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SUMMARY

Reinforcement learning (RL) addresses sequential decision making with the goal of comput-

ing a “near-optimal” policy that specifies a decision for each state of the world. Despite the

progresses in RL, its deployment in real-world business problems is often hard. Some of the

implementation challenges include the complexity of algorithms and/or policies which makes

them less understandable to RL non-experts, computational challenges related to the curses

of dimensionality, and limited data in modeling the operating environment accurately. In this

thesis, we elaborate on these challenges while focusing on applications in the operations-finance

area.

In Chapter 2, we study and model a new application in sustainable operations related to

renewable power procurement. We focus on companies that have committed to procuring a

specified percentage of their annual electricity demand from a renewable power source by a

future date. The problem suffers from several curses of dimensionality due to the high

dimensional state space, high dimensional expectations arising from multiple sources of uncer-

tainty, and non-convexities resulting from business constraints requiring a minimum purchase

quantity. We design a new rolling horizon policy based on information relaxation and dual-

ity theory with interpretable approximations, and in addition, account for uncertainty directly

while computing decisions.

In Chapter 3, we focus on the problem faced by a firm providing services to store ethanol and

analyze the behavior of users interacting with this storage provider. Users sign annual contracts

xi



SUMMARY (Continued)

for storage space with a storage provider. However, users’ underutilization of the capacity

provides the chance for the storage provider to overbook its capacity. The risk exposure of

the firm depends on an understanding of user behavior which is limited. Using limited data

on past injection and withdrawals, we build a sample efficient model of user behavior using

Gaussian processes in a non-standard manner that leverages interpretable characterizations of

the optimal policy from the operations management literature.

In the final chapter, we investigate the long-term capacity investment problem faced by a

hydropower plant. The long horizon of the problem and the presence of multiple underlying

variables result in an intractable MDP. Furthermore, limited long-term market data about the

evolution of uncertainties, including power price and inflow level, creates substantial planning

risk. To tackle these challenges, we design an RL algorithm to hedge against long-term model

misspecification risk while mitigating any financial losses due to being overly conservative. We

also extend the interpretable reoptimization techniques.
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CHAPTER 1

INTRODUCTION

In the last few years, reinforcement learning (RL) has achieved great milestones for planning

under uncertainty, with an impressive performance on applications such as game playing and

robotics [126, 146, 171]. RL addresses sequential decision making by formulating problems as

Markov decision processes (MDP; [149]) with the goal of computing a “near-optimal” policy

that specifies a decision for each state of the world that a decision maker can encounter in

the future. Despite the strides made in RL, its deployment in real-world business problems is

often hard. Some of the implementation challenges include the complexity of algorithms and/or

policies which makes them less understandable to RL non-experts, computational challenges

related to the curses of dimensionality, and limited data in modeling the operating environment

accurately [20, 70, 148, 177]. We elaborate on these challenges below with a bias towards how

they are typically encountered in the operations-finance area [10].

‚ Complex algorithms/policies and interpretability: The decision-making process in real

systems is often owned and operated by humans. Interpretability of RL policies by users

has received significant recent attention [128,182,190]. Another aspect of RL interpretabil-

ity has to do with the algorithm itself. Specifically, algorithms with easily understandable

approximations to obtain a policy facilitate adoption and confidence in practice. The

latter reason is a major contributor to the popularity of model predictive control methods

1
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in operations [51,89,112]. These methods are referred to as reoptimization approaches in

the operations literature and rely on re-solving deterministic models based on forecasts

of uncertain quantities.

‚ Curses of dimensionality: RL algorithms in research are usually tested and shown to be

competitive on examples where the dimensionality of the MDP state and action spaces

is small. Many of the traditional RL algorithms have scalability issues and fail to scale

up as the complexity of the system increases, as discussed in [69]. Many real systems

include complicated dynamics (i.e., multi-factor uncertain variables) with continuous and

large-scale state and action spaces. Model-based RL approaches under the umbrella of

approximate dynamic programming have been successful at solving structured MDPs

[102,135,182] and RL algorithms [69,112,208].

‚ Limited data: The reduced cost of data acquisition has caused an explosion in the avail-

ability of data for machine learning tasks. This increase in data availability does not

directly address the shortage of data for planning especially in long time horizons. Such

timelines are common place in business when making investments and other strategic

and irreversible decisions in the face of uncertainty. Calibrating models of uncertainty

using historical data in these settings can lead to inaccurate representations of the future

and thus potentially suboptimal decisions that have significant financial implications. An

example is the investment in renewable energy assets where profits/costs depend on un-

certainties related to the evolution of technology in storage and power production, climate

change and its impact on energy supply/demand, and government policies and environ-
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mental factors that effect the usage of energy assets. We highlight two streams of research

in RL that focus on limited data. The first develops algorithms that require less data

for optimization, that is, these algorithms are data efficient [58, 77, 116]. The second ad-

dresses the risk resulting from limited data by improving different notions of worst case

performance [120,178].

My thesis addresses the aforementioned challenges in the context of real options arising

in contemporary applications at the interface of operations and finance, including renewable

energy, management of storage, and the refurbishment of power plants. Real options studies the

adaptation of flexibility to the unfolding of uncertainty, typically market variables such as price,

supply, and demand [65]. The resulting decisions are usually taken at multiple connected dates,

affected by multiple underlying variables and constraints, and are quantity-based [136, 167].

Such problems usually can be formulated by MDPs which are intractable. The three challenges

mentioned earlier manifest themselves in important ways when deploying RL algorithms for

real options applications studied in the three chapters of my thesis, as discussed below and

highlighted in bold face.

‚ Chapter 2: We study and model a new application in sustainable operations related to re-

newable power procurement. We focus on companies that have committed to procuring a

specified percentage of their annual electricity demand from a renewable power source by a

future date. The problem suffers from several curses of dimensionality due to the high

dimensional state space, high dimensional expectations arising from multiple sources of

uncertainty, and non-convexities resulting from business constraints requiring a minimum
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purchase quantity. Rolling planning horizon policies based on forecasts are commonplace

as they are easy to understand and implement but do not directly capture uncertainty in

planning and can thus be suboptimal. We design a new rolling horizon policy based on

information relaxation and duality theory with easy-to-interpret approximations, and

in addition, account for uncertainty directly while computing decisions.

‚ Chapter 3: We focus on the problem faced by a firm providing services to store ethanol

and analyze the behavior of users interacting with this storage provider. The firm signs

annual contracts for storage space and overbooks capacity. The risk exposure of the firm

depends on an understanding of user behavior which is limited. Using limited data on

past injection and withdrawals, we build a sample efficient model of user behavior using

Gaussian processes in a non-standard manner that leverages interpretable character-

izations of the optimal policy from the operations management literature.

‚ Chapter 4: We investigate the long-term capacity investment problem faced by a hy-

dropower plant. The long horizon of the problem and the presence of multiple underlying

variables result in an intractable MDP. Furthermore, limited long-term market data

about the evolution of uncertainties, including power price and inflow level, creates sub-

stantial planning risk. To tackle these challenges, we design an RL algorithm to hedge

against long-term model mis-specification risk while attempting to mitigate any financial

losses due to being overly conservative. We also extend the interpretable reoptimiza-

tion techniques.
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This thesis focuses on developing near-optimal methods for solving complex real options

problems arising in the aforementioned applications. We achieve this by leveraging ideas from

model predictive control (specifically, rolling planning approaches), information relaxations and

duality, Gaussian processes, operations management, and finance. The resulting methods are

practical approaches that are scalable for commercial applications and novel in several aspects.

In Chapter 2, we provide a new class of rolling horizon policies based on information relaxations.

In Chapter 3, we use structured and interpretable decision rules from operations management

within Gaussian processes to learn user behavior. Finally, in Chapter 4, we combine algorithms

for solving MDPs, robust MDPs, and clustering techniques to address model misspecification

in the long run.

By developing such approaches, this thesis also broadens the set of applications studied in

real options and the operations-finance interface [10]. Specifically, in Chapter 2, we study a new

corporate renewable power procurement application, which has not received prior attention in

the operations management literature, as highlighted in [3]. In Chapter 3, we extend the study

of storage management in the operations literature [136], which is from the perspective of a

user who has contracted space, to consider the perspective of an owner who needs to decide

how to allocate limited capacity among users with unknown behavior. In Chapter 4, we study

a well known refurbishment problem but account for the risk arising from limited data, which

has not been previously studied.

Next, we provide a more detailed overview of the applications that have been the corner-

stones of this thesis and the related methodological developments. Nevertheless, it is worth
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noting that the ideas and methodologies in the thesis have applicability beyond real options

to broader applications in operations and finance, as well as, other business and engineering

disciplines.

Overview of Applications and Summary of Results

Below, we provide a brief description of the application motivating each thesis chapter and

then summarize the contributions.

Chapter 2: Meeting Corporate Renewable Power Targets.

Corporations are playing an increasing leadership role in promoting sustainability and so-

cial responsibility around the globe. Over half of the Fortune 500 companies have publicly

announced commitments to meet sustainability and climate goals, which includes greenhouse

gas emissions reduction, energy efficiency improvements, and renewable power procurement [46].

Prominent companies have committed to procuring a percentage of their power demand from

renewable sources by a future date in the face of uncertain power demand and stochastic power

and renewable energy certificate (REC) prices [28]. For example, Procter & Gamble and Intel

have committed to RPPTs of 30% and 75%, respectively, by 2020 and 2025. Facebook along

with a larger set of 138 global companies have pledged an RPPT of 100% as part of the RE100

initiative [45]. Despite these encouraging trends, a large proportion of companies have not

yet committed to any renewable energy target due to the lack of strategic knowledge about

renewable energy procurement [150]. We aim to take a meaningful step towards reducing this

knowledge gap through studying procurement portfolios based on two dominant strategies to

achieve this target: long-term procurement of power and RECs at a fixed price using corporate
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power purchase agreements (CPPAs) and short-term purchases at volatile prices. We analyze

a two-stage model to understand the behavior of procurement costs when using financial and

physical CPPA variants employed in practice, which informs the structuring of these contracts.

We subsequently formulate a Markov decision process (MDP) that optimizes the multi-stage

procurement of power to reach and sustain a renewable procurement target. Our MDP is

intractable because its action space is non-convex and its state space has high-dimensional en-

dogenous and exogenous components. Although approximate methods to solve this MDP are

limited, a procurement policy can be obtained using an easy-to-implement “primal” reoptimiza-

tion strategy, which solves a deterministic model with stochastic quantities in the MDP replaced

by forecasts. This approach does not, however, provide a lower bound on the optimal policy

value. We propose a novel “dual” reoptimization heuristic which computes both procurement

decisions and a lower bound while retaining the desirable implementation properties of primal

reoptimization using the information relaxation and duality approach [8, 38, 91]. On realistic

instances, the dual reoptimization policy is near-optimal and outperforms policies from primal

reoptimization and other heuristics. Our numerical results also highlight the benefits of using

CPPA contracts to meet a renewable target.

Chapter 3: Interpretable User Models via Decision-rule Gaussian Processes and

Storage Overbooking Application.

In this chapter, we focus on the problem faced by a firm providing services to store ethanol

– a real application that motivated this work. Suppose capacity (in gallons) is sold via annual

contracts to N users. The contract of user n specifies the maximum amount of ethanol that
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can be stored. User behavior corresponds to the injection of ethanol and the withdrawal of

previously injected ethanol, which can be modeled as a time series. The inventory in storage

associated with user n at time t is the net of past injections and withdrawals. Models of user

behavior are critical inputs in many prescriptive settings and can be viewed as decision rules

that transform state information available to the user into actions. Gaussian processes (GPs),

as well as nonlinear extensions thereof, provide a flexible framework to learn user models in con-

junction with approximate Bayesian inference [14,26]. However, the resulting models may not

be interpretable in general. We propose decision-rule GPs (DRGPs) that apply GPs in a trans-

formed space defined by decision rules that have immediate interpretability to practitioners.

We illustrate this modeling tool on a real application and show that structural variational in-

ference techniques can be used with DRGPs. We find that DRGPs outperform the direct use of

GPs in terms of both out-of-sample performance and the quality of optimized decisions. These

performance advantages continue to hold when DRGPs are combined with transfer learning.

Chapter 4: Repowering Power Plants Under Limited Long Term Information.

Hydropower plants are the dominant producers of renewable power worldwide, which con-

stitutes over fifty percent of global renewable capacity [153]. Unlike intermittent renewable

energy sources such as wind and solar, hydropower can sometimes be stored in reservoirs and is

a flexible source of renewable power. In decentralized power markets, the decision to refurbish

and upgrade is a firm-level decision and exhibits features such as long lifespan, partially un-

known breakdown risk, irreversibility of the investment decision, and uncertainty with regard to

climate and future markets. Moreover, cashflows from hydropower plants come primarily from
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supply to organized markets. The firm aims to establish operational schedules that maximize

the discounted expected profits over a given planning horizon, subject to a given capacity level

and other relevant constraints. This means that investing in capacity needs to account for the

value that results from changed operations. To address heterogeneous data availability over

time, we propose to leverage useful information in the short- and medium-term to calibrate a

stochastic model governing the evolution of prices as long as there are sufficient liquid markets

to be used in real options valuation. To hedge against unreliable or non-existing data, we pro-

pose to consider policies aligned with worst-case scenarios. We model our problem as a Markov

Decision Process (MDP) with a terminal value defined as a robust MDP. This formulation aims

to maximize the sum of the expected revenues from electricity generation in the short term

and worst-case revenues in the long term. The problem of combined operations and investment

planning in the presence of uncertainty leads to a high-dimensional MDP with non-convex ac-

tions space which is very challenging to solve. Motivated by reoptimization of decisions on a

regular basis after new information is revealed, and theoretical results on forecasts horizons

which emphasizes that there is a diminishing effect on future data on initial decisions [47, 53],

we propose to formulate an MDP, assuming full information about the data generating process

as long as there is sufficient information available. In the long run, we switch to a robust

framework and do not impose distributional information to avoid model misspecification.

We conduct numerical experiments based on the data of a real hydropower plant with

a planning horizon of 20 years and apply the dual reoptimization heuristic (DRH) in [184]

combined with robust value iteration to find a feasible MDP-policy and assess the value of the
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policy against an upper bound [40]. Our results confirm the robustness of the expected cash

flow of the policy achieved by this framework under various scenarios for the climate conditions

and power markets.



CHAPTER 2

MEETING CORPORATE RENEWABLE POWER TARGETS

(Joint work with Alessio Trivella and Selvaprabu Nadarajah)

2.1 Introduction

Corporations are playing an increasing leadership role in promoting sustainability and so-

cial responsibility around the globe. Over half of the Fortune 500 companies have publicly an-

nounced commitments to meet sustainability and climate goals, which includes greenhouse gas

emissions reduction, energy efficiency improvements, and renewable power procurement [46].

We focus on companies that have committed to renewable power purchase targets (RPPT),

that is, they procure a specified percentage of annual electricity demand from renewable power

sources by a future date and sustain this level of renewable procurement thereafter. For ex-

ample, Procter & Gamble and Intel have committed to RPPTs of 30% and 75%, respectively,

by 2020 and 2025. Facebook along with a larger set of 138 global companies have pledged an

RPPT of 100% as part of the RE100 initiative [45]. To meet these targets, power purchases

need to be coupled with renewable energy certificates (RECs), where each REC allows its owner

to validate the use of one megawatt hour (MWh) of renewable power.

Corporate power purchase agreements (CPPAs) are used by companies to procure renewable

power directly from the generator instead of going through a utility. A CPPA is a long-term

bilateral contract between the company and a renewable generator to receive a fixed quantity

11
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of power and RECs at a predetermined “strike” price for each year of the contract’s tenor (usu-

ally between 5 and 25 years). The purchase of power using CPPAs has increased 20% from

2015 to 2017, reaching a record 7.2 gigawatts of power purchased with CPPAs in 2018 [13,28].

Despite these encouraging trends, a large proportion of companies have not yet committed to

any renewable energy target due to the lack of strategic knowledge about renewable energy

procurement [150]. Moreover, the procurement problem faced by a firm that plans to setup

and meet an RPPT has not been formally studied in the extant academic literature to the best

of our knowledge. The goal of this paper is to take a meaningful step towards reducing this

knowledge gap by studying two dominant power procurement options to satisfy an RPPT [29]:

(i) enter into CPPAs, and (ii) buy short-term power from the grid, as needed, and supplement

it with unbundled REC purchases1.

CPPAs fall into two main categories: physical and synthetic [193]. Physical CPPAs, which

we refer to as physical contracts (PCs), involve the delivery of power from the producer to

the consumer. In contrast, synthetic CPPAs (henceforth synthetic contracts and abbreviated

SCs) are financial agreements where the producer sells power to the grid, the firm buys power

from the grid, and payments for differences relative to the strike price are made to ensure a

price hedge. SCs account for the majority of CPPA contracts signed by corporations since

2015 [12]. The CPPA strike price is typically fixed, which helps a firm manage its procurement

1A short-term power purchase is akin to a spot purchase. The actual nature of a short-term purchase
could vary by region. For instance, in the United States, such a purchase could represent power from an
index-based pricing program [64].
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costs. Some companies have also opted to use a variant of the fixed strike price, known as the

interval strike price, that allows the strike to vary within a predefined interval similar to a collar

option [1,192]. In this paper, we provide (i) analytical results to better understand the influence

of the aforementioned CPPA structures and the RPPT on procurement costs and (ii) propose

decision heuristics to help companies construct dynamic procurement policies to meet an RPPT.

Our analysis considers a two-stage setting where the long-term power purchase option in-

volves a single CPPA. We characterize how the optimal expected procurement cost varies with

the RPPT when using PCs and SCs, and determine that this cost under the latter contract

is lower than with the former contract. Nevertheless, a drawback cited in the practitioner lit-

erature is that using SCs, as opposed to PCs, leads to increased variability in procurement

costs [88]. We find that this drawback is indeed true when the same quantity of power is

purchased via a PC and an SC. However, contrary to this sentiment, an optimized portfolio

containing an SC reduces the quantity of short-term power and RECs purchased relative to a

comparable portfolio with a PC, which in turn can decrease the variability of procurement costs

under the former portfolio. In the same spirit, specifying an RPPT as a percentage of known

past demand (i.e., 60% of 2016 demand) is easier to track and would seem preferable to the

target being a fraction of uncertain future demand. However, we find that stochastic RPPTs

can reduce procurement costs when demand exhibits a negative drift, which is likely for firms

that are investing in energy efficiency initiatives. Finally, we show that interval strike prices

employed in industry can reduce the procurement cost relative to a fixed strike price only in a
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market where power prices are skewed. Hence, interval strike prices must be used with caution

since the behavior of power prices in several markets change over time.

To compute dynamic procurement decisions, we formulate a Markov decision process (MDP)

that minimizes the expected procurement cost to meet and sustain an RPPT. The planning

horizon in this MDP is divided into a reach period where the target does not have to be ful-

filled (but contracts can be signed) and a sustain period where the target must be satisfied. At

each stage, the company decides whether to enter into new CPPAs. The strike prices of CP-

PAs are specified by a model that factors the effects of the expected power price and the return

on investment required by the generator in a manner that is consistent with publicly available

software from the National Renewable Energy Laboratory (NREL; [140]). The set of available

CPPAs depends on the contracts offered by generators, which is unpredictable over time. More-

over, when entering a CPPA, the associated purchase quantity needs to satisfy minimum and

maximum requirements. Modeling these features introduces non-convexities in the set of feasi-

ble procurement decisions. Approximate methods to solve our MDP are limited because of its

non-convex action set and its state space including (i) the pipeline of power inventories from

previously signed CPPAs, which defines a high-dimensional endogenous state component and

action space, and (ii) multiple stochastic factors driving the evolution of power/RECs prices

and demand, which is a high-dimensional exogenous state component.

Despite the aforementioned intractability, a procurement policy can be obtained using a

“primal” reoptimization heuristic (PRH) that is extensively used in practice for stochastic con-

trol applications, often referred to as the rolling-planning approach [18, 47,195]. PRH replaces



15

the stochastic quantities in the MDP by their forecasts and tackles a deterministic model at each

stage, which involves solving a linear or mixed-integer program using a commercial optimiza-

tion solver. It is thus easy to implement but does not compute a lower bound on the optimal

policy cost, which is needed to assess the suboptimality of a policy. We develop a novel “dual”

reoptimization heuristic (DRH) to simultaneously compute decisions and a lower bound while

retaining the favorable implementation properties of PRH. DRH involves two key steps at a

given stage and state: (i) it solves deterministic (hindsight) optimization models along sample

paths in Monte Carlo simulation with costs corrected by a dual penalty term based on the infor-

mation relaxation and duality approach [8,38,91]; and (ii) it extracts a non-anticipative decision

from a distribution of anticipative actions across sample paths using a function that we refer to

as a decision measure. Examples of a decision measure include the mean, median, and mode of

a distribution. Repeating this procedure rolling forward in time provides the DRH policy. We

specify when a decision measure leads to a feasible procurement policy and leverage the theory

on information relaxations to show that this policy is optimal when using an ideal dual penalty.

We conduct numerical experiments on realistic instances with CPPA contract lengths rang-

ing from 5 to 25 years and a planning horizon of 40 years. We calibrate stochastic processes

for the evolution of uncertain quantities using market data and the practitioner literature. We

compare the DRH procurement policy against the one from PRH and two additional problem-

specific benchmarks. The first heuristic relies on short-term purchases of power and RECs

alone, that is, it does not consider CPPAs. The second uses a single CPPA and renews this

contract each time it expires, also allowing for short-term power purchases. The procurement
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policies computed by DRH are near-optimal and result in lower procurement costs compared

to the remaining benchmarks. In particular, the average DRH and PRH optimality gaps are

2.6% and 5.6%, respectively, for PCs, and 4.1% and 6.5% for SCs. The remaining benchmarks

have average optimal gaps of 7.8–16.7% for PCs and 11.2–21.5% for SCs. The time required

by both PRH and DRH to compute a procurement decision at a given stage and state is small

– less than one second. Estimating policy values (i.e., upper bounds) is more time consuming,

with PRH and DRH requiring 0.5 and 3.5 hours, respectively. Therefore, one incurs a higher

computational burden when assessing the performance of the DRH policy but this overhead

can be substantially reduced via parallelization.

Overall, our analytical results suggest that SCs and PCs yield significantly different pro-

curement quantities and costs when included in a procurement portfolio – they are thus not

merely physical and financial versions of CPPAs. Moreover, these findings provide insights rel-

evant to structuring portfolios with CPPAs, in some cases, contrary to the intuition in practice.

Our numerical experiments indicate that portfolios that include multiple CPPAs, in addition

to short-term purchases, can significantly reduce procurement costs, especially for companies

with aggressive RPPTs. Such portfolios also lead to procurement costs that are stable when

contract availability and the market dynamics of REC prices change. Furthermore, DRH out-

performs traditional rolling-planning methods (akin to PRH) used in practice and its near-

optimal performance suggests that rolling-planning approaches can be extended to effectively

compute dynamic procurement portfolios. The relevance of DRH extends beyond our specific
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procurement setting to other applications that give rise to MDPs with continuous and high-

dimensional state spaces and non-convex action sets.

2.1.1 Novelty and related work

We build on the extant literature that studies commodity procurement using spot purchases

and forward contracts [34,105,114,164] as well as procurement in supply chains via short- and

long-term contracts, including dual- and multi-sourcing options [7, 122, 181,189]. Our study of

renewable power procurement adds to this line of work. Specifically, our focus on constructing

procurement portfolios to meet an RPPT, related insights, and the DRH method are new to

this literature. Moreover, the long-term contracts that we consider, that is CPPAs, have unique

structure. For instance, CPPAs deliver power at each period over the tenure of the contract,

which differs from the long-term contracts considered in the aforementioned papers.

Our work indeed contributes to the growing literature on renewable energy. Several studies

in this area study important market level issues related to supply intermittency [2, 97, 204,

211], power supply equilibria [5, 176], support schemes and their impact on renewable energy

investments [67, 99, 172], and market-based or equilibrium-based pricing of feed-in tariffs and

CPPAs [6, 41, 154, 203]. We instead investigate a problem faced by a corporation, that is, a

firm-level decision problem as opposed to a market level issue. We also do not focus on pricing

CPPAs nor do we use an equilibrium model for this purpose. Rather, we obtain CPPA strike

prices in our MDP by employing a modified net present value calculation consistent with the

procedure in the publicly available software SAM from [140].
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A more closely related research subarea focuses on individual players in the renewable power

market. In particular, this stream of research studies the valuation and operations of renewable

generators and operators of storage and transmission assets (see, e.g., [62,101,104,142,211], as

well as the management of consumer incentive programs such as demand response [48,194], and

references therein). To the best of our knowledge, a study of the power procurement problem

faced by a corporation with an RPPT is new to the renewable energy literature.

The reoptimization methods we consider add to existing rolling-horizon planning approaches,

also known as certainty equivalent control, which have been successfully used for decision mak-

ing under uncertainty in engineering and business applications [18,47]. In the context of energy,

reoptimization models are popular for determining the next day unit commitment and real-time

economic dispatch of power generators [123,124,195]. They have also been used in real option

settings, most notably for managing energy storage [108, 131, 205]. Our development of DRH

introduces a new reoptimization scheme to this literature. Moreover, our extensive numerical

study expands the set of applications for which reoptimization has been considered and shows

that DRH can outperform PRH.

In addition to the reoptimization literature, DRH contributes to the active research on the

information relaxation and duality approach [35–37, 92, 131, 207], which does not directly pro-

vide control policies. Therefore, [63] design an auxiliary procedure to obtain decisions in this

framework. Specifically, they estimate a value function approximation by regressing on value

function estimates computed by solving dual optimization problems in Monte Carlo simulation.

This approximation is then used along with the MDP Bellman operator to compute decisions.
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It is not easy to extend the approach of [63] to our setting because estimating a value function

approximation and computing decisions using the Bellman operator are both challenging due to

the large endogenous state space in our MDP. Our development of DRH thus adds a direct way

to obtain non-anticipative controls when using the information relaxation and duality approach.

More broadly, DRH adds to approximate dynamic programming (ADP; [18]), an area of

stochastic optimization dealing with the solution of high-dimensional MDPs. Several ADP

methods tackle MDPs where either the endogenous state or the exogenous state is high-

dimensional. Well-known examples include least squares Monte Carlo [117, 185], approximate

linear programming [57], and stochastic dual dynamic programming [143,169]. However, meth-

ods to approximately solve MDPs with high-dimensional endogenous and exogenous state com-

ponents are limited (see, e.g., [131,158]) and approaches that handle non-convex action sets are

even more scarce. DRH has potential value for solving MDPs with these complicating features,

which arise beyond our specific procurement application.

2.1.2 Paper structure

In §2.2, we analyze CPPAs in a two-stage procurement setting. In §2.3, we formulate a

strike price model and a multi-stage MDP to reach and sustain an RPPT. In §2.4, we present

reoptimization methods to obtain policies and lower bounds for this MDP. We conduct an

extensive numerical study and discuss our findings in §2.5. We conclude in §2.6. All proofs

and additional material related to our models and numerical study can be found in an online

supplement.
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2.2 Corporate power purchase agreements

In this section, we analyze different CPPA structures using simplified models that capture

key trade-offs. In §2.2.1, we characterize the behavior of procurement quantities and costs as

functions of the RPPT. In §2.2.2, we study the impact of allowing the traditionally fixed strike

price to vary within an interval.

2.2.1 Procurement costs and targets

We model a two-stage procurement problem with stages 0 (now) and 1 (future), where a

company has committed to satisfy an RPPT at stage 1. Thus, the reach and sustain periods are

each one stage. To fulfill the target, the company can (i) enter into a CPPA at stage 0 to receive

power and RECs from a renewable generator at stage 1, and (ii) procure in stage 1 any unmet

power demand and shortfall in the RPPT, after accounting for the stage 0 CPPA purchase,

using grid power purchases and unbundled RECs, respectively. These procurement decisions

depend on the power price, the REC price, and the power demand at stage i P t0, 1u, which we

denote by Pi (USD/MWh), Ri (USD/MWh), and Di (MWh), respectively. To simplify notation

we define wi :“ pPi, Ri, Diq. Indeed, at stage 0, the vector w1 is stochastic. We represent the

RPPT as a fraction α P r0, 1s of the stage-1 firm’s power demand D1; given that D1 is stochastic

at stage 0, the target αD1 is also stochastic. In this setting, the firm determines a stage 0 CPPA

quantity to minimize the expected cost of procuring long-term and short-term power to satisfy

its power demand and the RPPT at stage 1. We formulate models considering physical and

synthetic CPPA variants.
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Signing a PC for z MWh results in the physical delivery of this power at stage 1 and

a payment of K USD/MWh. PCs in wind and solar projects often have a “Take and Pay”

structure, which obligates the off taker to pay for the contracted energy ( [103, 141]). This

feature may result in the CPPA delivering more power than the demand at stage 1, which is

referred to as volume risk ( [12]). In a symmetric fashion, we assume generators must deliver

the contracted power, that is, PCs are firm contracts. Given an RPPT α and a strike price K,

the stage-1 procurement cost as a function of z and w1 is

rCPCpz,w1;α,Kq :“ Kz` P1pD1 ´ zq+ ` R1pαD1 ´ zq+, (2.1)

where the first term represents the stage 1 cost of procuring z MWh of power through a PC

signed at stage 0, and the second and third terms represent the expected cost of fulfilling stage-

1 shortfalls in meeting total demand and the RPPT, respectively, using the short-term market.

The optimal expected procurement cost of a firm using a PC at stage 0 is thus

CPCpα,Kq :“ min
zě0

E0rrCPCpz,w1;α,Kqs, (2.2)

where we use E0r¨s ” Er¨|w0s and p¨q+ ” max t¨, 0u for notational convenience1.

In contrast to a PC, an SC does not require the physical delivery of power. Instead, the

generator sells z MWh to the grid and the company purchases the same amount of power

from the grid. If the grid price P1 is greater than the fixed strike price K, the generator pays

1The short-term procurement cost at stage 0 is excluded because it is a constant and does not affect
the choice of z.
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the company for each MWh the positive difference P1 ´ K; otherwise, the company pays the

generator K´ P1. Formally, the firm’s stage-1 cost function is

rCSCpz,w1;α,Kq :“ P1D1 ` pK´ P1qz` R1pαD1 ´ zq+, (2.3)

where the first term is the cost of purchasing the stage-1 power demand from the grid, the sec-

ond is the cash flow resulting from difference payments between the generator and the company

on the z MWh contracted via the SC when the grid price deviates from the strike price, and

the third is the cost of procuring RECs to meet the RPPT shortfall. The optimal expected

procurement cost when using an SC is

CSCpα,Kq :“ min
zě0

E0rrCSCpz,w1;α,Kqs, (2.4)

Next we compare models Equation 2.2 and Equation 2.4 under the following assumption.

Assumption 1. It holds that (i) the strike price K belongs to the interval
“

E0rP1s,E0rP1`R1s
‰

;

(ii) the power demand D1 is uniformly distributed in the interval ra, bs, where a and b are

positive scalars satisfying b ą a; (iii) the power price P1 follows a log-normal distribution; (iv)

the expected REC price E0rR1s is positive; and (v) the power demand D1 is independent of the

prices P1 and R1.

The domain of the strike price captures practically relevant values for the parameter K. The

lower bound of E0rP1s avoids cases where the generator is better off selling its power directly

to the grid as opposed to the company via a CPPA, while the upper bound of E0rP1 ` R1s

removes situations where the company would save money from procuring power and RECs di-

rectly from the short-term market instead of using a CPPA. The log-normal assumption on the



23

stage-1 power price is consistent with the long-term components of common electricity price

models such as one-factor and two-factor mean-reverting stochastic processes used in the liter-

ature, which consider the evolution of the logarithm of the power price1 ( [43,118]). We do not

assume any specific disitrbutional form for the REC price but requires its mean to be positive,

which is consistent with the behavior of REC prices across markets in the United States. The

uniformly distributed power demand can be viewed as adding variability around a long-term

demand forecast. Finally, our assumption of independence between the power price and the

power demand stems from the power demand of an individual company not being large enough

to affect the market price and companies in several sectors (e.g., high-tech and education) hav-

ing limited flexibility to adjust their power consumption to fluctuations in the power price. The

independence of demand and REC prices follows similar justification.

Lemma 2.2.1 characterizes the optimal CPPA procurement quantity. Let z˚PC and z˚SC

denote the optimal solutions of models Equation 2.2 and Equation 2.4, respectively. Further,

we define a target threshold ᾱ :“ aE0rR1s{pbE0rR1s ´ pK´ E0rP1sqpb´ aqq.

Lemma 2.2.1. Under Assumption 1, we have

z˚PC “

$

’

’

’

’

&

’

’

’

’

%

α
´

b´
K´E0rP1s
E0rR1s pb´ aq

¯

, if α ď ᾱ,

´Kpb´aq`pE0rR1s`E0rP1sqpbq
1
α
E0rR1s`E0rP1s

, if α ą ᾱ;

and z˚SC “ α

ˆ

b´
K´ ErP1s
ErR1s

pb´ aq

˙

.

Both the optimal PC and SC procurement quantities are equal and vary linearly with α within

the interval r0, ᾱs. However, for α greater than ᾱ, z˚PC and z˚SC diverge. Specifically, z˚SC

1Unlike short-term power prices, the long-term power prices that we model do not take negative
values, which justifies considering the evolution of the logarithm of the power price.
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continues to vary linearly with α while z˚PC is an increasing concave function of the target.

Example 1 and Figure 1(a) illustrate this behavior and show that the optimal PC procurement

quantity can be substantially smaller than the SC optimal procurement quantity.

Example 1. Suppose D1 is uniformly distributed in the interval r100, 350s, P1 is lognormal

with E0rP1s “ 20.5 USD/MWh, and E0rR1s “ 8 USD/MWh. Moreover, the strike price K is 22

USD/MWh. In this setting, the target threshold ᾱ equals 0.32. Figure 1(a) displays the optimal

procurement quantities z˚PC and z˚SC as functions of α. For α equal to 1, z˚SC (= 157 MWh) is

roughly 93% smaller than z˚PC (= 303 MWh).

Figure 1: Optimal procurement quantities and costs as a function of the RPPT.
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ᾱ

PC
SC

(b) Optimal procurement cost
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For α ą ᾱ, the conservative long-term procurement using a PC can be attributed to over-

procurement risk, that is, the event when z is greater than the stage-1 demand. Such over-

procurement risk is significant for large α in a PC because one needs to pay for the contracted
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power even when all of it is not needed1. In contrast, this risk is mitigated when using an

SC by the fact that the corporation purchases only the required power from the grid. Over-

procurement risk has important practical implications on the procurement cost and its variance,

which we study below.

Proposition 2.2.2 characterizes optimal expected procurement costs when using a PC and

an SC.

Proposition 2.2.2. Suppose Assumption 1 is true. The following hold:

(a) CPCpα,Kq is linear in α for α P r0, ᾱs, and strictly convex in α for α P pᾱ, 1s;

(b) CSCpα,Kq is linear in α for all α P r0, 1s;

(c) CSCpα,Kq “ CPCpα,Kq for α P r0, ᾱs, and CSCpα,Kq ă CPCpα,Kq for α P pᾱ, 1s.

The behavior of the optimal procurement costs as a function of α are driven by the struc-

ture of the optimal procurement quantities in Lemma 2.2.1. Specifically, within the interval

r0, ᾱs, the procurement costs when using a PC and an SC are both equal and linear in α.

For α ą ᾱ, the former cost is increasing convex while the latter remains linear. This differ-

ence can be attributed to an interplay between over-procurement (i.e., z ě D1) and under-

procurement (i.e., z ă D1) risks. To elaborate, a PC procures less long-term power than

an SC for large α due to over-procurement risk as already discussed above. The resulting

1Results analogous to the assumed Take-and-pay PC also hold when comparing the optimal procure-
ment quantities of an SC and a Take-or-pay PC. However, here one would need to factor in the penalty
a company pays for not taking delivery of the contracted power in the Take-or-pay PC when z ą D1.
We omit this analysis as it does not provide sufficiently new insights but complicates the exposition of
the key differences between a PC and an SC.
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smaller z exposes PC to procuring more power and RECs from the short-term market, an ex-

pensive option, when an under-procurement event occurs, which amounts to higher expected

costs. This finding suggests that an SC allows a company to manage expected procurement

costs more efficiently for high RPPTs than a PC. Example 2 illustrates the preceding dis-

cussion by considering under- and over-procurement components of the expected stage-1 cost.

For example, we have E0rrCPCpz
˚
PC, w1;α,Kqs “ E0rrCPCpz

˚
PC, w1;α,Kq|z

˚
PC ě D1sPrpz˚PC ě

D1q ` E0rrCPCpz
˚
PC, w1;α,Kq|z

˚
PC ă D1sPrpz˚PC ă D1q, where we refer to the first and second

terms in the right-hand-side of the equality as the over- and under-procurement components of

the PC expected cost, respectively. Analogous definitions hold for the SC expected cost.

Example 2. For the setting considered in Example 1, Figure 1(b) displays the expected pro-

curement costs CPCpα,Kq and CSCpα,Kq as functions of α. The procurement cost when using a

PC (= 5,570 USD) is roughly 9% greater than the analogous cost under an SC (= 5,102 USD)

for α equals 1. The over- and under-procurement components of the PC procurement costs are

800 USD and 4,770 USD, respectively. The analogous cost components corresponding to SC

equal 3720 and 1,382 USD, respectively. Therefore, z˚SC being greater than z˚PC leads to higher

expected procurement costs when there is over-procurement but reduces the exposure of SC to

the short-term market. This reduced exposure leads to a much smaller expected cost when there

is under-procurement, which leads to CSCp1, Kq being strictly smaller than CPCp1, Kq.

The expected procurement cost measure discussed above does not consider an important

motivation for companies entering into long-term contracts, which is to reduce or eliminate

the variability of future costs – stable costs facilitate budgeting. A related sentiment in the
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practitioner literature is that using an SC could increase the cash flow variability compared to a

PC. Proposition 2.2.3 shows that this sentiment is in fact true when procuring the same quantity

of power using both CPPA types. We use Varr¨s to represent the variance of a random variable.

Proposition 2.2.3. Under Assumption 1, we have VarrrCSCpz,w1;α,Kqs “ VarrrCPCpz,w1;α,Kqs,

if Prpz ą D1q “ 0, and VarrrCSCpz,w1;α,Kqs ą VarrrCPCpz,w1;α,Kqs, if Prpz ą D1q ą 0.

To gain some intuition on this result, note that rCPCpz,w1;α,Kq and rCSCpz,w1;α,Kq are equal

if z ď D1, that is, when there is under-procurement. Therefore, if the over-procurement risk

is zero, we have the same variance of cash flows under a PC and an SC. Instead, if the over-

procurement risk is positive, the comparison of cash flow variance becomes more involved but

we can establish that the variance under an SC is greater than with a PC. Nevertheless, Propo-

sition 2.2.3 may not hold for the optimized and unequal power procurement quantities com-

puted by solving Equation 2.2 and Equation 2.4 for α ą ᾱ. Example 3 provides an instance

where the variance of an optimized portfolio with an SC is smaller than an optimized portfolio

containing a PC for large α. This example suggests that optimizing CPPA purchases is im-

portant because a suboptimal SC portfolio may lead to high variance in procurement costs but

optimizing this portfolio can mitigate this effect.

Example 3. Consider an instance with α “ 0.9, uniformly distributed demand D1 in the

interval r100, 200s, and strike price K equal to 22 USD/MWh. For simplicity, we assume

a deterministic power price P1 equal to 20.5 USD/MWh and a deterministic REC price R1

of 3.5 USD/MWh. Invoking Lemma 2.2.1, we find z˚PC and z˚SC to be 107 MWh and 141

MWh, respectively. Moreover, we have VarrrCPCpz
˚
PC, w1;α,Kqs (i.e., optimal PC cost vari-
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ance), VarrrCSCpz
˚
PC, w1;α,Kqs (i.e., variance of suboptimal SC cost evaluated at z˚PC), and

VarrrCSCpz
˚
SC, w1;α,Kqs (i.e., optimal SC cost variance) equal to 445,840; 455,160; and 394,330,

respectively. These values show that the suboptimal SC portfolio that procures long-term power

equal to z˚PC has higher variance than the optimal PC portfolio, which is consistent with Propo-

sition 2.2.3. In contrast, in this example, the variance of an optimized SC portfolio is lower

than that of an optimal PC portfolio.

Finally, we discuss two possible choices for reference demand used in practice when specify-

ing an RPPT. Thus far, we have assumed a “stochastic” RPPT, that is, a procurement target

defined as a percentage of uncertain future demand. However, some companies define a “deter-

ministic” RPPT with respect to known past demand as this is easier to track ( [46]). We an-

alyze these two target types in Online Supplement 2.7.2 and summarize our main finding here.

While a deterministic RPPT seems intuitively beneficial, using a stochastic RPPT can lower

expected procurement costs when future power is smaller than past demand, for instance, due

to investments in energy efficiency improvements. In this case, specifying an α% deterministic

RPPT can lead to procuring more MWh of renewable power than specifying this percentage

with respect to uncertain future demand that is unlikely to exceed its historic value. Our find-

ings bode well for the use of stochastic RPPTs given recent efforts by companies to reduce their

power consumption.

2.2.2 Interval strike price

An interval strike price is defined by a pair pK, δq, where K is the baseline strike price and

δ the half-length of the interval rK´ δ, K` δs in which the strike price is allowed to fluctuate.



29

In particular, if the power price P exceeds the upper bound K` δ, then the generator pays the

company the difference P ´ K´ δ between the power price and this upper bound. Similarly, if

the power price P is less than the lower bound K´δ, then the company has to pay the generator

the difference K ´ δ ´ P. Instead, when P belongs to the interval rK ´ δ, K ` δs no payment

between parties occurs. Therefore, unlike the standard CPPA in which the cost of procuring a

unit of power is fixed, the interval strike price has the following partially variable cost per unit:

KINTpP;K, δq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

K` δ if P ą K` δ;

P if P P rK´ δ, K` δs ;

K´ δ if P ă K´ δ.

(2.5)

We are only aware of SC with interval strike prices and thus focus on this case here, although

our results can be easily adapted to the PC setting. The analogue of the procurement problem

(Equation 2.4) when using an interval strike price is

CINT
SC pα,K, δq :“ min

zě0

!

E0rrCSCpz,w1;α,K
INTpP1;K, δqqs

)

. (2.6)

When δ “ 0, the interval strike price defined in Equation 2.5 becomes KINTpP;K, 0q “ K and

the optimization model (Equation 2.6) satisfies CINT
SC pα,K, 0q “ CSCpα,Kq. Proposition 2.2.4

compares the procurement cost function of interval versus fixed strike prices in SCs that share

the same baseline strike price K, but where the former contract can be optimized by choos-

ing the interval length δ. Consistent with Assumption 1, we assume that the power price is

log-normally distributed. The mean and standard deviation of power price are E0rP1s and

E0rP1s
b

exppσ2Pq ´ 1, respectively, where σ2P denotes the variance of the natural logarithm of

the stochastic power price P1.
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Proposition 2.2.4. There exists a value δ ą 0 such that CINT
SC pα,K, δq ă CSCpα,Kq if and

only if K ą E0rP1s expp´σ2P{2q. Moreover, if K ą E0rP1s expp´σ2P{2q, then CINT
SC pα,K, ¨q attains

its global minimum at δ equal to
b

K2 ´ E0rP1s2 expp´σ2Pq.

This proposition shows that an interval strike price can reduce the procurement cost relative

to a fixed strike price when K exceeds E0rP1s expp´σ2P{2q. This threshold is a decreasing func-

tion of the variance of the power price distribution. Thus, as σP increases sufficiently, it holds

that expp´σ2P{2q ă 1 implying that the interval strike price can reduce the cost even when the

strike price is less than the expected power price. This behavior can be attributed to the pos-

itive skewness of the log-normal power price distribution, which is exppσ2Pq
b

exppσ2Pq ´ 1. As

σP increases, the distribution becomes right-skewed, that is, lower power prices become more

probable and an interval strike price contract with an appropriately defined half-length δ can

benefit from it. Proposition 2.2.4 also characterizes the optimal interval length that minimizes

the procurement cost.

Overall, our analysis unveils a potential advantage of interval strike price in SCs, but suggests

some caution as this benefit is tied to the skewness of power prices, which can change over

time due to changes in mean-reversion among other factors. Empirical evidence from the

literature also suggests that the skewness of power prices could be both positive and negative

( [44,80,106,118]).
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2.3 Dynamic procurement model

In this section, we discuss a dynamic procurement model to assist a firm in meeting a

renewable energy target in a multi-period setting. In §2.3.1, we describe the CPPA strike price

structure. In §2.3.2, we formulate an MDP that defines an optimal dynamic procurement policy.

2.3.1 CPPA strike price

A renewable power generator typically sets a CPPA strike price to recoup its project in-

vestment and maintenance costs as well as a return on investment [140]. In addition, historical

data and models from NREL show that the CPPA strike price is affected by several factors

including the average quantity of power produced as a fraction of installed capacity (i.e., capac-

ity factor), tax credits, improvements in technology, the contract duration, and the expected

power price over the tenor of the contract [66, 139, 202]. We describe below a model that ac-

counts for these factors and determines a CPPA strike price for a given generator and contract.

This model provides the strike prices of CPPAs used as input to the procurement model that

we describe in §2.3.2.

Consider a renewable power generator that begins production at year i, where i belongs to

a discrete set I :“ t0, . . . , I ´ 1u containing the years in our planning horizon. The generator

has an expected lifetime of LP years, a capacity factor equal to θi P p0, 1s, and incurs a cost

of CINV
i capturing the one-time installation and estimated maintenance costs associated with a

MW of production capacity as well as any applicable investment tax credit1. We assume that

1An investment tax credit represents a one-time federal tax deduction equal to a pre-specified per-
centage of the installation cost of a renewable power project.
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there is a production tax credit1 of Ti USD per MWh for the next LT
i years and that future cash

flows are discounted at rate r P p0, 1s, which can be chosen to also account for the generator’s

target return on investment. We begin by computing the fixed strike price K̂i of a CPPA that

spans the lifetime of the generator using the net present value (NPV) of the contract’s cash

flows. This approach is consistent with the System Advisor Model2 (SAM; [140]). The NPV of

1 MW of installed capacity contracted via such a CPPA is

NPVi “
LP
ÿ

l“1

rlθi K̂i `

LTi
ÿ

l“1

rlθi Ti ´ C
INV
i .

Setting NPVi to zero, we obtain the following strike price formula:

K̂i “
1

řLP

l“1 r
l

»

–

CINV
i

θi
´

LTi
ÿ

l“1

rlTi

fi

fl . (2.7)

Expression (Equation 2.7) captures the dependence of the strike price on generator vintage

(i.e., the year that production begins) by treating the production tax credit Ti, investment

cost CINV
i , and capacity factor θi as time-dependent quantities. Currently, renewable power

generators that start construction before 2020 are eligible for productions tax credits for 10

years from the date the facility starts production [66] but this status-quo is likely to change with

government regulation. Investment costs and capacity factors typically decrease and increase,

respectively, over time due to improvements in technology. The capacity factor, in addition,

exhibits significant inter-region variation. For instance, in the case of wind power, capacity

1A production tax credit provides a per-kilowatt-hour tax credit for power generation for a fixed
number of future years from the installation of a renewable power project.

2SAM is an open source performance and financial tool designed by NREL to access the feasibility
of renewable energy projects (e.g., wind, solar, or biomass).
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factors in the “internal” regions of the United States are significantly higher than those of

coastal regions [202].

Next, we describe how the strike price K̂i in Equation 2.7 can be modified to account for

shorter contract lengths and the expected power price over the tenure of the contract. Consider

a CPPA with a duration of m years that is less than the lifetime LP of the generator. Shorter

contracts result in additional cash flow risk over the period of the generator’s life time for which

they do not generate revenue [1]. We thus define a risk-adjusted strike price K̂i,m :“ K̂i ¨ K
`
m,

where K`m ě 1 is a risk factor that inflates the strike price if m ă LP and equals 1 otherwise,

that is, K̂i,m “ K̂i when the contract spans the life of the generator. The CPPA strike price is

not solely determined by NPV but is also tied to the long-term expected power price because

higher expected (future) power prices give the generator leverage to increase the CPPA price

since the company’s outside option is expensive [202]. To account for this effect, we lower

bound the CPPA strike price by the average power price over the tenure of the contract, which

is Ki,m :“
`
řm
l“1 γ

l E
“

Pi`l
ˇ

ˇPi
‰ ˘

{
`
řm
l“1 γ

l
˘

, where Pi (USD/MWh) is the power price in year i

and γ P p0, 1s a yearly discount factor. Our final strike price expression for a contract delivering

power for m years starting in year i is

Ki,m :“ max
 

K̂i,m, Ki,m
(

. (2.8)

2.3.2 Markov decision process

We formulate a Markov decision process (MDP) for the dynamic procurement of power to

meet an RPPT and satisfy its annual power demand. A firm can enter into CPPAs at each year

in the planning horizon represented by I and/or purchase power and RECs from the short-term
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market. We assume that a stochastic RPPT is enforced from year IR, that is, a percentage

α P p0, 1s of the annual demand in each year i P IS :“ tIR, . . . , I ´ 1u must be satisfied. The

renewable target α does not have to be fulfilled in the remaining part of the planning horizon

(i.e., IR :“ t0, . . . , IR´1u) but CPPA contracts can be signed. We thus refer to the years in sets

IR and IS, respectively, as the reach and sustain periods.

At each stage i, the set of potentially available CPPAs are indexed bym with ground set M.

We assume these contracts are differentiated by their duration so that m can be interpreted as

the length of a contract and M “ maxtm PMu is the length of the longest contract1. A CPPA

of length m signed at stage i delivers power from stages i ` 1 to i `m. The strike price Ki,m

associated with contract m is given by Equation 2.82. The company can choose to enter into a

new CPPA of type m, if it is available, by determining a power procurement quantity that is

within minimum and maximum allowable limits (often imposed by the generator) represented

by zmin
m and zmax

m , respectively. We model contract availability at stage i using a binary vector

ai :“ pai,m P t0, 1u,m P Mq, where ai,m equals one, if contract m is available, and is zero,

otherwise. The continuous-valued procurement decision vector is zi :“ tzi,m,m P Mu, where

1The definition of the set of contracts in our formulation can be easily extended to differentiate
contracts based on features other than length.

2Our MDP formulation and solution methodology are flexible to handle other strike price definitions.
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zi,m is the size in MWh1 of the CPPA of lengthm signed at stage i. Given a contract availability

vector ai, the vector zi belongs to set

Zipaiq :“ tzi P R
|M|

` |zi,m “ 0, if ai,m “ 0, and zi,m P t0u Y rz
min
m , zmax

m s, otherwise, @m PMu,

which is non-convex when minimum purchase quantities are strictly positive (i.e., zmin
m ą 0).

The information required to make procurement decisions is described in the MDP state,

which contains two components. The first component is a vector xi :“ pxi,l, l P t0, . . . ,M´ 1uq

representing the on-hand inventory of CPPA contracts, where xi,l is the total power in MWh

delivered in year i`l by the on-hand CPPAs. This component is affected by the firm’s decisions

and is thus referred to as the endogenous MDP state. The second component wi :“ pwi,k, k P Kq

contains the stochastic factors needed to determine the Markovian evolution of the power price

Pi (USD/MWh), REC price Ri (USD/MWh), electricity demand Di (MWh/year), and the

stochastic availability of contracts ai, where K denotes the index set of these factors. The

complete stage i MDP state is represented by the pair pxi, wiq P Xi ˆWi.

Executing procurement decisions zi P Zipaiq at stage i and state pxi, wiq P Xi ˆWi results

in an update of the endogenous state to

xi`1,l “ fipxi, ziql “

$

’

’

’

’

&

’

’

’

’

%

xi,l`1 `
ÿ

mPM:mąl

zi,m, if l P t0, . . . ,M´ 2u;

zi,M, if l “M´ 1,

(2.9)

1The MWh quantity is the product of the contracted capacity in MW, the duration of a period in
hours, and the capacity factor of the generator. This is reasonable for long-term procurement planning.
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where fipxi, ziq is a vector transition function and fipxi, ziql represents its l-th element. Entering

into a CPPA of length m (i.e., zi,m ą 0) has an associated procurement cost
řLi,m
l“1 γ

lKi,m zi,m

over the tenure of the CPPA, where Li,m :“ mintm, I ´ iu equals the number of periods of

power delivery within the planning horizon and γ P r0, 1q denotes the discount factor. Demand

not met by power from CPPAs at stage i, that is ui :“ maxtDi ´ xi,0, 0u, is procured from the

short-term market in both the reach and sustain periods at a price Pi USD per MWh. In addi-

tion, any shortfall vi :“ maxtαDi ´ xi,0, 0u in meeting the renewable power target during the

sustain period requires additional REC purchases at Ri USD per MWh. For each stage i P I,

the cost accrued when entering into PCs is shown below.

PCs: cipxi, wi, ziq “
ÿ

mPM

Li,m
ÿ

l“1

γlKi,m zi,m `

$

’

’

’

’

&

’

’

’

’

%

Pi ui, if i P IR;

Pi ui ` Ri vi, if i P IS.

(2.10)

When using SCs, the cost incurred at stage i is instead:

SCs: cipxi, wi, ziq “
ÿ

mPM

Li,m
ÿ

l“1

γlKi,m zi,m `

$

’

’

’

’

&

’

’

’

’

%

Pi pDi ´ xi,0q, if i P IR;

Pi pDi ´ xi,0q ` Ri vi, if i P IS.

(2.11)

Comparing Equation 2.10 and Equation 2.11 shows that the procurement cost at stage i is the

same for PCs and SCs if the on-hand contracts delivering power at i do not exceed demand, i.e.

xi,0 ď Di. On the other hand, if xi,0 ą Di, SCs allow the firm to purchase from the grid only

the power that is needed to meet demand. In this case, the term pDi ´ xi,0q is negative. We

assume that the terminal costs when employing PCs and SCs are cIpxI, wIq :“ PI uI`RI vI and

cIpxI, wIq :“ PIpDI ´ xI,0q ` RI vI, respectively. In other words, only short-term procurement of

power and RECs is possible.
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A stage i dynamic procurement policy πi is a collection of stage-dependent decision rules

tZπij , j P Iiu, each mapping states to actions, where Ii :“ ti, . . . , I´ 1u. A decision rule Zπii in

stage i is feasible if it associates with each state pxi, wiq P Xi ˆWi an action zipxi, wiq that

belongs to Zipaiq. We denote by Πi the set of all feasible stage i policies. Given an initial state

pxi, wiq in stage i, an optimal policy in Πi solves

Vipxi, wiq :“ min
πiPΠi

E

«

ÿ

jPIi

γj´icjpx
πi
j , wj, Z

πi
j px

πi
j , wjqq ` γ

I´icIpx
πi
I , wIq

ˇ

ˇ

ˇ

ˇ

ˇ

xi, wi

ff

, (2.12)

where Vipxi, wiq is the MDP value function at stage i and state pxi, wiq, E is expectation with

respect to the future exogenous states, and xπij is the endogenous state reached in stage j when

following the policy πi starting from pxi, wiq.

MDP (Equation 2.12) contains high-dimensional state and action spaces and is challenging

to solve directly due to the well-known curse of dimensionality [19, 147]. Specifically, the en-

dogenous state xi and decision zi are M- and |M|-dimensional continuous vectors, respectively,

and the exogenous state wi may also be high dimensional when using a multi-factor stochastic

model for the evolution of uncertainty. In addition to dimensionality issues, another source of

intractability stems from the non-convex structure of Zipaiq. Proposition 2.3.1 provides condi-

tions for which Equation 2.12 is a convex optimization problem with a convex value function

in the endogenous state. The convexity of the value function plays an important role when

approximating high-dimensional MDPs (see, e.g., [37, 131,158].

Proposition 2.3.1. Suppose (i) zmin
m “ 0 and zmax

m ă 8 for all m PM, and (ii) expectations

and iterated expectations of Pi, Ri, and Di as well as their products are bounded at all stages
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i P IYtIu. Then the value function Vip¨, wiq is convex for each stage i P IYtIu and exogenous

state wi PWi.

We show in Online Supplement 2.7.3 that a non-zero zmin
m leads to a non-convex action set Zipaiq,

which can in turn result in a non-convex value function. Thus, computing approximations of

MDP (Equation 2.12) using existing ADP methods is challenging, as they typically rely on

convexity to handle high-dimensional endogenous states.

2.4 Reoptimization approaches

In this section, we present two reoptimization heuristics that approximate MDP (Equation 2.12)

by solving math programs at each stage that are deterministic versions of this MDP. The com-

putational burden of using both heuristics is thus tied to the difficulty of solving the determin-

istic form of our MDP, which is a favorable algorithmic property, especially in the presence of

the non-convexities discussed in §2.3.2. In §2.4.1, we adapt a primal reoptimization heuristic

popular in operations applications to our procurement setting. In §2.4.2, we propose a dual re-

optimization heuristic based on the information relaxation and duality framework that extracts

a non-anticipative policy, in addition to its common use in the literature for estimating a lower

bound on the optimal policy cost.

2.4.1 Primal reoptimization heuristic

A primal reoptimization heuristic (PRH) computes procurement decisions as an optimal

solution of a math program obtained by replacing random quantities in MDP (Equation 2.12) by

their respective forecasts. Forecasts of random prices and demand are their respective expected

values. In the case of contract availability, given the binary nature of this variable, we assign
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a forecast of 1 if the contract is available with probability greater than 0.5, and 0 otherwise.

Formally, the stage-j forecast for contract m P M made at stage i, with j ě i, is defined as

āi,j,m “ 1, if Eraj,m|wis ą 0.5, and āi,j,m “ 0 otherwise. At stage i and state pxi, wiq P XiˆWi,

PRH solves

min
pyj,jPIiYtIu; zj,jPIiq

ÿ

jPIi

γj´icj
`

yj,Erwj|wis, zj
˘

` γI´icI
`

yI,ErwI|wis
˘

(2.13a)

s.t.: yi “ xi, (2.13b)

yj`1 “ fjpyj, zjq, @ j P Ii, (2.13c)

yj P Xj, @ j P Ii Y tIu, (2.13d)

zj P Zjpāi,jq, @ j P Ii. (2.13e)

This math program computes procurement decisions zj for stages j from i to I and also in-

cludes auxiliary variables yj that track the endogenous MDP state. Its objective function

(Equation 2.13a) is the sum of discounted procurement costs. Constraint Equation 2.13b ini-

tializes the stage i state to the current state xi. Constraints Equation 2.13c enforce the feasibil-

ity of state transitions. Constraints Equation 2.13d–Equation 2.13e restrict decision variables

to their respective feasible sets.

Using PRH over multiple periods involves reoptimization of the math program Equation 2.13.

Specifically, solving this math program at stage i and state pxi, wiq provides the procurement

decisions tz˚j , j P Iiu. Among these decisions, we only implement z˚i corresponding to the cur-

rent stage, which results in a transition to a new inventory of power xi`1 “ fipxi, z
˚
i q. Once new

market informationwi`1 is available at stage i`1, we recompute the expectations of uncertainty
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Erwj|wi`1s, j “ i` 1, . . . , I, and solve an analogue of math program Equation 2.13 formulated

using these updated expectations at state pxi`1, wi`1q to obtain z˚i`1. We repeat this procedure

until we reach stage I. Estimating the value of the PRH policy, that is an upper bound on the

optimal policy cost, involves Monte Carlo simulation of this policy and averaging the result-

ing sum of discounted costs across sample paths. While PRH provides a policy and an upper

bound, it does not provide a mechanism to obtain a lower bound on the optimal policy cost.

The computational burden of using the PRH policy is tied to the complexity of solving Equa-

tion 2.13. Since the objective (Equation 2.13a) is piecewise linear convex and the constraints

(Equation 2.13b)-(Equation 2.13d) are linear, the optimization problem (Equation 2.13) has

a linear programming representation when the constraints (Equation 2.13e) defined using set

Zjpāi,jq take a polyhedral form. When Zjpāi,jq is instead a mixed integer set, for instance when

minimum procurement quantities zmin
m ą 0 are enforced as discussed in §2.3.2, the math pro-

gram (Equation 2.13) becomes a mixed integer program.

2.4.2 Dual reoptimization heuristic

The information relaxation and duality framework [8,38,91] is a popular technique to obtain

dual (lower) bounds on the optimal policy cost of intractable MDPs and is applicable to MDP

(Equation 2.12) as well. In its most commonly used form, a dual bound is estimated in Monte

Carlo simulation by solving a deterministic variant of MDP (Equation 2.12) endowed with full

information about future uncertainty and costs adjusted for this knowledge using a dual penalty.

Let qi
`

xi, zi,Wi

˘

denote the stage i dual penalty function, where Wi :“ pwi, wi`1, . . . , wIq is a

vector of realized stochastic factors for each stage from i to I. A feasible dual penalty function
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satisfies Erqi
`

xi, zi,Wi

˘
ˇ

ˇwis ě 0. Consider the following hindsight optimization problem given

knowledge of Wi:

VIR
i pxi;Wiq “ min

pyj,jPIiYtIu; zj,jPIiq

ÿ

jPIi

γj´i
”

cj
`

yj, wj, zj
˘

´ qj
`

yj, zj,Wj

˘

ı

` γI´icIpyI, wIq

(2.14a)

s.t.: yi “ xi, (2.14b)

yj`1 “ fjpyj, zjq, @ j P Ii, (2.14c)

yj P Xj, @ j P Ii Y tIu, (2.14d)

zj P Zjpajq, @ j P Ii. (2.14e)

Constraints Equation 2.14b-Equation 2.14d are identical to constraints Equation 2.13b-Equation 2.13d

in the math program solved by PRH. Constraints (Equation 2.14e) differ from Equation 2.13e

in the availability vector used to define Zjp¨q. In the former case, we use the realization of

the random contract availability vector on a given sample path while in the latter case we use

the contract availability forecast vector described in §2.4.1. The objective (Equation 2.14a)

can be obtained by modifying the PRH objective (Equation 2.13a) by subtracting dual penalty

terms and replacing the forecasted uncertainty with the elements of Wi. The expectation

ErVIR
i pxi;Wiq|wis taken with respect to the random variable Wi|wi defines a dual bound on the

value function Vipxi, wiq, that is the optimal policy value starting from stage i and state pxi, wiq.

The quality of the dual bound depends on the choice of the dual penalty function in math

program (Equation 2.14). Choosing this function to be zero, i.e., qip¨, ¨, ¨q ” 0, results in

the dual bound being equivalent to the well known perfect information bound, which can be
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weak. [38] show that the dual bound is instead equal to the optimal policy value when using

the following ideal dual penalty based on the MDP value function:

qi
`

xi, zi,Wi

˘

“ γ
 

Vi`1
`

fipxi, ziq, wi`1
˘

´ E
“

Vi`1 pfipxi, ziq, wi`1q
ˇ

ˇwi
‰(

. (2.15)

Since this ideal dual penalty is not available, approximations are used instead by replacing the

exact value function in (Equation 2.15) or using simple forms for penalties (see, e.g., [37, 131,

163]). Since computing a value function approximation in our application is challenging due its

high-dimensional state and action spaces and non-convexities, we define the simple dual penalty

function

qipxi, zi,Wiq :“
ÿ

mPM
zi,m

m
ÿ

l“1

ÿ

kPK
γlθ

`

wi`l,k ´ Erwi`l,k|wis
˘

, (2.16)

in which the information gained when taking a decision is approximated by spreads between the

value taken by the uncertainty in future stage i`l and its expectation computed at stage i. This

spread is multiplied by the CPPA purchase decisions. The dual penalty (Equation 2.16) is lin-

ear in zi, does not depend on xi, and is feasible because the expectation of wi`l,k´Erwi`l,k|wis

equals zero. In addition to its simple form, linear penalties ensure that the math program

(Equation 2.14) falls into the same complexity class as the deterministic version of MDP

(Equation 2.12) and the math program (Equation 2.13) solved by PRH.

Traditionally, an operating policy is computed independent of the dual bound computation

described above (see, e.g., [63] and the related discussion in §2.1.1). We now discuss an approach

to define a non-anticipative decision directly during the dual bound estimation process, where

being non-anticipative refers to a decision that only depends on the information available at
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stage i (the decision resulting from solving Equation 2.14 is anticipative as it relies on future

information on the sample path Wi). Since the dual bound ErVIR
i pxi;Wiq|wis involves solving

the math program (Equation 2.14) over multiple realizations of the random variable Wi|wi, we

also have a distribution of optimal solutions of this math program. We focus on stage i decisions

obtained during this dual estimation process and represent them via a random decision zipWiq

that is a function of the random variable Wi|wi. Our key idea is to define a functional that

operates on the distribution of the random variable zipWiq and returns a single non-anticipative

decision. We call this functional a decision measure Hi that maps a distribution zipWiq to a

vector of R|M|. Proposition 2.4.1 establishes some useful properties of a decision measure with

respect to optimality and feasibility.

Proposition 2.4.1. The decision HipzipWiqq is guaranteed to be feasible, that is HipzipWiqq P

Zipaiq, if any of the following conditions hold:

1. Zipaiq is convex and HipzipWiqq :“ ErzipWiq|wis.

2. HipzipWiqq “ z̄i and there exists a realization W 1
i of the variable Wi|wi such that z̄i “

zipW
1
i q.

Moreover, if the decision HipzipWiqq satisfies one of the conditions above and we use the ideal

dual penalty (Equation 2.15) in math program (Equation 2.14), then HipzipWiqq is an optimal

solution to MDP (Equation 2.12).

Examples of Hi that satisfy conditions 1 and 2 of Proposition 2.4.1 are HipzipWiqq “

ErzipWiq|wis and HipzipWiqq “MrzipWiq|wis, respectively, where M denotes the median oper-
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ator of a distribution. It is important to note that condition (2) of Proposition 2.4.1 ensures the

feasibility of HipzipWiqq even when Zipaiq is non-convex. Thus, the median decision measure

is more robust in terms of feasibility than the mean decision measure since the latter measure

satisfies only condition (1) of Proposition 2.4.1. It also follows from this proposition that any

feasible decision measure returns optimal decisions when using an ideal dual penalty. Indeed,

decision measures other than the ones discussed above can be defined, for instance, the mode

of the action distribution.

Computing a dual bound and decision at stage i and state pxi, wiq entails Monte Carlo

simulation. Specifically, we generate H Monte Carlo sample paths of uncertainty twhj , pj, hq P

Ii Y tIu ˆ t1, . . . , Huu which provides a discrete approximation Ŵi|wi of the random variable

Wi|wi. On this approximation, we estimate both a dual bound
řH
h“1 V

IR
i pxi;W

h
i q{H and a de-

cision HipzipŴiqq, which requires the solution of H math programs of the type Equation 2.14.

We apply the aforementioned decision to move to an endogenous state xi`1 “ fipxi,HipzipŴiqqq.

Then we observe the stage i ` 1 uncertainty wi`1 and repeat the same process at state

pxi`1, wi`1q and keep moving forward in time until we reach the terminal stage. We call the

resulting approach the dual reoptimization heuristic (DRH) and the policy computed in the

process using decision measures as the DRH policy.

Dual bound estimation and the computation of the DRH policy may be expensive if the

math program (Equation 2.14) is non-convex. To reduce this computational burden, one can

solve a convex relaxation of math program (Equation 2.14), which is derived by replacing con-

straint (Equation 2.14e) by zj P convpZjpajqq, for all j P Ii, where convpZjpajqq denotes the
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convex hull of set Zjpajq. Let V̄IR
i pxi;W

h
i q and z̄ipŴiq denote the optimal objective function

value and stage i decision obtained by solving this relaxation. Then it follows immediately

that
řH
h“1 V̄

IR
i pxi;W

h
i q{H defines a valid lower bound estimate that is less than or equal to

řH
h“1 V

IR
i pxi;W

h
i q{H. However, Hipz̄ipŴiqq may not belong to Zipaiq since z̄ipŴiq is only guar-

anteed to be a part of convpZipaiqq and not necessarily in Zipaiq. Feasibility can be ensured by

projecting the decision Hipz̄ipŴiqq onto Zipaiq, potentially approximately.

2.5 Numerical study

In this section, we assess the performance of PRH, DRH, and simpler heuristics on realistic

instances. We describe our instance sets in §2.5.1. In §2.5.2, we introduce benchmark policies

and the computational setup. In §2.5.3, we discuss our findings regarding the relative perfor-

mance of methods. In §2.5.4, we describe the procurement insights resulting from the numerical

study.

2.5.1 Instances

We start by briefly introducing the stochastic processes we employed to model the evolution

of the power price, the REC price, the power demand, and the CPPA contract availability.

We model power price using a mean-reverting stochastic process with seasonality and jumps as

this incorporates the main features of spot electricity markets [118, 199]. We employ a Jacobi

diffusion process to forecast the REC price following [209]. Power demand evolves according to

a geometric Brownian motion, which is a common choice in practice and in the procurement

literature to describe the company’s demand uncertainty [17, 107, 164]. Uncertainty in the

availability of CPPA m PM follows a Bernoulli random variable, where pm P r0, 1s represents
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the probability that this contract is available. We relegate to Online Supplement 2.7.4 a detailed

discussion of these models and the calibration of power and REC model parameters using market

data.

TABLE I: Parameters defining the baseline CPPA instance.

Name Value Unit Name Value Unit Name Value Unit

I 40 years CINV
0 1.7ˆ 106 USD/MW α 90% -

IR 5 years LP 30 years ξ 1% -
M t5, 10, 15, 20, 25u years θi 3,066 hours/year γ 0.97 -
zmin
m 20 θi p@m PMq MWh LT

i 10 years r 0.94 -
pm t0.4, 0.5, 0.6, 0.7, 0.4u - Ti 23 USD/MWh K5` 1.1 -

In Table I, we summarize the parameters defining our MDP of §2.3 in the baseline CPPA

instance. We consider a 40 year planning horizon pIq and a 5 year reach period pIRq to attain

a stochastic RPPT that is 90% pαq. Our set of contracts M and the minimum quantities zmin
m

are consistent with the CPPA portfolio of Google [86], and we set a very loose upper bound on

these quantities (zmax
m “ 1000 θi MWh). The corresponding availability factors pm are chosen

based on [202] and [12]: According to the first report, 15- to 25-year CPPAs are predominant,

with 20-year contracts being the most common, while the second report indicates that CPPAs

of length between 10 and 20 years are prevalent. Following [139], we use a functional form

for CINV
i that decreases over time by a fixed percentage ξ; specifically, it evolves according to

a learning model CINV
i “ CINV

0 p1 ´ ξqi. We chose the initial cost (CINV
0 ) based on 2015–2016

wind projects in the U.S. [74] and the learning rate (ξ) based on the range of values in [139].

Wind turbines are usually designed to operate for 20–25 years but many remain operational for
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a longer period of time [212], thus we select the lifetime (LP) to be 30 years also to account for

improving technology. The capacity factor (θi) of 35% is representative of the observed average

for wind farms in the United States [73] and is assumed to be fixed throughout the planning

horizon. The duration of the production tax credit (LT
i ) and its amount (Ti) are based on

United States policy in 2016 [66]. Moreover, we assume the tax credit expires in 5 years, i.e.,

it is only granted to renewable energy facilities commencing construction at stages i ă 5. The

risk-free rate (γ) is chosen equal to the 10-year United States treasury rate in May 2018 [27],

and we set the generator discount factor prq such that its respective return on investment is

roughly twice the risk-free interest rate. We use a maximum risk factor Km` “ 1.1 for m “ 5,

i.e. a 10% premium for the 5-year CPPAs, which decreases linearly as m is increased.

In Table II, we perturb the parameters defining our baseline instance to obtain instance sets

S1–S5, comprising of 17 instances in total. These instances allow us to analyze the robustness of

methods and the behavior of procurement policies as market parameters change. We describe

how these perturbed instances were obtained in §2.5.3.

TABLE II: Extended instance sets with the baseline-instance parameter superscripted by B.

Set Modified parameter Values

S1 Renewable energy target α t0.6, 0.7, 0.8, 0.9B, 1.0u

S2 CPPA availability pm for all m PM t´0.2, ´0.1, 0B, `0.1, `0.2u

S3 Long-term mean of power price t20, 30, 39.7Bu USD/MWh
S4 Long-term mean of RECs price t5, 9.4B, 20u USD/MWh
S5 Generator discount factor r t0.9, 0.91, 0.92, 0.93, 0.94Bu
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2.5.2 Procurement heuristics and computational setup

Our computational study compares the reoptimization heuristics PRH and DRH described

in §2.4.1 and §2.4.2, respectively, with two simpler procurement heuristics described below.

The first procurement heuristic involves only short-term procurement, that is, the entire

power demand Di is purchased on a short-term basis in each stage i P I Y tIu. A portion αDi

of unbundled RECs is also procured in the sustain period IS Y tIu to meet the RPPT. This

policy has no demand risk but is fully exposed to volatile power and REC prices. Since stages

correspond to years in our numerical setting, here and in the rest of this section we refer to

“short-term” power purchase to a yearly average purchase1, as opposed to the long-term (i.e.

multi-year) power delivery from CPPAs.

The second, referred to as the block heuristic (BHm), is parameterized by m P M. BHm

uses a single CPPA of length m and renews it every m years, that is, each time a contract

expires a new one of the same length is signed. Specifically, the first contract is entered at the

last year of the reach period, IR´1, and delivers renewable power during the first m years of

the sustain period. The second contract is ordered one year before the first contract expires to

ensure the continuous delivery of power from CPPAs. This process is repeated until the end

of the planning horizon. The quantity zi,m P Zipaiq associated with a new contract signed at

stage i is obtained by solving a deterministic model that minimizes the procurement cost given

forecasts of demand, CPPA availability, and power and REC prices over the delivery period

1Our MDP/methods can handle multiple settlements in a year, e.g. monthly, but will require higher
simulation time to estimate costs.
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of m years. Any shortfall in meeting demand or the RPPT using the incumbent CPPA is

addressed via purchases of short-term power and/or unbundled RECs.

TABLE III: Summary of methods.

Method Description
ˆ

Simple
heuristics

˙

Spot Spot purchase of power and RECs
BHm Block heuristic with single CPPA m

ˆ

Reoptimization
heuristics

˙ PRH Primal reoptimization
DRH-PI Dual reoptimization with zero dual penalty
DRH-LDP Dual reoptimization with linear dual penalty

Table III summarizes the methods tested in our numerical study. We implement DRH using

zero (labeled PI) and linear dual penalties (labeled LDP) in math program Equation 2.14.

These two variants, dubbed DRH-PI and DRH-LDP, deliver both policies and dual bounds.

We used linear dual penalties in DRH-LDP defined as in Equation 2.16 but that include power

price spreads alone, which we found sufficient to obtain good-quality procurement policies and

lower bounds.

All algorithms were programmed using C++ with Gurobi 8.0 as the math programming

solver. We estimated the value of heuristic procurement policies (i.e., upper bounds on the op-

timal policy value) and the DRH lower bound in Monte Carlo simulation using 1000 evaluation

sample paths (i.e., H equals 1000), as this choice resulted in standard errors below 1% of the

mean. The DRH upper bound estimation process requires computing procurement decisions

at each stage of an evaluation sample path. Therefore, for a fixed stage and evaluation sample

path, we formulated and solved the math program (Equation 2.14) on 30 inner sample paths
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and then applied a decision measure to back out a non-anticipative control. We reported DRH

results based on the mean decision measure but tested the median decision measure on the

baseline instance and found its performance to be similar. When using the mean decision mea-

sure, we followed the strategy discussed at the end of §2.4.2 to ensure feasibility with respect

to the non-convex action set.

2.5.3 Comparison of methods

Below we compare the performance of the methods in Table III on the instance sets S1–S5

summarized in Table II, also considering both PC and SC variants of MDP (Equation 2.12).

For each instance, we report the expected procurement cost (i.e., the expected discounted total

cost over the planning horizon) and the optimality gap with respect to the DRH-LDP lower

bound, labeled LDP. We omit showing the DRH-PI lower bound because it is worse than the

DRH-LDP lower bound on average by 5% and 50% for the PC and SC variants, respectively,

and its standard error is also as high as 3.7%. The standard error of the remaining lower and

upper bound estimates for PCs (SCs) is 0.6% (0.7%) on average and at most 0.7% (1%). In the

remaining text, when discussing the performance of a method, we are referring to the quality

of its procurement policy.

We begin by discussing the results for the instance set S1, which was obtained by varying

the RPPT α from 60% to 100%. The corresponding results are displayed in Figure 2. DRH-

LDP performs best on all the S1 instances and has average optimality gaps of 2.1% and 4.2% in

the PC and SC contract settings, respectively. The DRH-PI optimality gap is similar to DRH-

LDP when using PCs (2.6% on average) but substantially worse under SCs (11% on average).
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Figure 2: Procurement costs and optimality gaps for the S1 instance set.

While PRH optimality gaps are smaller than analogous DRH-PI gaps by 3.6% on average when

using SCs, the former method is on average of 3.2% worse than the latter method under PCs.

The performance of spot and block heuristics is largely inferior to reoptimization methods.

The S2 instances vary the probability pm of each contract m P M from its base value

between ´20% and `20% to understand the effect of changing the contract availability on

methods. The results corresponding to these instances are reported in Figure 3. The relative

ranking of methods is similar to the S1 instances: DRH-LDP achieves the smallest optimality

gaps across instances (2.4% and 4.3% on average for PCs and SCs, respectively). However,

contract availability impacts single-contract methods (i.e., BHm) and multi-contract methods

(PRH and DRH) in a markedly different manner. In particular, both the procurement cost and

optimality gap of BHm increase substantially in the presence of contract shortage. For instance,

the BH20 procurement cost increases by more than 5% when decreasing contract availability

from `20% to ´20% relative to the baseline. In contrast, the costs associated with both PRH
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Figure 3: Procurement costs and optimality gaps for the S2 instance set.

and DRH, which consider multiple CPPAs, are fairly stable under such availability changes (the

maximum cost increase is less than 0.8%).

The instance sets S3–S4 are created by varying the long-term mean of power and REC

prices. Specifically, our price model calibration results in a long-term mean of power and RECs

of 39.7 USD/MWh and 9.4 USD/MWh, respectively. Market outlooks suggest that these long-

term prices will decrease due to increasing penetration of renewable energy [125]. To understand

this effect, we consider the instances S3 in which the long-term mean power price is reduced to

30 USD/MWh and further to 20 USD/MWh. In contrast to the power price, the average REC

price can increase or decrease in the long-term due to regulatory changes [75]. To account for

this effect, the long-term mean of the REC price is decreased to 5 USD/MWh and increased to

20 USD/MWh in the instance set S4. Results for the S3 and S4 instance sets are displayed in

Figure 4 and Figure 5, respectively.

The relative performance of methods on these sets are consistent with our prior observations

on the S1–S2 instances. If the long-term mean power price decreases, then the procurement
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Figure 4: Procurement costs and optimality gaps for the S3 instance set.

Figure 5: Procurement costs and optimality gaps for the S4 instance set.

cost decreases substantially under all policies. In contrast, when the long-term mean of the

REC price changes, the procurement costs and optimality gaps of the spot and BH policies

are affected substantially, while the reoptimization methods, PRH and DRH, are stable across

instances. This behavior is due to PRH/DRH purchasing a considerable amount of PCs/SCs
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even when the REC prices are low, which insulates their procurement policies to REC price

increases.

The instance set S5 considers changes in the CPPA strike price as a result of the genera-

tor varying r from 0.94 to 0.9, which models the return on investment changing between 6.4%

and 11.1%. The corresponding results displayed in Figure 6 show that the procurement cost

increases under all methods when r decreases, except for the spot policy. Equation 2.8 helps

understand this behavior. From this equation it follows that reducing r raises the NPV com-

ponent of the CPPA strike price and potentially the CPPA strike price itself. Therefore, BHm,

PRH, and DRH-LDP use less CPPAs and rely more on spot purchases as r decreases, which

results in the performances of different methods becoming closer to each other.

Figure 6: Procurement costs and optimality gaps for the S5 instance set.

Overall, using simple procurement heuristics, such as spot and BHm, on our instances

results in higher procurement costs, whereas reoptimization methods work well, with DRH-
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LDP outperforming PRH. This superior performance of DRH suggests that obtaining non-

anticipative decisions by averaging away future information from anticipative actions is better

than computing decisions based on a single (non-anticipative) forecast, as done in PRH. The

near-optimal and stable performance of DRH-LDP across instance sets also indicates that the

mean, a simple and inexpensive decision measure, is effective for use with DRH. Similarly,

simple linear dual penalties appear sufficient to obtain high quality procurement decisions using

DRH, in addition to good lower bounds.

Finally, we discuss the computational burden of using each method. The time taken to

compute a decision at a given stage and state when using the spot and BHm policies is negli-

gible. The analogous times for PRH and DRH are 0.04 and 0.8 seconds, respectively. Most of

this time for DRH goes towards solving the dual optimization models on sample paths and the

time required to extract the non-anticpative decision is negligible. Thus, for all practical pur-

poses, implementing the DRH policy is inexpensive. In addition to computing a procurement

decision, computing an upper bound of a policy requires applying it over the entire planning

horizon in Monte Carlo simulation. When using 1000 sample paths this estimation time is on

average 10 seconds for BHm, and 28 and 216 minutes for PRH and DRH (each variant), re-

spectively. Thus, estimating the value of DRH is more expensive than PRH because the former

policy solves at each stage math programs for each of the 30 inner sample paths whereas the

latter policy solves a single math program. Nevertheless, the solution of DRH math programs

in the inner samples can be parallelized to substantially reduce this overhead. Finally, estimat-

ing the lower bound with DRH takes 10 minutes on average (each variant).
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2.5.4 Procurement insights

Figure 2 shows that the procurement cost increases as expected with the RPPT α. Specifi-

cally, the procurement costs under PCs and SCs both vary linearly for α ď 0.8 and in a strictly

convex and linear manner, respectively, for α ą 0.8. The procurement costs under SCs are in

general lower than analogous costs under PCs (especially for high α values), which provides a

cost incentive for using SCs in addition to their well-known advantage of being free from the

physical delivery constraints associated with PCs. For instance, the procurement cost incurred

under SCs is on average 2.5% lower than under PCs when using DRH-LDP. This comes at the

expense of increased cash flow volatility under SCs as the coefficient of variation is on average

3.5% higher than PCs. These findings are largely in sync with our analytical results in §2.2.

Consistent with the extant procurement literature, we find that the inclusion of long-term

contracts (i.e., CPPAs in our case) in procurement portfolios helps hedge against price uncer-

tainty and reduces procurement costs. In addition, our results indicate that the use of CPPAs

is more valuable to companies that have committed to an RPPT. This is seen, for instance

in Figure 2, where the difference between the procurement costs of the spot-only and DRH-

LDP policies increases with the RPPT. Therefore, as corporations become more aggressive with

procuring renewable power, the use of CPPAs, in particular SCs, is likely to be higher, which

is consistent with trends observed in practice [29]. Constructing portfolios with CPPAs is non-

trivial as shown by the poor performance of the block heuristics that use a single contract

type. The fairly flat procurement cost of the DRH-LDP policy to changes in contract avail-

ability suggests that dynamically constructed portfolios containing multiple CPPAs are robust
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to such variability, which is a useful property. This observation suggests some level of substi-

tutability between different subsets of CPPA contracts. However, individual contracts are not

fully substitutable for another; if they were, the procurement costs of the block heuristics and

DRH-LDP would be similar.

Portfolios computed by DRH-LDP on our baseline instance contain PCs with lengths 5, 10,

15, 20, and 25 years in the proportions 8.7%, 17.8%, 23.1%, 29.2%, and 21.2%, respectively,

on average across the evaluation samples and stages. Analogous proportions when using DRH-

LDP with SCs are 3.4%, 10.8%, 15.2%, 31.4%, and 39.2%, which shows that longer contracts are

used more often due to SCs having lower over-procurement risk than PCs as also discussed in

§2.2.1. We observed that the stage-averaged mix of CPPAs did not change significantly across

instances. For example, on the S1 instances, the proportion of CPPAs of different lengths varied

by at most 4%. However, this mix does change substantially over time, in a manner that is

more pronounced in the reach period, with these changes remaining significant in the rest of

the planning horizon. For example, the proportion of 5, 10, 15, 20, and 25 year CPPA contracts

under DRH-LDP in the baseline instance fluctuates by as much as 11.8%, 18.4%, 17.6%, 22.8%,

13.9%, respectively, between years 10 and 40. Thus, the near-optimal portfolios computed by

DRH-LDP indeed change dynamically over time.

Finally, using CPPAs for procurement is not always beneficial. For instance, if these con-

tracts become expensive due to generators expecting a higher rate of return (see Figure 6) then

spot procurement would displace signing CPPAs and the multi-stage procurement problem will

reduce to procuring power and RECs as needed from the short-term market. This seems un-
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likely given the increasing use of CPPAs [12] and decreasing production costs associated with

renewable power [202]. Under low production costs, the strike price that a generator charges is

likely to be highly correlated with the spot market, in particular, the expected spot price over

the tenor of the contract, a feature that we try to capture in the strike price model of §2.3.1.

In such an environment, generators would remain profitable even after current production tax

credits expire resulting in CPPAs continuing to play an important role in a firm’s renewable

power procurement strategy. We find support for this statement in additional experiments that

we conducted, where we removed the production tax credit in our base instance and found pro-

curement costs to increase by only 1.3% when using PCs and by 1.7% with SCs.

2.6 Conclusion

Motivated by the recent global trend in corporate energy procurement, we study the prob-

lem of companies that have committed to satisfying a renewable power procurement target by

a future date. We focus on CPPAs for long-term procurement and couple them with short-

term purchases of power and RECs. We analyze a two-stage model to understand the behavior

of procurement costs when using popular variants of CPPAs, namely financial and physical,

and changing their structure following the practitioner literature. To facilitate decision mak-

ing, we formulate a multi-period power procurement MDP model with short-term and long-

term procurement options that is challenging to solve due to a non-convex action set and high-

dimensional endogenous and exogenous state components. Heuristic procurement decisions can

nevertheless be obtained using an easy-to-implement reoptimization method, PRH, but this

approach does not provide a lower bound on the optimal cost. We thus develop DRH, a novel



59

scheme that combines reoptimization and the information relaxation and duality approach to

extract non-anticipative decisions from anticipative-action distributions, in addition to estimat-

ing a lower bound. DRH retains the desirable implementation properties of PRH. Its procure-

ment decisions are near-optimal on realistic instances and outperform PRH and problem-specific

heuristics. DRH thus emerges as a promising way to tackle high-dimensional MDPs with non-

convex action sets arising in our procurement setting as well as other applications. Moreover,

our findings show that procurement portfolios with multiple CPPAs reduce power purchase costs

significantly in the presence of an RPPT compared to using a single CPPA. In addition, such

portfolios are effective at hedging against uncertainty in contract availability and REC prices.

2.7 Appendix

To ease notation, in sections 2.7.1 and 2.7.2 we represent E0 by E and the random variables

D1, P1, and R1 by D, P, and R, respectively. Furthermore, we denote by N pµ, σ2q a normal dis-

tribution with mean µ and variance σ2, and by φ and Φ the probability distribution function

(PDF) and cumulative distribution function (CDF), respectively, of a standard normal distri-

bution N p0, 1q.

2.7.1 Proofs

Lemma 2.7.1 is used in the proof of Lemma 2.2.1. Define QPCpz;α,Kq :“ ErrCPCpz,w1;α,Kqs

and QSCpz;α,Kq :“ ErrCSCpz,w1;α,Kqs as the expected procurement costs under a PC and an

SC, respectively.

Lemma 2.7.1. Under Assumption 1, there exist optimal procurement decisions z˚PC and z˚SC

minimizing, respectively, QPCpz;α,Kq and QSCpz;α,Kq, that belong to the interval rαa,αbs.
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Proof. We start by considering PCs, and then move to SCs. In both cases, we will show that

no unique optimal solution exists in Ω :“ r0, αaqYpαb, bs, which establishes the desired result.

Recall that the power demand D follows a uniform distribution in the interval ra, bs, and its

CDF is equal to 0 for z ă a, pz´ aq{pb´ aq for z P ra, bs, and 1 for z ą b.

The derivative of QPCpz;α,Kq with respect to z exists in the interval r0, αas and is equal to

dQPCpz;α,Kq

dz

ˇ

ˇ

ˇ

zPr0,αas
“ K´ E rPsPr pD ě zq ´ E rRsPr pαD ě zq “ K´ E rPs ´ E rRs ď 0,

where the second equality holds since Pr pD ě zq “ Pr pαD ě zq “ 1 for z P r0, αas, and the

inequality follows from the strike price upper bound (i.e., K ď ErPs ` ErRs) in Assumption 1.

Therefore, QPCpz;α,Kq is non-increasing in r0, αaq, has no unique optimal solution in this half-

open interval, and we can focus on z ě αa to search for an optimal solution. Similarly, the

derivative exists in rαb, bs and is equal to

dQPCpz;α,Kq

dz

ˇ

ˇ

ˇ

zPrαb,bs
“ K´ E rPsPr pD ě zq ě K´ E rPs ě 0,

where the last inequality follows from the strike price lower bound (i.e., K ě ErPs) under

Assumption 1. Therefore, QPCpz;α,Kq is non-decreasing in pαb, bs, has no unique optimal

solution in this interval, and an optimal solution satisfies z ď αb. We thus can conclude that

z˚PC belongs to the interval rαa,αbs.
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We proceed to show that an analogous result holds for the solution z˚SC of minzě0QSCpz;α,Kq.

The derivative of QSCpz;α,Kq with respect to z exists in the two intervals r0, αas and rαb, bs

with values, respectively, equal to

dQSCpz;α,Kq

dz

ˇ

ˇ

ˇ

zPr0,αas
“ ErK´ Ps ´ E rRsPr pαD ě zq “ K´ E rPs ´ E rRs ď 0,

dQSCpz;α,Kq

dz

ˇ

ˇ

ˇ

zPrαb,bs
“ ErK´ Ps “ K´ E rPs ě 0,

where both inequalities follow from Assumption 1. Following the same argument used above in

the case of PCs, we can conclude that z˚SC belongs to the interval rαa,αbs.

Proof of Lemma 2.2.1. We start by determining the optimal procurement quantity under

PCs, and then move to SCs.

From Lemma 2.7.1, we know that there exists an optimal solution to minzě0QPCp¨;α,Kq in

the interval rαa,αbs, thus we can limit the search to this interval. The expected cost function

QPCpz;α,Kq is convex in the procurement size z in the interval rαa,αbs since the second-order

derivative is positive:

d2QPCpz;α,Kq

dz2

ˇ

ˇ

ˇ

zPrαa,αbs
“ ErPs

1tzěau

b´ a
` ErRs

1

αb´ αa
ą 0.

Therefore, the optimal quantity z˚PC can be calculated using the first-order condition

dQPCpz;α,Kq

dz
“ K´ E rRsPr pαD ě zq ´ E rPsPr pD ě zq “ 0. (2.17)

We proceed by considering two cases.
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Case 1 : PrpD ě zq “ 1. Hence we have z˚PC ď a in this case. The first-order condition

Equation 2.17 simplifies to

K´ ErRs
b´ z

α

b´ a
´ ErPs “ 0 ðñ z˚PC “ α

´

b´
K´ ErPs
ErRs

pb´ aq
¯

. (2.18)

Enforcing z˚PC ď a using solution (Equation 2.18) results in an upper bound on α equal to

ᾱ “
aErRs

bErRs ´ pK´ ErPsqpb´ aq
. (2.19)

Case 2 : PrpD ě zq ă 1. Using PrpD ě zq “ pb´ zq{pb´ aq, we obtain z˚PC ą a in this case.

Moreover, solving the first order condition (Equation 2.17) gives

z˚PC “
´Kpb´ aq ` pErRs ` ErPsqb

1
αErRs ` ErPs

.

Note that z˚PC ą a is satisfied when α ą ᾱ. In conclusion, the optimal PC procurement z˚PC is

given by

z˚PC “

$

’

’

’

’

&

’

’

’

’

%

α
´

b´
K´ErPs
ErRs pb´ aq

¯

, if α ď ᾱ,

´Kpb´aq`pErRs`ErPsqb
1
α
ErRs`ErPs , if α ą ᾱ.

Next, consider an SC. As in the PC case, by Lemma 2.7.1, there exists an optimal solution to

minzě0QSCpz;α,Kq in the interval rαa,αbs, thus we can limit our search space. This function

is strictly convex in z because its second derivative is positive by Assumption 1:

d2QSCpz;α,Kq

dz2

ˇ

ˇ

ˇ

zPrαa,αbs
“ ErRs

1

αb´ αa
ą 0.
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Thus, the optimal SC quantity z˚SC can be calculated by applying the first-order condition:

dQSCpz;α,Kq

dz

ˇ

ˇ

ˇ

zPrαa, αbs
“ 0

ðñ K´ ErPs ´ E rRsPr pαD ě zq “ 0

ðñ z˚SC “ α
´

b´
K´ ErPs
ErRs

pb´ aq
¯

.

Proof of Proposition 2.2.2. We characterize the behavior of CPCpα,Kq and CSCpα,Kq as

functions of α, respectively, in part (a) and part (b) of the proof, and compare them in part (c).

(a) When α P r0, ᾱs, we have z˚PC P rαa, as, which implies PrpD ě z˚PCq “ 1, and the optimal

cost becomes

CPCpα,Kq “ Kz
˚
PC ` ErPpD´ z˚PCqs ` ErRpαD´ z˚PCq`s.

Using the characterization of z˚PC from Lemma 2.2.1, the derivative of this function with respect

to α is

dCPCpα,Kq

dα

ˇ

ˇ

ˇ

αPr0,sαs
“ K

z˚PC

α
` ErPs

´

´
z˚PC

α

¯

` E
”

R
´

D´
z˚PC

α

¯

`

ı

“ pK´ ErPsq
z˚PC

α
` E

”

R
´

D´
z˚PC

α

¯

`

ı

.

Since z˚PC is linear in α within the interval r0, ᾱs, z˚PC{α and thus dCPCpα,Kq{dα are inde-

pendent of α. Moreover, dCPCpα,Kq{dα is non-negative because K ě ErPs by assumption 1.

Therefore, CPCp., Kq is a linear function of α in the interval r0, ᾱs.
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We show next that CPCp¨, Kq is convex increasing with the target when α P pᾱ, 1s. In this

case, z˚PC P pa, αbs and PrpD ě z˚PCq ă 1. Expanding the definition of CPCpα,Kq gives

CPCpα,Kq “ Kz
˚
PC ` ErPpD´ z˚PCq`s ` ErRpαD´ z˚PCq`s

“ Kz˚PC ` ErPs
ż b

z˚PC

D´ z˚PC

b´ a
dD` ErRs

ż b

z˚PC{α

αD´ z˚PC

b´ a
dD

“ Kz˚PC `
ErPs
b´ a

´b2

2
´
z˚2PC

2
´ z˚PCpb´ z

˚
PCq

¯

`
ErRs
b´ a

”

α
´b2

2
´
z˚2PC

2α2

¯

´ z˚2

´

b´
z˚PC

α

¯ı

“ Kz˚PC ` ErPs
1

2 pb´ aq
pz˚PC ´ bq

2 ` ErRs
1

2αpb´ aq
pz˚PC ´ αbq

2.

The first derivative of CPCpα,Kq is

dCPCpα,Kq

dα

ˇ

ˇ

ˇ

αPpsα,1s
“

ErRs p´aK` b pK` ErPspα´ 1qqq paK` b p´K` ErPs ` 2ErRs ` αErPsqq
2 pb´ aqpErRs ` αErPsq2

.

The denominator as well as the third term of the product in the numerator are strictly positive

due to the bounds on the strike price in Assumption 1. We show that the second term in the

numerator is also strictly positive using the following chain of inequalities:

´aK` b pK` ErPspα´ 1qq ě ´aK` b pK` ErPspᾱ´ 1qq

“
pb´ aq ppbK´ bErPsqpErRs ´ K` ErPsq ` aKpK´ ErPsqq

bErRs ´ pK´ ErPsqpb´ aq

ą 0.

The first inequality follows by lower bounding α by ᾱ, the first equality by replacing ᾱ with

its full expression given in Equation 2.19 and simplifying the resulting terms, and the second

inequality results from both the numerator and denominator being positive under the bounds
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on the strike price in Assumption 1. In addition to the first derivative being positive, the second

derivative is also positive as it is equal to

d2CPCpα,Kq

dα2

ˇ

ˇ

ˇ

αPpsα,1s
“

ErPsErRspaK` b p´K` ErPs ` ErRsqq2

pb´ aqpErRs ` αErPsq3
ą 0,

where the strict inequality holds due to Assumption 1. Thus, the procurement cost is a strictly

convex increasing function in the target level for α P rsα, 1s.

(b) From Lemma 2.2.1 we know that z˚SC is linear in α. The slope of CSCpα,Kq with respect to

α is

dCSCpα,Kq

dα

ˇ

ˇ

ˇ

αPr0,1s
“ pK´ ErPsq

z˚SC

α
` E

”

R
´

D´
z˚SC

α

¯

`

ı

,

which is independent of α. This implies that CSCpα,Kq is linear in α.

(c) From the proofs of parts (a) and (b) it follows that dCSCpα,Kq{dα equals dCPCpα,Kq{dα

when α ď ᾱ. Therefore, since CPCpα,Kq and CSCpα,Kq coincide when α “ 0, these two costs

are the same for α P p0, ᾱs. Furthermore, CPCpα,Kq is strictly convex increasing in α for

α P pᾱ, 1s, while CSCpα,Kq remains linear with the same slope, which implies that the former

cost is higher than the latter cost in this interval.

Proof of Proposition 2.2.3. Recall that rCPCpz,w1;α,Kq “ Kz ` PpD ´ zq` ` RpαD ´ zq`.

Defining Ypzq “ ´Ppz ´ Dq`, we have rCSCpz,w1;α,Kq “ rCPCpz,w1;α,Kq ` Ypzq. We start

by showing that VarrrCSCpz,w1;α,Kqs ě VarrrCPCpz,w1;α,Kqs. Since VarrrCSCpz,w1;α,Kqs “

VarrrCPCpz,w1;α,Kqs ` VarrYpzqs ` 2CovrrCPCpz,w1;α,Kq, Ypzqs, and VarrYpzqs ě 0, the proof
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reduces to showing that CovrrCPCpz,w1;α,Kq, Ypzqs ě 0, which we illustrate using the following

chain of inequalities:

CovrrCPCpz,w1;α,Kq, Ypzqs

“CovrKz` PpD´ zq` ` RpαD´ zq`,´Ppz´Dq`s (2.20a)

“CovrPpD´ zq` ` RpαD´ zq`,´Ppz´Dq`s (2.20b)

“´ CovrPpD´ zq`, Ppz´Dq`s ´ CovrRpαD´ zq`, Ppz´Dq`s (2.20c)

“´ ErP2pD´ zq`pz´Dq`s ` ErPpD´ zq`sErPpz´Dq`s

´ ErPRpz´Dq`pαD´ zq`s ` ErRpαD´ zq`sErPpz´Dq`s (2.20d)

“ErPpD´ zq`sErPpz´Dq`s ` ErRpαD´ zq`sErPpz´Dq`s (2.20e)

ě 0, (2.20f)

where Equation 2.20a follows from the definition of rCPCpz,w1;α,Kq, Equation 2.20b is a conse-

quence of Kz being a constant, Equation 2.20c follows from the linearity of the covariance, and

Equation 2.20d from the well-known property that CovpA,Bq “ ErABs ´ ErAsErBs if A and B

are two random variables. The equality in Equation 2.20e follows from pD´ zq` ¨ pz´Dq` ” 0

and pz´Dq` ¨ pαD´ zq` ” 0, and Equation 2.20f is a consequence of all expectations involving

only non-negative random variables.

If Prpz ą Dq ą 0, then VarrYpzqs ą 0, which combined with the non-negative covariance

(Equation 2.20f) gives VarrrCSCpz,w1;α,Kqs ą VarrrCPCpz,w1;α,Kqs. Instead, if Prpz ą Dq “ 0,

then Ypzq ” 0, which implies that VarrrCSCpz,w1;α,Kqs “ VarrrCPCpz,w1;α,Kqs.

Lemmas 2.7.2, 2.7.3, and 2.7.4 are used in the proof of Proposition 2.2.4.
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Lemma 2.7.2. Let P be a log-normal random variable with parameters µ and σ2, and denote

with fpP;µ, σ2q its PDF. Moreover, consider Y “ logpPq, i.e. Y„N pµ, σ2q, and a scalar B ą 0.

It holds that:

E
“

P1tPăBu
‰

“ eµ`
σ2

2 Φ

ˆ

lnpBq ´ pµ` σ2q

σ

˙

Proof. Using the relationship between P and Y, we establish the following equalities:

E
“

P1tPăBu
‰

“

ż B

´8

PfpP;µ, σ2qdP “

ż B

´8

eln PfpP;µ, σ2qdP

“

ż lnpBq

´8

eYφpY;µ, σ2qdY “

ż lnpBq

´8

eY
1

σ
?
2π
e
´pY´µq2

2σ2 dY.

By adding and subtracting σ4 ` 2σ2µ to the numerator of the second exponential term, we

obtain:

ż lnpBq

´8

eY
1

σ
?
2π
e
´pY´µq2

2σ2 dY “ eµ`
σ2

2 Φ

ˆ

lnpBq ´ µ´ σ2

σ

˙

,

which proves the desired result.

Lemma 2.7.3. Given three scalars B ą 0, µ ě 0, and σ ą 0, it holds that:

exppµ` σ2{2q

σ

„

1

B
φ

ˆ

lnpBq ´ pµ` σ2q

σ

˙

“
1

σ

„

φ

ˆ

lnpBq ´ µ

σ

˙

.
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Proof.

exppµ` σ2{2q

σ

„

1

B
φ

ˆ

lnpBq ´ pµ` σ2q

σ

˙

“
exppµ` σ2{2q

σ

„

1

B
?
2π

exp

ˆ

´plnpBqq2 ´ pµ` σ2q2 ` 2 lnpBqpµ` σ2q

2σ2

˙

“
exppµ` σ2{2q

σ

„

1

B
φ

ˆ

lnpBq ´ µ

σ

˙

exp
`

´ σ2{2´ µ` lnpBq
˘



“
exppµ` σ2{2q

σ

„

1

B
φ

ˆ

lnpBq ´ µ

σ

˙

exp
`

´ σ2{2´ µ
˘

B



“
1

σ
φ

ˆ

lnpBq ´ µ

σ

˙

.

Lemma 2.7.4. Given α ą 0 and δ, δ 1 ą 0, if ErKINTpP;K, δqs ă ErKINTpP;K, δ 1qs, then it

holds that CINT
SC pα,K, δq ă C

INT
SC pα,K, δ

1q.

Proof. Let z˚SCpα,K, δq be an optimal solution to the expected procurement costQINT
SC pz;α,K, δq,

which is defined by

QINT
SC pz;α,K, δq :“ ErrCSCpz,w1;α,K

INTpP;K, δqqs

“ ErKINTpP;K, δq ´ Psz` ErPDs ` ErRpαD´ zq`s.

From the hypothesis it follows that

QINT
SC pz˚Spα,K, δ

1q;α,K, δq ´QINT
SC pz˚Spα,K, δ

1q;α,K, δ 1q

“
`

ErKINTpP;K, δqs ´ ErKINTpP;K, δ 1qs
˘

¨ z˚Spα,K, δ
1q ă 0.
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As a consequence, the following relation between optimal procurement costs hold

CINT
SC pα,K, δq “ min

zě0
QINT

SC pz;α,K, δq ď QINT
SC pz˚Spα,K, δ

1q;α,K, δq

ă QINT
SC pz˚Spα,K, δ

1q;α,K, δ 1q “ CINT
SC pα,K, δ 1q,

which proves the lemma.

Proof of Proposition 2.2.4. Recall that the power price P follows a log-normal distribution

and that its natural logarithm follows lnpPq„N pµP, σ2Pq, i.e. it is a normal random variable with

mean µP and standard deviation σP. Note that consequently plnpPq ´ µPq{σP„N p0, 1q. The

expected unit cost with the interval strike price is defined for δ P r0, Kq and can be expressed

using Lemma 2.7.2 as

ErKINTpP;K, δqs “ pK` δqPrpP ą K` δq ` pK´ δqPrpP ă K´ δq ` E
“

P1tK´δďPďK`δu
‰

“ pK` δq

„

1´Φ

ˆ

lnpK` δq ´ µP
σP

˙

` pK´ δqΦ

ˆ

lnpK´ δq ´ µP
σP

˙

` exp

ˆ

µP `
σ2P
2

˙„

Φ

ˆ

lnpK` δq ´ µP ´ σ
2
P

σP

˙

´Φ

ˆ

lnpK´ δq ´ µP ´ σ
2
P

σP

˙

.

The first derivative of ErKINTpP;K, δqs with respect to δ is

BErKINTpP;K, δqs

Bδ
“ 1´Φ

ˆ

lnpK` δq ´ µP
σP

˙

´
1

σP
φ

ˆ

lnpK` δq ´ µP
σP

˙

´Φ

ˆ

lnpK´ δq ´ µP
σP

˙

´
1

σP
φ

ˆ

lnpK´ δq ´ µP
σP

˙

`
exppµP ` σ

2
P{2q

σP

„

1

K` δ
φ

ˆ

lnpK` δq ´ pµP ` σ
2
Pq

σP

˙

`
1

K´ δ
φ

ˆ

lnpK´ δq ´ pµP ` σ
2
Pq

σP

˙

.
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By reformulating the last term in this derivative using Lemma 2.7.3 and canceling opposite

terms out, we obtain a simpler expression:

BErKINTpP;K, δqs

Bδ
“ 1´Φ

ˆ

lnpK` δq ´ µP
σP

˙

´Φ

ˆ

lnpK´ δq ´ µP
σP

˙

. (2.21)

We structure the rest of proof as follows. We first show that Dδ ą 0 such that ErKINTpP;K, δqs ă

ErKINTpP;K, 0qs “ K if and only if K ą ErPs expp´σ2P{2q. By Lemma 2.7.4, this implies the

validity of the first claim of the proposition, i.e., that Dδ ą 0 such that CINT
SC pα,K, δq ă

CINT
SC pα,K, 0q “ CSCpα,Kq if and only if K ą ErPs expp´σ2P{2q. We subsequently prove that

ErKINTpP;K, ¨qs, and thus CINT
SC pα,K, ¨q, attain global minimum at δ˚ “

a

K2 ´ expp2µPq ą 0 if

K ą ErPs expp´σ2P{2q.

Suppose ErKINTpP;K, δqs ă K for some δ. Then Dδ̄ ą 0 such that the derivative (Equation 2.21)

is negative at δ̄ because ErKINTs “ K at δ “ 0 and is a continuous function. The following

implications hold.

BErKINTpP;K, δqs

Bδ

ˇ

ˇ

ˇ

δ“δ̄
ă 0 ùñ 1´Φ

ˆ

lnpK` δ̄q ´ µP
σP

˙

ă Φ

ˆ

lnpK´ δ̄q ´ µP
σP

˙

ùñ lnpK` δ̄q ´ µP ą µP ´ lnpK´ δ̄q

ùñ K2 ą δ̄2 ` expp2µPq

ùñ K ą exppµPq “ ErPs expp´σ2P{2q.

To prove the reverse direction of the iff result, suppose K ą ErPs expp´σ2P{2q “ exppµPq. The

derivative (Equation 2.21) evaluated in δ “ 0 is negative because

BErKINTpP;K, δqs

Bδ

ˇ

ˇ

ˇ

δ“0
“ 1´ 2Φ

ˆ

lnpKq ´ µP
σP

˙

ă 1´ 2Φ

ˆ

lnpexppµPqq ´ µP
σP

˙

“ 0,
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where the last equality is a consequence ofΦp0q “ 0.5. Therefore, the expected unit cost is lower

than K in the proximity of 0. In other words, there exists a sufficiently small δ ą 0 such that

ErKINTpP;K, δqs ă K. The first claim of the proposition is thus proven by invoking Lemma 2.7.4.

Next, we want to determine the global minimum δ˚ of ErKINTpP;K, δqs when K ą exppµPq.

To this end, we provide a characterization of ErKINTpP;K, δqs as a function of δ. First, we

characterize a region for δ in which the function is convex as follows.

B2ErKINTpP;K, δqs

Bδ2
“

´1

pK` δqσP
φ

ˆ

lnpK` δq ´ µP
σP

˙

`
1

pK´ δqσP
φ

ˆ

lnpK´ δq ´ µP
σP

˙

ě 0

(2.22)

ðñ
1

b

2πσ2P

„

´1

pK` δq
exp

ˆ

´plnpK` δq ´ µPq
2

2σ2P

˙

`
1

pK´ δq
exp

ˆ

´plnpK´ δq ´ µPq
2

2σ2P

˙

ě 0

ðñ ´
1

pK` δq
exp

ˆ

´plnpK` δq ´ µPq
2

2σ2P

˙

`
1

pK´ δq
exp

ˆ

´plnpK´ δq ´ µPq
2

2σ2P

˙

ě 0

ðñ exp

ˆ

´ lnpK` δq2 ` lnpK´ δq2 ` 2µP lnpK` δq ´ 2µP lnpK´ δq

2σ2P

˙

ď
K` δ

K´ δ

ðñ exp

ˆ

´ lnpK2 ´ δ2q ` 2µP

2σ2P
ln
´K` δ

K´ δ

¯

˙

ď
K` δ

K´ δ

ðñ ´ ln
´

K2 ´ δ2
¯

` 2µP ď 2σ
2
P

ðñ δ ď

b

K2 ´ expp2µP ´ 2σ
2
Pq “:

pδ.

Therefore, the function ErKINTpP;K, ¨qs is convex for δ P r0,pδs. Moreover, since 2µP´2σ
2
P ą ´8

and expp¨q is a strictly increasing function, we have pδ ă K. Hence, ErKINTpP;K, ¨qs is concave

for δ P rpδ, Kq. We further characterize ErKINTpP;K, δqs by showing that it is increasing in δ

when δ ą pδ. Since the second derivative (Equation 2.22) is negative in the interval rpδ, Kq, then
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the first derivative (Equation 2.21) is a decreasing function in rpδ, Kq. As a result, Equation 2.21

attains its infimum for δÑ K and the following inequalities hold:

BErKINTpP;K, δqs

Bδ

ˇ

ˇ

ˇ

rpδ,Kq
ě inf
δPrpδ,Kq

BErKINTpP;K, δqs

Bδ

“ lim
δÑK

1´Φ

ˆ

lnpK` δq ´ µP
σP

˙

´Φ

ˆ

lnpK´ δq ´ µP
σP

˙

“ 1´Φ

ˆ

lnp2Kq ´ µP
σP

˙

ą 0,

where the last inequality is strict because Φ pplnp2Kq ´ µPq{σPq ă 1. Since ErKINTpP;K, δqs is

strictly concave increasing for δ ě pδ and convex when δ ď pδ, its global minimum can be found

using the first-order condition.

BErKINTpP;K, δqs

Bδ
“ 0 ðñ 1´Φ

ˆ

lnpK` δq ´ µP
σP

˙

“ Φ

ˆ

lnpK´ δq ´ µP
σP

˙

ðñ lnpK` δq ´ µP “ µP ´ lnpK´ δq

ðñ δ “

b

K2 ´ expp2µPq “
b

K2 ´ E0rP1s2 expp´σ2Pq “: δ
˚,

where the second implication is a consequence of the symmetric property of the normal distri-

bution, i.e. lnpK` δq and lnpK´ δq have equal distance from the mean of lnpPq. In conclusion,

ErKINTpP;K, δqs has global minimum at δ “ δ˚ if K ą ErPs expp´σ2P{2q. From Lemma 2.7.4, δ˚

is also global minimum of CINT
SC pα,K, .q in this case.

Next, we prove Proposition 2.3.1 by first formalizing its assumptions and then establishing

Lemma 2.7.5.



73

Assumption 2. It holds that (i) zmin
m “ 0 and zmax

m ă 8 for all m PM; (ii) ErPjDj|wis ă 8,

ErRjDj|wis ă 8, and Er|Pj||wis ă 8, @j P Ii`1 Y tIu; and (iii) E rErPjDj|wi`1s|wis ă 8,

E rErRjDj|wi`1s|wis ă 8, and E rEr|Pj||wi`1swis ă 8, @j P Ii`2 Y tIu.

Lemma 2.7.5. At stage i P IY I, given 0 ď wi ă 8, if Assumption 2 holds, then |Vip¨, wiq| ă

8 and |E
“

Vi`1p¨, wi`1q
ˇ

ˇwi
‰

| ă 8.

Proof. We start by showing that the value function Vip¨, wiq is bounded from above for i P

I Y tIu. From the definition of MDP (Equation 2.12) at stage i, we know that for each policy

πi P Πi, we have

Vipxi, wiq ď E

«

ÿ

jPIi

γj´icjpx
πi
j , wj, Z

πi
j px

πi
j , wjqq ` γ

I´icIpx
πi
I , wIq

ˇ

ˇ

ˇ

ˇ

xi, wi

ff

.

By choosing πi to be the policy that only procures from the short-term market (i.e. CPPA

procurement decisions zi,m are always zero), we obtain the following inequalities:

Vipxi, wiq ď E

«

ÿ

jPIiYtIu
γj´ipPjDj ` αRjDjq

ˇ

ˇ

ˇ

ˇ

wi

ff

(2.23a)

ď
ÿ

jPIiYtIu

ˆ

E rPjDj|wis ` αE rRjDj|wis
˙

, (2.23b)

where Equation 2.23a is obtained by accounting for the costs of short-term procurement and

Equation 2.23b by dropping the discount factor γ ď 1 and the linearity of the expectation

operator. The value function Vip¨, wiq being bounded follows from Assumption 2. Next, we have

E
“

Vi`1pxi`1, wi`1q
ˇ

ˇwi
‰

ď
ÿ

jPIi`1YtIu

´

E
“

ErPjDj|wi`1s
ˇ

ˇwi
‰

` αE
“

ErRjDj|wi`1s
ˇ

ˇwi
‰

¯

,

where the individual terms in the right hand side are bounded by Assumption 2.
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To show that Vip¨, wiq is bounded from below, we distinguish between PCs and SCs. In

case of PCs, Vip¨, wiq is trivially bounded from below by zero because all terms in the cost

function (Equation 2.10) are non-negative. Consequently, E
“

Vi`1p¨, wi`1q
ˇ

ˇwi
‰

is also bounded

from below by zero. In the case of SCs, the cost function cipxi, wi, ziq contains the term

PipDi ´ xi,0q which can be negative, and it holds that cjpxj, wj, zjq ě ´|Pj xj,0| “ ´|Pj| xj,0 for

each j P IiYtIu. Since the actions at each stage are bounded, there exists a value Nu such that

xj,0 ď N
u for all j P Ii Y tIu. Hence, cjpxj, wj, zjq ě ´|Pj|N

u. Therefore, we obtain

Vipxi, wiq ě E

«

ÿ

jPIiYtIu
´γj´i|Pj xj,0|

ˇ

ˇ

ˇ

ˇ

xi, wi

ff

ě Nu
ÿ

jPIiYtIu
´γj´iE

“

|Pj|
ˇ

ˇwi
‰

,

which is bounded for a given 0 ď wi ă 8 by Assumption 2. Therefore, Vip¨, wiq is bounded

from below. Finally, holds that

E
“

Vi`1p¨, wi`1q
ˇ

ˇwi
‰

ě
ÿ

jPIi`1YtIu
´γj´iE

„

E
”

|Pj xj,0|
ˇ

ˇ

ˇ
xi`1, wi`1

ı

ˇ

ˇ

ˇ

ˇ

xi, wi



ě Nu
ÿ

jPIi`1YtIu
´γj´iE

„

E
”

|Pj|
ˇ

ˇ

ˇ
, wi`1

ı

ˇ

ˇ

ˇ

ˇ

wi



ą ´8,

where the last inequality holds by Assumption 2. Therefore, it holds that |Vip¨, wiq| ă 8 and

|E
“

Vi`1p¨, wi`1q
ˇ

ˇwi
‰

| ă 8 for both PCs and SCs.
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Proof of Proposition 2.3.1. Since zmin
m “ 0 for each m PM, we have that Zipaiq is a convex

set. Consider the Bellman recursion associated with Equation 2.12:

VIpxI, wIq “ cIpxI, wIq, @pxI, wIq P XI ˆWI,

Vipxi, wiq “ min
ziPZipaiq

!

cipxi, wi, ziq ` γE
“

Vi`1 pfipxi, ziq, wi`1q
ˇ

ˇwi
‰

)

, @pi, xi, wiq P I ˆ Xi ˆWi.

At a given stage i, let Ci :“ tpxi, ziq|xi P Xi, zi P Zu denote the set of actions and states at i,

and also define

Gipxi, wi, ziq :“ cipxi, wi, ziq ` γErVi`1pfpxi, ziq, wi`1q|wis.

To prove the convexity of MDP (Equation 2.12), we start by showing that GI´1pxI´1, wI´1, zI´1q

is jointly convex in the state xI´1 and action zI´1, i.e. in set CI´1, at stage I ´ 1. For a given

wI´1, we have:

VI´1pxI´1, wI´1q “ min
zI´1PZI´1paI´1q

!

cI´1pxI´1, wI´1, zI´1q ` γE
“

VIpfpxI´1, zI´1q, wIq|wI´1
‰

)

.

We know from Lemma 2.7.5 that VI´1pxI´1, wI´1q and E
“

VIpfpxI´1, zI´1q, wIq|wI´1
‰

are finite

quantities. Based on the definition in Equation 2.10–Equation 2.11, cI´1pxI´1, wI´1, zI´1q is

piece-wise linear and convex in xI´1. Furthermore, the terminal value function VIpxI, wIq “

cIpxI, wIq is convex in xI for a given wI based on the definition of terminal cost. Thus, the

continuation function γErVIpfpxI´1, zI´1q, wIq|wI´1s is convex in xI´1. In addition, the set CI´1

is convex since both XI´1 and ZI´1paI´1q are convex. As a consequence, for a realization ofwI´1,

the function GI´1pzI´1, xI´1, wI´1q is convex in the set CI´1. The convexity of VI´1pxI´1, wI´1q

as a function of xI´1 now follows from Proposition B-4 in [94].
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Suppose Vi`1p¨, wi`1q is convex in xi`1. Following the same steps above, we can show that

Gipxi, wi, ziq is convex in Ci and consequently Vip¨, wiq is convex in xi. Hence, the result follows

from mathematical induction.

Proof of Proposition 2.4.1. We first prove the feasibility of HipzipWiqq under the two con-

ditions of Proposition 2.4.1.

1. Since Zipaiq is convex and bounded, for any Wi|wi, the optimal decision zipWiq at

stage i is finite. Moreover, the average of the actions for the random variable Wi given wi,

ErzipWiq|wis, belongs to the set Zipaiq; thus, ErzipWiq|wis is feasible.

2. HipzipWiqq is feasible since z̄i is feasible and finite based on the statement of the condition

and boundedness of the set Zipaiq.

Next, assuming Hi satisfies one of these conditions, we establish its optimality when using

ideal dual penalties in math program Equation 2.14a–Equation 2.14e. Specifically, we show that

the decision at every sample path Wi is optimal. Our proof relies on the stochastic dynamic

programming (SDP) reformulation of Equation 2.14a–Equation 2.14e at stage i, which is

VIR
I pxI;WIq “ cIpxI, wIq, @xI P XI, (2.24a)

VIR
j pxj;Wjq “ min

zjPZjpajq

!

cjpxj, wj, zjq ´ qj pxj, zj,Wjq

` γVIR
j`1

`

fjpxj, zjq
˘

)

, @j P Ii, @xj P Xi. (2.24b)

At stage I, it is true that VIR
I pxI;WIq “ cIpxI, wIq “ VIpxI, wIq for each xI P XI. By backward

induction, we assume VIR
j`1pxj`1;Wj`1q in Equation 2.14 equals Vj`1pxj`1, wj`1q in Equation 2.12
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and prove the equality for stage j. The following equation represents the stage-j step of SDP

(Equation 2.24) when the ideal dual penalty (Equation 2.15) is used:

VIR
j pxj;Wjq “ min

zjPZ

!

cjpxj, wj, zjq ´ γVj`1 pfjpxj, zjq, wj`1q ` γE
“

Vj`1
`

fjpxj, zjq, wj`1
˘
ˇ

ˇwj
‰

` γVIR
j`1 pfjpxj, zjqq

)

, @xj P Xj. (2.25a)

“ min
zjPZ

!

cjpxj, wj, zjq ` γE
“

Vj`1
`

fjpxj, zjq, wj`1
˘
ˇ

ˇwj
‰

)

, @xj P Xj. (2.25b)

“ Vjpxj, wjq, @xj P Xj, (2.25c)

where Equation 2.25b follows from the induction hypothesis, and (Equation 2.25c) from the def-

inition of the SDP associated with MDP Equation 2.12. The relation, VIR
j pxj;Wjq “ Vjpxj, wjq,

thus holds at the generic stage j P IiYtIu for the principle of mathematical induction. The op-

timality of the action for every Wi is immediate from this equality. Since zipWiq is equal to the

optimal decision for any sample path, a feasible decision measure Hi that satisfies conditions 1

and 2 leads to an optimal solution to MDP (Equation 2.12).

2.7.2 Deterministic renewable target

In this section, we analyze procurement costs for a PC and an SC under a deterministic

RPPT and compare it with analogous costs under the stochastic RPPT discussed in §2.2.1. A

deterministic RPPT involves satisfying a fraction α of known demand sD, that is, the RPPT

is αsD. Choosing a deterministic RPPT only affects the term corresponding to the shortfall

in meeting the renewable target in the cost functions of PCs and SCs, i.e. Equation 2.1 and

Equation 2.3, respectively. Specifically, the expression ErRpαD ´ zq`s in both functions is

replaced by ErRspαD̄´ zq`.
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An analogous result to Proposition 2.2.2 holds for the expected procurement cost of PCs

and SCs in the presence of a deterministic RPPT (we omit this result for brevity). However,

the value of setting a deterministic target instead of a stochastic target is unclear and depends

on both future and past power demands. Proposition 2.7.6 characterizes a region for D̄ in

which PCs and SCs with deterministic RPPTs can lead to higher procurement costs than with

stochastic RPPTs. In (Equation 2.26a) and Equation 2.26b we define the optimal procurement

cost, respectively, in PCs and SCs when the target is deterministic.

CPC,Dpα,Kq :“min
zě0

 

Kz` E rPpD´ zq`s ` ErRspαD̄´ zq`
(

; (2.26a)

CSC,Dpα,Kq :“min
zě0

 

ErPDs ` ErpK´ Pqzs ` ErRspαsD´ zq`
(

. (2.26b)

Proposition 2.7.6. Suppose Assumption 1 holds. Then, for each α P p0, 1s, CSCpα,Kq ă

CSC,Dpα,Kq if and only if sD ą 1
2αz

˚
SC `

b
2 . Moreover, assuming ErRs ď ErPs, there exists an

α P p0, 1s such that CPCpα,Kq ă CPC,Dpα,Kq if sD ą ErDs ` pb´aq
2

ErPs
ErRs`ErPs .

The proof of this proposition relies on Lemma 2.7.7.

Lemma 2.7.7. Under Assumption 1, it holds that:

(a) The optimal PC procurement quantity z˚PC,D with deterministic RPPT, αD̄, is given by

z˚PC,D “ min

"

αD̄, b´

ˆ

K´ ErRs
ErPs

˙

pb´ aq

*

;

(b) CPC,Dpα,Kq is linear and increasing in α for α “
“

0, a{sD
˘

Y
“

z 1{sD, 1
˘

and strictly convex

and increasing in α for α P
“

a{sD,mintz 1{sD, 1u
˘

, where z 1 :“ b´ K´ErRs
ErPs pb´ aq.
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Proof. (a) The expected procurement cost for a PC with deterministic RPPT is

QPC,Dpα,K, zq “ Kz` E
“

P pD´ zq`
‰

` E
“

R
`

αD̄´ z
˘

`

‰

. (2.27)

Similar to QPCpα,K, zq, Equation 2.27 is also convex in the procurement quantity z. Therefore,

the optimal quantity z˚PC,D minimizing Equation 2.27 can be determined by considering its first

derivative:

dQPC,Dpα,K, zq

dz
“K´ E rPsPr pD ě zq ´ E rRs 1tαD̄ězu.

If z ě αD̄, then the indicator function in the last term is zero and the derivative is non-negative

since K ě ErPs. Thus, the quantity z˚PC,D minimizing Equation 2.27 lies in the interval r0, αD̄s.

In this interval, the indicator function is equal to 1 and the solution to dQP,Dpα,K, zq{dz “ 0 is

z 1 “ b´

ˆ

K´ ErRs
ErPs

˙

pb´ aq.

This quantity is independent of α. Moreover, z 1 is greater than a because the strike price K is

upper bounded by ErPs`ErRs in Assumption 1. Since the optimal procurement quantity z˚PC,D

must lie in the interval r0, αD̄s, we conclude that z˚PC,D “ min tz 1, αD̄u.

(b) We distinguish three cases for the expected cost (Equation 2.27) depending on the value of

α.
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Case I ): αD̄ ă a. Since a ă z 1, then αD̄ ă z 1 and z˚PC,D “ min tz 1, αD̄u “ αD̄. The optimal

cost is

CIPC,Dpα,Kq : “ QPC,Dpα,K, z
˚
PC,D “ αD̄q

“ KαD̄` E
“

PpD´ αD̄q`
‰

“ KαD̄` E
“

PpD´ αD̄q
‰

,

where the last equality is due to αsD ă a. CIPC,Dpα,Kq is linear in α because its first derivative

is independent of α:

dCI
PC,Dpα,Kq

dα
“ pK´ ErPsqD̄.

Case II ): a ď αD̄ ă z 1. In this case again it holds that z˚PC,D “ mintz 1, αD̄u “ αD̄, and the

optimal procurement cost is

CII
PC,Dpα,Kq : “ QPC,Dpα,K, z

˚
PC,D “ αD̄q

“ KαD̄` E
”

P
`

D´ αD̄
˘

`

ı

.

The first and second derivative of this expression with respect to α are

dCII
PC,Dpα,Kq

dα
“

„

K´ ErPs
b´ αD̄

b´ a



D̄ ą 0,

dCII2

PC,Dpα,Kq

d2α
“ ErPs

D̄2

b´ a
ą 0.



81

Therefore, the optimal procurement cost is convex increasing in α.

Case III ): z 1 ă αD̄. In this case, z˚PC,D “ min tz 1, αD̄u “ z 1 and the optimal cost is

CIII
PC,Dpα,Kq : “ QPC,Dpα,K, z

˚
PC,D “ z

1q

“ Kz 1 ` ErPs
pz 1 ´ bq2

2pb´ aq
` ErRspαD̄´ z 1q.

Since the first derivative

dCIII
PC,Dpα,Kq

dα
“ ErRsD̄

does not depend on α, the procurement cost CIII
PC,Dpα,Kq increases linearly in the target level.

Finally, the following relations hold between the slopes of the procurement costs in the afore-

mentioned three cases.

dCI
PC,Dpα,Kq

dα
ă
dCII

PC,Dpα,Kq

dα
ă
dCIII

PC,Dpα,Kq

dα
.

Proof of Proposition 2.7.6. (a) The expected SC procurement cost with deterministic RPPT

is

QSC,Dpα,K, zq “ErPDs ` ErpK´ Pqzs ` ErRpαsD´ zq`s.

This function is continuous for z P R`, and is differentiable for z P R`ztαsDu with derivative

dQSC,Dpα,K, zq

dz
“ K´ E rPs ´ E rRs 1tαsDězu.

This expression as a function of z is a non-positive constant if z ď αsD, and a non-negative

constant otherwise. In fact, in the former case the indicator function is 1 and it holds that

K´ ErPs ´ ErRs ď 0 due to Assumption 1, whereas in the latter case the indicator function is
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zero and it holds that K ´ ErPs ě 0 also due to Assumption 1. It follows that z˚SC,D “ α
sD is

an optimal procurement quantity, and the associated optimal cost is

CSC,Dpα,Kq “ QSC,Dpα,K, z
˚
SC,D “ α

sDq “ErPDs ` ErpK´ PqsαsD.

The slope of the optimal cost function with respect to the target is

dCSC,Dpα,Kq

dα
“ pK´ ErPsqsD.

Given that both functions CSCpα,Kq and CSC,Dpα,Kq are linear increasing in α (see also Propo-

sition 2.2.2) and are equal at α “ 0, it follows that CSCpα,Kq ă CSC,Dpα,Kq in α P p0, 1s if and

only if the analogous condition on their slope holds, i.e., dCSCpα,Kq{dα ă dCSC,Dpα,Kq{dα.

Below we establish a necessary and sufficient condition for this relation to be true.

dCSCpα,Kq

dα
ă
dCSC,Dpα,Kq

dα
ðñ pK´ ErPsq

z˚SC

α
` E

„

R

ˆ

D´
z˚SC

α

˙

`



ă pK´ ErPsqsD

ðñ sD ą
pa´ bqpK´ ErPsq

2ErRs
` b “

1

2α
z˚SC `

b

2
.

where the second implication is obtained by replacing z˚SC with its expression given in Lemma

2.7.1 and simplifying the resulting term.

(b) The functions CPCpα,Kq and CPC,Dpα,Kq have been characterized in Proposition 2.2.2 and

Lemma 2.7.7, respectively. Both CPC,Dpα,Kq and CPCpα,Kq are convex and increasing func-

tions of α, and it holds that CPC,Dp1, Kq “ CPCp1, Kq for

sD “ D 1 :“ pb´ aq

`

K´ pErRs ` ErPsq
˘2
` ErRspErPs ` ErRsq ´ pErPs ` ErRsq2

2ErPspErRs ` ErPsq
` b.
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This expression for D 1 belongs to the interval ra, bs and can be derived as follows:

CPCp1, Kq “ CPC,Dp1, Kq

ðñ Kz˚PC ` ErPs
pz˚PC ´ bq

2

2pb´ aq
` ErRs

pz˚PC ´ bq
2

2pb´ aq
“ Kz 1 ` ErPs

pz 1 ´ bq2

2pb´ aq
` ErRspsD´ z 1q

ðñ ErRssD “ Kpz˚PC ´ z
1q ` ErPs

pz˚PC ´ bq
2 ´ pz 1 ´ bq2

2pb´ aq
` ErRs

ˆ

pz˚PC ´ bq
2

2pb´ aq
` z 1

˙

ðñ sD “
z˚PC ´ z

1

ErRs

ˆ

K`
ErPspz˚PC ` z

1 ´ 2bq

2 pb´ aq

˙

`
pz˚PC ´ bq

2

2pb´ aq
` z 1

“ pb´ aq

`

K´ pErRs ` ErPsq
˘2
` ErRspErPs ` ErRsq ´ pErPs ` ErRsq2

2ErPspErRs ` ErPsq
` b (2.28)

“ D 1,

where Equation 2.28 is obtained by replacing z˚PC and z 1 by their expressions based on Lemmas

2.2.1 and 2.7.7, respectively, and simplifying. Since CPC,Dpα,Kq is strictly increasing in the

value of sD, we can claim that if sD ą D 1, CPC,Dp1, Kq ą CPCp1, Kq. Therefore, there exists

α P p0, 1s that satisfies CPC,Dpα,Kq ą CPCpα,Kq.

Finally, the value of D 1 can be bounded from above as follows:

D 1 ď pb´ aq
´ErPs

`

ErPs ` ErRs
˘

` ErRs2

2ErPspErRs ` ErPsq
` b

ď ´pb´ aq
ErRs

2pErRs ` ErPsq
` b

“ ErDs `
pb´ aq

2

ErPs
ErRs ` ErPs

,

where the first inequality holds by replacing K with ErPs since K ě ErPs, and simplifying,

and the second inequality results from the assumption ErPs ě ErRs. Therefore, there exists

α P p0, 1s such that CPC,Dpα,Kq ą CPCpα,Kq if sD ą ErDs ` pb´aq
2

ErPs
ErRs`ErPs .
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Proposition 2.7.6 provides support to the fact that deterministic RPPTs are not always cost-

beneficial and companies with such targets might incur higher procurement costs compared to

a stochastic RPPT. In particular, stochastic RPPTs might be cost-beneficial for companies

with a negative drift in their power consumption due to, for instance, investments in energy

efficiency programs (see, e.g., the supplement of [46] for more details on companies with both

an RPPT and energy efficiency initiatives). These companies might benefit from committing

to a stochastic RPPT to lower the energy costs in spite of adding uncertainty to their RPPT

fulfillment.

2.7.3 Non-convexity of the value function

We show that the value function Vip¨, wiq of MDP (Equation 2.12) is non-convex in the

endogenous state xi by using a simple counter-example with two periods (i.e., 0 and 1), in

which a PC can be entered at stage 0 with delivery at stage 1. We assume that a0 “ 1,

i.e., the contract is available, and that minimum and maximum procurement quantities are

zmin “ 6 MWh and zmax “ 100, respectively. Thus, a feasible action z0 belongs to the action set

Z0pa0q “ t0uYr6, 100s Ă R`. Moreover, we assume that demand is constant, i.e. D0 “ D1 “ 10

MWh, power and REC prices have values P0 “ R0 “ 10 USD/MWh and are martingales (i.e.,

ErP1|P0s “ 10 and ErR1|R0s “ 10), the strike price is K “ 11 USD/MWh, and α “ 0.8. We

consider the cost functions corresponding to a PC. Proceeding backward, the terminal value

function (stage 1) is convex in the state x1 as it is equal to

V1px1, w1q “ P1pD1 ´ x1q` ` R1pαD1 ´ x1q`,
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which has the slope P1 ` R1 for x1 P r0, αD1s, the smaller slope P1 for x1 P rαD1, D1s, and is

equal to zero if x1 ě 10. Instead, the stage 0 value function is given by

V0px0, w0q “ min
z0PZ0pa0q

 

Kz0 ` E0
“

P1pD1 ´ x0 ´ z0q1tD1ąx0`z0u ` R1pαD1 ´ x0 ´ z0q1tαD1ąx0`z0u
‰(

“ min
z0PZ0pa0q

 

Kz0 ` P0pD0 ´ x0 ´ z0q1tD0ąx0`z0u ` R0pαD0 ´ x0 ´ z0q1tαD0ąx0`z0u
(

,

which is non-convex in x0 as illustrated in Figure 7. In particular, Figure 7(a) displays the

value function V1p¨, w1q as a function of x1 for P1 “ R1 “ 10, and Figure 7(b) plots V0p¨, w0q

and z˚0 as functions of x0 for w0, which is known. For x0 P r4, 5.7s, the value function V0p¨, w0q

takes a constant value because it is optimal to enter into a PC of size zmin “ 6, which causes

over-procurement, and the expected short-term cost is zero. Instead, when x0 ą 5.7, the

over-procurement cost exceeds the benefit of enjoying lower power price (K “ 11 ă 20 “

ErP1 ` R1|P0, R0s), and the optimal action jumps from z˚0 “ z
min “ 6 to z˚0 “ 0, i.e., it becomes

optimal to use the short-term option.

2.7.4 Model of market dynamics and calibration

In this section we present in detail the stochastic processes used to describe the evolution of

the power price, REC price, and power demand, and discuss their calibration using market data.

The evolution of electricity prices has been studied using various processes that capture

features such as seasonality [118], mean-reversion and long-term trends ( [161] and references

therein), and jumps [43,76,168,198,199]. To obtain a power price model that captures the main

features of spot electricity prices, we construct a mean-reverting stochastic process with jumps

and seasonality. We use a continuous-time process for the power price tPt, t P R`u, and then
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Figure 7: Stage 1 and stage 0 MDP value functions.

(a) Value function V1p¨, w1q with P1 “ R1 “ 10.

(b) V0p¨, w0q (left axis) and action z˚0 (right axis).

consider in our decision model discrete-time values tPi, i P I YtIuu, which are the values taken

by this process at the beginning of stages i P I Y tIuu (we do the same for the REC price and

demand process). Following [199], the power price model is written as:

lnpPtq “ χt ` gptq, (2.29a)

dχt “ pνP ´KP χtqdt` σP dWt ` JpµJ, σJqdΠpλq, (2.29b)

gptq “ φ0 `
12
ÿ

k“1

φkP̂
k
t . (2.29c)
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Equation 2.29a describes the log power price process as the sum of a stochastic component χt and

a deterministic component gptq. The stochastic component evolves according to Equation 2.29b,

where KP is the speed of mean reversion, νP models the drift, σP is the volatility, and Wt is a

standard Brownian motion. We model spikes in monthly prices by a jump diffusion process in

which the jump size follows a normal distribution JpµJ, σJq and the jump frequency a Poisson

distribution Πpλq [43]. The deterministic function gptq in Equation 2.29c models the monthly

price seasonality by using a constant φk for each month k, and binary values P̂kt equal to one

if time t falls in month k and zero otherwise.

We calibrated the parameters of model (Equation 2.29) using historical monthly power price

data from the Pennsylvania New Jersey Maryland Interconnection LLC (PJM) market during

the period January 2010–August 2017. Analyzing power prices, we found that the jump fre-

quency and intensity are small when considering monthly prices. We thus tested the number

of jumps in the monthly power prices using the algorithm presented in [199, p. 1047], and

found the jump diffusion parameters to be insignificant. Therefore, we removed jumps from

the model and only focused on a mean-reverting process with seasonality. We first estimated

the seasonality function gptq directly from the data using linear regression, resulting in the co-

efficients tφk, k “ 0 . . . , 12u “ t3.519, 0.258,0.163,0.078,-0.026,0.003,0.039,0.174,0.013,0.009,-

0.037,-0.038,0.000u. Then, we calibrated the mean reverting coefficients using maximum like-

lihood estimation. The resulting estimates were KP “ 0.295, σP “ 0.178 (both with a p-value

below 0.001), and νP “ 0. We set P0 “ 31.5 USD/MWh which is the average power price ob-

served in 2017. When plotting the sample paths using the calibrated parameters, we noticed
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that the speed of mean reversion was too strong and so we decreased it from KP “ 0.295 to

KP “ 0.04 for our numerical study. We illustrate this effect in Figure 8(a) and Figure 8(b),

which display 300 power price sample paths generated in Monte Carlo simulation over 20 years

using KP “ 0.295 and KP “ 0.04, respectively.

Figure 8: 300 Monte Carlo sample paths of power prices for different mean-reversion speeds.

(a) Mean-reversion KP “ 0.295 (b) Mean-reversion KP “ 0.04

The dynamics of REC prices has been less studied in the literature. Under renewable

portfolio standard (RPS), which is one of the prominent support programs for renewable energy

sources, the regulator requires producers, distributors, and consumers to purchase RECs. To

forecast the evolution of REC prices, following [209], we use a Jacobi diffusion process to
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generate values between zero and one, and obtain REC prices as the product between the output

of this stochastic process and an upper bound threshold. The stochastic process is defined by

drt “ pνR ´KR rtqdt` σR
a

rtp1´ rtqdWt, (2.30a)

Rt “ rt R. (2.30b)

In Equation 2.30a, νR and KR are the mean-reverting parameters, σR is the volatility, and Wt is

a standard Brownian motion. The process (Equation 2.30a) generates values rt P r0, 1s, which

are then scaled in the second Equation 2.30b by the threshold value R to ensure Rt belongs to

the interval r0, Rs.

We chose an upper bound of R “ 60 USD/MWh that is representative of wind RECs [75].

We then estimated the parameters of the REC price model using monthly data for New Jersey

REC prices between May 2015 and December 2017, and an adaptation of the maximum likeli-

hood estimation method for Jacobi diffusion processes from [87]. We obtained the parameter

estimates KR “ 0.448, νR “ 0.066, and σR “ 0.109 (p-values were below 0.001). We set R0 “ 10

USD/MWh, which is representative of the average REC price in our time series.

The electricity demand of a company is uncertain due to various factors including tech-

nology change, company expansion programs, energy efficiency programs, and environmental

conditions. We model power demand uncertainty using a geometric Brownian motion, which is

a common choice in the procurement literature to describe demand uncertainty [17, 107, 164].

The process is defined by

dDt “ µDDt dt` σDDt dWt, (2.31)
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where µD, σD, and Wt represent drift, volatility, and a standard Brownian motion, respectively.

To estimate the parameters of Equation 2.31, we use as reference the approximate power

consumption of a Google data center in the United States. Considering the total Google annual

power consumption [85] and the number of its data centers, we estimate the consumption of

a facility with two data centers as 600, 000 MWh/year, and use this value as D0. We assume

µD “ 0, that is zero demand drift because of two opposing factors: (i) the increasing size and

demand for such centers, which would suggest a positive drift; (ii) improving technology and

energy efficiency initiatives implying a negative drift. We chose σD “ 0.05 based on [164].

The calibrated models allow us to generate sample paths of the uncertainty in Monte Carlo

simulation, which are needed to estimate the value of the procurement policies and dual bounds.

To construct the instance set S3, we changed the calibrated value for νP from 0 to ´0.014

and ´0.0342 to obtain long-term mean power prices equal to 30 and 20 USD/MWh, respectively.

Similarly, to construct the instance set S4, we changed the calibrated value for νR from 0.066 to

0.035 and 0.14 to obtain long-term mean REC prices equal to 5 and 20 USD/MWh, respectively.



CHAPTER 3

INTERPRETABLE USER MODELS VIA DECISION-RULE GAUSSIAN

PROCESSES AND STORAGE OVERBOOKING APPLICATION

(Joint work with Selvaprabu Nadarajah and Theja Tulabandhula)

3.1 Introduction

Models of user behavior are critical in many decision making problems and can be viewed

as decision rules that transform state information (in set S) available to the user to actions (in

set A). Formally, a user model is a function f : S ÞÑ A. Gaussian processes (GPs) employed

to learn functions on the action/target space (henceforth target GPs or TGPs for short) can

thus be used to place a prior on user models and identify a posterior distribution over them

supported by data in conjunction with approximate Bayesian inference techniques [14,26].

TGPs for user modeling would assume that user actions at a given set of finite states follow

a multivariate Gaussian. To capture non-Gaussian action distributions, one could apply GPs

to learn functions in a transformed space that is not the target. Examples include warped and

chained GPs proposed in [173] and [159], respectively. Extending this literature, we study the

application of GPs in a transformed space defined by decision rules. Such rules are known in

several applications and depend on functions themselves. Specifically, a user model based on a

decision rule takes the form g : ΠkPk ˆ S Ñ A, where the arguments are obtained using func-

tions hk : S ÞÑ Pk, k “ t1, . . . , Ku that map from S to transformed spaces Pk, possibly different

91
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from the target space A. Each such function has immediate interpretability to a practitioner,

and we model them using GPs. We refer to such a user model tg, h1, ..., hku as a decision-rule

GP (DRGP).

To make the notion of DRGPs concrete in this short article, we focus on the problem faced

by a firm providing services to store ethanol – a real application that motivated this work.

Suppose capacity (in gallons) is sold via annual contracts to N users. The contract of user n

specifies the maximum amount of ethanol that can be stored, denoted by Cn. User behavior

corresponds to the injection of ethanol and the withdrawal of previously injected ethanol, which

can be modeled as a time series. The inventory In,t in storage associated with user n at time t

is the net of past injections and withdrawals. A TGP approach would employ a GP to deter-

mine the next-period storage inventory level function In,t`1 directly. In contrast, we propose a

DRGP that leverages a well-known decision rule based on injection and withdrawal threshold

functions [49,165]. These threshold functions are learned as GPs instead of the (relatively less

interpretable) inventory function.

We focus on the following research questions in the context of the ethanol storage appli-

cation: (Q1) Can existing exact and approximate Bayesian inference techniques be used for

inference with DRGP? and (Q2) How does DRGP perform relative to TGP?

We answer these questions by executing numerical experiments based on real data of ag-

gregated ethanol storage injection and withdrawals. For Q1, we show that sparse variational

inference [93,179], which can be applied to TGP on our data set, can also be used with DRGP,

albeit heuristically, which is encouraging from an implementation standpoint. For Q2, we find
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that DRGP implemented in this manner leads to lesser out-of-sample error than TGP on most

of our datasets, in addition to being more interpretable to practitioners. This preliminary find-

ing is promising and suggests that applying GPs in the interpretable space of the decision rule

threshold functions has potential value, which adds to the growing literature on interpretable

machine learning and optimization [21, 113]. In addition, the improvements we report are

based on the heuristic use of sparse variational inference with DRGPs, which bodes well for

additional potential improvements from the development of new inference techniques target-

ing DRGPs. Finally, several applications in energy, health care, and transportation, among

other domains, have known interpratable decision rules, which can be leveraged in the DRGP

framework proposed here.

3.2 Related work

[173] show that modeling data using a warped GP, which is a non-linear transformation

(aka warping) of a GP, can enhance predictive performance. Inference using a warped GP can

be performed in closed-form provided the warping function satisfies certain properties, such as

being invertible. [110] consider the case where the warping function is not fixed a priori. DRGPs

differ from warped GPs as they are based on a potentially non-invertible transformation of

multiple GPs.

Chained GPs by [159] extend warped GPs by considering a likelihood function that factor-

izes across the data and is a general nonlinear transformation of multiple latent functions, each

modeled as a GP. Exact inference of chained GPs is not tractable in general and thus approxi-
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mate inference techniques are used instead. See [111,188]; and [130] for alternative approaches

to handle multiple GPs.

Recent work has focused on finding a balance between the modeling generality (restrictive-

ness) of chained (warped) GPs and its associated challenging (straightforward) inference pro-

cedure. For example, [180] extend a warped GP using a composition of simple functions and

retain closed form inference. DRGP is similar to a chained GP because its underlying decision

rule is a nonlinear transformation gp¨q of multiple GPs that model functions h1, . . . , hK. How-

ever, unlike a chained GP, each function hk is interpretable and not necessarily latent, which

simplifies inference (see §3.3 for details). For instance, in our energy storage application (where

K “ 2), the functions h1 and h2 correspond to injection and withdrawal threshold functions,

respectively, and are fully or partially observable.

3.3 DRGPs for energy storage

For each user n P N, the most basic inventory update model capturing temporal depen-

dencies can be written as: In,t`1 “ fnpIn,t, Xn,tq ` εn,t, where fn is the user specific transition

function, Xn,t is an exogenous variable with information such as commodity price at time t and

other observable user characteristics (e.g., contract size Cn), and εn,t is an i.i.d. zero mean

Gaussian noise variable. We assume that the exogenous state evolves in a Markovian manner.

Given sufficient historical inventory usage data for each user, we can infer a posterior on fn for

each user n separately (this is TGP).

While TGP can capture rich user behavior patterns, it is relatively less interpretable be-

cause the relationship between the previous inventory level (and other inputs) and the next
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inventory level can turn out be highly nonlinear, and using the corresponding posterior be-

lief in downstream overbooking decisions may become cumbersome. To alleviate this, we en-

hance the interpretibility by incorporating findings from prior literature [49]. In particular, it

is known that a user (e.g., a merchant operator) makes injection-withdrawal decisions using a

two threshold decision rule structure (also called a double base-stock policy) under reasonable

assumptions on the stochasticity of the exogenous variable Xn,t:

In,t`1 ´ In,t “

$
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n,tpIn,t, Xn,tq, Gu if fbn,tpIn,t, Xn,tq ď In,t,

where fa, fb are two threshold functions and G is a known operational parameter. Because this

two-threshold structure for user behavior is interpretable (user injects if below a given thresh-

old, withdraws if above another threshold, and holds still in between), we use this to define

DRGP as follows:

In,t`1 “ gpf
1
n, f

2
n, Xn,tq “
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f1npIn,t, Xn,tq if In,t ď f
1
npIn,t, Xn,tq

In,t if f2npIn,t, Xn,tq ą In,t ą f
1
npIn,t, Xn,tq

f2npIn,t, Xn,tq if f2npIn,t, Xn,tq ď In,t,

where GP beliefs are placed on the threshold functions f1 and f2 (with noise terms associated

with each function suppressed to ease notation). Note that this composition of two functions

f1 and f2 is non-invertible.



96

3.4 Computational experiments

3.4.1 Data

We use aggregate inventory level data („ 100 observations over 2 years) provided by a US

ethanol storage operator. The aggregate values are log-transformed and split into separate

inventory levels for four users based on three different heuristics to simulate different types

of injection-withdrawal behavior (see Appendix 3.6.1). As a result, we obtain three datasets

with low, medium, and high variability of injection and withdrawal patterns. We also vary the

number of data points across all users, T , between 200 and 400.

These data sets also include information about the exogenous state vector Xn,t that includes:

(i) the lease capacity of each user; (ii) the spot and prompt-week futures prices for ethanol;

and (iii) the prompt-week futures prices for corn and natural gas. We obtain price data from

Bloomberg.

3.4.2 Inference

At any time step, a user may inject, withdraw, or do nothing. When a user injects, the in-

ventory level Xn,t`1 reached as a result of this injection is f1 at Xn,t, and as a result, this thresh-

old value is observed but the withdrawal threshold is not. Similarly, if there is a withdrawal

action, f2 at Xn,t is observed while f1 is not. In other words, f1 and f2 are partially observable

over time. To avoid handling partial observability during inference, we partition the dataset

based on when users inject and withdraw and learn the functions f1 and f2, respectively, on the

resulting subsets. When computing posteriors in this manner, the ordering of f1 and f2 may not

satisfy the condition f1 ď f2 that is implicitly assumed in the DRGP model. To overcome this
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issue, we train a classifier to first predict if a user’s decision is either injection or withdrawal

and then employ the corresponding threshold to determine the next stage inventory level.

We compute posteriors on f1 and f2 using sparse (GP) variational inference [179] with 10

inducing points and an Automatic Relevance Determination kernel (note that while one can

also use exact GP regression here as an alternative, we chose the former for future scalability).

We use a gradient boosting decision tree based classifier.

Both TGP and DRGP can be combined with transfer learning by assuming a common

component across users and a user specific latent variable. We also consider such models and

label them TGP-TL and DRGP-TL. Details of these models and their accompanying inference

procedures can be found in Appendix 3.6.2.

3.4.3 Results

In the first experiment, we answer the question (Q2) laid out in the Introduction, which

seeks to relate the empirical performance of DRGP when compared to TGP. In order to do so,

we perform a training-validation partition of each dataset based on a 70% ´ 30% split. The

training data is then used to obtain the posteriors, for instance on f1n and f2n in the case of

DRGP, for each user n “ 1, ..., 4. Subsequently these posteriors are used to predict the inventory

levels in the validation data. The mean and standard deviation of the root mean squared errors

(RMSEs) for TGP and DRGP are displayed in Figure 9 for two values of dataset size T . When

T equals 200, the RMSE of DRGP is smaller than TGP across all datasets. As the number

of data points T is increased to 400, this trend continues to be true for datasets 1 and 3 but
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is reversed for dataset 2. Overall, we can conclude that DRGP obtains a lower RMSE than

TGP in most cases, while also buying us interpretability.

Figure 9: Out of sample RMSE for TGP and DRGP with T “ 200 (left) and T “ 400 (right). In each panel,
there are 6 box plots corresponding to three pairs of datasets in order.

In the second experiment, we investigate the value of transfer learning (where users share

common priors). Figure 10(a-c) compares the models with and without transfer learning (T “

400). We observe that incorporating transfer learning produces mixed results, suggesting that

these datasets may lack a common user behavioral pattern that can be exploited. Further, in

Figure 11 (a-d), we illustrate the quality of one-step predictions of the transfer learning models

(for all users in Dataset 3, with T “ 400) as a function of one of the exogenous variables (spot

price) in the validation data. We observe that DRGP-TL can predict the out-of-sample log-

inventory levels with higher accuracy and low uncertainty when compared to TGP-TL.
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Figure 10: Predictive performance with & without transfer learning across the three datasets.

Figure 11: One step prediction of logpinventoryq level for dataset 3. The means are shown in solid, and the
standard deviations around them are shown using dotted curves.

3.5 Conclusion and future research

Our study of DRGPs shows that there is promise in leveraging decision rules to define non-

linear transformations of GPs for user modeling in the ethanol storage application. Extending

this investigation to other real-world applications and developing inference procedures tailored
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to DRGP would be valuable. Other research directions being explored include: (i) the interplay

between the structure of decision rules in a class of applications, their interpretability, and

how this can be leveraged within inference procedures for DRGPs; and (ii) robust inference

techniques for DRGP, where parameters are computed by optimizing a metric other than the

(exact/approximate) likelihood function.

3.6 Appendix

3.6.1 Datasets

The ethanol application dataset contains the daily aggregate inventory level of a storage

tank in the US, and the daily price of ethanol over a period of two years. We consider weekly

inventory levels to model the behavior of users, as suggested by practitioners. There were 39

companies signed up in the system, with various contract sizes. Assuming that users cluster into

groups that have similar injection and withdrawal patterns, we created four users (essentially

user types/groups) by assigned these companies to each group based on their contract size. We

break down the aggregate inventory levels to four user levels based on three heuristics. These

three heuristics are designed to test the performance of the four approaches we have for user

modeling; and they capture low, medium, and high variance of injection-withdrawal patterns

of users.

The first dataset is created by assigning fractions of the aggregate inventory to each user

proportional to their contracted capacity, and simulates a system where the users have low

variability. In the second dataset, we simulate a setting where users have medium variability

when interacting with the system. This is captured by ensuring that the users do not change
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their inventory levels with probability 0.5, and change their inventory levels randomly between

0 and their rented capacity, again with probability 0.5. Finally, to simulate a system where

users interact with the system with high volatility, we make the users change their inventory

level randomly from 0 to their rented capacity in every period, such that the aggregate of these

individual inventory levels is equal to the aggregate inventory level.

3.6.2 Approximations for Bayesian inference

Sparse GP for Scalability: For TGP and DRGP, we rely on variational sparse Gaussian

process based inference procedure [93,179]. Inducing point methods involve introducing M ! T

inducing points at locations Z “ tziu
M
i“1 with corresponding function values given by ui “ fpziq

such that:

ppf|tIn,t, Xn,tu
T
t“1,Zq “

ż

ppf|tIn,t, Xn,tu
T
t“1,uqppu|Zqdu,

where f is the vector of function evaluations at the T observation points. Using this approach,

we are able to approximate the posterior GP with a variational distribution that only depends

on the inducing points by obtaining a lower bound on the marginal likelihood.

Transfer Learning: TGP-TL modifies TGP by assuming that user specific latent variables

and a common target function together drive the inventory updates of all users [54, 55, 191].

That is, In,t`1 “ fpIn,t, Xn,t, γnq ` εn,t, where f is a common target function across users that

maps the triple pIn,t, Xn,t, γnq to the next inventory level In,t`1, and γn is a user specific latent

variable. We can jointly infer a posterior belief on f (we fix this to be a GP) and γn (which we

take to be Gaussian distributed) using LVMOGP [54]. Common temporal patterns of all users

can now be captured by f, while idiosyncratic aspects of each user can be captured using γn.
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Similarly, DRGP can be extended to DRGP-TL, where we have common threshold functions

for all users and user-specific latent variables to capture user heterogeneity. The graphical

models for TGP-TL and DRGP-TL are illustrated in Figure 12.

Figure 12: The DRGP-TL and TGP-TL models capturing common user behaviors.

The inference procedure for transfer learning extensions of TGP-TL and DRGP-TL in-

volves handling the joint distribution with respect to the latent variables Γ “ tγ1, .., γNu and

the common function (two functions in DRGP-TL). The following independence assumption

is made in the variational approximation for tractability:

ppf, Γq « qpfqqpΓq,
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where qpfq is a GP and qpΓq “ ΠNn“1N pγn|µn, Σnq. Below, we show the evidence lower bound

(ELBO) in TGP-TL:

log ppttIn,tu
T
t“1u

N
n“1q ě EppΓ,fq

„

log
ppttIn,tu

T
t“1u

N
n“1, Γ, fq

ppΓ, fq



ě

N
ÿ

n“1

T
ÿ

t“1

Eqpfq rlog ppIn,t|fqs

´ KLpqpuq||ppuqq ´ KLpqpΓq||ppΓqq,

where we use Figure 12 in the second inequality. Following [96] and other prior works, we

maximize the evidence lower bound (ELBO) which provides a lower bound for the log-marginal

likelihood of observed data, and jointly optimize with respect to the model hyper-parameters

and the variational parameters as suggested in [157].



CHAPTER 4

REPOWERING POWER PLANTS UNDER LIMITED LONG TERM

INFORMATION

(Joint work with Andreas Kleiven, Selvaprabu Nadarajah, and Stein-Erik Fleten)

4.1 Introduction and related work

Hydropower plants are the dominant producers of renewable power around the globe which

constitutes over fifty percent of global renewable capacity [153]. Unlike intermittent renewable

energy sources such as wind and solar, hydropower can sometimes be stored in reservoirs and

is a flexible source of renewable power. It can also supply power on short notice. Therefore,

it plays a key role in the ongoing clean energy transition, offering flexible and cost-effective

renewable power generation. However, most of the economically viable hydropower potential

in developed regions, such as Europe, Canada and the United States, is already exploited

[98] and were designed decades ago under different climate and market conditions, leading to

inefficiency in power production [72]. In the last few years, there has been a extensive focus on

the importance of repowering, i.e., modernization, refurbishment and reinvestment in capacity,

of existing hydropower plants.

In decentralized power markets, the decision to refurbish and upgrade is a firm level decision,

and exhibits features such as long lifespan, partially unknown breakdown risk, irreversibility of

the investment decision, and uncertainty with regard to climate and future markets. Moreover,
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cashflows from hydropower plants comes primarily from supply to organized markets, and the

firm aims to establish operational schedules that maximizes the discounted expected profits

over a given planning horizon, subject to a given capacity level and other relevant constraints.

This means that investing in capacity needs to account for the value that results from changed

operations. We aim to analyse the interaction between the flexibility to adopt the operating

policy based on the evolution of operational uncertainty and uncertain near-term market prices

along with the flexibility to invest in added capacity.

In classical valuation theory, it is assumed that markets are complete, arbitrage-free and

perfectly liquid, and the value of a project is the expected cashflow under the risk-neutral mea-

sure, discounted at the risk-free rate [68, 156]. Empirically, futures contracts provide informa-

tion about the price expectation under the risk-neutral measure, and historical futures con-

tracts can be used to calibrate a stochastic model governing dynamics of risk-adjusted prices

to be used in valuation of real options [65]. However, in practice, the planning horizon of long-

term investments is often much longer than the longest lasting contract available the market,

and liquidity varies. As an example, in Figure 13, the price and trading volume of the futures

contract with maturity in 2022 is plotted against trading date in the Nordic electricity mar-

ket. The contract has been available for 10 years, but in the period 2013 to 2017 it was barely

traded. An NPV calculation of an investment project in 2013, using a price of slightly above

40 EUR/MWh as basis for long-term risk-neutral expectation of 2022-prices (and beyond) may

therefore be a poor estimate of the NPV of the project. From 2017 onwards, liquidity increased,

meaning that the assumptions behind the classical valuation theory is empirically backed for
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around 5 years into the future in the case of the Nordic electricity market. We aim to address

varying liquidity and varying information regarding exogenous factors affecting the decision to

invest in our modeling framework.
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Figure 13: Electricity contract with delivery in 2022 from the Nordic electricity market.

To address heterogenous data availability over time, we propose to leverage useful infor-

mation in the short- and medium-term to calibrate a stochastic model governing evolution of

prices as long as there is sufficiently liquid markets, to be used in real options valuation. To

hedge unreliable or non-existing data, we propose to take a worst-case approach. The divi-

sion of timeline into two regions is illustrated in Figure 14. Our model can be interpreted as a

Markov Decision Process (MDP) with a terminal value defined using a robust MDP, that max-

imizes the sum of the expected revenues from electricity generation in Region A, and worst-
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case revenues in Region B. The problem of combined operations and investment planning in

the presence of uncertainty leads to a high-deimensional MDP with non-convex actions space

which is very challenging to solve.

1 2 3 T-1 T T+1 TA A A B

Region A Region B

Figure 14: Timeline illustrating reliable data, region A, and data with unreliable information, or no data, region
B.

Motivated by reoptimization of decisions on regular basis after new information is revealed,

and theoretical results on forecasts horizons which emphasizes that there is a diminishing ef-

fect on future data on initial decisions [47, 53], we propose to formulate a MDP, assuming full

information about the data generating process as long as there is sufficient information avail-

able, which for electricity prices means sufficiently liquid futures markets. In the long-run we

switch to a robust framework and do not impose distributional information to avoid model mis-

specification. This combination leverages valuable short-term information, and it avoids overly

conservative policies typically encountered when applying robust optimization. It also avoids

long-run model misspecification due to the robust framework. We apply the dual reoptimization

heuristic (DRH) in [184] combined with robust value iteration to find a feasible MDP-policy and

assess the value of the policy against a dual upper bound [40]. We provide insights on how to

construct uncertainty set using stationary distribution and discuss a new approach in building

less conservative uncertainty set based on clustering to evaluate the long-term value of the asset.
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We conduct numerical experiments based on the data of a real hydropower plant with a

planning horizon of 40 years. We calibrate stochastic processes for the evolution of uncertain

price quantities using market data from the Nordic electricity market and the practitioner lit-

erature. We compare hydropower plant operational policy using robust terminal values against

the one that assumes that the long-run behavior of uncertainties can be explained by the short-

term information (nominal). We show that the policies computed by DRH are near-optimal in

all approaches and investigate the performance of different choices of decision measure choices

in DRH for our application.

Our numerical results unveil the relation between the operational policies and patterns in the

evolution of uncertainties. We show the presence of seasonal patterns in the operating policies,

which is aligned with the policies incorporated in practice. Our results also confirm the theo-

retical results on forecast horizons and the diminishing effect of future data on initial decisions

and highlight the differences between investment policies considering robust and nominal termi-

nal values. Furthermore, we compare the performance of policies under various future scenarios

and show that approaches with clustering-based robust terminal values can provide robust per-

formance with competitive expected cashflows and lower volatility among other benchmarks.

4.1.1 Novelty and related work

We contribute to the growing literature on investment in renewable energy, where decisions

are to be made at a firm level [30, 33, 78, 184]. Specifically we study the decision to repower

hydropower plants, meaning to temporarily shut down the plant to refurbish, which includes in-

creasing capacity if profitable [152]. We aim to analyze the investment decision in the presence
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of operation schedules, which require both detailed short-term modelling of uncertain factors,

and long planning horizon. This problem has been studied by [9]. However, jointly optimizing

operations schedules and investment policies, which we illustrate the added value of in Section

4.2, in the presence of uncertain market prices, operational uncertainty, and breakdown risk, is

new to this literature. [196] and [197] have studied investments in hydropower plants incorpo-

rating probability of failures, but did not consider operations schedules. Morover, these papers

do not consider the change in data availability and its implications on model errors.

Our second contribution is to the literature on decision making in an uncertain dynamic

environment where data is assumed to be partially known. The presence of multi-factor evolu-

tion of energy prices and operational uncertainty gives rise to an intractable Markov decision

process (MDP). MDPs effectively describe sequential decision making in an uncertain dynamic

environment, assuming full information of the parametrized model governing exogenous infor-

mation [56]. The parametrized model governing the evolution of exogenous information is often

estimated based on historical data or expert knowledge. However, in cases where available data

is limited, the performance of optimal MDP-policy on real data may differ significantly from

their performance using simulated environments because of parameter uncertainty and gener-

alization error [119,121]. Papers that study the impact of inaccuracy in estimation on the opti-

mal solutions include [31,151,155], among others. To cope with this, robust optimization (RO)

is an alternative framework for decision making in the presence of uncertain data [15,174]. As

opposed to stochastic optimization, which relies on the distributional specification of the under-

lying data, robust optimization requires only the support. The goal is to find solutions that per-
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form well on worst-case parameter realizations contained in an a priori defined uncertainty set.

A drawback with robust optimization is that it leads to very conservative solutions. Several pa-

pers have proposed alternatives to achieve less conservative decisions. For instance, [23] propose

to adjust the degree of conservatism in terms of probabilistic bounds on constraint violation.

Robust optimization leads to tractable formulations in a multistage setting [11,59,81,137,200],

albeit often overly conservative policies are obtained, as addressed in [60]. Motivated by the

same underlying issue as robust optimization addresses, other non-parametric approaches have

been proposed to overcome the generalization error induced when committing to a parametrized

distribution, often referred to as data-driven optimization [22,25,90,119].

Distributionally robust optimization (DRO) ( [160]) is another approach for decision making

that assumes limited knowledge about the underlying uncertainties. DRO provides a potential

tradeoff between the stochastic and robust frameworks. Parameters are considered as stochastic,

but the distribution is not fully known and assumed to belong to an a priori defined ambiguity

set which defines the notion of robustness. DRO hedges against ambiguity in the underlying

data generating process by taking a worst-case approach, similar to RO, and also exploits

partial information about uncertain model parameters. There is an extensive literature on DRO

in the single-stage setting [42, 61, 71, 83, 201], and several recent works have studied tractable

DRO formulations in the multi-stage setting [24, 50, 206]. We propose address the limitations

of both the stochastic and robust frameworks, and proposing a potential trade-off between the

frameworks. Moreover, our approach provides an alternative to the multistage distributionally
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robust framework where the decision maker has partial information about the data generating

process.

Moreover, we add to the literature on rolling horizon based, or reoptimization based meth-

ods, for solving problems for decision making under uncertainty, which have extensively been

applied in energy applications [108,184,205]. We extend the work by [184] and propose a novel

reoptimization algorithm combined with robust value iteration to solve the proposed model

that can handle non-convex action set. More generally, we add to literature on approximation

methods for solving high dimensional MDPs [148]. In energy applications, examples include ap-

proximate linear programming [115,132], least squares Monte Carlo [32,133,134], and stochas-

tic dual dynamic programming [82,144,170]. Literature on solving MDPs with non-convex ac-

tion set is scarce. Decomposition based methods with theoretical convergence guarantees have

been proposed [4, 145, 210, 214], and a few papers have successfully applied these methods in

energy [95,109,213].

Finally, only a few other papers have studied the effect of ambiguity and robustness in the

underlying data generating process in real world multi-stage setting. An example is [186] who

take a distributionally robust approach in valuation of thermal power plants. We extend this lit-

erature by analysing the case of reservoir management and capacity investments in hydropower

plants.

4.1.2 Paper structure

The paper is organized as follows: In Section 4.2 we present an empirical study for calibra-

tion of stochastic process under limited data, using electricity futures and discuss illustrative
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examples showing how decisions optimized with respect to a misspecified model may materialize

on real data. The mathematical formulation of the hydropower reservoir management and ca-

pacity investment problem is formulated in Section 4.3, and the method for addressing limited

data and curse of dimensionality in the MDP is presented in Sections 4.4 and 4.5, respectively.

Results from numerical experiments are provided in Section 4.6.

4.2 Empirical support and illustrative example

In this section we present the stochastic models governing exogenous information, and assess

errors when calibrating the price model using limited data. We then present an illustrative

example showing the effect on policies under long-term model misspecification.

4.2.1 Errors in training stochastic models using limited data

It is common in the literature to model the evolution of uncertainties with stochastic pro-

cesses. We specify the price process as a two-factor model, as in [162]. The two factors corre-

sponds to short-term and long-term price dynamics. Let lnSt “ θt ` χt ` ξt, where

θt “ α cos p2πtq ` β sin p2πtq (4.1)

dχt “ ´κχχtdt` σχdzχ (4.2)

dξt “ µξdt` σξdzξ, (4.3)

where dzχ and dzξ are increments of standard Brownian motions processes with dzχdzξ “

ρχξdt. Following [162], a risk-neutral version of the spot-price process can be obtained by
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introducing two constant risk-premia parameters, λχ and λξ. The risk-neutral dynamics are

given by

dχt “ ´κχ

ˆ

χt `
λχ

κχ

˙

dt` σχdz
˚
χ (4.4)

dξt “ µ
˚
ξdt` σξdz

˚
ξ, (4.5)

where, again, dz˚χdz
˚
ξ “ ρχξdt, and µ˚ “ pµξ ´ λξq. A discretization scheme for simulating the

risk-neutral process is given in Appendix 4.8.7.

Other exogenous factors include one inflow factor and one deterioration factor. Inflow has

strong seasonal variations, so we follow [170] and [82] and model inflow as deviations from the

historical time t mean, µlog
t . We let ln It “ µ

log
t ` σ̄

log
t ωt, where

dωt “ ´κωωt ` σωdzω (4.6)

For the evolution of the deterioration rate dt we assume a gamma process which is commonly

used in maintenance and reliability analysis [187]. We let dt denote the deterioration at time

t. The stationary gamma process has independent gamma distributed increments, dt. In the

stationary case we have

dt ´ dτ „ Gapaptq ´ apτq, bq. (4.7)

To find the parameters of the price model, it is common to consider each factor as latent and

apply Kalman filter and maximum likelihood estimation to obtain state and parameter estimates

[162]. See Appendix 4.8.10 for calibration procedure and parameter estimates. As futures

prices are expected spot prices under the risk-neutral measure, historical futures contracts can
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be used for calibration. Let φ “ pκχ, µ
˚, λχ, σχ, σξ, ρχξq denote the vector of parameters in

Equation 4.4-Equation 4.5. The expression for the model predicted log futures price is

ln F̂t,T pχt, ξt;φq “ E˚plnST qq `
1

2
Var˚plnST q (4.8)

“ e´κχTχt ` ξt `ApTq, (4.9)

where

ApTq “ µ˚T ´ p1´ eκTq
λχ

κχ
`
1

2

˜

p1´ e2κχT q
σ2χ

2κχ
` σ2ξT ` 2p1´ e

κχT q
ρχξσχσξ

κχ

¸

(4.10)

We conduct an empirical study for investigating the out-of-sample model performance by

dividing the data set in three, as shown in Figure 15a. We use the root mean square error

(RMSE) between the model predicted futures price, F̂t,T pχ̂
KF
t , ξ̂

KF
t ; φ̂MLEA q, using latent states

estimates χ̂KFt and ξ̂KFt from applying the Kalman filter, and maximum likelihood estimates

φ̂MLEA from the training data set, and futures contracts Ft,T traded at time t with maturity T .

The RMSE expression is

RMSET “

d

1

N

ÿ

tPTi

`

F̂t,T pχ̂
KF
t , ξ̂

KF
t ; φ̂MLEA q ´ Ft,T

˘2
, (4.11)

where i P t1, 2u. The sets T1 and T2 include trading dates with weekly granularity, and are

illustrated in Figure 15a. The first data set, set A, is the training set, consisting of futures

contracts traded in the period 2011-2014, T1, with time to maturities from 1 to 24 months. We

use subscript A in φ̂MLEA to emphasize that parameter estimates are kept fixed when evaluating

the RMSE for all data sets. The second set, set B, is a test set consisting of futures contracts
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Figure 15: Figure 15a shows the four data sets: The training set, and test sets A, B1, and B2. Figure 15b shows
the RMSE between the model predicted futures price from (Equation 4.8), using MLE estimates based on data
from the training set, and futures data from respective data sets. The purple line is a reference line, showing the
RMSE when using all data to estimate model parameters.

traded in the period 2015-2018, T2, with maturities from 1 to 24 months. The Kalman filter is

rerun for T2 with futures data from 1 to 24 months maturity, to obtain updated state estimates,

while parameter estimates from T1 are kept fixed. Set B is used to evaluate how well the

estimated model parameters can be used to predict futures prices with maturities in the same

range as the training set. The third set is again split in two, set C1 and set C2. These sets

are used to evaluate how well the model predicts long-maturity futures prices that are not used

in estimation of parameters or latent states. Test set C1 consists of futures contracts traded

in the period 2011-2014, T1, with maturities from 25 to 60 months and test set C2 consists

of futures contracts traded in the period from 2015-2018, T2, with maturities from 25 to 60

months. Terminology in [52] is in-sample data set (set A), traditional out-of-sample set (set B),

and extreme out-of-sample sets (set C1 and C2).



116

The RMSE for all data sets is plotted in Figure 15b. We observe that the RMSE of set B

is comparable with the RMSE in the training set, set A. This indicates that model parameter

estimates are not very sensitive to the trading period of futures contracts. We further observe

that the RMSE quickly increases with T in sets C1 and C2. This means that the model estimates

are very sensitive to which time-to-maturity contracts that are included during estimation and

that extrapolating the model beyond the longest term maturity may lead to large errors. For

comparison, the RMSE using all data is shown in purple, showing a smaller RMSE for high T .

Lack of sufficient information for estimating the uncertainties in the long-run thus can

introduce errors in the model and result in suboptimal decisions. When calibrating a risk-

neutral process to futures prices, the long-run behaviour cannot be explained by short-term

futures contracts. For instance, [52] show that the long-run behaviour of oil price cannot be

explained by short-term future contracts. Motivated by our observation about the errors of

extrapolating the stochastic process of power price beyond the longest lasting futures contract

as well as theoretical results on forecast horizons [47], we consider a robust scheme to estimate

the long-term value of the asset. In practice, it is common to use rolling horizon for planning

where the planning problem is to reoptimize as soon as uncertain parameters are revealed.

Theoretical results on forecast horizons show that there is a diminishing effect of future data

on initial decisions and state that small changes in the far future will not have a big impact on

decisions implemented now. This naturally suggests to include statistical information in the first

part of the planning horizon, t ď TA to ensure the quality of short-term decisions, and consider

a pure robust approach in the second part of the planning horizon, t ą TA to hedge against
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market shifts. Our model combines a Markov decision process with a robust terminal value,

as shown in Figure 14. Intuitively, this combination leverages useful medium term information

and handles model misspecification in the long run while avoiding overly conservative decisions

typically encountered when using robust optimization.

4.2.2 Effect of long-term model misspecification on policies

For evaluation of capacity investments, a planning horizon of decades is needed. The longest

maturity contracts available in the Nordic electricity market is 10 years, with low liquidity on

longer term contracts, making it challenging to specify a risk-neutral price process over the

entire horizon. In this section, we present an example, illustrating how decisions based on a

misspecified model of exogenous factors may materialize on real data.

We present two approaches for solving the energy storage operations and investment prob-

lem and show that there is value in jointly optimizing operations and investments under the

estimated data generating process (E-DGP). We then create a backtesting environment, a true

data generating process (T-DGP), to evaluate policies from both solution methods, and we

present a third solution method that hedges against a misspecified data generating process. In

the end we compare policy performance from all three solution methods when two data gener-

ating processes are equally likely of being the true data generating process.

We consider the setting of a hydropower producer with one reservoir who needs to determine

the water release policy, investment timing and production capacity choice over a planning

period of T “ t1, 2, 3, 4, 5u stages. We assume that the maximum reservoir limit is infinite,

the initial reservoir volume is 5 MWh, and in every stage it deterministically flows 2.5 units of
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water into the reservoir, in units of energy, MWh. The price at which the producer can produce

evolves stochastically according to the binomial E-DGP in Figure 16a. We denote the set of

price scenarios by S. There is equal probability for up and down states. The price today is $20.

Numerical values of the instance are provided in Table IV. The total number of scenarios is

S “ 24, and the current production capacity is 3 MWh. To simplify the setting, decision maker

can only choose to upgrade immediately or in stage t “ 3 at cost 140 USD/MWh. We assume

that the plant can always generate, i.e. no downtime associated with upgrading. We denote

by Sts P S the set of scenarios that are indistinguishable from scenario s at time t, ensuring

non-anticipativity of stage t P T . The problem is formulated in the appendix.

In the first solution approach, the fully integrated (FI) approach, we find the optimal solution

by jointly optimizing operations and investments. In the second solution approach, the partially

integrated (PI) approach, we heuristically find a feasible solution by optimizing production to

all possible investment alternatives. That is, the investment decision is determined based on

the combination of timing and capacity upgrade that gives the highest NPV, for an already

optimized production schedule.

Policy performances are given in Table V. We observe that the FI approach outperforms

the PI approach, as expected. In FI, it is optimal to delay production until stage 3 if prices go

up twice, and then invest in a higher capacity. Then more water can be utilized, as apposed to

the solution from the PI approach which starts producing in stage 1.

We create a backtesting environment. The true data generating process is given in Figure

16b. We denote the true data generating process by T-DGP. The first four stages is a binomial
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TABLE IV: Parameter values for the illustrative example.

Name Value Unit Description

p1 20 USD/MWh Initial price
l1 5 MWh Initial inventory
q1 3 MWh Initial production capacity
CU 140 USD/MWh Unit upgrade cost
it 2.5 t P T MWh Inflow at time t
δ 0.94 - Discount factor
u 5{2 - Price up factor, 50 % probability
d 1{4 - Price down factor, 50 % probability

TABLE V: Overview of the optimal investment decision, optimal value and optimality gap for the FI and PI
solution approach. The set S3`` P S is the set of scenarios, that all have the property that they start with two
up moves.

Solution approach Investment decisions Policy value Optimality gap

FI

#

2, s P S3``, t “ 3
0, else

$568 0%

PI 0, s P S, t P T $540 5.3%

tree, equivalent to the E-DGP first four stages, but the transition to the last stage is different.

We assume that in the last stage the up factor is 1, i.e. the price stays the same in the good

scenario and is scaled by 0.25 in the bad scenario. The true data generating process is unknown

to the decision maker.

We now evaluate the PI and FI policies in our backtesting environment, T-DGP, and perfor-

mances are given in Table VI. From Table VI we observe that the policy from the PI approach,

trained on E-DGP, gives value $447 when evaluated on the T-DGP, and the policy from the

FI approach, trained on E-DGP, gives $424 when evaluated on the T-DGP. For this particu-

lar case, PI performs optimally on the T-DGP, while FI has optimality gap 5.3%. Because the
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Figure 16: Data generating processes. Up and down states happens each with probability 1/2. E-DGP and
T-DGP are equivalent in the four first periods.

decision maker planned according to a misspecified DGP, i.e. E-DGP, the cost of upgrading 2

MWh can not be recovered from future revenues from production when evaluated on T-DGP.

This means that heursistic planning can be superior to joint optimization if the parameters of

the stochastic model governing the dynamics of exogenous information, or the stochastic model

itself, is misspecified. This might happen if one does not have sufficient information about long-

term data and extrapolate the stochastic model beyond the last data point. We illustrate this

further in Section 4.4.

To address limited data, we present a hybrid stochastic and robust approach that leverages

useful information in the short term and handles misspecification of the DGP in the long run.

The idea is to plan according to the E-DGP in the first four stages and then assume that the

price can take any value in the interval between 0.25 and 2.5 times the price in stage 4, as

illustrated in Figure 17. Decisions are then optimized based on knowledge about the DGP in



121

the first four stages and the worst case realization in stage five. We call this solution the robust

fully integrated (RFI) policy, and the RFI policy performance under the E-DGP and the T-

DGP is given in the last column in Table VI. The optimality gap is 8.4% under E-DGP and

0.4 % under T-DGP.

1 2 3 4 5

Ω(p5|p4=312.5)

Ω(p5|p4=31.25)

Ω(p5|p4=$3.13)

Ω(p5|p4=$0.31)

USD/MWh

t

Figure 17: In the first four stages, we assume the E-DGP. In the fifth stage we define an uncertainty set
Ωpp5|p4q “ r

5
2
p4,

1
4
p4s.

TABLE VI: Policy performance for each solution approach. The data generating process that the policy in FI
and PI is trained on is given in parentheses. The data generating process used for evaluation is given in the
leftmost column.

Solution approach

Data FI (E-DGP) PI (E-DGP) RFI

E-DGP
Value $568 $540 $524
Optimality gap 0% 5.3% 8.4 %

T-DGP
Value $424 $447 $445
Optimality gap 5.1% 0% 0.4%
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Finally, we perform an experiment where we assume that E-DGP and T-DGP are equally

likely of being the process generating the data. In Table VII the expected profits and standard

deviation of profits. We note that the robust approach leads to minimum profit variance among

the three solution approaches, highlighting the effectiveness of robust optimization to hedge

against the underlying dynamics of prices when data is scarce. However, a critique of robust

optimization is the degree of conservatism of solution, and the boundaries of the uncertainty

set where prices can belong, needs to be defined a priori, which is not straightforward. One

alternative is to set the boundaries based on percentiles of the distribution of prices.

TABLE VII: Expectation and standard deviation of policies, assuming E-DGP and T-DGP are equally likely
of being the process generating the data. The data generating process that the policy in FI and PI is subject to
is given in parentheses

Solution approach

FI (E-DGP) PI (E-DGP) RFI

Profit expectation $496 $493.5 $484.5
Profit standard deviation $101.8 $65.8 $55.9

There are two main takeaways from this illustrative example. Firstly, if the true data

generating process is unknown and the estimated data generating process is misspecified, a

simpler heuristic approach, PI, might outperform the optimal E-DGP solution, obtained by the

FI approach, when evaluated on T-DGP. Secondly, if there is limited data, a robust approach

can hedge against a misspecified DGP.
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4.3 An MDP of hydropower capacity investment under limited long-term data

In this section, we formulate the hydropower reservoir management and capacity investment

problem as an MDP. The set of all actions are indexed by k in the set K. The set K includes

{Generation (G), Upgrade (U), Refurbishment (R), Spillage (S)}. The condition of the plant

is represented by a value in the interval r0, 1s where 0 represents the condition of the plant

after refurbishment and 1 is the threshold of failure. The decision vector at stage t is shown

by xt P Xtpxt :“ txkt , k P Kuq. While the action elements, xkt , corresponding to generation, spill

and upgrade are continuous-valued the action element corresponding to the refurbishment is

binary indicating refurbishment or no refurbishment.

Refurbishment and upgrading have some implication on the set in the following periods i.e.,

if the plant chooses the refurbishment or upgrades the system, the plant needs to be down for

τR periods and it cannot generate during these periods. Therefore, choosing some actions will

limit the possible actions of the future periods. Failure will lead to a downtime of τF periods.

Upgrade requires refurbishment.

The information necessary for making a decision at stage t is described in the MDP state,

which contains two components. The first component is a vector vt :“ plt, ct, qtq containing

the reservoir volume lt, the condition of the plant ct and the capacity of the plant qt at time

t. This component is affected by the decisions of the producer. For instance, the reservoir

volume might decrease if the plant generates, and might increase otherwise. The increase is

due to the non-negative exogenous inflow. However, the reservoir level cannot be more or less

than Lmax and Lmin, respectively. Similarly, the condition of the plant can become worse with



124

time, due to exogenous deterioration. The plant condition can be improved by refurbishment.

The second component is a vector wt :“ pst, it, dtq containing exogenous information, price,

inflow, and deterioration rate, respectively. The MDP state at stage t is represented by the

pair pvt,wtq P Vt ˆWt. Below, we discuss components of the MDP.

Transition functions: Executing the decision xt P Xt at stage t and state pvt,wtq P pVt,Wtq

results in an update of the reservoir volume lt, plant condition ct, and production capacity qt

in Tt :“ tt, ¨ ¨ ¨ , TBu

lt`1 “ fplt, xtq “ lt ´ x
G
t ` it ´ x

S
t t P TtztTBu (4.12a)

ct`1 “ gpct, xtq “ ct ` dt ´ ctx
R
t t P TtztTA ` 1, ¨ ¨ ¨ , TBu (4.12b)

qt`1 “ hpqt, xtq “ qt ` x
U
t t P TtztTA ` 1, ¨ ¨ ¨ , TBu (4.12c)

The reservoir volume at time t`1, lt`1, needs to be equal to the reservoir volume at time t plus

the inflow during time t, it, minus the discharge and spill at time t, xGt and xSt . Furthermore,

the condition of the plant at time t ` 1, ct`1, deteriorates by dt and is reset to state 0 if the

plant is refurbished. The exogenous factor dt is the rate of deterioration. The capacity of the

plant at time t` 1, qt`1, can either be upgraded or stay the same.

Rewards: At each time step the reward is the based on the action at time t.

rpwt, vt, xtq “ x
G
t ptη´ CRx

R
t ´ CUx

U
t ´ CF1tct“1u,

where pt is the price at time t, CR is the cost of refurbishment, CU is the cost of upgrading, CF

is the cost of failure, and η is a constant, representing water to electricity conversion rate.
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Optimal policy: A stage j policy πj is a collection of stage-dependent decision rules tXπt , t P Tju

each mapping states to actions. A decision rule Xπj in stage j is feasible if it associates with

each state pvj,wjq P Vj ˆWj an action xjpvj,wjq that belongs to the action set Xj. We denote

by Πj the set of all feasible stage j policies. Given an initial stage pvj,wjq in stage j, an optimal

policy is found by solving

Vjpwj, vjq “ max
πjPΠj

#

E

«

TA´1
ÿ

t“j

δt´jrpv
πj
t ,wt, X

πj
t pv

πj
t ,wtqq ` δ

TAR˚pvTA ,wTAq

ˇ

ˇ

ˇ
vj,wj

ff+

,

R˚pvTA ,wTAq :“ E

«

TB
ÿ

t“TA

δt´TAr 1pv
πj
t ,wt, X

πj
t pv

πj
t ,wtqq

ˇ

ˇ

ˇ
vTA ,wTA

ff

(4.13)

where Vjpvj,wjq is the MDP value function at stage j and state pvj,wjq, E is the expectation with

respect to future exogenous state, and v
πj
t is the endogenous state reached at stage t following

policy πj with initial state pvj,wjq. where R˚pvTA ,wTAq is the terminal value of the asset at time

TA. The parameter TA sets the length of horizon A and r 1p.q is the reward function at horizon B:

r 1pwt, vt, xtq “ x
G
t ptη1tctă1u (4.14)

The reward function at horizon B includes only the generation decisions and capture the po-

tential of the asset in generating cashflow in this period, i.e., the terminal value of the asset.

Proposition 4.3.1. For a given pj,wjq P ptTA, ¨ ¨ ¨ , TBuˆWjq, V
1
j p¨, wjq is concave on R3`, where

V 1j pvj, wjq “ maxxjPX pvjq r
1
jpxj, wjq`W

1
j pvj`∆vjpxjq, wjq, and W 1

j p¨, wjq “ δEpV 1j`1p¨, wj`1q|wjq,

and V 1j p¨, wjq, and r 1jpxj, vjq is defined in Equation 4.14.
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The MDP introduced at Equation 4.13 suffers from curse of dimensionality and as discussed

in section 4.2, modeling the evolution of uncertainties in the long-term using historical data can

lead to error and suboptimal decisions. In the following sections, we aim to provide solutions

to overcome these issues.

4.4 Addressing limited data

In this section, we focus on estimating the value of an asset in horizon B given the limited

information about the evolution of uncertainties. To alleviate problems due to the high dimen-

sionality of the state space, we approximate the evolution of the uncertainties in horizon B with

a stationary distribution.

R̂NpvTA ,wTAq “ E

«

TB
ÿ

t“TA

δt´TAr 1
`

vt,w
1
t, Xtpvt,w

1
tq
˘

ˇ

ˇ

ˇ
vTA ,wTA

ff

, (4.15)

where w 1t follows a stationary distribution and R̂N is the estimation of the terminal value. We

call this approach nominal and discuss details of this approximation in section 4.4.1.

Due to the limited long-term information about the stochastic environment, solution ap-

proaches in stochastic dynamic programming may underperform on real data due to the pa-

rameter uncertainty [121]. Robust MDP [100, 138] is a common approach to reduce the per-

formance deviation of policies to model misspecification. In this approach, it is assumed that

uncertain variables can be any member of an uncertainty set and solutions are chosen based on

their performance on the worst case scenario.

To find the value of the terminal value, we model robust MDP. In this framework, it is

assumed that the transition probability lie in an unknown uncertainty set and we seek for the
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optimal value function R̂ROpvTA ,wTAq that considers the worst case scenario. The robust MDP

satisfies a Bellman recursion of the form [100,138]

R̂ROpvTA ,wTAq “ min
w 1PU

E

«

TB
ÿ

t“TA

δt´TAr 1
`

vt,w
1
t, Xtpvt,w

1
tq
˘

ˇ

ˇ

ˇ
vTA ,wTA

ff

(4.16)

where U is the uncertainty set. Therefore, given an initial stage pvj, wjq in stage j, the

optimal policy in this case is found by solving

Vjpvj,wjq “ max
πjPΠj

#

Ej

«

TA´1
ÿ

t“j

δt´jrpv
πj
t ,wt, X

πj
t pv

πj
t ,wtqq ` δ

TA´jR̂ROpv
πj
TA
,w

πj
TA
q

ff+

(4.17)

We provide two approaches to model the uncertainty set. In the first approach, we build

a rectangular uncertainty based on the stationary distribution of the uncertainties. To ensure

the robustness of the approach, it is common to create an uncertainty set which results in

conservative policies. A potential need for building conservative uncertainty set emerges because

of the non-stationary behavior of the uncertainties. To overcome this challenge, we propose an

approach to consider these non-stationary distributions using clustering techniques. In this

approach, we generate a discrete uncertainty set based on the mean of points in each cluster.

4.4.1 Long-run distributions

Inflow and price variables are lognormally distributed in horizon A. Similarly, we model the

long-run distributions of these variables as lognormal in horizon B, conditioned on information

at time TA. By letting t go to infinity in the stochastic models in Section 4.4, we obtain the

following stationary distributions for price and inflow,

ln It “ µ̄
log
t ` σ̄

log
t ε

I
t t P T ABTA`1 (4.18)

lnSt “ ξTA ` α cos p2πtq ` β sin p2πtq ` σSεSt t P T ABTA`1, (4.19)
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where εIt and εSt is standard normal distributed, and µ̄log
t and σ̄log

t denote the mean and standard

deviation of log inflow at time t. Since the short-term deviation is expected to revert to the

long-term level in the long-run we use the stationary distribution for the short-term factor, and

the distribution at the middle of the robust horizon for the long-term factor. The price level is

set by ξTA which is the long-term price at the end of the MDP. The expression for the variance

parameter in Equation 4.19 is given by

σS “

d

σ2χ

2κχ
`
TB ´ TA
2

σ2ξ ` 2
ρχξσχσξ

κχ
. (4.20)

Since the stochastic model for the long-term factor is non-stationary, we use the average variance

in horizon B, where TB´TA
2 σ2ξ. For the short-term factor we use the expression for the stationary

variance. The stationary variance for inflow in a given month t is given by

σIt “ σ̄
log
t

d

σ2χ

2κχ
. (4.21)

For the last exogenous factor in horizon A, deterioration dt, we assume to be deterministic in

horizon B, which dTA as initial condition i.e.

dt “ dTA ` Epdt`1 ´ dtq (4.22)

We consider the uncertainty set based on the distribution of the random variables wi

Upi “
!

wi :
ˇ

ˇ

ˇ
lnwi ´ µi

ˇ

ˇ

ˇ
ď ρσi

)

(4.23)

where we assume that lnwi follows a normal distribution with mean µi and standard deviation

σi. ρ considers a percentile of the distribution.
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4.4.2 Discrete uncertainty set

The non-stationary dynamics of inflow and price evolution in the long run are important

in estimating the asset’s value under limited data. An approach used in the literature is to

consider all historical data points to build a discrete uncertainty set. However, this usually

results in conservative valuations and solutions with low out-of-sample performance. A natural

solution is to classify similar scenarios in a group to decrease the dependence of the solutions

to the outliers and consider multiple groups to capture different non-stationary dynamics. This

approach assumes that the data is generated based on multiple non-stationary sources and aims

to capture these sources based on the clustering approaches (K-means clustering and Gaussian

mixture models (GMM)). Let ω “ pw1, w2, ¨ ¨ ¨ , wtq and UCK denote of a set of d-dimensional

vector and discrete uncertainty set based on K clusters, the uncertainty set UCK includes the set

of pµ 11, , ¨ ¨ ¨ , µ
1
Kq where µ 1k is the mean of points in cluster ci. In the case of K-means clustering,

we can find µ 1k by considering the following objective function:

UCK “

#

µ 1 : argmin
µ 1i,ci

K
ÿ

i“1

ÿ

ωPci

‖ω´ µ 1i‖2
+

Figure 18 illustrates how we find these non-stationary sources and include the mean of each

cluster to build a discrete uncertainty set. We can control the degree of conservatism by choice

of K. While K “ 1 captures only the average-case scenario, K “ T considers the whole data

set and provides more conservative solutions. While K-means clustering is a non-parametric

clustering approach, GMM assumes that data points follow Gaussian distribution similar to the

distribution assumption of the price and inflow in the presence of sufficient data (both follow a

long-normal distribution).
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Figure 18: Clustering for monthly price and inflow data

4.5 Solution approach

The MDP in Equation 4.13 suffers from the curse of dimensionality because of large state

and action spaces and non-convex action space. Furthermore, the long horizon of the problem

introduces further complexities. Therefore, we first focus on assessing the terminal value.

We use value and robust value iteration to find R̂NpvTA ,wTAq and R̂ROpvTA ,wTAq based on

discretizing the state and action spaces. To solve the MDP, we need to approximate the value

of the terminal state using a function that does not add to the complexity of the problem in

horizon A. Piecewise linear functions are a good candidate that matches the property of the

asset’s terminal value as discussed in Proposition 4.3.1. We approximate the asset’s terminal

value based on two piece-wise regression models to find the optimal investment and operating

policies in horizon A. Below, we create a simple approximation function based on R̂Npsq,@s P ϕ

(R̂ROpsq,@s P ϕ) as independent variables and s as dependent variables for nominal and robust

approaches.
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Piecewise regression model (PLR): In this approach, we estimate the terminal value

using piecewise linear regression. The response variable is observations achieved by value itera-

tion algorithm Y and a vector of m regressors s. We use piecewise linear regression based on a

decision tree to find an estimate Ŷ of Y that minimizes squared error loss. The piecewise linear

regression model estimates the pα,βqb coefficients in set Jb,@b P t1, ¨ ¨ ¨ ,Bu.

Ŷ “ αb ` βbs, s P Jb, @b P t1, ¨ ¨ ¨ ,Bu

The partitions of data, Jb will have following relations:

Jb X Jb 1 “ H b 1 ‰ b, YbPt1,¨¨¨ ,BuJb “ Dataset.

Piecewise regression decision tree requires minimum samples on each leaf not to face the lack

of generalization to unseen samples. We can build the long-term investment framework using

a piecewise regression model to estimate the value of the terminal state using pR̂psq, sq. The

formulation introduces an integer variable for every class. This procedure requires the number of

auxiliary integer variables equal to the number of classes, B, leading to less time complexity than

the previous model. However, the existing model disregards some properties of the problem,

which might improve the optimization model’s estimation performance and time complexity.

Below, we use the concavity property of the value function in horizon B and develop an algorithm

based on the decision tree that can construct a piecewise linear concave model.

Piecewise linear concave model (PLCR): Motivated by the concavity of the terminal

state value, we propose a nonparametric method for multivariate regression subject to the con-

cavity of the value function. We introduce a concave/convex adaptive regression tree (CARET)
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which adaptively partitions the input space and fit a local linear regression on each partition.

Therefore, unlike the piecewise regression model, the resulted model is a concave/convex con-

tinuous function. Given B subsets of linear model with coefficients pα,βqk,@b P t1, ¨ ¨ ¨ ,Bu, we

estimate the target value, Ŷ as:

Ŷ “ min
bPt1,¨¨¨ ,Bu

αb ` βbs

The partitioning happens in two stages. First, we create multiple classes such that it decreases

the global least square error, and second, we reallocate each point, s P s, to one of constructed

classes if αb
1

`βb
1

s ď αb`βbs,@b P t1, ¨ ¨ ¨ ,Bu. In the first step, we split on a state variable in

s to decrease the global least square error, increase the number of partitions, B, and fit a linear

regression on each subset to construct a hyperplane. In the second step, we reallocate each

point to subsets, the hyperplane of which is dominant. This refit step places the hyperplanes in

a closer alignment with observations in the dataset. The process continues until the reallocation

of the observations does not create a change in the partitions, or all subsets have a minimal

number of observations. Suppose s P RNˆp. The algorithm is shown in 1.

Algorithm 1 adaptively partition the observations and fit hyperplanes on the resulted sub-

sets. To ensure the concavity/convexity of the estimation, it refits the observations to the dom-

inant hyperplane for each observation. We start the model with B “ 1, and split the data on

the dimension l and threshold o into two subsets to minimize the square loss. In the next step

we run a linear regression on each subset to find the corresponding coefficients pα,βq. The al-

gorithm accepts a split if the number of observations in a subset is more than the predefined

minimum value nmin. Otherwise, we reject the split and move to the next subset. Once the
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Algorithm 1: CARET

Result: pα,βqb

Set B “ 1, nmin, s P J1, iter “ 1, and Flag = True;
while Flag = True do

Bnew “ B;
counter “ 0;
for b P t1, ¨ ¨ ¨ ,Bu do

argminl,o

”

minc1
ř

sbi PJ
1
b,iterpl,oq

pybi ´ c1q
2 `minc2

ř

sbi PJ
2
b,iterpl,oq

pybi ´ c2q
2
ı

, where

pi, lq P pN,pq, sbi P Jb,iter, J
1
b,iterpl, oq “ ts|sl ď ou, J

2
b,iterpl, oq “ ts|sl ą ou, and

ch “ avepyi|si P J
1
hpl, oqq;

if |J 1b,iter| ą nmin and |J2b,iter| ą nmin then
Bnew “ Bnew ` 1;
pα 1,β 1qcounter`1 “ psJ 1b

ᵀsJ 1bq
´1sJ 1b

ᵀyJ 1b
;

pα 1,β 1qcounter`1 “ psJ2b
ᵀsJ2bq

´1sJ2b
ᵀyJ2b

;

else
pα 1,β 1qcounter`1 “ pα,βqb;

pα,βq “ pα 1,β 1q;
B “ Bnew;
Jiter`1 “ tJ

1
iter, J

2
iteru;

Jb,iter`1 “ tsi : α
b ` βbsi ď α

b 1 ` βb
1

si, b
1 ‰ bu;

if |Jb,iter| ă nmin,@b P t1, ¨ ¨ ¨ ,Bu or Jb,iter`1 “ Jb,iter,@b P t1, ¨ ¨ ¨ ,Bu then
Flag = False;

else
iter` “ 1

minbPt1,¨¨¨ ,Bu α
b ` βbs

algorithm evaluates the cuts on all subsets, it refits using the partition induced by hyperplanes.

The model stops either if there are not enough observations within each subset |Jb,iter| ă nmin,

or if there is no change in the subsets Jb,iter`1 “ Jb,iter,@b P B. Figure 19a shows the approxi-

mation results of the piecewise linear concave model on a toy example. In Figure 19, we com-

pare the performance of approaches PLR and PLCR using (robust) value iteration data points

under five various price distributions. We randomly select 70% of state valuations to constitute

the training set, select 10% as the validation set to tune the hyperparameter of the decision
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(a) Toy example (b) RMSE of robust value iteration in
test set

(c) RMSE of nominal value iteration
in test set

Figure 19: Figure 19a shows the CARET performance in a toy example. Figures 19c and 19b illustrate the
performance of approximating nominal (right) and robust (left) value iteration algorithms

tree and treat the remaining as the test. We use linear regression as a benchmark and measure

the root mean square error (RMSE) of three methods on the test dataset. Figures 19b and 19c

show that piecewise linear and piecewise linear regression perform better than linear regression.

Using the above algorithm, we can create an optimization framework for the long-term

problem with a concave and continuous terminal value. The optimization model will be as

following:

Vjpvj,wjq “ max
πjPΠj

#

Ej

«

TA´1
ÿ

t“j

δt´jrtpv
πj
t ,wt, X

πj
t pv

πj
t ,wtqq ` δ

TA´jR̂pvTA ,wTAq

ff+

s.t. αb ` βbspvTA ,wTAq ě R̂pvTA ,wTAq, @b P t1, ¨ ¨ ¨ ,Bu

4.5.1 Dual reoptimization heuristic

In this section we propose an ADP-based algorithm for the hybrid MDP and terminal value

formulation in Section 4.3. The heuristic is designed based on the Dual reoptimization heuristic

(DRH) developed by [184]. The DRH is motivated by information relaxations and duality

approach [40].

A dual bound is estimated in Monte Carlo simulation by solving a deterministic variant

of MDP endowed with full information about future uncertainty and costs adjusted for this
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knowledge using a dual penalty. Let qpxt,Wt, vtq denote the stage t dual penalty function,

where Wt :“ pwt, t P tj, ¨ ¨ ¨ , TAuq is a vector of realized stochastic factors for each stage from

j to τ. If Etrqtpxt,Wt, vtqs ď 0 holds then the dual penalty function is feasible. Given the

knowledge of Wt, we define the following hindsight reward function:

rIRt pxt,Wt, vtq “ x
G
t ptη´ CRx

R
t ´ CUx

U
t ´ CF1tct“1u

and consider the following deterministic optimization problem

VIRt pvt;Wtq “ max
xt 1 ,yt 1

TA
ÿ

t 1“t

δt
1´t

”

rIRt 1 pxt 1 ,Wt 1 , vt 1q ´ qt 1pxt 1 ,Wt 1 , vt 1q
ı

` δTA´t
1

R̂pvTA ,wTAq

(4.24a)

s.t. : yt “ vt, (4.24b)

yt 1`1 “ ft1pyt 1 , xt 1q, @t 1 P tt, ¨ ¨ ¨ , TAu, (4.24c)

yt 1 P Vt 1 , @t 1 P tt, ¨ ¨ ¨ , TAu (4.24d)

xt 1 P Xt 1 @t 1 P tt, ¨ ¨ ¨ , TAu (4.24e)

The above math program compute decisions xt,@t P TA and includes auxiliary variables yj to

track endogenous MDP state. Its objective (Equation 4.24a) is the sum of discounted rewards

over the horizon with full and limited information about evolution of uncertainties. Constraint

Equation 4.24b initializes the stage t state to the current state vt. Constraints Equation 4.24c

ensure the feasibility of state transitions. Constraints Equation 4.24e–Equation 4.24d restrict

decision variables to their respective feasible sets.
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The quality of the dual bound depends on the dual penalty function in Equation 4.24. As

discussed by [40], the optimal policy value is attainable when using ideal dual penalty on the

MDP value function:

qtpvt,Wt, xtq “ γtVt`1pfpvt, xtq, wt`1q ´ ErVt`1pfpvt, xtq, wt`1qsu, (4.25)

Since the exact value function is not available in Equation 4.25, one can approximate the value

function. However, given the magnitude of our problem and the complexities that value function

approximation based dual penalty can cause in solving the problem, we use simple dual penalties

that do not rely on such approximations [39,166]. We define the dual penalty function as:

qtpvt,Wt, xtq :“ δ rpErξt`1s ´ ξt`1q ` pErχt`1s ´ χt`1q ` pErωt`1s ´ωt`1qs xGent `

ÿ

t 1ąt`τR

δt
1´t rpErξt 1s ´ ξt 1q ` pErχt 1s ´ χt 1qs xupt 1 (4.26)

In equation Equation 4.26, the extra information for taking a decision at period t is approx-

imated by the spreads between the value of uncertainties in the periods pt ` 1, TAs and their

expectations. In particular, we consider the extra information at the next stage, t` 1, and all

stages in pt ` τR, TAs as the main component of taking generation and investment decisions.

The dual penalty in Equation 4.26 is linear in x and is feasible because the expected value of

spreads of uncertainties equal zero (e.g., Et rEtrξt`1s ´ ξt`1s “ 0).

Estimating the dual bound ErVIRt pvt,Wtq|wts involves solving the optimization problem

on N sample paths {Wn
t , n “ 1, ...,N}. Although solving Equation 4.24 at stage t and state

pvt,Wt|wtq provides a random decision xtpWtq, we can construct a distribution of the random
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variable xtpWtq and only implement a projected value of the distribution corresponding to the

current state, xtpŴtq “ HtpxtpWtqq [184]. Implementing this decision results in a transition

to a new state vt`1 “ ftpyt, xtpŴtqq. Once new information at time t ` 1, wt`1 becomes

available, we generate new sample paths Wt`1|wt`1 and solve the analogue of math program

Equation 4.24 to obtain xtpŴtq. We repeat this procedure until we reach stage TA.

4.6 Numerical study

In sections 4.6.1 and 4.6.2, we describe our real instances and explain the computational

setup.

4.6.1 Power plant instance

Table Table VIII summarizes the parameter values of our baseline. We use a 20 year

planning horizon and set TA “ 5 years. Therefore, the problem includes 5 and 15 year MDP

and robust period horizon. In the first 5 year we predict the evolution of uncertainties using the

historical data. However, due to the limited information about uncertainties (e.g., price, inflow)

in the next 15 year, horizon B, we assess the value of the asset considering worst case scenario.

Instances in this paper illustrate properties of a real Hydro power plant. Features such as the

down time period due to a failure and refurbishment is set based on experts’ estimations.

We consider stochastic process for weekly power price and inflow in the MDP horizon. This

is equivalent to the firm selling the commodity at the average weekly price at each stage and

receiving average volume of water at each stage. We model inflow and the power price as

discussed in section 4.2. Price parameters are estimated based on historical data obtained from

Montel (see www.montel.com). Local inflow data are obtained from a real hydropower and

https://www.montelnews.com/en/
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TABLE VIII: Parameters defining the baseline instance

Name Value Unit Name Value Unit Name Value Unit

TA 260 weeks q0 3.329 ¨ 104 MWh/week qmax 2 ˚ c0 MW/month
τF 24 weeks CF 2 ¨ 106 NOK τR 8 weeks
CU 2 ¨ 103 NOK Lmax 3.813 ¨ 105 MWh γ 0.992 -
Lmin 0 MWh

the inflow process is calibrated by first normalizing log-inflow data and then fitting an AR(1)-

process. This is similar procedure as in [82], but using log-inflow instead of inflow. Modeling

log-inflow instead of inflow is common in the literature [170, 175]. We assume zero correlation

between inflow and power price. The evolution of the deterioration rate follows a Gamma

process, following [187]. Calibration of deterioration process is based on expert opinion and

estimates in [196]. We model uncertainties in horizon B as discussed in sections 4.4.1 and 4.4.2.

4.6.2 Implementation and computational setup

Our computational study compares policies based on robust terminal value estimations

using uncertainty sets discussed in sections 4.4.1 and 4.4.2 with the policy when the terminal

value is calculated using (Equation 4.15). This policy is based on a common assumption in the

literature that information about uncertainties in horizon A can be extrapolated to horizon B.

This model uses inflow and price distribution similar to what discussed in section 4.4.1, and we

follow implementation details discussed in the next paragraph.

To find the asset’s value at horizon B, we use features including the capacity, reservoir level,

plant condition, and long-term mean of power price. We also consider the seasonal pattern of

uncertainties by embedding time in the state space. We leverage the value iteration algorithm

and discretize the state space. Inflow and price usually follow seasonal patterns. To capture
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this effect, we incorporate time as one of the components in the state space in addition to the

endogenous variables and model inflow and price based on monthly data. We also discretize the

long-term mean of power price to five categories and adjust power price distribution in horizon

B based on the power price long-term mean at time TA.

We construct the discrete uncertainty sets based on monthly data as discussed in section

4.4.2. Clusters are calculated using the Kmeans and GMM functions. We remove outlier

scenarios so that the set becomes less dependent on the data noise and outliers. Using these two

clustering approaches, we create two discrete uncertainty sets on the monthly historical price

and inflow data. In this way, we can capture their relations while not modeling the correlation

between these sources of uncertainties in a parametric aspect. Therefore, the policies are only

robust to the centroids of the clusters. We use the silhouette score to find the best number

of clusters. In Figure Figure 20, we illustrate the monthly price and inflow data in quarters

one and two and show a discrete uncertainty set based on K-means clustering and GMM with

K “ 4 centers. We follow procedures discussed in section 4.4.1 to create a discrete uncertainty

set. In this approach, we use features including the capacity, reservoir level, plant condition,

and time to find the asset’s value.

All algorithms are programmed using Python 3.7 and GUROBI 8.1 as the math program-

ming solver. We use the median decision rule to find the policy in all approaches. We esti-

mate the dual bound and the value of the investment and generation policies (i.e., expected

discounted total revenue over the horizon) with distribution-based robust terminal value us-

ing 1000 and 100 Monte Carlo sample paths, respectively, with standard errors of upper/lower
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(a) A K-means clustering with K “ 4 in quarter 1 (b) A K-means clustering with K “ 4 in quarter 2

(c) A GMM clustering with K “ 4 in quarter 1 (d) A GMM clustering with K “ 4 in quarter 2

Figure 20: Illustration of methods to generate discrete uncertainty set on monthly (price, inflow) data. We used
logarithm of data to find centroids for GMM.

bound estimates of 0.8% and 3.05% of the mean. We calculate the optimality gap to be 2.12%.

We also assess the dual bound and the value of investment and generation policies with nomi-

nal terminal value using 1000 and 100 sample paths with standard errors of upper/lower bound

estimates of 3% and 4.5%. The optimality gap, in this case, is found to be 1.95%. We esti-

mate the dual bound and the value of the investment and generation policies (i.e., expected

discounted total revenue over the horizon) with Kmeans-based (GMM-based) robust terminal

value using 1000 and 100 Monte Carlo sample paths, respectively, with standard errors of up-

per/lower bound estimates of 0.86%p0.88%q and 1.86%p1.9%q of the mean. We calculate the

optimality gap to be 3.25%p3.2%q. Let πrobust, πnominal, πKmeans, and πGMM denote the poli-
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cies found by MDPR, MDPN, MDPKmeans, MDPGMM, respectively. We evaluate the perfor-

mance of these policies using N sample trajectories discussed in section 4.8.10 and analyze its

behavior on different scenarios of model misspecification in horizon B. Below, we evaluate the

standard deviation and expected revenue of these policies over 50 random sample paths. We

aim to compare the performance of πrobust, πnominal, πKmeans, and πGMM.

Below, we check the approaches’ performance under moderate and extreme changes in the

power market and climate. We optimize policies based on the calibrated parameters and obtain

πrobust and πnominal that maps elements in the set of states to action set elements. Finally, we

evaluate their performance under different scenarios.

4.6.3 Impact of decision measures on the policies’ performance

Below, we compare the performance of methods based on mean and median decision rules,

Htp¨q, and report the optimality gap with respect to the upper bound of each model. The

corresponding results are displayed in Figure 21a. The median decision rule results in policies

with lower optimality gaps in all methods since the mean decision rule is usually affected by the

outcome of rare scenarios (i.e., outliers). Figure 21b shows the average of generation quantities

across samples in MDPGMM with different months using mean and median decision rules.

Results show that the generation profile based on median changes more rapidly with the power

price seasonal effect while the mean has a smoother generation profile. As a result, the policy

based on the median is less prone to actions in rare scenarios and achieves higher expected

revenue in all approaches.
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(a) Optimality gaps (b) Generation profile of mean and median Decision rule in MDPGMM

Figure 21: Optimality gaps with different decision rules

4.6.4 Impact of the long-term asset valuation on policies

In Figure 22, we compare the expected operational and investment policies of the hy-

dropower plant across sample paths using different approaches in horizon A. Figure 22a shows

that differences in the long-term valuation of the asset has a small impact on the intermediate

generation decisions, and expected generation profile of all approaches follow a similar pattern.

Figures 22c and 22b illustrate seasonality patterns in the reservoir level and the spill volume of

the power plant due to the high inflow input during the Spring season. As expected, the spill

volume increases during periods when the amount of water in the reservoir reaches the peaks.

DRH considers various future scenarios to find investment decisions. Investment on a larger

number of sample paths states the optimality of investment under more scenarios. Figure 22d

suggests that a robust approach results in more conservative investment decisions, whereas the

nominal approach recommends refurbishment in a larger number of sample paths. Finally, Fig-

ure 22e shows that while the nominal approach finds a value in upgrading the plant’s capacity,

approaches with robust terminal valuations find it less plausible. This is due to the model of
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the long-run evolution of uncertainties in the nominal approach, which finds the amount of in-

flow and the power prices high enough for an upgrade in the plant’s capacity.

4.6.5 Performance of policies under climate change

Water as the primary source of power generation in a hydropower plant has a significant

impact on its cash flow. Changes in the pattern of precipitation in the long-term can result

in suboptimal short-term decisions. We compare the performance of the nominal and robust

approaches under various inflow patterns to assess the performance of policies under model

misspecification. In these sets of experiments, we assume that inflow can be forecasted based

on historical data in the short term. However, observations deviate from the forecasting model

in the long run.

Inflow mean: We plot the expected discounted total revenue of the Hydropower plant

obtained by πrobust, πnominal, πGMM, and πKMeans under different means of inflow. In these

figures, zero in the x-axis models the scenario when the long and short-term inflow dynamics

remain the same. Negative and positive changes model environments with low (drought) and

high (surplus) inflow patterns. Figures 23a and 23b show that while revenue achieved by

πnominal has a higher expected value in the presence of high inflow, it experiences lower expected

revenue in scenarios with low inflow. Figure 23c shows the mean and standard deviation of

revenue for each model across different environments. As expected, the nominal model results

in higher expected revenue and standard deviation than other robust approaches. Robustness

based on long-run distribution obtains the lowest expected and variance of revenue than others.
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(a) Generation Policy in horizon A

(b) Volume of Spill in horizon A

(c) Reservoir level as a result of operational and investment policies in horizon A

(d) Refurbishment Policy in horizon
A

(e) Upgrade policy in horizon A

Figure 22: Illustration of hydropower plant policies in horizon A
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(a) Expected revenue under different
inflow patterns

(b) Relative performance of robust

approaches (Vpπq´Vpπ
Nq

VpπNq
)

(c) Expected and standard deviation
of revenue across all scenarios

Figure 23: Performance of policies under different levels of inflow long-term mean

Inflow standard deviation: We plot the expected discounted total revenue of the Hy-

dropower plant (fromN “ 50 out of sample trajectories) obtained by πrobust, πnominal, πKMeans,

and πGMM under different standard deviation of inflow σω. Figure 24 shows that the perfor-

mance of πrobust, πnominal, πKMeans, and πGMM under different inflow volatility. Figure 24a

illustrates that the expected revenue obtained by πnominal is higher than robust policies for

high volatility inflow scenarios and has a lower mean in cases of low inflow volatility. This is

explainable by measuring the amount of spill suggested by the robust policy during high in-

flow volatility scenarios. Low future inflow anticipation in the robust models leads to having

policies that tend to store water for generation during peak price periods. However, less pre-

dictability of inflow results in higher spill due to the limited reservoir capacity. Furthermore,

Figure 24a shows that policy πrobust is the most conservative policy among approaches. Figure

24b shows that πGMM and πKMeans outperform πrobust in achieving better expected revenue

and emphasize the importance of modeling the robustness. Figure 24c shows that robust ap-

proaches obtain lower volatility of expected revenue than the nominal approach.
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(a) Expected revenue under different
inflow patterns

(b) Relative performance of robust

approaches (Vpπq´Vpπ
Nq

VpπNq
)

(c) Expected and standard deviation
of revenue across all scenarios

Figure 24: Performance of policies under different levels of the inflow standard deviation

4.6.5.1 Performance of policies under changes in the power market

High penetration of the new sources of power generation in the electricity market can change

the pricing structure of this commodity in the long term. Therefore, considering approaches

capable of incorporating such changes can ensure the near-optimality of long-term decisions.

Below, we consider various scenarios of the power market and compare the revenue distribution

obtained by policies πnominal, πrobust, πKMeans, and πGMM.

Long-term drift of power price: We plot the expected discounted revenue of the hy-

dropower plant (fromN “ 50 out of sample trajectories) obtained by πrobust, πnominal, πKMeans,

πGMM under different drifts of the long-term price component. The base case has the long-term

mean price equal to 0.01. Figure 25a shows that the revenue achieved by all policies increases

with drifts of the long-term price component, and the relative performance of robust policies

does not change significantly as illustrated in Figure 25b.

4.7 Conclusion

Motivated by the penetration of renewable power sources in the power generation portfolio

of countries and the inefficiency of hydropower plants in power production, we study the re-



147

(a) Expected revenue under different price
patterns

(b) Relative performance of robust ap-

proaches (Vpπq´Vpπ
Nq

VpπNq
)

Figure 25: Performance of policies under different levels of the price long-term mean

furbishment and capacity investment problem in these assets. We focus on finding the value

of the asset in the long term and show that common assumption in practice for modeling the

evolution of uncertainties in the long run (i.e., assuming that the short-term information can

explain the long-run behavior of uncertainties) leads to high error and suboptimal decisions.

To facilitate the decision making, we formulate a multi-period generation and investment MDP

model that is challenging due to a non-convex action set and high dimensional state and ac-

tion spaces. We introduce robust MDP for estimating the value of the hydropower plant under

limited long-term information using a distribution- and clustering-based uncertainty set. Fol-

lowing practitioner literature, we use the dual reoptimization heuristic (DRH) to find operating

and investment policies in addition to estimating an upper bound. Using real data of a hy-

dropower plant, we show that the computed policies are near-optimal and provide comments

on the choice of decision measures in DRH. Our findings suggest the presence of the annual

pattern in the generation policy of hydropower plants. Furthermore, we show that estimating

the value of an asset under limited long-term information through robust MDP using an un-
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certainty set based on the clustering approach leads to a less conservative and robust stream of

cash flows under various future environments.

4.8 Appendix

4.8.1 Proofs

Proof of Proposition 4.3.1. No production and upgrade results in zero value, hence Vjpvj, wjq ě

0, which implies Wjpvj, wjq ě 0. An upper bound is provided by maximum upgrade and maxi-

mum production at every stage:

Wjpvj`1, wjq “ E rδVj`1pvj`1, wj`1q|wjs

ď δQ

«

TB
ÿ

t“j`1

E rpt`1|pjs

ff

where E rpt`1|pjs. Furthermore,

Vj “ Qmintqj, lju `Wjpvj`1, wjq.

Hence, the value function and continuation function are finite. Endogenous state at time j, vj

includes pcj, lj, qjq. We first show concavity with respect to cj while other endogenous state

variables are fixed. If cj ě 1 for all t P tj, ¨ ¨ ¨ , TBu, then Vjpvj, wjq “ 0. If cj ď 0 for all

t P tj, ¨ ¨ ¨ , TBu, then no costs is incurred, i.e. the immediate reward in Vjpvj, wjq is xGt ptη,

which is constant in cj. In the case of cj ă 1 for j P t1, ..., TFu and cj ą 1 for j P tTF ` 1, ..., JBu,

the value function can be reformulated to

Vjpvj, wjq “ V
2
j pvj, wjq ´ V

2
TF
pvTF , wTFq, (4.27)

where V 2j pvj, wjq has immediate reward xGt ptη instead of xGt ptη1tcją1u, as in the case of cj ď 0

for all t P tj, ¨ ¨ ¨ , TBu. We subtract V 2TFpvTF , wTFq, which is lost income from optimal operations
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from time TF. Vjpvj, wjq is decreasing in TF, and since dj`1 ě 0 which implies cj`1 ě cj, which

means that TF is decreasing in cj. Combined with the fact that Vjpvj, wjq ą 0, which we showed

earlier, Vjpvj, wjq “ V
1
j pvj, wjq ´ V

1
TF
pvTF , wTFq is concave in cj.

We proceed by showing that the terminal value is concave in v 1j “ plj, qjq for a fixed wj and

for a fixed cj. At stage J´ 1, for a given wj, we have

V 1J´1pv
1
J´1, wJ´1q “ max

xJ´1PX pv 1J´1q
r 1J´1pxJ´1, v

1
J´1q (4.28)

W 1
Jpv

1
J´1, wJ´1q “ 0 (4.29)

This is a linear program where v 1J´1 is the upper bound of the convex feasible set X pv 1J´1q.

From standard linear programming results, VJ´1pv
1
J´1, wJ´1q is piecewise linear concave in v 1J´1.

The continuation function is zero and therefore also piecewise linear concave. By finiteness of

the continuation function and the induction hypothesis, it is easy to verify that Wjp¨, wjq is

piecewise linear concave in v 1j at stage j. Hence, for a feasible stage j action set X pv 1jq which

is bounded by vj, a linear reward function rpxj, wjq, and a concave continuation function, it

follows that the value function Vjpv
1
j , wjq is piecewise linear concave.

4.8.2 Notation

The set of periods from j to TA is denoted T Aj “ tj, ..., TAu. The set of periods from TA ` 1

to TB is denoted T B “ tTA ` 1, ..., TBu. By xkt , k P KA we denote decisions during periods

t P T A1 . By pvt,wtq P Vt ˆWt we denote vectors of endogenous and exogenous state variables

during periods t P T Aj . By ut P Ut we denote the vector of exogenous states during periods
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t P T B.Note that the elements of the decision vector xt “ tx
k
t , k P KAu for t P T A1 is different

from the elements of the decision vector yt “ ty
k
t , k P KBu for t P T B. Also the elements of the

state vector pvt,wtq for t P T A1 is different from the elements of the state vector ut in periods

t P T B. By πj we denote a collection of of stage-dependent decision rules tXπt , t P T Aj u, each

mapping states to actions.

4.8.3 Sets

T Aj “ tj, ..., TAu: First set of time periods

T B “ tTA ` 1, ..., TBu: Second set of time periods

KA “ tG,U, R, Su: Action indexing in time periods t P T A1 .

KB “ tG, L, Su: Action indexing in time periods t P T B.

Xt Ă R3` ˆ t0, 1u: Action set in time period t P T A1

Yt Ă R3`: Action set in time periods t P T B

Vt Ă R3`: Exogenous state set in time periods t P T A1

Wt Ă R3`: Endogenous state set in time periods t P T A1

Ut Ă R2`: Exogenous state set in time periods t P T B

4.8.4 Parameters

Lmin: Min storage volume (m3)

Lmax: Max storage volume (m3)

TA: End of first time horizon
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TB: End of second time horizon

τF: Downtime of the plant associated with failure (time)

τR: Downtime of the plant associated with refurbishment (time)

Qmax: Maximum upgrade capacity (m3{time)

e: Energy coefficient (kWh{m3)

δ: Discount rate

CU: Cost of upgrading for unit of capacity (USD)

CR: Cost of refurbishment (USD)

CF: Cost of failure (USD)

4.8.5 Actions

xt “ px
k
t , k P KAq P Xt: Action vector at time t P T A1 .

yt “ py
k
t , k P KBq P Yt: Action vector at time t P T B.

4.8.6 States

vt “ pst, it, dtq P Vt: Exogenous state vector at time t P T A1 .

wt “ plt, ct, qtq PWt: Endogenous state vector at time t P T A1 .

ut “ pst, itq P Ut: Exogenous state vector at time t P T B.
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4.8.7 Discretization of price and inflow processes

It “ exppµ̄log
t ` σ̄

log
t ωtq (4.30)

St “ exp

ˆ

α cos

ˆ

2πt

52

˙

` β sin

ˆ

2πt

52

˙

` χt ` ξt

˙

(4.31)

ξt`∆t “ ξt ` µ
˚
ξdt` σξε1 (4.32)

χt`∆t “ χte
´κχ∆t ´

λχ

κχ
p1´ e´κχ∆tq ` σχ

d

1´ e´2κχ∆t

2κχ
ε2 (4.33)

ωt`∆t “ ωte
´κω∆t ` σω

d

1´ e´2κω∆t

2κω
ε3 (4.34)

where ε1 and ε2 are correlated by ρχξ and can be generated by taking random draws ε1 „

N p0, 1q and ε2 „ N pρχξε1, 1´ ρ2χξq. ε3 is a standard normally distributed variable.

4.8.8 Five-stage example formulation

The fully integrated problem is given by

zF “ max
txGt,s,lt,s,qt,s,x

U
t,s, tPT , sPSu

S
ÿ

s“1

πs

ˆ

p1x
G
1,sη`

ÿ

tPT 1YT 2
δt´1ppt,sx

G
t,sη´ CUx

U
t,sq

˙

(4.35)
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s.t.

l1 “ 2 (4.36a)

lt`1,s “ lt,s ´ x
G
t,s ` it,s @t P T ztTu,s P S (4.36b)

q1 “ 3` x
U
1,s @s P S (4.36c)

qt`1,s “ qt,s ` x
U
t,s t P T ztTu,s P S (4.36d)

xGt,s ď mintlt,s, qt,su @t P T ,@s P S (4.36e)

xGt,s ě 0 @t P T ,@s P S (4.36f)

xUt,s ě 0 @t P T ,@s P S (4.36g)

xUt,s “ 0 @t P TI,@s P S (4.36h)

xGt,s “ x
G
t,s 1 @t P T ;@s P S,@s 1 P Sts (4.36i)

qt,s “ qt,s 1 @t P T ;@s P S,@s 1 P Sts (4.36j)

lt,s “ lt,s 1 @t P T ;@s P S,@s 1 P Sts (4.36k)

xUt,s “ x
U
t,s 1 @t P T ;@s P S,@s 1 P Sts (4.36l)

Generation variables and upgrade variables at stage t and scenario s are txGt,s, t P T , s P

Su and txUt,s, t P T , s P Su, respectively. Moreover, capacities tqt,s, t P T , s P Su and

reservoir levels are tlt,s, t P T , s P Su. Constraints Equation 4.36b, and Equation 4.36e

connect the reservoir level to the production, Equation 4.36c-Equation 4.36d adjust the capacity

based on the investment decisions at stage one and two. We denote by TI “ t1, 3u periods in
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which the investment can happen which is enforced by constraint Equation 4.36h. Constraints

Equation 4.36i-Equation 4.36l ensure the non-anticipativity of stage t P T decision across

sample paths in the set Sts , where Sts is defined as the set of all scenarios that are equivalent to

scenario s at time t.

4.8.9 MDP constraints

Given state components vt P Vt, the vector of actions, xt P Xtpvtq, is feasible if it satisfies

following constraints:

xGt ´mintqt, lt ` itu ď 0 @t P T A1 (4.37)

xGt ´Mξ
G
t ď 0 @t P T A1 (4.38)

xUt ´Q
maxxRt ď 0 @t P T A1 (4.39)

ξGt ` x
R
t ď 1 @t P T A1 (4.40)

´ xRt ` ξ
F
t ď 0 @t P T A1 (4.41)

ct ´ 0.99´Mξ
F
t ď 0 @t P T A1 (4.42)

τR
ÿ

t

xGt ´Mp1´ x
R
t q ď 0 @t P T A1 (4.43)

τF
ÿ

t

xGt ´Mp1´ ξ
F
tq ď 0 @t P T A1 (4.44)

xRt , ξ
G
t , ξ

F
t P t0, 1u @t P T A1 (4.45)

xGt ě 0 @t P T A1 (4.46)

xUt ě 0 @t P T A1 (4.47)

xSt ě 0 @t P T A1 (4.48)
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where ξGt “ 1txGt ą0u
and ξFt “ 1tct“1u. Constraints Equation 4.37-Equation 4.38 and Equa-

tion 4.39 limit the production and upgrade quantity, (Equation 4.40) prevents production in

periods that refurbishment happens, Equation 4.41 force the refurbishment when failure hap-

pens, and Equation 4.43-Equation 4.44 determine the periods that the plant is down due to the

refurbishment, upgrading, and failure, respectively.

4.8.10 Calibration of stochastic processes

For prices, since electricity futures have settlement over a given period, typically weeks,

months, quarters and years, we first apply the smoothing method by [16]. After applying this

method, we obtain smooth futures curves for each trading date in the period from 2011 to 2018

from which we can take monthly maturities and calibrate a stochastic model. An alternative

method for constructing forward curves can be found in [79]. Nordic electricity futures data were

obtained from the information provider Montel [129]. After obtained smooth forward curves, a

Kalman filter and maximum likelihood approach were employed. Our implementation is based

on [84]. The parameter estimates are provided in Table IX. We calibrate the price model to

different historical periods to be able to assess policy performance when the underlying data

generating process is unknown.

Numerical values For inflow parameters we present monthly estimates. The estimation is

a two step procedure where we first deseasonalize and normalize inflow by estimating µ̄log
j and

σ̄
log
j , and then fit an AR(1) process to residuals obtaining estimates for κω and σω.

1***: Significance 1%.
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Parameter Base case
2011-2018

1 2011-2014 2012-2015 2013-2016 2014-2017 2011-2018

κχ 1.063˚˚˚ 0.966 0.771 0.615 0.980 1.077
σχ 0.403˚˚˚ 0.362 0.302 0.366 0.466 0.521
λχ 0.234˚˚˚ 0.153 0.060 0.115 0.170 0.281
µξ ´0.041 -0.120 -0.118 0.189 -0.134 -0.015
µ˚ξ 0.011˚˚˚ 0.013 0.008 0.022 0.009 0.022

σξ 0.149˚˚˚ 0.102 0.090 0.111 0.190 0.194
ρχξ ´0.03˚˚˚ -0.129 -0.079 -0.361 -0.030 -0.047
α 0.163˚˚˚

β ´0.025˚˚˚

TABLE IX: Parameter estimates of the price model.

Month2j µ̄
log
j σ̄

log
j σω κω

1 9.768 0.655 7.095 26.30
2 9.190 0.686 7.095 26.30
3 9.699 0.656 7.095 26.30
4 9.772 0.625 7.095 26.30
5 11.286 0.529 7.095 26.30
6 12.146 0.267 7.095 26.30
7 12.015 0.400 7.095 26.30
8 11.446 0.488 7.095 26.30
9 11.204 0.372 7.095 26.30
10 11.222 0.540 7.095 26.30
11 11.103 0.674 7.095 26.30
12 10.529 0.686 7.095 26.30
13 10.076 0.940 7.095 26.30

TABLE X: Base case inflow parameter estimates
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For calibration of the deterioration process we base estimates on expert knowledge, since

data for evolution of equipment states are scarce. The mean and variance of the deterioration

process are given by

Epdtq “
κptq

ν
, Varpdtq “

κptq

ν2
. (4.49)

Furthermore, empirical studies suggest that the expected deterioration at time t is proportional

to the power law [187]. We let κptq “ θtγ which means parameters θ, γ and κ needs to be

estimated. 1

2We define let month to consist of 4 weeks, which then will give 13 months in a year.

1If γ “ 1 the process is stationary.



CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis studies the challenges in the deployment of reinforcement learning algorithms in

real-world business problems while focusing on applications in the operations finance area. We

focus on problems in sustainable energy procurement, management of storage, and refurbish-

ment of power plants. While we tried to address some prominent research questions in each

of these directions, many follow-up research works remained to explore. We briefly present an

overview of potential future contributions.

Motivated by the recent global trend in corporate energy procurement, in Chapter 2, we

study the problem faced by companies that have committed to satisfying a renewable power

procurement target by a future date. We develop DRH, a novel scheme that combines reopti-

mization and the information relaxation and duality approach to provide non-anticipative pro-

curement policies. Further investigations can unveil the impact of intermittency of renewable

power supply on the optimal PPA portfolio. Also, more analysis on the pricing of these long-

term agreements can help companies construct a portfolio of these options. This has already

led to future work in [183].

In Chapter 3, we study a problem faced by a firm providing services to store ethanol and

analyze the behavior of users interacting with this storage provider. Our study of DRGPs

shows that there is promise in leveraging decision rules to define non-linear transformations of

158



159

GPs for user modeling in the ethanol storage application. Further investigations can introduce

an inference mechanism for DRGPs in similar applications.

Finally, motivated by the penetration of renewable power sources in the power generation

portfolio of countries, we study the refurbishment and capacity investment problem in these

assets. We focus on finding the value of the asset in the long term and show that common

assumption in practice for modeling the evolution of uncertainties in the long run leads to high

error and suboptimal decisions. Our findings show the effectiveness of estimating the value of

an asset under limited long-term information through a combination of standard and robust

MDP to achieve a robust stream of cash flows under various future environments. Further

analyses may unveil new approaches for quantifying uncertainties in long-term planning horizon

problems.
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