID19 Risk Data

This dataset and problem was drawn from collaborative work with Moira Zellner (136),

using a novel COVID19 Risk Index which used machine learning and a number of data points

to predict the vulnerability of a community to COVID19. This vulnerability included the

risk of a severe outbreak as well as whether the community lacked resources to respond to

this outbreak. In the development and evaluation of Traverse and Ditto, we developed a

data exploration problem around the task of understanding this risk, in relation to regional

differences (such as comparing the Southeast to the Midwest) and in relation to differences

between counties of different densities and population levels (using the CDC’s classification

of counties into categories: urban, suburban, small city or rural). We also incorporated a

selection of health and demographic data from the Center for Disease Control (152), and the

John’s Hopkins COVID19 cases tracker (153).
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Specifically, this dataset consisted in two tables. The first table, recorded county-level

health data and the COVID19 risk prediction (136), with a unique identifier for each county

(FIPS). This data was drawn from the Center for Disease Control, binned into equally sized

groupings and labeled from ’very high’ to ’very low’ (see below). The second table, consisted

in monthly cases for each county, with the same FIPS unique identifier. This data is as follows:

• County code- a unique identifier for each county (FIPS code)

• COVID19 Risk Index : a ranking of how vulnerable a county is to a severe COVID19

outbreak (136).

– Very high COVID19 risk index, High COVID19 risk index, Moderate COVID19 risk

index, Low COVID19 risk index, Very low COVID19 risk index

• County type

– Urban, Rural, Suburban, Small City

• Region

– Northeast, Southeast, Midwest, Southwest, Rockies, Pacific, Non-contiguous

• Access to doctors(eg. number of doctors per capita)

– Very low access to doctors, Low access to doctors, Moderate access to doctors, High

access to doctors, Very high access to doctors

• Uninsured rate(what proportion of the county does not have insurance)
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– Very low uninsured rate, Low uninsured rate, Moderate uninsured rate, High unin-

sured rate, Very high uninsured rate

• Elderly population (Percent 65 and older)

– Very high elderly percentage, High elderly percentage, Moderate elderly percentage,

Low elderly percentage, Very low elderly percentage

• Cardiovascular disease rates

– Very high cardiovascular disease rates, High cardiovascular disease rates, Moderate

cardiovascular disease rates, Low cardiovascular disease rates, Very low cardiovascu-

lar disease rates

• Diabetes rates

– Very high diabetes rates, High diabetes rates, Moderate diabetes rates, Low diabetes

rates, Very low diabetes rates

• Poverty rate

– Very high poverty rate, High poverty rate, Moderate poverty rate, Low poverty

rate, Very low poverty rate

The COVID19 case data, consisted in monthly cases from April 2020 through January 2021,

for each county. Counties were identified with the same county identifier (FIPS code).

As with the Chicago crime data, single data attributes and pairs of data attributes were

associated with a visual template and data retrieval and aggregation method. Ordinal attributes
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(COVID19 Risk Index, Access to Doctors, Uninsured Rate, Elderly Population, Cardiovascular

Disease Rate, Diabetes Rate, Poverty Rate), were assigned to frequency bar charts, temporal

attributes (Cases by Date) were assigned to a frequency line chart. Pairs of attributes were

assigned to a visual template as well- two ordinal attributes were assigned to a frequency heat

table, and an ordinal and temporal pair are assigned to a multi-line chart. In addition, we

could display each county in a map, and filter or color this map by the other data attributes in

the table.

This dataset was used in the development of Traverse and of Ditto, and was used in the

exploratory phase of evaluation. Participants in the study were instructed to explore the data,

looking for regional differences or differences between county types, in terms of COVID19 risk

and other health and demographic data.
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PERMISSION FOR REUSE

Chapter 3 presented previously published work (44). The following presents written per-

mission from the journal’s/publisher’s website outlining their copyright policies Figure 43.



193

Appendix B (Continued)

Figure 43: Publishing rights
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Appendix C

INSTITUTIONAL REVIEW BOARD

Below is the Institutional Review Board approval letter for the pre-design study, in Chapter

3, Figure 44 and Figure 45.

Below is the Institutional Review Board approval letter for the evaluation of Traverse and

Ditto, in Chapter 4 and 5, Figure 46 and Figure 47.
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Figure 44: This is the first page of the IRB approval letter for the pre-design study, described
in Chapter 3.
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Figure 45: This is the second page of the IRB approval letter for the pre-design study, described
in Chapter 3.
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Figure 46: This is the first page of the IRB approval letter for the evaluation of Traverse and
Ditto, described in Chapters 4 and 5.



198

Figure 47: This is the second page of the IRB approval letter for the evaluation of Traverse and
Ditto, described in Chapters 4 and 5.
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