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Improving the Understanding of Carrier and Thermal Transport 

in Electronic Heterostructure Devices by Proper Treatment of 

Boundary Effects in Wide Bandgap Semiconductors 

Short title: Transport in III-Nitride Devices 

Abstract  

Carrier and thermal transport in semiconductors – both important parameters for the operation of 

electronic and optoelectronic devices – are primarily dependent on the thermal conductivity of the crystal 

lattice. Dominant anharmonic coupling processes, such as electron-phonon and phonon-phonon coupling, 

provide helpful insights into the thermal characteristics of wide bandgap semiconductors. Investigation 

on phonon coupling mechanisms will expand our understanding of their effects on electron transport and 

thermal conductivity of semiconductor devices, whereby mitigate the associated device problems and 

finally improve the performance of electronic and optoelectronic devices. 

More specifically, in high electron mobility transistors (HEMTs), the fast emission of longitudinal optical 

(LO) phonons can result in the formation of hot spots near the gate region where high electric fields 

produce hot electrons. In this thesis, we investigate the probability of phonon emission as a function of 

electron energy for confined and interface phonon modes for different wurtzite heterostructures. Novel 

phonon engineering concepts are introduced which facilitate thermal management through the production 

of polar optical phonons and acoustic phonons. This work offers a wide range of theoretical modeling and 

experimental studies of the carrier and thermal transport dynamics in structures including those in GaN- 

and AlN-based devices.  
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“I see a beautiful city and a brilliant people rising 

from this abyss. I see the lives for which I lay down 

my life, peaceful, useful, prosperous and happy. I 

see that I hold a sanctuary in their hearts, and in 

the hearts of their descendants, generations hence. 

It is a far, far better thing that I do, than I have 

ever done; it is a far, far better rest that I go to than 

I have ever known.” 

― Charles Dickens, A Tale of Two Cities. 
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Chapter 1 

Introduction 

1.1 Advances in III-V devices 

The advantages of III-V compound semiconductors over silicon for use in devices capable of operating in 

high-frequency and high-power applications were investigated early in the semiconductor development 

[1]. Many of the famous compound semiconductors, such as AlGaAs, InGaN, AlGaN and AlInGaP, are 

available as direct band gap materials in which no phonon interaction is required. These materials surpass 

silicon in their potential efficiency in light emission [2]. 

III–V semiconductors have wide applications in high-performance electronic and optoelectronic devices 

due to their excellent electronic properties including high electron mobility and low exciton binding 

energy [3]. For instance, similar to CdSe, InP has bulk bandgap and exciton Bohr radius, therefore, size-

dependent band-edge emission of InP nanocrystals can also be tunable across the entire visible range [4]. 

InSb is another example of III–V semiconductor materials that showed a well-resolved excitonic transition 

of Bohr radius of 54 nm [5]. 

Compound semiconductors are extremely useful in high-speed electronic applications [6]–[8]. The speed 

of each transistor is largely dependent on the velocity of the hot carriers in the operating device [9]. 

Compared to Si, GaAs transistors are able to operate at much higher frequencies since their electron drift 

velocity is considerably higher [10]. The electron velocity in InAs is notably higher than both GaAs and 

Si [11]. Furthermore, in analogy to preferring silicon over germanium, devices manufactured using III-V 

semiconductor devices such as GaN, which possess much larger electronic bandgaps (3.4 eV) than silicon 

(1.12 eV), are capable of operating in much higher temperature ranges [12], [13]. 
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Earlier in the semiconductor revolution, compared for silicon, compound semiconductors’ use in the 

extensive commercial applications and high production volumes was limited; their structures were more 

difficult to grow than silicon [14] since their crystals have many crystal defects [15] accompanied by the 

expensive fabrication costs [16]. Compound semiconductors also tend to be more fragile which limits 

their growth abilities [17]. 

In recent years, however, the high price of compound semiconductors has shrunk. Compared to Silicon, 

collectively, the excellent electrical and optical properties of these materials have become more valuable 

for certain applications including the ongoing research on high-speed data transfer in 5G, 3D sensors and 

further extending the range of electric vehicles. Silicon’s limited qualities such as frequency range, light 

detection efficiency and power have rendered these applications unresolved. 

1.2 Wide bandgap nitride-based III-V devices and complications of 

wurtzite structures 

III-nitride semiconductors have great potential in tolerating high electric fields and elevated temperatures. 

This clearly demonstrates that their full potential is not exploited yet, albeit the impressive industrial 

revolution that took place over the past two decades in their performance. From the AlInGaAs and 

AlInGaN alloy systems, there is, in principle, a continuous spectrum of direct bandgaps from deep in the 

infrared (𝜆 = 3.5 nm in InAs) to far into the ultraviolet (𝜆 = 200 nm in AlN) [18]. Although they offer 

this wide range of bandgaps from the infrared to the deep UV, several challenges still need to be overcome 

to extend the lasing wavelength region of group-III nitrides. For example, the thermal stability of the 

InGaN active region is severely influenced, along with the lattice mismatch, in long-wavelength (𝜆 > 500 

nm) laser diodes [19]. Also, quantum wells (QWs) with high indium content (In > 25%) have been shown 

to have worsening optical properties as a result of the formation of misfit dislocations [20]. For this reason, 
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the growth temperature in recent studies were drastically decreased to avoid QW degradation, which is 

associated with a deteriorating quantum efficiency [21], [22]. Thanks to the high vacuum environment, it 

is possible to grow QW layers at a much lower temperature through molecular beam epitaxy (MBE) 

compared to metalorganic vapor phase epitaxy (MOVPE) and could be used to reduce the thermal budget 

on the active region and, consequently, obtaining longer wavelength range [23]. 

Throughout this thesis, we focus on the III-nitride devices, such as GaN, InGaN and AlInN. These devices 

have been the main focus of extensive research and development among all electronic materials over the 

last two decades. The development of III-nitride materials and devices has much in common with the early 

research of other III–V systems. For example, metalorganic chemical vapor deposition (MOCVD) and 

MBE growth technologies were both successfully used for III-nitride device growth [24], [25]; both 

electronic and photonic applications were studied early in the revolution; yet achieving sufficiently high 

p-type carrier densities remained a primary complication limiting the device development [26]. Many 

obstacles were presented by III-nitride devices: Although III–V semiconductors share the same cubic 

crystallographic structure, the nitrides possess strong polar and piezoelectric properties in their 

allotropic hexagonal form [27], [28]; conventionally, III-nitride devices were grown hetero-epitaxially on 

highly lattice-mismatched substrates which led to devices with very high defect densities [29], in contrast 

to employing homoepitaxial growth or closely lattice-matched substrates in previous III–V structures 

where much lower defect densities are achieved [30]; and many III-nitride devices have been found to 

show surprisingly strong tolerance to the presence of these crystalline defects than other III–V materials 

[31]. 

Given their tight relatedness, the wurtzite (WZ) structure of III–V semiconductors and those of the III–V 

zinc-blendes (ZB) can essentially coexist into crystal form during their phase transformation [32]. 

Similarly, as in the diamond and zinc-blende nanostructures, the wurtzite phase can be formed by 
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considering two interpenetrating lattices. In this case, they are described as “hexagonal close packed 

lattices.” The nearest neighbors and next nearest neighbors are the same in the ideal wurtzite and zinc-

blende structures. The wurtzite phase is considered both a complication and a potential feature to be 

utilized, such is the case for nanowire homo-structures where both wurtzite and zinc-blende phases 

alternate to attain band gap engineering. Despite well-regarded efforts, many fundamental electronic and 

optoelectronic properties of wurtzite III–V compound semiconductors are not fully evaluated yet. 

1.3 Thermal generation in HEMTs 

The development of semiconductors, a key component in modern electronics, has followed a continuous 

size reduction process in recent years, and thermal management has become one of its most thrilling 

problems with respect to their applications. 

Nitride based high electron mobility transistors are strong candidates for the future high-power and high-

frequency applications. But the formation of hot spots and high temperature in these localized regions can 

limit their applications due to performance degradation and break-down. Understanding the underlying 

thermal transport processes will be an important step towards solving heat dissipation challenges in these 

devices. Furthermore, self-heating effect can degrade the drain saturation current, transconductance and 

causes reliability problem [33]. The self-heating effect, which has been subject to widespread research 

[33] –[35], increases the channel temperature due to the transfer of energy from the electrons to the lattice. 

Transistors such as GaN have high drive voltages which causes rapid increase in the lattice temperature 

due to dissipation of Joule power, consequently, phonon scattering increases thus deteriorating the carrier 

mobility and electron saturation velocity [36]. In addition, at very high-power levels, there is a spike in 

the junction temperature, which critically increases the meantime to failure (MTTF) of GaN transistors 

[37]. Several studies have been proposed to improve thermal management by realizing substrates such as 
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diamond and silicon carbide with high thermal conductivity. Yet, thermal conductivity is found to 

decrease with the rise of temperature due to optical phonon scattering caused by free carriers from dopants 

such as Al and N in SiC and the presence of N impurity in the diamond [38]. Additionally, these substrates 

are expensive and have a wide range of diameter scalability challenges. GaN-diamond composite 

substrates [39] and AlGaN-GaN flip-chip underfill technology [40] methods have been implemented to 

improve the thermal interfaces on the whole wafer; however, the problem of hot spots in the device 

channel region continues to occur. In other studies, particularly in AlGaN-GaN HEMTs, numerous 

attempts towards the dissipation of self-heating effect have been investigated, such as substrate 

transfer [41] and hot spot extension using nanocrystalline diamond films on top of the device [42]. 

However, devices using these approaches have shown moderate performance. 

As an overview, self-heating in the transistor is generated when hot electrons transfer energy to the lattice 

vibrations (namely phonons) via crystal lattice scattering. Since scattering inside the device is not uniform, 

this process can generate localized hot spots [35], [43]–[45]. Attempting to provide more accurate heat 

extraction mechanisms and trying to capture the essential physics of the hot electron effect and comparing 

with experimentations may enable lower peak temperatures, consequent enhanced life span and enhanced 

reliability of different solid-state devices. 

Inside a semiconductor device, heat is generated due to collisions between hot electrons with the atoms of 

the crystal i.e., the lattice. This happens when the phonon emission rate exceeds the phonon absorption 

rate as the energy coming from the electrons is transmitted to the lattice [46]–[48]. These hot phonons that 

were launched by energetic hot electrons remain localized in the regions where electrons flow. Since 

longitudinal optical (LO) phonons have small group velocity, they tend to accumulate and store energy, 

and as consequence heat is generated [35], [49]. This thesis discusses the idea of removing this heat 

through the hot phonons’ decay through a variety of vibration modes. For GaN it was proposed that LO 
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modes change into longitudinal acoustic (LA) and transverse optical (TO) modes after 5 ps following the 

Ridley process [50], that is similar to the value reported for GaAs [51]. The calculated time of electron-

LO phonon interaction for GaN is approximately 9 fs, meaning that in GaN, hot electrons are emitted 

nearly 12 times more than in GaAs [52]. For GaN-based HEMTs, the hot phonon lifetime in the two-

dimensional electron gas channel is close to 350 fs, that is 35 times greater than the lifetime of the 

spontaneous LO phonons (∼ 10 fs) [53]. This difference in their lifetime causes an accumulation of heat 

in the channel. 

Efforts have been made to approach the understanding of the thermal behavior of nitride-based high-

electron-mobility transistors (HEMTs) experimentally and numerically under bias conditions. These 

efforts include the recent work reported by Mohanty, Chen, Yeh and Horng (2019) which indicated that 

by using a micro-trench structure fabricated on the silicon substrate of an AlGaN/GaN HEMT via deep 

reactive ion etching, the temperature near the drain edge of the channel can be lowered by ~ 22 °C [36]. 

Furthermore, the thermal performance of the AlGaN/GaN HEMT was investigated by Vallabhaneni, 

Gupta and Kumar (2017) using Boltzmann Transport Equation (BTE) based model which can provide a 

description of the non-equilibrium nature of the phonon transport in the hot spot [54]. Hiroki et al., 2014 

(2017) modified the ID versus VDS behavior due to self‐heating effect in HEMT grown on SiC by 

substrate-transfer technique using hexagonal boron nitride [41], [55]. 

On the other hand, electron and phonon temperature profiles along the 2DEG channel were provided by 

different researchers [56]–[59]. Studies have also investigated various experiments and theories on the 

transport of heat in transistor structures such as GaN field effect transistors (FET) [60], silicon-on-

insulator (SOI) bipolar junction transistors (BJT) [61] and AlGaN-GaN heterostructure field effect 

transistors (FETs) grown on sapphire and SiC substrates [62]. Thermal transport between two different 

materials including microfabricated and synthetic low-dimensional nanostructures [63], [64], heat 
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transport in nanostructured thin film materials, including superlattices [65]–[67] and examination of issues 

associated with metrology and measurement science [68]. 

1.4 This thesis 

In this thesis, we present research findings of a detailed investigation of lattice vibrations in low-

dimensional heterostructures of wurtzite materials with strong polarization coupling. The purpose of this 

research is to advance the theory of phonons for technologically important materials such as GaN and AlN 

as well as to introduce new phonon-related effects which can be used in pseudomorphic heterostructures. 

Indeed, by considering the possibilities for applications of phonon-related effects, we always expand the 

borders of our knowledge about the fundamental properties of the material. On the other hand, research 

on fundamental subjects often leads to unexpected discovery of technologically important phenomena. 

The thesis is organized as follows: 

Chapter 2 summarizes the key theories of phonons in nanocrystals including the dielectric continuum 

model for optical phonons and the elastic continuum mode for acoustic phonons. The chapter proceeds to 

discuss the different decay channels of optical modes into acoustic modes. We discuss and analyze the 

momentum relaxation and the matrix element in bulk wurtzite GaN. 

Chapter 3 introduces the development of the theory of phonon confinement in heterostructures made of 

optically anisotropic materials. We obtain dispersion relations for polar optical phonon modes in wurtzite 

within the context of the dielectric model. We develop a formalism for the calculation of the scattering 

rate in wurtzite crystals and quantum wells considering features of the optical phonon spectra in optically 

anisotropic medium. We proceed to derive the average group velocity of the emitted phonons to explore 

the possibility of exploiting the interface mode phonons as an additional heat dissipation channel. Given 

the energy distribution of electrons, we report that the quantum well thickness can be engineered to exploit 
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the interface phonon modes, which can propagate a distance of few tens of nanometers before decaying 

into heat-carrying acoustic phonons. 

Chapter 4 deals with the quantization of the acoustic modes in nanomechanical systems with coupled 

acoustic and electromagnetic modes in piezoelectric structures. We second-quantize the Bleustein-

Gulyaev (BG) modes in the theory of surface acoustic wave devices to conveniently describe and analyze 

the relationship between the acoustic modes and the electromagnetic modes in the nanoscale regime. 

Chapter 5 offers a new source of understanding of heat transport in the superlattices via the description of 

the effective medium model as an additional and a faster heat transport mechanism. We explore the 

piezoelectric stiffening effect on GaN and AlN elastic layers and the possibility of using the stiffened 

elastic constants to increase the rate of heat transport away from the hot spot. 

Chapter 6 describes a TCAD simulation approach of silicon nanowire-based ion sensitive field effect 

transistor (ISFETs). We employ a site-binding model along with a quantum corrected model for electron 

transport to provide prospects for the fabricated devices. 

In Chapter 7, we offer perspectives on future directions, summarize the major results and give concluding 

remarks.  
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1Chapter 2 

Phonon kinematics 

2.1 Introduction 

Self-heating in electronic and optoelectronic devices is a substantial problem in situations with high 

current density [69], [70]. This is particularly important where nonuniform distribution of current density 

occurs through miniaturization or in devices based on two-dimensional electron gases (2DEG) [71]. Self-

heating is difficult to remove in most devices and therefore detrimental to their performance. It seems 

fitting to perceive electron-phonon interactions and self-heating phenomena to further understand the 

transport properties aimed at using III-nitride materials in high-power and high-frequency applications. 

In this chapter, we demonstrate that phonons are confined in nanostructures and their corresponding 

wavevectors can be well-described by continuum models of phonons. We shall also see that the dielectric 

and elastic continuum models in nanostructures may be applied to describe the Fröhlich and piezoelectric 

interactions and deformation potential in a variety of nanostructures including quantum wells. 

In polar materials – particularly of interest nitride-based – electron-phonon scattering (also known as 

Fröhlich scattering) governs the dissipation channels of hot electron energy. This interaction manifests 

itself upon application of an electric field, at which electrons are accelerated until their energy is sufficient 

to emit optical phonons. Due to the form of the Fröhlich interaction, phonons produced by this carrier 

relaxation process are mainly zone-center longitudinal optical (LO) phonons [72]. Because the LO 

phonons behave like standing waves, they must decay into traveling acoustic waves to dissipate energy 

 
1 This chapter is partially published in IOP Journal of Physics: Condensed Matter, [295]. 
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from the self-heating region [73]. Investigation of the intrinsic phonon decay of optical phonons into heat-

carrying acoustic phonons is critical to understand the hot phonon bottleneck issue and to mitigate the 

associated device problems. Therefore, we investigate the most popular decay channels in this chapter. 

2.2 Dielectric continuum model 

The dielectric continuum model of optical phonons in polar materials is based on the concept that the 

electric polarization 𝑃⃗ (𝑟 ) is created primarily due to the lattice vibrations in the crystal. For a medium of 

dielectric constant 𝜖(𝜔), the polarization 𝑃⃗ (𝑟 ) is described in terms of the equations of electrostatics [74]–

[76]. The potential Φ(𝑟 ) associated with 𝑃⃗ (𝑟 ) is given by Kim and Stroscio (1990) [77] 

 𝛻2𝛷(𝑟 ) = 4𝜋𝛻. 𝑃⃗ (𝑟 ) 2.1 

and the electric field 𝐸⃗ (𝑟 ) is given by 

 𝐸⃗ (𝑟 ) = −∇Φ(𝑟 ) 2.2 

Moreover, 𝐸⃗ (𝑟 ) and 𝑃⃗ (𝑟 ), in medium 𝑛 are related through the dielectric susceptibility, 𝜈𝑛(𝜔): 

 𝑃⃗ (𝑟 ) = 𝜈𝑛(𝜔)𝐸⃗ (𝑟 ) 2.3 

where 

 
𝜈𝑛(𝜔) =

𝜖𝑛(𝜔) − 1

4𝜋
 

2.4 

with 

 
𝜖𝑛(𝜔) = 𝜖𝑛(∞)

𝜔2 −𝜔𝐿𝑂,𝑛
2

𝜔2 −𝜔𝑇𝑂,𝑛
2  

2.5 

The dielectric continuum model has been applied to describe the properties of dimensionally confined 

optical phonons in many electronic and optoelectronics devices fabricated from semiconductor 
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nanostructures [78], [79]. These include quantum wells, superlattices, quantum wires, and quantum dots. 

To illustrate the basic features of the dielectric continuum model of optical phonons, the case of 

confinement in just one dimension as in a quantum well or superlattice is considered first. Atoms vibrate 

with different modes within the crystal, and as a result, different types of phonons will be produced. 

The dielectric continuum model predicts a set of confined optical phonon modes commonly referred to as 

the slab modes [80]. These slab modes may be determined by applying the dielectric continuum model 

and by imposing electrostatic boundary conditions at each heterointerface [81]. The normal-mode 

frequencies and orthogonal confined phonon modes are obtained through the simultaneous solution of the 

equations arising from the dielectric continuum model, subject to the boundary conditions that the 

potential, Φ(𝑟 ) and the normal component of D(𝑟 ) are continuous at each heterointerface [82]. Taking the 

heterointerfaces to be normal to the z-direction, the electrostatic potential Φ𝑖(𝑟 ) in the region 𝑅⃗ 𝑖 =

(𝑧𝑖, 𝑧𝑖+1) and its two-dimensional Fourier transform Φ𝑖(𝑞 , 𝑧) are related by 

 Φ𝑖(𝑟 ) = ∑Φ𝑖(𝑞 , 𝑧)𝑒
−𝑖𝑞⃗ .𝑟 

𝑞

 2.6 

where 𝑞  is the two-dimensional wavevector in the (x – y)-plane. 

2.3 Elastic continuum model 

The acoustic phonons are described using the elastic continuum model of phonons. The model describes 

adequately the acoustic phonons of confined nanostructures of two atomic monolayers [83], [84]. From 

Hooke’s law 𝑇 = 𝑌𝑒 where 𝑒 is the strain and 𝑌 is the proportionality constant or Young’s modulus. 

Consider an element 𝑑𝑥 between 𝑥 and 𝑥 + 𝑑𝑥 along a structure. The essential equations of elastic 

deformation are strain-displacement equation and equation of motion of particle (force equation) [85]. In 
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In 1-D structure, the strain is written as 𝑒 =
𝜕𝑢

𝜕𝑥
, where 𝑢(𝑥, 𝑡) is the elastic displacement along the 𝑥 axis. 

The force is given by Newton’s second law as 

 
𝜌(𝑥)𝐴𝑑𝑥

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= [𝑇(𝑥 + 𝑑𝑥) − 𝑇(𝑥)]𝐴 

2.7 

 
𝑇(𝑥 + 𝑑𝑥) − 𝑇(𝑥) = (

𝜕𝑇

𝜕𝑥
)𝑑𝑥 = (

𝑌𝜕𝑒

𝜕𝑥
) 𝑑𝑥 = (𝑌

𝜕2𝑢

𝜕𝑥2
)𝑑𝑥 

2.8 

where 𝑆𝑗 is given by 

 
𝑆1 = 𝑆𝑥𝑥 = 

𝜕𝑢

𝜕𝑥
, 𝑆2 = 𝑆𝑦𝑦 =

𝜕𝑣

𝜕𝑦
,         𝑆3 = 𝑆𝑧𝑧 =

𝜕𝜔

𝜕𝑧
 

𝑆4 = 𝑆𝑦𝑧 = 𝑆𝑧𝑦 =
1

2
(
𝜕𝜔

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
), 

𝑆5 = 𝑆𝑥𝑧 = 𝑆𝑧𝑥 =
1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝜔

𝜕𝑥
), 

𝑆6 = 𝑆𝑥𝑦 = 𝑆𝑦𝑥 =
1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
), 

2.9 

and 𝑇𝑖 are of 

 𝑇1 = 𝑇𝑥𝑥 , 𝑇2 = 𝑇𝑦𝑦 , 𝑇3 = 𝑇𝑧𝑧 , 𝑇4 = 𝑇𝑦𝑧 = 𝑇𝑧𝑦,

𝑇5 = 𝑇𝑥𝑧 = 𝑇𝑧𝑥 , 𝑇6 = 𝑇𝑥𝑦 = 𝑇𝑦𝑥 

2.10 

for 𝑐𝑖𝑗 = 𝑐𝑗𝑖 , only 21 distinct elements are needed to construct the 6 × 6 matrix of 𝑐𝑖𝑗. In cubic crystal, 𝑐𝑖𝑗 

matrix is given as [80] 

 

(

 
 
 

𝑐11 𝑐12 𝑐12
𝑐12 𝑐11 𝑐12
𝑐12 𝑐12 𝑐11

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝑐44 0 0
0 𝑐44 0
0 0 𝑐44)

 
 
 

 2.11 

whereas in wurtzite crystal, 𝑐𝑖𝑗 is of the form [80] 
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(

 
 
 

𝑐11 𝑐12 𝑐13
𝑐12 𝑐11 𝑐13
𝑐13 𝑐13 𝑐33

0        0           0   
0       0          0  
0       0         0 

 

0   0 0
0  0 0
0  0 0

      𝑐44        0 0 
0 𝑐44 0 
0 0 (𝑐11−𝑐12)/2)

 
 
 

 2.12 

However, for zinc-blende crystal, only 3 distinct elements are needed 𝑐11, 𝑐22 and 𝑐44. For isotropic cubic 

medium, 𝑐𝑖𝑗 can be represented using two constants 𝜆 and 𝜇 which are known as Lame’s constants [86] 

 𝜆 = 𝑐12 = 𝑐13 = 𝑐21 = 𝑐23 = 𝑐31 = 𝑐32 

𝜇 = 𝑐44 = 𝑐55 = 𝑐66 =
1

2
(𝑐11 − 𝑐12) 

𝜆 + 2𝜇 = 𝑐11 = 𝑐22 = 𝑐33 2.13 

Therefore, for an isotropic case we can write 

 𝑇𝑥𝑥 = 𝜆(𝑆𝑥𝑥 + 𝑆𝑦𝑦 + 𝑆𝑧𝑧) + 2𝜇𝑆𝑥𝑥 = 𝜆∇ + 2𝜇𝑆𝑥𝑥, 

𝑇𝑦𝑦 = 𝜆(𝑆𝑥𝑥 + 𝑆𝑦𝑦 + 𝑆𝑧𝑧) + 2𝜇𝑆𝑦𝑦 = 𝜆∇ + 2𝜇𝑆𝑦𝑦, 

𝑇𝑧𝑧 = 𝜆(𝑆𝑥𝑥 + 𝑆𝑦𝑦 + 𝑆𝑧𝑧) + 2𝜇𝑆𝑧𝑧 = 𝜆∇ + 2𝜇𝑆𝑧𝑧, 

𝑇𝑦𝑧 = 𝜇𝑆𝑦𝑧,      𝑇𝑧𝑥 = 𝜇𝑆𝑧𝑥 ,    𝑇𝑥𝑦 = 𝜇𝑆𝑥𝑦  2.14 

three dimensional generalizations are given by 

 
𝜌
𝜕2𝑢

𝜕𝑡2
=
𝜕𝑇𝑥𝑥
𝜕𝑥

+ 
𝜕𝑇𝑦𝑥
𝜕𝑦

+
𝜕𝑇𝑧𝑥
𝜕𝑧

= (𝜆 + 𝜇)
𝜕∆

𝜕𝑥
+ 𝜇∇2𝑢 

𝜌
𝜕2𝑣

𝜕𝑡2
=
𝜕𝑇𝑥𝑦
𝜕𝑥

+ 
𝜕𝑇𝑦𝑦
𝜕𝑦

+
𝜕𝑇𝑧𝑦
𝜕𝑧

= (𝜆 + 𝜇)
𝜕∆

𝜕𝑦
+ 𝜇∇2𝑣 

𝜌
𝜕2𝜔

𝜕𝑡2
=
𝜕𝑇𝑥𝑧
𝜕𝑥

+ 
𝜕𝑇𝑦𝑧
𝜕𝑦

+
𝜕𝑇𝑧𝑧
𝜕𝑧

= (𝜆 + 𝜇)
𝜕∆

𝜕𝑧
+ 𝜇∇2𝑤 

2.15 

The three-force equation is also given as 
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𝜌
𝜕2𝑢∝
𝜕𝑡2

=
𝜕𝑇𝛼𝛽

𝜕𝑟𝛽
 

2.16 

where 

 𝑇𝛼𝛽 = 𝜆𝑆𝛼𝛼𝛿𝛼𝛽 + 2𝜇𝑆𝛼𝛽  2.17 

The solutions for the displacement between particles are described as 

 
𝑢 =

𝜕𝜙

𝜕𝑥
+ 
𝜕Ψ𝑥
𝜕𝑥

−
𝜕Ψ𝑦
𝜕𝑧

 

𝑣 =
𝜕𝜙

𝜕𝑦
+ 
𝜕Ψ𝑥
𝜕𝑧

−
𝜕Ψ𝑦
𝜕𝑥

 

𝑤 =
𝜕𝜙

𝜕𝑧
+ 
𝜕Ψ𝑦
𝜕𝑥

−
𝜕Ψ𝑥
𝜕𝑦

 
2.18 

where 

 
∇2𝜙 =

1

𝑐𝑙
2

𝜕2𝜙

𝜕𝑡2
 

∇2Ψ𝑖 =
1

𝑐𝑡
2

𝜕2Ψ𝑖
𝜕𝑡2

;   𝑖 = 𝑥, 𝑦, 𝑧 

𝑐𝑙
2 = (𝜆 + 2𝜇)/𝜌 

𝑐𝑡
2 = 𝜆/𝜌 2.19 

The linear solution denotes the longitudinal acoustic modes and the spherical solution denotes the 

transverse acoustic modes [87]. 

2.4 Momentum relaxation of bulk wurtzite GaN 

Both energy and momentum relaxation processes are considered in this thesis upon studying the scattering 

of electron through phonons considering the effects of temperature and electric field. It can be found that 

under different electric fields the relaxation mechanisms are much different. The energy and momentum 
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relaxation processes are different for each nitride structures [88]. In low frequency fields, the dominant 

mechanism is the scattering by polar optical phonon for energy relaxation and the scattering by ionized 

impurity, acoustic phonon and polar optical phonon for momentum relaxation. Meanwhile, in high electric 

fields, the inter-valley scattering is purported to be the primary mechanism for energy relaxation, while 

the polar optical phonon and inter-valley scattering are claimed to be the primary mechanisms for 

momentum relaxation [89]–[92]. The momentum relaxation is time consuming compared to the energy 

relaxation, this has been attributed to the approximate correction method [93] and to the fact that nearly 

all scattering mechanisms cause momentum relaxation, but only polar optical phonon and inter-valley 

scattering cause energy relaxation [94]. Both energy and momentum relaxation processes are temperature-

dependent [91], [95], [96]. Finally, the energy and momentum relaxation rates as a function of electron 

temperature are given as in Eqn. 2.20 [97], which will be used to model the relaxation time and heat 

transport in the following chapter. 

 𝑊(𝐤)

=
𝑒2√𝑚∗

2√2𝜋ℏ
∫ 𝑑𝜙
2𝜋

0

∫ sin 𝜃 𝑑𝜃 (𝑛𝑝ℎ +
1

2
±
1

2
)

𝜋

0

×
𝜎

√𝐸𝑘𝑐𝑜𝑠2𝜙′ ∓ ℏ𝜔

1

𝜔

(𝜔⊥
2 − 𝜔2)2(𝜔𝓏

2 −𝜔2)2

(𝜀⊥
0 − 𝜀⊥

∞)𝜔⊥
2(𝜔𝓏2 −𝜔2)2sin2𝜃 + (𝜀𝓏0 − 𝜀𝓏∞)𝜔𝓏2(𝜔⊥

2 −𝜔2)2cos2𝜃
 

𝜎 = {0          𝑓𝑜𝑟 cos(𝜙
′) < √ℏ𝜔 𝐸𝑘⁄

2          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

2.20 

Here, 𝑛𝑝ℎ is the phonon occupation number, cos(𝜙′) = sin 𝜃 sin 𝜃𝑘 cos 𝜙 + cos 𝜃 cos𝜃𝑘 , where 𝜃𝑘  

represents the angle between the initial electron wave vector and the c-axis, 𝜃 is the angle between the 

wave vector and the c-axis, 𝜙 is the azimuthal angle between the electron wave vector and the phonon 

wave vector, 𝐸𝑘  is the electron energy and ℏ𝜔 is the phonon energy (transition energy), 𝜀⊥
0 is the dielectric 
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constant associated with the direction perpendicular to the c-axis and 𝜀𝓏
0 is the dielectric constant 

associated with the direction parallel to the c-axis. 

2.5 Matrix element of bulk phonons 

To describe the probability of a transition of an electron with wavevector 𝑘 in the subband by a phonon 

of wavevector 𝑞, the matrix element for wurtzite can be defined as [97] 

 
|𝑀𝑞|

2
=
2𝜋𝑒2ℏ

𝑉𝜔
∙
1

𝑞2
∙ (𝑛𝑝ℎ +

1

2
±
1

2
)

∙
(𝜔⊥

2 − 𝜔2)2(𝜔𝓏
2 −𝜔2)2

(𝜀⊥
0 − 𝜀⊥

∞)𝜔⊥
2(𝜔𝓏2 −𝜔2)2sin2𝜃 + (𝜀𝓏0 − 𝜀𝓏∞)𝜔𝓏2(𝜔⊥

2 − 𝜔2)2cos2𝜃
 

2.21 

The largest scattering probability for small 𝑞 can be justified by the 1/𝑞 dependence in Eqn. 2.21. We are 

interested in small 𝑞 values as they contribute significantly to the electron-phonon coupling above the  

 

Fig. 1. Scattering angle versus the rate of phonon emission with respect to the hot electron. 
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Fig. 2. Absolute square of the matrix element for bulk optical phonons in GaN versus the scattering 

angle for an electron having an energy of 1 eV. 

 

Fig. 3. Angular probability function and variation of the step function (𝜎) for phonons with energies 

smaller than the electron energy in bulk GaN. 
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phonon emission threshold when phonons strongly interact with electrons in the GaN structure, thus 

creating phonons along the heterointerface which combine mixing of LO and TO modes. 

 Since the matrix element follow the boundary conditions 𝑞𝑦 = ±
𝑚𝜋

𝐿𝑦
𝑎𝑛𝑑 𝑞𝑧 = ±

𝑛𝜋

𝐿𝑧
 which results in 

𝑀𝑎𝑣𝑔
2 =

1

𝑎
∫ 𝑐𝑜𝑠2(𝑞𝑧𝑧)𝑑𝑧
𝑎

2

−
𝑎

2

, therefore, it has been illustrated that the lifetime of optical phonon confined 

in the quantum well is half of the mean lifetime of the unconstrained phonon [98]. 

2.6 Phonon decay channels 

Investigations have suggested that hot electrons that possess densities greater than 1017 cm-3 can emit a 

nonequilibrium supply of hot phonons, which slow down the energy relaxation process [99], [100]. As 

has been discussed briefly in chapter 1, the phonon generation time is about 9 fs for GaN, compared to 

about 115 fs in GaAs, but decay time is strongly density dependent [52], [101]–[103]. 

Based on the group theory, phonon modes that coexist in the hexagonal wurtzite structure are E2(high), 

E2(low), A1(LO), A1(TO), E1(LO), E1(TO) and 2B1 [104]. The phonon dispersion curves along several 

high-symmetry directions along with the decay mechanisms for different modes including the dominant 

A1(LO) phonon are depicted in different research studies [104]–[107]. It turns out that the electron-TO 

scattering rate is more than two orders of magnitude lower than the electron–LO scattering rate, and 

therefore, the LO phonon modes are most important when considering electron scattering mechanisms at 

moderate to high fields in GaN. Also, the Ridley process occurs in a much longer characteristic timescales 

than those associated with electron–phonon scattering or LO phonon emission [108]. As such, the density 

of LO phonons can build up and cause even more scattering between the electrons and these phonons. The 
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TO phonon lifetime is known to be shorter than the LO mode [109], [110]. Furthermore, TO exhibits weak 

temperature dependence which implies a small anharmonic coupling for this mode [111]–[113]. 

As phonons build up and exceed the equilibrium concentration of phonons, we refer to them as “hot.” The 

time associated with the disintegration of these hot phonons into the short lifetime TO and more mobile 

LA phonons can be referred to as the hot phonon lifetime [114]. Clearly, this lifetime is responsible for 

the density of the phonons that are built up in the channel. In GaN, phonon lifetime measurements deduced 

by time-resolved Raman technique versus the carrier concentration between 1016 and 2×1019 cm-3 indicate 

decreasing lifetime with increasing carrier concentration, which also include the fluctuation technique 

[115]. Essentially, for the A1(LO), the lifetime decreases from 2.5 ps for 1016 cm-3 to about 0.35 ps for 

Table 1. Decay channels and lifetimes of optical phonon modes in GaN and AlN [104]. 

 Channel 

Lifetime (ps) 

Energy (meV) 

GaN AlN 

A1(LO) 

(a) E1(TO) + TA(LA) 

1.44 0.8 69.34 + 22.30 

(b) E1(TO) + 𝐸2
1 

E1(LO) 𝐸2
2 + LA(TA) 0.94 0.7 75.01 + 17.36 

𝐸2
2 

LA + LA + LA 

1.3 1.7 23.56 𝐵1
1 + LA 

𝐸2
1 + TA 

A1(TO) 

𝐸2
2 + 𝐸2

2 

0.91 1.2 33.10 

LA + TA 

E1(TO) 𝐵1
1 + 𝐵1

1 1.55 1.8 34.72 
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1019 cm-3, the latter being consistent with that deduced from the 2DEG [116]. Also, as the bulk electron 

density is increased further, the LO phonon lifetime goes through a minimum, corresponding to the 

resonance with plasmons, and then increases again because of the slower response [116]. 

Different important decay channels in nitride based III-V semiconductors, which are being considered in 

this thesis, are summarized as shown in Table 1. In GaN, process A1(LO) → 𝐸2
2 + TA is reported to have 

the main contribution providing 60% of the decay [25]. In AlN, the dominant processes are A1(LO) → 

A1(TO) + TA (35%), A1(LO) → 𝐸2
2 + LA (23%), A1(LO) → 𝐵1

2 + TA (15%) and A1(LO) → 𝐸2
2 + 𝐸1

2 (16%) 

over the entire temperature range. In InN, A1(LO) → E1(TO) + 𝐸1
2 and A1(LO) → A1(TO) + 𝐸1

2 are the 

dominant processes accounting for about 60% toward the decay with channel A1(LO) → 𝐸2
2 + 𝐸1

2 

providing a 20% contribution. 

2.6.1 LO phonon decay 

In the simplest geometry, Raman scattering is produced and measured in backscattering configuration 

[117], [118]. For example, for the A1(LO) mode, the scattering configuration can be denoted by the 

notation 𝑧(𝑥𝑥)𝑧̅, where z represents the incident laser propagation direction in the [0001] direction, where 

𝑧 represents the scattered light propagation direction post the energy relaxation process in the [0001] 

direction, 𝑥 represents the polarizations of the electric field of the incident and scattered photons, 

respectively [119]. 

The zone-center optical phonons decay to acoustic phonons due to lattice anharmonicity via Klemens 

channel primarily in GaAs [120] and Ridley channel in GaN [50] depending on the energy level of acoustic 

phonons. In polar materials, collective excitation of energetic electrons can interact with LO phonons via 

longitudinal electric field. LO modes can be considered for estimation of bulk carrier concentration [121]. 
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Based on the perturbation theory, anharmonic three (four) phonon coupling denotes to these important 

processes: either one single phonon decays into two (three) phonons, or two (three) phonons combine to 

form a single phonon [122]–[124]. The decay mechanism of a phonon can be obtained from the 

temperature dependent frequencies and linewidths of phonon modes [125]. Therefore, Raman 

spectroscopy is considered as an important tool that has been used by many researchers to obtain the 

frequencies and linewidth of different phonon modes in a variety of structures [111], [112], [117]–[128]. 

2.6.2 Dominant decay Mechanisms 

The presence of population in the final phonon modes gives rise to the temperature dependence of the 

lowest order anharmonic decay process. This process is defined according to [129] 

 Γ𝑝ℎ−𝑝ℎ(𝑇) = Γ0[1 + 𝑛(ℏ𝜔1, 𝑇) + 𝑛(ℏ𝜔2, 𝑇)] 2.22 

where Γ0 is the decay time of LO phonon at 𝑇 = 0 K and 𝑛(ℏ𝜔1, 𝑇) and 𝑛(ℏ𝜔2, 𝑇) are the occupation 

numbers of the lower energy phonons. This expression works for a single dominant decay mode but can 

be generalized to incorporate additional decay channels. From Eqn. 2.22, phonon lifetimes can be 

  

Fig. 4. Dispersion curves of phonons for optical and acoustic branches in linear diatomic chain. (a) 

depicts the decay of LO mode into two LA modes while (b) depicts the decay of LO mode into TO 

and LA modes. 

 



 22 

calculated as 𝜏 = ℏ/Γ, since the analysis of the temperature dependence of the phonon lifetime provides 

information about the dominant decay channels. 

Now, since the lifetime of LO phonons has a larger temperature dependence than what has been reported 

experimentally, Tsen et al. (2007) have concluded that the decay of A1(LO) phonons into small wave 

vector LO and small wave vector LA or TA modes is not a likely mechanism [115]. On the other hand, it 

has been suggested that the decay channel of zone-center A1(LO) phonons in wurtzite structures into a 

large wave vector TO phonon (E1(TO)), assuming that the TO phonon dispersion curve is relatively flat 

across the Brillouin zone, and a large wave vector LA or TA phonon, as shown in Table 1, fits many 

experimental data [105], [130]. Moreover, it was reported that high energy A1(LO) and E1(LO) lifetimes 

cannot be modeled by using a symmetric phonon decay process [131]. For the A1(LO) mode, it was 

suggested, both theoretically [50] and experimentally [115] that an asymmetric three-phonon process is 

the dominant decay pathway, by which the LO phonon deconstructs into a TO and a LA mode. 

𝐸2
2 decays through the symmetric decay channel of the 𝐸2

2 phonon into two phonons of half the father 

phonon energy with opposite wave vectors. But Kuball, Hayes, Shi and Edgar (2001) reported with a good 

accuracy that a symmetric decay is not the dominant decay channel for the 𝐸2
2 phonons [132]. On the other 

hand, the decay of the 𝐸2
2 phonon into a high-energy and a low-energy phonon, i.e., an asymmetric phonon 

decay, agree with the experimental data very well [131]. 

Studies on Raman spectra show the likely production of A1(TO) and E1(TO) phonon modes when the 

backscattering geometry is considered [133]. It was also shown that A1(LO) and E1(LO) modes may 

produce the forbidden E1(LO) mode via mode mixing when the backscattering is not parallel or 

perpendicular to an optical axis [134]. In AlN, a decay channel into two phonons of about equal energy 

and an additional three-phonon decay channel were introduced for A1(TO) and E1(TO) [52], however, the 
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lack of experimental verification suggests that the symmetric phonon decay is not the dominant decay 

channel for the TO phonon [132]. 

LA has a higher probability of decaying into TA modes as was suggested in the calculations by 

Bovensiepen, Petek and Wolf (2010) that the dominant decay mechanism in cubic crystals is that LA 

decays into two equal energy TA modes [135]. Likewise, Klemens’ prediction was verified by Tamura 

(1984) that LA primarily decays into two TA modes in isotropic mediums [136]. The calculations were 

obtained for various crystals including Si, Ge, GaAs, LiF and NaF. Nevertheless, in 2017, Liu et al. 

validated Herring’s theory [137] that the anharmonic up-conversion scattering process TA → LA + TA is 

responsible for the decay in a sample of InGaN/GaN quantum well grown on GaN wurtzite buffer [138]. 

Therefore, while it is established in isotropic crystals that TA phonons cannot decay through splitting into 

a pair of low-frequency phonons [139], there still seem to be disagreements on the magnitude and the 

dominant decay channel of the acoustic phonons. 

2.7 Summary 

We have presented the nonequilibrium distribution of the longitudinal optical (LO) and the rates of the 

decay and the mechanisms by which it occurs as they are of primal importance to the development of next 

generation devices. Evidently, the lifetime of the emitted phonons is over an order of magnitude longer 

than the characteristic emission time, which leads to a nonequilibrium distribution of these polar LO 

phonons. Only through efficient decay of these hot phonons into other phonon modes is this effect 

minimized and performance then maximized.  
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2Chapter 3 

Electron-optical phonon interaction in III-V nitride structures 

3.1 Introduction 

Here, we present a detailed theoretical analysis of the interaction between electrons and optical phonons 

of interface and confined modes in wurtzite quantum well heterostructures based on the uniaxial dielectric 

continuum model. We start by examining the concepts of confinement of the optical and acoustic phonons 

within a quantum well of nanostructured materials on the vibrational spectra. We numerically calculate 

the formalism describing the interface and confined mode optical phonon dispersion relation, electron–

phonon scattering rates, and average group velocity of emitted optical phonons. The dispersion relation of 

the interface phonons shows a convergence to the resonant phonon frequencies with a steep slope around 

the zone center indicating a large group velocity. At the onset of interface phonon emission, the average 

group velocity is small due to the large contribution of interface and confined mode phonons with close-

to-zero group velocity, but eventually increases up to larger values than the bulk acoustic phonon velocity 

along the wurtzite crystal c-axis (8 nm/ps). By adjusting the thickness in the double heterostructure, the 

average group velocity can be engineered to become larger than the velocity of acoustic phonons at a 

specific electron energy. This suggests that the high group velocity interface mode optical phonons can 

be exploited to remove heat more effectively and reduce junction temperatures in GaN-based 

heterostructures [140]. 

 
2 This chapter is partially published in Nature Scientific Reports, [140], PLOS One, [186], Diamond and Related 

Materials, [217] and IOP Journal of Physics D: Applied Physics, [204]. 
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3.2 Phonon confinement 

Phonon modes in QWs can be classified as confined and interface modes according to the dielectric 

continuum model. The independent electron and phonon confinement changes qualitatively the 

contribution of interface phonons to electron-phonon scattering [141]. In QWs such as GaAs/AlAs, the 

contribution of GaAs-like and AlAs-like interface phonon modes to the electron scattering depends on 

their penetration depth into a GaAs layer. In low-dimensional structures the interface modes are joint 

modes of both materials as well as the half-space modes in the barriers.  

Considering the theory of electron-phonon interactions in a dielectric slab given by Licari and Evrard 

(1977) [142]. In this theory, a single dielectric slab of infinite extent in the x- and y-directions is situated 

with its faces at −𝑎 and +𝑎 and with its surface bounded by a vacuum in the regions with |𝑍| ≥ 𝑎. Within 

this dielectric slab ∇. 𝐷⃗⃗ (𝑟 ) = 0, where, as usual, 𝐷⃗⃗ (𝑟 ) = 𝜖(𝜔)𝐸⃗ (𝑟 ) = 𝐸⃗ (𝑟 ) + 4𝜋𝑃⃗ (𝑟 ). Defining a scalar 

potential through 𝐸⃗ (𝑟 ) = −∇𝜙(𝑟 ) and, since the system is translationally invariant in the (x, y)-plane, 

taking 𝜙(𝑟 ) to be of the form of 𝜙(𝑟 ) = 𝜙(𝑧)𝑒𝑖𝑞⃗ ||𝑟 ||, where 𝑟 || = (𝑥, 𝑦) and 𝑞 || = (𝑞𝑥 , 𝑞𝑦), it follows that 

 
𝜖(𝜔) (

𝜕2

𝜕𝑧2
− 𝑞||

2)𝜙(𝑧) = 0 
3.1 

where 𝑞|| = 𝑞𝑥
2 + 𝑞𝑦

2. This equation is satisfied when 𝜖(𝜔) = 0 or when (
𝜕2

𝜕𝑧2
− 𝑞||

2)𝜙(𝑧) = 0, 𝜙(𝑧) is a 

solution of the wave equation. In the case of 𝜖(𝜔) = 0, Licari and Evrard took this solution (as did Fuchs 

and Kliewer, 1965, and Kliewer and Fuchs, 1966a, b) to be of the form [74]–[76] 

 𝜙(𝑧) =∑(𝜙1𝑠𝑖𝑛𝑞𝑧𝑧 + 𝜙2𝑐𝑜𝑠𝑞𝑧𝑧)

𝑞𝑧

, 3.2 

inside the slab i.e., in the range (−𝑎, +𝑎). Outside the slab, where 𝜖 = 1, the solutions have the form 

𝜙(𝑧) = ∅±𝑒𝑥𝑝(±√𝑞𝑥
2 + 𝑞𝑦

2𝑧), where the positive sign applies for 𝑧 ≤ −𝑎 and the negative sign applies 
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for 𝑧 ≥ +𝑎. The constants ∅1, ∅2, ∅+ and ∅− are determined by the usual boundary conditions that the 

tangential component of 𝐸⃗  and the normal component of 𝐷⃗⃗  are continuous at 𝑧 = ±𝑎. From these 

conditions it is seen that ∅± = 0 and it is thus clear that for this mode 𝜙(𝑧), 𝐸⃗ (𝑟 ) and 𝐷⃗⃗ (𝑟 ) are zero in 

the regions surrounding the slab; in particular 𝜙(𝑧) vanishes at the surfaces of the layer, where 𝑧 = ±𝑎. 

For 𝑧 in the range (−𝑎, +𝑎), the boundary conditions may be satisfied by taking either ∅1 = 0 or ∅2 = 0, 

so that there are two solutions corresponding to the two polarization vectors 

 
𝑃+
𝒥⃗⃗⃗⃗  ⃗(𝑟 ) =

𝜙2
4𝜋𝑎

𝑒𝒾𝑞⃗ ||.𝑟 ||𝒾 (𝒾𝑞 ||𝑎 cos
𝒥𝜋

2𝑎
𝒵 − 𝑧 

∧ 𝒥𝜋

2𝑎
sin

𝒥𝜋

2𝑎
𝒵 ) ,

𝒥 = 1,3,5,…, 

3.3 

 
𝑃−𝒥⃗⃗⃗⃗  ⃗(𝑟 ) =

𝜙1
4𝜋𝑎

𝑒𝒾𝑞⃗ ||.𝑟 ||𝒾 (𝒾𝑞 ||𝑎 sin
𝒥𝜋

2𝑎
𝒵 − 𝑧 

∧ 𝒥𝜋

2𝑎
cos

𝒥𝜋

2𝑎
𝒵 ) ,

𝒥 = 2,4,6,…, 

3.4 

where 𝑧 
∧

 is the unit vector in the 𝑧-direction. Of course, ∇. 𝐷⃗⃗ (𝑟 ) = 0 implies that ∇2Φ(𝑟 ) = −∇. 𝐸⃗ (𝑟 ) =

+4𝜋∇. 𝑃⃗ (𝑟 ). These standing modes are now widely known as the confined optical phonon modes in a 

slab. 

According to Pozela et al. (1994) [141], “[t]he physical nature of the confinement of optical phonons and 

electrons is different. Electrons are confined due to electron wave reflections at electric potential barriers. 

The electron QW is the well between potential barriers. Phonons are confined due to multiple reflections 

of optical phonon waves at the heterointerfaces between semiconductor layers having a large difference 

of optical phonon frequencies, and the optical phonon QW is formed in the layer sandwiched between two 

semiconductors. Independent electron and phonon confinement allows interface phonon scattering to be 

reduced by shifting the electron QW with respect to the phonon one.” The confined modes obtained from 
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the dielectric continuum model are found to give a reasonably good representation of these modes in 

quantum wells and superlattices. 

Phonon confinement is important for the description of electron-phonon interaction mechanisms [143] as 

it increases electron-phonon scattering rates [144]–[146], causes substantial nonlinearities in the 

dispersion relations of acoustic phonon modes and modifies the phonon density of states [147]. Phonon 

confinement significance is clearly implied when the transverse dimensions of a quantum well are smaller 

than the phonon coherence length [143] and should be considered to obtain accurate estimates for electron-

phonon scattering in low-dimensional nanostructures [148]–[150]. 

3.3 Confined and interface optical phonon dispersion in wurtzite quantum 

wells 

Dispersion relations for polar optical phonon modes in multiple wurtzite quantum wells (QW’s) are 

obtained within the framework of the dielectric continuum model which was presented in chapter 2. Three 

QWs will be considered: (a) AlN/GaN/AlN; (b) GaN/InGaN/GaN; and (c) AlN/AlInN/AlN. 

It is well established that the anisotropy of the dielectric medium causes a number of qualitative 

irregularities in the phonon spectrum [78], [151]–[154]. There are many types of modes in the double 

heterostructure system under study such as [153]–[155]: (1) Interface modes whose amplitude is at its 

maximum at the interface and decreases exponentially away from the interface. (2) Half-space modes of 

bulk phonons and no polarization in the opposite layer and whose polarization parallel to the interface is 

very small or vanishes at the interface. (3) Propagating modes which are created by the overlapping of the 

characteristic phonon frequencies. (4) Confined modes which are characterized by the leakage of the 

potential through the interface and their finite dispersion leads to the formation of bands of allowed 

frequencies. Among these four optical phonon modes, the electrons that are confined in the Nitride based 
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quantum well mostly interact with the interface and confined phonons; the effect of the half-space and 

propagating modes on the electrons is negligible in this system [156]. Here, therefore, we only consider 

the electron scattering with interface and confined mode optical phonons. 

3.3.1 AlN/GaN/AlN QWs 

GaN-based semiconductors are of great interest in the electronics and optoelectronics groups because they 

possess large electronic bandgaps (3.4 eV) suitable for fabricating semiconductor lasers with wavelengths 

in blue and ultraviolet [157] and electronic devices designed to withstand high electric fields (3.3 MV/cm) 

and elevated temperatures (700°C) [158]. In particular, AlGaN/GaN high electron mobility transistors 

(HEMTs) are among the most promising devices for high-power applications [159]. The spontaneous and 

piezoelectric polarization fields of this heterostructure allow the GaN layer to form a high-density electron 

channel through which electrons can flow with high saturation velocity (2.5 × 107 cm/s); this is partly due 

to the optical phonons with high energy (ℏ𝜔𝐿𝑂 = 92 meV) in GaN [160]. The electron velocity saturation 

occurs with the onset of emission of these optical phonons and therefore their energy roughly determines 

the electron saturation velocity according to 𝑣0 ≈ [ℏ𝜔𝐿𝑂 𝑚⁄ ]1/2, where m is the effective electron mass. 

Taking a closer look into the material, the large mismatch between the cation and anion masses causes a 

large splitting between the energies of the optical and acoustic phonon branches which raises the energy 

of optical phonons [161]. The drawback associated with these high energy optical phonons is their short 

interaction time with electrons compared to the long decay time into acoustic phonons. 

In the double heterostructure of interest in this subsection, which is a GaN quantum well sandwiched by 

two AlN layers (AlN/GaN/AlN), there exists four distinct classes of optical phonon modes [153]: the 

interface, confined, half-space, and propagating modes. Among these four optical phonon modes, the 

electrons that are confined in the GaN quantum well mostly interact with the interface and confined 
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phonons; the effect of the half-space and propagating modes on the electrons is negligible in this system 

[156]. Here, therefore, we only consider the electron scattering with interface and confined mode optical 

phonons. 

In this configuration, the available optical phonon modes and the phonon frequencies for each mode are 

determined by the relation between the dielectric constant functions. The frequency-dependent dielectric 

functions parallel 𝜖𝑧  and perpendicular 𝜖𝑡 to the z-axis are given as [80] 

 
𝜖1,2𝑧(𝜔) = 𝜖𝑧

∞
𝜔2 −𝜔𝐿𝑧

2

𝜔2 − 𝜔𝑧2
 

3.5 

 
𝜖1,2𝑡(𝜔) = 𝜖𝑡

∞
𝜔2 −𝜔𝐿𝑡

2

𝜔2 − 𝜔𝑡
2  

3.6 

Where 𝜔 is the phonon frequency, 𝜔𝐿𝑧, 𝜔𝑧, 𝜔𝐿𝑧, 𝜔𝐿𝑡 and 𝜔𝑡 are the characteristic frequencies of A1(LO: 

longitudinal-optical), A1(TO: transverse-optical), E1(LO) and E1(TO) optical phonon modes, respectively. 

For the AlN/GaN/AlN quantum well, two sets of material parameters are required such that we obtain 

four dielectric functions, namely 𝜖1𝑧 , 𝜖1𝑡, 𝜖2𝑧 and 𝜖2𝑡, where the subscripts 1 and 2 indicate the GaN and 

Table 2. Properties of prominent III-V nitride materials 

 GaN AlN BN InP InN 

𝐴1(𝐿𝑂)(𝑐𝑚
−1) 734 [105] 890 [105] 1258 [162] 346 [164] 586 [166] 

𝐴1(𝑇𝑂)(𝑐𝑚
−1) 531 [105] 611 [105] 1006 [162] 305 [164] 447 [166] 

𝐸1(𝐿𝑂)(𝑐𝑚
−1) 741 [105] 912 [105] 1286 [162] 347 [164] 593 [166] 

𝐸1(𝑇𝑂)(𝑐𝑚
−1) 559 [105] 671 [105] 1053 [162] 306 [164] 476 [166] 

𝜖∞ 5.35 [133] 4.77 [133] 4.50 [163] 9.99 [165] 8.40 [167] 
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AlN, respectively. With 𝜔 = 0, the Lyddane-Sachs-Teller relation is recovered, and the static dielectric 

constants are obtained. Throughout this chapter, we take the z-axis along the c-axis of the wurtzite crystal 

[0001] and perpendicular to the heterointerfaces. The phonon frequencies and dielectric constants for bulk 

GaN and AlN used in the calculations are listed in Table 2. Using these frequency-dependent dielectric 

functions of bulk GaN and AlN, the phonon frequencies and available phonon modes of the AlN/GaN/AlN 

quantum well are deduced by the dielectric continuum model. Notice that the phonon frequencies are 

listed in units of cm−1. We assume that the two high-frequency dielectric constants are identical, i.e., 𝜖𝑧
∞ =

𝜖𝑡
∞ = 𝜖∞ [151]. 

The conditions imposed on the available interface mode optical phonon frequency are  

 𝜖1,𝑧(𝜔)𝜖1,𝑡(𝜔) > 0, 𝜖2,𝑧(𝜔)𝜖2,𝑡(𝜔) > 0 and 𝜖1,𝑧(𝜔)𝜖2,𝑧(𝜔) < 0 3.7 

For confined modes, the conditions are 

 𝜖1,𝑧(𝜔)𝜖1,𝑡(𝜔) < 0 and 𝜖2,𝑧(𝜔)𝜖2,𝑡(𝜔) > 0 3.8 

To clearly illustrate the available range of phonon frequencies for each mode, the four dielectric constants 

as a function of phonon frequency are shown in Fig. 5. The characteristic frequencies of the dielectric 

functions which define the phonon frequency ranges are indicated by vertical dashed lines. According to 

the conditions in Eqn. 3.7, the interface phonons are allowed in two phonon frequency intervals, (𝜔1𝑡 , 𝜔2𝑧) 

and (𝜔1𝐿𝑡 , 𝜔2𝐿𝑧). Since the former (latter) interval corresponds to the TO (LO) phonon frequencies of GaN 

and AlN, we label the phonon modes that lie in this frequency range as TO (LO) interface phonons. These 

intervals are indicated in the figure as red and blue shaded regions, respectively. Similarly, according to 

the conditions in Eqn. 3.8, the confined phonons are allowed in two phonon frequency intervals, (𝜔1𝑧 , 𝜔1𝑡) 

and (𝜔1𝐿𝑧 , 𝜔1𝐿𝑡). 
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The dispersion relations for the IF and confined modes are given by [168] 

 
𝑞 =

1

2
ln [

𝜉1 + 𝜉2
±(𝜉1 − 𝜉2)

] (𝛼𝑑)⁄  
3.9 

and 

 

Fig. 5. The dielectric constants as a function of phonon frequency. The characteristic frequencies of 

the dielectric functions which define the range of available interface (IF) and confined (C) mode 

phonon frequencies are indicated by vertical dashed lines. The region shaded in red (𝜔1𝑡 , 𝜔2𝑧) is 

where the interface phonons associated with the TO phonon modes of bulk GaN and AlN are 

defined. The region shaded in blue (𝜔1𝐿𝑡 , 𝜔2𝐿𝑧) is where the interface phonons associated with the 

LO phonon modes of bulk GaN and AlN are defined. The regions shaded in green (𝜔1𝑧 , 𝜔1𝑡) and 

magenta (𝜔1𝐿𝑧 , 𝜔1𝐿𝑡) are where the confined phonons are defined. 
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 𝑞𝑛 = [𝑛𝜋 + 𝜇 arctan(𝜉2 𝜉1⁄ )] (𝛼𝑑)⁄  

𝑛 = 1, 2 , 3, …  and 0 if  𝜇 = 1 
3.10 

 𝑞𝑛 = [𝑛𝜋 − 𝜇 arctan(𝜉1 𝜉2⁄ )] (𝛼𝑑)⁄  

𝑛 = 1, 2 , 3, …  and 0 if  𝜇 = −1 
3.11 

Here, 𝑞 is the phonon wave vector, 𝑛 labels the different eigenmodes of the confined modes with 𝑛 = 1 

corresponding to the lowest order mode, 𝑛 = 2 corresponding to the second order mode, etc. 

Also, 𝛼 =
1

2
√|𝜖1𝑡/𝜖1𝑧|, 𝛽 =

1

2
√|𝜖2𝑡/𝜖2𝑧|, 𝜉1 = √|𝜖1𝑡𝜖1𝑧|, 𝜉2 = √|𝜖2𝑡𝜖2𝑧|, 𝜇 = sign(𝜖1𝑧𝜖2𝑧). 

The interface and confined mode phonon dispersion relations in Eqs. 3.1 & 3.11 are shown in Fig. 6. The 

subscripts A and S indicate asymmetric and symmetric modes, and superscripts IF and C indicate interface 

and confined modes, respectively. The low frequency modes that are associated with the TO phonon 

frequencies of GaN and AlN are plotted in (a) and the high frequency modes that are associated with the 

LO phonon frequencies are plotted in (b). The symmetric modes are shown in dashed lines and asymmetric 

modes are shown in solid lines for both interface and confined phonons. The characteristic phonon 

frequencies, which separate the interface modes from the confined modes, and resonant interface phonon 

frequencies are indicated with horizontal lines. In terms of phonon energy, the LO interface phonon modes 

(91.9 < ℏ𝜔𝐿𝑂
𝐼𝐹 < 110.3 eV) are higher in energy compared to the TO phonon modes (69.3 < ℏ𝜔𝑇𝑂

𝐼𝐹 <

75.8 eV). The TO and LO resonant interface phonon energies are 71.7 and 103.2 meV, respectively. 

Compared to interface phonon modes, more than a pair of symmetric and asymmetric confined modes 

exist in each phonon frequency interval. Here, we only plot two of each symmetric and asymmetric 

confined modes that mostly contribute to the electron-phonon scattering process. However, in principle, 

there are an infinite amount of modes available. It should be noted that for the confined modes, the 
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dispersion curves asymptotically approach a characteristic phonon frequency of GaN (i.e., 𝜔1𝑧 for TO 

confined modes and 𝜔1𝐿𝑡  for LO confined modes), whereas for the interface modes the curves approach 

the resonant frequency with increasing wave vector. This interface phonon dispersion relation gives rise 

to a phonon emission threshold energy in the electron-phonon scattering process that does not correspond 

to an energy of the characteristic phonons of either AlN or GaN. Another important feature in the 

dispersion relation is that these interface phonon modes have a nonzero slope at the zone center. This 

indicates that the group velocity 𝑣𝑔 =
𝑑𝜔

𝑑𝑞
 is nonzero and that optical phonons generated at the interface 

 

Fig. 6. Dispersion relation of asymmetric interface (black), symmetric interface (dashed orange), 

asymmetric confined (magenta) and symmetric confined (dashed blue) mode phonons of the 

AlN/GaN/AlN quantum well in the (a) low-frequency and (b) high-frequency region. Only a few of 

the confined mode phonons are plotted. Phonon modes associated with TO phonon modes of AlN 

and GaN are shown in the lower-frequency region whereas those associated with LO phonon modes 

are in the higher-frequency region. The interface phonon resonant frequencies are shown in dotted 

horizontal lines and the other characteristic frequencies are shown in dashed horizontal lines. The x-

axis is shown in the dimensionless wave vector 𝑞𝑑. 
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will not stay where they were generated (as bulk optical phonons do) but will propagate along the interface. 

Notice that the x-axis is set to the dimensionless product of phonon wave vector 𝑞 and the quantum well 

thickness 𝑑. Therefore, the group velocity will increase with increasing quantum well thickness due to the 

stronger dispersion. 

3.3.2 GaN/InGaN/GaN QWs 

GaN/InGaN multiple quantum wells (MQWs), with low In-content, offers tunable band gaps ranging from 

2.9 – 3.4 eV for In content (0 – 0.4) [169]. They also have been well-regarded for their applications in 

quantum well infrared photodetectors (QWIPs), quantum cascade infrared photodetectors (QCIPs), and 

blue and white light emitting diodes [170]. They are strong favorites for artificial lighting to replace the 

present fluorescent and incandescent lighting [170]. However, and as discussed in chapters 1 and 2 

extensively, as nitride devices, and semiconductors in general, are being scaled down to operate in 

nanometer regions, reliability issues appear due to the heat generation and increase in junction temperature 

which contribute significantly to the degradation of device’s performance. In view of the advantages and 

applications of InGaN QWs, it is fitting to investigate the possibility of enhancing their reliability via 

optical phonon emission as phonon engineering emerges as an important tool in nanoscale regimes [161]. 

Studies have shown the importance of investigating the interaction between electrons and polar-optical-

phonons, as polar optical phonon emission is known as the primary energy relaxation process of hot 

electrons in GaN [50], [171]. The importance of carrier-phonon interactions and phonon-assisted 

processes are now well known and is illustrated in a number of different nanostructures [172]–[174]. Polar 

optical electron-phonon scattering through the Frohlich interaction is the dominant scattering process in 
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low-defect GaN/InGaN QWs over a wide range of temperatures; moreover, the optical phonon production 

dominates over the acoustic phonons production via the deformation potential [80]. 

Polar optical electron-phonon scattering through the Frohlich interaction is the dominant scattering 

process in low-defect GaN/InGaN QWs over a wide range of temperatures; moreover, the optical phonon 

production dominates over the acoustic phonons production via the deformation potential [80]. 

Fig. 7 introduces a schematic for the case of a simplified layered structure of GaN/In0.15Ga0.85N/GaN QW. 

The difference between the dielectric constants between GaN and InGaN leads to the production of polar 

interface and confined optical phonon modes. In this chapter, we calculate the scattering rates 
1

𝜏
 for these 

 

Fig. 7. Schematic diagram of a typical GaN/InGaN/GaN double barrier quantum well structure. The 

width d of the InGaN layer is set initially to 5 nm for the scattering rates numerical calculations. The 

well depth v of 0.5 eV represents the discontinuity between the conduction bands of InGaN and GaN. 

The values reported for 𝐸𝐶  are -2.8 eV and -2.3 eV for GaN and InGaN based on DFT calculations 

[175]. 
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two phonon modes as functions of the electron energy Ek for GaN/In0.15Ga0.85N/GaN QWs, which are 

based on the analysis and the formalism of Ref. [156]. It is shown that through phonon engineering, it is 

possible to preferentially channel the phonon emission into interface modes propagating with high optical 

phonon velocities which lead to elongated, lower-temperature hot spots in the region where the interface 

optical phonons decay into acoustic phonons. 

Phonons of confined and interface modes coexist in certain regions in GaN/InGaN wurtzite 

heterostructures. Confined modes exist within two frequency intervals: 𝐶𝐼 = [𝜔1𝑧 , 𝜔1𝑡] and 𝐶𝐼𝐼 =

[𝜔1𝐿𝑧 , 𝜔1𝐿𝑡], while interface modes exist between [𝜔2𝑧 , 𝜔1𝑡] and [𝜔1𝐿𝑡 , 𝜔2𝐿𝑧] [168], [176], [81]. The 

range of the allowed frequencies is illustrated by the frequency-dependent dielectric constants [176], [177] 

given in Eqs. 3.5 and 3.6. 

 

Fig. 8. The frequency-dependent dielectric functions of GaN/InGaN/GaN QW. 𝜖1𝑧(𝜔) and 𝜖1𝑡(𝜔) 

for InGaN are designated in black and red and 𝜖2𝑧(𝜔) and 𝜖2𝑡(𝜔) for GaN are designated in blue and 

magenta. 
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In this subsection, subscript 1 is assigned for InGaN and 2 is assigned for GaN. For GaN/InGaN with 

indium content of 15%, 𝜖1,2𝑧(𝜔) and 𝜖1,2𝑡(𝜔) are plotted in Fig. 8. The dielectric constants 𝜖1𝑧(𝜔) and 

𝜖1𝑡(𝜔) in Fig. 8 converge at large values near their TO frequencies of 𝜔𝑧 and 𝜔𝑡 for both materials. The 

dielectric constants switch to negative values outside the range of the allowed frequencies > 741 cm-1 and 

remain positive at values < 525 cm-1, which indicate that 𝜖1,2𝑧(𝜔)𝜖1,2𝑡(𝜔) < 0 always holds for 

GaN/InGaN structure. In that case, no overlap of the characteristic frequencies will occur, and the 

boundary conditions will satisfy neither the oscillating solution nor the decaying solution for the existence 

of IF and confined modes. 

Eqs. 3.19–3.11 represent the case for IF modes. The upper sign in the denominator is for symmetric modes 

and the lower sign is for asymmetric modes. Eqn. 3.10 is defined for even confined modes and Eqn. 3.11 

 

Fig. 9. Parameters of the phonon wave function. 𝜉1and 𝜉2 are indicated by black and red and 𝛼 and 𝛽 

are indicated by blue and magenta. The vertical black dotted lines separate each symmetric and 

asymmetric region. 
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is defined for odd confined modes. The symmetric and asymmetric phonons satisfy the relations 𝜉1 > 𝜉2 

and 𝜉1 < 𝜉2, respectively. Indeed, these relations are illustrated in Fig. 9. The characteristic frequencies 

can be obtained from the peaks of 𝜉1 and 𝜉2 while their intersections denote the resonant frequencies. Fig. 

10 (a) and (b) depict the dispersion of polar optical phonons for interface and confined modes for low and 

high energy regions. The symmetric IF modes are shown in black and the asymmetric modes are shown 

in green. Also, the even confined modes are plotted in blue and the odd confined modes are plotted in red. 

The dispersive behavior of Eqs. 3.10 and 3.11 shows that the confined modes usually have infinite 

solutions for given 𝑛 and 𝑞 in the intervals [𝜔1𝑧 , 𝜔1𝑡] and [𝜔1𝑙𝑧 , 𝜔1𝑙𝑡], however, only a certain number of 

 

Fig. 10. Dispersion relation of frequencies ℏ𝜔 in a wurtzite GaN/In0.15Ga0.85N/GaN quantum well as 

a function of free phonon wave number when 𝑛 = 0. The resonant frequency for IF and confined are 

indicated by the black dotted lines. The modes depicted are symmetric IF in black, asymmetric IF in 

green, even confined in blue and odd confined in red. The low-order energy intervals ℏ𝜔𝑇𝑂 are 

shown in (a) and the high-order energy intervals ℏ𝜔𝐿𝑂 are shown in (b). 

 



 39 

confined modes are considered at given 𝑛 and 𝑞. It is evident from the dispersion curves that the scattering 

rates increase due the strong presence of the confined phonons.  

From Fig. 10, one can see that only the first few confined modes for any odd and even modes are 

considered. The higher order modes are normally ignored because 〈𝑓|𝑣|𝑖〉 ≈ 0, when the potential 𝑣 has 

many oscillations. The IF modes of lower frequencies associated with TO modes propagate around a 

resonant frequency of 539.5 cm-1, defined as 𝜔𝑇𝑂,𝑟
𝐼𝐹  in Fig. 10 (a), whereas the higher frequencies (LO 

modes) have a resonant frequency of 727.2 cm-1, defined as 𝜔𝐿𝑂,𝑟
𝐼𝐹  in Fig. 10 (b). As 𝑞 approaches ∞, the 

confined modes saturate at 525.1 cm-1 (~𝜔1𝑧) and 719.9 cm-1 (~𝜔1𝐿𝑡), which are labeled as 𝜔𝑇𝑂,𝑟
𝐶  and 

𝜔𝐿𝑂,𝑟
𝐶  to show that they denote the emission thresholds for confined modes at the low and high frequency 

regions, respectively. The confined modes asymptotically reduce to the characteristic frequencies 𝜔1𝑡 for 

TO modes and 𝜔1𝑙𝑧  for LO modes. The trend verifies that the confined modes exist between [𝜔1𝑡 , 𝜔1𝑧] 

and [𝜔1𝐿𝑡 , 𝜔1𝐿𝑧]. The strong dependence of the scattering rates on the dispersion relation and the values 

of the above resonance frequencies help us predict the energy required to emit TO-like and LO-like 

phonons. In Fig. 10, the slopes of the optical branches indicate which modes have higher group velocity. 

Nonetheless, the slopes of these optical phonons (including IF) are still slower than the acoustic phonons. 

3.3.3 AlN/AlInN/AlN QWs 

Aluminum and indium nitride ternaries have attracted much interest because of their excellent physical 

and chemical properties, such as ultra-hardness, high thermal conductivity, and chemical inertness that 

withstand high temperatures. AlInN based high-electron-mobility transistors (HEMTs) have been 

investigated to provide graded and improved polarization charges with minimal effects of strain [178]–

[180]. Several researchers have introduced devices based on AlInN with maximum current capabilities 

greater than those of AlGaN/GaN structures [181]. Furthermore, optimization of quantum well structures 
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based on AlInN has been carried out by using theoretical analysis dependent on compressive strain and 

well thicknesses [182]. 

Recent advances in synthesis and processing are enabling the production of AlInN structures for various 

applications. Examples include the realization of AlInN compounds for large optical gain for deep-UV 

LED [183], lattice matched GaN/AlInN superlattices for the near-infrared based on intersubband 

transitions [184] and reduced dislocation densities [185]. 

This subsection deals with the use of phonon engineering to reduce peak temperatures in hot spots in 

AlInN-based electronic compounds. This application was not anticipated in the original formulation of 

the dielectric continuum for optical phonons in wurtzites or in a large number of papers based on the 

original formulation [80]. Specifically, hot-electron-generated phonons – which lead to the elevated 

temperatures in hot spots – are engineered by the use of heterostructures so that a large fraction of the 

 

Fig. 11. Aluminum nitride-based high electron mobility transistor (HEMT) including a structure for 

interface (IF) phonon generation. 
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phonons are interface phonons which have group velocities much higher than those of bulk optical 

phonons. As in the case of bulk optical phonons, these interface phonons decay into heat carrying acoustic 

phonons. But because of their high group velocities the interface optical phonons’ decay into acoustic 

phonons occurs over an elongated hot spot region with the consequence that the hot spot temperature is 

reduced. In the following segment, generation rates of interface optical phonons from hot electrons in the 

hot spot region are calculated from first principles and estimates are made for the fraction of phonons that 

are interface phonons. We have focused on wurtzite materials instead of cubic materials since the wurtzite 

materials are more readily available as a result of the advanced growth technologies for wurtzites. These 

results, together with the group velocities, for interface optical phonons, are used to estimate the 

dimensional elongation of the hot spots and, thus, the temperature reduction of the hot spots. 

In previous studies, the phonon total scattering rate was formulated for a GaN free-standing quantum well 

(QW), and for a GaN quantum well (QW) embedded between two AlN layers [156]. These scattering 

processes involve a variety of modes including confined and interface modes, which can be used as a 

means of controlling heat transport and temperature profiles since the different modes have different 

propagation speeds [161], [186]. 

The application of epitaxially grown quantum wells (QW) was discussed as a possible approach to deal 

with the temperature profiles near the transistor gate. Fig. 11 depicts a general schematic to produce fast 

moving interface phonons in AlInN ternaries. 

In a nitride based HEMT with a two-dimensional electron gas (2DEG) between the source and the drain, 

the formation of the 2DEG at the interface has led to the fabrication of high-performance electronic 

heterostructures, and also, the reduction of the impact of the interfacial roughness and the alloy scattering 

and the confinement of electrons in a quantum well. For operational ranges of gate, source, and drain 

voltages, there are regimes where electrons are very energetic and the balance of LO phonon emission and 
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absorption will be strongly modified by these electrons being accelerated with high electric fields. In polar 

materials, rates for optical phonon generation dominate and they remain localized in the regions where 

electrons flow [187]. These optical phonons generally decay into acoustic phonons that carry heat through 

a variety of decay channels [188]–[190]. As hot electrons produce more phonons, AlInN/AlN exhibits 

self-heating due to the strong 2DEG localization as more electrons occupy the ground state [191]. 

Due to their extremely high growth temperatures, AlInN ternary alloys are considered one of the most 

complicated III-nitrides [192]. Since AlInN layers with indium content smaller than 30% is lattice matched 

to AlN, it allows the fabrication of strain-free AlInN/AlN heterostructures [193], [194]. In order to exploit 

the full potential of the device, proper modeling of the materials is required. The AlInN/AlN HEMT 

structure can be demonstrated with up to 20 period of superlattice, by using the optimum AlInN thickness 

that achieves the best heat-spreading results. With the application of a metal that has higher work function 

than the structure to create an ohmic contact. The gate voltage Vg required to create the hot spot can be 

evaluated using the force and electric field equations. 

During the ON-state, the current flows between source and drain through the 2DEG and through different 

leakage paths in the GaN-based bulk [195]. In the usual HEMT design, the potential trapping region at 

 

Fig. 12. Band alignment of the AlInN/AlN heterointerface with a 76%/24% setup. 
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the heterointerface results in charge transport between the source and drain, i.e., a conductive channel. 

Then electrons will move going from source to drain when a positive bias VD is applied. This flow can be 

modified by changing the gate voltage. Hot spots of elevated temperature are generally produced near the 

two-dimensional electron gas (2DEG) below a portion of the gate and it expands into the region below 

the 2DEG in which almost all of the voltage drop in the longitudinal direction occurs [191]. As illustrated 

in Fig. 11, the placement of a heat spreading heterostructure in the hot spot region – denoted by “AlxIn1-

xN” (Structure for IF phonon gen.)” – can be used to generate interface optical phonons which propagate 

at high relative speeds before they decay into heat-generating phonons. 

To reduce the hot spot temperature, a thin layer of the order on nanometers thick or layered structure such 

as AlN/AlInN/AlN is grown epitaxially in the region where the hot spot is predicted to occur. Fig. 12. 

presents a schematic for the case of a simplified layered structure composed of AlN/AlInN/AlN alignment, 

which retains the essential feature of a discontinuous dielectric constant at the interfaces which is 

important for interface (IF) and confined phonon generation. Hot electrons incident on the interfaces in 

Fig. 12 will produce interface phonons and confined phonons near the hot spot region which decay on the 

picosecond time scale to acoustic phonons which carry heat and enhance electronic transport. 

The polarization properties of wurtzite III–V nitrides are calculated from first principles [196]. For AlxIn1-

xN, low- and high-mode phonon frequencies are interpolated using Vegard’s law [197]. Other physical 

properties such as, dielectric constant, bandgap and band offset can be estimated using the approximated 

linear interpolation as in Eqs. 3.12–3.14, respectively [196]. The material properties for AlN are provided 

in Table 2, while the calculated properties for AlInN are provided in Table 3. 

 𝜀𝐴𝑙𝐼𝑛𝑁 = −4.3𝑥 + 14.61 3.12 

 𝐸𝐴𝑙𝐼𝑛𝑁
g (𝑥) = [𝑥𝐸𝐴𝑙𝑁

g
+ (1 − 𝑥)𝐸𝐼𝑛𝑁

g
− 𝑏𝑥(1 − 𝑥)] 3.13 



 44 

 ∆𝐸𝐴𝑙𝐼𝑛𝑁
𝐶 (𝑥) = 0.63 (𝐸𝐴𝑙𝐼𝑛𝑁

g (𝑥) − 𝐸𝐴𝑙𝐼𝑛𝑁
g (0)) 3.14 

where 𝑏 is the bandgap bowing parameter (in eV). 

where 𝐴1(𝐿𝑂), 𝐴1(𝑇𝑂), 𝐸1(𝐿𝑂) and 𝐸1(𝑇𝑂) are the characteristic frequencies of the system. AlInN 

frequency values were calculated using linear interpolation and AlN values were taken from Ref. [105]. 

Corresponding to a 76%/24% conduction band/valence band offsets, a widely accepted band gap bowing 

factor of 5.4 eV is assumed for AlInN [196], [198], [199]. The AlInN/AlN heterointerface is assumed to 

be abrupt. This yields a band gap of 4.14 eV for Al0.76In0.24N at 300 K. The values for the band offsets 

are ∆𝐸𝐴𝑙𝐼𝑛𝑁
𝐶  = 1.37 eV and ∆𝐸𝐴𝑙𝐼𝑛𝑁

𝑉  = 0.62 eV. The calculated dielectric permittivity of AlInN is 𝜀𝐴𝑙𝐼𝑛𝑁 = 

11.34, which is in a good agreement with the value listed in Ref. [200]. 

Similar to the calculations for GaN/AlN and InGaN QWs and based on Eqs. 3.9–3.11, the dispersion 

curves for IF and confined phonon modes in AlInN/AlN QW are illustrated in Fig. 13. 

 

Fig. 13. Dispersion relation for AlInN quantum well surrounded by two AlN structures. The straight 

curves denote the symmetric modes whereas the dashed curves denote the asymmetric modes. The IF 

phonons are plotted in black and the confined phonons are plotted in blue. 
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3.3.4 Estimation of physical properties for III-nitride ternary alloys 

It is suitable to investigate additional nitride-based structures due to their unique properties such as good 

thermal, mechanical and chemical stability. Many challenges in the growth of these materials are yet to 

be overcome. For example, in epitaxially-grown materials, the positions of atoms or molecules are 

repeating with fixed distances determined by the unit cell parameters. In some instances, nonetheless, the 

arrangement of atoms or molecules in crystalline materials may not be aligned perfectly. In general, 

experimental studies on these materials is clearly on its infancy. We provide below a calculation of the 

electronic properties of a selection of quantum wells based on the work reported by Ambacher et al. (2002) 

[196] including: 1) AlN/Al0.88In0.12N/AlN, 2) GaN/In0.1Ga0.9N/GaN, 3) GaN/In0.05Ga0.95N/GaN and 4) 

Table 3. Calculated properties of selected ternary alloys with different compositions compared to GaN, 

AlN and InN compounds. Frequencies are in cm-1 and energies are in eV. 

Material 𝑨𝟏(𝑳𝑶) 𝑨𝟏(𝑻𝑶) 𝑬𝟏(𝑳𝑶) 𝑬𝟏(𝑻𝑶) 𝝐𝟎 𝝐∞ 𝑬g 𝑬C 

GaN 734 531 741 559 9.7 5.35 3.42 – 

AlN 890 611 912 671 9.14 4.77 6.13 – 

InN 588 451 592 476 15.3 8.40 1.95 – 

Al0.76In0.24N 818 573 835 624 11.34 5.56 4.14 1.370 

Al0.88In0.12N 854 592 874 648 10.83 5.20 5.06 1.958 

In0.15Ga0.85N 712 519 718 547 10.93 5.80 2.88 0.586 

In0.10Ga0.90N 719 523 726 551 10.71 5.66 3.05 0.693 

In0.05Ga0.95N 727 527 734 555 10.49 5.52 3.23 0.806 

Al0.10Ga0.90N 750 539 758 570 10.28 5.32 3.60 0.113 
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GaN/Al0.1Ga0.9N/GaN. Henceforth, further research can be carried on based on these data. By rewriting 

Eqs. 3.12–3.14 for different materials indicated in the scripts 

 𝜀𝐴𝑙𝐺𝑎𝑁 = 0.03𝑥 + 10.28 3.15 

 𝜀𝐼𝑛𝐺𝑎𝑁 = 4.33𝑥 + 10.28 3.16 

 𝜀𝐴𝑙𝐼𝑛𝑁 = −4.3𝑥 + 14.61 3.17 

 𝐸𝐴𝑙𝐺𝑎𝑁
g (𝑥) = [6.13𝑥 + 3.42(1 − 𝑥) − 1.0𝑥(1 − 𝑥)] 3.18 

 𝐸𝐼𝑛𝐺𝑎𝑁
g (𝑥) = [1.95𝑥 + 3.42(1 − 𝑥) − 2.5𝑥(1 − 𝑥)] 3.19 

 𝐸𝐴𝑙𝐼𝑛𝑁
g (𝑥) = [6.13𝑥 + 1.95(1 − 𝑥) − 5.4𝑥(1 − 𝑥)] 3.20 

 ∆𝐸𝐴𝑙𝐺𝑎𝑁
𝐶 (𝑥) = 0.63(𝐸𝐴𝑙𝐺𝑎𝑁

g (𝑥) − 𝐸𝐴𝑙𝐺𝑎𝑁
g (0)) 3.21 

 ∆𝐸𝐼𝑛𝐺𝑎𝑁
𝐶 (𝑥) = 0.63 (𝐸𝐼𝑛𝐺𝑎𝑁

g (𝑥) − 𝐸𝐼𝑛𝐺𝑎𝑁
g (0)) 3.22 

 ∆𝐸𝐴𝑙𝐼𝑛𝑁
𝐶 (𝑥) = 0.63(𝐸𝐴𝑙𝐼𝑛𝑁

g (𝑥) − 𝐸𝐴𝑙𝐼𝑛𝑁
g (0)) 3.23 

In Table 3, the calculations of the high-frequency dielectric constants were obtained with the help of the 

famous generalized Lyddane-Sachs-Teller relation [201], which indicates that the dielectric constants at 

visible ranges (𝜖∞) can be obtained by 𝜖∞ = 𝜖0
𝜔𝐿𝑂
2

𝜔𝑇𝑂
2 , where 𝜖0 is the static, or zero-frequency, dielectric 

constant. Looking at Eqs. 3.15–3.23, it becomes clear that the bandgaps, dielectric constants and band 

offsets depend linearly on the nitride composition; for example, the case for AlInN has been verified by 

Schulz et al. (2013) [202]; Ponce et al. (2013) observed different emission energies with different nitride 

compositions for InGaN layers [203]. Therefore, it is worth commenting on this segment that alloy 

compositions have a profound effect on its thermal properties, which determine the temperature field, its 

mechanical properties, which influence the response of the material to the strains caused by the thermal 

field, and its thermal conductivity. 
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3.4 Hot electron relaxation rates 

This section details a study of the uniaxial dielectric continuum model to investigate the electron-phonon 

interaction mechanism in GaN- and AlN-based QWs. A formalism for the calculation of the scattering 

rate in wurtzite-type (QWs) is developed taking into account features of the optical phonon spectra in an 

optically anisotropic medium. In Section 3 of this chapter, we have introduced the dispersion relation 

through phonon engineering via dimensional confinement effects and the resonant frequencies of the 

system for both high and low intervals and the link between them and the energies required to emit 

longitudinal optical (LO) and transverse optical (TO) modes. 

The phonon potentials inside and outside the QWs for confined modes are given by [80] 

 Φ1(𝑧) = Φ0 cos (2𝛼𝑞
𝑧

𝑑
) 3.24 

 Φ2(𝑧) = 𝐴 cos(𝛼𝑞) 𝑒
𝛽𝑞(1−2

𝑧
𝑑
)
 

3.25 

and for interface modes 

 Φ1(𝑧) = 𝐴 cosh(2𝛼𝑞𝑧) 3.26 

 Φ2(𝑧) = 𝐴 cosh(𝛼𝑞𝑑) 𝑒
𝛽𝑞𝑑(1−2

𝑧
𝑑
)
 

3.27 

where 𝛼 =
1

2
√|𝜖1𝑡/𝜖1𝑧|, 𝛽 =

1

2
√|𝜖2𝑡/𝜖2𝑧|, 𝑞 is the phonon wave vector, 𝑧 is defined within −𝑑/2 ≤ 𝑧 ≤

𝑑/2 and Φ0 and 𝐴 are the normalization conditions determined from the continuity of the heterointerfaces. 

From Eqs. 3.24–3.27 and satisfying the boundary conditions at the interfaces [168] 

 Φ1(𝑧) = Φ2(𝑧) 

𝜕Φ1(𝑧)

𝜕𝑥
=
𝜕Φ2(𝑧)

𝜕𝑥
 

3.28 

For further simplifications, we define the following relations 
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cos2(𝛼𝑞) =

1

1 + (
𝜉2
𝜉1
)
2 

3.29 

 

cos(𝛼𝑞) sin(𝛼𝑞) =
𝜇
𝜉2
𝜉1

1 + (
𝜉2
𝜉1
)
2 

3.30 

 
𝛼𝑞𝑑 = 𝑛𝜋 + 𝑎𝑟𝑐𝑡𝑎𝑛 (𝜇

𝜉2
𝜉1
) 

3.31 

with 𝜉1 = √|𝜖1𝑡𝜖1𝑧|, 𝜉2 = √|𝜖2𝑡𝜖2𝑧| 

Within the context of the dielectric continuum approximation and Loudon’s models for uniaxial crystals, 

the scattering rate by emission and absorption is calculated with the perturbation theory of Fermi’s golden 

rule. The equation is defined as [151] 

 1

𝜏
= 2𝑒2∫ 𝑑𝜃

𝜋

0

×∫(𝑁𝑞 + 0.5 ∓ 0.5)𝐷(𝑞, 𝜔)𝛿(𝐸𝑘+𝑞 − 𝐸𝑘 ∓ ℏ𝜔) 𝑑𝑞 
3.32 

where 𝐸𝑘+𝑞 − 𝐸𝑘 ∓ ℏ𝜔 represents the delta function (Γ). The upper sign is defined for absorption and the 

lower sign is for emission. The phonon potentials were used to obtain 𝐷(𝑞, 𝜔) which was derived for 

interface and confined modes using the form factor (
𝑓2

𝐹
⁄ ). 𝑓 and 𝐹 were defined for wurtzite materials 

as [156] 

 

𝑓 =
Υ2

√1 + (
𝜉2
𝜉1
)

[
cos2 (𝑘1

𝑑
2)

𝑘2 + 𝛽𝑞
+
(2cos2 (𝑘1

𝑑
2) 𝛼

2𝑞2 ∓ 𝑘1
2) 𝜇

𝜉2
𝜉1
∓ 𝛼𝑞𝑘1 sin(𝑘1𝑑)

2𝛼𝑞(𝛼2𝑞2 ∓ 𝑘1
2)

] 

3.33 

and 
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𝐹 =

1

1 + (
𝜉2
𝜉1
)
[2𝛽

𝜕𝜖2𝑧
𝜕𝜔

+
1

2𝛽

𝜕𝜖2𝑡
𝜕𝜔

± 𝜇𝜉2 (
1

|𝜖1𝑡|

𝜕𝜖1𝑡
𝜕𝜔

∓
1

|𝜖1𝑧|

𝜕𝜖1𝑧
𝜕𝜔

)

+ 𝛼𝑞𝑑 (2𝛼
𝜕𝜖1𝑧
𝜕𝜔

±
1

2𝛼

𝜕𝜖1𝑡
𝜕𝜔

)] 

3.34 

with 

 

{
 
 
 
 

 
 
 
 
sin(𝛼𝑞𝑑) = sin (𝑛𝜋 + 𝑎𝑟𝑐𝑡𝑎𝑛 (𝜇

𝜉2
𝜉1
)) = ±

𝜇
𝜉2
𝜉1

√1 + (
𝜉2
𝜉1
)
2

cos(𝛼𝑞𝑑) = ±
1

√1 + (
𝜉2
𝜉1
)
2

 

3.35 

where 𝑛 = 0 in even numbers. 

Therefore, 

 𝐷(
𝐶
𝐼𝐹
)(𝑞, 𝜔)

=

[
Υ2

(𝛼2𝑞2 ∓ 𝑘1
2)
[cos2 (𝑘1

𝑑
2) (

𝑘1
2 ∓ 𝛼2𝑞2

𝑘2 + 𝛽𝑞
𝜉1 − 2𝛼𝑞𝜇𝜉2) ±

𝑘1
2𝜇𝜉2
2𝛼𝑞 +

1
2𝑘1𝜉1 sin

(𝑘1𝑑)]]

2

𝜉1
2𝜉+(𝛽) ± 𝜇𝜉1𝜉2𝜉

∓(𝛼) + 𝛼𝑞𝑑𝜉±(𝛼)(𝜉1
2 ± 𝜉2

2)
  

3.36 

A detailed verification of the form factor and 𝐷
( 𝐶
𝐼𝐹
)(𝑞,𝜔) function is given in Appendix A. 

Here, the upper sign is for confined phonons and the lower sign is for IF phonons. 𝑘1 and 𝑘2 are the 

parameters characterizing the envelope of the materials. They were obtained by solving Schrodinger’s 

wave equation for finite potential well for the ground state. The amplitude of the electron wave function 
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is written as Υ = [
cos(𝑘1𝑑) sin(𝑘1𝑑)

𝑘1
+

𝑑

2
+

cos2(𝑘1
𝑑

2
)

𝑘2
]

−1/2

, 𝜉+(𝛽) = 2𝛽
𝜕𝜖2𝑧

𝜕𝜔
+

1

2𝛽

𝜕𝜖2𝑡

𝜕𝜔
 and 𝜉±(𝛼) = 2𝛼

𝜕𝜖1𝑧

𝜕𝜔
±

1

2𝛼

𝜕𝜖1𝑡

𝜕𝜔
. 

To obtain an expression for the hot electron energy relaxation rate we start by expressing 𝑑𝑞 as |
𝑑Γ

𝑑𝑞
|
−1

𝑑Γ 

in Eqn. 3.32 

 1

𝜏
= 2𝑒2∫ 𝑑𝜃

𝜋

0

× ∫(𝑁𝜔)𝐷(𝑞, 𝜔) |
𝑑Γ

𝑑𝑞
|
−1

𝛿(Γ) 𝑑Γ 
3.37 

To find |
𝑑Γ

𝑑𝑞
| we differentiate the delta function (Γ) given in Eqn. 3.32 

 
|
𝑑Γ

𝑑𝑞
| =

ℏ2𝑞

𝑚
+ 𝑘 cos𝜃

ℏ2

𝑚
− ℏ

𝑑𝜔

𝑑𝑞
 

3.38 

which yields 

 1

𝜏
= 2𝑒2∫ 𝑑𝜃

𝜋

0

(𝑁𝜔)𝐷(𝑞, 𝜔)

ℏ2𝑞
𝑚 + 𝑘 cos𝜃

ℏ2

𝑚 − ℏ
𝑑𝜔
𝑑𝑞

  

=
2𝑚

ℏ2
𝑒2∫ 𝑑𝜃

𝜋

0

(𝑁𝜔)𝐷(𝑞, 𝜔)

𝑞 + 𝑘 cos𝜃 −
𝑚
ℏ
𝑑𝜔
𝑑𝑞

 

3.39 

Let us work out the denominator in Eqn. 3.39 using the well-known relation cos 𝜃 =
𝑚𝜔

𝑘𝑞ℏ
−

𝑞

2𝑘
, 

𝑞 + 𝑘 cos𝜃 −
𝑚

ℏ

𝑑𝜔

𝑑𝑞
= 𝑞 + 𝑘 (

𝑚𝜔

𝑘𝑞ℏ
−
𝑞

2𝑘
 ) −

𝑚

ℏ

𝑑𝜔

𝑑𝑞
= 𝑞 +

𝑚𝜔

𝑞ℏ
−
𝑞

2
−
𝑚

ℏ

𝑑𝜔

𝑑𝑞
=
𝑞

2
+
𝑚

ℏ
(
𝜔

𝑞
−
𝑑𝜔

𝑑𝑞
) 

Then Eqn. 3.39 becomes 

 1

𝜏
=
2𝑚

ℏ2
𝑒2∫

(𝑁𝜔)𝐷(𝑞,𝜔)

𝑞
2
+
𝑚
ℏ
(
𝜔
𝑞
−
𝑑𝜔
𝑑𝑞
)
𝑑𝜃

𝜋

0

 
3.40 
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Now we express 𝑑𝜃 as 
𝑑𝜃

𝑑𝜔
𝑑𝜔 and take the derivative of cos 𝜃 =

𝑚𝜔

𝑘𝑞ℏ
−

𝑞

2𝑘
 

 
−sin 𝜃 𝑑𝜃 =

𝑚

𝑘ℏ
[𝑑 (

𝜔

𝑞
) −

ℏ𝑞

2𝑚
]𝑑𝜔 

where 
𝑑(

𝜔

𝑞
)

𝑑𝜔
=

𝑞
𝑑𝜔

𝑑𝜔
−𝜔

𝑑𝑞

𝑑𝜔

𝑞2
=

𝑞−𝜔
𝑑𝑞

𝑑𝜔

𝑞2
 

−sin 𝜃 𝑑𝜃 =
𝑚

𝑘ℏ
[
𝑞 − 𝜔

𝑑𝑞
𝑑𝜔

𝑞2
−
ℏ
𝑑𝑞
𝑑𝜔
2𝑚

] 𝑑𝜔 =
𝑚

𝑘ℏ𝑞2
[𝑞 − 𝜔

𝑑𝑞

𝑑𝜔
−
ℏ𝑞2

𝑑𝑞
𝑑𝜔

2𝑚
] 𝑑𝜔 

3.41 

 Therefore, 

sin 𝜃 = √1 − cos2 𝜃 = √1 − [
𝑚𝜔

𝑘𝑞ℏ
−
𝑞

2𝑘
]
2

 

3.42 

Rearranging Eqn. 3.41 and substituting for sin 𝜃 from Eqn. 3.42 yields 

 

𝑑𝜃

𝑑𝜔
= −

[𝑚𝑞 − 𝑚𝜔
𝑑𝑞
𝑑𝜔 −

ℏ𝑞2
𝑑𝑞
𝑑𝜔
2 ]

𝑘ℏ𝑞2√1 − [
𝑚𝜔
𝑘𝑞ℏ

−
𝑞
2𝑘
]
2

= −
[𝑚𝑞 −

𝑑𝑞
𝑑𝜔 (𝑚𝜔 +

ℏ𝑞2

2 )]

𝑘ℏ𝑞2√1 − [
𝑚𝜔
𝑘𝑞ℏ

−
𝑞
2𝑘
]
2

=
[
𝑑𝑞
𝑑𝜔

(𝜔 +
ℏ𝑞2

2𝑚
) − 𝑞]

𝑞2
ℏ𝑘
𝑚
√1 − [

𝑚𝜔
𝑘𝑞ℏ

−
𝑞
2𝑘
]
2

 

3.43 

The denominator in Eqn. 3.43 can be worked out as follows 
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𝑞2
ℏ𝑘

𝑚
√1 − [

𝑚𝜔

𝑘𝑞ℏ
−
𝑞

2𝑘
]
2

= 𝑞2√
ℏ2𝑘2

𝑚2
−
ℏ2𝑘2

𝑚2
[
𝑚𝜔

𝑘𝑞ℏ
−
𝑞

2𝑘
]

2

= 𝑞2√
1

𝑚
(
ℏ2𝑘2

𝑚
−
ℏ2𝑘2

𝑚
[
𝑚2𝜔2

𝑘2𝑞2ℏ2
−
𝑚𝜔

𝑘2𝑞ℏ
+
𝑞2

4𝑘2
])

= 𝑞2√
1

𝑚
(
ℏ2𝑘2

𝑚
)− [

𝑚𝜔2

𝑞2
− ℏ𝜔 +

ℏ2𝑞2

4𝑚
]

= 𝑞2√
1

𝑚
(
ℏ2𝑘2

𝑚
−
ℏ2𝑞2

4𝑚
+ ℏ𝜔 −

𝑚𝜔2

𝑞2
)

= 𝑞2√
1

𝑚
(2𝐸𝑘 − 0.5𝐸𝑞 + ℏ𝜔 −

𝑚𝜔2

𝑞2
) = 𝑞2√

1

𝑚
(2𝐸𝑘 − 0.5𝐸𝑞 + ℏ𝜔) −

𝜔2

𝑞2
 

𝑑𝜃

𝑑𝜔
=

[
𝑑𝑞
𝑑𝜔

(𝜔 +
ℏ𝑞2

2𝑚
) − 𝑞]

𝑞2√
1
𝑚
(2𝐸𝑘 − 0.5𝐸𝑞 + ℏ𝜔) −

𝜔2

𝑞2

=
[
𝑑𝑞
𝑑𝜔

(
𝜔
𝑞2
+
ℏ
2𝑚

) −
1
𝑞
]

√
1
𝑚
(2𝐸𝑘 − 0.5𝐸𝑞 + ℏ𝜔) −

𝜔2

𝑞2

 

3.44 

The formalism of obtaining the electron-phonon scattering rates is based on integrating over the energy 

conversion delta function (Γ). For the case of emission, the scattering rate equation is finally expressed as 

 
1

𝜏(
𝑎
𝑒)
= ±

2𝑚∗

𝑎𝐵
∑∫

(𝑁(𝜔) +
1
2 ∓

1
2)𝐷(𝑞, 𝜔) [(

𝜔
𝑞2
±

ℏ
2𝑚)

𝜕𝑞
𝜕𝜔 −

1
𝑞]

(
𝑞
2 ±

𝑚
ℏ [
𝜔
𝑞 −

𝜕𝜔
𝜕𝑞])

√
1
𝑚 (2𝐸𝑘 −

1
2𝐸𝑞 ± ℏ𝜔) −

𝜔2

𝑞2

𝑑𝜔
𝜔2

𝜔1𝑛

 

3.45 

where 𝑎𝐵 =
ℏ2

𝑚0𝑒
2 is defined as the Bohr radius in free space, 𝑛 is an integer which represents the quantum 

number of phonons in the field and 𝑁(𝜔) =
1

𝑒𝑥𝑝(
ℏ𝜔

𝑘𝑇
)−1

 is the phonon occupation number with the energy 

of a single phonon being ℏ𝜔. The integration variable is the electron energy of the lowest subband given 
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by 𝐸𝑘 =
ℏ2𝑘2

2𝑚
. The phonon’s phase velocity (𝑣𝑝ℎ) and group velocity (𝑣𝑔𝑟) are expressed as 

𝜔

𝑞
 and 

𝜕𝜔

𝜕𝑞
, 

respectively. The group velocity is found numerically and discussed for IF and confined cases later on this 

thesis. Here, 𝐸𝑞 =
ℏ2𝑞2

2𝑚
 is a collection of the phonon’s wave number, Planck’s constant and the electron’s 

effective mass, 𝑚 = 𝑚∗𝑚0. 

To further understand the electron-phonon scattering process, let us look at the matrix element for the 

excitation of electron from a state 𝐸𝑘  to 𝐸𝑘+𝑞. To describe the probability of a transition of an electron 

with wavevector 𝑘 in the subband by a phonon of wavevector 𝑞, the matrix element can be defined as 

 

|𝑀( 𝐶
𝐼𝐹
)(𝑞,𝜔)|

2

=
𝐶 (𝑁(𝜔) +

1
2 ∓

1
2)𝐷(𝑞, 𝜔) [(

𝜔
𝑞2
±
ℏ
2𝑚)

𝜕𝑞
𝜕𝜔 −

1
𝑞]

𝑞 (
𝑞
2 ±

𝑚
ℏ [
𝜔
𝑞 −

𝜕𝜔
𝜕𝑞])

√
1
𝑚 (2𝐸𝑘 −

1
2𝐸𝑞 ± ℏ𝜔) −

𝜔2

𝑞2

 

3.46 

where 𝐶 is a constant expressed in Kilogram.Ampere. The largest scattering probability for small 𝑞 can 

be justified by the 1/𝑞 dependence in Eqn. 3.46 which conserves both energy and momentum whereas 

the angle dependence was removed by expressing 𝑑𝜃 as 
𝑑𝜃

𝑑𝜔
𝑑𝜔 when employing 𝑐𝑜𝑠 𝜃 =

𝑚∗𝑚0𝜔

𝑘𝑞ℏ
−

𝑞

2𝑘
. 

In Eqn. 3.35, the summation over the quantum number 𝑛, identical to the ones in Eqs. 3.9–3.11 is included 

to consider scattering with all possible symmetric and asymmetric confined mode phonons. For each 𝑛, 

the proper dispersion relation between 𝑞 and 𝜔 should be imposed through Eqs. 3.9–3.11. In our numerical 

calculation of the scattering rates, we find that a practical number for the upper limit is 𝑛 = 5; 

contributions to the electron–phonon scattering rate from confined modes with 𝑛 larger than 5 are 

negligible. Also, the symmetric and asymmetric confined modes must be considered separately as the 

dispersion relations are different from each other. For the case of interface modes, the summation is 

omitted because only one interface mode exists in a given range of phonon frequency [𝜔1, 𝜔2]. In the 
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original formula [156], where the integral is assessed over the angle 𝜃 between the phonon wave vector 

and the optical axis 𝑐, the lower and upper limits of the integral are set to 𝜃 = 0 and 2𝜋. In order to 

separately calculate the matrix elements of the Fermi golden rule for each phonon mode of uniaxial 

wurtzite crystals, the formula with the integral over 𝜃 is transformed into Eqn. 3.45 as provided in this 

segment where the integral is over 𝜔. Considering the energy and momentum conservation of the 

electron–phonon scattering process, the limits of the integral over 𝜔 may also be transformed according  

 

Fig. 14. (a) Interface and (b) confined mode phonon scattering rates are calculated and plotted as a 

function of electron energy. For both modes, the total interface phonon scattering rate combining all 

phonon modes (including the TO absorption scattering rate) is shown as the black solid line. The 

droplines with symbols are shown to indicate the threshold energies of TO emission and LO 

emission scattering. For interface mode scattering, these energies correspond to the TO and LO 

interface phonon resonant frequency energies ℏ𝑟𝑒𝑠
𝑇𝑂 = 71.7 meV and ℏ𝑟𝑒𝑠

𝐿𝑂 = 103.2 meV, 

respectively. For confined mode scattering, the threshold energies are at the vicinity of the TO and 

LO phonon energies of GaN. 
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to the relations 𝑐𝑜𝑠 𝜃 = ±(
𝑚∗𝑚0𝜔

𝑘𝑞ℏ
−

𝑞

2𝑘
) where the + sign represents the case for absorption and the − 

sign represents the case for emission. Eqn. 3.35 defines the case for both confined and interface phonon 

scattering rates, with the summation over 𝑛 in the IF case is omitted [156]. The integral in Eqn. 3.35 is an 

integration over the range of allowed phonon frequencies [𝜔1𝑧 , 𝜔2𝑧], indicated by 𝜔1 and 𝜔2 and 

determined from the relation 𝑐𝑜𝑠 𝜃 = ±(
𝑚∗𝑚0𝜔

𝑘𝑞ℏ
−

𝑞

2𝑘
), however, the practical limits of the numerical 

integration are the allowed range of frequency for the phonon mode in question. 

Figs. 14–16 show the interface and confined mode phonon emission scattering rates for a double 

heterostructure system. We consider an initial design of a 5 nm QW of a hexagonally ordered wurtzite 

material sandwiched between two other hexagon planes of a dissimilar wurtzite material. We then adjust 

the thickness of the well layer. Compared to the d = 5 nm case, indeed, the interface mode scattering rate 

for electron energy larger than the threshold energies becomes approximately 8 times larger than the 

confined mode [140] in GaN/AlN QW with d = 1 nm, at least 6 times larger in InGaN/GaN QW with d = 

2 nm [186] and ~ 5 times larger in AlInN/AlN QW with d = 1 nm [204]. Also notice that the interface 

mode scattering curve shows more than two of the step-like features. This is due to the emission threshold 

energy split between the symmetric and asymmetric interface modes. With d = 5, the wave vector q is 

only large enough to satisfy the emission condition at phonon frequencies of 𝜔 = 𝜔𝑇𝑂(𝐿𝑂),𝑟𝑒𝑠. However, 

with smaller d, this is no longer the case and the condition is satisfied with phonon frequencies slightly 

away from the resonant frequencies. As the symmetric and asymmetric interface modes are defined in 

separate phonon frequencies, except at the limit of 𝜔 → 𝜔 = 𝜔𝑇𝑂(𝐿𝑂),𝑟𝑒𝑠 the threshold energies are split 

and causes the scattering rate curve to show more step-like increases. For all cases, the scattering rates 

decrease according to the perturbation theory [156]. 
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Fig. 15. Total emission electron scattering rate as a function of the electron energy in the three-layered 

heterostructure of wurtzite GaN/InGaN/GaN quantum wells. The case d = 5 nm is shown for interface in 

(a) and confined in (b). The thickness is set to 4nm in (c) and (d), 3 nm in (e) and (f) and 2 nm in (g) and 

(h). Only the phonon-assisted emission for IF (a, c, e, g) and confined modes (b, d, f, h) is considered. 

The black solid line corresponds to the total emission rate, which is the sum of the IF LO emission, LO 
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absorption and the TO emission rates. For both symmetric and asymmetric emission, the magenta line 

corresponds to LO emission rates, the green line corresponds to LO absorption rates, the red line 

corresponds to TO emission rates. The TO emission threshold energies are indicated by blue arrows and 

are labeled in the graphs as ℏ𝜔𝑇𝑂,𝑟
𝐶  for confined and ℏ𝜔𝑇𝑂,𝑟

𝐼𝐹  for IF while the LO emission threshold 

energies are labeled as ℏ𝜔𝐿𝑂,𝑟
𝐶  for confined and ℏ𝜔𝐿𝑂,𝑟

𝐼𝐹  for IF. 

3.5 Heat transport in high-performance HEMT structures 

In Eqn. 3.35, the phase (𝑣𝑝 =
𝜔

𝑞
) and group velocity (𝑣g =

𝜕𝜔

𝜕𝑞
) of the phonon modes (or its reciprocal) are 

frequently used in the equation. Given the complex form of the phonon wave vector 𝑞, instead of 

expressing these velocities in a closed form equation, we calculate the velocities numerically. The group 

velocity is not only a component of the integral but also a crucial factor that describes the behavior of the 

phonons, and furthermore, the thermal characteristics of the system. Fig. 17 shows the group velocity of 

the interface and confined phonon modes as a function of phonon frequency. As expected by the dispersion 

relation shown in Fig. 6, the interface mode phonons possess a considerably larger group velocity 

compared to the confined mode phonons. The largest confined mode group velocity is less than 7 km/s at 

𝜔 ~ 552 cm−1 (TO mode), whereas the largest interface mode group velocity reaches up to 138 km/s (or 

138 nm/ps) at 𝜔 = 𝜔1𝐿𝑡 (LO mode). 

It is easily deduced that if the full spectrum of interface phonon modes can be utilized; the phonons can 

carry a portion of the generated heat away along the heterointerface. This would be an additional heat 

transport mechanism, on top of the always existing acoustic phonon heat transport, that can help the system 

dissipate heat more efficiently. To better understand the electron interaction with these interface and 

confined mode phonons, we evaluate Eqn. 3.35 and calculate the scattering rates between the electrons 

and optical phonons. Fig. 14 shows the (a) interface and (b) confined mode phonon scattering rates as a 
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function of electron energy Ek for GaN/AlN QW. For both (a) interface and (b) confined modes, the black 

solid line shows the total scattering rate which combines all contributions from each process indicated as 

dashed and dotted color lines. The general behavior of the scattering rate curves for both modes are similar. 

The LO emission scattering rates [(a) red and (b) orange dashed lines] start to dominate once the electron 

 

 

Fig. 16. (a) Total phonon relaxation rates as a function of the electron energy for AlInN quantum well 

thickness (d) of 5 nm. (b) Emission and absorption rates for AlInN/AlN QW with d = 1 nm. 
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energy exceeds the threshold energy. The TO absorption processes are negligible compared to the others 

(not plotted in the figures). Due to mode mixing in wurtzites, the TO emission scattering rate is comparable 

to the LO absorption scattering rate. This causes the total scattering rate to show a two-step-like shape. 

The total scattering rate of both modes show roughly similar values that converge to ~ 1013 s−1 with Ek = 

0.3 eV in the current system where the GaN thickness is set to 𝑑 = 5 nm. As shown in Fig. 17, since we 

know that the interface mode phonons typically show larger group velocity, a comparable scattering rate 

 

Fig. 17. The numerically calculated group velocities of interface and confined mode phonons are 

shown as a function of phonon frequency. For both interface and confined modes, the solid and 

dashed lines indicate the asymmetric and symmetric phonon modes, respectively. The group velocity 

of interface phonons go to zero close to the TO and LO resonant frequency shown in vertical dotted 

lines. Maximum group velocity of 138 km/s occurs at 𝜔 = 𝜔1𝐿𝑡 for the interface mode phonons. 

This value is almost 20 times larger than the maximum group velocity of the confined mode 

phonons. 
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between the interface and confined mode phonons indicates that the average phonon velocity of the 

phonons emitted due to these processes may be large enough to help dissipate the heat. 

Focusing on the interface mode LO emission scattering rate in red dashed curve in (a), we observe that 

the emission threshold energy is 103.2 meV. This energy corresponds to the energy of the LO resonant 

phonon frequency of 832.3 cm−1. The LO phonon emission process through electron–phonon scattering 

can only occur when the electron possess more energy than the phonon to be emitted. The emission 

threshold energy of 103.2 meV indicates that phonons with at least this amount of energy are most likely 

to be emitted. From Fig. 17, we see that the group velocity of phonons with the resonant frequencies 

𝜔𝐿𝑂,𝑟𝑒𝑠 and 𝜔𝑇𝑂,𝑟𝑒𝑠  are zero. The TO emission threshold energy (71.7 meV) also corresponds to the energy 

of TO resonant phonon frequency of 577.8 cm−1. These observations of Fig. 14 suggest that, however 

large the group velocity of interface phonons could be, simply increasing the interface phonon mode 

scattering rate with respect to the confined phonon mode scattering rate may not improve the heat 

dissipation efficiency of the system. 

Let us now consider GaN/InGaN QWs. Numerous studies have discussed the growth and the detection of 

lattice matched GaN/InGaN QWs with well thicknesses as low as 1 nm [205], [206]. In this segment, it is 

shown that inserting a GaN/In0.15Ga0.85N/GaN quantum well in the hot spot region of a GaN HEMT, 

results in the emission of confined and interface phonons instead of bulk phonons as a result of emission 

from hot electrons, moreover, the phonons can be engineered to enhance the production of fast-moving 

interface phonons. Indeed, the IF and confined modes emission rates of GaN/In0.15Ga0.85N/GaN 

heterostructure with In0.15Ga0.85N thickness of d = 5, 4, 3, and 2 nm are numerically calculated and plotted 

in Fig. 15. The thicknesses included in this paper allow us to grow GaN/InGaN QWs without misfit 

dislocations since they are below the critical thickness values [207]. In Fig. 15, the left curves denote the 

IF scattering rates and the right curves denote the confined scattering rates. The total emission rate is 
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presented in black which encompasses the LO emission in magenta, the LO absorption in green and the 

TO emission in red whereas the TO absorption is disregarded since it has a value well below 1010 s-1. 

These rates include both symmetric and asymmetric phonon process. The emission of TO-like and LO-

like modes causes the first and the second step-like features in the black curves, respectively. In the d = 5 

nm case, hot electrons produce less confined phonons in GaN/InGaN QWs compared to GaN/AlN, this is 

referred to the weak confinement of phonons due to the lower potential barrier of the former QW. 

In the hexagonal structure of GaN/InGaN, the medium anisotropy causes the splitting of LO and TO 

modes. Compared to the emission of LO phonons which has the highest scattering rates in the order of 

1013 s-1, the emission of the TO phonons is much lower and in the order of 1010 to 1011 s-1 due to their 

weak coupling to electrons, thus the contribution from the TO modes is normally neglected. As can be 

seen from the graphs, the emission of LO (TO) phonons starts when the energy of the electron reaches a 

value right before ℏ𝜔𝐿𝑂  (ℏ𝜔𝑇𝑂). From the analysis of the IF (confined) resonance frequencies, we should 

predict LO phonons to be emitted at 90.16 meV (89.25 meV) and TO phonons to be emitted at 66.89 meV 

(65.1 meV). The values of 𝐸𝑘  required to emit LO and TO phonons are illustrated on Fig. 15 by ℏ𝜔𝐿𝑂,𝑟
𝐼𝐹 =

0.092 eV, ℏ𝜔𝑇𝑂,𝑟
𝐼𝐹 = 0.066 eV for IF modes and ℏ𝜔𝐿𝑂,𝑟

𝐶 = 0.089 eV, ℏ𝜔𝑇𝑂,𝑟
𝐶 = 0.065 eV for confined 

modes. We find that the values portrayed in Fig. 15 are in close proximity to the resonant values. 

When the InGaN thickness is set to 5 nm, IF (confined) emission rate reaches 1.13 × 1013 𝑠−1 

(9.75 × 1012 𝑠−1) which means that approximately 53% of the hot electron energy is emitted as IF 

phonons. A modest increase (decrease) occurs with a QW thickness of 4nm to a maximum value of 

1.45 × 1013 𝑠−1 (8.345 × 1012 𝑠−1), i.e., an increase in the probability of emitting IF phonons relative to 

confined phonons to about 63%. Following the analysis as mentioned, we find emission rates for IF 

(confined) approaching values of 1.89 × 1013 𝑠−1 (6.83 × 1012 𝑠−1) and 2.4 × 1013 𝑠−1 (4.35 ×
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1012 𝑠−1) for 3 and 2 nm thicknesses, respectively. From the trends of 
1

𝜏
 in Fig. 5, the highest emission 

rates for confined phonons are located around their resonant frequencies but are becoming more difficult 

to produce in smaller QW thicknesses; hence one expects that these rates should be positioned at the onset 

of LO emission around 𝐸𝑘 = 89.25 meV. Similarly, IF phonons are generated in greater numbers within 

 

Fig. 18. The group velocities of the IF and confined phonons against the phonon frequencies for the 

case of InGaN well of d = 5 nm. Only the modes in the intervals [𝜔2𝑧 , 𝜔1𝑡] and [𝜔1𝑙𝑧 , 𝜔𝐿𝑂,𝑟
𝐼𝐹 ] which 

show significant group velocities are plotted. The symmetric IF (confined) phonons are plotted in red 

(magenta) and the asymmetric IF (confined) phonons are plotted in black (blue). For both modes, the 

group velocity is referenced to the acoustic sound velocity highlighted in green. Only the first 

confined mode is considered in the LO region for each symmetric and asymmetric mode. The 

resonance frequencies along with the system’s characteristic frequencies are shown by the horizontal 

blue arrows. 
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the available frequency ranges. Therefore, presumably, the IF phonons that help dissipate heat more 

efficiently have energies above the emission threshold at 𝐸𝑘 = 90.16 meV. 

Normally, optical phonons are not considered as heat carriers as they have smaller group velocities 

compared to the acoustic phonons. As can be found in Fig. 18, the group velocities of the optical modes 

in the interval [𝜔2𝑧 , 𝜔1𝑡] with d = 5 nm are noticeable and surprisingly the group velocity of the low-

order optical branches approaches that of the acoustic branches (𝑣𝑠𝑜𝑢𝑛𝑑 = 8 𝑘𝑚/𝑠). We note that even 

the highest frequency optical phonons are significantly dispersive. The group velocity 𝑣𝑔𝑟  of the highest 

confined mode is 0.936 km/s as it is clear from Fig. 18. This mode oscillates at 716.5 cm-1 and reduce to 

a minimum value near its resonance frequency of 719.9 cm-1. On the other hand, IF asymmetric-type 

phonons (denoted by black lines) propagate at [𝜔2𝑧 , 𝜔𝑇𝑂,𝑟
𝐼𝐹 ] and [𝜔1𝑙𝑡 , 𝜔𝐿𝑂,𝑟

𝐼𝐹 ]. A sharp increase occurs in 

their group velocities where they move with speeds near the sound velocity and reduce to minimum values 

at the resonance frequencies. The highest IF symmetric-type phonon (denoted by red line) approaches a 

velocity of 29 km/s at 550 cm-1. Going back to Fig. 15 (a), the added layer of InGaN produces IF phonons 

with rates that are ~ 2.5 times larger than the confined phonons rates. We observe at smaller widths that 

the emission of IF modes dominates over confined modes. Of course, there is a tradeoff between increasing 

1

𝜏
 with decreasing 𝑑 as 𝑣𝑔𝑟  drops accordingly. Moving from 𝑑 = 5 𝑛𝑚 to 𝑑 = 2 𝑛𝑚, the probability of 

emitting IF phonons increases by ~ 31% to almost 84%, while 𝑣𝑔𝑟  drops by a factor of ~ 2.5 for each mode 

plotted in Fig. 6. Engineering IF with high group velocity becomes most useful when we have comparable 

IF and confined emission rates such as the case in AlN/GaN/AlN QW. Compared to the increasing IF 

emission rates in GaN/InGaN/GaN, the average probability of IF emission in AlN/GaN/AlN with GaN 

thickness of 5, 4 and 3 nm was found to be between 50 and 55%. Therefore, we must prioritize the 

consideration of engineering 𝑣𝑔𝑟  to become as high as possible in order for IF optical phonons to reduce 
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the junction temperature, consequently they can propagate at high relative speeds away from the hot spot 

before they decay in picoseconds into heat-carrying phonons. 

Thus far, we have considered the energy loss rates by phonon emission. Optical phonon confinement has 

an effect on the phonon linewidth, the frequency shift observed through Raman scattering and the phonon 

lifetimes, but the confinement-related change in lifetime is generally no more than about a factor of 2 [98]. 

Evidently, the IF phonon lifetime is important to determine their contribution to heat generation in the 

semiconductor channel. For GaN, it was reported that A1(LO) mode decays into a lower energy optical 

mode and an acoustic mode via the Ridley channel after some time 0.1 ps. Since the E1(LO) mode is 

polarized along the quantum well interfaces – as opposed to normal to the quantum well interfaces as for 

the A1(LO) mode – the production of E1(LO) modes is more likely for our case; it is known that the E1(LO) 

has a lifetime of 3.34 ps [207]. From the calculations obtained for the group velocities in Fig. 6, we observe 

that different modes contribute to the size of the hot spot. For the E1(LO) mode, the asymmetric mode, 

 

Fig. 19. Comparison of the group velocities of different phonon modes for AlInN QW of 5 and 10 

nm thicknesses. 
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labeled in black color in Fig. 18, propagates with group velocity 𝑣𝑔𝑟 = 5 × 10
3 𝑚/𝑠, this results in a 

spreading of the hot spot to approximately 17 nm. Similarly, the asymmetric mode in the high energy 

interval with 𝑣𝑔𝑟 = 6.2 × 10
3 𝑚/𝑠 extends the hot spot by about 21 nm. The highest velocity symmetric 

mode labeled in red in Fig. 18 extends the hot spot by the largest amount of ~ 97 nm. These distances are 

very large compared to the hot spot sizes of a few nm observed in bulk GaN HEMTs [208]. 

Finally, for AlInN/AlN QW, Fig. 16 (left) depicts the total scattering rates in the black sold line which 

combines the contributions of all modes including LO emission scattering in blue dashed lines, LO 

absorption scattering in green dashed lines and TO emission in purple dashed lines. TO absorption 

scattering is negligible with rates below 108 s-1 and therefore not plotted here. The dominant mechanism 

underlying our theory is the LO emission upon exceeding the threshold energy. The LO emission 

scattering rate for both interface and confined modes when AlInN well thickness is set to 5 nm converge 

roughly at around 5×1012 s-1. Since interface phonons are projected to have higher group velocity, we use 

the thickness optimization method such that the system has enough interface phonons emitted comparable 

to or higher than the confined modes in order to optimize the production of interface modes which 

propagate rapidly (> 3×103 m/s as shown in Fig. 19) and delocalize the energy before they decay into heat 

carrying acoustic phonons; this is in contrast to the bulk phonons which have near-zero velocities and play 

no role in delocalizing the heat. As shown in Fig. 16 (right), when the AlInN thickness is set to 1 nm, the 

interface phonons scattering rates show a significant jump to close to 1013 s-1. Hence, by changing the 

width of the heterostructure, the production of interface modes can be enhanced with the result that heat 

is spread more efficiently. 

Fig. 19 shows the calculated group velocities of the 2DEG in the AlInN, 5 nm, channel HEMTs. Parallel 

to the heterointerface, the production of E1(LO) modes dominate [188], [209]. During scattering between 

electrons and phonon, both momentum (wavevector) and energy conservation are invoked when applying 
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the Fermi Golden Rule to calculate scattering rates. For emission, 𝐸𝑘 ≥ ℏ𝜔, which translates to an 

emission threshold in energy of 0.105 eV for an AlInN thickness of 5 nm, a value close to the resonant 

frequency. The electron scatters with optical phonons beyond that point with group velocities comparable 

to the acoustic sound velocity as described in Fig. 19. Averaging the different modes presented in Fig. 19, 

we report a 95% increase in the group velocities going from d = 5 to 10 nm, i.e., close to an AlInN bulk 

value. 

The phonon lifetimes are determined by the anharmonic term in the phonon potential. In order to make a 

straightforward estimate of the approximate reduction in the hot spot temperature in the AlInN QW, we 

have used known values of the anharmonic LO-phonon decay times for selected x-values for Al(x)In(1-

x)N; namely, using the known values of 0.9 and 1.5 ps for the E1(LO) phonons in AlN and InN, 

respectively [132], [210], we find that the hot spot is elongated by 0.9 ps × velocity (12.55 km/s) =

11.30 𝑛𝑚, and 1.5 ps × velocity (12.55 km/s) = 18.83 𝑛𝑚. For a 5-nm diameter hot spot [211], since 

heat-carrying acoustic phonons are produced when these LO phonons decay, this results in an elongation 

of [(11.30 − 5) 5⁄ ] = 126% to [(18.83 − 5) 5⁄ ] = 276.6%. Assuming IF and confined phonons are 

emitted with the same rates, i.e. 50% of the hot electron energy is radiated as interface phonons, these 

results portend a corresponding decrease in the hot spot temperature of [50%× (11.30 − 5) 11.3⁄ ] =

27.9% to 50%× [(18.83 − 5) 18.83⁄ ] = 36.7% which implies that the phonon engineering techniques 

in this chapter may be usefully employed to reduce hot spot temperatures. 

3.6 Remote interface polar phonons in wurtzite-based structures 

Charge carriers in 2D materials, diamond, graphene and carbon nanotubes can remotely couple to surface 

polar phonons (SPP) when brought in close proximity to a polar substrate via a mechanism usually known 

as remote interface phonon (RIP) scattering [212], [213]. In this phenomenon, the remote coupling 
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between charge carriers and surface polar phonons in the underlying polar substrates is facilitated by 

oscillating electric fields created by SPPs and accompanied by energy exchange and momentum. Because 

of the inelastic nature of SPPs, they also provide a pathway to saturation of current in conjunction with 

intrinsic optical phonons [214]. Indeed, remote interface phonons, such as Rayleigh waves, can penetrate, 

with an exponential fall-off, up to 10s of nanometers and thus plays a critical role on scales of 10 nm or 

even less. In this segment, we will provide an investigation of the role of remote interface polar phonon 

modes on the electronic transport properties of dimensionally confined diamond structures. We employ a 

dielectric continuum mode to calculate the scattering rates, hole mobility and relaxation times in 

mesoscopic diamond-based devices. Hereafter, we analyze the performance of the device by inserting 

polar over layers on diamond with wide bandgap materials such as AlN or w–BN. Hopefully, the present 

research will provide a milestone for understanding interface phonons that penetrate to the two-

dimensional hole gas (2DHG) in confined diamond structures as compared to their bulk counterparts and 

can also be applied to other polar materials used for doping. 

3.6.1 Application of AlN overlayer 

AlN interlayer can be grown diamond which provides GaN-on-diamond structures with improved thermal 

mismatch. AlN could also be incorporated into a GaN buffer stack and/or grown onto a Si substrate [16]. 

AlN-on-diamond structures were also shown to offer a rectifying I-V behavior [215]. These interface 

phonons in diamond devices penetrate to the two-dimensional hole gas (2DHG) which is located only a 

few nanometers from the diamond surface exhibiting p-type conductivity. Researchers have provided a 

solid foundation in the understanding of the mechanisms leading to the formation of a high mobility 2DHG 

under the surface of H-terminated diamond [216]. Here, we have taken into account the insertion of AlN 

polar material on top of the diamond substrate, which is often neglected during the study of the mobility 

in diamond-based devices in order to understand its effectiveness and importance in depth. 
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Fig. 20. Phase (top) and Group (bottom) velocity for the IF polar phonons in AlN layer. 

 

Fig. 21. Frequency distribution of the phonon emission for the case of AlN layer for different hole 

energies Ek.  
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Fig. 22. Scattering rate for symmetric and antisymmetric absorption and emission (a) and their 

summation (b) for the AlN case. 
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A MATLAB code employing the dielectric continuum mode for interface phonons (described extensively 

in this chapter) is provided in Appendix B and the results are provided herein. The phonon’s phase and 

group velocities for the optical phonons are plotted as in Fig. 20. Evidently, the lowest velocities is located 

in the surroundings of the resonant frequency of symmetric and antisymmetric modes. According to the 

relation in Eqn. 3.35, which satisfies the momentum and energy conservation conditions, the results 

portend a higher emission associated to the resonant frequency. This behavior is depicted in Fig. 21, in 

which the number of phonons emitted with respect to the frequency is represented for three different 

values of hole energies 𝐸𝑘 . The localization of the emission of phonons in a narrow range of values close 

to the resonant frequency is also related to the relatively high effective mass of diamond. The scattering 

rates obtained via the numerical integration are depicted in Fig. 22. As predicted, the emission 

contributions appear for a value of hole energy equivalent to the resonant frequency of the IF modes. 

3.6.2 Application of w-BN overlayer 

It is worth noticing that, when drawing the dispersion relations, in comparison to the curves obtained for 

the case of AlN layer, the resonant frequency for the w–BN layer happens for a higher value of phonon 

frequency as evident by the frequency values reported in Table 2. Based on the dispersion curve 

estimations, the phase and group velocities for the IF optical phonons are obtained as in Fig. 23. Also, in 

this case, the lowest velocities is located in the region surrounding the resonant frequency of symmetric 

and antisymmetric modes, which yields higher emission associated to the resonant frequency, as depicted 

in Fig. 24. In comparison to the AlN case, the emission of phonons is localized in a narrow range of values 

close to the resonant frequency. This could be explained with the higher phonons’ phase velocity in the 

case of w–BN. The scattering rates obtained via the numerical integration are plotted as in Fig. 25. The 

emission contribution appears for hole energies equivalent to the resonant frequency of the IF modes, 

which leads to a spike in the scattering rate localized at higher energies in respect to the AlN case. 
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Fig. 23. Phase (top) and Group (bottom) velocity for the IF polar-phonons in w-BN layer. 

 

Fig. 24. Frequency distribution of the phonon emission for the case of a w-BN layer for different hole 

energies Ek. 
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Fig. 25. Scattering rate for symmetric and antisymmetric absorption and emission (a) and their 

summation (b) for the w-BN case.  
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3.7. Summary 

In conclusion, we have theoretically studied the interface and confined mode optical phonons of multiple 

wurtzite double heterostructure quantum wells and their interaction with electrons based on the uniaxial 

dielectric continuum model. The phonon dispersion relation of these phonon modes and the electron–

phonon scattering rates were calculated numerically to derive the average group velocity of the emitted 

optical phonons to explore the possibility of exploiting the interface mode phonons as an additional heat 

dissipation channel. Our estimations show that the average group velocity of phonons that are emitted 

through electron–phonon scattering processes with electron energy slightly larger than the threshold 

energy is very small (for the d = 5 nm case, 0.9 nm/ps) compared to the LA phonon propagation velocity 

of bulk GaN (vsound = 8 nm/ps). This is due to the dispersion relation of interface mode phonons which 

shows curves that converge to the resonant phonon frequency at large phonon wave vector q. upon 

increasing electron energies, the average optical group velocity can exceed the acoustic phonon velocity. 

Given the energy distribution of electrons, we report that the quantum well thickness can be engineered 

to exploit the interface mode phonons, which can propagate a distance of few tens of nanometers before 

decaying into heat-carrying acoustic phonons. 

The scattering rates of holes by remote interface polar phonons in the diamond structure was also discussed 

in this chapter. The results indicate clearly that the hole scattering from remote polar phonons can be 

comparable to, or dominate over, other hole-phonon scattering mechanisms representing a fundamental 

contribution in the determination of the hole mobility. While the application of polar overlayers may 

contribute to achieving the desired doping effects, there is a substantial penalty associated with hole 

remote-polar-phonon scattering [217]. The model adopted in the case of remote IF polar phonons is 

suitable to describe several other promising polar materials currently adopted for the realization of 

diamond based MISFETs and HFET due to their wide bandgaps. The obtained formulations facilitate 
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taking into account the scattering mechanisms in the calculation of hole mobilities in diamond, affording 

a more complete picture of the involved contributions.  



 76 

3Chapter 4 

Nanomechanical systems with normalized and coupled acoustic 

and electromagnetic modes in piezoelectric structures 

4.1 Introduction 

This chapter deals with the quantization of the acoustic modes in nanomechanical systems with coupled 

acoustic and electromagnetic modes in piezoelectric structures. Specifically, the well-known Bleustein-

Gulyaev (BG) modes in the theory of surface acoustic wave devices, are second quantized so that the 

relationship between the acoustic modes and the electromagnetic modes can be examined in the limit 

where the acoustic mode is a single acoustic phonon. By considering a theory where the quantized acoustic 

phonons are explicitly related to the electromagnetic modes, this treatment allows a description of 

nanomechanical systems where acoustic and electromagnetic modes can be described in the nanoscale 

limit. This effort will examine quantitatively the electromagnetic-acoustic interaction caused by the 

piezoelectricity in the limit where the classical acoustic waves must be described in terms of phonons. 

As is well-known, the Bleustein-Guylaev modes are a cornerstone of modern electro-acoustic technology. 

These modes are shear-horizontal (SH) electro-acoustic surface modes that exist in the class of 

transversely isotropic piezoelectric media – notably 6mm media such as GaN – where electromagnetic 

modes in the isotropic planes couple to surface acoustic modes polarized in the direction normal to the 

plane of the transverse electromagnetic modes [218]. In this chapter, appropriate to the nanoscale, the 

classical Bleustein-Guylaev modes are second-quantized in order to describe the interactions between 

 
3 This chapter is partially published in Solid State Communications, [249]. 
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acoustic modes, electromagnetic modes, and charge carriers in terms of phonons instead of classical 

acoustic waves. Knowing the quantized phonon modes, facilitates phonon engineering and the 

modification of device characteristics as discussed in Refs. [80], [219]–[223]. 

4.2 Acoustic and electromagnetic waves in piezoelectric solids 

Sound waves are longitudinal and need a material to move in, electromagnetic waves are transverse and 

do not need a material to move through. Sound waves are compression waves in air. They are waves of 

successive compressions and rarefactions. Electromagnetic waves are transverse and are comprised of 

electric and magnetic fields. Both waves carry energy from one place to another and are characterized by 

their frequency, wavelength and velocity. The velocity of sound waves is much slower than that of 

electromagnetic waves. 

Since the effects of piezoelectricity are widely known [224], the propagation of plane waves in 

a piezoelectric material has been deduced with varying symmetries [225]. A simultaneous solution of 

Maxwell's field equations and Newton's law of force gives the necessary conditions for wave propagation 

in the infinite medium. In the presence of piezoelectric coupling, every electromagnetic wave has a 

corresponding elastic wave. In piezoelectric media, the electromagnetic and elastic modes are coupled, 

therefore giving five phase velocities for both the electromagnetic and acoustic waves. The elastic waves 

are associated with the slower electromagnetic waves, while the electromagnetic waves are associated 

with fast elastic waves. 

Now, surface acoustic waves (SAW) and bulk acoustic waves (BAW) are two types of acoustic wave that 

dominate the latest research in group-III nitride devices. Solid substrates and micromachined suspended 

beam structures have been both used to study these devices [226]–[228]. In SAW devices, atoms are 

displaced about their equilibrium positions along the interface of piezoelectric film and solid substrate 

https://socratic.org/physics/sound/sound-waves
https://socratic.org/physics/electromagnetic-induction/electromagnetic-waves
https://socratic.org/physics/work-and-energy/energy
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when an elastic wave travels on the surface of a piezoelectric medium. SAW devices utilize the 

piezoelectric effect exhibited by certain materials, since applying an electric field to a piezoelectric 

material introduces a mechanical strain. The relationship between electric field and strain is described by 

the piezoelectric coupling coefficient (𝛽), which is also a function of the frequency of the material. The 

utility of BG waves in surface acoustic wave systems has been demonstrated for a variety of materials 

including liquid-loaded 6 mm materials [229]–[232]. The case considered here is the quantization of the 

classical BG modes of Ref. [218] for a grounded thin conducting film on a piezoelectric half-space. 

4.3 Quantization of Bleustein-Guylaev modes 

Herein, emphasis is given to formulating a quantized treatment of BG modes that is amenable to the study 

of phonon engineering of the BG modes on the nanoscale. In particular, the elastic continuum model, 

discussed at length in Ref. [80], will be used to quantize the phonon amplitude analytically based on the 

analytical solutions for the BG modes given by Li (1996) [218]. The analytical solutions of Ref. [80] 

provide a convenient starting point for the second quantization of the acoustic modes which are required 

to model phonon effects properly in broad classes of nanostructures. Indeed, Stroscio and Dutta (2001) 

discuss the validity of the elastic continuum and dielectric continuum models in the nanoscale regime; in 

particular, these models give an accurate representation of the normalized mode envelopes for structures 

even down to the scale on a couple of monolayers and for ensembles of as few as 60 atoms [152], [173], 

[174], [221], [233]–[240]. 

In these quantized continuum models the phonon mode amplitude is normalized so that the energy in each 

mode is ℏ𝜔 where 𝜔 is the frequency of the acoustic or optical phonon mode. In addition, these normalized 

continuum modes may be used to formulate piezoelectric, deformation potential and Frohlich interactions 

in nanoscale devices as discussed at length in Ref. [80]. Of particular interest in the present study is the 
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piezoelectric interaction in 6mm hexagonal structures such as GaN, AlN, and Ga(x)Al(1-x)N. As discussed 

previously, the mode normalization required to formulate the second-quantized BG modes will be 

investigated for the case of high interest in nanodevices surface wave applications where a grounded thin 

conducting film bounds a piezoelectric half space. 

Our quantization procedure will be used to quantize the classical BG modes of Ref. [218] which are in 

turn based on the analysis of Ref. [241]. To find the classical (unquantized) acoustic modes, the underlying 

equations are formulated as follows [218], [241]: 

Maxwell’s electromagnetic equations for a lossless medium with no sources are given by Eqs. 4.1 and 4.2 

 
−𝛻 × 𝐸 =

𝜕𝐵

𝜕𝑡
 

4.1 

 
𝛻 × 𝐻 =

𝜕𝐷

𝜕𝑡
 

4.2 

where, 𝐸 = electric field, 𝐵 =  magnetic field, 𝐻 = magnetic field strength and 𝐷 = electric 

displacement field. 

Equation of motion describing the acoustic fields is given by 

 
𝛻.  𝑇 =

𝜕𝑃

𝜕𝑡
− 𝐹 

4.3 

where 𝑇, is the stress tensor field, 𝑃 is the particle momentum field, 𝜌 = 𝜕𝑢 𝜕⁄ t, and 𝐹 is the body force 

distribution. 

Constitutive equations for an anisotropic hexagonal piezoelectric crystal [242] (class 6mm): 

 𝐵 = 𝜇0𝐻 4.4 

 𝐷 = 𝜖𝑥𝑥
𝑠 ∙ 𝐸 + 𝑒𝑥5: 𝑆 4.5 
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 𝑇 = −𝑒𝑥5 ∙ 𝐸 + 𝑐44
𝐸 : 𝑆 4.6 

where 𝜇0 is the vacuum magnetic permeability constant, 𝑆 = 𝛻𝑠𝑢 is the strain tensor, 𝜖𝑥𝑥
𝑠 , 𝑒𝑥5 and 𝑐44

𝐸  are 

the dielectric strain constant, piezoelectric stress constant and elastic stiffness constant under constant 

electric intensity, respectively. For a piezoelectric medium with no body force sources (𝐹 = 0), the 

Christoffel equations may be derived by manipulating the governing equations 

 
𝛻 ∙ 𝑐44

𝐸 : ∇𝑠𝑢 = 𝜌
𝜕2𝑢

𝜕𝑡2
+ 𝛻 ∙ 𝑒𝑥5 ∙ 𝐸 

4.7 

 
−𝛻 × 𝛻 × 𝐸 = 𝜇0𝜖𝑥𝑥

𝑠 (
𝜕2𝐸

𝜕𝑡2
) + 𝜇0𝑒𝑥5: ∇𝑠 ∙

𝜕2𝑢

𝜕𝑡2
 

4.8 

As is well-known, the elastic stiffness increases from 𝑐44
𝐸  to 𝑐44̅̅ ̅̅ = 𝑐44

𝐸 +
𝑒15
2

𝜖11
𝑠 , due to the piezoelectric 

stiffness phenomenon [241], [242]. 

Based on these equations, Ref. [218] has considered the BG mode coupling between the anti-plane 

acoustic mode and the in-plane electromagnetic mode 

 𝑢 = [0, 0,𝜔(𝑥1 , 𝑥2 , 𝑡)] 4.9 

 𝐸 = [𝐸1(𝑥1 , 𝑥2 , 𝑡), 𝐸2(𝑥1 ,  𝑥2 , t), 0] 4.10 

where 𝑥1 and 𝑥2 are in the hexagonal plane of the 6mm materials and 𝑥3 is in the direction of the c-axis; 

the surface of the surface wave device is in the 𝑥1 − 𝑥3 plane. 

As in Ref. [218], the wave forms are taken to be 

 𝜔(𝑥1 , 𝑥2 , t) =  𝜔𝑜𝑒𝑥𝑝[−𝑖𝑘1𝑥2] exp [𝑖(𝜔𝑡 − 𝑘𝑥1)] 4.11 

 ψ(𝑥1 , 𝑥2 , t) =  ψ𝑜𝑒𝑥𝑝[−𝑖𝑘2𝑥2] exp [𝑖(𝜔𝑡 − 𝑘𝑥1)] 4.12 

 𝐴1,2(𝑥1 , 𝑥2 , t) =  𝐴1,20exp [−𝑖𝑘2𝑥2] exp [𝑖(𝜔𝑡 − 𝑘𝑥1)] 4.13 
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where 𝑘2 − 𝑘1
2 = (𝜔/𝑐𝑎)

2; 𝑘2 − 𝑘2
2 = (𝜔/𝑐𝑙)

2; 𝑐𝑎 = (𝑐44̅̅ ̅̅ 𝜌⁄ )1/2; 𝑐𝑙 = (𝜇𝑜𝜖11
𝑠 )−1/2 and 𝐴1,2 are 

coefficients in the vector potential, A, related to E. 

𝛹 and 𝑓 are defined by Eqs. 4.14 and 4.15, respectively 

 𝛹 ≔ 𝜙 −
𝑒15
𝜖11
𝑠 𝑓𝜔 4.14 

 
𝑓 ≔

𝑐𝑙
2

𝑐𝑙
2 − 𝑐𝑎2

 
4.15 

Moreover, 𝜔 and 𝛹 satisfy Helmholtz-like equations 

 

{
 
 

 
 ∇2𝜔 −

1

𝑐𝑎2
𝜕2𝜔

𝜕𝑡2
= 0

∇2𝛹 −
1

𝑐𝑙
2

𝜕2𝛹

𝜕𝑡2
= 0

 

4.16 

Finally, the coefficients 𝜔0 and 𝐴1,20 satisfy 

 

Fig. 26. Schematic of a piezoelectric half space bounded with a grounded perfectly conducting thin 

film. 
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𝐴10 = −

µ0𝑒15 𝑐𝑙𝜔 𝑘

(𝑘1
2 − 𝑘2) + 𝜔2 ∕ 𝐶𝑙

2𝜔0 
4.17 

 
𝐴20 = 𝑖

µ0𝑒15 𝑐𝑙𝜔 𝑘1
(𝑘1

2 − 𝑘2) + 𝜔2 ∕ 𝐶𝑙
2𝜔0 

4.18 

4.4 Piezoelectric half-space boundary conditions 

For the case depicted in Fig. 26 where a 6 mm piezoelectric half-space, (𝑥2 < 0), bounded at 𝑥2  = 0 with 

a perfectly conducting thin film in the 𝑥1 − 𝑥3 plane, the boundary conditions are 𝑇23 = 0 and φ = 0; 

applying these boundary conditions, as in Ref. [218] yields, the conditions 

 
𝑘1 = 

𝑒15
2

𝑐44̅̅ ̅̅ 𝜖11
𝑠 𝑓𝑘2 

4.19 

and taking β′2 = 
e15
2

c44̅̅ ̅̅ ̅ϵ11
s 𝑓 =  β

2𝑓, and 𝑓′ = 
cl
2

cl
2− β′4ca

2 
 , where β is the piezoelectric coupling coefficient in 

the quasi-static approximation; accordingly, the velocity equation for the electromagnetic-acoustic surface 

wave is 

 𝑣𝑒 = 𝑐𝑎[𝑓
′(1 − 𝛽′4)]1/2 4.20 

where, in the limit, ca cl  → 0,⁄  f → 1, β′2 → β2, f ′ → 1, so that 𝑣𝑒 = 𝑐𝑎(1 − 𝛽
4)1/2 which is the standard 

Bleustein-Gulyaev solution. 

The equations relating the coefficients 𝜔0 and A1,20 are significant because they relate the coefficients of 

the acoustic mode, 𝜔0, and those of the vector potential, A1,20. On the nanoscale, it is necessary to quantize 

the amplitude of the acoustic field, 𝜔0, so that acoustic wave may be treated in term of phonons. The first 

task in this research will be to quantize 𝜔0. In particular, 𝜔0 will be quantized for the case described above 

of grounded thin conducting film on a piezoelectric half space. Having these quantized fields for the 

acoustic modes, equations relating the coefficients 𝜔0 and A1,20  will be used to obtain the corresponding 
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fields for the vector potential. Together this will facilitate the description of the BG modes in nanoscale 

SAW devices in terms of phonons instead of classical acoustic waves. 

Acoustic wave devices, including those based on Bleustein-Gulyeav waves, should manifest a high-

quality factor for being used in high performance applications. The 𝑄 value may be used as a measure of 

the utility of devices over a range of frequencies. As is well known, phonon-phonon interactions define a 

time scale intrinsic energy dissipation mechanism and simple scaling equations are available for 

estimating the 𝑄 value associated with phonon-phonon interactions [243], [244]. As an estimate of the 

loss associated with phonon-phonon interactions, the 𝑄 ∙ 𝑓 products of GaN and AlN are calculated based 

on anharmonic phonon scattering. To make such estimates, the thermal phonon relaxation time (τTH) must 

be obtained; a convenient form for this relaxation time is 

 1

𝜏𝑇𝐻
≈
𝐶𝑣𝑉𝐷

2

3𝑛𝜅
 

4.21 

where 𝐶𝑣 is the volumetric heat capacity, 𝑛 is the correction factor (in shear waves n ≅ 1), κ is the thermal 

conductivity, and VD is the mean Debye velocity, which can be calculated as  

 3

𝑉𝐷
3 =

1

𝑉𝑙
3 +

2

𝑉𝑡
3 

4.22 

where 𝑉𝑡 and 𝑉𝑙 are the transverse and longitudinal velocities, respectively. 

In the so-called Akhiezer regime where 𝜔𝜏 < 1, the value of 𝑄 ∙ 𝑓 due to phonon-phonon interactions, is 

given by [243]–[246] 

 
𝑄 ∙ 𝑓 =

𝜌𝑣2(1 + (ω. τ)2)

2𝜋𝛾2𝐶𝑣𝑇τ𝑇𝐻
 

4.23 

where, 𝛾 is Grüneisen parameter, 𝜌 is the density of the material, 𝑣 is acoustic velocity, and 𝑇 is the 

absolute temperature. 
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In the so-called Landau-Rumer regime where 𝜔𝜏 > 1, the value of 𝑄 ∙ 𝑓 due to phonon-phonon 

interactions, is given by [247] 

 
𝑓 ∙ 𝑄ph−ph =

15ρ𝑣5h3

π5γ2K4𝑇4
ω 

4.24 

The material properties summarized in Ref. [248] are used to evaluate these expressions. Fig. 27 

summarizes the 𝑄 ∙ 𝑓 products over a range of frequencies for AlN and GaN; the region from 

approximately 1010 to 1011 Hz these curves are extrapolated between the Akhieser and Landau-Rumer 

regimes. As can be seen from Fig. 27, 𝑄 values are of at least 105 up to 1012 Hz frequency range. 

4.5 Quantization of phonon amplitudes in BG waves 

Past studies [80] indicate that displacement amplitudes must be modified when the phonon occupation 

numbers become small; indeed, the mode amplitudes must be quantized. Thus, phonon mode quantization 

 

Fig. 27. 𝑄 ∙ 𝑓 products for AlN and GaN in the Akhiezer and Landau-Rumer regimes; in the region 

from approximately 1010 to 1011 Hz these curves are extrapolated between the Akhieser and Landau-

Rumer regimes. 
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is essential for phonon occupation numbers close to unity. As is well-known [80], the elastic continuum 

model may be used for phonon mode quantization by requiring that the mode normalization be such that 

the energy in the mode is ℏω𝑛. 

Indeed, such phonon amplitude quantization is essential when the phonon occupation approaches unity. 

The thermal equilibrium phonon occupation number (𝑛𝑘) for each phonon mode is given by the Bose-

Einstein distribution. The phonon occupation numbers for seven different phonon frequencies and at five 

different environment temperatures are calculated and listed in Table 4. 

The quantization of the phonon amplitude is critical when the phonon occupation number approaches 

unity (very roughly 10 or less). In this work, by considering seven different oscillation frequencies at five 

different temperatures between 0.1 𝐾 to 300 𝐾, the phonon occupation is calculated as a guide to where 

quantization is necessary; these results are shown in Table 4. 

Table 4. Phonon occupation number for a variety of temperatures and frequencies. 

Angular frequency (ωk) (×1011rad/s) Temperature (T) (K) nk 

 
 

 

10 

300 246.406 

50 40.653 

20 15.965 

1 0.422 

0.1 5.286E-6 

 300 820.798 
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3 

50 136.384 

20 54.255 

1 2.268 

0.1 0.0266 

 

 

1 

300 2466.23 

50 410.622 

20 163.949 

1 7.733 

0.1 0.421 

 

 

0.3 

300 8229.7 

50 1371.2 

20 548.18 

1 26.937 

0.1 2.2737 

0.1 

300 24690.101 

50 4114.6 

20 1645.54 
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1 81.8030 

0.1 7.7403 

0.03 

300 82301.502 

50 13716.5 

20 5486.3 

1 273.84 

0.1 26.937 

0.01 

300 246905.506 

50 41150.501 

20 16459.9 

1 822.52 

0.1 81.803 

 

It is evident from these calculated results that average phonon occupation numbers near or less than unity 

are obtainable for higher frequencies and at lower temperatures. 

The normalization constant of the shear acoustic phonon modes propagating in the structure shown in Fig. 

27, can be obtained by following the quantization theory procedure [219], to ensuring that the 

displacement is such that the energy in each phonon mode is ℏ𝜔𝑘. 
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As discussed by Stroscio and Dutta (2001), acoustic (and optical) phonon mode quantization is 

accomplished using the techniques of quantizing acoustic phonons using the elastic continuum model (as 

in this chapter) and on quantizing optical phonons using the dielectric continuum model. Stroscio and 

Dutta (2001) give numerous examples demonstrating that quantizing phonon modes for the continuum 

models provides an accurate description of the quantized phonons modes. Specifically, the models provide 

dispersion relations and mode envelopes that apply for scales from a few monolayers to the microscale 

and beyond. As indicated previously, the mode envelopes are given by the continuum models, the 

amplitudes of the modes must be determined such that the energy in a mode of frequency 𝜔𝑘  is ℏ𝜔𝑘 . Or 

three-dimensional second-quantization the following condition ensures that the energy in the phonon 

mode is ℏ𝜔𝑘 for a structure with the width of 𝑎, height of 𝑏 and the length of 𝑐, is given by 

 

1

𝑎𝑏𝑐
∫𝑑𝑥

𝑎
2

−
𝑎
2

∫𝑑𝑦

𝑏
2

−
𝑏
2

∫𝑑𝑧

𝑐
2

−
𝑐
2

𝑢(𝑘, 𝑥, 𝑦, 𝑧) ∙ 𝑢∗(𝑘, 𝑥, 𝑦, 𝑧) =
ℏ

2𝑚𝜔𝑘
 

4.25 

where 𝑘 is the phonon wave vector, 𝜔𝑘  is the phonon mode angular frequency, 𝑥, 𝑦, and 𝑧 denote the 

usual Cartesian coordinates, with the relationship between 𝑢, 𝑎𝑘 and 𝑎𝑘
† 

 given by Eqs. 4.26–4.28  

 
𝑢(𝑟) =

1

√𝑁
∑[𝑢(𝑘, 𝑟)𝑎𝑘 + 𝑐. 𝑐. ]

𝑘

 
4.26 

 

𝑢𝑘 = √
ℏ

2𝑚𝜔𝑘
(𝑎𝑘 + 𝑎𝑘

†  ) 

4.27 

 

𝑢(𝑟) =
1

√𝑁
∑ ∑ √

ℏ

2𝑚𝜔𝑘
(𝑎𝑘𝑒

𝑖𝑘𝑟𝑒̂𝑘,𝑗 + 𝑎𝑘
† 𝑒−𝑖𝑘𝑟 𝑒̂𝑘,𝑗

∗  )

𝑗=1,2,3𝑘

 

=
1

√𝑁
∑ ∑ √

ℏ

2𝑚𝜔𝑘
𝑒̂𝑘,𝑗(𝑎𝑘 + 𝑎−𝑘

†  )

𝑗=1,2,3𝑘

𝑒𝑖𝑘𝑟 

4.28 
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=∑𝑢𝑘𝑒
𝑖𝑘𝑟

𝑘

 

wherein 𝑁 is the number of the unit cells in the volume, 𝑉, 𝑟 is the position vector, 𝑐. 𝑐. stands for the 

complex conjugate of the first argument in the summation, 𝑢𝑘 is the amplitude associated with the 

annihilation (𝑎𝑘) or creation (𝑎𝑘
† 

) of one phonon. According to Stroscio and Dutta (2001), 

 𝑎𝑘
† |𝑁𝑘⟩ = √𝑛𝑘 + 1|𝑁𝑘 + 1⟩ 4.29 

 𝑎𝑘|𝑁𝑘⟩ = √𝑛𝑘|𝑁𝑘 − 1⟩ 4.30 

where 𝑛𝑘 is the number of phonons having wave vector 𝑘.  

The eigenstate |𝑁𝑘⟩ satisfies the eigenvalue equation 

 𝑁𝑘|𝑁𝑘⟩ = 𝑛𝑘|𝑁𝑘⟩ 4.31 

where 𝑁𝑘 = 𝑎𝑘
† 𝑎𝑘, and as a result of orthogonality, it follows that 

 ⟨𝑁𝑘
′‖𝑁𝑘⟩ ≡ ⟨𝑁𝑘

′|𝑁𝑘⟩ = 𝛿𝑁𝑘
′ ,𝑁𝑘

 4.32 

wherein 𝛿𝑁𝑘
′ ,𝑁𝑘

 is the Kronecker-delta function. 

Based on these classical BG and the normalization procedure, the analytical second-quantized solution is 

obtained based on the general quantization procedure derived and discussed by Stroscio and Dutta (2001) 

 1

𝐿
∫ 𝜔𝑜

2

∞

0

exp(−2𝑘1𝑥2)𝑑𝑥2 = 
ℏ

2𝑚ω𝑛
 

4.33 

which yields 

 
𝜔0 = √2𝑘1(

ℏ

2𝐴𝜌𝜔
)
1
2 

4.34 
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Here, 𝑚 is the mass of a unit cell, and 𝜔 is the angular frequency of the wave. This last result ensures that 

the total energy in a vibrational mode, having a frequency of ω𝑛, is ℏω𝑛. 

Using the results in Ref. [80], Eqs. 4.17 and 4.18 can be derived using the amplitude coefficients and 

normalization factor listed below. 

Using the amplitude coefficients 𝐴10 and 𝐴20 

 
𝐴10 = −

µ0𝑒15 𝑐𝑙𝜔 𝑘

(𝑘1
2 − 𝑘2) + 𝜔2 ∕ 𝐶𝑙

2𝜔0 
4.35 

 
𝐴20 = 𝑖

µ0𝑒15 𝑐𝑙𝜔 𝑘1
(𝑘1

2 − 𝑘2) + 𝜔2 ∕ 𝐶𝑙
2𝜔0 

4.36 

Given that 

 

Fig. 28. This figure plots the values of 𝜔0 √𝑘1⁄  with respect to frequency (f) in the THz range for 

both GaN and AlN. 
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𝜔0 = √2𝑘1(
ℏ

2𝐴𝜌𝜔
)
1

2 and 𝑘2 − 𝑘1
2 = (𝜔/𝑐𝑎)

2 

In Fig. 28, the values of 𝜔0/√𝑘1
 
 has been plotted against the frequency (𝑓). Values of 𝑓 are in the THz 

range and A has been considered to be 10-12 m2. For GaN, 𝜌 = 6.1 × 103 𝑘𝑔/𝑚3 while for AlN, 𝜌 =

3.25 × 103 𝑘𝑔/𝑚3. 

We can then rewrite 𝐴10 and 𝐴20 substituting this for 𝜔0 

 
𝐴10 = −

µ0𝑒15 𝑐𝑙𝜔 𝑘

(𝑘1
2 − 𝑘2) + 𝜔2 ∕ 𝐶𝑙

2𝜔0 = −
µ0𝑒15 𝑐𝑙𝜔 𝑘

(𝑘1
2 − 𝑘2) + 𝜔2 ∕ 𝐶𝑙

2√2𝑘1(
ℏ

2𝐴𝜌𝜔
)
1
2 

4.37 

 
𝐴20 = 𝑖

µ0𝑒15 𝑐𝑙𝜔𝑘1
(𝑘1

2 − 𝑘2) + 𝜔2 ∕ 𝐶𝑙
2𝜔0 = 𝑖

µ0𝑒15 𝑐𝑙𝜔𝑘1
(𝑘1

2 − 𝑘2) + 𝜔2 ∕ 𝐶𝑙
2√2𝑘1(

ℏ

2𝐴𝜌𝜔
)
1
2 

4.38 

and further rearranging this work, we can write the two terms 𝐴10 and 𝐴20 using the relation 

𝑘2 − 𝑘1
2 = (𝜔/𝑐𝑎)

2 

Therefore, we obtain equations Eqs. 4.39 and 4.40 as 

 

𝐴10 = −

µ0𝑒15 𝑐𝑙𝜔√𝑘1
2 +

𝜔2

𝑐𝑎2

𝜔2 𝐶𝑙
2⁄ − 𝜔2 ∕ 𝐶𝑎2

√2𝑘1(
ℏ

2𝐴𝜌𝜔
)
1
2 

4.39 

 
𝐴20 = 𝑖

µ0𝑒15 𝑐𝑙𝜔 𝑘1
𝜔2 ∕ 𝐶𝑙

2 − 𝜔2 ∕ 𝐶𝑎2
√2𝑘1(

ℏ

2𝐴𝜌𝜔
)
1
2 

4.40 

Assuming the wave form 

 𝐴1,2(𝑥1, 𝑥2, 𝑡) = 𝐴10,20𝑒𝑥𝑝[−𝑘1𝑥2]𝑒𝑥𝑝[𝑖(𝜔𝑡 − 𝑘𝑥1)] 4.41 

And using the Lorentz gauge constraint 

 
∇ ∙ 𝐴 +

1

𝑐𝑙

𝜕𝛷

𝜕𝑡
= 0 

4.42 
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∇ ∙ 𝐴 =

𝜕𝐴1
𝜕𝑥1

+
𝜕𝐴2
𝜕𝑥2

 
4.43 

 𝜕𝐴1
𝜕𝑥1

= −𝑘𝐴10exp [−𝑘1𝑥2] exp[i(𝜔t –  k𝑥1)] 
4.44 

 𝜕𝐴2
𝜕𝑥2

= −𝑘1𝐴20exp [−𝑘1𝑥2] exp[i(ωt –  k𝑥1)] 
4.45 

So, ∇ ∙ 𝐴 = −exp [−𝑘1𝑥2]exp[i(ωt –  k𝑥1)](𝑘𝐴10 + 𝑘1𝐴20) 4.46 

From the constraint, we get 

 𝜕𝛷

𝜕𝑡
= 𝑐𝑙(exp [−𝑘1𝑥2]exp[i(ωt –  k𝑥1)])(𝑘𝐴10 + 𝑘1𝐴20) 

4.47 

In solving for 𝜙, we get 

 𝛷 =
𝑐𝑙
𝑖𝜔
(exp [−𝑘1𝑥2]exp[i(ωt –  k𝑥1)])(𝑘𝐴10 + 𝑘1𝐴20) + 𝑐1 4.48 

where 𝑐𝑙 is the integration constant. 

This will lead to solving for 𝛹 using the relation from Ref. [218] 

 𝛹 ≔ 𝜙 −
𝑒15
𝜖11
𝑠 𝑓𝜔 4.49 

which gives the following representation for 𝛹 

 𝛹 ≔
𝑐𝑙
𝑖𝜔
(exp [−𝑘1𝑥2]exp[i(ωt –  k𝑥1)])(𝑘𝐴10 + 𝑘1𝐴20) −

𝑒15
𝜖11
𝑠 𝑓𝜔 + 𝑐1 4.50 

Substituting for 𝐴10 and 𝐴20 and writing this in terms of 𝑘1 alone, we get 
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𝛹 ≔
𝑐𝑙
𝑖𝜔
(exp [−𝑘1𝑥2]exp [i (ωt – √𝑘1

2 +
𝜔2

𝑐𝑎2

∗ 𝑥1)])

(

 
 
 

−√𝑘1
2 +

𝜔2

𝑐𝑎2

µ0𝑒15 𝑐𝑙𝜔√𝑘1
2 +

𝜔2

𝑐𝑎2

𝜔2 ∕ 𝐶𝑙
2 − 𝜔2 ∕ 𝐶𝑎2

√2𝑘1(
ℏ

2𝐴𝜌𝜔
)
1
2

+ 𝑘1𝑖
µ0𝑒15 𝑐𝑙𝜔𝑘1

𝜔2 ∕ 𝐶𝑙
2 −𝜔2 ∕ 𝐶𝑎2

√2𝑘1(
ℏ

2𝐴𝜌𝜔
)
1
2

)

 
 
 

−
𝑒15
𝜖11
𝑠 𝑓𝜔 + 𝑐1 

4.51 

Based on these classical BG results, the analytical second-quantized solution is obtained based on the 

general quantization procedure shown in Eqn. 4.33 derived and discussed by Stroscio and Dutta (2001) 

1

𝐿
∫ 𝜔𝑜

2

∞

0

exp(−2𝑘1𝑥2) 𝑑𝑥2 =  
ℏ

2𝑚ω𝑛
 

which yields 

𝜔0 = √2𝑘1(
ℏ

2𝐴𝜌𝜔
)
1

2 where, as discussed previously, 𝑘2 − 𝑘1
2 = (𝜔/𝑐𝑎)

2 

where 𝑚 is the mass of a unit cell, and 𝜔 is the angular frequency of the wave. This last result ensures that 

the total energy in a vibrational mode, having a frequency of ω𝑛, is indeed ℏω𝑛. 

4.6 Summary 

In this work we have quantized the classical acousto-electromagnetic BG surface acoustic waves for the 

case of a grounded thin conducting film on a 6mm piezoelectric half space. This method facilitates the 

description of the BG modes in nanoscale surface acoustic wave devices in terms of phonons instead of 
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classical acoustic waves and it describes the coupling between the acoustic waves (phonons) and the 

quanta of the electromagnetic field.
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4Chapter 5 

Acoustic phonons in anisotropic and quasi-isotropic nitride-based 

structures 

5.1 Introduction 

Due to their large group velocities, longitudinal acoustic waves in AlN layers are of great interest in high-

power, high-frequency applications. We extend recent advances in phonon engineering through a 

description of the piezoelectric structures in the nanoscale regime [80], [249]. The improved 

understanding of phonons and the advent of new studies have expanded the possibilities of investigating 

the effects of electron-phonon interactions at room temperature and of elucidating its role in various 

physical phenomena including the possibility of heat removal [140], [186], [204], [249]. In contrast, and 

even though acoustic phonons are the major heat carriers in semiconductors, their effect on heat transfer 

through the deformation potential has been considered to be insignificant, due to their weak coupling to 

electrons. Here, we demonstrate, by theoretical means, that significant energy transition and heat flux via 

longitudinal acoustic (LA) modes are possible if the acoustic phonons can induce an electric field, which 

then can leak into the heterointerface. The seminal findings by Balandin, Pokatilov and Nika (2007) [161] 

have enabled more research on bandgap engineering, piezoelectric scattering and deformation scattering. 

These results joined with the recent advances in growth technologies [250] have opened further venues to 

tackle the reliability issue of GaN- and AlN-based devices. In an earlier study, by Nougaoui and Rouhani 

(1987), which provides an important foundation for this work, it is shown that the GaN/AlN superlattice 

 
4 This chapter is partially published in IEEE Electron Device Letters, [264] and IOP Journal of Physics: 

Condensed Matter, [295]. 
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behaves like an effective medium with acoustic phonon velocities intermediate between those of GaN and 

AlN [251]. 

As acoustic phonons must decay, based on the perturbation theory, anharmonic three-phonon coupling 

encompasses a great variety of decay processes. Considering that only transverse phonons are degenerate, 

either one single phonon decays into two phonons, or two phonons combine to form a new phonon via an 

up-conversion process [102, 103], [123]. More particles can partake in the decay process such as the decay 

of LA phonons into three TA phonons [252]. The decay mechanism of a phonon can be obtained from the 

temperature-dependent frequencies and linewidths of phonon modes [125]. 

This chapter presents the possibility of using the effective medium model coupled with the piezoelectric 

stiffening to quantitatively explain and engineer acoustic phonons as a heat dissipation channel in GaN-

based devices. These effects will be described for a GaN/AlN superlattice that exhibits enhanced acoustic 

phonon velocities as compared with bulk GaN. We numerically calculate the stiffened elastic constant 

values and apply them within the effective medium model for elastic constants. With the recent advances 

in epitaxial GaN growth technology, it may be possible to consider this phonon engineering option to 

investigate the effect on the longitudinal sound velocity to increase the rate of heat transport in GaN/AlN 

superlattice. 

This chapter also reports for the first time an estimation of the spontaneous decay rates at room 

temperature in a selection of nitride-based nanostructures that are quasi-isotropic. We numerically 

calculate the phonon distribution functions and the decay rates and find that the decay channel LA → TA 

+ TA dominates over the decay channel LA → LA + TA, which confirms Klemens’ prediction [253] that 

LA phonon will primarily split into two doubly degenerate TA phonons through a greater variety of decay 

channels compared to the decay of LA into two modes, one belonging to the longitudinal acoustic and the 

other to the transverse acoustic branch. 
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5.2 Phonon scattering via deformation potential in hexagonal-layered 

materials 

Acoustic waves in layered media have been studied extensively [254], as well as several efforts that have 

been devoted to investigating the propagation of elastic waves in superlattices developed using alternating 

layers of two different crystals such as GaN and AlN [255]–[257]. The folded acoustic phonons 

propagating perpendicular to the layers have been corroborated by Raman studies on semiconductor 

superlattices [258]. 

In the hexagonal crystal (0001), the medium can be described using five independent elastic coefficients 

in the form 

 

(

 
 
 
 

𝐶11
𝐸 𝐶12

𝐸 𝐶13
𝐸 0 0 0

𝐶12
𝐸 𝐶11

𝐸 𝐶13
𝐸 0 0 0

𝐶13
𝐸 𝐶13

𝐸 𝐶33
𝐸 0 0 0

0 0 0 𝐶44
𝐸 0 0

0 0 0 0 𝐶44
𝐸 0

0 0 0 0 0 (𝐶11
𝐸 − 𝐶12

𝐸 ) 2⁄ )

 
 
 
 

 5.1 

where 𝐶11
𝐸 = 𝐶22

𝐸 , 𝐶12
𝐸 = 𝐶21

𝐸 , 𝐶13
𝐸 = 𝐶23

𝐸 , 𝐶33
𝐸 , 𝐶44

𝐸 = 𝐶55
𝐸 , 𝐶66

𝐸 = (𝐶11
𝐸 − 𝐶12

𝐸 ) 2⁄  

We focus here on the propagation of waves in anisotropic medium. This propagation can be obtained by 

solving Christoffel equation [241] which is referenced to describe the propagation of acoustic wave in 

solid including general medium and piezoelectric medium. In constant electric field, the piezoelectric 

stress constant is given by 

 

𝑒 = [
0 0 0 0 𝑒𝑥5 0
0 0 0 𝑒𝑥5 0 0
𝑒𝑧1 𝑒𝑧2 𝑒𝑧35 0 0 0

] 5.2 

And the clamped dielectric constant is given by 
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𝜀𝑠 = [

𝜀𝑥𝑥
𝑠 0 0
0 𝜀𝑦𝑦

𝑠 0

0 0 𝜀𝑧𝑧
𝑠

] 5.3 

To obtain the plane wave propagation in the crystal axis, we solve the velocity equation by substituting 

the projections of (0001) to get the equation 

[
 
 
 
 
 
 (
𝑘

𝜔
)
2

[𝐶11𝚤𝑥
2 + 𝐶44(1 − 𝚤𝑥

2)] − 𝜌 (
𝑘

𝜔
)
2

(𝐶12 + 𝐶44)𝚤𝑥𝚤𝑦 (
𝑘

𝜔
)
2

(𝐶12 + 𝐶44)𝚤𝑥𝚤𝑧

(
𝑘

𝜔
)
2

(𝐶12 + 𝐶44)𝚤𝑥𝚤𝑦 (
𝑘

𝜔
)
2

[𝐶11𝚤𝑦
2 + 𝐶44(1 − 𝚤𝑦

2)] − 𝜌 (
𝑘

𝜔
)
2

(𝐶12 + 𝐶44)𝚤𝑦𝚤𝑧

(
𝑘

𝜔
)
2

(𝐶12 + 𝐶44)𝚤𝑥𝚤𝑧 (
𝑘

𝜔
)
2

(𝐶12 + 𝐶44)𝚤𝑦𝚤𝑧 (
𝑘

𝜔
)
2

[𝐶11𝚤𝑧
2 + 𝐶44(1 − 𝚤𝑧

2)] − 𝜌]
 
 
 
 
 
 

 

 = 0 5.4 

That yields 

 
[(
𝑘

𝜔
)
2

𝐶11 − 𝜌] [(
𝑘

𝜔
)
2

𝐶44 − 𝜌] [(
𝑘

𝜔
)
2

𝐶44 − 𝜌] = 0 
5.5 

Eqn. 5.5 has three solutions, one is 

 
(
𝑘

𝜔
)
2

𝐶11 − 𝜌 = 0, 𝑉𝑙 = √𝐶11 𝜌⁄  
5.6 

And the other two solutions are 

 
(
𝑘

𝜔
)
2

𝐶44 − 𝜌 = 0, 𝑉𝑠 = √𝐶44 𝜌⁄  
5.7 

Eqn. 5.6 denotes the solution for the LA mode wave with a phase velocity 𝑉𝑙  in the crystal direction. The 

second and third solutions in Eqn. 5.7 denote the shear mode wave with a phase velocity 𝑉𝑠 in the crystal 

direction. 

5.3 Effective medium model 
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When the acoustic phonon wavelength becomes large compared to the period of the superlattice, namely 

the long wavelength regime, the superlattice behaves like an effective medium whose elastic constants 

can be expressed as functions of its coefficients [251]. Meanwhile, Grimsditch (1985) introduced a method 

which enabled him to obtain the effective medium elastic constants in orthorhombically symmetric layers 

[259]. Nougaoui and Rouhani (1987) provided a formal generalization of this method for any layer 

symmetry [260]. Therefore, using the results obtained in Ref. [261], the effective medium for hexagonal 

layers with piezoelectric media has elastic constants given by 

 1

𝐶33
𝑒 =

𝑥

𝐶33
+
1− 𝑥

𝐶33
′  

5.8 

 
𝐶13
𝑒 = 𝐶33

𝑒 [𝑥
𝐶13
𝐶33

+ (1 − 𝑥)
𝐶13
′

𝐶33
′ ] 

5.9 

 
𝐶11
𝑒 =

(𝐶13
𝑒 )2

𝐶33
𝑒 + 𝑥 (𝐶11 −

(𝐶13)
2

𝐶33
) + (1 − 𝑥)(𝐶11

′ −
(𝐶13

′ )2

𝐶33
′ ) 

5.10 

 1

𝐶44
𝑒 =

𝑥

𝐶44
+
1− 𝑥

𝐶44
′  

5.11 

 𝐶66
𝑒 = 𝑥𝐶66 + (1 − 𝑥)𝐶66

′  5.12 

where 𝑥 = 𝑑 (𝑑 + 𝑑′)⁄ , 𝑑 is the medium thickness for GaN while 𝑑′ is the medium thickness for AlN, 𝐶𝑖𝑗
𝑒  

denotes the effective medium material elastic constant which describes the behavior of the anisotropic 

media when the media is not piezoelectric. 

 
𝐶11
𝑒 =

𝐶33𝐶33
′

(1 − 𝑥)𝐶33 + 𝑥𝐶33
′ [𝑥

𝐶13
𝐶33

+ (1 − 𝑥)
𝐶13
′

𝐶33
′ ]

2

+ 𝑥 (𝐶11 −
𝐶13

2

𝐶33
) + (1 − 𝑥)(𝐶11

′ −
𝐶13
′ 2

𝐶33
′ ) 

5.13 

5.4 Heat transport in hexagonal-layered superlattices 
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In GaN transistors, energetic hot electrons launch interface and confined optical phonon modes instead of 

bulk modes; they remain localized in the regions where electrons emit longitudinal optical (LO) phonons 

as discussed in detail in Chapter 3. Since bulk LO phonons have small group velocity, they tend to 

accumulate and store energy, and as a consequence, heat is generated when these phonons decay 

anharmonically. In a related process, it has been suggested by suitably placing a superlattice in a region 

of heat flow, the group velocity of the launched interface and confined phonons can be engineered to 

smear out the hot spot. The optical phonons will move a few hundreds of nanometers and decay into 

acoustic phonons elongating the hot spot and decreasing the hot spot temperature. Herein, we consider 

using a several-period superlattice to enhance heat transport. However, it is well-known that 

polycrystalline materials and AlN/GaN superlattices have a thermal conductivity significantly smaller 

 

Fig. 29. Longitudinal sound velocities of acoustic phonons (LA) carrying heat in hexagonal 

GaN/AlN structure versus the rate of change in AlN-to-GaN thickness ratios. 
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than the bulk value [65]. Researchers have studied the development of GaN devices on very high thermal 

conductivity substrates. Epitaxial growth of GaN epilayers on single crystal diamond substrates has also 

been reported [262]. However, the use of superlattice or other multi-layered structures required to manage 

the stress from GaN-diamond lattice mismatch makes the growth process challenging and may create a 

large thermal resistance due to interfacial imperfections. 

Rewriting the longitudinal sound velocity equation Eqn. 5.6 for the effective medium [241], [263] 

 𝑉𝑙 = √𝐶11
𝑒 𝜌𝑒⁄  5.14 

where 𝜌𝑒  is the effective density for the elastic medium which given by the equation 

 𝜌𝑒 = 𝑥𝜌 + (1 − 𝑥)𝜌′ 5.15 

where 𝜌 is the density of GaN and 𝜌′ is the density of AlN. 

We use Eqs. 5.14 and 5.15 to plot the acoustic phonon velocities of acoustic phonons carrying heat by 

phonon engineering in a superlattice versus the thickness of AlN layer (𝑑′) in each period of the 

superlattice divided by the thickness of the GaN layer (𝑑) in each period of the superlattice. The results 

are shown in Fig. 29 [264]. 

5.5 Christoffel equation and piezoelectric stiffening 

The elastic behavior of an anisotropic piezoelectric media at zero electric displacement is characterized 

by the material elastic constants using Christoffel equation [241] 

 
𝐶𝑖𝑗 = 𝐶𝐾𝐿 +

[𝑒𝑘𝑗𝑙𝑗][𝑙𝑖𝑒𝑖𝑙]

𝑙𝑖𝜖𝑖𝑗
𝑠 𝑙𝑗

 
5.16 

Here, 𝑒𝑘𝑗 is the piezoelectric polarization tensor (in C/m2), 𝑒𝑖𝑙 is the piezoelectric acoustic tensor (in C/m2), 

𝑙𝑖 and 𝑙𝑗 characterize the directions of the wave vector and 𝜖𝑖𝑗
𝑠  is the static permittivity. 
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With the electromechanical coupling constant given by 

 
[𝐾𝑘𝑙(𝑖)]

2 =
[𝑒𝑘𝑗𝐼𝑗][𝐼𝑖𝑒𝑖𝑙]

𝑙𝑖𝜖𝑖𝑗
𝑠 𝐼𝑖𝐶𝐾𝐿

 
5.17 

therefore, 

 𝐶𝑖𝑗
𝑒 = 𝐶𝐾𝐿(1 + [𝐾𝑘𝑙(𝑖)]

2) 5.18 

Expanding Eqn. 5.17, the electromechanical coupling constants have the following relation with the 

matrix of piezoelectric moduli 𝑒𝑖𝑗 

 

[𝐾𝑘𝑙(𝑖)]
2 =

1

𝑙𝑖𝜖𝑖𝑗
𝑠 𝑙𝑗𝐶𝐾𝐿

(

 
 
 

𝑒33
2 𝑒31𝑒33 𝑒31𝑒33 0 0 0

𝑒31𝑒33 𝑒31
2 𝑒31

2 0 0 0

𝑒31𝑒33 𝑒31
2 𝑒31

2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0)

 
 
 

 5.19 

Table 5. The values of the medium densities, the stiffened elastic constants and the piezoelectric 

moduli used in the effective medium model calculations. 

Material AlN GaN 

𝜌 (g ∙ 𝑐𝑚−3) 3.255 [265] 6.15 [265] 

𝐶11
∗ (𝐺𝑃𝑎) 332.80 [266] 397.80 [267] 

𝐶13
∗ (𝐺𝑃𝑎) 101.97 [266] 107.06 [267] 

𝐶33
∗ (𝐺𝑃𝑎) 392.89 [266] 399.59 [267] 

𝑒31(C/𝑚
2) −0.58 [268] −0.33 [268] 

𝑒33(C/𝑚
2) 1.55 [268] 0.65 [268] 
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Based on the results of Ref. [269], the electromechanical coupling constant values for GaN and AlN are 

given as 

 

[𝐾𝑘𝑙(𝑖)]
2 =

(

  
 

0.02 −0.02 −0.02 0 0 0
−0.02 0.004 0.01 0 0 0
−0.02 0.01 0.004 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0)

  
 

 5.20 

and 

 

[𝐾𝑘𝑙(𝑖)]
2 =

(

  
 

0.08 −0.12 −0.12 0 0 0
−0.12 0.01 0.03 0 0 0
−0.12 0.03 0.01 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0)

  
 

, 5.21 

respectively. 

The modified expression for the effective medium elastic constant considering piezoelectric stiffening 

effect is given by 

 
𝐶11
𝑒,∗ =

𝐶33
∗ 𝐶33

′,∗

(1 − 𝑥)𝐶33
∗ + 𝑥𝐶33

′,∗ [𝑥
𝐶13
∗

𝐶33
∗ + (1 − 𝑥)

𝐶13
′,∗

𝐶33
′,∗]

2

+ 𝑥 (𝐶11
∗ −

𝐶13
∗ 2

𝐶33
∗ ) + (1 − 𝑥)(𝐶11

′,∗ −
𝐶13
′,∗2

𝐶33
′,∗ ) 

5.22 

𝐶𝑖𝑗
𝑒,∗

 denotes the effective medium of the elastic coefficients with piezoelectric stiffening when the media 

is piezoelectric. 

The stiffened elastic constants relevant to our work are calculated using Christoffel equation and presented 

as shown in Table 5. 
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The longitudinal sound velocity for the effective medium with the piezoelectric stiffening phenomena can 

be expressed as [241], [263] 

 
𝑉𝑙
∗ = √𝐶11

𝑒,∗ 𝜌𝑒⁄  
5.23 

Utilizing Eqs. 5.15 and 5.23, the longitudinal sound velocity is once again numerically calculated for 

different ratios of GaN/AlN superlattice using the effective medium model with piezoelectric stiffening 

taken into account. The results are summarized in Table 6. Simply by modifying the period of the 

superlattice, we report ~ 25% increase in the rate of LA modes and an extra 3% with the application of 

the piezoelectric stiffening. 

Table 6. Comparison of acoustic phonon velocities versus rates of thickness optimization of GaN/AlN 

hexagonal-layered superlattice considering a piezoelectric-stiffened medium. 

𝒅′ 𝒅⁄  𝑽𝒍 (𝒌𝒎/𝒔) 𝑽𝒍
∗ (𝒌𝒎/𝒔) 

0.2 8.34 8.46 

0.25 8.41 8.54 

0.33 8.53 8.68 

0.5 8.75 8.92 

1.00 9.22 9.45 

2.00 9.78 10.07 

3.00 10.09 10.41 

4.00 10.29 10.64 

5.00 10.43 10.79 
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5.6 Anharmonic decay of high-frequency LA modes in quasi-isotropic III-

nitrides 

In polar materials, hot electron energy is dissipated predominantly through Fröhlich electron-phonon 

scattering. This interaction is generally dominant when an applied electric field accelerates electrons so 

that 𝐸𝐾 > ℏ𝜔 to emit optical phonons. This form of the Fröhlich interaction produces primarily zone-

center longitudinal optical (LO) phonons [80]. Due to anharmonic interactions, the LO phonons decay 

into traveling acoustic waves. The decay of strongly-interacting optical phonons into acoustic phonons is 

a phenomenon that is essential to the understanding of the electron transport properties in heterostructures. 

 

Fig. 30. The LA sound velocities for the effective medium superlattice with and without piezoelectric 

stiffening effect versus the thickness ratio of AlN-to-GaN referenced against the velocities of pure 

GaN and AlN wurtzite materials. 
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Such applications include the influence on electron mobility [104], the thermodynamic properties of the 

lattice and the interaction with hot electrons in high-electric field FETs, in which, the decay of LO phonons 

delocalizes energy from the self-heating region in the transistors [270, 271], [204] and, consequently, 

controlling the lifetimes of the hot phonons generated during this energy relaxation process. Therefore, it 

is of importance to investigate the intrinsic phonon decay properties and the decay channels of high-quality 

materials as their understanding is critical to self-heating and future phonon engineering efforts to improve 

the device performance. 

Acoustic phonons are associated with all thermal properties of a solid, such as its heat content and 

transport. The Phonon deformation potentials help explain the stress-induced energy shifts which, in turn, 

is modified primarily by the uniaxial stress. The elastic moduli vary with both temperature and pressure 

as has been reported by Nichols et al. (1980) [272]. The anharmonic part of lattice oscillations causes the 

decay of LA phonons into lower-order modes. TA phonons, however, require the presence of excited 

phonons with energies ~ ℏ𝜔 which results in a long lifetime of the TA phonons [139]. 

It has been demonstrated that the lifetime of acoustic phonons is in the timescale of hundreds of nano to 

microseconds [273]. It is possible to conclude from the available research that the depopulation of hot 

phonons into heat carrying acoustic phonons takes place on a timescale on the order of nano to 

picoseconds; such efforts include the calculations of decay times in the range of 150 – 740 ps which was 

obtained through time-resolved photoluminescence for GaN doped with Si by Kwon et al. (2000) [274]. 

Similar ranges were obtained by Chichibu et al. (1999) and Izumi et al. (2000) for bulk GaN [275], [276]. 

To the best of our knowledge, there have not been accurate estimations, or any measurements for that 

matter, of the decay times of acoustic phonons in nitride-based structures at 300 K. To cite a few studies 

relative to the anharmonic decay of acoustic phonons, Slonimskii (1937) suggested for the first time that 

LA phonons can decay into two lower-frequency modes that have a lifetime increasing as 𝜔5 [277]. 
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Baumgartner et al. (1981) provided the first experimental verification of frequency-dependent anharmonic 

lifetimes of high-frequency acoustic phonons at low crystal temperature for CaF2 [278]. Tamura (1985) 

calculated the decay times of LA phonons for a selection of quasi-isotropic crystals by accounting for the 

anharmonicity on the basis of the continuum elasticity theory [136]. Tamura was able to provide diverse 

estimates of the decay times of both down-conversion processes along with their branching ratios for 

crystals including Si, Ge and GaAs. In this paper, we extend these results to quasi-isotropic III-nitrides. 

Tamura’s results challenged both the work by Orbach and Vredevoe (1964) [139], who found that the 

dominant decay channel is LA → LA + TA, as well as the branching ratios of the two processes obtained 

by Guseinov and Levinson (1983) [279], Lax et al. (1984) [280], Markiewicz (1980) [281] and Bron 

(1980) [282]. 

5.6.1 Issue of anharmonicity and anisotropy of the III-nitride crystals 

Owing to their important role in solid-state physics, knowledge of higher-order elastic constants including 

second- and third-order elastic constants is essential for the study of the anharmonic properties of solids. 

The hexagonal crystals have six second-order elastic constants and ten third-order elastic constants. Elastic 

constants also provide insight into the nature of the anharmonicity of the material which, in turn, is helpful 

in the discussions of the deformation potential and the elastic properties [283]. In the THz frequency 

regime, the decay processes can be assessed quantitatively as the anharmonic coupling coefficients are 

determined by the second- and third-order elastic moduli as confirmed by Tamura [136]. Similarly, the 

elastic constants and the phonon density of states, depicted through the phonon dispersion, are sensitively 

related to each other. The phonon density of states is, in turn, important in the discussion of the dominant 

decay channel at the THz frequencies in III-nitrides. Data of applied stress on elastic constants facilitate 

the determination of the third-order elastic stiffness constants. For the hexagonal point groups, the ten 
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a- GaN 

 

b- AlN 

 

c- InN 
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independent components of the third-order elastic tensor can be written as 𝐶111, 𝐶112, 𝐶113, 𝐶123, 𝐶133, 

𝐶144, 𝐶155, 𝐶222, 𝐶333 and 𝐶344 [284].  

We should note that it is difficult to model obviously anisotropic crystals due to the great number of elastic 

constants. Fortunately, many solids that are relatively isotropic still have certain material symmetries in 

accord to their propagation direction, which could simplify the process [285]. We, however, take account 

of the anisotropy and of the anharmonicity by using experimentally known elastic constant values of 

second- and third-order. The elastic constant values at 300 K are listed in Tables 2 and 3. 

In Table 3, 𝐶122, 𝐶166 and 𝐶456 are calculated for III-nitrides using the relations [289] 

𝐶122 = 𝐶111 + 𝐶112 − 𝐶222, 𝐶166 = 1/4(3𝐶222 − 2𝐶111 − 𝐶112) and 𝐶456 = 1/2(𝐶155 − 𝐶144) 

Before proceeding with the calculation, it is important to discuss the degree of the anisotropy of the 

crystals under investigation. To that end, we calculate the Young’s modulus of a selection of III-nitride 

d- w–BN 

 

Fig. 31. Young’s modulus of wurtzite III-nitride compounds with directional dependence represented 

in GPa. 
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crystals and confirm the results by calculating the elastic anisotropy factor (F). The anisotropy is modelled 

by means of the compliance tensor matrices (𝑆𝑖𝑗), which are calculated for GaN, AlN, InN and wurtzite 

BN, and given in matrix forms. The visualized results are finally presented in Fig. 1. As has been 

Table 7. Second-order elastic constants and the calculated sound velocities of III-nitrides. 

 𝑪𝟏𝟏 𝑪𝟑𝟑 𝑪𝟔𝟔 𝑪𝟒𝟒 𝑪𝟏𝟐 𝒗⊥
𝒍  𝒗𝒛

𝒍  𝒗⊥
𝑺  𝒗𝒛

𝑺 

GaNa 382 384.4 144 97 93.8 7.87 7.899 4.837 3.97 

AlNa 408 384.3 154 101 100.18 11.9 10.86 6.878 5.57 

InNa 228.3 221 86.13 57 112 5.79 5.69 3.55 2.893 

h-BNb 750 32 300 3 150 18.55 3.83 11.73 1.173 

w-BNc 982 1077 424 388 134 16.78 17.57 11.03 10.55 

aPandey et al., 2007, Ref. 286. 

bGreen et al., 1976, Ref. 287. 

cShimada et al., 1998, Ref. 288. 

Table 8. Third-order elastic constants of III-nitrides. 

 𝑪𝟏𝟏𝟏 𝑪𝟏𝟏𝟐 𝑪𝟐𝟐𝟐 𝑪𝟏𝟐𝟐 𝑪𝟏𝟐𝟑 𝑪𝟏𝟒𝟒 𝑪𝟏𝟓𝟓 𝑪𝟏𝟔𝟔 𝑪𝟒𝟓𝟔 

GaNa −287.6 −48.1 −225.6 −110.1 −15 −14.5 −9.7 −13.375 2.4 

AlNa −307.2 −51.4 −241.3 −117.3 −15.5 −15 −10.0 −14.525 2.5 

InNa −171.9 −28.8 −138.8 −61.9 −8.8 −8.5 −5.7 −10.95 1.4 

h-BNb −687.2 −107.5 −544.7 −249.8 −28.3 −34.8 −23.2 −38.05 5.8 

aPandey et al., 2007, Ref. 286. 

bMathew et al., 2002, Ref. 290. 
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established, relatively isotropic crystals show an anisotropy factor that is close to unity. The results show 

that, in wurtzite GaN, AlN and BN, F of planes propagating along the [100] axis is 0.729, 0.833 and 0.814, 

respectively, while in wurtzite InN, F is much smaller than 1, indicating wurtzite lnN displays obvious 

anisotropic characteristics in this plane. Similarly, h-BN is a highly anisotropic layered material. As shown 

in Table 2, h-BN has very large acoustic velocities, which could be attributed to the strong in-plane 

covalent bonding of B and N atoms. The anisotropy simulation results suggest that w-BN should be an 

interesting candidate for our study; unfortunately, the third-order elastic constants for the wurtzite crystal 

at room temperature are not available. In his 1985 paper, Tamura analyzed the decay rate of acoustic 

phonons from variations of the mass density by obtaining an isotropic approximation, hence, using his 

results to model obviously anisotropic crystals may not be valid with a certain degree of certainty. 

𝑆𝑖𝑗
𝐺𝑎𝑁 =

[
 
 
 
 
 
0.0031 −0.0010 −0.0006 0 0 0
−0.0010 0.0031 −0.0006 0 0 0
−0.0006 −0.0006 0.0028 0 0 0

0 0 0 0.0095 0 0
0 0 0 0 0.0095 0
0 0 0 0 0 0.0081]

 
 
 
 
 

, 

𝑆𝑖𝑗
𝐴𝑙𝑁 =

[
 
 
 
 
 
0.0029 −0.0009 −0.0005 0 0 0
−0.0009 0.0029 −0.0005 0 0 0
−0.0005 −0.0005 0.0028 0 0 0

0 0 0 0.0080 0 0
0 0 0 0 0.0080 0
0 0 0 0 0 0.0077]

 
 
 
 
 

, 

𝑆𝑖𝑗
𝐼𝑛𝑁 =

[
 
 
 
 
 
0.0096 −0.0021 −0.0050 0 0 0
−0.0021 0.0096 −0.0050 0 0 0
−0.0050 −0.0050 0.0121 0 0 0

0 0 0 0.1000 0 0
0 0 0 0 0.1000 0
0 0 0 0 0 0.0233]

 
 
 
 
 

, 
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𝑆𝑖𝑗
ℎ−𝐵𝑁 =

[
 
 
 
 
 

0.001 −0.0003 −0.000035 0 0 0
−0.0003 0.001 −0.000035 0 0 0
−0.000035 −0.000035 0.0313 0 0 0

0 0 0 0.333 0 0
0 0 0 0 0.333 0
0 0 0 0 0 0.00333]

 
 
 
 
 

, 

𝑆𝑖𝑗
𝑤−𝐵𝑁 =

[
 
 
 
 
 
0.001 −0.0001 −0.00006 0 0 0
−0.0001 0.001 −0.00006 0 0 0
−0.00006 −0.00006 0.0009 0 0 0

0 0 0 0.0026 0 0
0 0 0 0 0.0026 0
0 0 0 0 0 0.0024]

 
 
 
 
 

 

5.6.2 Modeling of the population densities and the decay rates of LA phonons 

We assume a high-purity sample and consider the acoustic phonon scattering independent of temperature. 

The total decay rate along with the property of the materials are initially taken in the [100] propagation 

direction and finally compared with the [001] direction. The decay rate depends on the dot-product of the 

polarization vectors of the initial and the final phonons. We assume that the spontaneous splitting of the 

longitudinal phonon into two lower-energy phonons, which is the dominant anharmonic interaction, can 

occur through two processes only: (1) LA → LA + TA that shall be named as process 1 and (2) LA → TA 

+ TA that shall be named as process 2 through the remainder of this paper. We plot a Herring-like vector 

diagram in Fig. 2 to specify which wave vectors and branch combinations will simultaneously fulfill the 

energy and momentum conservation conditions. Here, 𝑞 is the incoming LA phonon wave vector, 𝑞′ is 

the final LA phonon wave vector and 𝑞′′ is the final TA phonon wave vector for process 1, both 𝑞′ and 

𝑞′′ represent the final TA phonon wave vectors for process 2, 𝜃 is the angle between 𝑞 and 𝑞′ and 𝑡 is the 

angle between 𝑞 and 𝑞′′. We define the following relations from Fig. 2: 
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𝑞′ ∙ 𝑞′′ = 𝑐𝑜𝑠(𝜃 + 𝑡); 𝑞′′ ∙ 𝑞 = 𝑐𝑜𝑠(𝑡); 𝑞′ ∙ 𝑞 = 𝑐𝑜𝑠(𝜃); 𝑒′′ ∙ 𝑒 = 𝑠𝑖𝑛(𝑡); 𝑒′ ∙ 𝑒 = 𝑐𝑜𝑠(𝜃); 𝑒′ ∙ 𝑒′′ =

𝑠𝑖𝑛(𝜃 + 𝑡) where 𝑞′′ ∙ 𝑒′′ = 0, 𝑞′ ∙ 𝑒′ = 𝑞′, 𝑞 ∙ 𝑒 = 𝑞. Therefore, 𝑞′𝑠𝑖𝑛(𝜃) = 𝑞′′𝑠𝑖𝑛(𝑡) and 𝑞′𝑐𝑜𝑠(𝜃) +

𝑞′′ cos(𝑡) = 𝑞. From the vector diagram, we can obtain the energy and momentum conservation 

conditions as 

 𝑣𝑞 = 𝑣′𝑞′ + 𝑣′′𝑞′′ 5.24 

 𝑞2 = (𝑞′′)2 − (𝑞′)2 + 2𝑞𝑞′𝑐𝑜𝑠𝜃 5.25 

To obtain an expression of the spontaneous decay rate (Γ) of LA phonons, we adopt the notations in 

Tamura’s paper (1985) and start from the nonlinear elasticity theory which describes the acoustic wave 

propagation in the elastic medium by the displacement vector 

 
𝑢(𝑟) =

1

(𝑉𝜌)1/2
∑𝑒𝑥𝑝(𝑖𝑞 ∙ 𝑟)𝑒̂(𝑞̂𝑗)𝑄(𝑞𝑗)

𝑞𝑗

 
5.26 

Since the rates depend on the polarization vectors, the deformation parameter is obtained by 

 

Fig. 32. Vector diagrams for normal three-phonon process which conserves both energy and 

momentum. The phonon wave vector propagation is shown on the left whereas the polarization vectors 

propagation is shown on the right. 
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𝜉𝑖𝑗 =

𝜕𝑗𝑢𝑖
𝜕𝑟

=
1

(𝑉𝜌)1/2
∑𝑒𝑥𝑝(𝑖𝑞 ∙ 𝑟)𝑒̂(𝑞̂𝑗)𝑄(𝑞𝑗)

𝑞𝑗

 
5.27 

The potential energy function is written as [291] 

 
𝑊 =

1

8
(𝐶11 − 𝐶12)(𝜉𝑖𝑘 + 𝜉𝑘𝑖)

2 +
1

2
𝐶12𝜉𝑖𝑖𝜉𝑗𝑗 + (

1

2
𝐶12 + 3𝐶155 − 6𝐶456)𝜉𝑖𝑖𝜉𝑗𝑘

2 + (
1

2
𝐶11

−
1

2
𝐶12 + 6𝐶456)𝜉𝑖𝑗𝜉𝑘𝑖𝜉𝑘𝑗 + (3𝐶155 − 6𝐶456)𝜉𝑖𝑖𝜉𝑗𝑘𝜉𝑘𝑗 + (𝐶111 − 6𝐶155

+ 4𝐶456)𝜉𝑖𝑖𝜉𝑗𝑗𝜉𝑘𝑘 + 2𝐶456𝜉𝑖𝑗𝜉𝑗𝑘𝜉𝑘𝑖  5.28 

Now, the particle displacement can be quantized as 

 𝑢(𝑟) = 𝑖∑(ℏ 2𝑉𝜌𝜔(𝑞)⁄ )1/2𝑒𝑥𝑝(𝑖𝑞 ∙ 𝑟)[𝑎(𝑞) − 𝑎∗(−𝑞)]

𝑞𝑗

 5.29 

And the spontaneous decay rate expression is provided by 

 
Γ =

𝜋ℏ

8𝜌3𝑉𝜔
∬[

𝑀2

𝜔′𝜔′′
] 𝜏(𝜔 − 𝜔′ − 𝜔′′) 

5.30 

By using the vector diagram equations, we eliminate the trigonometric functions of the angle 𝑡 and 

substitute for the dot-products in Eqn. 5.28 which gives the matrix element expression 

 
𝑀 = (𝛽 + 𝜆) {

𝑞𝑞′

𝑞′′
(𝑞2 − (𝑞′)2)𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃} + 𝛾 {

𝑞𝑞′

𝑞′′
(𝑞2 − (𝑞′)2)𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃} + (𝛾

+ 𝜆) {
3𝑞𝑞′

𝑞′′
(𝑞2 − (𝑞′)2)𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃} + 𝛼{0}

+ 𝛽 {
𝑞𝑞′

𝑞′′
(𝑞2 − (𝑞′)2)𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃} 

5.31 

Eqn. 5.31 finally reduces to the matrix element expression given by Tamura (1985). 
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a. Decay of process 1 

We express 𝑞′′ from the energy conservation of Eqn. 5.24 as 

 𝑞′′ = (𝑞 − 𝑞′)
𝑣𝑙
𝑣𝑡

 5.32 

We use Eqn. 5.32 to eliminate 𝑞′′ from Eqs. 5.24 and 5.25 to get 

 
(𝑞 − 𝑞′)2

𝑣𝑙
2

𝑣𝑡
2 = 𝑞

2 + (𝑞′)2 − 2𝑞𝑞′𝑐𝑜𝑠(𝜃) 
5.33 

which gives the expression 

 
𝑐𝑜𝑠𝜃 =

𝑣𝑙
2

𝑣𝑡
2 − (

𝑞 + 𝑞′

2𝑞𝑞′
)(
𝑣𝑙
2

𝑣𝑡
2 − 1) 

5.34 

We set 𝑥 =
𝑞′

𝑞
 and 𝛿2 =

𝑣𝑙
2

𝑣𝑡
2, so that Eqn. 5.34 can be written as 

 
𝑐𝑜𝑠𝜃 = 𝛿2 −

1

2
(𝑥 +

1

𝑥
) (𝛿2 − 1) 

5.35 

We enforce the condition −1 ≤ 𝑐𝑜𝑠𝜃 ≤ 1 on Eqn. 5.35 

 
−1 ≤ 𝛿2 −

1

2
(𝑥 +

1

𝑥
) (𝛿2 − 1) ≤ 1 

→ 2 ≤ (𝑥 +
1

𝑥
) ≤

2(𝛿2 + 1)

(𝛿2 − 1)
 

5.36 

By solving the inequality on the LHS and the RHS in Eqn. 5.36, we get the integration limits 𝑥0 and 1 as 

2(𝛿2 + 1)
(𝛿2 − 1)

2
−
√[
2(𝛿2 + 1)
(𝛿2 − 1)

]
2

4
− 1 ≤ 𝑥 ≤

[
2(𝛿2 + 1)
(𝛿2 − 1)

]
2

2
+
√[
2(𝛿2 + 1)
(𝛿2 − 1)

]
2

4
− 1 
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which reduces to 

(𝛿 − 1)

(𝛿 + 1)
≤ 𝑥 ≤

(𝛿 + 1)

(𝛿 − 1)
 

Here, 𝛿 =
𝑣𝑙

𝑣𝑡
> 1, but the upper limit 

(𝛿+1)

(𝛿−1)
> 1. And since that regardless of the crystal anharmonicity, 

anisotropy and symmetry, the incoming phonon of a given wave vector cannot decay into phonons of 

larger wave vector; therefore 𝑥 is always ≤ 1. While 𝑥 > 0, this constraint holds true for the lower limit 

(𝛿−1)

(𝛿+1)
 of 𝑥 which is denoted as 𝑥0 by Tamura. 

We adapt the expression provided by Tucker and Rampton (1973) to model process 1: 

 
Γ1 =

ℏ𝑞9

32𝜋𝜌3𝜔
(2𝛽 + 4𝛾 + 𝜆

+ 3𝜇)2 ∫ ∫𝑑𝑥

1

−1

1

𝑥0

𝑥4(1 − 𝑥2)2

𝜔′ 𝜔′′(1 + 𝑥2 − 2𝑥 𝑐𝑜𝑠𝜃)
𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃𝜏(𝜔 − 𝜔′

− 𝜔′′)𝑑(𝑐𝑜𝑠𝜃) 

=
ℏ𝑞6

32𝜋𝜌3𝑣𝑙2𝑣𝑡
(2𝛽 + 4𝛾 + 𝜆

+ 3𝜇)2 ∫ ∫𝑑𝑥

1

−1

1

𝑥0

𝑥3(1 − 𝑥2)2

 𝑞′′(1 + 𝑥2 − 2𝑥 𝑐𝑜𝑠 𝜃)
 𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃𝜏(𝑞𝑣𝑙 − 𝑞

′𝑣𝑙

− 𝑞′′𝑣𝑡) 𝑑(𝑐𝑜𝑠𝜃) 5.37 

The argument of the Dirac-delta function is evaluated as follows 
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𝜏(𝑞𝑣𝑙 − 𝑞

′𝑣𝑙 − 𝑞
′′𝑣𝑡) = 𝜏(𝑞

′′𝑣𝑡 − (𝑞𝑣𝑙 − 𝑞
′𝑣𝑙)) =

1

𝑞𝑣𝑡
𝜏 (
𝑞

𝑞

′′

−
𝑣𝑙
𝑣𝑡
(1 −

𝑞

𝑞

′

))

=
1

𝑞𝑣𝑡
𝜏 (√(1 + 𝑥2) − 2𝑥 𝑐𝑜𝑠 𝜃 − 𝛿(1 − 𝑥)) 

5.38 

The argument of the Dirac-delta function goes to zero when 

 
𝑐𝑜𝑠𝜃 =

1 + 𝑥2 − 𝛿2(1 − 𝑥)2

2𝑥
 

5.39 

Eqn. 5.39 provides the expression of the angular displacement given by Leman (2012) [292]. 

By making the necessary substitutions in Eqn. 5.37, the decay rate of process 1 can thus be expressed as 

Γ1 =
ℏ𝜔5(2𝛽 + 4𝛾 + 𝜆 + 3𝜇)2

32𝜋𝜌3𝑣𝑙7𝑣𝑡2
(𝛿2

− 1) ∫𝑑𝑥

1

𝑥0

 
𝑥3(1 − 𝑥2)2

 (𝛿2(1 − 𝑥)2)3 2⁄
(1

− 𝑥)2
[(𝑥 + 1)2 − 𝛿2(1 − 𝑥)2][(1 + 𝑥2) − 𝛿2(1 − 𝑥)2]2

4𝑥2
 

Finally, 

 

Γ1 =
ℏ𝜔5

256𝜋𝜌3
(𝛿2 − 1)

𝑣𝑙9
(2𝛽 + 4𝛾 + 𝜆 + 3𝜇)2 ∫

𝑑𝑥(1 − 𝑥2)2

2𝛿𝑥(1 − 𝑥)

1

𝑥0

[(𝑥 + 1)2

− 𝛿2(1 − 𝑥)2][1 + 𝑥2 − 𝛿2(1 − 𝑥)2]2 5.40 

where 𝜌 is the mass density, 𝑥0 =
𝛿−1

𝛿+1
, 𝛿2 = (𝑣𝑙/𝑣𝑡)

2, 𝜆 and 𝜇 are the second-order Lame’s constants and 

𝛽 and 𝛾 are the third-order Lame’s constants which were provided in Ref. 136 as 
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 𝜆 = 1/5(𝐶11 + 4𝐶12 − 2𝐶44) 

𝜇 = 1/5(𝐶11 − 𝐶12 + 3𝐶44) 

𝛽 = 1/35(𝐶111 + 4𝐶112 − 5𝐶123 + 19𝐶144 + 2𝐶166 − 12𝐶456) 

𝛾 = 1/35(𝐶111 − 3𝐶112 + 2𝐶123 − 9𝐶144 + 9𝐶166 + 9𝐶456) 5.41 

The integrand in Eqn. 5.40 represents the probability density function for phonon distribution and depends 

strongly on the sound velocity of the incoming phonon mode and on the ratios of the initial and the final 

phonon wave vectors. 

b. Decay of process 2 

Here, 𝜔 = 𝑞𝑣𝑙, 𝜔
′ = 𝑞′𝑣𝑡 and 𝜔′′ = 𝑞′′𝑣𝑡. 𝑞

′′ is therefore expressed from Eqn. 5.24 as 

 𝑞′′ = (𝑞
𝑣𝑙
𝑣𝑡
− 𝑞′) 

5.42 

Now, we let 𝑥 =
𝑞′

𝑞
 and 𝛿 =

𝑣𝑙

𝑣𝑡
 and substitute for 𝑞′′ from Eqs. 5.24 and 5.42, we get 

 (𝛿 − 𝑥)2 = 1 + 𝑥2 − 2𝑥 𝑐𝑜𝑠𝜃 5.43 

Enforcing the conditions of 𝑐𝑜𝑠𝜃 and rearranging the above equation leads to the inequalities 

−1 ≤
(1 + 𝑥2 − (𝛿 − 𝑥)2)

2𝑥
≤ 1 

By solving the inequality on the LHS and the RHS we get the integration limits 𝑥1 and 𝑥2 as 

𝛿 − 1

2
≤ 𝑥 ≤

𝛿 + 1

2
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For process 2, the daughter TA phonons can have two types of polarizations: (a) simultaneous polarization 

within the plane spanned by 𝑞 and 𝑞′, (b) perpendicular to the plane spanned by 𝑞 and 𝑞′. Consequently, 

the two matrix elements in Eqn. 5.30 can be rewritten as 𝑀𝑎 and 𝑀𝑏, respectively. 

The argument of the delta functions for process 2 is evaluated as follows 

 
𝜏(𝑞𝑣𝑙 − 𝑞

′𝑣𝑙 − 𝑞
′′𝑣𝑡) = 𝜏(𝑞

′′𝑣𝑡 − (𝑞𝑣𝑙 − 𝑞
′𝑣𝑡)) =

1

𝑞𝑣𝑡
𝜏 (
𝑞

𝑞

′′

− (
𝑣𝑙
𝑣𝑡
−
𝑞

𝑞

′

))

=
1

𝑞𝑣𝑡
𝜏 (√(1 + 𝑥2) − 2𝑥 𝑐𝑜𝑠 𝜃 − (𝛿 − 𝑥)) 

5.44 

In this scenario, the argument of Dirac-delta function goes to zero when 

 
𝑐𝑜𝑠𝜃 =

2𝑥𝛿 + (𝛿2 − 1)

2𝑥
 

5.45 

The decay rate as a result of the simultaneous polarization can be written as 

𝛤2
𝑎 =

ℏ𝜔5

32𝜋𝜌3(𝑣𝑙
2𝑣𝑡)

3
∫ ∫𝑑𝑥

1

−1

𝑥2

𝑥1

𝑥([𝛽 + 𝜆 + 2(𝛾 + 𝜇)](𝑥 − 𝑐𝑜𝑠𝜃)2 − (𝛽 + 2𝛾 + 𝜇)𝑠𝑖𝑛2𝜃)2

(1 + 𝑥2 − 2𝑥 𝑐𝑜𝑠𝜃)3 2⁄

× 𝜏 (√(1 + 𝑥2) − 2𝑥 𝑐𝑜𝑠𝜃 − (𝛿 − 𝑥))𝑑(𝑐𝑜𝑠𝜃) 

Therefore, 

 

𝛤2
𝑎 =

ℏ𝜔5

32𝜋𝜌3(𝑣𝑙
2𝑣𝑡)3

∫ 𝑑𝑥

𝑥2

𝑥1

{[𝛽 + 𝜆 + 2(𝛾 + 𝜇)] [
2𝑥2 − 2𝑥𝛿 + (𝛿2 − 1)

2𝑥(𝛿 − 𝑥)3
]

+ (𝛽 + 2𝛾 + 𝜇)(𝛿2 − 1) [
4𝑥𝛿 − 4𝑥2 − (𝛿2 − 1)

4𝑥2(𝛿 − 𝑥)3
]} 

5.46 

Similarly, the decay rate as a result of the perpendicular polarization can be written as 
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𝛤2
𝑏 =

ℏ𝜔5

32𝜋𝜌3(𝑣𝑙
2𝑣𝑡)3

∫ ∫𝑑𝑥

1

−1

𝑥2

𝑥1

𝑥[(𝛽 + 𝜆)(𝑐𝑜𝑠𝜃 − 𝑥) + 2(𝛾 + 𝜇)(1 − 𝑥𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜃]2

(1 + 𝑥2 − 2𝑥 𝑐𝑜𝑠𝜃)1 2⁄

× 𝜏 (√(1 + 𝑥2) − 2𝑥 𝑐𝑜𝑠𝜃 − (𝛿 − 𝑥))𝑑(𝑐𝑜𝑠𝜃) 

Therefore, 

 

𝛤2
𝑏 =

ℏ𝜔5

32𝜋𝜌3(𝑣𝑙
2𝑣𝑡)3

∫
𝑑𝑥

4𝑥(𝛿 − 𝑥)
{(𝛽 + 𝜆)(2𝑥𝛿 − (𝛿2 − 1) − 2𝑥2)

𝑥2

𝑥1

+ 2(𝛾 + 𝜇) (
2 − 2𝑥𝛿 + (𝛿2 − 1)

2
)(2𝑥𝛿 − (𝛿2 − 1))}

2

 
5.47 

Finally, 𝛤2 = 𝛤2
𝑎 + 𝛤2

𝑏  

5.6.3 Discussion 

Measurements on the decay times could be very instructive in gaining an insight of the phonon coupling 

mechanisms with direct implications to studying the anharmonicity, the elastic moduli and the decay rates 

depending on temperature. In our calculations, we assume that the dephasing of phonons happens only 

through a three-phonon process. While we restrict our attention to the quasi-isotropic wurtzite nitride 

solids, in Table 9, we provide the constants used in our numerical calculations for all the materials 

considered here anyway. 

In our numerical presentation, we calculate the phonon density function at 8 THz which are described as 

a characteristic function for the anisotropic medium for III-nitrides as shown in Fig. 33. The area under 

the characteristic function for each decay branch represents the relative probability for this type of decay 

process to occur. The decay rates as a function of the phonon frequencies are then numerically calculated 

and plotted in Fig. 34. It is clear from Figs. 33 and 34 that the decay of process 2 dominates the full 
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spectrum. To evaluate a sample of the branching ratios of each process, we tabulate the calculations 

undertaken at 8 THz where the acoustic phonons in the nitride structures have a high density of states in 

the dispersion relation as shown in the bottom diagram in Fig. 34. 

The decay rate depicted in Fig. 34 is governed by the existence of the density of the initial mode and the 

population of the final modes but, unlike in the determination of specific heat, the decay rates depend on 

the frequency – and not on the population of the phonons at any given frequency region. To illustrate, if 

we consider the frequency range of 5 – 6 THz (7 – 8 THz), we find that AlN has smaller (larger) DOS 

Table 9. Constants used in the present decay rates calculations. 

 GaN AlN InN h-BN w-BN 

𝒇 0.729 0.833 0.308 ≪ 0.1 0.814 

𝝀 (𝑵/𝒎𝟐) 1.128 1.213 1.125 2.663 1.484 

𝝁 (𝑵/𝒎𝟐) 1.158 1.222 0.575 1.088 4.024 

𝜷 (𝑵/𝒎𝟐) −2.103 −4.283 −1.266 −0.509 - 

𝜸 (𝑵/𝒎𝟐) −0.4045 −0.4492 −0.3216 −0.1138 - 

𝒗𝒍 (𝒌𝒎/𝒔) 7.87 11.9 5.79 18.55 16.78 

𝒗𝒕 (𝒌𝒎/𝒔) 3.97 5.57 2.893 1.173 10.55 

𝜹 1.982 2.136 2.001 15.814 1.591 

𝝆 (𝟏𝟎𝟑𝒌𝒈/𝒎𝟑) 6.154 3.255 6.81 2.18 3.487 
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than GaN and yet, in both cases, the decay rates follow the same pattern. Fig. 34 shows that the decay rate 

in AlN is about 5.7 times higher than the rate in GaN of process 1 and 1.6 times higher than the rate in 

GaN of process 2. The rates show that the new generation of acoustic phonons in GaN and AlN have 

 

Fig. 33. Probability density function at 8 THZ for phonon distribution in GaN (top) and AlN (bottom). 

The red curves depict the characteristic functions for process 1 and the blue curves depict the 

characteristic functions for process 2. 
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longer lifetimes than optical phonons, which are known to have lifetimes in the order of picoseconds (table 

10). 

We should note that these results are a modified form of those given by Tamura in 1985 in which, for 

process 1, the 𝑥2 term in the denominator is replaced by 2𝛿𝑥(1 − 𝑥) in our calculations, and for process 

 

Fig. 34. The top figure represents the decay rate of LA phonons as a function of the phonon frequency 

for GaN and AlN calculated for the directions [100] and [001]. The bottom figure represents the 

phonon density of states for LA phonons calculated at the range of 5 – 10 THz. 
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2, instead of one equation, we provide two formulas to explicitly describe the two polarization conditions 

for the outgoing TA phonons; the numerical integration shows that the two formulations yield decay rates 

within a factor of 2 or less of each other. Our results verify the 𝜔5 dependence as confirmed by previous 

efforts including the work by Tua (1982) in which he mentions that 𝜔5 dependence is actually valid for 

anisotropic solids [293]. 

It is of interest to compare the spontaneous decay rates with different propagation directions to remark on 

the degree of anisotropy of the GaN and AlN crystals studied here. The anharmonic decay rates for the 

[100] and [001] directions are thus plotted in Fig. 34. We conclude that the anisotropy of both crystals has 

negligible effects on the acoustic phonon interaction in GaN and AlN. As opposed to the work of Tua and 

Mahan (1982) who have reported a greater discrepancy in the anharmonic lifetimes in CaF2 in the 

directions [100] and [111] which has been attributed to the fact that CaF2 crystal exhibits obvious 

anisotropic characteristics in those directions [294]. 

5.7 Summary 

Compared to the velocity of pure GaN, the acoustic phonon velocity increases significantly upon 

increasing the AlN component compared to GaN in the superlattice as shown in Table 2. Importantly, the 

Table 10. Calculated decay rates at 8 THz. 

 𝚪𝟏(%) 𝚪𝟐(%) 𝚪𝑻 (𝒔−𝟏) Decay time (𝝁s) 

GaN 9.32 90.68 2.21 × 106 0.45 

AlN 27.33 72.67 4.32 × 106 0.23 
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acoustic phonon velocity is enhanced by the piezoelectric stiffening. These results indicate that phonon 

engineering of the superlattice phonons may be used to enhance heat transport in high quality superlattices 

with negligible interfacial roughness. Such engineered superlattices portend applications in reducing 

temperatures in critical components of electronic and optoelectronic devices through judicious placement 

of the superlattices. 

The anharmonic term in the nonlinear elasticity theory suggests that the longitudinal acoustic phonon will 

dephase into two lower-energy phonons. In this thesis, we have developed computational techniques for 

a study of the decay channels of longitudinal acoustic phonons in quasi-isotropic III-nitrides by taking the 

spatial anisotropy into account [295]. We find that the nitride crystals exhibit decay rates in the range of 

105 – 107 s-1 and almost all of the down-conversion process is associated with the LA → TA + TA channel. 

Our estimates show that the anisotropy of GaN and AlN crystals have minimum effects on the decay rates 

which reveals a great degree of accuracy of the model presented herein when used for quasi-isotropic III-

nitrides in their wurtzite phase. 
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Chapter 6 

Modeling of ISFET for biosensing applications 

6.1 Introduction 

Because of their unique properties, including mechanical flexibility, single crystal nature and high-surface 

areas, nanowire transistors are considered as great candidates for many industrial applications. More 

specifically, nanowire Ion Sensitive Field Effect Transistors (IFETs) have been shown to possess very 

high sensitivities and limits of resolution suitable for bio-sensing applications [296]. Until now, efforts 

have been made to analyze the ion adsorption at the SiO2 interface of ISFET [297], explain pH sensitivity 

[298] and the use of ad hoc based simulation programs to understand the effects of the physical parameters 

of silicon nanowire ISFETs to evaluate their performance [299]. Since successful application of ISFET in 

DNA sequencing [300], ISFETs have been applied for numerous biological sensing applications and have 

been well-integrated into the CMOS technology [301]. Thus, it has become desirable to perform precise 

and diverse numerical device simulations in TCAD to be able to support ISFET designing, extract its 

corresponding circuit parameters and perform device/IC analyses. Though commercial TCAD is not 

equipped with models for the complex and material dependent electrochemical processes that govern the 

ISFET operation, Bandiziol et al. (2015) have proposed an approach to describe, in commercial TCAD, 

the chemical reactions that occur at dielectric/electrolyte interface and make ISFET sensitive to pH [302]. 

This chapter seeks to perform TCAD simulations of Silicon nanowires based ISFET devices in biosensing 

scenarios. Site-binding model for biosensing together with quantum corrected model for electronic 

transport will be used to simulate characteristics of nanowire ISFETs to validate the actual fabricated 

devices. 
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6.2 Simulation of site-binding model in TCAD 

The goal of this work is to revisit methodologies for isothermal DNA amplification and adapt them to 

non-buffered, or limited buffering, pH conditions. The extension of DNA operated by polymerases results 

in the production of H+ ions which can be harnessed to monitor and quantify DNA amplification [303]. 

This approach is currently exploited in many platforms for next-generation sequencing and is currently 

gaining momentum as an alternative to optical-based strategies [304]. This project, which took place in 

the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, involves building knowledge 

on isothermal methodologies for DNA amplification, establishing in vitro DNA amplifications and 

adjusting reactions to minimize or remove pH buffering which cancels out polymerase-derived pH 

changes. Pilot semiconductor devices provide a powerful tool to assessing the pH of reactions. In EPFL, 

ISFET devices in multi-nanowire configuration were being used for the purposes of DNA amplification 

detection and quantification. 

Bandiziol et al. (2015) provided a strong foundation on implementing site-binding model in TCAD. 

Working on the TCAD structure, we have realized it is quite challenging to implement electrolyte model 

in commercial Sentaurus TCAD environment, due to lack of in-built models. The devices were fabricated 

in Laboratoire d'électronique des technologies de l'information (CEA-Leti) in Grenoble, France. 

Therefore, TCAD simulation of multi-wire ISFETs will complement the results that are expected from 

the fabricated devices. Therefore, throughout this segment, we present a method of implementing site-

binding model for 3D simulations in TCAD. We employ the powerful Sentaurus TCAD environment to 

simulate MOSFET devices in Sentaurus structure editor (SDE) and use basic SDEVICE tool to simulate 

I-V characteristics of MOSFET devices. We use INSPECT tool in TCAD to efficiently view the xy plots 

and doping profiles. We also simulate the characteristics of multi-wire ISFET devices and verify the 

parameters of the nanowire devices in different simulation tools such as nanoHub. The ISFET is simulated 
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for its gate and drain characteristics which was achieved by applying a set of voltage biases and sweeping 

the biases from one point to another. 

The TCAD script developed to simulate the FET structure is available in Appendix D. The ID -Vg curve is 

shown in Fig. 34 while Fig. 35 presents the output characteristics of 150 nm FET. We have only considered 

p-type ISFET in this chapter with bulk doping using boron. The simulation results are in good agreement 

with the results presented by Chen et al. (2012) [305] and Iwai et al. (2011) [306]. 

6.3 Electrolyte modeling in nanoHUB 

The use of field-effect transistor devices to detect changes at the interface due to adsorption of charged 

species has started way back in the seventieth. Due to their reliability, low-power consumption, high 

molecule detection range and low-frequency noise, ISFET has become more attractive recently for many 

applications in industry and biomedical studies [301]. 

Among many applications, ISFET is used for detecting ion concentrations such as H+ in solutions. The 

current traveling through the transistor will change in accord to the change in the ion concentration [307]. 

Here, the H+ solution is utilized as the gate electrode. An ion envelope causes a voltage difference between 

substrate and oxide surfaces. Electrons supplied by the source region and the drain region is needed to 

make electrons flow. This flow constitutes drain current ID, and the gate voltage controls the number of 

electrons. 

ISFET operates by accumulating H+ from solution gate. The positive charge of the gate is mirrored on the 

inner side of semiconductor where a channel of negative charge occurs, hence, making ISFET conductive. 

The lower the pH the more H+ accumulates and the more current flows between source and drain. 
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Fortunately, development of pH-sensitive FET models have been carried out [308]. Researchers applied 

the electrochemical stage in the electrolyte to calculate the current flow through the channel. After a bit 

of algebra, it has been indicated that the pH response of the surface oxide can be obtained by 

𝐶𝑆 (𝐶𝑆 + 𝐶𝑑𝑙)⁄ , where 𝐶𝑆 is the buffer capacitance and 𝐶𝑑𝑙 is the double layer capacitance. These 

calculations demonstrate a dimensionless parameter that varies between 0 and 1, therefore, suggesting a 

maximum pH response of 59.5 mV/pH at 300K known as the Nernst limit [309]. The condition of 

𝐶𝑆 (𝐶𝑆 + 𝐶𝑑𝑙)⁄ = 1 is not fulfilled by all gate oxides; for instance, SiO2 has a small surface buffer 

capacitance, therefore, ISFETs with SiO2 as gate oxide achieve typically a pH response of ∼ 30mV/pH 

[310], whereas ISFETS employing Al2O3 or HfO2 can exhibit the full Nernst pH response at 300 K [311]. 

Fig. 38 provides the IDS/VGS transfer characteristic with changing pH measured at VDS = 0.5 V in our 

proposed ISFET. We observe that the threshold voltage of ISFET varies with different pH values. This 

variation in threshold voltage is nonlinear, which is an indication of varying sensitivity of the device per 

pH input. The threshold voltages of this device increased with the increased pH. 

6.4 Summary 

In this chapter, we have presented a comparative analysis of Silicon Nanowires based Ion Sensitive Field 

Effect Transistor (ISFET)-based pH sensors implemented with the help of TCAD simulation. Based on 

the results obtained from the pH response analysis we can determine whether the ISFET sensor has 

potential for commercialization and biosensing applications. Several diagrams were introduced to explain 

the electrical characteristics and pH response of the ISFET sensor. Based on pH input, the output 

characteristics are shown to be varying because of change in threshold voltage of ISFET. Site-binding 

model for biosensing together with quantum corrected model for electronic transport were used to simulate 

characteristics of nanowire ISFETs to validate the actual fabricated devices. 
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Table 7. Simulation parameters of FET. 

L W H Tox Radius Channel doping Bulk doping 

150 nm 50 nm 50 nm 0.8 nm 5 nm 1016 cm-3 (Boron) 1015 cm-3 (Boron) 

 

Fig. 35. TCAD structure of 150 nm NW MOSFET. 

 

Fig. 36. Cross section of the doping profiles in 150 nm NW MOSFET structure. 
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Fig. 37. Drain current versus gate voltage curve. VG was swept up to 0.8 V (green, light blue, 

magenta) and up to 1 V (red, dark blue, orange) for drain voltages 0.1, 0.5 and 1V. 

 

Fig. 38. Output Characteristics of ISFET drain current as a function of the drain voltage. The 

simulation was repeated for VD values of 0.1 (red, dark blue, magenta) and 0.5 V (green, light blue, 

orange) with three VG values of 0.1, 0.5 and 1 V. 
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Table 8. Geometrical parameter for electrolyte simulation. 

Channel length Film thickness Box thickness Insulator Electrolyte 

200 nm 20 nm 100 nm SiO2 NaCl 

 

Fig. 39. Schematic diagram of ISFET sensor. 

 

Fig. 40. ISFET sensitivity analysis curve with 𝐼𝐷 = 2.56027𝜇𝐴. 
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5Chapter 7 

Future work and concluding remarks 

7.1 Elementary work 

Throughout this thesis, we have provided a theoretical analysis of the distances of the elongated hot spots 

in several nitride based heterostructures using our thickness optimization method by incorporating a QW 

in the hot spot region to cause the production of high-velocity interface phonons that travel along the 

heterointerface and emit heat carrying acoustic phonons over an elongated region causing reduction in the 

hot spot temperature. Experimental and related diagnostics procedures require the fabrication of quantum 

wells in the channel of a select-group of III-V nitride transistor channels, the creation of Ohmic contacts 

and performing Raman measurements to detect the frequency peaks for the generated optical phonons. To 

generate the interface phonons useful for heat removal, the experiment needs to probe in-plane distribution 

of hot spot region which might involve using optothermal or electrical technique to measure in-plane 

phonon dynamics. 

Two samples (Sample 1 and Sample 2) of GaN/AlN superlattice used for this study were epitaxially grown 

on sapphire substrates. First, the samples were cut with a diamond scriber, the substrate then was diced 

and cleaned with acetone, Isopropyl Alcohol (IPA)/deionized (DI) water. Sample 1 was unetched whereas 

Sample 2 was etched by applying reactive ion etching (RIE) technique. For both samples, series positive 

 
5 The author would like to thank Bo Hsu and Sidra Farid with the Nanoengineering Research Laboratory at the 

University of Illinois at Chicago for their efforts in fabricating the samples discussed in this chapter. 
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photoresist (S1811) system was applied with a spin coating uniformity of 3000 rpm for 30 seconds with 

soft bake done at 115
o

C for 60 seconds. 

For Sample 2, the etchers are load lock equipped, high vacuum chambers with an etch process pressure of 

240mTorr. Gas mixtures of H2/CH4/Cl2 with a mixing ratio of 5/10/30 was developed at 100W power. It 

appears that the sample is difficult to etch with reactive plasma than other common materials in IC 

technology. While the RIE recipe with Pure Cl2 was also tested on a different substrate, the etch rate 

remains low and not measurable by profilometer. If the process parameters are not proper, their etching 

rates might be lower than those of mask materials used for etching; therefore, the low volatility of the 

etchants produce low etching rates, gradual sidewall slopes of the etched samples and accumulation of 

residues on the etched structures [312]. 

 

Fig. 41. Schematic of a 1 cm GaN/AlN superlattice chip. The pattern on the right is drawn using 

AUTOCAD. 
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In the film deposition process, the solution of ZnO nanoparticles was drawn with a syringe and applied 

on top of the device substrate through a 0.2 μm pore size PTFE membrane syringe filter. This solution 

was spin-cast at 2000 rpm for 30 seconds, and the substrate was annealed on a hot plate at 825oC for 30 

seconds to obtain Ohmic contact. 

Etch mask patterning for Sample 2 was generated using Laser writer LW405 system with lens 4 used or 

focusing. For beam control, we use 3% filter and beam gain of 7.8 while a proper D-step value is set to 2. 

The same settings were used for contact pattering samples 1 and 2. Both samples were developed using 

351 developer for 30 seconds and then inspected. After development, the mask plates were rinsed in DI 

water to ensure that no solution is remaining. 

 

Fig. 42. Optical microscope images for Sample 2 (taken by Bo Hsu). 
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Sample 2 was immersed in Nanostrip solution (H2SO4 + H2O2) for 60 seconds. The thinned PI precursor 

was spin-coated on top of an assembled QD-LED device at 3000 rpm for 30 seconds. Using the patterned 

photoresist as an etching mask, the layer was etched with plasma reactive ion etching with 100 W and 

process pressure of 170mTorr for 60 seconds. Samples 1 and 2 were selectively etched by reactive ion 

etching with Ti/Al/Au for making electrical contacts to the metal electrodes. Ti/Al/Au with a flow rate of 

Ti 1Å/s, Al 1.5Å/s, Au 1Å/s and RF power of 100 W for 10 min. The masking photoresist layer was 

subsequently removed by acetone rinsing. This metal deposition process was carried out by electron beam 

evaporator for both samples. 
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Fig. 43. I–V Characteristics of Sample 2 after thermal anneal (plotted by Bo Hsu). 
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Finally, the substrate of sample 2 was annealed via rapid thermal annealing process in a vacuum oven at 

200 °C for 1.5 h. 

7.2 Future outlook 

The theories discussed and the results obtained in this thesis require further development and experimental 

support. Many challenges mainly represented in realizing the proposed structures primarily in chapters 3 

and 5. Herein, we discuss examples of unresolved issues and recommendations for future directions as 

follows: 

• A promising future direction is to design and order a GaN FET-like structure and study the impact of 

changing the gate voltage on the device performance by fabricating samples with different gate 

lengths. Moreover, etching the substrate of the sample more accurately may considerably help with 

the Raman signals, since it has been a very likely scenario that the laser would only detect the sapphire 

signals and not the superlattice signals. 

• The influence of an electric field on the scattering phenomena is not studied sufficiently. For further 

research, we need not only precise results of numerical calculations for energy dependence, but also 

detailed results of field dependence of the scattering rate. 

• The transport of optical phonon modes and the decay channel is a particularly interesting field since 

the LO phonon decay mechanism is proving to be a rather complex problem. Because the Joule heat 

can only be removed by acoustic phonons, the acoustic phonons must be involved in the process and 

in the phonon decay mechanisms. Considering energy conservation alone allows the conversion of an 

LO phonon into four acoustic phonons, but this process is unlikely as five particles must partake in 

this event. Other phonon conversion schemes such as LO into TO + TA/LA do not seem to explain 

fully the experimentally observed dependence of the hot phonon decay/lifetime on the electron 
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density. Screening of the conversion potential by electrons would lead to an increase in the lifetime 

with increasing electron density, which disagrees with the experimental observations. Rather, the data 

show the hot phonon lifetime to be decreasing with electron concentration as suggested by electron-

assisted decay process of LO phonons into acoustic phonons. The obvious conclusion is that more 

refined investigations are needed to clarify the hot phonon decay channels involved in the LO phonon 

decay channels. 

• A potential future direction is a detailed study of the different mismatch models since the interface 

between dissimilar materials, densities and sound speeds result in a mismatch in the acoustic 

impedances. Such models include the acoustic mismatch model (AMM) and the diffuse mismatch 

model (DMM). As pointed out by Brendel et al. (2017) [313] and Kazan (2011) [314], these models do 

not work very well. In practice, people mix both models but that is subject to uncertainties about how 

much scattering is spectral (AMM) and how much is diffuse (DMM). If we focus on high quality 

interfaces like GaN-AlGaN and GaN quantum dots on AlN, that are free of misfit dislocations, the 

scattering of heat-carrying acoustic phonons is mostly spectral and it is easy to arrange for most of the 

scatter phonons to be scattered into the forward direction; that is, we have low thermal boundary 

resistance. However, if we have a likely rough surface like GaN-SiC, we expect diffuse scattering in 

many directions, which enhances the probability of backscattering that corresponds to unwanted high 

thermal boundary resistance. 

• To the best of our knowledge, the growth of a high-quality GaN/AlN superlattice remains an 

outstanding question. 

7.3 Concluding remarks 

III-nitride semiconductors are technologically important materials and as a result of their large bandgap 

energies, they are suitable for the optoelectronic intersubband devices ranging from the ultraviolet to the 



 139 

near infrared. Nowadays, they are widely used, for instance in lighting applications, including GaN-based 

white light emitting diodes or in blue-ray players, which rely on GaN-based laser diodes. They can also 

endure high electric power densities and high breakdown voltages, which makes them materials of interest 

for high-power, high-frequency electronics applications. The purpose of this research has been to exploit 

the potential of group-III nitrides AlN, GaN, InN and their alloys for applications in the electronic and 

optoelectronic device technology and characterize their structural and mechanical properties. 

We started this thesis by going through the developments in theory, experiments and computations that 

have occurred in the past few years and summarizing the current status and the challenges of the field. We 

verified, throughout this thesis, that phonon interactions are tailored by the effects of dimensional quantum 

confinement on the phonon modes in the nanostructure. The thesis also provided a review for the 

mechanism of anharmonic decay of optical phonons in different systems, since phonon decay is pertinent 

from a thermal perspective as devices must efficiently dissipate heat to maintain operating temperatures. 

We emphasized thermal transport in nanostructures, in which heat is transported by electron-phonon 

carrier relaxation. The innovative generation and use of propagating heat-creating interface phonons 

emitted by hot electrons in wurtzite nitride materials is exploited to elongate the unwanted hot spot region 

thereby reducing the temperature of the hot spot. Therefore, we have developed a numerical model to 

calculate the rates for interface optical phonon emission from hot electrons and have applied these results 

to model the dimensional elongation of hot spots in binary and ternary electron device structures. The 

results show that the use of a thin layer as a well in HEMT structures of facilitates the reduction of hot 

spot temperatures in different useful electronic and optoelectronic devices. To effectively dissipate this 

energy, optical phonon modes must decay into acoustic modes with a high group velocity at a rate 

appropriate with the Joule energy supplied to the structure. Lack of necessary fast phonon transformations 
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leads to temperature increase in the device, leading to subsequent prolonged overheating which leads to 

reductions in performance and reliability. 

Finally, the thesis concluded by providing a detailed investigation of acoustic phonon modes in a grounded 

thin conducting film. Within the context of the elastic continuum model, the BG modes were analytically 

analyzed in nanoscale SAW devices in terms of phonons.  
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Appendix A 

This section demonstrates the D(q,ω) for the confined and interface modes. 

For the case of confined phonon modes 

We have DC(q, ω) =
𝑓2

F
⁄ . By rearranging Eqs. 3.33 and 3.34 given in chapter 3 

 𝑓

= A2 [
cos2(k1

d
2
) cos(αqd)

k2 + βq

+
[sin(αqd) cos(k1d) + sin(αqd)]q

2α2 − αqk1 cos(αqd) sin(k1d) − k1
2 sin(αqd)

2αq(α2q2 − k1
2)

] 

= A2 [
cos2(k1

d
2) cos(αqd)

k2 + βq

+
[2 cos2(k1

d
2) α

2q2 − k1
2] sin(αqd) − αqk1 cos(αqd) sin(k1d)

2αq(α2q2 − k1
2)

] 

A.1 

 

We also recall Eqn. 3.35 from chapter 3 that sin(αqd) =
−μ
ξ2

ξ1
⁄

√1+(
ξ2

ξ1
⁄ )

2
, and cos(αqd) =

−1

√1+(
ξ2

ξ1
⁄ )

2
 

Substitute for 𝑓 in Eq. A.1 
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𝑓 =
A2

√1 + (
ξ2
ξ1
⁄ )

2

[
− cos2(k1

d
2)

k2 + βq
+
[2 cos2(k1

d
2) α

2q2 − k1
2] (−μ

ξ2
ξ1
⁄ ) + αqk1 sin(k1d)

2αq(α2q2 − k1
2)

] 

A.2 

with A2 =
1

cos(k1d) sin(k1d)

k1
+
d

2
+
cos2(k1

d
2
)

k2

, 

remember that 𝑠𝑖𝑛 2(𝑥) = 2 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑥) and 𝑠𝑖𝑛ℎ 2(𝑥) = 𝑠𝑖𝑛ℎ(𝑥) 𝑐𝑜𝑠ℎ(𝑥), 

 
A2 =

1

sin(k1d)
2k1

+
d
2
+
cos2(k1

d
2)

k2

= Υ2 
A.3 

 

𝑓2 =

[
 
 
 
 
 
 

Υ2

√1+ (
ξ2
ξ1
⁄ )

2

[
− cos2(k1

d
2)

k2 + βq

−
2 cos2(k1

d
2) α

2q2μ
ξ2
ξ1
⁄ + k1

2μ
ξ2
ξ1
⁄ + αqk1 sin(k1d)

2αq(α2q2 − k1
2)

]

]
 
 
 
 
 
 
2

 

A.4 

Further rearranging Eqn. A.4 gives 
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𝑓2 =

[
 
 
 
 
 
 

Υ2

√1 + (
ξ2
ξ1
⁄ )

2

(α2q2 − k1
2)

[cos2(k1
d

2
) (
(−α2q2 + k1

2)

k2 + βq
− αqμ

ξ2
ξ1
⁄ ) +

k1
2μ
ξ2
ξ1
⁄

2αq

+
1

2
k1 sin(k1d)]

]
 
 
 
 
 
 
2

 

A.5 

Now, let us workout the denominator 𝐹: 

Starting from the form factor given by Komirenko et al. (2000) 

 F = cos2(αqd) ξ(β)+ + αqdξ(α)+ + sin(αqd) cos(αqd) ξ(α)− 

=
1

1 + (
ξ2
ξ1
⁄ )

2 ξ(β)
+ + αqdξ(α)+ +

μ
ξ2
ξ1
⁄

1 + (
ξ2
ξ1
⁄ )

2 ξ(α)
− 

A.6 

We finally obtain DC(q, ω) =
𝑓2

F
⁄  by dividing Eq. A.4 and Eq. A.6 

DC(q,ω)

= [
 
 
 
 
 
 

Υ2

√1 + (
ξ2
ξ1
⁄ )

2

(α2q2 − k1
2)

[cos2(k1
d
2) (

(−α2q2 + k1
2)

k2 + βq
− αqμ

ξ2
ξ1
⁄ ) +

k1
2μ
ξ2
ξ1
⁄

2αq +
1
2 k1 sin

(k1d)]

]
 
 
 
 
 
 
2

1

1 + (
ξ2
ξ1
⁄ )

2 ξ(β)
+ + αqdξ(α)+ +

μ
ξ2
ξ1
⁄

1 + (
ξ2
ξ1
⁄ )

2 ξ(α)
−
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= [
 
 
 

Υ2

(α2q2 − k1
2)
[cos2(k1

d
2) (

(−α2q2 + k1
2)

k2 + βq
− αqμ

ξ2
ξ1
⁄ ) +

k1
2μ
ξ2
ξ1
⁄

2αq +
1
2 k1 sin

(k1d)]

]
 
 
 
2

ξ(β)+ + αqdξ(α)+
(ξ1
2 + ξ2

2)
ξ1
2⁄ + μ

ξ2
ξ1
⁄ ξ(α)−

 

 DC(q, ω)

=

[
Υ2

(α2q2 − k1
2)
[cos2(k1

d
2) (

(k1
2 − α2q2)
k2 + βq

ξ1 − αqμ
ξ2
ξ1
⁄ ) +

k1
2μξ2
2αq +

1
2 ξ1k1 sin

(k1d)]]

2

ξ1
2ξ(β)+ + αqdξ(α)+(ξ1

2 + ξ2
2) + μξ1ξ2ξ(α)−

 
A.7 

Comments 1 

We took 𝑛 to be odd in sin(αqd) = sin (nπ + arctan μ
ξ2
ξ1
⁄ ) which gives the minus sign in Eqs. A.5 

and A.6. 

Starting From the values given in Chapter 3: 

 

cosh(αqd) = √
ξ1
2

ξ1
2 − ξ2

2 =
ξ1

√ξ1
2 − ξ2

2
 

sinh(2αqd) = 2 sinh(αqd) cosh(αqd) →
2ξ1ξ2
ξ1
2 − ξ2

2 = 2 sinh(αqd)
ξ1

√ξ1
2 − ξ2

2
 

sinh(αqd) =
±ξ2

√ξ1
2 − ξ2

2
 

A.8 

± can be represented by the odd function μ which is a sign function, just as we did in confined phonon 

case. 

For the case of interface phonon modes 

We use the same procedure for DIF(q, ω) starting from the scattering rate in wurtzite sheet, page 13: 
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𝑓2 =

[
 
 
 

Υ2 [
cos2(k1

d
2) cosh(αqd)

k2 + βq

+
[2 cos2(k1

d
2) α

2q2 + k1
2] sinh(αqd) + αqk1 cosh(αqd) sin(k1d)

2αq(α2q2 + k1
2)

]

]
 
 
 
2

 

A.9 

And 

 F = cosh2(αqd) ξ(β)+ + αqdξ(α)− + sinh(2αqd)ξ(α)+ A.10 

The sign function μ appears on the final equation, however, it is missing from Eqs. A.9 and A.10. As 

mentioned in the comments, μ ,after being added, will switch the sign of any term that contains sinh(x) 

as it is an odd function while cosh(x) is an even function. Please see Comments 2 to corroborate the 

procedure of the addition of μ to Eqn. A.9 with the above words. 

Now, we substitute for hyperbolic functions from Eqn. A.8 then divide Eqn. A.9 by Eqn. A.10 

 

DIF(q, ω) = [
 
 
 

Υ2

(α2q2+k1
2)
[cos2(k1

d

2
)(
α2q2+k1

2

k2+βq

ξ1

√ξ1
2−ξ2

2
−2αqμ

ξ2

2√ξ1
2−ξ2

2
)−

k1
2μ

2αq

ξ2

√ξ1
2−ξ2

2
+
1

2
k1 sin(k1d)

ξ1

√ξ1
2−ξ2

2
]

]
 
 
 
2

ξ1
2

ξ1
2−ξ2

2ξ(β)
++αqdξ(α)−−

2ξ1μξ2

ξ1
2−ξ2

2
ξ(α)+

2

  

A.11 

Multiply and divide Eqn. A.11 by ξ1
2 − ξ2

2 which becomes √ξ1
2 − ξ2

2 inside the square 

 DIF(q, ω)

=

[
Υ2

(α2q2 + k1
2)
[cos2(k1

d
2) (

α2q2 + k1
2

k2 + βq
ξ1 − 2αqμξ2) −

k1
2μξ2
2αq +

1
2 k1ξ1 sin

(k1d)]]

2

ξ1
2ξ(β)+ + αqdξ(α)−(ξ1

2 − ξ2
2) − μξ1ξ2ξ(α)+

 

A.12 
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Comments 2 

In order to find the value of sinh(2αqd), we start from the expression sinh(2αqd) = sinh (nπ +

arctanh μ
ξ2
ξ1
⁄ ), and applies the same procedure for sin(αqd). Remember to take 𝑛 to be odd again. 

We have 𝑎𝑟𝑐𝑡𝑎𝑛ℎ(𝑥) = (
1

2
) (𝑙𝑛(1 + 𝑥) − 𝑙𝑛 (1 − 𝑥)) 

arctanh(μ
ξ2
ξ1
⁄ ) =

1

2
[ln (

ξ1 − μξ2
ξ1

) − ln (
ξ1 + μξ2
ξ1

)] =
1

2
ln (

ξ1 − μξ2
ξ1 + μξ2

) 

We know that 𝑠𝑖𝑛ℎ(𝑙𝑛(𝑥)) =
𝑥

2
−

1

2𝑥
 

sinh(2αqd) = sinh (ln(
ξ1 − μξ2
ξ1 + μξ2

)) =
1

4
(
ξ1 − μξ2
ξ1 + μξ2

−
ξ1 + μξ2
ξ1 − μξ2

)

=
1

4

ξ1
2 − 2μξ1ξ2 + ξ2

2 − (ξ1
2 + μξ1ξ2 + ξ2

2)

ξ1
2 − ξ2

2 =
1

4
(
−4μξ1ξ2
ξ1
2 − ξ2

2 ) 

Note that in (ξ1 + μξ2)(ξ1 − μξ2), μ × μ will always result in +1 (μ only takes two values -1 and 1). 

sinh(2αqd) =
−μξ1ξ2
ξ1
2 − ξ2

2  

We can then use this value to find sinh(αqd) =
−μξ2

√ξ1
2−ξ2

2
 and cosh(αqd) =

ξ1

√ξ1
2−ξ2

2
, just as we did in the 

confined case, with μ included. Then, we go back to Eqs. A.9 and A.10 and substitute for the hyperbolic 

functions with these new values.  
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Appendix B 

The following code is used to plot the scattering rates of phonons. Comments to explain the routes are 

added in the code. The script can be described as follows: 

1) Two functions were defined for the dispersion relations in chapter 3 for the interface and confined 

phonon modes. 

2) The general code that includes the scattering rate equation. 

3) A script to solve the electron wave function parameters k1 and k2 since their values change with 

changing the quantum well thickness d which is defined in the full code script. 

Function for interface modes 

function [qIF,wIF,VgIF,Wk_emi,Wk_abs,dWk_emi] = 

KP_IF(TOLO,w,w1,w2,eps_ 1,eps_ 2,Ek_eV,E0,k1,k2) 

global hbar0 q0 kBT c0 aB m d 

         

e1z = eps_ 1*(w.^2-w1.Lz^2)./(w.^2-w1.z^2); 

e1t = eps_ 1*(w.^2-w1.Lt^2)./(w.^2-w1.t^2); 

e2z = eps_ 2*(w.^2-w2.Lz^2)./(w.^2-w2.z^2); 

e2t = eps_ 2*(w.^2-w2.Lt^2)./(w.^2-w2.t^2); 

 

xi1 = sqrt(abs(e1z.*e1t)); 

xi2 = sqrt(abs(e2z.*e2t)); 

 

alpha = 0.5*sqrt(abs(e1t./e1z)); 

beta = 0.5*sqrt(abs(e2t./e2z)); 

 

if strcmp(TOLO,'TO') 

    q = 0.5*log ((xi1+xi2)./(xi1-xi2))./(alpha*d); 

    iq = find(imag (q)~=0,1)-1; 

    q = real(q); 

    q_sym = q(1:iq); 

    q_asym = q(iq+1:end); 

    w_sym = w(1:iq); 

    w_asym = w(iq+1:end); 

elseif strcmp(TOLO,'LO') 

    q = 0.5*log ((xi1+xi2)./(xi1-xi2))./(alpha*d); 
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    iq = find(imag(q)==0,1)-1; 

    q = real(q); 

    q_asym = q(1:iq); 

    q_sym = q(iq+1:end); 

    w_asym = w(1:iq); 

    w_sym = w(iq+1:end); 

end 

 

qIF = struct('Sy',q_sym,'Asy',q_asym); 

wIF = struct('Sy',w_sym,'Asy',w_asym); 

 

w_sym _cm = w_sym/100/c0; 

w_asym _cm = w_asym/100/c0; 

 

Eq = hbar0^2*q.^2/(2*m); 

if strcmp(TOLO,'TO') 

    Eq_sym = Eq(1:iq); 

    Eq_asym = Eq(iq+1:end); 

elseif strcmp(TOLO,'LO') 

    Eq_asym = Eq(1:iq); 

    Eq_sym = Eq(iq+1:end); 

end 

 

Nqs = length(w_sym); 

Nqa = length(w_asym); 

 

Ek = Ek_eV*q0; 

[NEk,~] = size(Ek); 

 

de1zdw = 2*eps_ 1*(w./(w.^2 - w1.z^2) - w.*(w.^2 - w1.Lz^2)./(w.^2 - 

w1.z^2).^2); 

de1tdw = 2*eps_ 1*(w./(w.^2 - w1.t^2) - w.*(w.^2 - w1.Lt^2)./(w.^2 - 

w1.t^2).^2); 

de2zdw = 2*eps_ 2*(w./(w.^2 - w2.z^2) - w.*(w.^2 - w2.Lz^2)./(w.^2 - 

w2.z^2).^2); 

de2tdw = 2*eps_ 2*(w./(w.^2 - w2.t^2) - w.*(w.^2 - w2.Lt^2)./(w.^2 - 

w2.t^2).^2); 

 

%-- Full D IF 

zeta1p = de1tdw./(2*alpha)+2*de1zdw.*alpha; 

zeta1n = de1tdw./(2*alpha)-2*de1zdw.*alpha; 

zeta2p = de2tdw./(2*beta)+2*de2zdw.*beta; 

 

ups = (sin (k1.*d)./(2*k1) + d/2 + cos (k1*d/2).^2./k2).^(-0.5); 

%     FF2 = ups.^4.*((xi1./(3*beta.*q) + 

xi2./(5*alpha.*q))./(1+(xi2./xi1).^2) + 2/5./(alpha.*q).*xi2 - 

xi2./(5*alpha.*q)./(1+(xi2./xi1).^2)).^2; 
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%     f = zeta1n.*alpha.*q*d.*(xi1.^2-xi2.^2) + zeta1p.*xi1.*xi2 + 

zeta2p.*xi1.^2; 

 

FF2 = ups.^4.*(cos (k1*d/2).^2.*cosh (alpha.*q*d)./(k2+beta.*q) + 

((2*cos (k1*d/2).^2.*alpha.^2.*q.^2+k1.^2).*sinh(alpha.*q*d) + 

alpha.*q.*k1.*cosh 

(alpha.*q*d).*sin(k1*d))./(2*alpha.*q.*(alpha.^2.*q.^2+k1.^2))).^2; 

f = cosh (alpha.*q*d).^2.*zeta2p + alpha.*q*d.*zeta1n + sinh 

(alpha.*q*d).*zeta1p; 

DIF = FF2./f; 

 

if strcmp(TOLO,'TO') 

    DIF_sym = ones(NEk,1)*DIF(1:iq); 

    DIF_asym = ones(NEk,1)*DIF(iq+1:end); 

elseif strcmp(TOLO,'LO') 

    DIF_asym = ones(NEk,1)*DIF(1:iq); 

    DIF_sym = ones(NEk,1)*DIF(iq+1:end); 

end 

 

Vg_sym  = 2*pi*([w_sym(2:end) w_sym(end)]-[w_sym(1) w_sym(1:end-

1)])./([q_sym(2:end) q_sym(end)]-[q_sym(1) q_sym(1:end-1)]); 

Vg_asym = 2*pi*([w_asym(2:end) w_asym(end)]-[w_asym(1) w_asym(1:end-

1)])./([q_asym(2:end) q_asym(end)]-[q_asym(1) q_asym(1:end-1)]); 

VgIF = struct('Sy',Vg_sym,'Asy',Vg_asym); 

 

Vp_sym = 2*pi*w_sym./q_sym; 

Vp_asym = 2*pi*w_asym./q_asym; 

 

if strcmp(TOLO,'TO') 

    sigma_emi _sym = ones(NEk,Nqs); 

    sigma_emi _asym = -ones(NEk,Nqa); 

    sigma_abs _sym = ones(NEk,Nqs); 

    sigma_abs _asym = -ones(NEk,Nqa); 

elseif strcmp(TOLO,'LO') 

    sigma_emi _sym = -ones(NEk,Nqs); 

    sigma_emi _asym = ones(NEk,Nqa); 

    sigma_abs _sym = -ones(NEk,Nqs); 

    sigma_abs _asym = ones(NEk,Nqa); 

end 

 

temp1_emi _sym = ones(NEk,1)*(0.5*q_sym-(m/hbar0)*(Vp_sym-Vg_sym)); 

temp1_emi _asym = ones(NEk,1)*(0.5*q_asym-(m/hbar0)*(Vp_asym-

Vg_asym)); 

temp1_abs _sym = ones(NEk,1)*(0.5*q_sym+(m/hbar0)*(Vp_sym-Vg_sym)); 

temp1_abs _asym = ones(NEk,1)*(0.5*q_asym+(m/hbar0)*(Vp_asym-

Vg_asym)); 
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%-- sqrt w/ E0 

temp2_emi _sym = (sqrt(1/m*(2*Ek*ones(1,Nqs)+ones(NEk,1)*(-0.5*Eq_sym 

- hbar0*2*pi*w_sym))-ones(NEk,1)*Vp_sym.^2) + 

sqrt(E0/m)).^2./sqrt(1/m*(2*Ek*ones(1,Nqs)+ones(NEk,1)*(-0.5*Eq_sym - 

hbar0*2*pi*w_sym))-ones(NEk,1)*Vp_sym.^2); 

temp2_emi _asym = (sqrt(1/m*(2*Ek*ones(1,Nqa)+ones(NEk,1)*(-

0.5*Eq_asym - hbar0*2*pi*w_asym))-ones(NEk,1)*Vp_asym.^2) + 

sqrt(E0/m)).^2./sqrt(1/m*(2*Ek*ones(1,Nqa)+ones(NEk,1)*(-0.5*Eq_asym 

- hbar0*2*pi*w_asym))-ones(NEk,1)*Vp_asym.^2); 

temp2_abs _sym = (sqrt(1/m*(2*Ek*ones(1,Nqs)+ones(NEk,1)*(-0.5*Eq_sym 

+ hbar0*2*pi*w_sym))-ones(NEk,1)*Vp_sym.^2) + 

sqrt(E0/m)).^2./sqrt(1/m*(2*Ek*ones(1,Nqs)+ones(NEk,1)*(-0.5*Eq_sym + 

hbar0*2*pi*w_sym))-ones(NEk,1)*Vp_sym.^2); 

temp2_abs _asym = (sqrt(1/m*(2*Ek*ones(1,Nqa)+ones(NEk,1)*(-

0.5*Eq_asym + hbar0*2*pi*w_asym))-ones(NEk,1)*Vp_asym.^2) + 

sqrt(E0/m)).^2./sqrt(1/m*(2*Ek*ones(1,Nqa)+ones(NEk,1)*(-0.5*Eq_asym 

+ hbar0*2*pi*w_asym))-ones(NEk,1)*Vp_asym.^2); 

 

sigma_emi _sym(imag (temp2_emi _sym)~=0) = 0; 

sigma_emi _asym(imag (temp2_emi _asym)~=0) = 0; 

sigma_abs _sym(imag (temp2_abs _sym)~=0) = 0; 

sigma_abs _asym(imag (temp2_abs _asym)~=0) = 0; 

 

temp3_emi _sym = -ones(NEk,1)*((Vp_sym./q_sym - 0.5*hbar0/m)./Vg_sym-

1./q_sym); 

temp3_emi _asym = -ones(NEk,1)*((Vp_asym./q_asym - 

0.5*hbar0/m)./Vg_asym-1./q_asym); 

temp3_abs _sym = ones(NEk,1)*((Vp_sym./q_sym + 0.5*hbar0/m)./Vg_sym-

1./q_sym); 

temp3_abs _asym = ones(NEk,1)*((Vp_asym./q_asym + 

0.5*hbar0/m)./Vg_asym-1./q_asym); 

 

Nw_sym = ones(NEk,1)*(1./(exp(hbar0*2*pi*w_sym/kBT)-1)); 

Nw_asym = ones(NEk,1)*(1./(exp(hbar0*2*pi*w_asym/kBT)-1)); 

 

dWk_emi _sym = (2*m/aB)*sigma_emi 

_sym.*(Nw_sym+1).*DIF_sym.*temp3_emi _sym./(temp1_emi _sym.*temp2_emi 

_sym); 

Wk_emi _sym = trapz(w_sym,dWk_emi _sym,2); 

dWk_emi _asym =(2*m/aB)*sigma_emi 

_asym.*(Nw_asym+1).*DIF_asym.*temp3_emi _asym./(temp1_emi 

_asym.*temp2_emi _asym); 

Wk_emi _asym = trapz(w_asym,dWk_emi _asym,2); 

dWk_abs _sym = (2*m/aB)*sigma_abs _sym.*(Nw_sym).*DIF_sym.*temp3_abs 

_sym./(temp1_abs _sym.*temp2_abs _sym); 

Wk_abs _sym = trapz(w_sym,dWk_abs _sym,2); 
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dWk_abs _asym = (2*m/aB)*sigma_abs 

_asym.*(Nw_asym).*DIF_asym.*temp3_abs _asym./(temp1_abs 

_asym.*temp2_abs _asym); 

Wk_abs _asym = trapz(w_asym,dWk_abs _asym,2); 

 

M = dWk_emi _sym/q_sym; 

 

dWk_emi = struct('Sy',dWk_emi _sym,'Asy',dWk_emi _asym); 

Wk_emi = struct('Sy',Wk_emi _sym,'Asy',Wk_emi _asym); 

Wk_abs = struct('Sy',Wk_abs _sym,'Asy',Wk_abs _asym); 

 

% en = hbar0.*.2.*pi*w_asym./Nw_asym; 

% figure; semilogy(q_asym*d,en,'k'); hold on; grid minor; 

% hold off; 

 

%- Figure: phonon-freq dep. scattering rate 

meV120 = find(Ek_eV == 0.1); 

meV300 = find(Ek_eV == 0.092); 

meV500 = find(Ek_eV == 0.5); 

figure;  

semilogy(w_asym _cm,dWk_emi _asym(meV120,:),'b');  

grid minor; hold on; 

semilogy(w_asym _cm,dWk_emi _asym(meV300,:),'r'); 

semilogy(w_asym _cm,dWk_emi _asym(NEk,:),'k');  

semilogy(w_sym _cm,dWk_emi _sym(meV120,:),'b'); 

semilogy(w_sym _cm,dWk_emi _sym(meV300,:),'r'); 

 

hold off; 

xlabel('Phonon Frequency \omega (cm^{-1})', 'FontWeight', 'normal');  

ylabel('Scattering Rate (s^{-1}/s^{-1})', 'FontWeight', 'normal'); 

legend('E_{k} = 0.12 eV','E_{k} = 0.3 eV','E_{k} = 0.5 

eV','Location','southeast'); 

 

end 

     

Function for confined modes 

function [qc,Vg,Wk_emi,Wk_abs,dWk_emi] = 

KP_CONFINED(MODE,nMODE,HILO,w,w1,w2,eps_ 1,eps_ 2,Ek_eV,E0,k1,k2) 

global d hbar0 m q0 kBT aB 

 

e1z = eps_ 1*(w.^2-w1.Lz^2)./(w.^2-w1.z^2); 

e1t = eps_ 1*(w.^2-w1.Lt^2)./(w.^2-w1.t^2); 

e2z = eps_ 2*(w.^2-w2.Lz^2)./(w.^2-w2.z^2); 

e2t = eps_ 2*(w.^2-w2.Lt^2)./(w.^2-w2.t^2); 
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xi1 = sqrt(abs(e1z.*e1t)); 

xi2 = sqrt(abs(e2z.*e2t)); 

 

alpha = 0.5*sqrt(abs(e1t./e1z)); 

beta = 0.5*sqrt(abs(e2t./e2z)); 

mu = sign(e1z.*e2z); 

 

qc = zeros(length(nMODE),length(w)); 

Nq = length(qc); 

 

for n = nMODE 

    if strcmp(MODE,'sym') 

        if strcmp(HILO,'lo') 

            qc(n,:) = (n*pi + mu.*atan(xi2./xi1))./(alpha*d); 

        elseif strcmp(HILO,'hi') 

            qc(n,:) = ((n-1)*pi + mu.*atan(xi2./xi1))./(beta*d); 

        end 

         

    elseif strcmp(MODE,'asym') 

        if strcmp(HILO,'lo') 

            qc(n,:) = ((n-1)*pi - mu.*atan(xi1./xi2))./(alpha*d); 

        elseif strcmp(HILO,'hi') 

            qc(n,:) = (n*pi - mu.*atan(xi1./xi2))./(beta*d); 

        end 

    end 

end 

 

Ek = Ek_eV*q0; 

[NEk,~] = size(Ek); 

 

de1zdw = 2*eps_ 1*(w./(w.^2 - w1.z^2) - w.*(w.^2 - w1.Lz^2)./(w.^2 - 

w1.z^2).^2); 

de1tdw = 2*eps_ 1*(w./(w.^2 - w1.t^2) - w.*(w.^2 - w1.Lt^2)./(w.^2 - 

w1.t^2).^2); 

de2zdw = 2*eps_ 2*(w./(w.^2 - w2.z^2) - w.*(w.^2 - w2.Lz^2)./(w.^2 - 

w2.z^2).^2); 

de2tdw = 2*eps_ 2*(w./(w.^2 - w2.t^2) - w.*(w.^2 - w2.Lt^2)./(w.^2 - 

w2.t^2).^2); 

 

%-- Full D C 

zeta1p = de1tdw./(2*alpha)+2*de1zdw.*alpha; 

zeta1n = de1tdw./(2*alpha)-2*de1zdw.*alpha; 

zeta2p = de2tdw./(2*beta)+2*de2zdw.*beta; 

 

Wk_emi = zeros(NEk,length(nMODE)); 

Wk_abs = zeros(NEk,length(nMODE)); 
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Vg = zeros(length(nMODE),length(w)); 

Vp = zeros(length(nMODE),length(w)); 

 

for n = nMODE 

    q = qc(n,:); 

    Eq = hbar0^2*q.^2/(2*m); 

 

    ups = (sin (k1.*d)./(2*k1) + d/2 + cos (k1*d/2).^2./k2).^(-0.5); 

    FF2 = ups.^4.*(cos (k1*d/2).^2.*cos (alpha.*q*d)./(k2+beta.*q) + 

((2*cos (k1*d/2).^2.*alpha.^2.*q.^2-k1.^2).*sin(alpha.*q*d) - 

alpha.*q.*k1.*cos 

(alpha.*q*d).*sin(k1*d))./(2*alpha.*q.*(alpha.^2.*q.^2-k1.^2))).^2; 

    f = cos (alpha.*q*d).^2.*zeta2p + alpha.*q*d.*zeta1p + sin 

(alpha.*q*d).*cos (alpha.*q*d).*zeta1n; 

    DC = FF2./f; 

    DC = ones(NEk,1)*DC; 

 

    Vg(n,:) = 2*pi*([w(2:end) w(end)]-[w(1) w(1:end-1)])./([q(2:end) 

q(end)]-[q(1) q(1:end-1)]); 

    Vp(n,:) = 2*pi*w./q; 

 

    sigma_emi = ones(NEk,Nq); 

    sigma_abs = ones(NEk,Nq); 

 

    temp1_emi = ones(NEk,1)*(0.5*q-(m/hbar0)*(Vp(n,:)-Vg(n,:))); 

    temp1_abs = ones(NEk,1)*(0.5*q+(m/hbar0)*(Vp(n,:)-Vg(n,:))); 

 

    temp2_emi = (sqrt(1/m*(2*Ek*ones(1,Nq)+ones(NEk,1)*(-0.5*Eq - 

hbar0*2*pi*w))-ones(NEk,1)*Vp (n,:).^2) + 

sqrt(E0/m)).^2./sqrt(1/m*(2*Ek*ones(1,Nq)+ones(NEk,1)*(-0.5*Eq - 

hbar0*2*pi*w))-ones(NEk,1)*Vp (n,:).^2); 

    temp2_abs = (sqrt(1/m*(2*Ek*ones(1,Nq)+ones(NEk,1)*(-0.5*Eq + 

hbar0*2*pi*w))-ones(NEk,1)*Vp (n,:).^2) + 

sqrt(E0/m)).^2./sqrt(1/m*(2*Ek*ones(1,Nq)+ones(NEk,1)*(-0.5*Eq + 

hbar0*2*pi*w))-ones(NEk,1)*Vp (n,:).^2); 

     

    sigma_emi(imag (temp2_emi)~=0) = 0; 

    sigma_abs(imag (temp2_abs)~=0) = 0; 

     

    temp3_emi = -ones(NEk,1)*((Vp (n,:)./q - 0.5*hbar0/m)./Vg(n,:) - 

1./q); 

    temp3_abs = ones(NEk,1)*((Vp (n,:)./q + 0.5*hbar0/m)./Vg(n,:) - 

1./q); 

 

    Nw = ones(NEk,1)*(1./(exp(hbar0*2*pi*w/kBT)-1)); 
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    dWk_emi = 

(2*m/aB)*sigma_emi.*(Nw+1).*DC.*temp3_emi./(temp1_emi.*temp2_emi); 

    Wk_emi(:,n) = trapz(w,dWk_emi,2); 

    dWk_abs = 

(2*m/aB)*sigma_abs.*(Nw).*DC.*temp3_abs./(temp1_abs.*temp2_abs); 

    Wk_abs(:,n) = trapz(w,dWk_abs,2); 

end 

 

Wk_emi = sum(Wk_emi,2); 

Wk_abs = sum(Wk_abs,2); 

     

end 

Full code 

global hbar0 q0 m0 kBT c0 aB hbarc m_eff m d V0 

%-- Fundamental physical parameters 

hbar0 = 1.05457180e-34; % [J-s] 

q0 = 1.60217662e-19;    % [Coulombs] 

m0 = 9.10938356e-31;    % [kg] 

kB = 1.38064852e-23;    % [J/K] 

T = 300;                % [K] 

kBT = kB*T;             % [J] 

eps0 = 8.854187817e-12; % [F/m] 

c0 = 299792458;         % [m/s] 

aB = hbar0^2/q0^2;      % [(J-s)^2/C^2]=[(C-V-s)^2/C^2]=[(V-s)^2] 

hbarc = 2*pi*hbar0*c0;  % [J-m]: actually hc not hbarc 

 

m_eff = 0.4;    % Change with given material 

m = m_eff*m0; 

d = 5.0e-9; 

V0 = 1.37*q0; 

 

[k1,k2] = SOLVE_k; 

 

% %-- Phonon frequencies. Change with given material 

 

%- InAlN 

w_ 1z = 57260*c0;            % A1 (TO) [1/s] 0.06509 eV 

w_ 1t = 62420*c0;            % E1 (TO) [1/s] 0.06819 eV 

w_ 1Lz = 81752*c0;           % A1 (LO) [1/s] 0.08865 eV 

w_ 1Lt = 83520*c0;           % E1 (LO) [1/s] 0.08927 eV 

eps_ 1 = 11.8*eps0;          % [F/m] 

 

%- AlN 

w_ 2z = 61100*c0;            % A1 (TO) [1/s] 
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w_ 2t = 67100*c0;            % E1 (TO) [1/s] 

w_ 2Lz = 89000*c0;           % A1 (LO) [1/s] 

w_ 2Lt = 91200*c0;           % E1 (LO) [1/s] 

eps_ 2 = 4.77*eps0;          % [F/m]   

w1 = struct('z',w_ 1z,'t',w_ 1t,'Lz',w_ 1Lz,'Lt',w_ 1Lt); 

w2 = struct('z',w_ 2z,'t',w_ 2t,'Lz',w_ 2Lz,'Lt',w_ 2Lt); 

 

%-- Inputs 

E1_TO = 5e-5*q0;       % IF cutoff energy [J] 

E1_LO = 5e-5*q0; 

E2_TO = 1e-5*q0;       % C cutoff energy [J] 

E2_LO = 1e-5*q0; 

fig_flag = 0;       % plot figures? 

   Nw = 1000;          % number of omegas 

NEk = 301;        % number of energies 

hEk = 0.3;          % upper limit of energy 

nMODE = 1:10; 

 

Ek_eV = linspace (0,hEk,NEk)'; 

 

%-- Dielectric functions 

w = linspace(30000,80000,8001)*c0; 

 

e1z = eps_ 1*(w.^2-w1.Lz^2)./(w.^2-w1.z^2); 

e1t = eps_ 1*(w.^2-w1.Lt^2)./(w.^2-w1.t^2); 

e2z = eps_ 2*(w.^2-w2.Lz^2)./(w.^2-w2.z^2); 

e2t = eps_ 2*(w.^2-w2.Lt^2)./(w.^2-w2.t^2); 

mu = sign(e1t.*e2t); 

xi1 = sqrt(abs(e1z.*e1t)); 

xi2 = sqrt(abs(e2z.*e2t)); 

alpha = 0.5*sqrt(abs(e1t./e1z)); 

beta = 0.5*sqrt(abs(e2t./e2z)); 

 

nw = ones(NEk,1)*(1./(exp(hbar0*2*pi*w/kBT)-1)); 

en = hbar0.*.2.*pi*w./(nw*q0); 

figure; plot(w/c0/100,en,'k'); hold on; grid minor; 

hold off; 

 

figure; plot(w/c0/100,e1z/eps0,'k'); hold on; grid minor; 

plot(w/c0/100,e1t/eps0,'r'); 

plot(w/c0/100,e2z/eps0,'b'); 

plot(w/c0/100,e2t/eps0,'m'); 

hold off; 

plt = 

plot(w/c0/100,e1z/eps0,'k',w/c0/100,e1t/eps0,'r',w/c0/100,e2z/eps0,'b

',... 

         w/c0/100,e2t/eps0,'m'); 
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ylim([-20 30]); 

xlabel('Phonon Frequency \omega (cm^{-1})', 'FontWeight', 'normal'); 

ylabel('Dielectric Constant Conditions', 'FontWeight', 'normal'); 

 

figure; semilogy(w/c0/100,xi1,'k');hold on; grid minor; 

semilogy(w/c0/100,xi2,'r'); 

semilogy(w/c0/100,alpha,'b'); 

semilogy(w/c0/100,beta,'m'); 

semilogy(w/c0/100,mu,'--k'); 

hold off; 

plt = 

semilogy(w/c0/100,xi1,'k',w/c0/100,xi2,'r',w/c0/100,alpha,'b',w/c0/10

0,beta,... 

          'm',w/c0/100,mu,'--k'); 

xlabel('Phonon Frequency \omega (cm^{-1})', 'FontWeight', 'normal'); 

ylabel('Wave Parameters', 'FontWeight', 'normal'); 

 

%----- INTERFACE PHONONS ----- 

   wTO = linspace(w1.t/c0+10,w2.z/c0-10,Nw)*c0; 

wLO = linspace(w1.Lt/c0+10,w2.Lz/c0-10,Nw)*c0; 

 

[qIF_TO,wIF_TO,VgIF_TO,WkIF_Em _TO,WkIF_Ab _TO,dWkIF_Em _TO] = 

KP_IF('TO',wTO,w1,w2,eps_ 1,eps_ 2,Ek_eV,E1_TO,k1,k2); 

[qIF_LO,wIF_LO,VgIF_LO,WkIF_Em _LO,WkIF_Ab _LO,dWkIF_Em _LO] = 

KP_IF('LO',wLO,w1,w2,eps_ 1,eps_ 2,Ek_eV,E1_LO,k1,k2); 

 

wIF_SyTO _cm = wIF_TO.Sy/100/c0; 

wIF_AsyTO _cm = wIF_TO.Asy/100/c0; 

wIF_SyLO _cm = wIF_LO.Sy/100/c0; 

wIF_AsyLO _cm = wIF_LO.Asy/100/c0; 

 

%- IF: Average group velocity  

dVgIF_SyEm _TO = dWkIF_Em _TO.Sy.*(ones(NEk,1)*abs(VgIF_TO.Sy)); 

dVgIF_AsyEm _TO = dWkIF_Em _TO.Asy.*(ones(NEk,1)*abs(VgIF_TO.Asy)); 

dVgIF_SyEm _LO = dWkIF_Em _LO.Sy.*(ones(NEk,1)*abs(VgIF_LO.Sy)); 

dVgIF_AsyEm _LO = dWkIF_Em _LO.Asy.*(ones(NEk,1)*abs(VgIF_LO.Asy)); 

VgIF_SyEm _TO = trapz(wIF_TO.Sy,dVgIF_SyEm _TO,2); 

VgIF_AsyEm _TO = trapz(wIF_TO.Asy,dVgIF_AsyEm _TO,2); 

VgIF_SyEm _LO = trapz(wIF_LO.Sy,dVgIF_SyEm _LO,2); 

VgIF_AsyEm _LO = trapz(wIF_LO.Asy,dVgIF_AsyEm _LO,2); 

VgIF_Em = (VgIF_SyEm _TO+VgIF_AsyEm _TO+VgIF_SyEm _LO+VgIF_AsyEm 

_LO)./(WkIF_Em _TO.Sy+WkIF_Em _TO.Asy+WkIF_Em _LO.Sy+WkIF_Em _LO.Asy); 

 

%----- CONFINED PHONONS ----- 

   wC_TO = linspace(w1.z/c0+10,w1.t/c0-10,Nw)*c0; 

wC_LO = linspace(w1.Lz/c0+10,w1.Lt/c0-10,Nw)*c0; 
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wC_TO _cm = wC_TO/100/c0; 

wC_LO _cm = wC_LO/100/c0; 

 

%-- Dispersion and scattering rate calculation for each branch 

%- Symmetric modes 

[qCSy_TO,VgCSy_TO,WkC_SyEm _TO,WkC_SyAb _TO,dWkC_SyEm _TO] = 

KP_CONFINED('sym',nMODE,'lo',wC_TO,w1,w2,eps_ 1,eps_ 

2,Ek_eV,E2_TO,k1,k2); 

[qCSy_LO,VgCSy_LO,WkC_SyEm _LO,WkC_SyAb _LO,dWkC_SyEm _LO] = 

KP_CONFINED('sym',nMODE,'lo',wC_LO,w1,w2,eps_ 1,eps_ 

2,Ek_eV,E2_LO,k1,k2); 

 

%- Asymmetric modes 

[qCAsy_TO,VgCAsy_TO,WkC_AsyEm _TO,WkC_AsyAb _TO,dWkC_AsyEm _TO] = 

KP_CONFINED('asym',nMODE,'lo',wC_TO,w1,w2,eps_ 1,eps_ 

2,Ek_eV,E2_TO,k1,k2); 

[qCAsy_LO,VgCAsy_LO,WkC_AsyEm _LO,WkC_AsyAb _LO,dWkC_AsyEm _LO] = 

KP_CONFINED('asym',nMODE,'lo',wC_LO,w1,w2,eps_ 1,eps_ 

2,Ek_eV,E2_LO,k1,k2); 

 

%- Sign correction (temporary) 

WkC_SyEm _TO = abs(WkC_SyEm _TO); 

WkC_SyEm _LO = abs(WkC_SyEm _LO); 

WkC_AsyEm _TO = abs(WkC_AsyEm _TO); 

WkC_AsyEm _LO = abs(WkC_AsyEm _LO); 

WkC_SyAb _TO = abs(WkC_SyAb _TO); 

WkC_SyAb _LO = abs(WkC_SyAb _LO); 

WkC_AsyAb _TO = abs(WkC_AsyAb _TO); 

WkC_AsyAb _LO = abs(WkC_AsyAb _LO); 

 

% %-- C: Average group velocity 

% dVgC_SyEm _TO = abs (dWkC_SyEm _TO).*(ones (NEk,1).*abs(VgCSy_TO)); 

% dVgC_SyEm _LO = abs (dWkC_SyEm _LO).*(ones (NEk,1).*abs(VgCSy_LO)); 

% VgC_SyEm _TO = trapz(wC_TO,dVgC_SyEm _TO,2); 

% VgC_SyEm _LO = trapz(wC_LO,dVgC_SyEm _LO,2); 

%  

% dVgC_AsyEm _TO = abs (dWkC_AsyEm _TO).*(ones(NEk,1)*abs(VgCAsy_TO)); 

% dVgC_AsyEm _LO = abs (dWkC_AsyEm 

_LO).*(ones(NEk,1)*abs(VgCAsy_LO(2,:))); 

% VgC_AsyEm _TO = trapz(wC_TO,dVgC_AsyEm _TO,2); 

% VgC_AsyEm _LO = trapz(wC_LO,dVgC_AsyEm _LO,2); 

% VgC_Em = (VgC_SyEm _TO+VgC_AsyEm _TO+VgC_SyEm _LO+VgC_AsyEm 

_LO)./(WkC_SyEm _TO+WkC_AsyEm _TO... 

      %     +WkC_SyEm _LO+WkC_AsyEm _LO); 

%  

% Vg_Em = (VgIF_SyEm _TO+VgIF_AsyEm _TO+VgIF_SyEm _LO+VgIF_AsyEm 

_LO+VgC_SyEm _TO... 
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       %     +VgC_AsyEm _TO+VgC_SyEm _LO+VgC_AsyEm _LO)./ ... 

%     (WkIF_Em _TO.Sy+WkIF_Em _TO.Asy+WkIF_Em _LO.Sy+WkIF_Em 

_LO.Asy+WkC_SyEm _TO... 

     %     +WkC_AsyEm _TO+WkC_SyEm _LO+WkC_AsyEm _LO); 

 

WkC_Em _TO = WkC_SyEm _TO+WkC_AsyEm _TO; 

WkC_Em _LO = WkC_SyEm _LO+WkC_AsyEm _LO; 

WkC_Ab _TO = WkC_SyAb _TO + WkC_AsyAb _TO; 

WkC_Ab _LO = WkC_SyAb _LO + WkC_AsyAb _LO; 

WkC_Em = WkC_Em _TO + WkC_Em _LO; 

WkC_Ab = WkC_Ab _TO + WkC_Ab _LO; 

WkC = WkC_Em + WkC_Ab; 

WkIF_TE = WkIF_Em _TO.Asy + WkIF_Em _TO.Sy; 

WkIF_TA = WkIF_Ab _TO.Asy + WkIF_Ab _TO.Sy; 

WkIF_LE = WkIF_Em _LO.Asy + WkIF_Em _LO.Sy; 

WkIF_LA = WkIF_Ab _LO.Asy + WkIF_Ab _LO.Sy; 

WkIF_Em = WkIF_TE+WkIF_LE; 

WkIF_Ab = WkIF_TA+WkIF_LA; 

WkIF = WkIF_Em+WkIF_Ab; 

Wk = WkC + WkIF; 

 

% %-- FIGURES 

%- IF and CONFINED Dispersion 

figure; 

grid minor; hold on; 

plot(qIF_LO.Sy*d,wIF_SyLO _cm,'k'); 

plot(qIF_LO.Asy*d,wIF_AsyLO _cm,'g'); 

plot(qCSy_LO*d,wC_LO _cm,'b'); 

plot(qCAsy_LO*d,wC_LO _cm,'r'); 

hold off; 

plt = plot(qIF_LO.Sy*d,wIF_SyLO _cm,'k',qIF_LO.Asy*d,wIF_AsyLO 

_cm,'g',qCSy_LO*d,wC_LO _cm,'b'... 

        ,qCAsy_LO*d,wC_LO _cm,'r'); 

xlim([0 8]); 

xlabel('Wave Vector qd', 'FontWeight', 'normal');  

ylabel('Phonon Frequency \omega (cm^{-1})', 'FontWeight', 'normal');  

legend('Symmetric','Asymmetric','Location','southeast'); 

% low order modes 

figure; 

plot(qIF_TO.Sy*d,wIF_SyTO _cm,'b');  

grid minor; hold on; 

plot(qIF_TO.Asy*d,wIF_AsyTO _cm,'r'); 

% plot(qCSy_TO*d,wC_TO _cm,'b'); 

plot(qCSy_TO(2,:)*d,wC_TO _cm,'b'); 

plot(qCSy_TO(3,:)*d,wC_TO _cm,'b'); 

plot(qCSy_TO(4,:)*d,wC_TO _cm,'b'); 

plot(qCSy_TO(5,:)*d,wC_TO _cm,'b'); 
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plot(qCSy_TO(6,:)*d,wC_TO _cm,'b'); 

plot(qCSy_TO(7,:)*d,wC_TO _cm,'b'); 

plot(qCSy_TO(8,:)*d,wC_TO _cm,'b'); 

plot(qCSy_TO(9,:)*d,wC_TO _cm,'b'); 

 

% plot(qCAsy_TO*d,wC_TO _cm,'r'); 

plot(qCAsy_TO(2,:)*d,wC_TO _cm,'r'); 

plot(qCAsy_TO(3,:)*d,wC_TO _cm,'r'); 

plot(qCAsy_TO(4,:)*d,wC_TO _cm,'r'); 

plot(qCAsy_TO(5,:)*d,wC_TO _cm,'r'); 

plot(qCAsy_TO(6,:)*d,wC_TO _cm,'r'); 

plot(qCAsy_TO(7,:)*d,wC_TO _cm,'r'); 

plot(qCAsy_TO(8,:)*d,wC_TO _cm,'r'); 

plot(qCAsy_TO(9,:)*d,wC_TO _cm,'r'); 

hold off; 

plt = plot(qIF_TO.Sy*d,wIF_SyTO _cm,'k',qIF_TO.Asy*d,wIF_AsyTO 

_cm,'g',qCSy_TO(2,:)*d,wC_TO _cm... 

        ,'b',qCSy_TO(3,:)*d,wC_TO _cm,'b',qCSy_TO(4,:)*d,wC_TO 

_cm,'b',qCSy_TO(5,:)*d,wC_TO _cm,'b'... 

        ,qCSy_TO(6,:)*d,wC_TO _cm,'b',qCSy_TO(7,:)*d,wC_TO 

_cm,'b',qCSy_TO(8,:)*d,wC_TO _cm,'b',... 

         qCSy_TO(9,:)*d,wC_TO _cm,'b',qCAsy_TO(1,:)*d,wC_TO 

_cm,'r',qCAsy_TO(3,:)*d,wC_TO _cm,'r',qCAsy_TO(4,:)*d,wC_TO 

_cm,'r',... 

         qCAsy_TO(5,:)*d,wC_TO _cm... 

        ,'r',qCAsy_TO(6,:)*d,wC_TO _cm,'r',qCAsy_TO(7,:)*d,wC_TO 

_cm,'r',qCAsy_TO(8,:)*d,wC_TO _cm... 

        ,'r',qCAsy_TO(9,:)*d,wC_TO _cm,'r'); 

% ylim([560 630]); 

xlim([0 8]); 

xlabel('Wave Vector qd', 'FontWeight', 'normal');  

ylabel('Phonon Frequency \omega (cm^{-1})', 'FontWeight', 'normal');  

legend('Symmetric','Asymmetric','Location','southeast'); 

%  

%- IF and CONFINED Group velocity 

figure;  

semilogy(wIF_AsyTO _cm,VgIF_TO.Asy,'k');  

grid minor; hold on; 

plot(wIF_SyTO _cm,VgIF_TO.Sy,'r');  

plot(wIF_AsyLO _cm,VgIF_LO.Asy,'k'); 

plot(wIF_SyLO _cm,VgIF_LO.Sy,'r');  

plot(wC_TO _cm,VgCAsy_TO(1,:),'b'); 

plot(wC_TO _cm,VgCSy_TO(1,:),'r'); 

plot(wC_LO _cm,VgCAsy_LO(2,:),'b'); 

plot(wC_LO _cm,VgCSy_LO(1,:),'m'); 

hold off; 
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plt = plot(wIF_AsyTO _cm,VgIF_TO.Asy,'k',wIF_SyTO 

_cm,VgIF_TO.Sy,'r',... 

         wIF_AsyLO _cm,VgIF_LO.Asy,'k',wIF_SyLO 

_cm,VgIF_LO.Sy,'r',wC_TO _cm,VgCSy_TO(1,:),'r'... 

        ,wC_LO _cm,VgCAsy_LO(2,:),'b',wC_LO _cm,VgCSy_LO(1,:),'m'); 

xlabel('Phonon Frequency (cm^{-1})', 'FontWeight', 'normal'); 

ylabel('C Group Velocity (m/s)', 'FontWeight', 'normal'); 

legend('Asymmetric Modes','Symmetric Modes','Location','northeast'); 

 

%- IF and CONFINED average group velocity 

figure; plot(Ek_eV,VgIF_Em,'b'); grid minor; hold on; 

% plot(Ek_eV,VgC_Em,'r');  

% plot(Ek_eV,Vg_Em,'k'); 

hold off; 

xlabel('Electron Energy E_{k} (eV)', 'FontWeight', 'normal');  

ylabel('Average Group Velocity v_ {g,avg}^{IF+C} (m/s)', 'FontWeight', 

'normal'); 

legend('IF','Confined','Total','Location','southeast'); 

 

% % %- CONFINED Scattering rates all modes 

% % figure; semilogy(Ek_eV,WkC_SyEm,':b'); grid minor; hold on; 

% % semilogy(Ek_eV,WkC_AsyEm,'--b'); 

% % semilogy(Ek_eV,WkC_Em,'b'); 

% % semilogy(Ek_eV,WkC_SyAb,':r'); 

% % semilogy(Ek_eV,WkC_AsyAb,'--r'); 

% % semilogy(Ek_eV,WkC_Ab,'r'); 

% % hold off; 

% % xlabel('Electron Energy E_{k}(eV)', 'FontWeight', 'normal'); 

% % ylabel('C Scattering Rate (s^{-1})', 'FontWeight', 'normal'); 

% % legend('Emission S','Emission AS','Emission','Absorption 

S','Absorption AS','Absorption','Location','northeast'); 

%  

% %- IF and CONFINED Emission scattering rate 

% figure; semilogy(Ek_eV,WkIF_Em _TO.Sy+WkIF_Em _TO.Asy+WkIF_Em 

_LO.Sy+WkIF_Em _LO.Asy,'b'); grid minor; hold on; 

% semilogy(Ek_eV,WkC_Em,'--r'); 

% hold off; 

% xlabel('Electron Energy E_{k} (eV)', 'FontWeight', 'normal');  

% ylabel('Emission Scattering Rate (s^{-1})', 'FontWeight', 'normal');  

% legend('Interface Modes','Confined Modes','Location','southeast'); 

%  

%- CONFINED Total scattering rate 

figure; semilogy(Ek_eV,WkC,'k'); grid minor; hold on; 

semilogy(Ek_eV,WkC_Em,'--b'); 

semilogy(Ek_eV,WkC_Em _LO,'--m'); 

semilogy(Ek_eV,WkC_Ab _LO,'--c'); 

hold off; 



 182 

plt = semilogy(Ek_eV,WkC,'k',Ek_eV,WkC_Em _LO,'--m',Ek_eV,WkC_Ab 

_LO,'--c'); 

ylim([1e10 3e13]); 

xlabel('Electron Energy E_{k}(eV)', 'FontWeight', 'normal'); 

ylabel('C Total Scattering Rate (s^{-1})', 'FontWeight', 'normal'); 

legend('Total','Emission','Absorption','Location','southeast'); 

%- IF Total scattering rate 

figure; semilogy(Ek_eV,WkIF,'k'); grid minor; hold on; 

semilogy(Ek_eV,WkIF_Em,'--b'); 

semilogy(Ek_eV,WkIF_LE,'--m'); 

semilogy(Ek_eV,WkIF_TE,'--m'); 

semilogy(Ek_eV,WkIF_Ab,'--r'); 

hold off; 

plt = semilogy(Ek_eV,WkIF,'k',Ek_eV,WkIF_Em,'--b',Ek_eV,WkIF_TE,'--

m',Ek_eV,WkIF_LE,'--m',Ek_eV,WkIF_Ab,'--r'); 

ylim([1e10 3e13]); 

xlabel('Electron Energy E_{k}(eV)', 'FontWeight', 'normal'); 

ylabel('IF Total Scattering Rate (s^{-1})', 'FontWeight', 'normal'); 

legend('Total','Emission','Absorption','Location','southeast'); 

Electron wave function parameters 

function [k1,k2] = SOLVE_k() 

global hbar0 d m V0 

 

roundd = round(d,1,'significant')*1e9; 

switch roundd 

    case 20 

        k = 1.615130236490229e+08; 

    case 10 

        k = 2.9e8; 

    case 5 

        k = 5.659474067051942e8; 

    case 4 

        k = 6.901357880170896e8; 

    case 3             

        k = 8.838774058207904e8; 

    case 2 

        k = 1.227306970645387e9; 

    case 1 

        k = 1.987757079903387e9; 

end 

 

k1 = fzero(@(k1) k1.^2.*(1+tan (k1*d/2).^2)-2*m*V0/hbar0^2,k); 

k2 = k1*tan(k1*d/2); 

end  
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Appendix C 

The following routes are used to obtain a description for remote interface polar phonons. The code is 

three-fold: dispersion relation of optical phonons, scattering rates and hole mobility. 

 

get(0,'Factory'); 

set(0,'defaultfigurecolor',[1 1 1]) 

 

%%  Universal Constants 

m0 = 9.1093837015e-31; %electron resting mass [Kg] 

m = 0.908*m0; %effective mass [Kg] 

hbar = 1.054571800e-34; %normalized Plank constant [J s] 

e_h = 1.602176634e-19;%hole charge [C] 

epsilon_0 = 8.85418781762e-12; %permittivity vacuum [F/m] 

c0 = 299792458; %speed of light [m/s] 

kB = 1.38064852e-23;% [J/K] 

T = 300;% [K] 

kBT = kB*T;% [J] 

aB = hbar^2/e_h^2;% [(V s)^2] 

epsilon_r = 5.7; %Diamond dieletric constant [Li et Al 2018] 

 

syms q_sim omega_sim %symbolic variables used for dispersion and 

derivative 

disp('Select the material:'); 

disp('[1] AlN'); 

disp('[2] GaN'); 

disp('[3] c-BN'); 

disp('[4] w-BN'); 

values =input(''); 

 

if values==1 %AlN 

    epsilon_bot_inf = 4.77*epsilon_0; %[F/m] values from Kihoon 

    epsilon_y_inf = 4.77*epsilon_0; 

    omega_y_L = 890*(c0*10^2*2*pi); 

    omega_bot_L = 912*(c0*10^2*2*pi); 

    omega_bot = 671*(c0*10^2*2*pi); 

    omega_y = 611*(c0*10^2*2*pi); 

    omega_resonance = 860.6; 

    disp('-> AlN'); 

elseif values==2 %GaN 

    epsilon_bot_inf = 5.29*epsilon_0; %[F/m] values from Komirenko 

    epsilon_y_inf = 5.29*epsilon_0; 

    omega_y_L = 735*(c0*10^2*2*pi); 

    omega_bot_L = 743*(c0*10^2*2*pi); 
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    omega_bot = 561*(c0*10^2*2*pi); 

    omega_y = 533*(c0*10^2*2*pi); 

    disp('-> GaN'); 

elseif values == 3 %c-BN 

    epsilon_bot_inf = 4.54*epsilon_0; %[F/m] values from Thesis 

    epsilon_y_inf = 4.54*epsilon_0; 

    omega_y_L = 1285*(c0*10^2*2*pi); 

    omega_bot_L = 1285*(c0*10^2*2*pi); 

    omega_bot = 1040*(c0*10^2*2*pi); 

    omega_y = 1040*(c0*10^2*2*pi); 

    disp('-> c-BN'); 

else %w-BN 

    epsilon_bot_inf = 4.50*epsilon_0; %[F/m] values from Thesis 

    epsilon_y_inf = 4.67*epsilon_0; 

    omega_y_L = 1258*(c0*10^2*2*pi); 

    omega_bot_L = 1281*(c0*10^2*2*pi); 

    omega_bot = 1053*(c0*10^2*2*pi); 

    omega_y = 1006*(c0*10^2*2*pi); 

    omega_resonance = 1229; 

    disp('-> w-BN'); 

end 

 

d = 5e-9; %thickness of the polar layer 

L = 10e-6; %thickness of the diamond substrate 

 

num_omega = 5000; % number of omegas 

epsilon_1bot = epsilon_bot_inf*((omega_sim.^2 - 

omega_bot_L^2)./(omega_sim.^2 - omega_bot^2)); 

epsilon_1y = epsilon_y_inf*((omega_sim.^2 - 

omega_y_L^2)./(omega_sim.^2 - omega_y^2)); 

q_limit_up = 8/d; 

 

%% Dispersion relations for the optical phonon IF modes (Symmetric) 

eq_sym = @(q_sim) 

sqrt(epsilon_1bot*epsilon_1y)*tanh(sqrt(epsilon_1bot/epsilon_1y)*q_si

m*d/2) - epsilon_0; 

q_sym = linspace(q_limit_up/5000,q_limit_up,num_omega); 

omega_sym = zeros(1,num_omega); 

for i=1:num_omega 

    sol = vpasolve(eq_sym(q_sym(i))==0, omega_sim,[omega_bot + 1e6 

omega_y_L - 1e6],'Random',true); 

    omega_sym(i) = sol; 

end 

figure(1),plot(q_sym,omega_sym/(c0*10^2*2*pi),'k','Linewidth',2); 

xlabel('Wave vector q [1/m]','FontWeight','normal'); ylabel('Phonon 

Frequency [cm^{-1}]','FontWeight','normal'); hold on 
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%% Dispersion relations for the optical phonon IF modes (Antisymmetric) 

eq_antisym= @(q_sim) 

sqrt(epsilon_1bot*epsilon_1y)*coth(sqrt(epsilon_1bot/epsilon_1y)*q_si

m*d/2) - epsilon_0; 

q_antisym = linspace(q_limit_up/1000,q_limit_up,num_omega); 

omega_antisym = zeros(1, num_omega); 

for i=1:num_omega 

    sol = vpasolve(eq_antisym(q_antisym(i))==0, omega_sim,[omega_bot + 

1e6 omega_y_L - 1e6],'Random',true); 

    omega_antisym(i) = sol; 

end 

figure(1),plot(q_antisym,omega_antisym/(c0*10^2*2*pi),'r','Linewidth'

,2); legend('Symmetric','Antisymmetric'); legend('autoupdate','off'); 

line([0 q_limit_up],[omega_bot/(c0*10^2*2*pi) 

omega_bot/(c0*10^2*2*pi)],'LineStyle','--'); str = '\omega_{\perp}'; 

text(q_limit_up - q_limit_up/50,omega_bot/(c0*10^2*2*pi) + 7,str); 

line([0 q_limit_up],[omega_y_L/(c0*10^2*2*pi) 

omega_y_L/(c0*10^2*2*pi)],'LineStyle','--'); str = '\omega_{yL}'; 

text(q_limit_up - q_limit_up/50,omega_y_L/(c0*10^2*2*pi) - 7,str); 

%line([0 q_limit_up/2.5],[omega_resonance 

omega_resonance],'LineStyle','-.');  str = '\omega_{res}'; 

text(q_limit_up/50,omega_resonance - 3,str); 

 

q = [q_sym q_antisym]; 

omega= [omega_sym omega_antisym]; 

 

%% Phase and Group velocity 

Vp_sym = omega_sym./q_sym; 

Vp_antisym = omega_antisym./q_antisym; 

figure(2),subplot(2,1,1),semilogy(omega_sym/(c0*10^2*2*pi),Vp_sym,'k'

,'Linewidth',2); hold on 

semilogy(omega_antisym/(c0*10^2*2*pi),Vp_antisym,'r','Linewidth',2); 

legend('Symmetric','Antisymmetric'); legend('autoupdate','off'); 

title('Phonons Phase Velocity'); xlabel('Phonon frequency [cm^{-

1}]','FontWeight','normal'); ylabel('Phase velocity [m/s]', 

'FontWeight', 'normal'); axis([(omega_bot/(c0*10^2*2*pi) - 20) 

(omega_y_L/(c0*10^2*2*pi) + 10) 10^4 2*10^8]); 

line([omega_bot/(c0*10^2*2*pi) omega_bot/(c0*10^2*2*pi)],[10+3 

10e+9],'LineStyle','--'); str = '\omega_{\perp}'; 

text(omega_bot/(c0*10^2*2*pi) - 5, 10^8 ,str); 

line([omega_y_L/(c0*10^2*2*pi) omega_y_L/(c0*10^2*2*pi)],[10+3 

10e+9],'LineStyle','--'); str = '\omega_{yL}'; 

text(omega_y_L/(c0*10^2*2*pi) + 2, 10^8 ,str); 

%line([omega_resonance omega_resonance],[10+3 10e+9],'LineStyle','-

.'); str = '\omega_{res}'; text(omega_resonance + 2, 10^5 ,str); 
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Vg_sym  = ([omega_sym(2:end) omega_sym(end)]-[omega_sym(1) 

omega_sym(1:end-1)])./([q_sym(2:end) q_sym(end)]-[q_sym(1) 

q_sym(1:end-1)]); 

Vg_antisym = ([omega_antisym(2:end) omega_antisym(end)]-

[omega_antisym(1) omega_antisym(1:end-1)])./([q_antisym(2:end) 

q_antisym(end)]-[q_antisym(1) q_antisym(1:end-1)]); 

figure(2),subplot(2,1,2),plot(omega_sym/(c0*10^2*2*pi),Vg_sym,'k','Li

newidth',2); hold on; 

plot(omega_antisym/(c0*10^2*2*pi),Vg_antisym,'r','Linewidth',2); 

legend('Symmetric','Antisymmetric'); legend('autoupdate','off'); 

title('Phonons Group Velocity'); xlabel('Phonon frequency [cm^{-1}]', 

'FontWeight', 'normal'); ylabel('Group velocity [m/s]', 'FontWeight', 

'normal'); axis([(omega_bot/(c0*10^2*2*pi) - 20) 

(omega_y_L/(c0*10^2*2*pi) + 10) -10e5 10e5]);  

line([omega_bot/(c0*10^2*2*pi) omega_bot/(c0*10^2*2*pi)],[-8e+6 

8e+6],'LineStyle','--'); str = '\omega_{\perp}'; 

text(omega_bot/(c0*10^2*2*pi) - 5, -9.3e5 ,str); 

line([omega_y_L/(c0*10^2*2*pi) omega_y_L/(c0*10^2*2*pi)],[-8e+6 

8e+6],'LineStyle','--'); str = '\omega_{yL}'; 

text(omega_y_L/(c0*10^2*2*pi) + 2, -9.3e5 ,str); 

%line([omega_resonance omega_resonance],[-8e+6 8e+6],'LineStyle','-

.'); str = '\omega_{res}'; text(omega_resonance + 2, -9.3e5 ,str); 

 

num_energies = 10001; % number of energies 

energy_up_limit = 0.5;  % upper limit of energy [eV] 

E0 =1e-4*e_h; % cutoff energy [J] 

%% Phonon energy 

Eq = hbar^2*q.^2./(2*m); 

Eq_sym = hbar^2*q_sym.^2./(2*m); 

Eq_antisym = hbar^2*q_antisym.^2./(2*m); 

         

Ek_eV = linspace(0,energy_up_limit,num_energies)'; 

Ek = Ek_eV*e_h; %[J] 

 

%% 2DEG 

l = 0.0e-9; %distance 2DEG from surface 

N_h= 2*10^17; %charge density [1/m^2] 2*10^13 [1/cm^2] 

b = (33*m*e_h^2*N_h/(8*hbar^2*epsilon_0*epsilon_r))^(1/3); 

%variational parameter [1/m] 

 

%% D element 

F = @(q) ((b^3)/2)*exp(b*l)*((-L^2*exp(-(b + q)*L)./(b+q)) + (l^2*exp(-

(b+q)*l)./(b+q)) + (2./(b+q)).*[((-L*exp(-(b + q)*L) + l*exp(-(b + 

q)*l))./(b+q)) - ((exp(-(b + q)*L) - exp(-(b + q)*l))./(b+q).^2)] - 

2*l*[((-L*exp(-(b + q)*L) + l*exp(-(b + q)*l))./(b + q)) - ((exp(-(b + 

q)*L) - exp(-(b + q)*l))./(b + q).^2)] + l^2*[(- exp(-(b + q)*L) + exp(-

(b + q)*l))./(b+q)]); 
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% F obtained by integration - derivation is shown in the thesis 

 

den_sym = diff(eq_sym,omega_sim); 

den_sym = matlabFunction(den_sym); 

den_sym = den_sym(omega_sym, q_sym); %derivative of the dispersion 

relation (symm) 

den_antisym = diff(eq_antisym,omega_sim); 

den_antisym = matlabFunction(den_antisym); 

den_antisym = den_antisym(omega_antisym,q_antisym); %derivative of the 

dispersion relation (asymm) 

 

C_symm = sqrt(1./abs(den_sym)); 

D_sym = abs(C_symm.^2.*(F(q_sym)).^2); 

C_antisymm = sqrt(1./abs(den_antisym)); 

D_antisym = abs(C_antisymm.^2.*(F(q_antisym)).^2); 

 

D_antisym = ones(num_energies,1)*D_antisym; 

D_sym = ones(num_energies,1)*D_sym; 

 

%% Scattering rate (Emission & Absorption) 

sigma_emi_sym = -ones(num_energies,num_omega); 

sigma_emi_asym = -ones(num_energies,num_omega); 

sigma_abs_sym = ones(num_energies,num_omega); 

sigma_abs_asym = ones(num_energies,num_omega); 

 

temp1_emi_sym = ones(num_energies,1)*(0.5*q_sym - (m/hbar)*(Vp_sym - 

Vg_sym));  

temp1_emi_asym = ones(num_energies,1)*(0.5*q_antisym - 

(m/hbar)*(Vp_antisym - Vg_antisym)); 

temp1_abs_sym = ones(num_energies,1)*(0.5*q_sym +(m/hbar)*(Vp_sym - 

Vg_sym)); 

temp1_abs_asym = ones(num_energies,1)*(0.5*q_antisym + 

(m/hbar)*(Vp_antisym - Vg_antisym)); 

  

temp2_emi_sym = (sqrt(1/m*(2*Ek*ones(1,num_omega) + 

ones(num_energies,1)*(-0.5*Eq_sym - hbar*omega_sym)) - 

ones(num_energies,1)*Vp_sym.^2) + 

sqrt(E0/m)).^2./sqrt(1/m*(2*Ek*ones(1,num_omega) + 

ones(num_energies,1)*(-0.5*Eq_sym - hbar*omega_sym)) - 

ones(num_energies,1)*Vp_sym.^2); 

temp2_emi_asym = (sqrt(1/m*(2*Ek*ones(1,num_omega) + 

ones(num_energies,1)*(-0.5*Eq_antisym - hbar*omega_antisym)) - 

ones(num_energies,1)*Vp_antisym.^2) + 

sqrt(E0/m)).^2./sqrt(1/m*(2*Ek*ones(1,num_omega) + 

ones(num_energies,1)*(-0.5*Eq_antisym - hbar*omega_antisym)) - 

ones(num_energies,1)*Vp_antisym.^2); 
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temp2_abs_sym = (sqrt(1/m*(2*Ek*ones(1,num_omega) + 

ones(num_energies,1)*(-0.5*Eq_sym + hbar*omega_sym))-

ones(num_energies,1)*Vp_sym.^2) + 

sqrt(E0/m)).^2./sqrt(1/m*(2*Ek*ones(1,num_omega) + 

ones(num_energies,1)*(-0.5*Eq_sym + hbar*omega_sym)) - 

ones(num_energies,1)*Vp_sym.^2); 

temp2_abs_asym = (sqrt(1/m*(2*Ek*ones(1,num_omega) + 

ones(num_energies,1)*(-0.5*Eq_antisym + hbar*omega_antisym))-

ones(num_energies,1)*Vp_antisym.^2) + 

sqrt(E0/m)).^2./sqrt(1/m*(2*Ek*ones(1,num_omega) + 

ones(num_energies,1)*(-0.5*Eq_antisym + hbar*omega_antisym)) - 

ones(num_energies,1)*Vp_antisym.^2); 

 

sigma_emi_sym(imag(temp2_emi_sym)~=0) = 0; 

sigma_emi_asym(imag(temp2_emi_asym)~=0) = 0; 

sigma_abs_sym(imag(temp2_abs_sym)~=0) = 0; 

sigma_abs_asym(imag(temp2_abs_asym)~=0) = 0; 

 

temp3_emi_sym = ones(num_energies,1)*((Vp_sym./q_sym - 

0.5*hbar/m)./Vg_sym - 1./q_sym); 

temp3_emi_asym = ones(num_energies,1)*((Vp_antisym./q_antisym - 

0.5*hbar/m)./Vg_antisym - 1./q_antisym); 

temp3_abs_sym = ones(num_energies,1)*((Vp_sym./q_sym + 

0.5*hbar/m)./Vg_sym - 1./q_sym); 

temp3_abs_asym = ones(num_energies,1)*((Vp_antisym./q_antisym + 

0.5*hbar/m)./Vg_antisym - 1./q_antisym); 

     

N_omega_sym = ones(num_energies,1)*(1./(exp(hbar*omega_sym/kBT)-1)); 

%number of phonons (Bose-Einstein Distribution) 

N_omega_antisym = 

ones(num_energies,1)*(1./(exp(hbar*omega_antisym/kBT)-1)); 

 

TEMP_tau_inv_emi_sym = 

(m/aB)*(1/epsilon_r^2)*sigma_emi_sym.*(N_omega_sym + 

1).*D_sym.*temp3_emi_sym./(temp1_emi_sym.*temp2_emi_sym); 

tau_inv_emi_sym = trapz(omega_sym,TEMP_tau_inv_emi_sym,2); 

TEMP_tau_inv_emi_asym 

=(m/aB)*(1/epsilon_r^2)*sigma_emi_asym.*(N_omega_antisym + 

1).*D_antisym.*temp3_emi_asym./(temp1_emi_asym.*temp2_emi_asym); 

tau_inv_emi_asym = trapz(omega_antisym,TEMP_tau_inv_emi_asym,2); 

TEMP_tau_inv_abs_sym = 

(m/aB)*(1/epsilon_r^2)*sigma_abs_sym.*(N_omega_sym).*D_sym.*temp3_abs

_sym./(temp1_abs_sym.*temp2_abs_sym); 

tau_inv_abs_sym = trapz(omega_sym,TEMP_tau_inv_abs_sym,2); 

TEMP_tau_inv_abs_asym = 

(m/aB)*(1/epsilon_r^2)*sigma_abs_asym.*(N_omega_antisym).*D_antisym.*

temp3_abs_asym./(temp1_abs_asym.*temp2_abs_asym); 
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tau_inv_abs_asym = trapz(omega_antisym,TEMP_tau_inv_abs_asym,2); 

 

figure(4),semilogy(omega_antisym/(c0*2*pi*10^2),-

TEMP_tau_inv_emi_asym(4001,:),'b','Linewidth',2); hold on;  

semilogy(omega_antisym/(c0*2*pi*10^2),-

TEMP_tau_inv_emi_asym(6001,:),'r--','Linewidth',2); 

semilogy(omega_antisym/(c0*2*pi*10^2),-

TEMP_tau_inv_emi_asym(10001,:),'k:','Linewidth',2);  

legend('E_{k} = 0.2 eV','E_{k} = 0.3 eV','E_{k} = 0.5 

eV','Location','southeast'); legend('autoupdate','off'); 

semilogy(omega_sym/(c0*2*pi*10^2),TEMP_tau_inv_emi_sym(4001,:),'b','L

inewidth',2); 

semilogy(omega_sym/(c0*2*pi*10^2),TEMP_tau_inv_emi_sym(6001,:),'r--

','Linewidth',2); 

semilogy(omega_sym/(c0*2*pi*10^2),TEMP_tau_inv_emi_sym(10001,:),'k:',

'Linewidth',2); 

hold off; xlabel('Phonon Frequency \omega (cm^{-1})', 'FontWeight', 

'normal');  ylabel('Scattering Rate (a.u.)', 'FontWeight', 'normal'); 

%line([omega_resonance omega_resonance],[1e0 1e+5],'LineStyle','-.'); 

str = '\omega_{res}'; text(omega_resonance + 0.1, 3e+0 ,str); 

 

figure(5),semilogy(Ek_eV,tau_inv_emi_sym,'Linewidth',2); hold on; 

semilogy(Ek_eV,tau_inv_emi_asym,'Linewidth',2); 

semilogy(Ek_eV,tau_inv_abs_sym,'Linewidth',2); 

semilogy(Ek_eV,tau_inv_abs_asym,'Linewidth',2); hold off; 

xlabel('Hole Energy E_{k} (eV)', 'FontWeight', 'normal');  

ylabel('Scattering Rate (s^{-1})', 'FontWeight', 'normal');  

legend('\tau^{sym}_{emi}','\tau^{asym}_{emi}','\tau^{sym}_{abs}','\ta

u^{asym}_{abs}','Location','southeast','AutoUpdate','off'); 

%line([hbar*omega_resonance*c0*2*pi*10^2/e_h 

hbar*omega_resonance*c0*2*pi*10^2/e_h],[1e9 1e14],'LineStyle','-.'); 

str = '\omega_{res}'; text(hbar*omega_resonance*c0*2*pi*10^2/e_h + 

0.005, 3e10 ,str); 

 

tau_inv_emi = tau_inv_emi_sym + tau_inv_emi_asym; 

tau_inv_abs = tau_inv_abs_sym + tau_inv_abs_asym; 

 

figure(6), semilogy(Ek_eV,tau_inv_emi,'k','Linewidth',2); hold on; 

semilogy(Ek_eV,tau_inv_abs,'r','Linewidth',2); hold off; 

xlabel('Hole Energy E_{k} (eV)', 'FontWeight', 'normal');  

ylabel('Scattering Rate (s^{-1})', 'FontWeight', 'normal');  

%line([hbar*omega_resonance*c0*2*pi*10^2/e_h 

hbar*omega_resonance*c0*2*pi*10^2/e_h],[1e9 1e14],'LineStyle','-.'); 

str = '\omega_{res}'; text(hbar*omega_resonance*c0*2*pi*10^2/e_h + 

0.005, 3e10 ,str); 

 

tau_inv = tau_inv_emi + tau_inv_abs; 
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figure(7), semilogy(Ek_eV,tau_inv,'k','Linewidth',2); 

xlabel('Hole Energy E_{k} (eV)', 'FontWeight', 'normal');  

ylabel('Scattering Rate (s^{-1})', 'FontWeight', 'normal');  

%line([hbar*omega_resonance*c0*2*pi*10^2/e_h 

hbar*omega_resonance*c0*2*pi*10^2/e_h],[1e9 1e14],'LineStyle','-.'); 

str = '\omega_{res}'; text(hbar*omega_resonance*c0*2*pi*10^2/e_h + 

0.005, 3e10 ,str); 

 

disp('Do you want to plot the mobility?'); 

disp('[1] Yes'); 

disp('[0] No'); 

sel =input(''); 

if sel==1 

    mc = 0.4447*m0; %conduction mass [Li et Al 2018] 

    mobility = (e_h/mc)*(1./(tau_inv)); %[m^2/(V s)] 

    mobility = mobility*10^4; %[cm^2/(V s)]; 

    figure(8), semilogy(Ek_eV,mobility,'k','Linewidth',2); 

xlabel('Hole Energy E_{k} (eV)', 'FontWeight', 'normal'); 

ylabel('\mu_{IF} [cm^2/(V s)]'); title('Mobility'); 

    %line([hbar*omega_resonance*c0*2*pi*10^2/e_h 

hbar*omega_resonance*c0*2*pi*10^2/e_h],[1e2 1e6],'LineStyle','-.'); 

str = '\omega_{res}'; text(hbar*omega_resonance*c0*2*pi*10^2/e_h + 

0.005, 0.5e6 ,str); 

 

    %% Comparison with Li (Temperature) 

    temperatures = 1001; 

    mobility_T = zeros(temperatures,1); T_2 = 

linspace(100,1000,temperatures); 

    sigma_emi_sym_T = sigma_emi_sym(10001,:); sigma_emi_asym_T = 

sigma_emi_asym(10001,:); %Ek=0.5 eV 

    sigma_abs_sym_T = sigma_abs_sym(10001,:); sigma_abs_asym_T = 

sigma_abs_asym(10001,:); 

    D_sym_T = D_sym(10001,:); D_antisym_T = D_antisym(10001,:);  

    temp3_emi_sym_T = temp3_emi_sym(10001,:); temp2_emi_sym_T = 

temp2_emi_sym(10001,:); temp1_emi_sym_T = temp1_emi_sym(10001,:); 

    temp3_emi_asym_T = temp3_emi_asym(10001,:); temp2_emi_asym_T = 

temp2_emi_asym(10001,:); temp1_emi_asym_T = temp1_emi_asym(10001,:); 

    temp3_abs_sym_T = temp3_abs_sym(10001,:); temp2_abs_sym_T = 

temp2_abs_sym(10001,:); temp1_abs_sym_T = temp1_abs_sym(10001,:); 

    temp3_abs_asym_T = temp3_abs_asym(10001,:); temp2_abs_asym_T = 

temp2_abs_asym(10001,:); temp1_abs_asym_T = temp1_abs_asym(10001,:); 

 

    for i=1:temperatures 

        N_omega_sym_T = (1./(exp(hbar*omega_sym/(kB*T_2(i)))-1)); 

N_omega_antisym_T = (1./(exp(hbar*omega_antisym/(kB*T_2(i)))-1)); 
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        TEMP_tau_inv_emi_sym_T = 

(m/aB)*(1/epsilon_r^2)*sigma_emi_sym_T.*(N_omega_sym_T + 

1).*D_sym_T.*temp3_emi_sym_T./(temp1_emi_sym_T.*temp2_emi_sym_T); 

        tau_inv_emi_sym_T = trapz(omega_sym,TEMP_tau_inv_emi_sym_T,2); 

        TEMP_tau_inv_emi_asym_T 

=(m/aB)*(1/epsilon_r^2)*sigma_emi_asym_T.*(N_omega_antisym_T + 

1).*D_antisym_T.*temp3_emi_asym_T./(temp1_emi_asym_T.*temp2_emi_asym_

T); 

        tau_inv_emi_asym_T = 

trapz(omega_antisym,TEMP_tau_inv_emi_asym_T,2); 

        TEMP_tau_inv_abs_sym_T = 

(m/aB)*(1/epsilon_r^2)*sigma_abs_sym_T.*(N_omega_sym_T).*D_sym_T.*tem

p3_abs_sym_T./(temp1_abs_sym_T.*temp2_abs_sym_T); 

        tau_inv_abs_sym_T = trapz(omega_sym,TEMP_tau_inv_abs_sym_T,2); 

        TEMP_tau_inv_abs_asym_T = 

(m/aB)*(1/epsilon_r^2)*sigma_abs_asym_T.*(N_omega_antisym_T).*D_antis

ym_T.*temp3_abs_asym_T./(temp1_abs_asym_T.*temp2_abs_asym_T); 

        tau_inv_abs_asym_T = 

trapz(omega_antisym,TEMP_tau_inv_abs_asym_T,2); 

 

        tau_inv_emi_T = tau_inv_emi_sym_T + tau_inv_emi_asym_T; 

        tau_inv_abs_T = tau_inv_abs_sym_T + tau_inv_abs_asym_T; 

        tau_inv_T = tau_inv_emi_T + tau_inv_abs_T; 

        mobility_T(i) = (e_h/mc)*(1./(tau_inv_T))*10^4; %[cm^2/(V s)] 

    end 

    figure(9), semilogy(T_2,mobility_T,'k','Linewidth',2); 

xlabel('Temperature (K)', 'FontWeight', 'normal'); ylabel('\mu_{IF} 

[cm^2/(V s)]'); title('Mobility'); 

 

 

    %% Comparison with Li (Density of Charges) 

    densities = 1001; 

    N_h_2= linspace(10^15,10^18,densities); %[1/m^2] 

    T = 300;  

    mobility_den = zeros(densities,1); 

    N_omega_sym_Nh = (1./(exp(hbar*omega_sym/(kB*T))-1)); 

N_omega_antisym_Nh = (1./(exp(hbar*omega_antisym/(kB*T))-1)); 

    for i=1:densities 

        b = 

(33*m*e_h^2*N_h_2(i)/(8*hbar^2*epsilon_0*epsilon_r))^(1/3); 

        F = @(q) ((b^3)/2)*exp(b*l)*((-L^2*exp(-(b + q)*L)./(b+q)) + 

(l^2*exp(-(b+q)*l)./(b+q)) + (2./(b+q)).*[((-L*exp(-(b + q)*L) + 

l*exp(-(b + q)*l))./(b+q)) - ((exp(-(b + q)*L) - exp(-(b + 

q)*l))./(b+q).^2)] - 2*l*[((-L*exp(-(b + q)*L) + l*exp(-(b + q)*l))./(b 

+ q)) - ((exp(-(b + q)*L) - exp(-(b + q)*l))./(b + q).^2)] + l^2*[(- 

exp(-(b + q)*L) + exp(-(b + q)*l))./(b+q)]); 

        D_sym_Nh = abs(C_symm.^2.*(F(q_sym)).^2); 
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        D_antisym_Nh = abs(C_antisymm.^2.*(F(q_antisym)).^2); 

 

        TEMP_tau_inv_emi_sym_Nh = 

(m/aB)*(1/epsilon_r^2)*sigma_emi_sym_T.*(N_omega_sym_Nh + 

1).*D_sym_Nh.*temp3_emi_sym_T./(temp1_emi_sym_T.*temp2_emi_sym_T); 

        tau_inv_emi_sym_Nh = 

trapz(omega_sym,TEMP_tau_inv_emi_sym_Nh,2); 

        TEMP_tau_inv_emi_asym_Nh 

=(m/aB)*(1/epsilon_r^2)*sigma_emi_asym_T.*(N_omega_antisym_Nh + 

1).*D_antisym_Nh.*temp3_emi_asym_T./(temp1_emi_asym_T.*temp2_emi_asym

_T); 

        tau_inv_emi_asym_Nh = 

trapz(omega_antisym,TEMP_tau_inv_emi_asym_Nh,2); 

        TEMP_tau_inv_abs_sym_Nh = 

(m/aB)*(1/epsilon_r^2)*sigma_abs_sym_T.*(N_omega_sym_Nh).*D_sym_Nh.*t

emp3_abs_sym_T./(temp1_abs_sym_T.*temp2_abs_sym_T); 

        tau_inv_abs_sym_Nh = 

trapz(omega_sym,TEMP_tau_inv_abs_sym_Nh,2); 

        TEMP_tau_inv_abs_asym_Nh = 

(m/aB)*(1/epsilon_r^2)*sigma_abs_asym_T.*(N_omega_antisym_Nh).*D_anti

sym_Nh.*temp3_abs_asym_T./(temp1_abs_asym_T.*temp2_abs_asym_T); 

        tau_inv_abs_asym_Nh = 

trapz(omega_antisym,TEMP_tau_inv_abs_asym_Nh,2); 

 

        tau_inv_emi_Nh = tau_inv_emi_sym_Nh + tau_inv_emi_asym_Nh; 

        tau_inv_abs_Nh = tau_inv_abs_sym_Nh + tau_inv_abs_asym_Nh; 

        tau_inv_Nh = tau_inv_emi_Nh + tau_inv_abs_Nh; 

        mobility_den(i) = (e_h/mc)*(1./(tau_inv_Nh))*10^4; %[cm^2/(V 

s)] 

    end 

 

    figure(10), loglog(N_h_2/10^4,mobility_den,'k','Linewidth',2); 

xlabel('Hole Density (cm^{-2})', 'FontWeight', 'normal'); 

ylabel('\mu_{IF} [cm^2/(V s)]'); title('Mobility'); 

end 

 

% if values==1 

%     figure(1), export_fig dispersion_AlN.pdf 

%     figure(2), export_fig phase_velocity_AlN.pdf 

%     figure(3), export_fig group_velocity_AlN.pdf 

%     figure(4), export_fig number_phonons_AlN.pdf 

%     figure(5), export_fig scattering_4_AlN.pdf 

%     figure(6), export_fig scattering_2_AlN.pdf 

%     figure(7), export_fig scattering_AlN.pdf 

%     figure(8), export_fig mobility_AlN.pdf 

%     figure(9), export_fig mobility_T_AlN.pdf 

%     figure(10), export_fig mobility_N_AlN.pdf 
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% elseif values==4 

%     figure(1), export_fig dispersion_wBN.pdf 

%     figure(2), export_fig phase_velocity_wBN.pdf 

%     figure(3), export_fig group_velocity_wBN.pdf 

%     figure(4), export_fig number_phonons_wBN.pdf 

%     figure(5), export_fig scattering_4_wBN.pdf 

%     figure(6), export_fig scattering_2_wBN.pdf 

%     figure(7), export_fig scattering_wBN.pdf 

%     figure(8), export_fig mobility_wBN.pdf 

%     figure(9), export_fig mobility_T_wBN.pdf 

%     figure(10), export_fig mobility_N_wBN.pdf 

% end 
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Appendix D 

SDE structure 

(define nm 1e-3) 

(define  L  150) 

(define W 5) 

(define H 5) 

(define SEP 70) 

(define Tox 0.8 ) 

(define Ratio 1 ) 

(define Radius 5) 

(define Channel_Doping 1e16) 

(define Bulk_Doping 1e15) 

(define SD_Doping1 1e20) 

(define SDE_Doping 1e20) 

(define SD_Front_Doping 0) 

(define Channel_Doping2 1.96e20) 

(define Lsd 5) 

(define SDlength 30) 

(define RL1 1.5) 

(define dopL 1) 

(define dopBd 0.0) 

 

 

;==============Geometry-===============; 

;--- Metal gate 

(sdegeo:create-cuboid (position 0 (* -1 10) 0)  (position L (+ (+ SEP (+ (* 2 

W) (* 3 Tox))) 10) (+ 10 (+ H Tox))) "Titanium" "MG") 

 

;--- Channel Oxide 

"ABA" 

(sdegeo:create-cuboid (position 0 (- 0 Tox) 0)  (position L (+ W Tox) (+ H 

Tox)) "SiO2" "Gateoxide 1") 

(sdegeo:create-cuboid (position 0 (- (+ SEP (+ W (* 2 Tox))) Tox) 0)  (position 

L (+  (+ SEP (+ (* 2 W) (* 2 Tox)))  Tox) (+ H Tox)) "SiO2" "Gateoxide 2") 

 

;--- Channel 

"ABA" 

(sdegeo:create-cuboid (position 0 0 0)  (position L W H) "Silicon" "Channel1") 

(sdegeo:create-cuboid (position 0 (+ SEP (+ W (* 2 Tox))) 0)  (position L (+ 

SEP (+ (* 2 W) (* 2 Tox))) H)  "Silicon" "Channel2") 

 

 

 

;--- Source  

(sdegeo:create-cuboid (position (* -1 Lsd) W H)  (position 0 0 0) "Silicon" 

"Source Extension 1") 

 

(sdegeo:create-cuboid (position (* -1 Lsd) (+ SEP (+ W (* 2 Tox))) H)  

(position 0 (+ SEP (+ (* 2 W) (* 2 Tox))) 0)  "Silicon" "Source Extensition 2") 
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(sdegeo:create-cuboid (position (- (* -1 Lsd) SDlength) (* -1 10) 0)  (position 

(* -1 Lsd) (+ (+ SEP (+ (* 2 W) (* 3 Tox))) 10) (+ 10 (+ H Tox))) "Silicon" 

"SC") 

 

 

;--- Drain 

(sdegeo:create-cuboid (position L 0 0)  (position (+ Lsd L) W H) "Silicon" 

"Drain Extension 1") 

 

(sdegeo:create-cuboid (position L (+ SEP (+ W (* 2 Tox))) 0)  (position (+ Lsd 

L) (+ SEP (+ (* 2 W) (* 2 Tox))) H) "Silicon" "Drain Extention 2") 

 

(sdegeo:create-cuboid (position (+  Lsd L) (* -1 10) 0)  (position (+ (+  Lsd 

L) SDlength) (+ (+ SEP (+ (* 2 W) (* 3 Tox))) 10) (+ 10 (+ H Tox))) "Silicon" 

"DC") 

 

 

;---BOX 

(sdegeo:create-cuboid (position (- (* -1 Lsd) SDlength) (* -1 10) 0) (position 

(+ (+  Lsd L) SDlength) (+ (+ SEP (+ (* 2 W) (* 3 Tox))) 10) (* -1 20)) "SiO2" 

"BOX") 

 

;---Substrate 

(sdegeo:create-cuboid (position (- (* -1 Lsd) SDlength) (* -1 10) (* -1 20)) 

(position (+ (+  Lsd L) SDlength) (+ (+ SEP (+ (* 2 W) (* 3 Tox))) 10) (* -1 

40)) "Silicon" "Substrate") 

 

;==============Geometry-===============; 

 

;==============Contact-===============; 

;--- Gate contact(1): 

(sdegeo:define-contact-set "G" 4.0  (color:rgb 1.0 0.0 0.0 ) "||" ) 

(sdegeo:set-current-contact-set "G") 

(sdegeo:set-contact-faces  

 (find-face-id (position (* 0.5 L) 0 (+ 10 (+ Radius Tox)))))    

 

;--- Assign drain contact 

(sdegeo:define-contact-set "D" 4.0  (color:rgb 1.0 0.0 0.0 ) "##" ) 

(sdegeo:set-current-contact-set "D") 

(sdegeo:set-contact-faces  

 (find-face-id (position (+ (+  Lsd L) SDlength) 0 (+ 5 (+ Radius Tox))  )))   

 

;--- Assign source contact 

(sdegeo:define-contact-set "S" 4.0  (color:rgb 1.0 0.0 0.0 ) "##" ) 

(sdegeo:set-current-contact-set "S") 

(sdegeo:set-contact-faces  

 (find-face-id (position (- (* -1 Lsd) SDlength) 0 (+ 5 (+ Radius Tox))  )))  

  

;--- Assign substrate contact 

(sdegeo:define-contact-set "B" 4.0  (color:rgb 1.0 0.0 0.0 ) "##" ) 

(sdegeo:set-current-contact-set "B") 

(sdegeo:set-contact-faces  

 (find-face-id (position (* 0.5 L) 0 (* -1 40)  )))     
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;==============Contact-===============; 

 

 

 

;==============Doping-===============; 

;--- Constant BG doping in all of Si 

(sdedr:define-constant-profile "Boron_Bulk" "BoronActiveConcentration" 

Bulk_Doping)  

(sdedr:define-constant-profile-material "Boron_bulk_PL" "Boron_Bulk" "Silicon") 

 

;--- Constant doping is channel region 

(sdedr:define-constant-profile "Channel" "BoronActiveConcentration" 

Channel_Doping) 

(sdedr:define-refinement-window "Channel_PlBox" "Cuboid" 

   (position -1 (- 0 Tox) (- 0 Tox)) (position (+ 1 L) (+ SEP (+ (* 2 W) (* 3 

Tox))) H)) 

(sdedr:define-constant-profile-placement "Channel_PL" "Channel" "Channel_PlBox" 

0 ) 

 

 

 

;--- Constant doping SE/DE region 

(sdedr:define-constant-profile "SDE" "ArsenicActiveConcentration" SDE_Doping) 

 

(sdedr:define-refinement-window "DrainE_PlBox" "Cuboid" (position (+ 1 L) (* -1 

Tox)  (- 0 Tox)) (position (+ Lsd L) (+ SEP (+ (* 2 W) (* 3 Tox))) H )) 

(sdedr:define-constant-profile-placement "DrainE_PL" "SDE" "DrainE_PlBox" 0) 

 

(sdedr:define-refinement-window "SourceE_PlBox" "Cuboid" (position -1 (* -1 

Tox)  (- 0 Tox))  (position (* -1 Lsd) (+ SEP (+ (* 2 W) (* 3 Tox))) H )) 

(sdedr:define-constant-profile-placement "SourceE_PL" "SDE" "SourceE_PlBox" 0) 

 

;--- Constant doping is S/D region----SD_BOX 

(sdedr:define-constant-profile "SD" "ArsenicActiveConcentration" SD_Doping1) 

 

(sdedr:define-refinement-window "Drain_PlBox" "Cuboid"  

  (position (- (* -1 Lsd) SDlength) (* -1 10)  0) (position (* -1 Lsd)  (+ (+ 

SEP (+ (* 2 W) (* 3 Tox))) 10) (+ 10 (+ H Tox)) )) 

(sdedr:define-constant-profile-placement "Drain_PL" "SD" "Drain_PlBox" 0) 

 

(sdedr:define-refinement-window "Source_PlBox" "Cuboid"  

  (position (+  Lsd L) (* -1 10)  0) (position (+ (+  Lsd L) SDlength) (+ (+ 

SEP (+ (* 2 W) (* 3 Tox))) 10) (+ 10 (+ H Tox)) )) 

(sdedr:define-constant-profile-placement "Source_PL" "SD" "Source_PlBox" 0) 

 

 

;==============Mesh-===============; 

(sdedr:define-refinement-size "Cha_Mesh2" 0.05 0.05 0.05 0.005 0.005 0.005 ) 

(sdedr:define-refinement-function "Cha_Mesh2" "DopingConcentration" 

"MaxTransDiff" 1) 

(sdedr:define-refinement-material "Cha_Mesh1n" "Cha_Mesh2" "Silicon" ) 

 

(sdedr:define-multibox-size "multibox_0" 0.04 0.04 0.04 0.002 0.002 0.002 1.2 

1.2 1.2) 
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(sdedr:define-refinement-function "multibox_0" "DopingConcentration" 

"MaxTransDiff" 1) 

(sdedr:define-refinement-window "Region_1" "Cuboid" (position (- 0 1) (- 0 Tox) 

0 )    (position  (+ L 1) (+ W Tox) (+ H Tox)))  

(sdedr:define-multibox-placement "multibox0_PL1" "multibox_0" "Region_1") 

 

(sdedr:define-multibox-size "multibox_1" 0.04 0.04 0.04 0.002 0.002 0.002 1.2 

1.2 1.2) 

(sdedr:define-refinement-function "multibox_1" "DopingConcentration" 

"MaxTransDiff" 1) 

(sdedr:define-refinement-window "Region_2" "Cuboid" (position (- 0 1) (- (+ SEP 

(+ W (* 2 Tox))) Tox) 0)  (position (+ L 1) (+ SEP (+ (* 2 W) (* 3 Tox))) (+ H 

Tox)))  

(sdedr:define-multibox-placement "multibox0_PL2" "multibox_1" "Region_2") 

 

 

;(sdedr:define-refinement-function "RefinementDefinition_1" "MaxLenInt" 

"Silicon" "SiO2" 0.0002 1.4) 

 

;==============Mesh-===============; 

 

 

 

;==============Mesh-===============; 

(sdegeo:scale "all" nm nm nm) 

 

(sdeio:save-tdr-bnd (part:entities (filter:type "solid?"))"@boundary/o@") 

(sdedr:write-cmd-file "@commands/o@") 

(sde:build-mesh "snmesh" " " "n@node@_msh") 

SDevice 

Electrode{ 

   { name="S" voltage=0.0  } 

   { name="D"  voltage=0.0  } 

   { name="G"   voltage=0.0  }  

   { name="B"   voltage=0.0  }  

 

   

} 

 

File{ 

   Grid  = "@tdr@" 

   Doping = "@tdr@" 

   Plot  = "@tdrdat@" 

   Current = "@plot@" 

   Output  = "@log@" 

   parameter    = "@parameter@" 

}      

 

Physics {  

   Mobility(  Enormal HighFieldsat DopingDep )  

   Recombination( SRH(DopingDep) Auger ) 
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 eQuantumPotential 

 hQuantumPotential 

}   

 

 

Plot{ 

*--Density and Currents, etc 

   eDensity hDensity 

   TotalCurrent/Vector eCurrent/Vector hCurrent/Vector 

   eMobility hMobility 

   eVelocity hVelocity 

   eQuasiFermi hQuasiFermi 

 

*--Fields and charges 

   ElectricField/Vector Potential SpaceCharge 

 

*--Doping Profiles 

   Doping DonorConcentration AcceptorConcentration 

 

*--Generation/Recombination 

   SRH Auger 

   * AvalancheGeneration eAvalancheGeneration hAvalancheGeneration 

 

*--Driving forces 

   eGradQuasiFermi/Vector hGradQuasiFermi/Vector 

   eEparallel hEparalllel 

 

*--Band structure/Composition 

   BandGap  

   BandGapNarrowing 

   Affinity 

   ConductionBand ValenceBand 

   eQuantumPotential 

} 

 

Math{ 

    

   Extrapolate 

   Derivatives 

   * Avalderivatives 

   RelErrControl 

   Digits=5 

   ErRef(electron)=1.e10 

   ErRef(hole)=1.e10 

   Notdamped=50 

   Iterations=20 

   Directcurrent 

   Method=ParDiSo 

   Parallel= 2 

   NaturalBoxMethod 

} 

 

Solve{ 

  #-initial solution: 
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  Coupled(Iterations=100 LineSearchDamping=1e-4){ Poisson } 

  Coupled{ Poisson eQuantumPotential } 

  Coupled{ Poisson eQuantumPotential Electron Hole } 

   

   

  #-ramp gate 

 Quasistationary( 

    InitialStep=1e-3 Increment=1.2 

    Minstep=1e-6 MaxStep=0.95 

    Goal{ name="D" voltage=@VD@} 

  ){ 

    Coupled { Poisson eQuantumPotential Electron Hole} 

  } 

 

  NewCurrentFile="" 

 

  Quasistationary( 

    InitialStep=1e-3 Increment=1.2 

    Minstep=1e-6 MaxStep=0.02 

    Goal{ name="G" voltage=@VG@ } 

    DoZero 

  ){ 

    Coupled { Poisson eQuantumPotential Electron Hole } 

  } 

 

} 

Inspect 

#------------------------------------------------------------------------# 

#        Script file designed to compute   :                             # 

#         * The threshold voltage          :  VT                         # 

#         * The transconductance           :  gm    # 

#------------------------------------------------------------------------# 

 

if { ! [catch {open n@previous@_ins.log w} log_file] } { 

 set fileId stdout 

} 

 

puts $log_file " " 

puts $log_file "  ------------------------------------ " 

puts $log_file "   Values of the extracted Parameters : " 

puts $log_file "  ------------------------------------ " 

puts $log_file " " 

puts $log_file " " 

set  DATE   [ exec  date ] 

set  WORK   [ exec pwd   ] 

puts $log_file "  Date      : $DATE " 

puts $log_file "  Directory : $WORK " 

puts $log_file " " 

puts $log_file " " 

 

#           # 
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#                    idvgs=y(x) ;   vgsvgs=x(x) ;                  # 

#           # 

  

set out_file n@previous@_des 

proj_load "${out_file}.plt" 

 

 

# ---------------------------------------------------------------------- # 

# I)  VT = Xintercept(maxslope(ID[VGS]))  or  VT = VGS( IDS= 0.1 ua/um ) # 

# ---------------------------------------------------------------------- # 

cv_create    idvgs   "${out_file} G OuterVoltage" "${out_file} D TotalCurrent" 

cv_create    vdsvgs  "${out_file} G OuterVoltage" "${out_file} D OuterVoltage"  

 

#....................................................................... # 

# 1) VT extracted as the intersection point with the X axis at the point # 

#    where the id(vgs) slope reaches its maxmimum :                      # 

#....................................................................... # 

set VT1 [ cv_compute "vecvalx(<idvgs>, 3.14e-7)" A A A A ]  

 

#................................................................        # 

# 2) Printing of the whole set of extracted values (std output) :        # 

#................................................................        # 

puts $log_file "Threshold   voltage VT1 = $VT1 Volts" 

puts $log_file " " 

 

#......................................................................  # 

# 3) Initialization and display of curves on the main Inspect screen  :  # 

# .....................................................................  # 

cv_display    idvgs   

cv_lineStyle  idvgs  solid 

cv_lineColor  idvgs  red 

 

 

# ---------------------------------------------------------------------- # 

# II)    gm =  maxslope((ID[VGS])                         # 

# ---------------------------------------------------------------------- # 

set gm     [ f_gm idvgs ] 

puts $log_file " " 

puts $log_file "Transconductance gm    = $gm  A/V" 

puts $log_file " " 

 

 

set ioff  [ cv_compute "vecmin(<idvgs>)" A A A A ] 

puts $log_file " " 

puts $log_file "Current ioff        = $ioff  A" 

puts $log_file " " 

 

set isat  [ cv_compute "vecmax(<idvgs>)" A A A A ] 

puts $log_file " " 

puts $log_file "Current isat        = $isat  A" 

puts $log_file " " 

 

 

cv_createWithFormula logcurve "log10(<idvgs>)" A A A A 
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cv_createWithFormula difflog "diff(<logcurve>)" A A A A 

set sslop [ cv_compute "1/vecmax(<difflog>)" A A A A ] 

puts $log_file " " 

puts $log_file "sub solp        = $sslop  A/V" 

puts $log_file " " 

 

 

### Puting into Family Table ##### 

 

ft_scalar VT $VT1 

ft_scalar gmax $gm 

ft_scalar ioff $ioff 

ft_scalar isat $isat 

ft_scalar sslop $sslop 

 

 

close $log_file  
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theses or dissertations. Please include citation details and for online use, a link to the Version of Record. 

IOP’s permission will be required for commercial use of an article published as part of your thesis.” 

Source: https://publishingsupport.iopscience.iop.org/questions/rp-use-of-a-subscription-article-in-your-
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