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SUMMARY

Over the past decade, deep learning algorithms have been proved to excel at various medical

imaging tasks ranging from disease detection to progression prediction and segmentation. One

of the primary goals of medical imaging is to improve clinical translation enabling generalization

across different real-world clinical settings and patient populations. However, there are some

major challenges in real-world data applications that pull down the progress.

• Real-world medical imaging dataset: Real-world clinical data is different from standard-

ized data collected from artificial settings, e.g. clinical trials that are commonly employed

in the literature. Creating a dataset that reflects the characteristics of real-world clinical

data is very challenging. The lack of real-world datasets inhibits the further improvement

in clinical translation.

• Clinical interpretability: Interpretable results play an important role in decision making

in clinical setting, e.g. imaging biomarkers for disease diagnosis. Therefore, providing

a solution that targets the transparency of the model’s solution is necessary for more

reliable decision-making.

• Generalization to real-world setting: Standardized datasets collected from artificial set-

tings do not represent real-world clinical data. This problem, raise a concern on yielding

varying result in clinical translation. Moreover, lack of feature extraction networks for

medical data limits the generality of learned features and hence limits the clinical trans-

lation to real-world settings.

xiii



SUMMARY (Continued)

• Learning from small datasets: In many real-world clinical applications, labels are very

expensive and difficult to obtain. Therefore creating a large dataset can be very time-

consuming or even infeasible, e.g. diagnosis of rare disease. However, the generaliza-

tion performance of deep learning algorithms tends to degrade when trained with small

datasets.

In this thesis, we explore four different settings aiming to address the above challenges

in medical imaging in the context of ophthalmic imaging application: creating a real-world

medical imaging dataset, multi-task learning, self-supervised learning, and classification for

small datasets. In the first setting, we address the lack of real-world data by creating a real-world

medical imaging dataset that is created from diverse longitudinal data from real-world setting.

This dataset provides an infrastructure for validation studies and clinical translation across

different clinical settings. In a multi-task learning setting, we explore clinical interpretability

by formulating a real-world clinical problem in a multi-task framework. In a self-supervised

setting, we develop a framework for feature extraction for ophthalmic imaging data to improve

the generality of learned representations. We further explore the generalization capacity of deep

learning algorithms on real-world data versus standardized datasets and analyze the importance

of real-world data for clinical translation. In classification for a small dataset, we explore how

to incorporate the high bias shape prior from the segmentation module into the learning process

to solves the classification problem for extremely small datasets.

xiv



CHAPTER 1

INTRODUCTION

The objective of my thesis research is to develop infrastructure and decision-making sys-

tems that are capable of analyzing real-world medical imaging data and improve upon clinical

translatability across clinical settings.

Medical imaging is referred to as a set of processing techniques that create visual repre-

sentations of interior parts of the body such as organs or tissues. Different types of medical

imaging technology give different information about the area of the body to be studied or med-

ically treated, e.g. X-ray, MRI, retinal vessels, Fundus of the eye. Medical imaging technology

has been improving significantly over the past decade producing high-quality imaging. Medical

imaging analysis enhances the efficiency of clinical examination and hence leading to more accu-

rate diagnosis and treatment which can potentially reduce invasive medical procedures. Medical

imaging can help physicians with the early detection of diseases resulting in improvement of

patient health and the overall human life expectancy.

Medical imaging has a very complex structure and its interpretation heavily relies on the

expertise of medical specialists. However, with advancing imaging technology, the amount

of data generated every day is rapidly growing and hence exceeding the scope of traditional

analysis. Consequently, dependency on the knowledge of medical experts becomes less accessible

and more challenging, and the decision-making process becomes more prone to human errors.

1
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Traditional machine learning algorithms were among the first automated systems that were

developed to assist medical experts in the analysis of medical imaging. However, these methods

also heavily rely on domain-specific experts for feature extraction which not only increases the

probability of human errors, it is also time-consuming and expensive. With computer vision

advancing significantly using deep learning models and their ability to automatically extract

features, we have witnessed dramatic growth in medical imaging and its applications [5–8].

One of the primary goals of medical imaging is to improve clinical translation which enables

generalization across different real-world clinical settings and patient population. Although

deep learning advances have helped the field of medical imaging enormously in solving many

challenging problems from diagnostic detection to organ/substructure segmentation and pro-

gression predictions [9–16], clinical translation still remains a challenging problem. The diffi-

culty of improving the clinical translation stems from several main challenges including the lack

of dataset reflecting real-world clinical data, clinical interpretability, generalization capacity on

real-world clinical settings, and learning from extremely small datasets that is inevitable for

many applications.

The current research mainly studies the medical imaging problems in artificial settings

where the data is standardized and mainly collected from the clinical trial which could limit

their generalization to real-world clinical settings. However, real-world data is quite different

from the standardized datasets that are commonly employed in the research studies for mod-

els development and problem solving. The real-world data is very complex, characterized by

variability in quality and settings, and lacks standardization. Clinical interpretability plays a
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vital role in decision-making across real-world clinical settings. However, the current research

studies mainly focus on methods that predict the final result, e.g. diseased or healthy, disre-

garding the transparency of the model’s solution to the task. The lack of interpretability in

such methods makes the decision-making less reliable and limits their practical use in a clinical

setting. The current work in medical imaging commonly employs the standardized dataset to

develop deep learning based models for various applications. With standardized datasets not

reflecting the characteristics of real-world clinical data, there has been a growing concern on

the generalization capacity of deep learning models in real-world clinical settings. Although

the medical imaging applications using standardized datasets have been extensively studied in

the literature, there is very limited works on the generalization capacity of developed models in

real-world settings. Moreover, due to difficulty of collecting labeled data in medical field, there

are many applications with shortage of data that relies on pretrained networks on non-medical

images such as ImageNet [17] to extract features. However, since the nature of medical data is

quite different from natural images in ImageNet, the capacity of these methods for extracting

effective visual representations for medical data becomes limited. In real-world clinical setting,

obtaining labels is not only very expensive and difficult but also requires the domain knowledge

of medical experts. Moreover, there are many applications in which the collection of a large

amount of data is not only challenging but also infeasible, e.g. diagnosis of rare diseases. In such

a scenario, a successful model must be able to learn from only a handful of examples. However,

deep learning models show their full potential in modeling and solving problems when a large

amount of data is available for training.



4

My thesis research mainly focuses on addressing the above challenges aiming at improving

clinical translation in medical imaging, particularly in ophthalmic imaging applications. In the

following sections, I will outline our work in four settings: creating a new ophthalmic imaging

dataset where the data is collected from real-world clinical data and addresses the lack of

real-world medical imaging datasets. Multi-task learning where we target the transparency of

the model’s solution to the task by achieving clinical interpretability in the context of a real-

world clinical application. A self-supervised learning framework where we target the generality

of learned visual representations for ophthalmic imaging data and assess the generalization

capacity of deep learning models to real-world clinical settings and importance of real-world data

for clinical translation. A classifier for small datasets that harnesses the power of segmentation

to solve the classification problem for extremely small datasets.

1.1 Real-world Medical Imaging Dataset

The current medical imaging datasets that are most commonly used to develop deep learning

based models for ophthalmic applications are collected from a standardized artificial setting.

However, the real-world dataset is quite different and it is usually collected from multiple

heterogeneous settings, characterized by diverse patient populations with longitudinal data,

variability in quality, machine-type, setting, and source. Hence, the existing methods that are

developed based on the assumption of standardized data cannot generalize well to the actual

clinical data. Therefore, having a medical imaging dataset that reflects the characteristics of

real-world medical data becomes the first and a crucial step to further advancement of medical

computer vision and improvement in the clinical translation. In Chapter 2, we introduce a
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new medical imaging dataset in the context of ophthalmic imaging applications, called I-ODA,

that is created from real-world data. I-ODA is a longitudinal multi-modal dataset gathered

from patient imaging data who visited the Eye and Infirmary clinic of the University of Illinois

at Chicago (UIC). I-ODA aims to alleviate the shortage of real-world clinical data and pro-

vide a potential benchmark for validation study and hence improving clinical translations and

advancing the state-of-the-art in medical computer vision applications.

1.2 Multi-task Learning for Clinical Interpretablity

The current research studies, in particular for diseases detection, mainly focus on predicting

the final result, e.g. disease or non-diseased, disregarding the clinical interpretability of the

results. This in turn limits the reliability of the decision making and hence limits their prac-

tical application in real-world clinical settings. In Chapter 3, we present a multi-task learning

method to the above problem. We address the clinical interpretability in the context of an oph-

thalmic imaging application, glaucoma detection from an ophthalmic imaging modality, called

Fundus photo of the eye. Current methods on glaucoma detection fall into two major groups,

(1) classification methods that predict the presence of glaucoma directly from a Fundus photo,

and (2) segmentation methods that focus on locating the imaging biomarkers identifying the

disease in a Fundus photo. The methods that merely perform classification, suffer from the lack

of interpretability. On the other hand, segmentation methods achieve clinical interpretability

but they face the challenge of collecting datasets with segmentation labels. Segmentation la-

bels are very expensive and laborious to obtain in the medical field. The shortage of segmented

datasets limits the practical application of segmentation based approaches. In Chapter 3, we
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study the problem of clinical interpretability for glaucoma detection problem. We propose a

novel framework called InterGD aiming to address the two challenges, shortage of segmentation

labels, and lack of interpretability by formulating the problem into a multi-task learning frame-

work. We target the transparency of the model’s solution to the task by locating two imaging

biomarkers, optic disc, and cup and calculation of clinical measurement, CRD, to identify glau-

coma. We also apply a masking technique to ensure the correct alignment of cup area inside

the disc area. We show the effectiveness of the proposed approach in addressing the above

challenges for glaucoma detection application.

1.3 Self-supervised Learning For Real-World Data Applications

Most of the existing research studies in medical imaging focus on developing deep learning

based models for a broad range of applications using standardized datasets which are mainly

collected from artificial settings such as a clinical trial. However, these datasets do not neces-

sarily represent the real-world data and hence yielding varying results in clinical translation.

On the other hand, the complexity of real-world data pose a major challenge for training deep

learning based models. Hence, there has been a growing concern on the generalization capacity

of deep learning models in real-world clinical settings. Although the medical imaging applica-

tions using standardized datasets have been extensively studied in the literature, there has been

very little work on the generalization and translatable capacity of deep learning based models

in real-world settings. Moreover, due to shortage of labeled data in medical field, many applica-

tion with limited data formulate the problem in transfer learning setting relying on pretrained

networks using non-medical images such as ImageNet for feature extraction. However, due to
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dissimilarity of medical data and natural images in datasets such as ImageNet, the capacity of

such methods in learning effective representations for medical data becomes limited. In Chapter

4, we aim to improve the generality of learned features for medical imaging data and assess

the generalization capacity of deep learning based models on real-world data versus standard-

ized datasets. As collecting large-scale labeled datasets is very challenging, particularly in the

medical field, we employ self-supervised learning to exploit unlabeled data for learning effective

visual representations for ophthalmic imaging data, in particular Fundus photo. We show the

effectiveness of our approach by comparing our work against fully supervised approaches and

pretrained network on non-medical data. We also assess the translation capacity of training

with real-world data versus standardized data.

1.4 Classification for Small Datasets

Deep neural networks heavily rely on a large amount of data to show their full potential

in modeling and solving problems. The generalization performance of deep learning models

tends to degrade when trained with a small dataset. However, in real-world clinical settings,

obtaining labels is very expensive, challenging, and requires the knowledge of domain experts.

There are several fields in which acquiring a large amount of data is not even feasible, e.g.

diagnosis of rare diseases. Hence, despite the exponential growth of deep learning algorithms in

medical imaging applications, learning from extremely small datasets remains challenging. In

Chapter 5, we aim to address the problem of learning from small datasets for the classification

task. We present a novel framework, called CvS, that harnesses the power of segmentation to

learn from a small dataset by incorporating a local dense loss and high-bias shape prior to the
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learning process. As most classification datasets do not have segmentation labels, we employ

two simple approaches, binarization and label propagation to obtain segmentation labels for

the whole dataset. The label propagation method allows us to learn a preliminary model from

a small subset of the dataset that is manually segmented and use this model to propagate the

segmentation labels to the rest of the dataset.



CHAPTER 2

REAL-WORLD MULTI-MODAL LONGITUDINAL IMAGING DATASET

FOR OPHTHALMIC APPLICATIONS

(This chapter was previously published as Mojab, N., Noroozi, V., Aleem, A., Nallabothula,

M. P., Baker, J., Azar, D. T., Rosen- blatt, M., Chan, R. V. P., Yi, D., Yu, P. S., and Hallak,

J. A.: I-oda, real-world multi-modal longitudinal data for ophthalmic applications.

In Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems

and Tech- nologies, BIOSTEC 2021, Volume 5: HEALTHINF, Online Streaming, February

11-13, 2021 , eds. C. Pesquita, A. L. N. Fred, and H. Gamboa, pages 566–574. SCITEPRESS,

2021 [1].)

2.1 Introduction

The past decade has witnessed an exponential growth in deep learning based applications in

medical imaging [5–8]. The promising success of deep learning algorithms in computer vision,

has motivated the immense growth of deep learning based modeling in medical imaging serving

multiple purposes and addressing various problems ranging from classification to progression

prediction or segmentation [9–16]. Most of the existing research studies focus on modeling

and problem solving for medical imaging in artificial setting where the data is standardized

and mostly collected from multi-center clinical trials. However, such data does not effectively

represent the characteristics of real-world clinical data.

9
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The lack of datasets that captures the true aspects of real-world data pose a major challenge

for further improvements in medical computer vision and successful translation to real-world

clinical settings. In this chapter, we mainly focus on addressing the above problem in the con-

text of ophthalmic imaging domain. The current publicly available datasets that are commonly

employed in the literature [18–21] suffer from five main limitations: (1) a small number of pa-

tients and imaging data, (2) data is standardized and mainly collected from artificial settings

such as multi-center clinical trials, (3) lack of longitudinal data that contains imaging data at

different time points for the same patient, (4) lack of multiple image modalities that allows

studying the disease from different views of data , and (5) the potential risk of spectrum bias

which emanates from the lack of diversity in population characteristics, such as sociodemo-

graphic and disease severity levels, that does not adequately represent the wide spectrum of

patients in real-world clinical settings.

Different from the standardized dataset, real-world data is very complex, noisy, lacks stan-

dardization, and characterized by variability in quality, machine types, settings, and sources.

Therefore, with standardized dataset not representing real-world data effectively, the trans-

lation capacity of models that are developed on the assumption of these standardized data,

becomes limited. Hence, building a research-oriented medical imaging databank that reflects

the key aspects of real-world data is imperative to advance the research in medical computer

vision and improve generalizations and clinical translations.

With imaging technology advancing significantly over the past decades, the amount of gen-

erated imaging data is growing at significant rate. However, this data lacks standardization
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and structure, collected from multiple heterogeneous settings, and lacks ground truth labels

which pose major challenges on creating a large-scaled dataset from real-world data. Some of

the major challenges include but not limited to: (1) limited access to original raw data due

to Health Insurance Portability and Accountability Act (HIPAA), patient privacy, and ambi-

guity in data ownership, (2) data sources spread across multiple heterogeneous settings with

very limited information on the data description, collection process and data integration across

different sources, (3) lack of ground truth labels and standardization, (4) obtaining labels is

very expensive, time consuming and requires domain knowledge of medical experts, and (5)

complete anonymization for the whole data which is a very complex process due to the lack of

consistent structure in the data.

Motivated by these challenges, we aim to create a medical imaging dataset for ophthalmic

imaging applications from real-world data aiming to address the lack of real-world data and

three core research problems in medical computer vision: (1) Advancing medical computer

vision and machine learning-based applications in medical imaging and particularly in oph-

thalmology. (2) Providing an infrastructure to enhance generalizations and the translational

capacity of deep learning based applications across different clinical settings. (3) Understand-

ing disease progression trends across various ophthalmic diseases, and the variability among

populations and the severity spectrum.

The Department of Ophthalmology and Visual Sciences at the Illinois Eye and Ear Infirmary

of the University of Illinois at Chicago (UIC) is equipped with a rich collection of imaging data

from a diverse patient population who received care over the past decade. This data contains
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millions of raw unlabeled images and their metadata sitting across multiple sources with very

limited information regarding the structure, label and data integration across different sources.

We aim to develop an infrastructure that allows us to collect, preprocess, annotate, anonymize,

and integrate the data from different data components across various settings at UIC to create

a real-world ophthalmic imaging dataset.

In this chapter, we introduce a longitudinal multi-domain and multi-modal imaging dataset

for ophthalmic imaging applications, called the Illinois Ophthalmic Database Applications (I-

ODA). We present an efficient pipeline to collect, annotate, anonymize, and integrate the data.

The dataset release is pending legal approval. To the best of our knowledge, this chapter is the

first work attempting at creating a large-scale medical imaging dataset from a real-world data

for ophthalmic imaging application.

Our dataset is characterized by five main key points: (1) more than 3.5 million image

instances grouped into a diverse set of practical image modalities providing a comprehensive

multi-view dataset for ophthalmic applications, (2) longitudinal imaging data for patients who

received continuous care at one academic medical center over multiple time points, (3) a mix-

ture of data from multiple imaging devices representing a multi-domain data, (4) a diverse

patient population with various demographic background, and (5) a broad disease spectrum

across multiple ophthalmic diseases. The unique properties of our dataset capture the charac-

teristics of a real-world clinical data from different aspects each serving multiple purposes in

ophthalmic imaging applications. I-ODA can provide an ideal benchmark for validation studies
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and translations to patient care settings enabling breakthroughs in medical computer vision

applications.

The rest of the chapter is organized as follows. We start by reviewing the data components

that are used to create this dataset in section 2.2 and the challenges regarding data collection

from each component. Then we propose our solution to address these challenges and how to

integrate different data components into a structured imaging and relational database in Section

2.3. In Section 2.4 we discuss how to anonymize the dataset in regard to respecting the patient

privacy. Section 2.5 provides a comprehensive information on characteristics of our dataset and

discuss the importance of each of these properties from different aspects. Then we conclude the

chapter in Section 2.6.

2.2 Database Atlas and Components

The Institutional Review Board (IRB) of the University of Illinois at Chicago approved the

creation of the I-ODA databank. Each project that utilizes the I-ODA dataset will undergo

additional review by the IRB to ensure patient privacy and protocol adherence. The research

to build the I-ODA dataset was conducted in accordance with the requirements of the Health

Insurance Portability and Accountability Act (HIPAA) and tenets of the Declaration of Helsinki.

The I-ODA dataset was created from imaging and clinical data belonging to the patients

who visited the Illinois Eye and Ear Infirmary of the University of Illinois at Chicago (UIC)

over the course of 12 years. The original data resides across three main sources: (1) Image files,

(2) a SQL database, and (3) the University of Illinois Hospital and Health Sciences System

(UIH) billing system.
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2.2.1 Image Files

The image files are residing on an in-house server that maintains ∼ 4.5 million raw images

belonging to ∼ 45K patients. The raw image files are organized in a hierarchical structure

sorted by Medical Record Numbers (MRNs), corresponding exam sessions, and image files

residing on the in-house server that is connected to an image management system. The image

files are generated by multiple imaging devices in the form of either a raw image of the eye or an

analysis report. During each visit, patients can undergo multiple imaging test sessions for each

eye. Based on the preliminary diagnosis identified by an ophthalmologist, photos representing

different structures can be taken from multiple angles in each imaging test session. In the

rest of this chapter, we refer to these images as ”image modalities” which can be generated

from different imaging devices. For example, a patient may require Fundus imaging, a photo

of the posterior part of the eye, or Optical Coherence Tomography (OCT) imaging, which can

represent high-resolution cross-sectional images of the retina. Fundus photos or OCT images

are referred to as two types of imaging modalities. A sample of OCT and Fundus photos are

illustrated in Figure 1. The modality of the image and the number of images taken per exam

session could vary for each patient depending on the preliminary diagnosis. All the image files

are originally stored in .j2k(JPEG2000) file format with a broad range of image resolutions.

All image files are unlabeled and are assigned with random file names that do not reveal any

information regarding their modality, i.e. OCT or Fundus.
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(a) Fundus (b) OCT

Figure 1: Illustration of sample images from Fundus modality and OCT modality.

The lack of consistent structure, different image resolution from devices with different setting

and most importantly the absence of defined image modality and ground truth label for image

files, pose major challenges to the first step of creation of labeled dataset.

2.2.2 Metadata

The metadata information that is used for the purpose of creation of our dataset is sitting

across two main data components, a SQL Server database and the University of Illinois Hospital

and Health Sciences System (UIH) billing system.

The SQL Server database consists of a collection of comprehensive information including

but not limited to, patient demographics and their corresponding exam sessions, images taken

in each session, and the imaging device generating the image files. The data reside across

more than 50 tables in our SQL Server database. Although the SQL database contains a rich
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collection of information, there is no descriptive information regarding the contents, structure

or the purpose of each table’s attributes and contents. There is also no constraint defined for

the attributes constituting each table and hence no relation has been established across different

tables.

These limitations can result in invalid, missing, and duplicate data records across the ta-

bles making the process of finding and extracting the data from the many SQL tables very

challenging.

The UIH billing system contains a comprehensive information regarding hospital charges

and diagnosis. For the purpose of this work, we extracted part of the data that encompasses

the information regarding ophthalmic and non-ophthalmic diagnoses, interventions (clinical

procedures), and patient demographics. This system is equipped with a billing report and

a dashboard interface that allows us to retrieve hospital charges for limited number of data

records at a time.

Due to manual entry from the imaging device interface and subjective errors both of the

data components, SQL and UIH, are prone to noise and errors. Moreover, the lack of integration

among the data components could result in inconsistent information across the data sources

that needs to be addressed.

2.3 Methodology

The absence of defined modalities for the image files, lack of integration among the three

sources of data and the noise emanating from human errors, pose major challenges to creation

of labeled and structured dataset. To address these challenges, we create the I-ODA dataset
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by designing a pipeline that is composed of three main phases each utilizing the data from one

of the existing three data sources:

• Image modality tagging that assigns a modality tag to each image in the hierarchy of

image files.

• Metadata annotation that extract and filter the valid data from the SQL database and

connect it to the image files.

• Disease annotation that utilize the data from billing system to annotate image files and

their metadata with the corresponding diagnosis.

Eventually all three sources of data are integrated creating the final dataset that is composed

of two main data components, image files and relational database.

2.3.1 Image Modality Tagging

The modality tagging component of our pipeline consists of three steps, (1) drafting a set of

potential image modalities, (2) yielding a set of prototype images per group of image modality,

and (3) given the set of modalities and their prototype images, tagging each image with the

proper modality.

2.3.1.1 Image Modality Selection

For the purpose of this paper, image modalities are defined as the most common imaging

types used in ophthalmology. The selected set must encompass all representative modalities

relevant to ophthalmic imaging applications and its diagnostic usage.



18

Each image is generated by one of the imaging devices that are used at the Illinois Eye

and Ear Infirmary at UIC. To derive the preliminary set of modalities, we utilize the imaging

device characteristics. Each imaging device is responsible for generating certain range of image

modalities. However, this assumption might be violated in a few cases. Moreover, the set of

image modalities generated by each imaging device is not necessarily exclusive. For example,

two different modalities, Fundus and OCT, can be generated by three different devices. As

the imaging devices do not necessarily generate one modality of images, they cannot be solely

used for selecting the relevant modalities but can be further utilized as auxiliary information

to narrow down the potential candidates.

One of the information that the SQL database contains is the list of all devices that are

used to generate the image files that the UIC clinic has access to. Then, we utilized the device

characteristic to draft a set of all potential image modalities generated by each device. Next,

we selected random subset of images from each imaging device. Given the preliminary set of

modalities, we manually reviewed images in each subset and selected the relevant modalities.

We further reviewed the obtained modalities from each subset to potentially merge the relevant

ones into one group. For instance, for images illustrating analysis reports containing OCT

and Fundus images, one image modality referred to as ”OCT Report” was chosen to represent

both of these images. This step was repeated multiple times to achieve the final set of the

most common and practical modalities which was further reviewed by ophthalmologists. This

procedure helped us to keep the specificity level of each modality relevant to its diagnostic use in

ophthalmology and enabled a practical collection of image modalities with a reasonable amount
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of instances per modality. The final list contains 12 image modalities that are commonly used

for ophthalmic diagnostic usage.

2.3.1.2 Image Prototype Selection

Images belonging to each modality can vary in terms of color, shape, and resolution but they

are all to be considered as various members of the same modality. For instance, all varieties

of Fundus images including square or circular shaped or black and white or colored should be

tagged as one image modality named Fundus illustrated in Figure 2. Thus, selected prototype

Figure 2: Illustration of modality spectrum for Fundus modality.

images for each group of modality must form a representative set of the whole spectrum of

images belonging to that imaging modality. To select a set of representative image prototypes
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per modality, we utilized the characteristic of imaging device and a similarity-based method.

Given the set of modalities obtained from Section 2.3.1.1, we drafted a set of possible imaging

devices that can generate each of the image modalities. Next, we selected a random subset of

images from each device for each modality. This resulted in the preliminary set of prototypes for

each modality group. To further refine the preliminary set of prototypes, we selected a random

subset of images including all modalities. Then we employed a similarity-based method which

will be elaborated on further in Section 2.3.1.3 to tag the selected subset of data by assigning

the modality of their nearest neighbor from the prototype images in terms of euclidean distance.

We then manually reviewed the results and analyzed the miss-classified images according to the

characteristic of the members of each modality group. If the miss-classification occurred due to

the absence of that particular image variation in its corresponding set of image prototypes, that

image variation was added to its corresponding prototype set. We repeated this step multiple

times each time augmenting the set of prototypes if necessary until we reached a negligible

error for each modality. This step resulted in a final collection of 253 prototype images across

12 image modalities.

2.3.1.3 Tagging

Given the set of modalities and image prototypes, we propose a pipeline that takes the raw

image with undefined modality as input and achieves the modality tag in two sequential steps.

• The first tag is achieved by employing a similarity-based classification method by com-

paring each image to the collection image prototypes.
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• The obtained tag is verified by exploiting characteristic of imaging devices. The overall

pipeline network is illustrated in Figure 3.

ResNet

.

.

.

SQL
Device

gfd4xc.j2k

Image	Files

Figure 3: The illustration of overall pipeline for image modality tagging.

Similarity-based Classification: Suppose we have a dataset with N image instances

and a set of M modalities. To tag each image with one of the M given modalities, we first

employ a pretrained Convolutional Neural Network, ResNet-50, to extract the features for each

image in the dataset and the set of prototype images. Suppose the dataset is denoted as

D = {x1, ..., xN} where xi ∈ Rk represents the feature vector and k is its dimensionality. Given

the M image modalities, we defined the set of prototype images as V = {v(p)|p = 1, ..,M} where

v(p) = {y(p)1 , ..., y
(p)
Ip
}, y(p)Ip

∈ Rk. v(p) represents the set of image prototypes for the modality

group p and Ip denotes the number of instances in modality group p.
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We aim to tag the images from the set D by assigning its nearest neighbor from the set V

in terms of euclidean distance jp = argminjp‖xi − y
(p)
j ‖, y

(p)
j ∈ V, j = 1, ..., Ip, p = 1, ...,M . To

further ensure that the obtained minimum distance for the input image is reasonably chosen,

we picked a threshold for each modality group by investigating the reasonable distance range

among its image members. If the minimum distance achieved by a euclidean measure matched

the threshold, we assigned the tag for the input image xi by extracting the corresponding

modality p associated with the index jp in V denoted as y
(1)
i = V[Ip−1 + j]. We then applied

the similarity-based method by comparing the images in D and the prototype images in V

corresponding to all the 12 image modalities. The modality group of the nearest prototype

image was chosen as the modality tag of the input image. The final set of modality tags

achieved from this step is denoted as Y(1) = {y(1)i |i = 1, ..., N}, (depicted as y
(1)
i = OCT in

Figure 3).

Modality Verification: To validate the modality tag achieved from the first step, we

narrowed down the possible set of modality tags for each image by utilizing its corresponding

imaging device. We considered three subsets of data according to their corresponding imaging

devices and the range of image modalities generated by each device, (i) images associated with

devices that are responsible for generating only one type of imaging modality, (ii) images asso-

ciated with devices that generate a specific range of imaging modalities (up to two modalities),

and (iii) images associated with devices that their range of potential generated image modalities

is not available in our data.
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Given these three groups of subsets, we assigned each image in each subset to its possible

set of modality tags according to its corresponding imaging device extracted from the SQL

database. The first group of images which constituted ∼ 12% of the data, were tagged with the

one image modality generated by its corresponding imaging device. The second group which

constituted ∼ 78% of the data, was assigned with a set of potential modality tags according

to their corresponding devices. The third group of images which constituted less than 1% of

the data was assigned with an unknown tag. The set of modality tags obtained from each of

these three groups of images is denoted as Y(2) = {S(2)
i |i = 1, ..., N} where S

(2)
i represents the

set of potential image modalities for the input image xi (depicted as S
(2)
i = {OCT,Fundus}

in Figure 3).

Given the label sets Y(1) and Y(2), the final tag is assigned to each image if y
(1)
i ∈ S(2)

i for

i = 1, ..., N (depicted as OCT in Figure 3). Otherwise, it is assigned as unknown for further

manual review and investigation.

2.3.2 Metadata Annotation

To extract the metadata corresponding to the image files we employed the data from the

SQL database. First, we reviewed the contents of each table and its set of attributes to retrieve

those that are relevant to creation of our dataset. Overall we isolated four tables that maintain

information regarding patient, image files, exam session, and imaging device. In each table we

only keep the relevant attributes.

Next, we apply a series of pre-processing steps to filter out the invalid data records such as

invalid MRNs, duplicate, and missing records across the related tables. The main preprocessing
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steps include filtering out invalid MRNs, duplicate MRNs with different data records, and

missing data records across the relevant tables. Further, we exclude inconsistent data records

across the two data sources, image file hierarchy and SQL database using the list of directories an

sub-directories in the image files hierarchy and their equivalence in SQL data, patient MRN and

session Id. The patient and image file tables originally contains 44, 460 patients and 4, 477, 634

image files, respectively. Applying the preproccessing steps results in exclusion of ∼ 8% of the

data. Eventually, we joined all the tables into one metadata file using the mutual attributes

among the selected four tables.

2.3.3 Diagnosis Annotation

Given the validated metadata file and patient MRN from Section 2.3.2, we utilize the billing

reports from UIH system to retrieve ophthalmic and non-ophthalmic diagnoses and interventions

for each patient. The interventions are referred to as any surgical or invasive outpatient or

hospital procedure. Next, similar to the Section 2.3.2, we apply a series of preprocessing steps

that resulted in removing ∼ 12% of the data. Then we exclude the inconsistent data records

across billing data and metadata file which resulted in exclusion of another ∼ 6% of the data.

Finally, we merged the billing data with the metadata file obtained from the SQL database.

The final file contains 33, 876 patient and 3, 668, 649 image files which are annotated with their

corresponding metadata, diagnoses, and interventions.

2.3.4 Data Integration

At last, we constructed a relational database integrating the data from all the data sources,

image files, metadata, and diagnoses. This database constitutes of 6 tables including patient
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Diagnosis

PK diag_id
diag_description
code_system
source
patient_id

Intervention
PK interv_id

interv_type
treatment_code
code_system
patient_id

Image Modality
PK modality_id

modality_name

Image File

PK file_id
patient_id
session_id
file_name
eye_side
exam_date
modality_id
dev_id
diag_id
interv_id

Patient Demographic
PK patient_id

age
gender
race

Image Device
PK dev_id

dev_type
dev_name
dev_description

UIH

Patient Id=1

Session Id=1

Session Id=10

1_1_oct1.png

1_1_oct24.png

...

...

1_10_fundus1.png

1_10_fundus7.png

...

SQL

Pre-processing

Pre-processing

Figure 4: Illustration of the pipeline network for disease annotation and integration of the three

data sources, image file hierarchy (depicted in green bounding box), SQL data, and billing data.

demographic, image file, diagnosis, intervention, imaging device, and image modality. The

tables are connected through a primary key (PK) and a foreign key constraint defined for

each table. Each table consists of a set of attributes with its metadata information serving its

purpose in our dataset. The data integration and relational database schema (depicted in a

pink bounding box) is illustrated in Figure 4. As Figure 4 shows, each image (depicted in red)

is annotated with its corresponding image modality, diagnosis, and interventions (depicted in

green).
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2.4 Data Anonymization

Data anonymization is the process where patient identifiers are irreversibly removed for

patient privacy protection, prohibiting any direct or indirect identification. According to

the HIPAA regulations, sensitive patient information should be protected by being properly

anonymized before being used for any research purposes. Data anonymization in the context of

our work would result in a complete anonymized dataset across both data components, image

files, and the relational database.

2.4.1 Image Anonymization

The image members in each of the 12 modality group in our dataset can vary in terms of

style, resolution, and location of identifiable information that needs to be masked out. The

extensive range of variability among images poses a major challenge on anonymization for such

a large amount of data. To address this challenge, we employ a K-means clustering method to

derive a set of categories for each of the 12 modalities where the images in each category are

the most similar ones in terms of style, resolution, and location of identifiable information. To

choose the initial number of clusters for each modality group, we first randomly selected a subset

of 200 images from each modality and manually reviewed and analyzed the selected subsets.

We further applied a set of various imaging filters, including spatial/geometric, resolution,

appearance, and color, to achieve a more fine-grained categorization for each of the categories

obtained from the initial clustering. The set of filters were chosen to be relevant to the type of

images belonging to each modality.
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Next, we divided the obtained categories into two groups based on the consistency level

of the location of identifiable information. For the first group of categories that maintain a

consistent pattern in terms of location of identifiable information across their image members,

we generated a location-based masking filter. The masking filter are specific to each category

and are further employed to mask out the part of the image that contains the identifiable

information. The second group of categories for which the location of identifiable information

varied across their image members, we combed through the data and manually removed the

sensitive information. Eventually, the data was reviewed by two persons to anonymize any

missed data to ensure complete anonymization of our image data. The fine-grained categories

were created merely for the purpose of anonymization. After accomplishing the anonymization

process for all the image files, the categories were discarded and only the 12 main modalities

that were obtained in Section 2.3.1.1 were kept.

2.4.2 Metadata Anonymization

To de-identify the metadata, first, we extract the set of sensitive attributes including the

patient MRN, first and last name, date of birth, and exam session date. The patient first and

last names were removed, and the MRNs were replaced by randomly generated numbers. To

keep the longitudinal nature of the date of birth and exam session dates attributes, the date of

births were replaced by patient’s age and the date of exam sessions were replaced by subtracting

the date of births from the date of exam sessions. To integrate the anonymized metadata with

the anonymized image files, the patient and exam session directories in the hierarchical structure

of image files were renamed to the anonymized patient ids and exam session ids respectively.
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2.5 Dataset Characteristic

I-ODA dataset captures different characteristics of a real-world clinical data from differ-

ent perspectives. These unique properties distinguishes our dataset from existing ophthalmic

imaging dataset. In this section we explore these characteristics and show how each can po-

tentially address some of the major challenges in medical imaging. We further showcase their

contributions in improving clinical translation enabling versatile computer vision applications

in medical imaging and ophthalmology in particular.

2.5.1 Dataset Statistic

As of now, the I-ODA dataset contains 3, 668, 649 images and 230, 923 exam sessions across

12 image modalities of 33, 876 individuals from the Department of Ophthalmology and Visual

Sciences at the Illinois Eye and Ear Infirmary of the University of Illinois at Chicago for eye care.

The set of image modalities includes {Optical Coherence Tomography (OCT), OCT Report,

Fundus, Humphrey visual field (HVF), Ultra-sound, Ultrasound Report, B-Scans, Corneal To-

pography, External image (slit lamp), Intraocular Lens master calculation report (IOL), Optical

Response Analyzer report, ERG report}.

Among the 12 image modalities, 6 modalities, Fundus, OCT Report, OCT, HVF, B-Scan,

Corneal Topography, constitute 98% of the imaging exam sessions. A snapshot of samples

from these 6 modalities is illustrated in Figure 5. As Figure 5 suggests, each image modality

encompasses a spectrum of different varieties of its image members.
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Figure 5: A snapshot of samples from 6 major image modalities in I-ODA dataset.

2.5.2 Dataset Components

The I-ODA dataset is composed of two main data components integrated effectively to

represent a structured ophthalmic imaging dataset, as shown in Figure 4:

(1) Anonymized image files that are tagged with their corresponding modality. Images are

converted to .png format and stored in a hierarchical structure where the highest level represents

a patient directory followed by its corresponding exam session and finally the imaging files that

reside on the lowest level of the hierarchy. The patient and exam session directories correspond

to the anonymized patient ids, and session ids from the metadata. The image file names are

formatted as ”patientId sessionId modality” format.

(2) A relational database that constitutes of 6 tables representing patient demographics,

image files, diagnoses, interventions, imaging devices, and image modalities integrated through

primary and foreign key constraints. As Figure 4 suggests, the corresponding patient metadata,
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diagnosis, and intervention (depicted in green in the ”Image File” table) for each image file

(depicted in red in image file hierarchy on the left) can be easily retrieved from the tables in

our relational database.

2.5.3 Modality and Domain

The I-ODA dataset comprises 12 different image modalities. The imaging data collected in

the process of ophthalmic disease diagnosis can include multiple imaging sessions with different

image modalities per patient visit. This would result in a rich collection of longitudinal imaging

sessions across different image modalities for ophthalmic applications. In real-world clinical

settings, for a physician to make an accurate diagnosis, they often need to look at multiple

views of the data such as different imaging tests. A summary of the I-ODA dataset showing

the 6 major image modalities and the number of exam sessions per modality is illustrated in

Figure 6.

The availability of a vast number of imaging sessions across a comprehensive set of multiple

imaging modalities, allows us to study the disease pattern from multiple sources of data which

could potentially lead to more accurate diagnosis and treatment.

Moreover, the image data in I-ODA is generated from more than 30 imaging devices forming

a multi-domain dataset, where domain in here is defined as the imaging device. This impor-

tant property reflects the true nature of a real-world dataset, which can include a mixture

of data distributions collected from different domains. Given that clinical care often involves

complex multi-domain data, I-ODA could provide a potential benchmark for validation stud-
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ies towards improvement in generalizations and translations of machine learning based models

across different clinical settings.

2.5.4 Patient Population

I-ODA contains a rich collection of imaging data and metadata from a diverse set of patients

with various demographic backgrounds including, ethnicity, race, age distribution, and location.

A cross-tabulation analysis of patient gender and age from I-ODA is depicted in Figure 7.
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Figure 7: Illustration of a cross-tabulation anal-
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tion in I-ODA dataset.
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As Figure 7 suggests, the patient population in I-ODA has a comparable distribution be-

tween females and males across a wide age range. This will allow the development and validation

of machine learning based algorithms that are a true representation of the patient population

and hence improve the generalization capacity in modeling and problem solving.

2.5.5 Longitudinal Disease Spectrum

I-ODA contains an extensive set of patient visits from one academic institution having

received imaging tests across multiple time points. Additionally, I-ODA encompasses a com-

prehensive collection of imaging data for various ophthalmic diseases including but not lim-

ited to diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma.

Having the longitudinal nature of imaging sessions from patient visits over time allows us to

capture a broad disease spectrum. Figure 8 represents the severity spectrum of Fundus photos

taken at different stages of one of the ophthalmic diseases, diabetic retinopathy (DR). NPDR

represents Non-proliferative Diabetic Retinopathy, ME represents Macular Edema, and PDR

represents Proliferative Diabetic Retinopathy. This property allows us to study the progression

Figure 8: Illustration of the disease spectrum of DR with Fundus photos taken at different

stages.
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trends across different ophthalmic diseases. Having a rich collection of different ophthalmic

diseases enables studying diseases both in isolation and correlation with each other. Addition-

ally, the availability of non-ophthalmic diseases in our dataset allows us to identify common

biological and epidemiological mechanisms by studying the correlation among ophthalmic and

non-ophthalmic diseases [22]. Additionally, the longitudinal diseases spectrum and diverse pa-

tient population mitigates the risk of spectrum bias that emanates from the lack of diversity in

population characteristics such as sociodemographicand disease severity level.

2.6 Conclusion

In this chapter, we study the problem of creating a medical imaging dataset from real-world

data aiming to address the lack of real-world clinical data and improving upon clinical transla-

tion. Creating a labeled and structured dataset from real-world data that effectively captures

the characteristics of real-world data is significantly challenging. The reason is because the

data is unlabeled, lacks standardization and structure, and collected from multiple heteroge-

neous settings with no information regarding data components, data integration, labels, and

anonymization process.

To address these challenges, we propose an infrastructure to collect, process, label, anonymize

and integrate the data from different sources into a unified imaging dataset, called I-ODA. I-

ODA is a multi-domain longitudinal data containing a diverse patient population providing an

ideal benchmark for validation studies and clinical translation. We present the unique charac-

teristics of I-ODA that distinguishes our dataset from other ophthalmic imaging dataset. These

characteristics include but not limited to, a large amount of data across a diverse collection
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of image modalities and domains, diverse patient population who received continuous care at

the Department of Ophthalmology and Visual Sciences at the Illinois Eye and Ear Infirmary

at UIC, and longitudinal imaging data.

We showcased that I-ODA dataset with its unique characteristics serves a wide range of

purposes in medical imaging applications. The broad disease severity spectrum, demographics,

and interventions represent a diverse patient population with different outcomes. Applications

on imaging data may particularly help with delineating structural changes that indicate future

vision loss. This will improve our understanding with regards to the different progression

patterns among different patient populations. Moreover, the diverse collection of longitudinal

ophthalmic and non-ophthalmic diseases will allow us to study potential correlation patterns

among different diseases. The mixture of multiple domains, emanating from different imaging

devices alongside the multiple image modalities, and longitudinal disease spectrum, reflects

characteristics of real-world clinical data which is of great importance for clinical translations.

I-ODA dataset can provide a potential benchmark for validating deep learning models and their

clinical applicability to targeted populations.



CHAPTER 3

MULTI-TASK LEARNING FOR CLINICAL INTERPRETABLITY

(This chapter was previously published as Mojab, N., Noroozi, V., Yu, P., and Hallak, J.:

Deep multi-task learning for interpretable glaucoma detection. In 2019 IEEE 20th

International Conference on Information Reuse and Integration for Data Science (IRI) , pages

167–174. IEEE, 2019 [2].)

3.1 Introduction

Success of deep learning algorithms in computer vision applications, has motivated the

immense growth of deep learning based application in medical imaging. These advances has

inspired many research studies aiming to address various problems from diseases classification

to localization of imaging biomarkers. The advances in automated decision making in medical

field can help with large-scale screening which could potentially lead to early diagnosis and

prevent the diseases from further progression. Motivated by these advances, ophthalmic imaging

applications, in particular detection of blinding diseases, have received considerable attention in

the last decade. Early detection of blinding diseases can serve a great benefit to preserving the

vision. With deep learning based applications growing exponentially in medical imaging, there

has been a growing concerns regarding the clinical interpretability of the model’s solution to

the task. Clinical interpretability plays an important role accurate and reliable decision making

in clinical settings. However, current research studies mostly disregard the transparency of the

35
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model’s solution to the task and merely focus on predicting the final output, e.g. predicting

whether an input image is diseased or healthy. The lack of clinical interpretability limits clinical

applicability of such methods. In this chapter, we aim to address the clinical interpretability

in the context of real-world ophthalmic application, glaucoma detection.

In real-world clinical applications, indication of glaucoma is assessed by providing imaging

biomarkers, optic disc and optic cup and clinical measurement CDR, in a Fundus photo. The

general problem of glaucoma detection in ophthalmology is well studied in the literature. This

problem is commonly formulated into a binary classification task which identifies the presence

or absence of glaucoma directly from a Fundus image using a deep learning model. However,

these methods disregard the clinical interpretability of the results which limits their clinical

application in real-world setting.

There are some studies attempted at achieving clinical interpretability by locating imaging

biomarkers, optic disc or optic cup, via segmentation methods. However, segmentation labels

are very expensive and time-consuming to obtain which limits the application of such methods.

Moreover, different from other fields of computer vision, locating biomarkers in a medical image

requires the domain knowledge of medical experts.

On the other hand, classification labels are more accessible and easier to obtain. Therefore,

it is desired that the larger amount of data with classification label can be efficiently utilized

to mitigate the shortage of segmentation labels while benefiting from the interpretability of the

results from segmentation methods.
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In this chapter, we introduce a novel framework, called InterGD, to the above problem. We

formulate the problem into a multi-task learning setting to exploit the complementary infor-

mation across two modules, classification and segmentation. Different from existing methods,

our approach, utilizes both data with classification labels and the data with segmentation label.

The network is designed in a way that the classification module learns to predict glaucoma from

the predicting disc and cup maps in the segmentation component. Therefore the segmentation

component would benefit from the classification component that has access to enough labeled

data, to alleviate the shortage of segmented data while achieving interpretable results. We show

the effectiveness of our approach through comprehensive experiment on several datasets. To

the best of our knowledge, this chapter is the first to address the problem of glaucoma detection

in multi-task learning setting that achieves clinical interpretability.

The rest of the chapter is organized as follows. We start by a brief review on glaucoma, the

imaging that are commonly used for glaucoma diagnosis and the imaging biomarkers that are

indication of the disease in Section 3.2. In Section 3.3 we review related works on glaucoma

detection. Then we introduce our method and problem formulation in Section 3.4 and model

architecture in Section 3.4.2. Section 3.5 reports the experimental results and model analysis.

Then we conclude the chapter in Section 3.6.

3.2 Preliminary Concepts

Glaucoma is a complex disease that gradually leads to optic nerve damage, resulting in

progressive irreversible vision loss. Over 60 million people are diagnosed with glaucoma, en-

compassing more than 8 million cases with irreversible blindness [23]. The global incidence of
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glaucoma is anticipated to increase up to 111.8 million by 2040 [24]. Vision loss in glaucoma

happens gradually, where patients become symptomatic in advanced stages makes its diagnostic

more challenging.

Ocular imaging is one of the main modalities used for glaucoma screening. Among the

imaging modalities most commonly used for glaucoma, digital Fundus photos are heavily utilized

for their noninvasive optic nerve head evaluation, allowing the visualization of the disc and cup

areas. The assessment of the optic nerve head is based on measuring the optic disc and optic

cup regions in Fundus photos and calculating the cup-to-disc ratio (CDR). Figure 9 illustrates

a sample of glaucomatous and non-glaucomatous optic nerve, with localization of the optic disc

and optic cup regions. In Figure 9, the top row represents a glaucomatous Fundus of the eye

and the bottom row shows a non-glaucomatous Fundus. The area of the optic nerve head is

zoomed in for better visualization of optic disc and cup. CDR is calculated by dividing the

cup height (in green arrows) over disc height (in bright blue arrows). As Figure 9 suggests, the

CDR value increases, the risk of a Fundus become glaucomatous gets higher.

The assessment of CDR heavily relies on the expertise of ophthalmologists which not only

limits the large-scale screening but also leads to less accessibility in remote areas, high variability

among graders, and increase in the probability of human errors. Therefore, developing a system

than can automatically identify the presence of glaucoma is essential and would greatly benefits

the ophthalmology field in improving patient’s health and preserving vision.



39

D
iscCu

p

D
iscCu

p

Figure 9: Samples of glaucomatous (top row) and non-glaucomatous (bottom row) Fundus

photo from I-ODA dataset.

3.3 Related Works

The current approaches on glaucoma classification from a Fundus photo falls into two main

categories: (i) Segmentation based approaches which utilize the CDR measurement to detect

glaucoma. These approaches identify the presence of glaucoma by extracting the two imag-

ing biomarkers, disc and cup regions, and measuring the CDR in Fundus photos [25–27]. (ii)

Classification based approaches which predict the presence of glaucoma directly from a Fun-

dud photo [28–30]. These approaches mainly employ Convolutional Neural Networks (CNNs)

specifically designed for the dataset in use.
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Segmentation based approaches generate interpretable results by localizing the optic disc

and cup, and calculating the CDR to make the diagnosis. However, in real-world applications,

the segmentation labels are very expensive and challenging to obtain. Further, the accuracy

may get affected by the noise inherent in the manual search for Region of Interest (ROI) and

thus leading to potential performance degradation. Additionally, focusing merely on the optic

disc and cup regions, ignores the global visual context information in Fundus photos that

may contain relevant information regarding the indication of disease. These challenges could

potentially limits the applications of such methods in practice. On the other hand, acquiring

labeled data for classification based approaches are much easier and more readily accessible.

Different from segmentation-based methods, these approaches usually utilizes a global visual

context by extracting features directly from a full Fundus photos to indicate the presence of

glaucoma. However, these approaches suffer from the lack of interpretability that is imperative

for improving clinical applicability.

Our approach leverage both data with classification labels and segmentation labels by for-

mulating the problem in multi-task learning framework. The segmentation module in our

model targets the clinical interpretability of the model. Different from standard multi-task

learning, our model predicts glaucoma from the CDR assessment of predicted disc and cup

from segmentation task. This design forces the model to learn how to predict glaucoma from

the segmentation maps, and therefore it makes the segmentation parts to benefit from the

part of the data with just classification label and thus address the shortage of labeled data in

segmentation task.
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3.4 Methodology

The propose model is composed of two main complementary components, segmentation

and classification, integrated into a multi-task framework. The segmentation module focuses

on localizing the regions of disc and cup in a Fundus photo. This component targets the

transparency of the model’s solution to the task as it provides the CDR measurement from

extraction of imaging biomarkers, disc and cup area. The classification component focuses on

detecting the presence of glaucoma from a full Fundus photo. This component aims to alleviate

the shortage of labeled data in segmentation component. The network is designed in a way

that the classification module learns to predict glaucoma from the obtained disc and cup maps

in the segmentation component. Therefore the segmentation component would benefit from

the classification component that has access to enough labeled data, to alleviate the shortage

of labeled data while achieving interpretable results.

3.4.1 Problem Formulation

Before presenting our proposed approach, we first introduce the notations that will be used

throughout this chapter. Suppose the training set is composed of two sets of data samples

X = Xp ∪ Xs. Let Xs = {(xk, dk, ck)|1 6 k 6 Ns, dk(i, j) ∈ {0, 1}, ck(i, j) ∈ {0, 1}} denote the

part of our training samples having only segmentation labels for disc (dk) and cup (ck). This

set does not contain classification label and it is used for training the segmentation module.

Let Xp = {(xk, yk)|1 6 k 6 Np, yk ∈ {0, 1}} denote the part of the training samples

having only the classification label where yi represent the binary class label, glaucomatous or
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non-glaucomatous. This set does not contain segmentation labels and it is used to train the

classification module. Our goal is to learn the following functions

gd(zk; θd) = dk (3.1)

gc(zk; θc) = ck (3.2)

h(dk, ck) = yk (3.3)

The two funtions gd(.) parameterized by θd and gc(.) parameterized by θc predicts the segmen-

tation map of disc and cup respectively from the feature map zk. Given the segmentation maps

dk and ck, the function h(.) predicts the probability of an input Fundus being glaucomatous.

The function f(xk; θf ) = zk parameterized by θf maps the input xk to feature map zk. All of

the functions are modelled by deep neural networks. The schematic representation of InterGD

is illustrated in Figure 10.

3.4.2 Model Architecture

The propose model is composed of two main complementary components, disc-cup segmen-

tation and classification, formulated into a multi-task learning setting. The overall network

architecture of the proposed model is illustrated in Figure 11. The network takes a full Fundus
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Figure 10: The schematic representation of InterGD. All functions f , gc, and gd are modelled

by neural networks.

image as input and infers three main predictions: 1) segmentation map of the optic disc region,

2) segmentation map of the optic cup region and 3) class label (glaucoma or non-glaucoma).

3.4.2.1 Backbone Network

The main block of our framework that corresponds to function f obtains the representation

z. This part of the model is built upon a U-Net architecture [31] that is composed of encoder

and decoder paths. The encoder path consists of five stacked convolutional blocks each consists

of two convolution layers with ReLU and linear activation followed by a batch normalization and

nonlinearity of ReLU. The first four blocks are followed by a max pooling to downsample the

resolution of a given input image. The decoder path is composed of four convolutional blocks

each consist of up-sampling layers followed by batch normalization and nonlinearity ReLU. The

up-sampling layers in the decoder path is concatenated to its corresponding encoder features
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Figure 11: Illustration of overall architecture of InterGD for interpretable glaucoma screening.

maps. The main block of the model is shared among the three branches, allowing the model to

leverage from the learned features in each module.

3.4.2.2 Disc-Cup Segmentation

The obtained feature map z is given to two separate heads. Then z is convolved with a

1× 1 convolution and a sigmoid activation is applied to predict the segmentation maps of disc

(function gd) and cup (function gc).

Given Xs and its corresponding label set R ∈ {D,C} where D and C represent the cup and

disc segmentation maps, the loss function for the two segmentation heads over all Ns samples

is defined as follows:

Ls(Xs,R) =

Ns∑
k=1

`s(r̂k, rk) (3.4)
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where ri ∈ {di, ci} and r̂k and rk represent predicted and ground truth labels respectively. We

employ dice-coefficient loss for the purpose of this task. Dice Similarity Coefficient (DSC) in

our problem measures the spatial overlap between the predicted segmentation map and the

ground truth label. The loss function `s(r̂k, rk) for one sample is defined as follows:

`s(r̂k, rk) = − log
2
∑H,W

i,j=1 r̂k,(i,j) + ε∑H,W
i,j=1 r

2
k,(i,j) +

∑H,W
i,j=1 r̂

2
k,(i,j) + ε

(3.5)

where H and W are the height and width of the input image, rk,(i,j) and r̂k,(i,j) represent the

ground truth label and predicted probability for ij-th pixel and ε > 0 is a small number added

to prevent division by zero. The overall loss used to train the segmentation module can then

be defined as:

L(Xs,D, C) = Ls(Xs,D) + Ls(Xs, C) (3.6)

where Ls(Xs,D) represents the loss function for disc segmentation and Ls(Xs, C) represents the

loss function for cup segmentation.

3.4.2.3 Classification

The classification component identifies the presence of glaucoma in a given Fundus by utiliz-

ing the disc and cup regions obtained from the segmentation part. The resulting segmentation

maps from the disc and cup branches are fused together and the assessment of CDR is used to

predict the presence of glaucoma. This architecture forces the model to learn how to predict

glaucoma from the segmentation maps, and therefore it makes the segmentation parts to benefit

from the part of the data with just glaucoma label and thus address the shortage of labeled
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data in segmentation task. Moreover, to ensure a correct alignment of cup region inside the

disc area, we employed a masking technique in which disc map is applied on the cup map as

a mask thorough an element-wise dot product. Then the area of the disc and masked cup are

calculated by summation pooling over all the regions. The ratio of cup over disc area (CDR)

can then be an indicator for detecting glaucoma. This part of the model estimates the function

h.

Given Xp, the loss function for the classification part is defined over the Np samples as:

G(Xp,Y) =
1

Np

Np∑
k=1

g(ŷk, yk) (3.7)

where yk and ŷk are the ground truth and predicted labels respectively. The loss function

g(ŷk, yk) for one sample is defined as the cross-entropy between the ground truth and the

model’s estimation as:

g(ŷk, yk) = −yk log ŷk + (1− yk) log(1− ŷk) (3.8)

3.5 Experiments

In this section, we conduct extensive experiments to examine the effectiveness and efficiency

of InterGD on several datasets for glaucoma detection and clinical interpretability.

3.5.1 Datasets

We employed two datasets, DRISHTI-GS [20] and RIGA [19] for segmentation component

and I-ODA [1] for classification task.
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I-ODA The Illinois Ophthalmic Database Atlas (I-ODA) [1] has been created from imag-

ing data belonging to patients who visited the Illinois Eye and Ear Infirmary of the University

of Illinois Chicago (UIC). We isolated two subsets of data I-ODA-A and I-ODA-B with dif-

ferent number of images to assess the effect of data size on the segmentation module. These

datasets do not have any segmentation labels. I-ODA-A contains 4997 glaucomatous and 5000

non-glaucomatous Fundus photos and I-ODA-B contains 1232 glaucomatous and 1267 non-

glaucomatous Fundus. The non-glaucomatous Fundus are defined as being diagnosed with

neither glaucoma nor glaucoma suspect with no potential damage to the optic nerve head.

DRISHTI-GS dataset [20] contains 50 full Fundus images with their corresponding optic

disc and optic cup segmentation maps manually segmented by multiple human experts.

RIGA data set [19] contains 750 Fundus images and 4500 images with disc and cup contour

manually marked on the image. The data is spread across three main datasets: Bin Rushed,

Magrabia and MESSIDOR. We only employed two datasets Bin Rushed and Magrabia in our

experiments. Each Fundus is marked by a couple of physicians. we count each segmented

Fundus as an independent sample. Since RIGA dataset does not contain segmentation maps

of disc and cup, we employed a two stage approach to extract the segmentation maps from the

contours manually marked on the images. We first extracted the contours through morphology

techniques and measuring region properties. Then we employed convex coordinates to extract

the regions of disc and cup and their corresponding segmentation maps. We have isolated 540

disc and 540 cup segmentation maps belonging to 115 fundus images. We considered multiple

segmentation maps corresponding to each image as different samples. Therefore, in total we
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isolated 540 colored fundus images with their corresponding disc and cup segmentation maps.

This dataset does not contain any classification labels.

Datasets DRISHTI-GS and RIGA are utilized for training the segmentation part of the

proposed model while I-ODA is used for the classification task.

3.5.2 Baseline Methods

In order to demonstrate the effectiveness of our approach, we compare InterGD with three

baseline methods in the context of disc-cup segmentation and two methods in the context of

classification for glaucoma detection. We also adopt two versions of our models that are trained

for a single task of either segmentation or classification.

U-Net Sevastopolsky et [26]: This work employs a modified U-Net consisting of encoder

and decoder paths with skip-connections between corresponding layers in encoder and decoder

paths. This approach is designed in a way that the disc and cup segmentation are generated

sequentially. The network is first trained to obtain the disc segmentation map and then the

image is cropped to the region of optic disc that is further being fed to the network to output

the cup segmentation map.

CNN Zilly et [32]: This works employs an ensemble learning to learn convolutional filters.

Entropy sampling is further utilized to select informative points and reduce the computational

complexity.

InterGD-Seg: This model is an adopted version of InterGD where the classification module

is disabled and the model is trained solely for a single-task of disc-cup segmentation with two

heads for disc and cup.
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CNN: The network architecture is mainly borrowed from [33]. The model consists of five

convolutional blocks where each consists of two convolutional layers with ReLU and linear

activation followed by batch normalization and max pooling layer. Finally a fully connected

layer and sigmoid were applied to predict the class label.

InterGD-Pred: This model is another adopted version of InterGD in which the segmen-

tation module is disabled to solely assess the performance of the classification task.

3.5.3 Training and Optimization

The training of InterGD consists of two alternating phases. In the first phase, the model is

trained for ns epochs using backpropagation with respect to objective functions Equation 3.1,

and Equation 3.2. In the second phase, we train the model for np epochs using backpropagation

with respect to the objective function Equation 3.3. Given Xs and Xp, we optimize the model

through Adam optimizer [34] for both phases and for a total of n epochs. For each epoch, sam-

ples are shuffled and training is done with mini-batches. Batch normalization [35] is employed

after each convolution layer to improve the optimization.

3.5.4 Experimental Setting

A split of 80% and 20% is used for training and testing, respectively for all three datasets.

Hyperparameters are selected through validation on a 20% randomly selected subset of the

training data. After finding the appropriate values for parameters through validation, all the

training dataset is used for the training.

The images from all three datasets were resized to 256 × 256 × 3. Then, channel-wise

normalization is applied on all the images. The batch size were selected from {16, 32, 64, 128}.
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The number of training epochs was chosen from {1, 5, 10, 25, 50, 100, 200, 300, 500, 1000} for

segmentation and {1, 10, 20} for classification. Eventually, the model was trained for ns = 50

epochs and np = 1 when using I-ODA-A and DRISHTTI-GS as training datasets. The training

was done for a total number of n = 500 times. The model was trained for ns = 20, np = 1

and a total number of n = 500 when using I-ODA-B and DRISHTTI-GS as training datasets.

When using the RIGA dataset for training, we set the values of ns = 5, np = 1 and trained

for a total number of n = 300 with I-ODA-A. We used the same hyperparameter setting for

I-ODA-B except for the total number of training iterations being set to n = 500. The baseline

model CNN is trained using the I-ODA-B dataset, for a total number of 500 training iteration.

We used Adam optimizer with learning rates chosen from {0.01, 0.001, 0.0001}.

3.5.5 Performance Metric

The proposed model and baselines are evaluated in terms of precision, recall and F1-score

for classification as follows.

Precision =
TP

TP + FP
(3.9)

Recall =
TP

TP + FN
(3.10)

where TP , FP , and FN represent true positive, false positive and false negative rate.

F1− score =
2PR

P +R
(3.11)



51

where P represents precision and R represents recall.

We evaluate the segmentation task in terms of Dice Similarity Coefficient (DSC). DSC comes

from the perspective of set theory and measures the similarity between two sets of data. Given

two sets A and B, DSC is defined as follows

Dice(A,B) =
2|A ∩B|
|A|+ |B|

(3.12)

where |A| and |B| represents the cardinalities of the sets A and B. In our problem we use DSC

to measure the spatial overlap between the predicted segmentation map and the ground truth

label. To calculate the DSC score, we first binarize the predicted segmentation map with a

threshold of 0.5 and then use the following

DSC(A,B) =
2
∑

i,j aijbij∑
i,j a

2
ij + b2ij

(3.13)

where A = (aij)
H,W
i,j=1 and B = (bij)

H,W
i,j=1 represent the predicted output segmentation map and

ground truth binary map respectively.

3.5.6 Performance Evaluation

In this section we assess the effectiveness of our proposed model in different settings. First

we assess the effectiveness of multi-task learning on segmentation performance. Then we analyze

the benefit of increasing data with classification label on network’s performance. We further,

assess the effect of masking technique and show the predicted result of our segmentation module

on a randomly selected Fundus sample from our dataset.
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Disc Seg Cup Seg

Methods Dice Dice

InterGD 95.7 89.7

InterGD-Seg 96.7 89.2

U-Net [26] - 85.0

CNN [32] 97.3 87.1

TABLE I: Performance of InterGD

and baselines for the segmentation

task on DRISHTI-GS

Prediction

Methods Precision Recall F-Score

InterGD 81.4 78.5 79.9

InterGD-Pred 81.0 84.0 82.5

CNN 85.3 86.3 85.8

TABLE II: Performance of InterGD and com-

pared methods for the prediction task on I-

ODA-B.

3.5.6.1 Effect of Multi-task Learning

We assess the effect of multi-task learning in addressing the shortage of segmented data by

comparing our result with two previous approaches [26] and [32] for the disc-cup segmentation

task introduced in Section 3.5.2. We also compare the result with the adopted version of

our model InterGD-Seg. We employ DRISHTI-GS and I-ODA-B datasets for this experiment.

Table I demonstrates the performance result on InterGD and the compared methods. The

result for Sevastopolsky et [26] and Zilly et [32] are reported directly from their papers.

As Table I suggests, our proposed method outperforms the strongest baseline Zilly et [32] on

cup segmentation by almost 2.6% and Sevastopolsky et by 4.7%. Moreover, it can be seen that
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the adopted version of our model for single task of segmentation, InterGD-Seg, also surpasses

the performance of Zilly et by 2.1% and Sevastopolsky et by 4.2% on cup segmentation without

employing any data augmentation techniques or cropping the image to the region of interest as

its employed in [26]. InterGD-Seg achieves a comparable result to our strongest baseline, Zilly

et, on disc segmentation.

This result demonstrates the advantages of multi-task learning over single-task learning

especially for more complex task such as cup segmentation. Table I shows that the segmen-

tation task can benefit from the classification module that has access to adequate data with

classification label while achieving clinical interpretability through the obtained disc and cup

segmentation maps and CDR assessment.

Additionally, we evaluate an adopted version of our model to the single task of classification,

named InterGD-Pred and compare it with a deep convolutional network CNN introduced in

3.5.2. The result is illustrated in Table II. The result in Table II shows that as expected

CNN model that is specifically designed for the task of classification and trained solely for

classification module with adequate training data performs better than InterGD which handles

both tasks of segmentation and classification. Table II indicates that our interpretable model’s

performance is still comparable to an uninterpretable deep models such as CNN. The reason that

our multi-task model InterGD does not outperform its single task version could be attributed to

the difference between the distributions of the data employed in classification and segmentation

tasks.
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TABLE III: The effect of the classification training size on the performance of InterGD - em-

ploying DRISHTI-GS as the segmentation dataset.

Disc Seg Cup Seg Prediction

Pred Training Dataset (size) Dice Dice Precision Recall F-Score

I-ODA-A (∼ 8k) 96.4 90.3 89.0 90.2 89.6

I-ODA-B (∼ 2k) 95.7 89.7 81.4 78.5 79.9

The overall result indicates that our proposed model: (1) alleviates the problem of shortage

of segmented data with the help of the classification module, and (2) alleviates the lack of

interpretability inherited in merely using a classification module by the obtaining disc and cup

segmentation maps and CDR assessment. Furthermore, we showed that even with datasets

following different data distributions, the segmentation component can still benefit from the

data with only classification labels.

3.5.6.2 Effect of Classification Training Size

We analyze the effectiveness of our multi-task setting by employing a larger classification

training set IODA-A containing almost 8k training samples which is almost 4 times larger than

I-ODA-B. We perform this experimenst for both of the segmentation datasets, DRISHTI-GS

and RIGA. The results are shown in Table III and Table IV. As the result suggests, increasing

the amount of data for the classification task, boosts the performance of segmentation task
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TABLE IV: The effect of the classification training size on the performance of InterGD - em-

ploying RIGA as the segmentation dataset.

Disc Seg Cup Seg Prediction

Pred Training Dataset (size) Dice Dice Precision Recall F-Score

I-ODA-A (∼ 8k) 96.1 83.0 88.2 92.1 90.1

I-ODA-B (∼ 8k) 95.7 81.9 79.4 76.8 78.

further. This result indicates the effectiveness of multi-task learning and that segmentation

task can benefit from the increase in data with only classification label. As classification labels

are easier to obtain and more accessible, this result shows that the difficulty of procuring

segmentation labels can be mitigated by exploiting the classification labels by formulating the

problem in multi-task setting.

3.5.6.3 Effect of Masking

In this section, we assess the effectiveness of the masking technique by adopting two versions

of our model, one with masking disabled and one with masking enabled. We employ both of the

DRISHTI-GS and RIGA and I-ODA-B dataset for this experiment. The result for DRISHTI-

GS and RIGA datasets are demonstrated in Table V and Table VI respectively. As Table V

and Table VI suggest, the result shows a slight improvement in classification performance when

masking is enabled. Although masking technique does not benefit the segmentation task, it
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TABLE V: The effect of masking on the performance of InterGD on I-ODA-B and DRISHTI-GS

datasets.

Disc Seg Cup Seg Prediction

Methods Dice Dice Precision Recall F-Score

InterGD 95.7 89.7 81.4 78.5 79.9

InterGD (No Masking) 96.2 90.0 75.2 80.5 77.7

TABLE VI: The effect of masking on the performance of InterGD on I-ODA-B and RIGA

datasets.

Disc Seg Cup Seg Prediction

Methods Dice Dice Precision Recall F-Score

InterGD 95.7 81.9 79.4 76.8 78.0

InterGD (No Masking) 95.9 82.1 79.9 75.8 77.8
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Figure 12: Illustration of predicted segmentation maps and ground truth on a sample fundus

photo from DRISHTI-GS.

does not degrade its performance either. We can also see that the effect of masking technique

lessens for both disc/cup segmentation and classification performance as the number of training

samples for segmentation component increases.

3.5.6.4 Predicted Result Analysis

In this section, we visualize the segmentation maps predicted by InterGD on a random sam-

ple selected from DRISHTI-GS dataset. The result is demonstrated in Figure 12. In Figure 12

the full Fundus image on the left demonstrate the input and the Fundus with highlighted cen-

ter area on the right illustrates predicted disc and cup regions. The middle images shows the

zoomed in predicted and ground truth of disc and cup segmentation maps. The white regions

are the predicted disc and cup. The red and green contours demonstrate the ground truth

of disc and cup segmentation map respectively. As Figure 12 suggests, the proposed model

achieves a reasonable accuracy in predicting the cup and disc segmentation maps.
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3.6 Conclusion

In this chapter, we study the problem of clinical interpretability in the context of real-world

ophthalmic imaging application, glaucoma detection from a full Fundus photo. Glaucoma is a

complex disease that gradually damages the optic nerve and make its diagnosis very challenging.

Cup to Disc ratio is commonly used in real-world clinical settings for assessment of optic nerve

head and glaucoma screening. The current approaches mainly attempt at predicting glaucoma

from a Fundud directly and disregard the clinical interpretability. The lack of interpretability

pose a major challenge for clinical applicability of such methods.

To address this challenge, we propose a novel deep neural network that integrates segmenta-

tion and classification into a unified end-to-end architecture. We formulate our problem into a

multi-task setting in which the segmentation component aims at localizing the area of optic disc

and cup and targets the clinical interpretability of our model. Classification component predict

glaucoma from fusion of disc and cup from segmentation module and alleviates the shortage

of segmentation labels. We showcased the effectiveness of our framework through extensive

experiments on several datasets. Our experimental results showed the superiority of our model

over the previous works without the need for cropping the image to ROI or employing any data

augmentation.



CHAPTER 4

SELF-SUPERVISED LEARNING FOR REAL-WORLD CLINICAL DATA

APPLICATION

(This chapter was previously published as Mojab, N., Noroozi, V., Yi, D., Nallabothula, M.

P., Aleem, A., Philip, S. Y., and Hallak, J. A.: Real-world multi-domain data applications

for generalizations to clinical settings. In 2020 19th IEEE International Conference on

Machine Learning and Applications (ICMLA) , pages 677–684. IEEE, 2020 [3].)

4.1 Introduction

Deep learning methods have proved to excel in many fields of computer vision. Motivated

by these successes, deep learning application in medical imaging, in particular ophthalmic

imaging applications, have received considerable attention over the past decade. This has

inspired an exponential growth of many research studies aiming to address various ophthalmic

imaging problem using deep learning methods from disease classification to lesion segmentation

or progression prediction. Most of the current research studies focus on solving the problem by

relying on standardized data from artificial settings, such as clinical trials. However, in many

real-world clinical applications, data is very complex and lacks standardization. Therefore, the

standardized data do not necessarily represent the characteristics of real-world clinical data

yielding varying results in clinical translation.

59
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Real-world data is characterized by variability in quality, machine-type, setting, source,

lacks standardization and labels, and embedded with inherent noise sourcing from human errors.

The complexity of real-world data makes the translation of deep learning model to real-world

applications very challenging. Hence, there has been a growing concern about the generalization

capacity of deep learning based models for real-world clinical data applications and hence their

translation to real-world clinical settings. Although, the deep learning based models have been

extensively studied in medical imaging, there has been very limited work on the generalization

and translation capacity of such methods to real-world clinical settings. Different from other

fields of computer vision, collecting medical data that represent the characteristic of real-world

data is an ongoing challenge. Acquiring labeled data is not only laborious and expensive,

the access to data is limited due to HIPAA regulations, patient privacy, data ownership, and

challenges regarding data collection from different sources. These challenges results in shortage

of annotated datasets in medical field, in particular medical imaging. Consequently, most of the

medical imaging problems with limited data are formulated in transfer learning setting, relying

on pretrained networks on non-medical data such as ImageNet [17] or CIFAR [36] for feature

extraction. These methods tend to perform to their full potential when the nature of data in

the downstream task is similar to the data used for pretraining networks. However, the nature

of medical data is quite different from imaging data in datasets such as ImageNet or CIFAR

which limits the capacity of these methods for extracting effective visual representations for

medical data.



61

In general, acquiring unlabeled data is easier and more accessible compared to labeled data.

Self-supervised learning methods have proved to excel in learning representations by exploiting

the unlabeled data [37]. Moreover, the recent research studies have shown that self-supervised

learning can learn more generalizable features and hence lead to better generalization over

supervised methods [38].

Motivated by these challenges, we develop a framework, called FundusNet, that exploits

unlabeled data by employing a self-supervised learning aiming to learn effective visual repre-

sentation for ophthalmic imaging data, in particular Fundus photos. This builds on the work

of [38] where we incorporate a collection of data augmentations into a contrastive learning

framework to improve the generality of learned representations. Further, we assess the general-

ization capacity of deep learning algorithms and their translation to real-world data applications

by exploring their capacity in coping with complexity of real-world data versus standardized

data. In order to evaluate our proposed approach, we perform comprehensive experiments on

a real-world clinical application, glaucoma detection, using a collection of datasets including a

dataset that represent real-world multi-domain and a dataset representing standardized single-

domain data. We demonstrate the effectiveness of self-supervised representation learning by

comparing our work against fully supervised methods. We also show the quality of the learned

representation for Fundus photos by comparing our framework to pretrained networks using

non-medical datasets. To the best of our knowledge, this chapter is the first work aiming to

build a network for medical imaging representation learning via self-supervised learning and as-
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sess the clinical translation and generalization capacity of deep learning methods on real-world

multi-domain data.

The rest of this chapter is organized as follows. We start by a brief overview on related works

on self-supervised learning for visual representation learning in Section 4.2. Then we introduce

our approach and problem formulation in Section 4.3. Section 4.4 reports the experimental

setting and performance results. In Section 4.5 we conclude the chapter.

4.2 Related Works

The machine learning field has witnessed an evolution of self-supervised learning methods

over the past decades. Some of the earliest studies in the literature target the problem of

self-supervised learning by relying on specific design choices for the network architecture or

predictive pretext tasks [39–42]. These limitations, could potentially restrict the generality

of the learned representation and hence limit the applications of such methods to medical

imaging that deals with complex real-world multi-domain datasets. So it is desired to learn

more generalizable visual representations that can be utilized across different domains. The

self-supervised visual representation learning proposed in [38], however, avoids the limitation of

specific design choice or complexity of solving predictive tasks by incorporating a broad family of

augmentations and contrastive loss into a simple off the shelf architecture. Inspired by the work

in [38], we leverages a collection of augmentations suited for our medical dataset embedded in

a simple network architecture. Incorporation of data augmentation into a contrastive learning

framework could potentially lessen the sensitivity of the model to domain-specific information in
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the data and hence improves upon the generality of learned representations and generalization

capacity of the model.

4.3 Methodology

Self-supervised representation learning is the task of learning features without the human

supervision, in particular without the requirement of human input in terms of labeling. In our

work, we first learn the visual representation of data via a self-supervised learning method and

then show the quality of learned representation in the context of a downstream task, glaucoma

detection.

4.3.1 Contrastive Learning

In the constrastive learning framework, the representations are learned by maximizing the

similarity between the two views of the same data input. The framework consists of four main

components as follows

• Augmented views: Given the input xk, we obtain two augmented views of xk denoted by

x
(1)
k and x

(2)
k , by applying stochastic data augmentations.

• Base encoder: The base encoder f(.) maps the augmented inputs x
(1)
k and x

(2)
k to the

feature maps z
(1)
k and z

(2)
k . The encoder function is modeled by a neural network.

• Projection head: A projection head q(.) is responsible for mapping the feature maps z
(1)
k

and z
(2)
k to h

(1)
k and h

(2)
k in the latent space to which a contrastive loss is further applied.

The function q(.) is also modeled by a neural network.

• Contrastive prediction task and constrastive loss: In the context of this problem, two

augmented views of the same input are considered the positive pair, i.e. x
(1)
k and x

(2)
k .
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The contrastive prediction task aims to identify x
(2)
k for a given x

(1)
k via a contrastive loss

function.

Given the Fundus photo in our dataset, the application of two augmentations results in two

augmented views of the input Fundus which are further being mapped to representation z via

the encoder function f that are further used in downstream tasks. The overall architecture of

the FundusNet framework is illustrated in Figure 13.

Figure 13: The overall architecture of contrastive learning framework for FundusNet.
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Given a batch of N samples, applying two augmentations results in 2N samples. Given each

positive pair, the remaining samples in the batch 2(N − 1) are considered negative samples.

Given a positive pair {(1), (2)}, the contrastive loss function is defined as follows

`(1),(2) = −log
exp(sim(1),(2))/τ∑2N

i=1 1[(i)6=(1)]exp(sim(1),(i))/τ
(4.1)

where τ represents a temperature parameter, 1 is an indicator function, and sim(i),(j) represents

the cosine similarity. The cosine similarity between two vectors a and b is defined as follows

sim(a, b) =
aT b

‖a‖‖b‖
(4.2)

The overall loss function is defined as the mean of losses for all positive pairs as follows

L =
1

2N

N∑
i=1

[`((2i− 1), (2i)) + `((2i), (2i− 1))] (4.3)

4.3.2 Classification Problem

Let D =
{

(xk, yk)|yk ∈ {0, 1}
}M
k=1

denotes the training set for our downstream task of

glaucoma detection. M represents the number of samples, and yk indicates the binary label of

input xk where values of 1 and 0 represent diseased and non-diseased class respectively. Given

D, our goal is to learn a binary classifier function fc : X → Y parameterized by θc. We define

the following functions

f(xk; θf ) = zk (4.4)
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g(zk; θg) = yk (4.5)

where f(.) parameterized by θf represents the encoder function f : X → H introduced in

the previous section and it is learned by unsupervised pretraining using the unlabeled Fundus

data. The function g(.) that is parameterized by θg represents the decoder function g : H → Y

mapping the learned representation zk to the label space. Given the input xk ∈ X , function fc

can be decomposed such that

fc(xk, θc) = (g ◦ f)(xk) (4.6)

where θc = {θg, θf}. Given the input xk, binary classifier fc(.) estimates the probability of an

input image being diseased.

Given the training set D, the loss function over the M samples is defined as follows

Lc(D; θc) =
M∑
k=1

`c(xk; θc) (4.7)

where `c(xk) represents the classification loss for sample xk and it is defined as cross-entropy

between the model’s estimation and the ground-truth label

`c(xk; Θc) = −yk log ŷk − (1− yk) log(1− ŷk)) (4.8)

where ŷk = fc(xk; Θc), 0 < ŷk < 1 indicates the model’s prediction for input xk and yi represent

its corresponding ground-truth label.
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4.4 Experiments

4.4.1 Data Collection

We employ I-ODA dataset [1] for our experiments. We isolated 6244 glaucoma and 7664

non-glaucoma patients from this dataset. Non-glaucoma patients in our dataset are selected as

those patients being diagnosed with neither glaucoma, nor glaucoma suspect with no potential

damage to the optic nerve head. Among the 12 categories, we isolated Fundus images for the

purpose of our experiments in this work which we refer to as ODA-G dataset. Each Fundus

image can be generated by a different imaging device. The statistics of image data and the

corresponding imaging device distribution in the ODA-G dataset is illustrated in Figure 14.

The ODA-G dataset consists of image data from 11 different imaging devices where devices A,

B, C, and D comprise 96% of the data, while the other 7 devices are responsible for almost 4%

of the data. A snapshot of samples of Fundus photos from 4 major imaging devices A, B, C, and

D are illustrated in Figure 15. As the Figure 15 suggests, images across different devices can

have different color distributions, different shapes, and position of the cup and disc regions. We

regard the imaging devices in I-ODA dataset as different domains. Therefore, the ODA-G data

is a multi-domain dataset that is a mixture of data generated from different imaging devices. We

employ ODA-G for unsupervised pretraining which learns the base encoder network (function

f) without labels.

In order to assess the deep learning algorithms in coping with real-world data and their

generalization capacity as opposed to simpler standardized data, we isolated two subsets of

data as follows
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Figure 14: The number of Fundus photos per imaging device.

• Fundus images generated from only one imaging device, device A, which we refer to

as ODA-A. Although this dataset, is also a subset of a real-world dataset, we regard

it as standardized dataset as it contains data from a single domain Hence it resembles

the characteristic of standardized dataset from artificial settings that are usually single

domain.

• ODA-G that contains Fundus generated by all imaging devices used for glaucoma screen-

ing in our dataset. This dataset represents a multi-domain data capturing the complex

aspect of diverse real-world data.
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(a) Fundus samples from device A (b) Fundus samples from device B

(c) Fundus samples from device C (d) Fundus samples from device D

Figure 15: A snapshot of samples of Fundus photos from I-ODA dataset generated by different

imaging devices.

We aim to answer two main research questions through our experiments, (1) how deep

learning models cope with the complexity of real-world data comprised of multiple domains

versus standardized datasets with a single domain., and (2) how important training the model

on real-world data is for generalizations to a clinical setting.

4.4.2 Baselines

To show the effectiveness of our approach, we compare our result against fully supervised

methods and pretrained nwtorks on ImageNet and CIFAR. Previously proposed works on glau-
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coma detection, mainly employ a Convolutional Neural Network (CNN) using one of the stan-

dardized datasets. We simulate the general approach and adopt two supervised methods.

• We employ ResNet-50 with width of 1 as the base encoder network. The decoder is

chosen as a simple MLP that follows the structure of 1 hidden layer of size 1024, batch

normalization, ReLU activation, and dropout. Further, a sigmoid activation function is

applied to the obtained output.

• A convolutional neural network (CNN) that is specifically designed for our task and

dataset. This network is composed of 2 convolutional block, where each consists of 1 con-

volutional layer with ReLU activation, batch normalization, non-linearity ReLU, and max

pooling. Two fully connected layers with size 512 and 64 followed by batch normalization,

non-linearity ReLU, and dropout are further applied. The sigmoid activation function is

used on the final layer to predict the output.

We also compare FundusNet with two other pretrained networks from [38] on ImageNet

and CIFAR-10 dataset in a transfer learning setting. Based on the choice of CIFAR-10 based

encoder or ImageNet based encoder, a slightly different network architecture are employed. For

ImageNet based encoder, a ResNet with depth 50 and three hidden layer width choices (1×,

2×, 4×) are employed [38], [43]. For CIFAR-10 based encoder, a simpler ResNet like network

with depth of 18, and width 1 is employed.
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4.4.3 Experimental Setting

4.4.3.1 Network Architecture

The base encoder f and projection function q are both modeled with neural networks.

Similar to [38], we take the base encoder to be ResNet architecture with depth of 18 and width

set to 1. The projection head is taken to be a 2 layer MLP. The overall base encoder network

consists of four main residual blocks each consists of two stacked convolutional followed by

batch normalization.

4.4.3.2 Training and Optimization

We employ slightly different experimental setup based on the choice of pretrained networks.

For FundusNet, images were resized to 112×112. Resize with random flip and color distortions

are employed for data augmentation. For ImageNet based pretrained network, images were

resized to 224 × 224. Data augmentation are chosen as random crop and resize with random

flip, color distortions, and Gaussian blur [38]. For CIFAR-10 based pretrained network, images

were resized to 32 × 32. Random crop and resize with random flip and color distortions are

employed for data augmentation [38].

We train the supervised methods with and without data augmentation. When data aug-

mentation is used, color distortion and random flip are employed.

The split of training and testing for our dataset is based on the patient ids. The reason

for that is that in our dataset (ODA-G and ODA-A), each patient can have more than one

Fundus photo taken coming from different exam sessions. Therefore, to prevent the leakage

of any information from the test set into training, we split the data by patients. We chose
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a split of 80% and 20% for training and testing respectively. The hyperparameter tuning

for each dataset is performed on the validation set chosen randomly as 20% subset of the

training set. After finding the appropriate values for hyperparameters, all the training set is

used for training. Eventually, the result on the test data is reported in terms of the accuracy

metric. For pretraining, we use LARS optimzer [44] and we use SGD and Adam for downstream

classification tasks. For SGD optimizer with Nestrov momentum the momentum parameter was

set to 0.9 and the initial learning rate is selcetd from {0.1, 0.07, 0.01, 0.007, 0.001}. Batch size

is selected from {64, 128, 256, 512, 1024}

4.4.3.3 Transfer Learning

We evaluate the transfer learning setting across two datasets ODA-G and ODA-A by

(1) learning a linear classifier on top of the pretrained network using FundusNet (ODA-G),

ResNet (CIFAR, ImageNet) based encoder and (2) fine-tuning x% of the network where x ∈

{25, 50, 75, 100} based encoder network. In the first setting, a logistic regression classifier is

trained on top of the frozen base encoder network. The extracted features from the pretrained

network are used to perform binary classification for detecting glaucoma in a given Fundus

input.

In the first setting, no data augmentation is applied. The number of epochs is selected from

{50, 100, 200, 300, 500}, batch size is selected from {1024, 512, 256, 128} and learning rate is se-

lected from {0.1, 0.07, 0.05, 0.03, 0.01, 0.007, 0.001}. In the second setting, we fine-tune the base

network using the pretrained network’s weights as initialization. We fine-tune {25%, 50%, 75%, 100%}

of the network for {50, 100, 200, 300, 500} epochs where learning rate is selected from {0.1, 0.07, 0.05, 0.03, 0.01, 0.007, 0.001}.
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The batch size is selected from {512, 256, 128, 64} and the rest of hyperparameters are set to

default value as reported in [38].

4.4.4 Experimental Results

In this section we demonstrate the effectiveness of our approach by comparing against fully

supervised models and transfer learning setting using ImageNet and CIFAR based pretrained

network. Further, we answer our two research questions in Section 4.4.1 through extensive

experiments on real-world clinical application, glaucoma detection, using both real-world data

and standardized dataset.

4.4.4.1 Comparison Against Fully Supervised Approaches

In this section, we demonstrate the effectiveness of FundusNet in learning visual represen-

tation of Fundus photos by comparing to pretrained networks on ImageNet, CIFAR and fully

supervised models. We show the result of our work on both ODA-G and ODA-A dataset for

the task of glaucoma detection. We formulate the problem in transfer learning framework and

evaluate the model in both settings, linear evaluation and fine-tuning.

In the first setting, we evaluate our approach by learning a linear classifier using self-

supervised representations learned by pretrained base encoder network and compare the result

against fully supervised methods. In the second setting, we explore the performance of our

classifier with fine-tuning the base encoder network using the weights of the pretrained network

as initialization. We explore fine-tuning {25%, 50%, 75%, 100%} of the network. The result is

demonstrated in Table VII.
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TABLE VII: Comparison of employing self-supervised learned representations via transfer learn-

ing (TR) in linear evaluation and fine-tuning settings against fully supervised baselines.

ODA-G ODA-A Weights

Supervised Baselines

ResNet-50 (1×) 59.93 83.57 Random

ResNet-50 (1×) (+Augmentation) 82.61 86.44 Random

CNN 64.67 88.35 Random

CNN (+Augmentation) 82.93 90.43 Random

self-supervised TR+Linear

ResNet 72.87 82.40 CIFAR-10

ResNet-50 (1×) 80.26 88.92 ImageNet

ResNet-50 (2×) 83.84 91.00 ImageNet

FundusNet 84.87 91.41 ODA-G

self-supervised TR+Fine-tuning

ResNet 82.05 86.04 CIFAR-10

ResNet-50 (1×) 83.28 90.35 ImageNet

ResNet-50 (2×) 83.14 90.43 ImageNet

FundusNet 84.96 91.88 ODA-G
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The result in Table VII shows the superiority of FundusNet using self-supervised learned

representations over fully supervised approaches. We can also see that using FundusNet for fea-

ture extraction outperforms the pretrained networks on ImageNet and CIFAR. We can achieve

superior result over ResNet-50 (1×) and ResNet-50 (2×) with much simpler network, smaller

image size for inputs and fewer number of parameters. The overall result shows that FundusNet

is able to learn more generalizable features for medical images, Fundus and hence lead to better

generalization for medical imaging downstream tasks.

Among the supervised baselines in Table VII, the CNN (+Augmentation) method that

is specifically designed for our dataset-task achieves a better result over off the shelf ResNet

networks. This result suggests that specifically designed networks for each dataset-task com-

bination are usually important to the success of supervised approaches especially when data is

limited. This limitation could potentially limits their applications and generalization capacity,

especially in real-world clinical setting where the data is complex and multi-domain.

The superiority of our framework over supervised baselines shows that we can avoid the

complexity of design choice for each particular task by simply using one of the off the shelf

networks. This result is particularly important for medical imaging where data is limited to

train robust supervised models.

4.4.4.2 Neural Networks On Real-world Data

In this section, we assess the capacity of neural networks in coping with real-world datasets

versus standardized datasets by answering our two research questions. How well deep learning
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based models cope with the complexity of real-world data. What the role of real-world data is

in generalization and translation to clinical settings.

We answer the first question by analyzing the results of our work on the two datasets ODA-

G and ODA-A. The ODA-G dataset consists of data from multiple imaging devices forming

a complex multi-domain data representing the characteristics of real-world data. The ODA-A

dataset comprises a single domain and represents the characteristics of a simpler and more stan-

dardized dataset that are commonly used in current approaches in the literature for glaucoma

detection.

The result from Table VII shows, when using ODA-A as training set, the model achieves

superior result over using ODA-G as the training set in all three settings, supervised, linear

evaluation, and fine-tuning. The performance gap is particularly noticeable when using super-

vised learning methods. The reason is that the success of fully supervised methods usually

relies on the availability of large standardized labeled datasets. This experiment verifies that

deep learning models do not perform as well on complex real-world datasets as on standardized

datasets and their performance degrades as the complexity of data increases.

To answer the second question, we design an experiment where we form four pairs of (ODA-

G, ODA-G), (ODA-G, ODA-A), (ODA-A, ODA-G) and (ODA-A, ODA-A) datasets. We aim to

investigate how training the model with either real-world data or standardized data affects the

generalization capacity of the model to the data from the same or other settings and domains.

We train the model on the first element of each dataset pair and perform evaluation on the

second element of a dataset pair. The result is illustrated in Table VIII.
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TABLE VIII: Generalization across pairs of datasets employing self-supervised learned repre-

sentation via transfer learning.

Training Data Testing Data Test Accuracy(%)

ODA-G ODA-G 84.87

ODA-G ODA-A 90.35

ODA-A ODA-G 76.53

ODA-A ODA-A 91.41

As Table VIII suggests, if we only train the model on one small unique dataset, ODA-A,

and perform the evaluation on an extremely complex real-world dataset, ODA-G, we achieve

the worst result depicted in red in Table VIII. On the other hand, when we train the model

using a diverse multi-domain real-world dataset, ODA-G and evaluate it on a smaller and more

unique dataset, ODA-A, we achieve a promising result as depicted in green in Table VIII. This

result indicates that even though complex data makes the learning process harder, it leads the

model towards learning more generalizable features. It is not surprising that (ODA-A, ODA-

A) experiment achieves the best result, as this is where usually neural networks perform to

their full potential. However, we can see that the obtained result from the (ODA-G, ODA-A)

experiment is also competitive with the result of the (ODA-A, ODA-A) experiment, indicating

the advantage of learning with real-world data.
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TABLE IX: Generalization across pairs of datasets employing supervised approaches.

Training Data Testing data Test Accuracy (%)

ODA-G ODA-G 82.93

ODA-G ODA-A 74.00

ODA-A ODA-G 69.19

ODA-A ODA-A 90.43

The overall results validates the crucial role of real-world data for generalizition and trans-

lation to clinical settings. If the model trains on small unique datasets, it fails to generalize

to other settings and domains. Hence we need diverse datasets that capture the aspects of

real-world data to cope with generalizations to other domains, and improve the translatable

capacity especially in clinical settings.

Further we investigate the generalization capacity of self-supervised approaches in compar-

ison with fully supervised methods in the similar setting. We perform the same experiments

but under supervised settings. The result is shown in Table IX. The observation from Table IX

(shown in bold) supports the previously obtained result from Table VIII. Training with a

real-world dataset, ODA-G, generalizes better to ODA-A compared to the (ODA-A, ODA-G)

experiment where we train the model on ODA-A and evaluate it on ODA-G. However, we can

see that the performance gap between (ODA-G, ODA-G) and (ODA-G, ODA-A) experiment
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and between (ODA-A, ODA-A) and (ODA-A, ODA-G) is more noticeable compared to the

same experiments under sel-supervised setting in Table VIII. This result could indicate that su-

pervised approaches perform to their full potential when they are trained and evaluated on the

datasets from the same domain. Moreover, the comparison between the results in Table VIII

and Table IX shows that (ODA-G, ODA-A) experiment performs poorly under a supervised ap-

proach achieving only 74% accuracy, while under a self-supervised approach it achieves 90.35%

as shown in Table VIII, which is more than 16% improvement over the supervised setting. This

result verifies the superior capacity of self-supervised approaches in generalization to different

device and domains over supervised approaches.

4.4.5 Performance Analysis

In this section, we first analyze the effect of data augmentation on generalization perfor-

mance. Then, we evaluate the effect of training time and fine-tuning x% of the network on the

performance of the model.

4.4.5.1 Effect Of Data Augmentation On Generalization

The work in [38] shows that incorporating a broad range of data augmentation in the self-

supervised learning framework enhance the generality of learned representations. In this section

we analyze the role of data augmentation in generalization for fully supervised approaches in

both the presence and absence of data augmentation. For ODA-G we applied the composition of

color distortion and random flip and for ODA-A we only applied the random flip. As the result in

Table VII suggests, data augmentation can efficiently improve the generalization performance.

This result shows that incorporating data augmentation enhances the capacity of the model
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to learn more generalizable features. This improvement is particularly more noticeable for

the ODA-G dataset that is comprised of multiple domain. Therefore, data augmentation can

benefit the model training on a diverse multi-domain real-world dataset and improve upon their

generalization capacity.

4.4.5.2 Effect Of Training Time On Real-world Data

In this section, we assess the effect of training time on the performance of glaucoma detection

using pretrained networks on ImageNet and CIFAR by increasing the number of training epochs

while keeping the batch size fixed for each model. Figure 16 shows the plots of test accuracy

versus training epochs for linear evaluation employing ImageNet based encoder (ResNet-50 (1×,

2×, 4×)).

Figure 17 shows the plots of test accuracy versus training epochs for linear evaluation

employing CIFAR-10 based encoder (ResNet with depth 18 and width 1) on both ODA-G and

ODA-A datasets.

As the plots in Figure 16 suggest, the performance improves as we increase the number of

training epochs when employing the ImageNet based encoder network on the ODA-G dataset.

However, increasing the number of epochs has the opposite effect on the ODA-A dataset when

using ImageNet based encoder network. As Figure 17 suggests, we observe a similar behaviour

when using CIFAR-10 based encoder. However, we can see that increasing the number of epochs

has less effect on performance improvement on ODA-G compared to using the ImageNet based

encoder. The overall result indicates that more diverse datasets with large amount of data can

benefit more from longer training.
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Figure 16: Effect of the training time on test accuracy employing ImageNet based pretrained

network for ODA-G and ODA-A datasets.
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Figure 17: Effect of training time on test

accuracy using CIFAR-10 based pretrained

network for ODA-G and ODA-A datasets.
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Figure 18: Effect of fine-tuning x% of the net-

work on test accuracy using CIFAR-10 based

encoder network for ODA-G and ODA-A.
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4.4.5.3 Effect Of Fine-tuning percentage

In this section, we assess the effect of percentage of fine-tuning on performnace of the model.

We plot the behaviour of the model when fine-tuning x% ∈ {25, 50, 75, 100} of the network on

test accuracy and employing only the CIFAR-10 based encoder network. The result is shown in

Figure 18. As the plot in Figure 18 shows, the test accuracy improves as we fine-tune a larger

portion of the network when training on ODA-G dataset. Training on the ODA-A dataset still

benefits from fine-tuning the network especially when it is fine-tuned on 1/4 of the network

but after that, we do not observe any significant change in the performance. We achieved our

best result for this experiment by fine-tuning the whole network from scratch when using the

ODA-G dataset and 25% of the network when using ODA-A datset. We also observed that the

model does not benefit substantially from fine-tuning the network with ImageNet weights.

4.5 Conclusion

In this chapter, we study the problem of generalization to real-world clinical settings when

training deep learning models using real-world data versus standardized datasets. Real-world

data is characterized by variability in quality, machine type, settings and lacks standardozation.

The Complexity of real-world data pose a major on training deep learning models and their

generalization performance. Most of the existing approaches in medical imaging applications,

rely on standardized datasets collected from artificial settings such as clinical trials for modeling

and problem solving which has raised a growing concern on their translation applicability in

real-world clinical settings. Moreover, due to limited data in many medical applications, these

problems are commonly formulated in transfer learning setting using pretrained networks on
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data such as ImageNet. The dissimilarity of medical data and ImageNet like data, limits the

capacity of such networks to extract effective representations for medical imaging data.

Motivated by this challenge, in this chapter, we presented a feature extraction network,

called FundusNet, for ophthalmic imaging applications using self-supervised visual represen-

tation learning. We also assessed the generalization and translation capacity of deep learning

algorithms by formulating the problem of real-world clinical application in a transfer learn-

ing setting using the learned representation from FundusNet. We showed the effectiveness of

our approach through extensive experiments in the context of real-world clinical application,

glaucoma detection. We showcased the importance of learning with real-world data for general-

ization, through performing extensive experiments on a multi-domain real-world dataset versus

a single-domain standardized dataset. We showed that without learning on complex real-world

data, the deep learning models cannot generalize well to clinical settings.



CHAPTER 5

CLASSIFICATION FOR SMALL DATASETS

5.1 Introduction

Contemporary deep neural networks relies heavily on large amount of training data to

perform to their full potential in modeling and solving problems. For this reason, large scale

datasets have been collected [17, 45, 46], enabling the development of powerful models pushing

the state-of-the-art further in many downstream tasks of computer vision. The generalization

capacity of deep neural networks tend to degrade when the data is scarce. This problem can

be more sever for classification networks modeled by deep neural networks. However, there

are several fields such as medical field that are facing many applications where access to large

amount of data is very challenging or infeasible, e.g. rare diseases. The data collection problem

can be even more challenging in domains such as healthcare where even the access to data is

limited due to patient privacy regulations and data ownership.

Transfer learning and multi-task learning methods have proved to be an effective solution

to the applications with limited data. These methods exploit the knowledge from other related

tasks to improve upon the generalization performance of the model. Transfer learning im-

proves the performance by exploiting the weights of a pre-trained network as initialization [47].

Despite their promising result their applications remains limited. The reason is that transfer

learning relies on assumption of large amount of data for pre-training. These approaches also

84
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are expected to performs to their full potential when the nature of data for the target task is

similar to the one used for the pre-trained networks.

Multi-task learning methods jointly train the network with a group of related tasks to

improve upon the generalization in all tasks [48, 49]. Classification tasks are commonly be-

ing accompanied by segmentation task into a multi-task framework [2]. Although, multi-task

learning could be a potential solution for applications with limited data, they face the challenge

of loss balancing in different heads which itself could lead to overfitting problem. Moreover,

obtaining segmentation labels for dataset is not only challenging but also requires the domain

knowledge in many fields such as helathcare.

Empirically speaking, segmentation methods have shown more robustness to overfitting

when trained with small dataset [31, 50]. The reason could be potentially due to encoding a

dense pixel-wise loss that incorporates a high-bias shape prior into the learning process. In this

chapter, we introduce a novel framework to the above problem, called CvS (Classification via

Segmentation). CvS harnesses the power of segmentation to learn from small datasets enabling

us to perform classification for extremely small data (∼ 1− 5 samples per class). CvS is single

headed approach to multi-task learning that eliminates the need to balance the losses from

different heads while still doing both tasks of segmentation and classification. CvS, alleviates

the difficulty of procuring segmentation labels for a dataset by employing a label propagation

method that obtain fully segmented data by segmenting only a small subset of the dataset.

In order to evaluate our model, we perform extensive experiments on diverse problems and

show the effectiveness of our proposed approach by achieving much higher classification result
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when only a handful of data points is available to the model. To the best of our knowledge,

this chapter is the first work aiming to address classification for extremely small datasets by

utilizing segmentation.

The rest of this chapter is organized as follows. We start by brief overview of related works

on image classification, particularly in the small data regime in Section 5.2. In Section 5.3 and

Section 5.3.1 we present our model and some preliminary concepts on the problem. In Section

5.3.2 we explain how we incorporate two simple approaches to obtain segmentation label for a

dataset. Section 5.5 presents the experimental results on diverse image classification problems

using four datasets. In Section 5.6 we conclude the chapter.

5.2 Related Works

The machine learning field has witnessed an evolution of deep classifier networks over the

past decades developing from a simple multi-layer network [51] to more complex and deeper

neural networks aiming at pushing the state-of-the-art in image classification problem [52–57].

The current state-of-the-art models that are proposed for image recognition task, however,

are mainly developed based on the assumption of availability of large amount of training data

[58–62].

There are several studies that aim to tackle the problem of small training set by formulating

the problem into a transfer learning setting or multi-task learning. Transfer learning, exploits

the knowledge from pre-trained networks by utilizing the weights of pre-trained network as

initialization [63, 64]. These methods have shown promising results when performed on the

downstream tasks with the nature of data similar to the data used for transfer learning. How-
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ever, very little works has been done on applications with datasets that are very different in

nature from the data used in pre-trained networks. Additionally, pre-training large networks on

large datasets requires powerful computational resources that may not be available to everyone.

Multi-task learning have proved to be an effective way to improve upon the genralizzation

performance by jointly training the network with group of related tasks. One of the most

commonly studied multi-task setting is grouping the classification with segmentation task [2].

However, the loss balancing from different head in mult-task learning methods, often lead to

overfitting problem. Moreover, acquiring segmented data is very time-consuming and laborious

limiting the practical applications of such approaches. Some studies aimed to address the

problem by incorporating the power of transfer learning into a multi-task learning framework

to exploit the benefits from both settings [65].

Our approach is relevant to the multi-task learning but there are significant differences

between them. Our method derive classification result from segmentation module, forcing both

tasks to be computed together. Therefore, our approach is single headed and eliminates the

need for balancing the loss in different heads. This allows for approach to achieve a much higher

classification result when only a handful of example is available for training.

5.3 Methodology

CvS is a single-headed approach to the standard multi-task learning methods, which elim-

inates the need to balance the losses from different heads. Our proposed method derives the

classification result via a segmentation module forcing both tasks, segmentation and classifica-

tion, to be computed together. The overall framework of CvS and its comparison to standard
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classifier networks and multi-task learning is illustrated in Figure 19. Empirically, segmentation

networks have proved to be more robust to overfitting when trained with small datasets. CvS

harnesses the power of segmentation to learn from smaller datasets by encoding a dense-loss and

incorporating a high-bias shape prior into learning process. This allows us to perform classifi-

cation on extremely small datasets (∼ 1− 5 samples per class) and achieve higher classification

result in a low data regime.

5.3.1 Problem Formulation

Before presenting the image classification via segmentation, we first introduce the notations

that will be used throughout this chapter. Image Classification, is the task of automatically

classifying an image into a subset of predefined classes. Segmentation, is the task of automati-

cally classifying each pixel of an image into a predefined class. Let D denote the entire training

set, which consists of N samples and defined as

D =
{

(xk, sk, yk)|sk(i, j) ∈ {0, 1}, yk ∈ {1, 2, ..., P}
}N
k=1

where xk is of size [H,W,C] with H, W , C representing the height, width and number of

channel, sk represents the segmentation map and yk represents the ground truth class label

with P representing the number of classes. Given D, our goal is to learn a classifier fc : X → Y

parameterized by θc. We define the following functions.

f(xk; θf ) = zk (5.1)
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(a) Classification Via Segmentation (CvS)

(b) Standard Classification Network

(c) Multi-task Learning Network

Figure 19: This figure illustrates the overall architecture of (a) main network schema for CvS in

comparison to (b) standard vanilla classification network, and (c) a standard multi-task learning

network.

g(zk; θg) = hk (5.2)
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where f(.) parameterized by θf represents the backbone function f : X → H mapping the

input image to the latent feature map zk. g(.) parameterized by θg represents the head function

g : H → S mapping the feature encoding zk to the segmentation map, hk of size [H,W,P + 1].

The extra class (class zero) in p+1 represents the background and is discarded. Then we define

another function q(hk) = yk that averages over the remaining P segmentation maps followed

by a softmax function to obtain the class label for the given input. Given the input xk ∈ X ,

function fc can be decomposed such that

fc(xk, θc) = (q ◦ g ◦ f)(xk) (5.3)

where θc = {θg, θf}. The backbone function f(.) is modeled by a neural network and the head

network consists of a stack of convolutional blocks.

Different from standard multi-task learning methods, CvS learns the classification and seg-

mentation tasks simultaneously with only one loss function which we take to be a cross entropy

loss.

5.3.2 CvS Segmentation

Motivated by difficluty of procuring segmentation labels, we employ two simple approaches,

binarization and label propagation to procure segmented datasets. Although label propagation

has been widely used, we employ it in the context of our work by learning a preliminary model

from small subset of the dataset (∼ 1 − 5 samples per class) with segmentation label and use

this model to propagate segmentation labels to the rest of the dataset. This allows us to apply
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CvS on the whole dataset of any size by collecting segmentation labels for an extremely small

subset.

5.3.2.1 Binarization

For datasets that consists of black and white images such as MNIST, we opted for simplicity

and applied a binarization technique with threshold 0.0 to obtain the segmentation maps. In

the obtained image, the 0.0 pixel values represent background and the non-zero pixels (pixels

with value 1) represent the class of the given image.

5.3.2.2 Segmentation Propagation

For datasets with more complex image data such as CIFAR10/100 the binarization method

was no longer applicable. We employed label propagation technique in which we start the algo-

rithm by a very small subset of data being manually segmented and these segmentation labels

are propagated to the images without segmentation label. The overall pipeline for segmentation

propagation is illustrated in Fig.Figure 20. First, we manually segment M images per class.

Then we use the M × nclasses training samples to train the segmentation module of the CvS

framework (the functions f and g) which we refer to as Seg-M network. Then we use the trained

Seg-M network to predict the segmentation maps for the remaining images.

The binarization and label propagation methods allows us to minimize the tedious work of

manual image segmentation.

5.4 Model Architecture

The CvS framework derives the classification label for the given input image via a segmen-

tation module which itself is composed of two main components, backbone and head. The
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Figure 20: Pipeline for Segmentation Propagation. The pipeline use the segmentation network

of CvS trained on few samples with segmentation label, to propagate segmentation labels to

the whole dataset.

backbone network takes the input image and learns the latent feature maps which is being

utilized by the head network to predict segmentation maps. The predicted segmentation maps

are further used to classify the input image into one of the predefined classes. The overall

architecture is illustrated in Fig.19(a).

5.4.1 Backbone Architecture

The CvS framework allows various choices of backbone architecture without any constraints.

We adopted two of the most commonly used network ResNet-101 and Wide-ResNet for our work.
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We employed a custom Wide-ResNet 1 with the depth and width set to 28 and 10 respectively.

The network is composed of a convolutional layer followed by a stack of three ResNet block

where each consists of two BatchNormalization-ReLU-Conv structure. The first layer in each

ResNet block is followed by Dropout. For ResNet-101, we employed a standard architecture

used in TorchVision package.

5.4.2 Head Architecture

5.4.2.1 CvS Head

The CvS head is built upon convolutional layer. The architecture of the convolutional head

varies slightly depending on the backbone network being used. When Wide-ResNet is used as

the backbone network, the head follows the BatchNormalization-ReLU-ConvTranspose struc-

ture to output the corresponding segmentation maps. When ResNet101 is used, the DeepLab-

Head architecture is employed as the head layer.

5.4.2.2 Baseline Head

To show the effectiveness of our proposed framework, we compared CvS with traditional

classifier networks and multi-task learning. These baseline methods has similar same structure

to CvS with ResNet101 or Wide-ResNet as their backbone networks.

Linear Head: The linear head is employed in classification networks and follows the

BatchNormalization-ReLU-AveragePooling structure followed by linear layer.

1We borrowed the same network architecture developed by Bumsoo Kim
https://github.com/meliketoy and replicated all the experiments for the purpose of our work.
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Multi-task Head The multi-task head is employed in multi-task learning method which

is composed of two complementary tasks, segmentation and classification. The method consist

of two heads outputting the predicted segmentation maps and predicted classification label.

When using Wide-ResNet as backbone architecture, we employed a ConvTranspose layer after

applying BatchNormalization-ReLU to estimate the corresponding segmentation maps. For the

classification head, we applied BatchNormalization-ReLU-AveragePooling followed by a linear

layer. For methods using ResNet101 as their backbone network, we employed a stack of three

ConvTranspose layer to predict the corresponding segmentation maps where the first two layers

are followed by ReLu and BatchNorm. For classification we applied an average pooling layer

followed by a linear layer.

5.5 Experiments

5.5.1 Data Collection

In order to evaluate our proposed approach, we employed four datasets, MNIST [46], CI-

FAR10, CIFAR100 [36] and HRF [66] in the context of image classification.

MNIST: MNIST dataset comprises 60K 28×28 hand written digits labeled with 10 classes

corresponding to digits 0 to 9. This dataset doesn’t contain segmentation labels. Therefore, we

employed the binarization technique introduced in previous section to obtain fully segmented

data. Given the [0, 1] valued images, zero valued pixels were labeled as background and pixels

with value 1 were multiplied by their corresponding class label, i.e. 1× 7 representing the class

of digit 7. Further, to distinguish the class of digit zero and the background class (zero-valued

pixels), we incremented the non-zero pixel values by one i.e. 1 × 7 + 1 representing the class



95

of digit 7. So the class of digit k, k ∈ {0, .., 9} is represented by pixel value of k + 1 in its

corresponding segmentation map.

CIFAR10/100: The CIFAR-10 dataset consists of 60K 32×32 color images with 10 classes

including {Airplane,Automobile, Bird, Cat,Deer,Dog, Frog,Horse, Ship, Truck}. CIFAR-100

is like CIFAR-10 except it has 100 classes with 600 images per class. These datasets have no

segmentation labels. Since the binarization method is not applicable for these datasets, we em-

ployed the label propagation approach introduced in the previous section to segment the whole

data. To minimize the laborious work of manual segmentation further, we started with CIFAR-

10 dataset and manually segmented M images per class where M ∈ {1, 5, 10, 25, 50, 100}. Then

we trained the Seg-M model using the M × 10 manually segmented images. Then out of the

six trained Seg-M networks, we chose Seg-10 and Seg-100 to segment the rest of the images in

two different settings for the sake of comparison.

Due to similarity of CIFAR-100 and CIFAR-10, we did not manually segmented any of the

images for CIFAR-100. Instead, we employed the Seg-10 and Seg-100 networks from CIFAR-10

to segment the whole CIFAR-100 dataset.

HRF: This dataset consists of 45 High Resolution Fundus images belonging to 45 patients

in three classes, healthy, diabetic retinopathy or glaucomatous with 15 images per class. Fundus

images represent the posterior part of the eye and are employed mainly for diagnosis of retinal

diseases. This dataset also provides the binary gold standard vessel segmentation for each image

which eliminated the need for binarization or label propagation methods. A random sample of

Fundus photo and its corresponding vessel segmentation from HRF is illustrated in Figure 21.
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Figure 21: Sample of Fundus photo and its vessel segmentation from HRF.

5.5.2 Experimental Setting

We employ slightly different experimental setting for training CvS based on the choice of

backbone network architecture.

Training and Optimization: For CvS with Wide-ResNet architecture as its backbone

network, we trained the model from random initialization. Image inputs were kept in their orig-

inal resolution for MNIST, CIFAR-10 and CIFAR-100, 28×28, 32×32,and 32×32 respectively.

For HRF, images were resized to 128× 128.

For CvS with ResNet101 architecture as its backbone network, we trained the model using

the pretrained network’s weights as initialization. Image inputs were resized to 128 × 128 For

MNIST, CIFAR-10, CIFAR-100. For HRF, images were resized to 256 × 256. The reason

for choosing higher image size is the Max-Pooling operation in ResNet-101 and a more fair

comparison to Wide-ResNet.

To show the effectiveness of our approach in small data regime, we select small subset of

data from each dataset. Hence, the batch size is selected from 8, 16, 32, 128 depending on the
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number of training samples available to the model. For optimizer we use SGD optimizer with

momentum parameter set to 0.9, weight decay of 0.0005 and a initial learning rate of 0.1.

Data Augmentation: We explored various combination of data augmentations ranging

from resizing to color distortion, shift, rotation, flipping, and adding noise. In this section, we

report the data augmentations that achieved the best results for each dataset and the model

being used (CvS or baselined methods).

For CvS network, when using MNIST, a random turn, random shift with zoom and gaus-

sian noise are employed for data augmentation. When using CIFAR-10, a random turn, color

distortion and random flip are used. When using CIFAR-100, a color distortion, random shift

with zoom and random flip are used. When using HRF, random turn and random horizontal

flip are used.

For baseline methods (standard classification and multi-task), when using CIFAR-10/100

and MNIST, a random crop and resize with random horizontal flip are employed for data

augmentations. When HRF is used, only resize with random horizontal flip are used.

5.5.3 Experimental Results

To show the effectiveness of our proposed method in handling small datasets, we chose

different number of training samples ranging from only one sample per class to using the full

dataset to train our model. We demonstrate the result of our work on all four datasets in the

context of image classification and compare it with previous works.
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5.5.3.1 MNIST Performance Analysis

In this section, we demonstrate the result of our work on MNIST dataset. First, we select

M random samples per class as our training set where M ∈ {1, 5, 10, 25, 50, 100, 500, 1000, N}

and N represents the size of the dataset. We compare our proposed method against a standard

classification network and multi-task learning methods proposed in previous sections. Further,

we compare our result with previously proposed method LeNet [51]. The result is shown in

Table X. The result in Table X, shows that CvS outperforms all the baseline methods where the

performance gap is in particular more noticeable the size of the dataset is very small (M 6 100).

CvS achieves comparable results to multi-task learning when the number of training samples

is larger than 50k. We can also see that using ResNet-101 as the backbone network achieves

superior result over the Wide-ResNet when the model has access to only M = 1 example per

class and achieves comparable results for dataset size of larger than 50 (M > 5).

The overall results indicates the effectiveness of our proposed approach for classification

with only a handful of training samples. Our proposed CvS framework can achieve high per-

formance without the need for large amount of data for pre-training or significant amount of

computational resources.

5.5.3.2 CIFAR-10 Performance Analysis

Similar to the MNIST experimental setting, we selectedM ∈ {1, 5, 10, 25, 50, 100, 500, 1000, N}

random samples per class as the training data where N represents the size of the dataset. Table

Table XI compares the results of our work with the standard classification network and two
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TABLE X: Classification accuracy on MNIST Test set given different numbers of samples per

class and methodology.

Methods
Number of samples per class

1 5 10 25 50 100 500 1k Full

Backbone:ResNet101

Classification 58.21 50.38 68.09 82.78 91.09 94.06 98.62 98.68 99.47

Multi-task 48.82 79.43 83.26 93.94 95.19 96.65 99.36 99.39 99.75

CvS 71 87.67 92.7 95.59 97.8 97.8 99.11 99.17 99.62

Backbone:W-ResNet

Classification 20.16 77.05 78.78 84.88 89.31 95.45 98.49 98.83 99.16

Multi-task 15.25 30.87 37.17 84.6 96.28 97.87 99.18 99.51 99.45

CvS 54 88 90.9 95.68 97.41 97.95 99.08 99.25 99.51

Other Architecture

LeNet 47.7 - 72 - - 82 - - 98.5

of the previously proposed approaches Big Transfer [63] and Deep Metric Transfer [64]. The

results for Big Transfer and Deep Metric Transfer are reported directly from their papers.

Table XI shows the result for CvS where M ∈ {1, 5, 10, 25, 50, 100} samples per class were

manually segmented. Then we employed label propagation technique that was introduced in

previous section to segment the remaining images. First, we trained the CvS model using

the images and their corresponding manually segmentation labels. We then selected two of the
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trained CvS models for each of the backbone network choices and employed their corresponding

segmentation network, Seg-M to propagate the segmentation label to the unlabeled images. We

chose Seg-10 and Seg-100 that are trained with 10 and 100 samples per class respectively and are

depicted by ∗ and ∗∗ in Table Table XI. The CvS(Seg-10) and CvS(Seg-100) in Table Table XI

indicates the performance of CvS framework when Seg-10 and Seg-100 were employed to obtain

the segmentation labels.

As Table Table XI suggests, CvS outperforms traditional classification networks and Deep

Metric Transfer [64] significantly. The performance gap is particularly noticeable in low data

regime. This result suggests that CvS is much more powerful in tackling the overfitting problem

when dealing with small datasets as opposed to traditional classifiers. We can also see that

CvS achieves its best performance when using ResNet-101 as the backbone network.

As it was expected, CvS models that have access to manually segmented images performs

slightly better than those with predicted segmented data. Comparing the results from CvS(Seg-

10) and CvS(Seg-100) shows that increasing the number of manually segmented images does

not benefit the model significantly. This result helps with reducing the cost of laborious manual

segmentation and makes our proposed approach a cost-effective method that is able to achieve

high performance with access to only a handful of labeled data.

Although CvS doesn’t perform as well as Big Transfer, there are few limitations with this

method that limits its application. First, Big Transfer exploits the weights of pre-trained

network on the assumption of availability of large amount of data for pre-training. Second,

transfer learning may not work to it full potential when its transferred to a new task where the
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TABLE XI: Classification accuracy on CIFAR10 Test set given different numbers of samples

per class and methodology.

Methods
Number of samples per class

1 5 10 25 50 100 500 1k Full

Backbone:ResNet101

Classification 18.85 20.67 26.01 27.12 37.37 42.16 69.75 76.4 93.55

CvS 39.31 67.24 73.94∗ 80.95 86.43 90.1∗ - - -

CvS(Seg-10) - - - 78.69 84.89 88.51 93.26 94.66 96.42

CvS(Seg-100) - - - - - - 93.79 95.37 97.13

Backbone:W-ResNet

Classification 16.66 25.03 26.11 35.47 42.34 54.2 79.29 85.49 93.71

CvS 19.35 33.07 38.56∗∗ 51.4 59.69 68.5∗∗ - - -

CvS(Seg-10) - - - 45.45 54.09 62.12 78.93 84.81 93.29

CvS(Seg-100) - - - - - - 80.76 85.81 93.18

Other Architectures

Big Transfer 67 94 97 - - 98 - - 99.4

DeepMetric-Transfer - 56.3 63.5 - 74.8 79.4 84.6 87.9 -

nature of data is very different from the data used for pre-training. Additionally, training large

networks on large datasets that their weights can be later used, requires powerful computational

resources that may not be accessible to everyone.
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5.5.3.3 CIFAR-100 Performance Analysis

We chose a similar experimental set up for CIFAR-100. We selectedM ∈ {1, 5, 10, 25, 50, 100, N}

random samples per class where N represents the size of dataset. Since we did not segment any

of the CIFAR-100 images manually, we employed the Seg-10 and Seg-100 networks from the CvS

model trained on CIFAR-10 (depicted by ∗ in Table Table XI) to obtain fully segmented data

for CIFAR-100 images. Table Table XII compares the results of our work with the standard

classification network and Big Transfer [63]. The observation from Table Table XII supports

the results in Table Table XI. The result shows the superiority of CvS over standard classifier

networks. We can also see that the model doesn’t benefit from increasing manually segmented

images. The overall result indicates that the CvS model can achieve much higher performance

than vanilla classification network with negligible cost in manual segmentation.

5.5.3.4 HRF Performance Analysis

In this section, we evaluate our work on a medical dataset for a real-world application of

ophthalmic disease classification and compare it with standard classification networks, multi-

task learning, and previous work from [67]. The result is shown in Table Table XIII.

After 5-fold cross validation on our 45 images (15 images per class), we get a final accuracy

of 82% which outperforms all the baselines. Each fold of the cross validation used 36 images in

the training set and was trained on the left-out 9 images. Cross Validation folds were chosen

randomly and there was no validation/development set, which meant hyperparameters and

network stopping point were not selected for. The hyperparameters that worked best for the

CIFAR-10 experiments were used.
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TABLE XII: Classification accuracy on CIFAR100 Test set given different numbers of samples

per class and methodology. All segmentation labels were propagated from CIFAR10 trained

networks, following the same nomenclature as the section above.

Methods
Number of samples per class

1 5 10 25 50 100 Full

Backbone:ResNet101

Classification 2.97 7.6 11.25 24.9 38.2 55.48 78.24

CvS (Seg-10) 21.78 46.93 56.4 65.21 70.24 75.14 83.9

CvS (Seg-100) 21.49 45.73 52.8 64.07 70.23 74.65 83.64

Backbone:Wide-ResNet

Classification 3.89 7.12 9.38 31.45 33.75 55.85 78.01

CvS (Seg-10) 10.23 19.35 24.54 33.51 41.89 53.02 75.76

CvS (Seg-100) 10.79 20.03 25.11 33.45 40.75 51.46 72

Other Architectures

Big Transfer (SoTA) 40 78 84 87 - 91 93.5

As Table Table XIII suggests, CvS outperforms all the baselines. Despite the high perfor-

mance reported by [67], this method does not use full Fundus but it crops the image around

the optic disc. It also uses a combination of 5 datasets as training data and evaluate it on HRF

which limits the method for applications with extremely small datasets.
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TABLE XIII: Classification accuracy on HRF for disease detection.

Methods Accuracy(%)

Backbone:ResNet101

Classification 66.67

Multi-task 70.23

CvS (ours) 82.22

Other Architectures

Xception [67] 80.00

5.5.4 Label Propagation Analysis

In this section, we analyze the quality of predicted segmentation maps performed by la-

bel propagation technique. We visualize the result of Seg-10 and Seg-100 networks of CvS

framework on a sample image selected randomly from each class of CIFAR-10 and CIFAR-

100. For CIFAR-10, we further compare the result against manually segmented images. The

result for CIFAR-10 and CIFAR-100 are shown in Figure 22 and Figure 23 respectively. In

Figure 22, from left to right, we have an original image randomly selected from each class and

their corresponding segmentation maps: (a) represents manual segmentation, (b) and (c) repre-

sent predicted segmentation performed by Seg-10 and seg-100 networks of CvS respectively. In

Figure 23, both Seg-10 and Seg-100 are borrowed from CvS that was trained with CIFAR-10.
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Figure 22: Illustration of predicted segmentation maps performed by label propagation tech-

nique for CIFAR-10.
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Figure 23: Illustration of predicted segmentation maps performed by (a) Seg-10 and (b) Seg-100

networks of CvS model for CIFAR-100.
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As can be seen, the proposed model shows a reasonable accuracy in predicting the segmenta-

tion maps for both CIFAR-10 and CIFAR-100. The results suggests that the label propagation

technique, can achieve a fully segmented dataset with access to only handful of data points

being manually segmented. Therefore, the cost of laborious manual segmentation reduces and

collecting segmented datasets become more accessible.

5.6 Conclusion

In this chapter we study the problem of learning from small datasets for image classification

tasks. Deep neural networks performs to their full potential in modeling and problem solving

when trained with large amount of data. However, labels are expensive, difficult or infeasible to

obtain. On the other hand, classification network tend to overfit when trained on only a small

amount data.

Current approaches mainly address the small data problem by formulating the problem in

transfer learning or multi-task learning settings. Transfer learning methods ususally performs

to their full potential when the nature of data in the downstream task is similar to the one

used in the pretrained models. Multi-task learning face the problem of difficulty of obtaining

segmentation label and loss balancing in different heads in the model often leading to overfitting.

In this chapter, we propose a novel framework to the above problem that harnesses the power

of segmentation to learn from small datasets enabling classification on extremely small datasets

(1̃-5 samples per class). As opposed to standard multi-task learning, our proposed framework,

called CvS, is a single headed model eliminating the problem of loss balancing in different head.

We also propose to employ binarization and label propagation methods to obtain segmentation
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labels in a cost-effective way. The label propgation allows us to obtain a fully segmented data

with segmenting only a small subset of data (1̃-5 samples per class). We studied the component

of our method and showed its effectiveness on a broad range of image classification tasks. Our

experiments showed considerable improvement over vanilla classification network and multi-task

learning.
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H.: Artificial intelligence in retina. Progress in retinal and eye research , 67:1–29,
2018.

6. Lu, W., Tong, Y., Yu, Y., Xing, Y., Chen, C., and Shen, Y.: Applications of artificial
intelligence in ophthalmology: general overview. Journal of ophthalmology , 2018,
2018.

7. Ting, D. S. W., Pasquale, L. R., Peng, L., Campbell, J. P., Lee, A. Y., Raman, R., Tan, G.
S. W., Schmetterer, L., Keane, P. A., and Wong, T. Y.: Artificial intelligence and
deep learning in ophthalmology. British Journal of Ophthalmology , 103(2):167–175,
2019.

8. Grewal, P. S., Oloumi, F., Rubin, U., and Tennant, M. T.: Deep learning in ophthalmology:
a review. Canadian Journal of Ophthalmology , 53(4):309–313, 2018.

112



113

9. Burlina, P. M., Joshi, N., Pekala, M., Pacheco, K. D., Freund, D. E., and Bressler, N. M.:
Automated grading of age-related macular degeneration from color fundus images
using deep convolutional neural networks. JAMA ophthalmology , 135(11):1170–
1176, 2017.

10. Burlina, P. M., Joshi, N., Pacheco, K. D., Freund, D. E., Kong, J., and Bressler, N. M.:
Use of deep learning for detailed severity characterization and estimation of 5-year
risk among patients with age-related macular degeneration. JAMA ophthalmology
, 136(12):1359–1366, 2018.

11. Varadarajan, A. V., Poplin, R., Blumer, K., Angermueller, C., Ledsam, J., Chopra, R.,
Keane, P. A., Corrado, G. S., Peng, L., and Webster, D. R.: Deep learning for
predicting refractive error from retinal fundus images. Investigative ophthalmology
& visual science , 59(7):2861–2868, 2018.

12. Gargeya, R. and Leng, T.: Automated identification of diabetic retinopathy using deep
learning. Ophthalmology , 124(7):962–969, 2017.

13. Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., Venu-
gopalan, S., Widner, K., Madams, T., Cuadros, J., et al.: Development and vali-
dation of a deep learning algorithm for detection of diabetic retinopathy in retinal
fundus photographs. Jama , 316(22):2402–2410, 2016.

14. Medeiros, F. A., Jammal, A. A., and Thompson, A. C.: From machine to machine: an
oct-trained deep learning algorithm for objective quantification of glaucomatous
damage in fundus photographs. Ophthalmology , 126(4):513–521, 2019.

15. Thompson, A. C., Jammal, A. A., and Medeiros, F. A.: A deep learning algorithm to
quantify neuroretinal rim loss from optic disc photographs. American journal of
ophthalmology , 201:9–18, 2019.

16. Fu, H., Cheng, J., Xu, Y., Zhang, C., Wong, D. W. K., Liu, J., and Cao, X.: Disc-aware
ensemble network for glaucoma screening from fundus image. IEEE transactions
on medical imaging , 37(11):2493–2501, 2018.

17. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition , pages 248–255. Ieee, 2009.



114

18. Fumero, F., Alayón, S., Sanchez, J. L., Sigut, J., and Gonzalez-Hernandez, M.: Rim-
one: An open retinal image database for optic nerve evaluation. In 2011 24th
international symposium on computer-based medical systems (CBMS) , pages 1–6.
IEEE, 2011.

19. Almazroa, A., Alodhayb, S., Osman, E., Ramadan, E., Hummadi, M., Dlaim, M., Alkatee,
M., Raahemifar, K., and Lakshminarayanan, V.: Retinal fundus images for glau-
coma analysis: the riga dataset. In Medical Imaging 2018: Imaging Informatics for
Healthcare, Research, and Applications , volume 10579, page 105790B. International
Society for Optics and Photonics, 2018.

20. Sivaswamy, J., Krishnadas, S., Joshi, G. D., Jain, M., and Tabish, A. U. S.: Drishti-gs:
Retinal image dataset for optic nerve head (onh) segmentation. In 2014 IEEE 11th
international symposium on biomedical imaging (ISBI) , pages 53–56. IEEE, 2014.

21. Decencière, E., Zhang, X., Cazuguel, G., Lay, B., Cochener, B., Trone, C., Gain, P., Or-
donez, R., Massin, P., Erginay, A., et al.: Feedback on a publicly distributed image
database: the messidor database. Image Analysis & Stereology , 33(3):231–234,
2014.

22. Mancino, R., Martucci, A., Cesareo, M., Giannini, C., Corasaniti, M. T., Bagetta, G., and
Nucci, C.: Glaucoma and alzheimer disease: one age-related neurodegenerative
disease of the brain. Current neuropharmacology , 16(7):971–977, 2018.

23. Davis, B. M., Crawley, L., Pahlitzsch, M., Javaid, F., and Cordeiro, M. F.: Glaucoma: the
retina and beyond. Acta neuropathologica , 132(6):807–826, 2016.

24. Tham, Y.-C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., and Cheng, C.-Y.: Global
prevalence of glaucoma and projections of glaucoma burden through 2040: a sys-
tematic review and meta-analysis. Ophthalmology , 121(11):2081–2090, 2014.

25. Khan, F., Khan, S. A., Yasin, U. U., ul Haq, I., and Qamar, U.: Detection of glaucoma
using retinal fundus images. In The 6th 2013 Biomedical Engineering International
Conference , pages 1–5. IEEE, 2013.

26. Sevastopolsky, A.: Optic disc and cup segmentation methods for glaucoma detection with
modification of u-net convolutional neural network. Pattern Recognition and Image
Analysis , 27(3):618–624, 2017.



115

27. Zilly, J. G., Buhmann, J. M., and Mahapatra, D.: Boosting convolutional filters with
entropy sampling for optic cup and disc image segmentation from fundus images.
In International Workshop on Machine Learning in Medical Imaging , pages 136–
143. Springer, 2015.

28. Chen, X., Xu, Y., Wong, D. W. K., Wong, T. Y., and Liu, J.: Glaucoma detection based on
deep convolutional neural network. In 2015 37th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC) , pages 715–718.
IEEE, 2015.

29. Abbas, Q.: Glaucoma-deep: Detection of glaucoma eye disease on retinal fundus images
using deep learning. International Journal of Advanced Computer Science and Ap-
plications , 8(6):41–45, 2017.

30. Raghavendra, U., Fujita, H., Bhandary, S. V., Gudigar, A., Tan, J. H., and Acharya, U. R.:
Deep convolution neural network for accurate diagnosis of glaucoma using digital
fundus images. Information Sciences , 441:41–49, 2018.

31. Ronneberger, O., Fischer, P., and Brox, T.: U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and
computer-assisted intervention , pages 234–241. Springer, 2015.

32. Zilly, J., Buhmann, J. M., and Mahapatra, D.: Glaucoma detection using entropy sampling
and ensemble learning for automatic optic cup and disc segmentation. Computerized
Medical Imaging and Graphics , 55:28–41, 2017.
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