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SUMMARY

Datacenters host a mix of applications which generate qualitatively distinct traffic patterns

and impose varying network objectives. Online, user-facing applications generate many-to-one,

incast traffic of mostly short flows, which are sensitive to tail of Flow Completion Times (FCT).

Data analytics applications generate all-to-all traffic (e.g., Web search) of mostly short flows that

saturate network bisection and the job completions require all flows to complete. Background

applications (e.g., Map-Reduce) generate large flows and are throughput sensitive due to the

sheer amount of data that they transfer over the network. While datacenter fabric provides

good bisection bandwidth to handle all-to-all traffic and background traffic, incast traffic is

bottle-necked at edge switches and causes queue buildup at the switch port connected to the

receiver server. Incasts are synchronized bursts of many-to-one short flows that fundamentally

cause an over-subscription of the receiver (aggregator) link. Because datacenter switches use

shallow buffers to reduce cost and latency, the queue buildup problem is further exacerbated

as the shallow buffers easily overflow causing packet drops and expensive TCP timeouts.

To address incast problem in datacenter networks, we proposed five solutions. Slytherin is

the first discussed method, which is a novel flow scheduling scheme that targets those packets

that fall in the tail (i.e., those that are delayed at multiple switches) and prioritizes them in

the next hop switches. Therefore, most delayed packets are drained faster, and also, congestion

report arrives faster at the receiver server as well. ICON is our next discussed method, which

is a novel scheme that reduces incast-induced packet loss by setting a fine-grained control over

xi



SUMMARY (Continued)

sending rate by pacing traffic. ResQueue is the third discussed scheme that uses a combination

of flow size and packet history to calculate the priority of each flow. ResQueue detects those

packets that were dropped before (possibly during an incast) and then increases their priority

in the next round. Therefore, these packets will not be dropped again even in severe cases of

congestion. Our evaluation shows that ResQueue improves tail flow completion times of short

flows by up to 60% over the state-of-the-art flow scheduling mechanisms. Superways, the fourth

discussed method, is a heterogeneous datacenter topology that provides higher bandwidth for

for those servers that host incast application to absorb incasts, as incasts occur only at a

small number of servers that aggregate responses from other senders. Our design is based on

the key observation that a small subset of servers which aggregate responses are likely to be

network bound, whereas most other servers that communicate only with random servers are not.

Superways guarantees 95% improvement (on average) in tail latency when it is implemented

on top of state-of-the-art topologies in which the servers run DCTCP as congestion control

method. Finally, we will discuss Smartbuf, which is an online learning algorithm that accurately

predicts buffer requirement of each switch port before the onset of congestion. Our key novelty

lies in fingerprinting bursts based on the gradient of queue length and using this information

to provision just enough buffer space. Our preliminary evaluations show that our algorithm

can predict buffer demands accurately within an average error margin of 6% and achieve an

improvement in the 99th percentile latency by a factor of 8x at high loads, while providing good

fairness among ports.
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CHAPTER 1

INTRODUCTION TO DATACENTER NETWORKS

Datacenters have emerged as the de facto platform for hosting user facing applications that

query vast amounts of Internet data (e.g., Web search) [1,2]. In this section, we provide a brief

overview of datacenters’ characteristics such as architecture, flow characteristics, and incast

type traffic pattern.

1.1 Datacenter architecture

Most datacenters’ network design is based on a layered architecture (e.g., Fat-tree, Spine-

Leaf, etc), which has been evaluated and improved over the past few years. The layered approach

is the basic foundation of the datacenter design that seeks to improve scalability, flexibility, and

maintenance. Figure 1 shows the basic tree topology. In this architecture, the links that con-

nect aggregation layer to core layer are more powerful in terms of bandwidth in contrast to

other links such as links from edge switches (a.k.a ToR switches) to endhosts. This is because

of the higher load at the upper layers of the network compared to the lower layers (e.g., edge

switches). Each of these layers are described as follows:

Core layer — Provides the high-speed packet switching backbone for all flows travelling across

the datacenter. This layer provides connectivity to multiple aggregation layer switches and pro-

vides a high bandwidth fabric (layer 3) with no single point of failure [3].

Aggregation layer — Provides important functions, such as service module integration, span-

1
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Figure 1. An example of tree topology in datacenter networks

ning tree processing, and default gateway redundancy. Server-to-server multiple-tier traffic flows

through the aggregation layer and can use services, such as firewall and server load balancing,

to optimize and secure applications. In large datacenter networks, many of aggregate switches

are clustered in a ”pod” to provide more granularity.

Edge layer — Where the servers physically connect to the network. The edge layer network

infrastructure is not as powerful as core or aggregate switches.

The above named layers are part of Fat-Tree topology terminology. In spine-Leaf topologies,

spine layer is the mix of core and aggregate layers and leaf switch is called edge switch in a

Fat-Tree topology.

1.2 Datacenter applications and traffic characteristics

Modern datacenters host various applications including user-facing foreground applications

that query large amounts of Internet data (e.g., Web Search) and background applications

that perform background tasks such as data reorganization, replication, and backup [1, 2].
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The nature of these two broad categories of applications determine the traffic dynamics and

objectives of the underlying datacenter network. Foreground applications such as Web Search

access data that is distributed among hundreds of servers. Every Web Search query must

wait for a response from most of the worker servers (e.g., 99% of servers) to achieve a good

trade-off between query response time and result quality. Therefore, foreground applications’

performance is sensitive to higher percentiles (i.e., 99th to 99.9th) of Flow Completion Times

(FCT) [4]. Google search is a good example of such traffic that foreground applications produce.

While foreground applications generate mostly short flows (e.g., 1KB to 10KB) [5], background

applications transfer large amounts of data (e.g., 1MB <) [6] across the network, which requires

high throughput [6]. Hadoop is a good example of such applications that produce background

traffic. A well-designed datacenter network must provide low tail flow completion times for

short flows and high throughput for long flows.

Achieving this goal is challenging because both short flows (from foreground applications) and

large flows (from background applications) compete for network bandwidth at switches. It is

likely for short flows to get stuck behind several long flows and suffer elongated tail FCTs.

Similarly, long flows incur packet loss from competing bursts of short flow packets and lose

throughput. Additionally, modern switches are equipped with flow classification techniques,

which normally schedule long flows behind short flows (or flows with earliest deadline such

as [7]), and therefore, long flows may suffer starvation in extreme cases (e.g., a highly loaded

network, which is full of bursty short flows).

In summary, we list datacenter network traffic characteristics as follows:
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• We have a wide variety of applications across the datacenters, ranging from customer-

facing applications, such as Web services, file stores, and custom enterprise applications

to data intensive applications, such as MapReduce and Web-search indexing.

• Most flows in the datacenters are small in size (typically less than 10KB), a significant

fraction of which last under a few hundreds of microseconds. In user-facing applications,

these packets arrive all at a time, which creates a sudden burst at one port of the edge

switch connected to the receiver server (i.e., incast).

• There is no evidence that shows traffic is rack local in datacenter networks [8].

• Losses occur within the datacenters; however, losses are not localized to links with per-

sistently high utilization. Instead, losses occur at links with low average utilization im-

plicating momentary spikes as the primary cause of losses (a.k.a incast).

• Packet drop rate is higher at edge switches compared to other switches.

1.3 Incast

Because foreground applications concurrently fetch data from a large number of servers,

they cause synchronized responses from servers that cause severe queue buildup at the receivers’

switch port. This phenomenon, called incast, is known to dilate tail FCTs (i.e., degrade response

times) and cause packet drops (i.e., reduce goodput) [9,10]. Figure 2 depicts a schematic view

of this problem.

Existing approaches alleviate incast by employing clever techniques in congestion control [7,

10–14], packet scheduling [6, 15–17], and load balancing [18–20]. Even with precise feedback
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Figure 2. An example of incast in datacenter networks

that would enable us to accurately detect incast and state-of-the-art algorithms for setting the

rates, congestion control approaches require at least one round-trip time (RTT) to optimally

respond to incast. However, recent measurement studies on datacenters show that the duration

of most incasts is shorter than typical RTTs (i.e., 100–200 µs) in datacenter networks [5], which

makes it extremely difficult for congestion control methods to respond to congestion in a timely

manner. Packet scheduling approaches prioritize short flows (or flows with near deadlines [17])

ahead of long flows [6], but do not help when short, incast flows that have similar deadlines

contend for limited buffer capacity, which occurs often. Similarly, load balancing approaches

find the least congested path among all other paths to forward the packets through this route;
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but since congestion happens at the last hop switch, there is little to no chance for load balancing

methods to alleviate incast problem.

Datacenter switches use shallow buffers [21–23], and therefore, it is likely that short, in-

cast flows overrun the port buffer. Today’s incast-heavy applications (e.g., Web search, so-

cial networks) and high-bandwidth network topologies (e.g., fat-trees [24]) imply that receiver

congestion is more severe than congestion in the network core, as reported by Facebook [8],

Google [25], and Microsoft [26]. While most research proposals improve all-to-all throughput

by providing high bisection bandwidth, which helps applications such as map-reduce [27], the

previously proposed schemes do not alleviate incast. Incast is fundamentally a many-to-one

over-subscription of the receiver link capacity that needs to be detected at the switch right

before buffer overflow. Throughout this thesis, we discuss our solutions for incast problem in

datacenter networks.
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In this section, we discuss all possible solutions for incast in datacenter networks, their

strengths, and their weaknesses. We first start with flow scheduling techniques.

2.1 Flow scheduling techniques

There are two types of flow schedulers in datacenter networks: (1) information agnostic

flow schedulers and, (2) information aware flow schedulers. While information agnostic flow

schedulers are desired (because flow information is difficult to obtain prior to flow transmission),

information aware flow schedulers provide higher performance. Below we discuss these two

methods.

2.1.1 Information-agnostic scheduling:

As we mentioned in section 2.1, these methods try to schedule packets while there is no prior

knowledge about the flow characteristics like flow size or flow deadline. In these methods, the

scheduling algorithm usually assigns different priorities to packets and then each packet will be

assigned to a specific queue based on the given priority. As an instance, one of past proposals,

PIAS [16], tries to leverage multiple priority queues to implement Multiple Level Feedback

Queue (MLFQ), in which corresponding packets of a flow get gradually demoted from higher

priority queues to lower ones based on bytes it has already sent [16].

The biggest advantage of information-agnostic scheduling schemes is ease of implementation

which comes from not requiring prior hard-to-achieve information about the flows (e.g., flow

size). Moreover, although they may add small complexities to switching fabric but since they

do not rely on prior information about the flows, they can be implemented in real datacenter

networks.
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The disadvantage of information-agnostic scheduling schemes is their inability to improve tail

flow completion times. This is because they schedule packets based on just limited information

about the flow. More specifically, they try to treat each single packet (regardless of packet’s

history) based on a scheduling algorithm which can not discriminate among packets that suffered

more queuing delay in previous hops (e.g., tail packets) and other packets. This is considered

as a big problem because if packets of a flow experience different amounts of queuing delay

at multiple hops, flow completion times increase, which is not tolerable in most datacenter

networks.

In conclusion, current information-agnostic scheduling methods cannot improve tail flow

completion times because of their inability to discriminate among congested packets and normal

packets. In general, information-agnostic schemes provide lower performance in contrast to

information-aware methods. For example, D3 [28] shows that as much as 7% of flows may miss

their deadlines with DCTCP [10] which is an information-agnostic scheme. However, as long

as they do not require prior information about the flows, it is quite fair to not to expect them

to provide as good performance as information-aware scheduling methods. We will discuss

information-aware methods in the following section.

2.1.2 Information-aware scheduling:

Information-aware scheduling schemes provide higher performance by giving prior informa-

tion about flows to servers and switches. In the other words, these schemes assume that switches

know some key information about the flows like flow deadline, flow size or even flow remaining
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processing time. This information is usually given to switches either by a central controller or

by endhost applications. In general, we can divide these methods to two different groups:

2.1.2.1 Prior knowledge about flow deadlines

These methods assume flow deadlines all are known apriori and switches greedily schedule

flows with nearest deadline ahead of others. Having comprehensive knowledge about flow

deadlines guarantees that almost none of the deadlines are missed, which drastically improves

the performance of short, deadline sensitive flows. Some of methods which use this approach

are D3 [28], D2TCP [7], and Karuna [15].

Remember from section 1 that most of flows in datacenters are short and deadline sensitive.

Furthermore, deadline aware schemes usually meet the requirements of vast fraction of flows

in datacenters. However, although they have a big advantage over deadline-agnostic schemes,

they still suffer from severe implementation issues. For many applications, such information

(e.g., flow deadline) is difficult to obtain, and may even be unavailable [16].

2.1.2.2 Prior knowledge about flow sizes

These schemes assume flow sizes all are known to servers and switches. These methods try

to emulate Shortest Job First (SJF), which is known to minimize average flow completion times.

These methods greedily schedule shorter flows ahead of longer flows in their simplest form. In

a more complicated form, they try to give higher priority to flows with shortest remaining size.

Some of well-known schemes that use this approach are pFabric [6], PASE [29], and PDQ [30].

Although information-aware scheduling methods provide better performance in contrast to

information-agnostic approaches, they try to use some information that are not easy to collect
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in datacenters. Prior proposals argue that flow sizes(or deadlines) can be tagged on packets by

end host applications or a central controller may provide this information to switches. In both

cases, we need to add extensive complexities to end-hosts and switches, which is not only easy

at all but even sometimes impossible.

As we saw, packet scheduling methods all suffer from either implementation issues or lack of

smart scheduling decisions in case of scheduling congested tail packets. It turns out that most

of current scheduling schemes are not effective enough or are very difficult to implement in

real datacenters. Our biggest motivation is to provide a scheme which is both implementation

friendly and smart enough to schedule mix flows while giving higher priorities to congested tail

packets. Later in chapter 3 we introduce Slytherin, which is an information-agnostic method

that not only improves tail flow completion times but even does not require any modifications

to existing switches.

2.2 Load balancing techniques

There are two types of load balancing in datacenter networks: (1) static load balancing

(e.g., ECMP), and (2) dynamic load balancing (e.g., CONGA [19]).

2.2.1 Static load balancing

Static load balancing methods select the best route regardless of the status (load) of the

links. In other words, they use a fixed function to select the best path among a set of paths.

ECMP (Equal Cost Multiple Paths) and RR (Round Robin) methods are well-known static load

balancing methods. While ECMP uses a hash function to select the best path, RR randomly

selects a path to send each flow. This is obvious that static load balancing techniques cannot
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solve incast problem because blindly distribute the load among different ports. Also, we know

from chapter 1 that incast happens at the last hop switch, which means no load balancing

technique (including static) cannot solve incast.

2.2.2 Static load balancing

Dynamic flow scheduling techniques select the best path based on the online information that

they receive from other switches. CONGA [19], Flow Bender [31], Presto [18], and HULA [20]

are examples of dynamic load balancing methods.These methods all work well in datacenter

networks because they accurately pick the best possible path based on the collected information

from other switches. Although dynamic load balancing methods perform much better than

static load balancing schemes, they still cannot eliminate incast because they do not provide

higher bandwidth at the last hop switch that connects to receiver server.

2.3 Congestion control techniques

There has been a renewed interest in congestion control for datacenters over the last few

years. Recent studies [8] on datacenter traffic reveal that most flows are extremely small.

Because most congestion control schemes require multiple round trips to adjust rates, they are

not effective when flows are very small. Also, proactive grant-based congestion control methods,

which are not reactive, will elongate tail flow completions because they need to wait for grant

messages for all flows (including those that have just one packet to send). Recently, a receiver-

driven congestion control called Homa [32] has been proposed, which improves the tail latency

compared to its predecessors. Homa approximates SRPT by scheduling packet transmissions

from the receivers. In fact, Homa divides each flow to unscheduled and scheduled parts, and
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Figure 3. Homa’s performance with and without incast of extremely short flows

sends the scheduled part if and only if the receiver asks to do so when it receives the unscheduled

part. However, since datacenter flows are extremely small, it is difficult to divide them and

almost all the data will be transmitted as a unscheduled (i.e., no grant needed) data portion.

Therefore, many packets will be dropped when incast of short flows happens. We simulated

a small scale datacenter in OMNET++ [33] to check performance of Homa when incasts of

extremely short flows exist. Figure 3 shows the result of this experiment at 60% load. The left

hand side figure shows Homa’s performance when incast does not exist and the figure on the

right shows its performance when incast of short flows exists. X-axis shows the total delay in

milliseconds. We see from the figure that some packets that fall in tail are dropped even more

than twice (RTO=3). Thus, receiver-driven methods such as Homa can help but only after the

first RTT, which is late in such networks that require very low latency (i.e., zero packet drop).
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The current trend of increasing intensity of short flows and incast imply that congestion

control schemes are unlikely to solve this problem. Therefore, modern datacenters must resort to

other solutions such as large (shared) buffers or use higher capacity topologies such as Subways

[34] that provides higher bandwidth for endhosts. Modern shared-buffer switches are equipped

with dynamic sharing technologies such as Dynamic Threshold (DT) [35] or Enhanced Dynamic

Threshold (EDT) [36]. Although these methods perform well in case of mild congestions,

they face various issues when incast congestion happens. For example, DT always keeps a

specific amounts of buffer reserved for other inactive ports, while a port that experiences incast

might need it. To further evaluate DT’s performance, we simulated a datacenter network using

reported numbers in previous studies (e.g., [8] and [5]) to measure the performance of DT in case

of incast. we explain the workload details later in chapter 4. Figure 4 shows the performance

of DT in terms of tail FCT. We set the Retransmission timeout to 3 seconds. Figure 4 shows

that DT suffers from excessive packet drops at high loads (60% to 80%) due to its design that

keeps the buffer underutilized. Therefore, while DT is a great solution for mildly congested

networks, it will not help in busty environments such as datacenter networks. EDT, however,

performs better; but it may hurt fairness as it assigns the whole buffer to a single port when a

burst of packets arrives at that port. In such cases that more than one server is experiencing

incast, EDT performs even worse.
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Figure 4. DT’s performance in shared buffers
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In this section, we propose our solutions for incast problem in datacenter networks. Our

proposed methods are Slytherin, ICON, ResQueue, Superways, and Smartbuf. Among the

above-mentioned methods, Slytherin and ResQueue use flow classification techniques to improve

tail latency of short flows in presence of incast. ICON is a new congestion control scheme that

is designed for incast heavy workloads. Finally, Superways changes the underlying topology to

provide more resources for incast applications, and Smartbuf, makes switches more intelligent

by providing a prediction technique at switches that creates a knowledge base for current bursts

(i.e., learns each burst’s behavior) and uses this information for future bursts.

3.1 Slytherin

In this section, we discuss Slytherin which unlike prior schemes specifically targets packets

that are more likely to fall in the tail. This is important because the performance of foreground

datacenter applications (e.g., Web search) are sensitive to the tail of flow completion times.

Slytherin leverages Active Queue Management (AQM) schemes which are available in today

commodity switches to identify congested tail packets and then assigns higher priorities to those

packets.

A TCP flow is not finished successfully unless all transmitted packets reach the destination.

If some packets get delayed, the total flow completion time of flow will be increased. This

problem caused by delayed tail packets of a flow because they face queuing delay at multiple

switches on the path. Thus, although we may have most of packets arrived in a short time but

delayed tail packets will increase the total flow completion time. Our main contribution is our



18

TABLE I

Slytherin’s opportunity

Load 40% 50% 60% 70% 80% 90%

Fraction of packets 1.3% 3.8% 19% 40% 56% 65%

novel insight that packets that are more likely to fall the tail often incur congestion at multiple

points in the network.

To achieve our goal of identifying packets that incur congestion at more than one point in

the network and prioritize them quickly to improve tail flow completion times, we need:

(1) A fast and a reasonably accurate signal to pinpoint packets that are likely to fall in the tail.

We set out with the explicit goals of not requiring custom hardware and supporting coexistence

with legacy transport protocols like TCP [37]. To have higher response time, we should use

in-network mechanisms to detect congestion at each switch independently.

(2) Provide a fast prioritization method to improve tail flow completion times. Consequently,

the packet prioritization mechanism should be in-network because short flows only last for a

few RTTs.

3.1.1 Identifying tail packets

Explicit Congestion Notification (ECN) [38] is widely used AQM scheme in datacenters.

With ECN, switches mark packets when the queue length exceeds a certain predefined threshold.
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Instead of using expensive, unreliable packet timestamps, we leverage ECN to pinpoint tail

packets. More specifically, we infer that marked packets have experienced congestion in their

paths, and therefore, those packets must be prioritized ahead of packets without ECN marks.

We performed an opportunity study to confirm our intuition that packets that are more

likely to fall the tail often incur congestion at multiple points in the network and that we

can identify those packets using ECN marks. For this study, we simulated typical datacenter

traffic patterns, as reported in prior papers [39], in a spine-leaf topology with 400 hosts (see

chapter 4 section 4.1). All the hosts run DCTCP. Table I shows the fraction of tail packets (i.e.,

here we only consider packets whose flow completion times are greater than the 95th percentile

flow completion times; these packets are more likely to impact tail FCT than packets at lower

percentiles) that are ECN marked at more than one switch in their path. In other words, it

shows what fraction of critical packets incur ECN marks at more than one switch. We clearly

see that a significant fraction of these packets are marked at multiple switches. This study

clearly validates our approach.

Since each of switches perform ECN marking individually, congestion is recognized indepen-

dently at each hop. This ensures that whether there is only one congestion point or multiple

points of congestion, it will be reported by the corresponding switches to end hosts. Slytherin

uses this bit of information not to let the end hosts to decide about the congestion but react

to it just in-network. More specifically, each Slytherin switch check this bit of information

individually to see whether the packet has experienced congestion at previous hops or not.
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Figure 5. Slytherin’s high level idea

Since AQM schemes are available in today commodity switches, we can simply leverage

them to discriminate among packets that suffered from congestion in previous hops vs. other

packets. Because ECN is meant to inform end hosts about congestion, existing switches do not

check whether this bit is set or not. However, Slytherin requires switches to check this bit and

prioritize such packets.

3.1.2 Prioritizing tail packets

As we discussed above, ECN is a widely used, in-network congestion notification mechanism

at switches. Our analysis shows that this bit of information should be used by the switches to

prioritize previously congested packets over the others. If the CE bit in the packet’s header is

set, this packet is considered as a congested packet; which means it requires priority escalation

at next hop switches to minimize flow latency. Scheduling packets that suffered from congestion
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in the higher priority queue assures that tail packets that faced congestion earlier will not be

delayed at the current switch. It significantly improves tail flow completion times which is a

key performance metric in datacenters.

Slytherin switches require two queues per switch port. Packets are assigned to one of

those queues based on their priority. The first queue is a priority queue which is dedicated to

congestion experienced packets and the second one is a normal queue which is shared among

all other packets regardless of their flow size or flow deadline. Both queues drain packets in a

First-In-First-Out (FIFO) fashion and packets in the second queue get served if and only if the

first queue is empty. Figure 5 shows Slytherin’s congestion detection and packet prioritization

mechanism.

Alongside prioritizing congested packets, we prioritize ACK packets over other packets by

scheduling them in the priority queue. Although it’s not our novelty to prioritize ACK packets

but our empirical analysis shows that ACK packets prioritization could be a good scheme to

be used in conjunction with Slytherin.

Slytherin is designed to prioritize packets after the first hop upon observing ECN marks.

Slytherin’s Packet prioritization mechanism is totally application-agnostic. If a packet gets

ECN marked, whether it’s part of a short flow or a long flow, the packet will be prioritized

at the next hop switch. Although prioritizing congested packets of short flows may be more

efficient, it requires application knowledge and/or significant effort. Our experiments show that

there is only a small degradation in performance in case of prioritizing both long and short flows

in contrast to only prioritizing short flows.
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Algorithm 1: Slytherin’s packet prioritization pseudocode

1 for Each packet ”P” to be enqueued do

2 if CE bit is set

3 put ”P” in higher priority queue

4 else

5 put ”P” in lower priority queue

Algorithm 1 shows both congestion detection and packet prioritization steps at Slytherin’s

switches. Slytherin’s design is such simple that its complete implementation requires handful

lines of code on the switches. Irrespective of where packets are ECN marked (i.e., enqueue

vs. dequeue), Slytherin prioritizes marked packets to reduce flow completion times for both

short and long flows. Overall, Slytherin’s implementation is simpler than other schemes such

as Pfabric [6], PIAS [16], and PDQ [30].

3.1.3 Parameters setting

In this section, we will discuss important parameters settings that directly affect Slytherin’s

performance.

3.1.3.1 Transport protocol

Slytherin is designed to work in conjunction with DCTCP [10] as the underlying transport

protocol. DCTCP aggregates the ECN feedback from multiple packets to form a weighted-

average metric for adjusting the window [7]. Using this feedback, the senders adjust their
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congestion window sizes in a graceful manner, so that any congestion over the path from source

to destination will be proactively treated.

As long as Slytherin is an in-network scheme, it can work with any other transport protocols

but we chose DCTCP due to the better throughput it provides for long flows and better flow

completion time that it provides for short flows. Our analysis shows DCTCP’s congestion

window adjustment could be improved if ECN marked packets are drained faster at switches.

In the other words, if ECN marked packets arrive faster, DCTCP adjusts its congestion window

faster to avoid further congestion which leads to less packet drops, higher throughput, and lower

flow completion times.

3.1.3.2 ECN threshold

Slytherin’s most important parameter to tune is the ECN threshold at each switch queue.

This threshold should be set carefully as it directly affects the performance. The threshold is

set to 25% of the total queue size. If the threshold is too short, many packets are assigned to

the higher priority queue which means still many previously congested packets will be scheduled

behind others in the current switch. Briefly, if the threshold is too short, Slytherin’s performance

will be degraded.

If the threshold is too big, probably no packet gets prioritized over others but only some

packets that are about to drop. In this case, the switch marks a lot of packets as not-congested

while they are potentially congested. It means that setting up a big threshold leads to per-

formance degradation as well. We will study the sensitivity of our proposed method to ECN

threshold in chapter 4.
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3.1.4 Fairness and high load scenarios

It is important to discuss Slytherin’s fairness and its performance under sustained high load.

Because Slytherin only prioritizes a small fraction (i.e., tail packets) of flows, fairness is largely

unaffected; our results show that Slytherin achieves better tail flow completion times for short

flows and better throughput for long flows than PIAS and DCTCP. Another important question

is about Slytherin’s performance when there is simultaneously high queuing along most (all)

switches along the path. Our experiments show that it is so rare for many switches along the

path to have high queuing at the same time that it does not affect 99th percentile FCT (e.g.,

such scenarios happen less than 1% of the time).
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3.2 ICON

Slytherin does not completely solve incast problem because it assumes incast flows are large

enough so that there is always some packets left that need to be transmitted in the next TCP

windows. However, recent studies reveal that incast flows are super small so that most of them

finish just in the first sending window [5]. Thus, Slytherin helps in milder forms of congestion.

Also, while Slytherin expedites packets in the middle of the network, incast mostly happens at

the last hop switch that is connected to the receiver server. Therefore, we need an accurate

congestion control scheme that directly addresses incast.

In this section, we present the technical details of ICON, which specifically targets incast

problem in datacenter networks. Incast is predominately induced by a set of servers (e.g., 32)

that respond to a server’s query. For example, in distributed storage clusters, a file may be

divided into multiple chunks that are stored on different servers across the datacenter. In such a

case, a single server, which is responsible for retrieving and reassembling the whole file, queries

all the servers to retrieve the file. Such distributed lookup results in incast. Incast causes many

packet drops at the edge switch connected to the retrieving (sink) server. As we discussed in

section 1, incast is an important and critical issue in datacenter networks, and incasts degrade

the performance of both foreground and background applications.

ICON’s incast control algorithm consists of two parts: (1) end-to-end application level

knowledge sharing about the number of concurrent senders (i.e., incast degree), and (2) pacing

TCP window over RTT proportional to the shared number. We will discuss the application-level

information sharing in section 3.2.1 and the traffic pacing in section 3.2.2.
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3.2.1 Application-level knowledge sharing

We make the key observation that incast, which bottlenecks the receiver (or the last switch’s

output port that connects to the receiver), it is inherently application-depended, and, therefore,

the incast problem could be solved at end hosts rather than involving switches and routers.

The application layer of the sink server, which is responsible for distributed lookup, knows

the number of the servers that it is going to the search query. Therefore, simply communicating

this incast degree to all those servers that are part of the distributed lookup could go a long

way in addressing incasts. At the very beginning of the communication between all senders and

the sink server, this number will be piggybacked by TCP packets from sink server to sender

servers (during TCP 3-way handshaking). At this point, all senders know how many different

servers will share a same route through the sink server. Giving this prior knowledge to servers

is key as it can serve to right the correct sending rate at the sender. However, there are a few

challenges that we must solve to realize the goal:

Communicating incast degree to senders. We can use unused fields in IP or TCP

header for this purpose. For example, we can use ”options” field in TCP header or ”Type-of-

Service” (ToS) field in IP header but we chose the first one as it does not affect the network

functionality.

Handling persistent connections. We know the calculated number of servers will be

reported to sender servers only during the TCP handshake. If the TCP connection between

end hosts is persistent, sender servers save the reported number in their memory and use it

unless a new information arrives from the sink server. In the other words, the very first reported
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Figure 6. (a) Normal TCP vs (b) TCP with Pacing

number will be valid until a change happens in the number of active servers. This number rarely

changes because the number of senders is usually fixed as they are chosen to hold a particular

piece of data. However, if this number changes, the sink server notifies other servers through

a small update message. These update messages are designed to only convey the number of

parallel senders. As long as only one server will send these small update packets, bandwidth

consumption is almost negligible.

3.2.2 Traffic pacing

In this section, we cover details of traffic pacing at sender NICs. Pacing and rate control

are two different aspects of congestion control. While rate control adjusts the sending rate

to avoid any long-term over-subscription of the bottleneck link capacity, rate control alone

is not sufficient to avoid congestion. Pacing controls the rate at a much more finer grain

(e.g., how the packets are spaced within an RTT). Two schemes with the same sending rate

but different packet pacing can lead to different queuing delays in the network. In general,
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uniformly distributing the packets over the sending “time period” can smooth out queue build-

ups and reduce congestion. Figure 6 shows the difference between Normal TCP and the one

which uses pacing.

ICON paces TCP window over RTT by providing a gap (pause time) between packets. As

we can see in Figure 6, as TCP window grows, this gap becomes smaller because of more packets

that it needs to send. Since TCP normally sends a window of packets as a bulk, it is more prone

to cause packet drops as more packets are likely to collide on the bottleneck link. However,

ICON paces packets over RTT to provide more time for the switch port at the bottleneck link

to drain packets.

3.2.3 Combination of pacing and application knowledge sharing:

ICON uses a combination of application knowledge sharing and traffic pacing in order to

improve tail flow completion time and throughput. Once the sender servers receive the number

of active senders from the sink server, they start to calculate the pacing rate (i.e., the gap

between each packet) using this number. Equation 3.1 shows how ICON calculates the new

sending rate.

Sending rate =
TCP window size

RTT × number of parallel senders
(3.1)

As Equation 3.1 implies, if TCP window grows up, the sending rate will increase which

might be problematic if the flow size is very large. However, this is not a big issue in incast
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as incast is mostly caused by short flows. The newly calculated sending rate ensures that the

sending rate of all senders is proportional to the number of competing flows on the bottleneck

link. This technique guarantees that the bottlenecked switch port buffer has enough space to

absorb all packets heading to the sink server. As an example, if TCP window is 10 MSS, RTT

is 120 microseconds and we have only 1 sender, the new sending rate requires 10.8 microseconds

gap (pause time) between sending each packet (assuming link speed is 10 Gbps). As you can

see, our new congestion control scheme requires only a tiny modification over current transport

protocols and is implementation-friendly.

In the absence of application knowledge, we assume that the “number of parallel senders = 1”

in the previous equation. We show in section 4 that ICON outperforms other schemes, even

without application knowledge.
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3.3 ResQueue

ICON performs very well in theory but there are some obstacles that make it difficult to

implement. First, every server’s TCP stack should be changed so that it can set/read tags on the

outgoing/incoming packets, which means current datacenter administrators will be relentless

to adopt this method because it requires significant amounts of effort to update each single

server in the datacenter. Also, it is relatively difficult for the querying server to know the exact

number of servers that it is going to query. Lastly, if the querying server is simultaneously

participating in two or more incast type conversations, since each calculation is done separately

for each incast scenario, the calculated number is wrong as the combined input rate is higher

due to higher number of senders that were not included in the calculations.

We introduce ResQueue, which is a more effective solution to incast that does not rely on

changing congestion control. ResQueue detects those packets that were dropped in the past,

and prioritizes them over packets of that same size that did not incur loss. This is critically

important because the performance of foreground applications (e.g., Web search) is highly

sensitive to packet loss rate as TCP timeouts are multiple orders of magnitude larger than

typical flow completion times. Our at-scale simulations show that while a large fraction of the

Web application flows are delivered to the destination server in less than 100 microseconds,

others that are dropped more than once could be delivered after 3-4 milliseconds (assuming

RTO = 1ms). Below we discuss the mechanism of ResQueue, which is designed to rescue those

packets that belong to short flows from being dropped again.
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ResQueue is a novel flow scheduling method that is designed to give more accurate priority

to flows based on their size and their history of packet drops. At its core, similar to PIAS [16],

ResQueue implements a Multi Level Feedback Queue (MLFQ) at switches, in which a flow

is demoted from higher-priority queues to lower-priority queues according to their number of

sent bytes. The priority of each flow is calculated based on the number of bytes sent, and

then, this priority is tagged on the packet by the sender server. In MLFQ mechanism, if there

are N queues in the switch, all flows will be scheduled in the first queue when they start the

data transmission (bytes sent = 0). Flow priority demotes when the flow has already sent some

packets and exceeds a predefined threshold. Packets that are scheduled in the second queue will

not be dequeued unless all packets in the first queue are dequeued. Due to space constraints,

we do not provide the details of priority demotion here. The whole mechanism is explained

in [16].

In ResQueue, we reserve the first queue for those retransmitted packets that belong to short

flows (the size of this queue is 20KB in our experiments. We further discuss the size of reserved

buffer in chapter 4, section 4.3.2.4). We do this reservation for only short flows because Web

search workload is dominated by short flows, and, therefore, the performance of the whole

network will be determined by these short flows.

If the sender server is transmitting a normal packet, ResQueue acts like PIAS. However, if

the sender server is retransmitting a packet (or a window of packets), it calculates the priority

of the packet(s) in two rounds: first, it finds the appropriate queue level based on its number

of sent bytes (as in [16]), and, second, it subtracts one from the calculated value because of its
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drop history. For example, if a flow has only one packet to send and this packet was dropped

before, its bytes sent indicates that the packets should be enqueued in queue level-2; however,

the server tags the retransmitted packet with priority 1 due to its drop history, and, therefore,

all switches will enqueue this packet in queue level-1. We provision a reserved high-priority

queue only for short flows that experienced packet loss. As in [5], Web flows are so small that

they are often enqueued either in level-1 or level-2 queues, depending on their drop history.

Figure 7. Endhosts: Red packets were dropped before; their priority will be escalated.

Switches: Red packets are enqueued in the appropriate queue based on their priority

Note that although ResQueue does not schedule large flows in high priority queue, it still

improves throughput of these flows. While those large flows that experience one or more packet

drops in the past will not collide with short flows, they get higher priority compared to other
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same-size flows that did not suffer from packet drops in the past. Imagine that a large flow’s

packets are scheduled in queue level-4, and, meanwhile, a window of its packets get dropped

due to high congestion. When the window of packets is retransmitted, they will be scheduled

in queue level-3 to avoid further delays to these packets. Although queue level-3 is not reserved

for dropped packets, packets in this queue will drain faster than packets in queue level-4, which

improves overall throughput to some extent.

Figure 7 depicts a comprehensive example of ResQueue’s mechanism. As we see in Figure 7,

the sender is retransmitting the red packet that was dropped in the previous round. Although

the first round of priority calculation indicates that this packet should be scheduled in queue

level-2 (based on sent bytes), dropped flag is set for this packet, which leads to priority escala-

tion. Therefore, when the red packet arrives at the switches, this packet will be scheduled in an

isolated high priority queue (queue level-1), which guarantees that this packet will not collide

with a burst of packets again.

For the best performance, all servers across the datacenter and all switches in the path from

source to destination need to support ResQueue to save the retransmitted packets. ResQueue’s

implementation is similar to PIAS — ResQueue tags packets with priority information based

on bytes sent at end-hosts; upon timeouts, the priority is decremented.

3.3.1 Why ResQueue works?

Recent studies on datacenter networks show that incast inter-arrival time is so small that

about 30% of the incasts arrive at most 50 microseconds after the previous one [5]. Considering

this traffic pattern and the size of Web search flows in modern datacenter networks, retrans-
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mitted packets are likely to collide with a burst of packets, which causes excessive packet drops.

Note that RTT in datacenter networks is usually higher than 50 microseconds, which further

complicates the situation. Because flows are so small that they last only for a handful of RTTs

(assuming drops), prioritizing retransmitted packets would save them from being dropped again

after colliding with a burst of packets. Although there are not too many of retransmitted pack-

ets that collide with a burst of packets, it still negatively affects the higher percentiles (i.e., 99th

percentile) of flow completion times. Note that in datacenter networks we only care about tail

(i.e., 99th to 99.9th) flow completion time of short flows. Therefore, ResQueue has the potential

to play a crucial role in improving tail flow completion times of short flows.

3.3.2 Why not prioritize flows instead of packets?

If a flow already suffered from packet drops in the past, the performance would be higher if

the flow remains prioritized until it finishes. However, there are some challenges that we need

to address if the whole flow remains prioritized:

• If the whole flow is prioritized, large flows may remain prioritized for a long time, which

causes performance degradation to short flows.

• We need a relatively large table at the endhost to track the flows that already suffered

from packet drops. This mechanism requires a high number of unnecessary operations at

the endhost.

There is at least one solution for the first challenge. For instance, the endhost can increase flow

priority if larger number of packets are dropped, and decrease the priority if larger number of
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packets are yet to be transferred. However, this solution is indeed complicated and needs to be

further analyzed.

For the second challenge, our key insight is that because most short flows only consist of

handful of packets (1-2 packets), we can consider each packet as a separate flow without adding

complexity to the system. Therefore, prioritizing retransmitted packets would be more efficient

and easier to implement.

3.3.3 Packet reordering

In this section we investigate the effect of ResQueue on packet reordering at the receiver

server. Packet reordering is an important issue as it directly affects the flow completion time

of the flow. If some packets arrive out of order, the receiver server needs to spend considerable

number of CPU cycles on reordering them, which further delays the flow completion time.

ResQueue only schedules retransmitted packets in the higher priority queue. These packets are

already out of order and ResQueue’s prioritization mechanism guarantees that they will not

arrive at the receiver later than the new window of packets. Thus, ResQueue does not worsen

packet reordering. In fact, ResQueue somewhat alleviates packet reordering by making those

late packets to arrive earlier.
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3.4 Superways

ResQueue addresses the shortcomings of Slytherin and ICON but may not provide the

highest possible performance when there are a large volume of same size incast flows in the

network. In other words, if many same size bursts exist, ResQueue gives the same priority

to almost all the packets by design, which does not solve the incast (repeated packet drops)

problem. Also, it still requires setting/reading tags on packets, which adds some complexities to

the network. Although our congestion control (ICON) scheme and flow scheduling techniques

(Slytherin and ResQueue) outperform their predecessors, each of those methods come with

their own challenges that makes them difficult to implement in current datacenter networks.

What if we change the underlying topology to provide more resources for incast applications?

Changing topology does not change the TCP stack and does not require extensive modifications

to switches’ architecture.

The high-level idea of Superways is to provision more bandwidth for incast aggregators.

We argue that providing more bandwidth for incast aggregators is achievable because incast

aggregators contribute to small fraction of total number of servers in a datacenter network.

Our analysis on publicly available Facebook datacenter traffic dataset shows that around 3% of

servers are likely incast applications, as they receive a large number of flows in a short period

of time. These servers receive 18 times more flows compared to the rest of servers (i.e., 97% of

servers), on average.

Above analysis shows that the number of incast applications in a real datacenter is reason-

ably small so that providing additional links only for incast applications is feasible. A naive
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approach is to provision one link from leaf switch to incast aggregator for each worker server,

so that all worker servers can send at full rate. However, this would be prohibitively expensive.

Further, incast degree would vary drastically across applications, and perhaps may even vary

with time. To tackle this problem, we leverage the key observation that most incast flows tend

to be short, and are unlikely to utilize the full line rate. Therefore, we propose provisioning

receive bandwidth based on a number of factors, including the number of links, average size of

flows, and buffer sizes of routers. We discuss the details of our link provisioning method later

in this section.

Although providing additional links for servers is not a new idea, Superways brings two

novelties: (1) it selectively provides additional links only for those servers that require more

bandwidth (i.e., those servers that host incast applications), and (2) it greedily finds the op-

timal number of additional links proportional to incast degrees of incast applications. At its

core, Superways co-locates incast applications on certain physical servers (e.g., multiple virtual

machines each of which holds one or more incast applications) and then greedily finds the opti-

mal number of additional links that are required to absorb all those incast applications’ packets

combined. For example, we select a physical server in one of the racks to move a certain num-

ber of incast applications to this server, and then we calculate the number of additional links

required for serving all the incast applications’ traffic combined.

The question is: is this feasible to relocate applications in the network? Fortunately, due

to rapidly growing use of containerized applications in datacenters, incast applications can

be deployed in containers, and therefore, managing these applications (e.g., moving them to
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another cluster) is easy to do using application container management tools such as Kuber-

netes [40]. Nowadays, almost all modern datacenters use containerized applications, which is

a great advantage for topologies such as Superways that require freedom in server placement.

Moreover, recent studies such as [41] show that although traffic characteristics such as load and

packet sizes change frequently, large scale network characteristics such as workload changes in-

frequently. Thus, there is no need to constantly relocate the incast applications when Superways

is implemented.

In contrast to other datacenter topologies that provide additional links between servers

and leaf switches, Superways connects incast applications directly to spine switches (or inner

switches in random graph topologies) to make a trade-off between cost and performance. By

connecting to spine switches, Superways does not saturate uplink capacity (i.e., links from leaf

to spine switches), which improves throughput and tail latency of the flows. This is critically

important because provisioning additional links between servers and leaf switches will increase

the over-subscription ratio of the network, which increases the number of in-network packets.

Note that the network capacity remains unchanged. This issue leads to unpredictable conse-

quences such as excessive packet drops and high queuing delays. That is why previous studies

that provision additional links from servers to leaf switches require more leaf switches to absorb

the extra packets. Also, providing additional links from servers to spine switches may seem

more expensive compared to other methods that connect to leaf switches; however, since spine

switches are more powerful in terms of link speed and number of links, Superways cuts the

overall cost by decreasing the number of required cables, number of server NICs, and number
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of additional switches. Note that link speed directly affects the number of required links. For

example, a zero-buffer switch port that operates at 40 Gbps, supports 4 senders that are sending

at 10 Gbps, without loss of throughput and without any packet drops. We will further discuss

the reasons for connecting to spine switches in chapter 4.

3.4.1 Placement heuristic

Knowing the incast degree of each of incast applications is key in finding the number of

additional links. This could be achieved through monitoring the network traffic or previous

knowledge about the number of machines that each incast application will query. Although

each incast application is expected to query a fixed number of servers, it may query a different

number of servers in some cases, depending on the task that is requested by the end user. We

argue for considering average incast degree of each of incast applications. We will discuss our

decision in details later in chapter 4. Once we measured the average incast degree of each incast

application, we sort them in a descending order to see which of incast applications needs more

additional link(s) (i.e., more bandwidth+buffer space) and which ones require less or even no

extra links.

We start assigning the incast application with highest average incast degree to a physical

server. This can be done through moving the VM that hosts this incast application to an elected

physical server, or installing the incast application on the elected server in a containerized

environment. The physical server that hosts one or more incast applications is called incast

server throughout this paper. We start from one of the racks that is closest to the rack of spine

switches, and then we pick one of the servers in this rack as our elected server, which will be
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hosting the first incast application. In random graph topologies, we use the same approach as

we need to keep the wiring lengths as short as possible.

Once we placed the first incast application with highest incast degree on the designated

incast server, we have multiple rounds of calculations to find the minimum number of additional

links. Table II shows the parameters that we use in these calculations. Below we will explain

some of these parameters.

Due to various delays at kernels (e.g., handling interrupts, etc), all incast senders do not

start sending their data at the same time. Therefore, we consider a jitter factor in our formulas

(shown by α). α should be set to a value close to 1 (e.g., 0.8 - 0.9). In our experiments, we

observed that about 80% of the sender servers send their messages at the same time.

We know from previous studies that incast senders of a particular incast application can be

anywhere in the network. We call those incast servers that reside on a different rack remote

incast senders (e.g., S3 through S6 in Figure 9). We need to differentiate remote and local

incast senders because local incast senders could be able to use the current link (i.e., leaf switch

to server) without requiring any extra links. Also, even remote incast senders might be able to

use the current link without any packet drops. This will definitely change Superways’ design.

Therefore, we use β to show the ratio of local incast senders to the total number of incast

senders (β = 1/3 in Figure 9).

Average flow size varies depending on the workload in different datacenter networks. How-

ever, as shown in figure 6 of [8], about 60% of the flows are 1 KB or below in Web search

workloads. Our analysis on Facebook datacenter traffic confirms that flows in Web search
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workloads are mostly small so that the average flow size for all flows is close to 1500 bytes. Al-

though this number may vary among different datacenters and different workloads, the nature

of current datacenter workloads implies that most flows are in the range of 1 KB to 10 KB in

size. Similar numbers have been reported in previous studies such as [42].

In the first round of calculations, we use Equation 3.2 to check if incast senders that reside

on the same rack (i.e., local incast senders: S1 and S2 in Figure 9) exceed the buffer capacity

of the existing link from leaf switch to incast server. Since buffer size of each port plays a key

role in handling incast (i.e., reduces packet drops by storing packets in a queue), we consider

both bandwidth and buffer size in our calculations.

Ul =
α× (β × d)× s

Bl
(3.2)

Ul is the ratio of used buffer to the total buffer capacity of the link that connects the leaf switch

to an incast server, and therefore, could be either less or greater than one. We analyze both

cases in the following sections.

3.4.1.1 Ul is greater than one

If Ul is greater than one, then it means local incast senders of that particular incast applica-

tion will overflow the leaf switch’s buffer. For example, although incast degree of R in Figure 9

is 6, if S1 and S2 (local incast senders) start sending their data at the same time, they will

overflow the leaf switch’s buffer assigned to the port that connects to incast server. Therefore,



42

TABLE II

Parameters and descriptions

Parameter Description

α Jitter factor

β Ratio of local incast senders to all senders

θ Ratio of spine link speed to leaf link speed

Bs Spine switch per-port buffer

Bl Leaf switch per-port buffer

d Incast degree

s Average flow size in Bytes

Ul Fraction of occupied buffer - leaf switch

rs Per-port residual buffer - spine switch

rl Per-port residual buffer - leaf switch

N Maximum number of parallel senders

L Number of additional links
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Figure 8. Superways/leaf-spine Figure 9. Regular leaf-spine

we use Equation 3.3 to calculate the maximum number of flows (shown by N) that can pass

through the leaf switch towards the incast server without any packet drops.

α×N × s
Bl

= 1 (3.3)

Because local incast senders already exceed the leaf switch’s port buffer, some of them should

use the additional link(s) that we will provide for the remote incast senders. Therefore, we

need to update the ratio of local incast senders to the incast degree in order to consider some

of them as remote incast senders. We use Equation 3.4, to calculate the updated number of

local incast senders that can use the current leaf switch’s link capacity:

β =
bNc
d

(3.4)
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We use flooring to provide a safe margin for our calculations. At this point, we have the

updated number of remote incast senders that should use the additional link(s). Next, we

calculate the number of additional links (from incast server to spine switch) that is required by

the remote incast senders (1-β):

L =
α× ((1− β)× d)× s

θ ×Bs
(3.5)

We consider the value of dLe as the minimum number of additional links that is sufficient to

avoid packet drops. We do not consider the existing link ( i.e., from spine switch to leaf switch)

as a usable link for incast senders. Instead, we leave this link for other servers that are located

in the same rack. Note that due to different link speeds at spine and leaf switches, we need to

add another factor (θ) to our formula. This factor is always equal or greater than one, as spine

switches are equipped with faster NICs. The larger the θ the better because that particular

spine port can support more incast applications.

Depending on the value of L, we might have a large value of residual buffer that could be

used by other incast applications. For example, If L = 1.2, then we need to provide 2 additional

links to absorb all incast packets; but, 80% of the second link’s buffer capacity is still available

for other incast applications. Therefore, we calculate the residual buffer of the spine link as

follows:

rs ← Bs × (dLe − L) (3.6)
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At this point, we need to find an incast application that is able to use this residual buffer.

This is the classic Knapsack problem: we pick the incast application with highest incast degree

that fits in the residual buffer. We start from the top of the sorted list of incast degrees and

calculate the value of α×d×s
θ×rs for each incast application. Once this value becomes less than one,

we assign the corresponding incast application to the current incast server. Note that all local

and remote senders of the recently added incast application should use the additional link(s);

because there is no more available buffer in the link from leaf switch to incast server.

We update the value of rs after assigning the second incast application to the incast server

(using Equation 3.5 and Equation 3.6). If still any of incast applications can use the updated

residual buffer, we use the same approach to install it on this incast server. On the other hand,

if the residual buffer is not enough for any of incast applications, we move forward to the next

server in this rack and repeat the whole process on a new incast server.

3.4.1.2 Ul is less than one

If Ul is less than one, then it means current local senders do not overflow the leaf switch’s

buffer. In other words, depending on the size of residual buffer, one (or even more) of the

remote incast senders might be able to use the leaf switch’s port. We continue our calculations

by measuring this residual buffer:

rl = Bl × (1− Ul) (3.7)
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Now we check if all the remote incast senders fit in the residual buffer or not:

Ul =
α× ((1− β)× d)× s

rl
(3.8)

There are two possibilities depending on the value of Ul:

• Ul is still less than one: This means all local and remote incast senders can use the existing

link connected from leaf switch to server, without any packet drops. Next, we calculate

the residual buffer as follows:

rl = dUle − Ul (3.9)

Lastly, we check the sorted list of incast degrees to find the incast application that can

use the residual buffer. Again, we greedily pick the application with highest incast degree

that fits in the residual buffer. Once found, we co-locate it with existing incast application

on the current incast server. If the residual buffer is not enough for any of those incast

applications, we leave it unassigned. This helps in having extra capacity when a burst of

packets arrives at the switch port.

• Ul is larger than one: We need to provide additional links from incast server to a spine

switch to absorb remote incast senders’ packets. However, we should fully utilize the leaf

switch’s residual buffer first. Therefore, we repeat the previous calculations (Equation 3.3

and Equation 3.4) to see how many of remote incast senders can use the link from leaf

switch to incast server, and how many of them should use the additional links. Next, we

use Equation 3.5 and Equation 3.6 to find the optimal number of additional links, and
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then we calculate the residual buffer of these additional links that can be used by other

incast applications:

If the residual buffer is enough to absorb incast packets of any of the incast applications

(depending on their incast degree), we bin-pack it on the current incast server. However, if

there is no more residual buffer, we move to the next server in the current rack and select

it as our new incast server. Above calculations will continue until all incast applications are

assigned to their incast servers. If the number of incast applications is very large, we may need

to proceed to the next rack (which is the second closest to spines rack) and pick a server as the

new incast server. Note that each incast server is connected to one spine switch only (through

one or more links), while each spine switch might be connected to multiple incast servers.

3.4.2 Routing and load balancing

Superways creates a heterogeneous topology, and therefore, requires a load balancing method

other than equal-cost load balancing schemes such as Equal Cost Multi Paths (ECMP). This

is because there will be at least one shortcut route between an incast server and its senders

(i.e., workers), which means the final cost of all possible routes is no longer the same. However,

the routing mechanism will not change as we need incast senders to use the shortcut routes,

which will be picked by existing routing protocols such as OSPF, by default (due to their lower

cost compared to regular routes). Nevertheless, this holds for remote incast senders only and

routing for local incast senders could be different. Below we provide the details of routing and

load balancing for local and remote incast senders.
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3.4.2.1 Load balancing for remote incast senders

Assuming a cost based routing protocol, packets originated from remote incast senders are

always forwarded through the additional link(s) due to their lower cost compared to other

paths. As an example, in Figure 8, imagine S5 is sending a message to R1. S5’s packets will be

forwarded through the red link because of its lower cost compared to the normal paths (black

links). If more than one additional link is provided, all the additional links can be bundled to

a fat link, and therefore, still no further actions are required for load balancing remote senders’

packets. In this case, an equal-cost load balancing method such as ECMP (or any forms of

packet spraying) would work as well.

If our calculations require some of the remote servers to use the leftover bandwidth of the

initial link (i.e., existing link between server and leaf switch), the network operator needs to set

a static route on the spine switch to route the flows accordingly. However, the leftover capacity

of the initial link is likely very limited (due to high incast degrees in modern datacenters) so

that we do not expect that many remote incast senders use the initial link’s capacity.

3.4.2.2 Load balancing for local incast senders

New studies on modern datacenters’ traffic reveal that datacenter traffic is no longer rack

local (i.e., only 13% of flows remain in the rack [8]). Thus, packets originated from local incast

senders may or may not need further load balancing actions as it is unlikely to have too many

local incast senders. In other words, if some of the local senders must use the additional link(s)

(i.e., initial link’s capacity is not enough even for absorbing local senders’ packets - see section
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3.4), we need to change the normal route to incast applications only for these servers. There

are two solutions for this issue:

• Source routing: Incast senders can explicitly inform the switches about each packet’s

route. While source routing is easy to implement, it may increase latency (by adding

processing delay), which is critical in datacenter networks.

• Static routing: We may need to add a couple of static routes to leaf switches to re-

route the flows that must use the additional link(s). The static route should match the

source and destination of each packet. Note that we need to check both the source and

destination because the static route should affect incast senders only. Since most existing

switches support OpenFlow, we can apply these simple configurations remotely on the

SDN controller. As we mentioned earlier, we do not expect to have many local incast

senders, and therefore, we may need to add only a handful of routes into the routing table

of switches.

In the case that local incast senders do not need to use the extra capacity, no further action is

required as existing link from leaf switch to server is perfectly handling the incoming traffic.

3.4.3 Topology management

In this section, we address physical considerations of implementing Superways, such as

topology upgrade and wiring complexities.
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3.4.3.1 Topology upgrades

Superways’ upgrading complexity is very similar to that of the underlying topology. The

reason is Superways only targets a small number of servers in the topology, which does not

lead to huge complexity in topology upgrades. In Superways, some specific servers are chosen

to host bandwidth hungry applications, and then more links are provisioned for these servers

proportional to their load and their fan-in degree. Thus, it would be a good idea to have a

designated area (e.g., some racks or some pods in extreme cases) in the datacenter network,

and place incast applications on servers of this area. As a result of this isolation, whenever a

new incast application is placed in a datacenter network, it will be installed on one of these

servers based on the calculations described in section 3.4.1.

There are two main reasons for colonizing incast applications: (1) incast applications will be

able to use the potential extra capacity left by other incast applications, and (2) simplifying

topology management. The latter is crucial as more incast applications may be added to

the datacenter network over the course of time, and colonizing incast applications helps us in

lowering the degree of heterogeneity of the topology. In other words, if there are many incast

servers spread across the topology, while they have extra connections to spine switches, there

will be many small islands in the topology that further complicates routing and load balancing,

requires longer cables, and complicates topology management. Therefore, we suggest to focus

on one area of the topology and move every incast aggregator to this area. To see a clear

picture of this process, refer to Figure 10. This figure shows a schematic view of a typical tree

topology deployed in Facebook [43]. We can pick as many racks as we need and then connect
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the servers inside those racks to the spine switches in one of the spine planes (e.g., spine plane

1). For wiring simplicity, we always pick closest racks to one of the spine planes. In Figure 10,

as an instance, servers in rack 1 of pod 1 and switches in spine plane 1 are good candidates to

host incast applications as they are the closest to the spine plane 1.

Someone may note that colonizing some servers on a specific rack (or some racks) may not

always be doable as there are some services that have placement restrictions. However, recent

studies on datacenter networks show that servers do not tend to host rack local services [8], and

therefore, most of them are not location sensitive. Other studies such as [12] confirm this fact

that incast degrees can be much higher than number of ports in a leaf switch, and therefore,

there must be many more worker servers outside of this rack.

Due to high growth rate of using online services (e.g., social networks), more incast applica-

tions are expected in modern datacenters. Therefore, if incast servers in the current designated

rack cannot handle new incast applications, the datacenter operator can select another rack as

the n-th designated rack and repeat the above-mentioned process for application placement.

Since there are more than one spine switch in a spine plane, there is no problem with con-

necting to the next spine in the same plane, if there are no more available ports in the current

spine switch. Note that the next spine switch should be the second closest spine switch to our

designated rack. In some rare cases, spine switches in the closest spine plane may not have any

available ports to connect to incast servers. In this case, we need to place extra spine switches

with higher number of ports in that plane (i.e., spine rack) to connect to incast servers. Note

that this spine switch should be connected to all leaf switches in that pod (see Figure 10).
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Due to high number of ports in spine switches (i.e., 128 - 256), however, we expect to have

enough free ports at spine switches given that there are small number of incast applications in

a datacenter network.

Figure 10. A schematic view of Facebook

datacenter

Figure 11. Wire length in a Superways

datacenter

3.4.3.2 Wiring length

Superways does not require long wires if closest racks to spine switches are selected to host

incast applications. Figure 11 shows an example of Superways’ architecture. Closest racks
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to spine switches are shown by dotted lines, which are the best candidates for hosting incast

servers. Assuming a rack height of 6.5 ft and cold aisle width of 4 ft [44], the length of a wire

that connects an incast server in a leaf rack to a spine switch in the spine rack is less than 15 ft,

on average. The red link in Figure 11 shows this extra link. In the extreme case (i.e., providing

an extra link from a server at the bottom of leaves’ rack to spine switch at the top of spines’

rack), we need a wire that is between 20 to 25 ft long, which is not a long cable given that it is

still less than average cable length in production datacenter networks [45]. If we need to move

to another rack due to increased number of incast servers, we still connect these servers to a

new spine switch in the closest spine rack (e.g., second spine rack in Figure 11), and therefore,

the average cable length in Superways will not increase.

3.4.3.3 Server replacement

Superways changes the placement of incast applications in a datacenter network to achieve

higher performance. Although it is despite of common server placement routines in datacenter

networks, Superways replaces about 3% - 4% of all servers (see section 3.4), which is doable

in small to medium scale datacenter networks. Implementing Superways on existing tree or

graph topologies is not challenging because some of incast applications remain in the same rack

even after colonizing incast applications in a rack. Also, since many modern datacenters are

virtualized, migrating VMs from one server to the other one is indeed easy. In case of non-

virtual environments, in the worst case scenario, we need to replace all incast applications; and,

in the best case scenario, almost no incast application needs to be replaced. Therefore, we only

need to replace 1% to 2% of all servers, on average.
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3.4.3.4 Link aggregation

If incast degrees are high, more additional links are required to absorb the burst of packets.

Thus, we suggest to use a link aggregation protocol to create a fat link out of the additional

links, and create a high bandwidth link that is able to process more packets at a given time.

Link aggregation simplifies load balancing decisions and increases bandwidth. The latter is

critically important because all co-located incast applications are not likely to receive their

incast replies at the same time, and therefore, an incast aggregator can aggregate responses

much faster due to high bandwidth at the spine switch. In other words, if multiple bursts

arrive at a single incast application, while other incast applications installed on the same server

are not active at this moment (i.e., they are not receiving a burst of packets), the overloaded

incast application can use a big fraction of the fat link’s capacity that was provisioned for all

incast applications installed on that server. Therefore, extra capacity will be available for those

incast applications that are actively receiving back-to-back incasts or experience higher incast

degrees than usual. Having back-to-back bursts is quite likely as reported in [5]. This study

reveals that incast inter-arrival time could be extremely short so that many of bursts arrive

only 50 microseconds after the previous burst.

In summary, since not all incast applications receive their packets at the same time (i.e., all

extra links are not 100% utilized at all times), considering average incast degree of each incast

application would be sufficient to ensure that our calculations guarantee the enough number of

additional links. Our simulation and testbed results confirm this assumption.
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3.5 Smartbuf

All previously discussed methods improve tail latency of short flows and throughput of long

flows but they either need endhost modifications (i.e., TCP stack change or server replacement),

or require prior information about the flows. Superways provides the best performance so far;

however, it could be difficult for datacenter administrators to redesign the network, specially

when the datacenter is relatively large. Therefore, we need an efficient scheme that does not

require endhost modifications, and also, does not incur significant changes to the network

(e.g., redesigning the whole network). Smartbuf, is the last discussed method that fulfills the

mentioned objectives. Below we elaborate on the details of Smartbuf.

While it is difficult to predict the arrival time of a burst in datacenter networks, some ports

(e.g., those that are connected to incast aggregators) are more susceptible to large bursts and

require more buffer space than other ports. Our high-level idea is to learn the upper bound of

buffer occupancy that every burst could lead to and capping the allocated buffer for each port

that experiences a similar burst at that level.

Fortunately, the traffic dynamics of datacenter networks is such that we can predict the

buffer demands of ports by observing past behavior. and it suggests that observing previously

seen bursts’ signature could help provisioning for future similar ones. During high fan-in bursts,

data from multiple input ports get forwarded to the same output port within a switch, which

causes a sharp increase in the output port’s queue length in a short time. Because most flows

that are involved in such a burst happen to be short flows [5,8], fan-in (incast degree) is a good

predictor of the buffer demand (i.e., other factors like flow sizes and protocols play a relatively
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minor role). We see a clear one-on-one association between fan-in (incast degree) and buffer

demand. This key observation enables us to estimate buffer demands of ports and allocate

space accordingly.

Fan-in, however, is application-level knowledge and there is no easy way for switches (net-

work layer) to access this information without substantial changes to the protocol stack and

applications. Because the gradient of queue length is proportional to the aggregate incoming

rate (i.e., average sending rate × fan-in), we make the key insight that gradient of queue

length, which is a local information, can be effectively used as a proxy for fan-in. Thus, instead

of using fan-in, we use the gradient of queue length to index into our database of past demands,

which is maintained as a key-value store. To further reduce the sensitivity of our approach

to event-based switch measurements, we propose to use the smoothed (averaged) gradient of

queue lengths as the signature for the bursts and use it as a key to store and retrieve the buffer

requirements of subsequent bursts. We use EWMA (Exponential Weighted Moving Average)

over a short time window to ensure that we capture the presence of back-to-back packets in a

burst and also filter extreme outliers to improve accuracy.

The switch starts observing burst signatures and records the maximum buffer occupancy

seen at a port for each key (gradient of queue length). It continuously learns these key-value

pairs and updates the values whenever a higher upper bound is encountered. The set of key-

value pairs is used to match on future signatures and to allocate per-port buffers. Due to the

dynamic workloads, the entries eventually age out after some time (i.e., soft state), and new

signatures are learned. In chapter 4, we show that dynamically allocating buffer space, which
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is a scarce resource, to ports proportional to their demand is key to achieving high performance

in today’s datacenter networks and show that existing proposals fall short of this goal.

3.5.1 Smartbuf algorithm for buffer allocation

In this section, we explain the details of Smartbuf’s buffer allocation mechanism. As we

mentioned in Section 3.5, Smartbuf focuses on catching bursts’ behaviour and uses this knowl-

edge to accurately predict the buffer demand of future bursts. Details of this algorithm are

shown in Algorithm 2. This algorithm consists of two phases: Learning phase and Real phase.

In the Learning phase, the switch records gradient of each port’s queue length alongside with the

maximum queue occupancy corresponding to this gradient per each packet dequeue. Since not

all the information is useful (i.e., there is no need for recording non-burst flows’ information),

we need two data structures to record the pair of gradient of queue length and maximum buffer

occupancy observed: (1) Temp map, which is a hash map of an integer (port ID) and a pair of

gradient of queue length and maximum buffer occupancy (line 6 of Algorithm 2), and records

all the information. (2) Main map, which is a hash map as well, and records the burst-related

information only (line 7 of Algorithm 2). Smartbuf kicks in only if a burst is detected. Thus,

when no burst is detected, each port’s buffer threshold is calculated by DT [35] (line 8 and line

35 in Algorithm 2), which is an efficient buffer management scheme in absence of incast.

While Temp map records per port information only, Main map is global across all ports so

that all ports can use the learned knowledge of other ports. Therefore, if a port is experiencing
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Algorithm 2: Smartbuf

1 Begin

2 Input: instantaneous queue length

3 Learning-phase

4 Initializations:

5 max buf seen,Gradient,Gradientprev ← 0

6 Temp map[port, [Gradient,max buf seen]] = φ

7 Main map[Gradient,max buf seen] = φ

8 Port buf threshold = DTthreshold (see [35])

9 for each packet dequeue at port P do

10 Gradient = (Qlen−Qlenprev)/(T − Tprev)

11 Qlenprev ← Qlen, Tprev ← T

12 Gradient← 1/4×Gradient+ 3/4×Gradientprev

13 Gradientprev ← Gradient

14 if (cur buf in use > max buf seen)

15 max buf seen = cur buf in use

16 Temp map[P ]← [Gradient,max buf seen]

17 else if (cur buf in use < β ∗max buf seen)

18 if (max buf seen > (1/σ) ∗ total buf size)

19 Main map← Temp map[P ]

20 else

21 Gradient,max buf seen← 0

22 Temp map[P ] ← [Gradient,max buf seen]

23 else

24 Continue
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(25)

(26) Real-phase

(27) at line 17 of learning phase:

(28) if (max buf seen > (1/σ) ∗ total buf size)

(29) for i = 1; i < K; i = i+ 1 do

(30) find ith larger than current Gradient key in Main map and store it in min(i)

(31) avg = (min(1) + ...+min(K))/K

(32) Port buf threshold = avg

(33) Main map← Temp map[P ]

(34) else

(35) Port buf threshold = DTthreshold (see [35])



60

incast, other ports are able to manage similar bursts efficiently, if the workload changes and

they suddenly become overloaded.

Calculating the gradient of queue length is challenging because the sign of gradient could

change even at the early stages of an incoming burst. In other words, because not all packets

in a burst arrive at the same time, gradient of queue length could be negative even inside a

burst that more packets are yet to come. Therefore, Smartbuf calculates the moving average

of gradients while it gives higher weight (e.g., 0.75) to the previous samples. This is a key step

in Smartbuf’s algorithm as it has a huge effect on accuracy of the calculations.

In lines 14–16 of Algorithm 2, we update Temp map entries if a larger buffer occupancy is

observed. Note that we aim to match gradient of queue length and maximum buffer occupancy

observed (so far), and therefore, this step is important in recording the correct highest observed

buffer occupancy. If buffer occupancy is being smaller than maximum buffer occupancy, there

is no need to record this value as the switch already saved the largest buffer occupancy. Lines 17

through 24 focus on inserting Temp map values into the Main map (i.e., moving burst related

information to the global hash map). There are two main conditions before this insertion:

(1) if current buffer occupancy of a port drops below a certain value (line 17), then it means

the saved max buf seen is a global maximum, and, probably, it is time to insert this entry in

Temp map into the Main map. This condition (i.e., burst is finished) is satisfied if the current

buffer occupancy is less than a certain fraction of the previously observed maximum buffer

occupancy (i.e., max buf seen). This fraction is determined by a threshold called β. We need

this threshold to accurately detect the correct finish time of a burst because there are some
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large spikes in buffer usage that happen right after a temporary drop in buffer usage of a port,

which we need to catch them too. We used β = 0.5 in our experiments. Therefore, if current

buffer occupancy of a port drops below half of the observed maximum buffer occupancy, we

may be able to add this information into Main map because burst is most likely gone. Later in

chapter 4, we discuss the sensitivity of our algorithm to β.

(2) As we mentioned above, we do not need to insert every entry of the Temp map into

Main map unless that entry is certainly associated with a burst. Line 18 of Algorithm 2 is

about this condition. Similar to line 17, we need a threshold that indicates the spike in buffer

usage that was captured before, is certainty associated with an incast induced burst. Possible

values for this threshold depend on the definition of burst in that particular network. As an

instance, in a workload that most servers participate in partition-aggregate traffic (i.e., incast),

a single burst could occupy the whole buffer, depending on the size of buffer. Therefore, this

threshold should be configurable so that it matches the current workload.

In our experiments, we observed that in many cases that each port consumed about 20%

to 40% of the whole buffer (i.e., 2.5 < σ < 5), it is experiencing incast that eventually ends

up consuming even more buffer space. Thus, if the existing max buf seen is larger than 20% of

the whole buffer space (i.e., σ = 5 in a 4 MB shared buffer), then we insert the pair of queue

gradient and max buf seen into the global hash map (i.e., Main map). We will further discuss

sensitivity to σ later in section 4.5.

In the Real phase, all operations in learning phase are still in progress. However, if line

17 of the algorithm holds, Smartbuf takes different actions that are shown in lines 28–35 of
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Algorithm 2. When incast is detected, the switch looks for K saved gradients in the Main map

that are larger than current gradient, and are closest to it. The switch calculates the average

of max buf seens corresponding to these K gradients and picks this value as the buffer limit for

this port. Therefore, this port takes a certain fraction of the buffer that is enough for absorbing

a burst, rather than taking the whole buffer space. Note that Smartbuf keeps inserting the new

pair of gradient and buffer occupancy into the Main map even in the real phase (line 33), which

improves the buffer assignment accuracy even when workload is changing. Smartbuf uses the

K-NN approach to increase the accuracy of its buffer allocation algorithm. Later in section 4.5,

we discuss the range of values of K that lead to high performance. Also, we will discuss the

total overhead of implementing Smartbuf on programmable switches as well.

There is a possible scenario that two or more ports are experiencing incasts, and the overall

buffer that Smartbuf assigns to all ports exceeds the total buffer size. In such cases, we will

have a FIFO in which each flow greedily gets its buffer share. If at any point, a port requires

more space but there is no free memory left to be allocated, we have two options—simply drop

the packet destined to that port or borrow memory from another port. We resort to the simpler

option of dropping in this paper. However, dropping the packet seems the only viable option

unless we dedicate a fall-back memory but tuning its size would then be another problem to

solve.

3.5.2 Realization in programmable switches

Figure 12 shows one way to realize the proposed algorithm on a re-configurable match-action

pipeline, per each output port. Because queue length and current buffer in use are needed as



63

Qlen

Qlen_prev

A
L
U

Log 
LUT

From the 
Traffic 
Manager

T

T_prev

A
L
U

Log 
LUT

From the 
Clock

A
L
U

Exp 
LUT

>>

A
L
U>>

A
L
U

Gradient

Max_buf_seen

Cur_buf_in_use

Comp

From the 
Traffic 
Manager

M
U
X

>>
Comp

>

Disable Main_map update

>

Total_buf_size

𝜎

Log 
LUT

Log 
LUT

A
L
U

Exp 
LUTConst

Const

Comp

>

Enable Main_map update

r

r

Index Buffer Size

i Max_buf_seen

Index Queue Length Gradient

i Gradient

N

N

1

1

Match

Action

Match

Action

Match

Action

Packet 
in

Packet 
out

Packet

Index 3
Index 2
Index 1

Custom metadata 
(𝑖!" higher closest 

indices)

O(LogN) 
Stages

Figure 12. Block diagram of the proposed algorithm on a programmable switch pipeline

inputs to the algorithm, the algorithm should be implemented in the egress pipeline where the

traffic manager can provide current values for queue length and current buffer in use for every

port P. Because today’s programmable switches do not support multiplication and division,

we rely on look up tables (LUT) to implement them after converting those operations into

logarithm and exponentiation. The calculated values for the gradient and the corresponding

maximum buffer used are stored in the SRAM as outputs of the learning phase (see the two

tables on the right in Figure 12). In the real phase, after the input packet is parsed by the
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parser, we augment the header vectors with three integers as custom metadata that hold indices

for three higher closest indices of gradients. As the packet passes through O(logN) stages with

N being the size of our main map, these metadata are populated and ready for buffer threshold

setting.

The bottom portion of the figure computes the gradient per each packet. The top portion

implements the comparison of the maximum observed buffer to the current buffer in use and

the middle part compares the maximum buffer observed to the total buffer size. The green

gate-level logic on the right decides whether to update the SRAM depending on the outcome

of comparisons. The general pipeline for updating the indices for closest higher values to the

gradient in O(logN) stages and averaging them is depicted on the left but we omit the circuit-

level details for brevity. We emphasize that this is one way to realize our algorithm but other

implementations may be possible, depending on the constraints of the platform. Enforcing

the buffer size (output from Figure 12) requires access to the Traffic Manager. The existing

framework in Intel Tofino switches does not allow changes to this module but we are hopeful that

switches will become more open in the future [46]. Therefore, a complete implementation Tofino

programmable switches is not possible because the switches do not (yet) support modifying

the queuing logic. In chapter 4, we provide bounds and show that our design is feasible for

implementing on programmable switches.
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In this chapter, we explain our experimental methodology and we will elaborate on efficiency

of our proposed methods.

4.1 Slytherin

4.1.1 Experimental terminology

In this section, we present the details of our simulator implementation, topology, and work-

load, and then we provide the results of our experiments in the next section.

4.1.1.1 Topology

We use ns-3 [47] to simulate leaf-spine datacenter topology. Leaf-spine is a commonly used

topology in modern datacenters [6]. In our simulations, the fabric interconnects 400 hosts

through 20 leaf switches connected to 10 spine switches in a full mesh manner which provides

over-subscription factor of 2. Each of leaf switches have 20 10 Gbps downlinks to the servers

and 10 10 Gbps uplinks to the spine switches. The end-to-end Round-Trip Time (RTT) across

the fabric is 80 µs.

4.1.1.2 Workload and Traffic

To evaluate our method, we simulate web search workload that is very common in modern

datacenters. We consider two flow size distributions; short flows and long flows. All flows arrive

according to Poisson process and the source and destination for each flow is chosen uniformly

randomly. Short flow sizes are uniformly chosen in the range of 8 KB to 32 KB and our long

flow’s size is 1 MB. Since in web search workloads vast amount of all bytes are produced by

30% of flows that are larger than 1 MB [6], we use the same approach to produce the loads. We
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also use those short flows to produce incast type traffic which are quite common in web search

workloads.

To further evaluate Slytherin’s performance, we consider two metrics; one for short flows

which is Flow Completion Time (FCT) and one for long flows which is throughput. Moreover,

we check both average and 99th percentile flow completion times of short flows to measure the

performance of our proposed method. Similarly, we evaluate Slytherin’s performance in both

average and tail flow completion times in different incast scenarios. We use incast degrees of

24, 32, and 40 (number of parallel senders to a single receiver) to check the sensitivity of our

method to incast degree. Next, we analyze Slytherin’s performance using other metrics such as

queue length, convergence speed and number of reordered packets.

4.1.1.3 Compared schemes

• DCTCP: We implemented DCTCP, capturing all details in their paper [10]. We use

DCTCP as baseline.

• PIAS: We implemented PIAS [16] on top of ns-3 [47] simulator. The implementation

assigns 4 queues to each switch port. At the very beginning, all flows get mapped to to

the highest priority queue (queue 1). If number of sent bytes of a flow reach a threshold,

the priority of corresponding flow will be decreased and then the rest of packets of the

flow will be assigned to lower priority queues (queues 2 to 4). We set the ECN threshold

to 25% of the queue size and the load balancing method is flow ECMP.

• Slytherin: We implement Slytherin on top of DCTCP [10]. Our implementation uses

two queues per each switch port, recall from section 3 that we use one high priority queue
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for expediting ECN marked packets and ACKs, and one low priority queue for other

packets. We set the ECN threshold to 25% of the queue size and we use ECMP for load

balancing. We set out the rest of our network configuration to match PIAS.

• Ideal SJF: We also implemented an ideal SJF scheduler. Our SJF scheduler is aware of

flow sizes and maps short flows to higher priority queues. While this is not realistic as

flow sizes are often not known apriori, we use our ideal SJF implementation for deeper

analysis of Slytherin’s queuing delays.

As such, we use the same values for parameters that are common to DCTCP, PIAS, and

Slytherin (e.g., ECN threshold), and the values match those used in previous papers. There are

a number of packet scheduling approaches in the last few years such as pFabric [6], PDQ [30],

and PASE [29]. However, because PIAS compares to and outperforms these approaches, we

only compare Slytherin to PIAS.

4.1.2 Slytherin results

In this section, we evaluate the performance of Slytherin in different scenarios on top of

ns-3 [47] simulator. Our performance evaluation consists of six parts:

• Bottomline comparison of Slytherin’s Flow Completion Time (FCT) and throughput to

PIAS

• Analysis of Slytherin’s average queue length to explain our performance gains vs. PIAS

and ideal SJF.

• Convergence analysis of DCTCP and Slytherin
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Figure 13. Tail (99th) percentile FCT

• Sensitivity to varying incast degrees

• Sensitivity to ECN marking threshold

• Analysis of packet reordering in Slytherin vs. PIAS.

4.1.3 Tail FCT and throughput

In this section we will show how Slytherin performs in terms of both flow completion times

(for short flows) and throughput (for long flows). The results for mean flow completion times,

tail flow completion times, and throughput are shown in Figure 13, Figure 14, and Figure 15

respectively. In all figures, the X-axis shows the load factor on network. In Figure 13 and

Figure 14 Y-axis shows flow completion time in milliseconds and in Figure 15 the Y-axis shows

throughput in Gbps.
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Figure 14. Average FCT

Figure 15. Average throughput (long flows)
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4.1.3.1 Flow Completion Time

Figure 14 compares the 99th percentile completion times of Slytherin and PIAS. As load

increases, tail FCT increases for all the schemes. PIAS and Slytherin significantly outperform

DCTCP. PIAS greedily assigns higher priority to flows that sent less packets regardless of

queuing delays which leads to high queuing delay for some packets. Although PIAS benefits

from ECN marking to prevent long queuing delay for longer flows, it falsely classifies some

packets that have incurred higher queuing into lower priority queues which worsens tail FCT.

In contrast, Slytherin targets tail packets and prioritizes them. At higher loads, Slytherin

achieves better reduction in tail FCTs as there is more opportunity to schedule tail packets.

Slytherin achieves an average reduction in tail FCTs of about 20% for loads greater than 20%

(typical operating point of most datacenters).

Figure 13 shows the average FCT for short flows. Although PIAS outperforms Slytherin

in average FCT but since the performance of foreground datacenter applications (e.g., Web

search) are sensitive to the tail of FCT and not mean, Slytherin makes the right trade-off by

prioritizing tail packets over average (or median) packets. Nevertheless, we expect to see better

average FCT for PIAS because it emulates SJF, which is known to minimize average FCTs.

4.1.3.2 Throughput

To see the performance of Slytherin for long flows we measure average throughput in our

simulations. Schemes that try to mimic SJF usually suffer from throughput issues; because they

give strict priority to shorter flows. On the other hand, Slytherin’s mechanism to expedite ECN

marked packets would speed up the congestion reaction processes at end host which increases
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Figure 16. Load=40% Figure 17. Load=60%

the control over sender’s rate. Figure 15 shows the average throughput of Slytherin and PIAS

for long flows. We see that Slytherin achieves higher throughput for long flows in contrast to

PIAS. Overall, Slytherin achieves an average increase in long flows throughput by about 32%.

4.1.4 Queue length

Any packet scheduling scheme which keeps lower amount of packets in queues can success-

fully decrease the risk of packet drops in case of congestion. Recall from section 3.1 that since

Slytherin works in conjunction with DCTCP, it tends to store lower amount of packets in queues

because of its nature which transmits congested packets faster. More specifically, By expediting

congested tail packets, end host’s transport protocol would receive congestion signals faster and

consequently it cuts its Congestion Window (CWND) faster to speed up congestion recovery

processes.
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In Figure 16 and Figure 17 we show the Cumulative Distribution Function (CDF) of queue

lengths of all switches for Slytherin, PIAS and Ideal SJF, for 40% and 60% load, respectively.

In ideal SJF, we assume that we know flow sizes apriori and switches can, therefore, faithfully

implement SJF.

Figure 17 shows with a higher load factor (60%), the stored number of packets in queues

increases for all schemes but Slytherin outperforms others even more. Overall, Slytherin signifi-

cantly reduces 99th percentile queue length in switches by about a factor of 2x on average. While

SJF is known to substantially improve average flow completion times, our comparison with ideal

SJF highlights Slytherin’s ability to specifically target and improve tail latency beyond SJF.

Figure 18. Scenario used for convergence time evaluation
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4.1.5 Convergence time

Expediting ECN marked packets helps TCP flows to converge faster to their fair share band-

widths when multiple flows compete on a bottleneck link. We evaluate Slytherin’s convergence

using a small network (Figure 18) consisting of four servers. We initiate a long flow from host

A to host C and then, after 10 RTTs, we start 20 concurrent flows from server B to server D.

Figure 19 shows the convergence time (i.e., time to reach the fair share rate) of DCTCP

(baseline) and Slytherin; X-axis shows time and Y-axis shows throughput (measured per each

RTT). We see that DCTCP takes 6 RTTs (480 µs) to converge to fair share whereas Slytherin

converges in 4 RTTs (320 µs). Because Slytherin provides faster convergence, it effectively

mitigates utilization and fairness issues in multi-bottleneck scenarios, as reported in prior stud-

ies [48].

4.1.6 Sensitivity to incast degree

We study Slytherin’s sensitivity to incast degree and compare its tail flow completion times

to those of PIAS. Figure 20 shows the 99th percentile flow completion times of Slytherin and

PIAS as we vary the incast degree as 24, 32 (our default), and 40 along X-axis, for different

loads. As expected, the flow completion times increase with increasing incast degree and load.

Slytherin relative gains are robust across incast degrees and loads. Overall, Slytherin achieves

an average reduction in 99th percentile FCT by about 21%.

4.1.7 Sensitivity to ECN threshold

Next, we analyze the Slytherin’s sensitivity to ECN threshold. While a lower threshold

would aggressively mark packets, promote more packets to the high priority queue, and cause
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Figure 19. Convergence time

congestion, a higher threshold would be slow to react to congestion. Figure 21 shows the tail

flow completion times of Slytherin for three different ECN threshold values of 12.5%, 25%, and

37.5% of total buffer size for varying loads. We see that Slytherin with threshold of 12.5% of

queue szie suffers at higher loads as more packets get promoted to high priority queue and cause

congestion. While a larger threshold of 37.5% of total buffer size achieves better (lower) 99th

percentile FCT at higher loads, we observed loss of throughput for long flows (not shown) due

to slower reaction to congestion.

4.1.8 Packet Reordering

In this section we investigate the effect of expediting ECN marked packets on TCP packet

reordering. Slytherin schedules congested packets ahead of others to decrease tail flow com-

pletion time which may cause packet reordering at the end hosts. We compare the number of
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Figure 20. Sensitivity to incast

Figure 21. Sensitivity to threshold
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reordered packets in Slytherin and PIAS to check Slytherin’s performance in terms of packet

reordering efforts. PIAS authors assume the switch has enough rooms in the buffer so that

each of those sub-queues (e.g., priority queues) can accommodate all incoming packets. Fur-

thermore, PIAS sets a priority for the whole flow and consequently the number of reordered

packets could be nearly zero. However, in a more realistic scenario, when the capacity of each

of those sub-queues is limited, PIAS needs to either drop or demote packets to a lower priority

queue which both lead to significant packet reordering.

Figure 22 shows the number of reordered packets in Slytherin compared to PIAS. X-axis

shows the load factor on network and Y-axis shows the ratio of PIAS’s number of reordered

packets to Slytherin. As shown in Figure 22, while PIAS reorders fewer packets than Slytherin

at low loads, PIAS incurs higher packet reordering than Slytherin at high loads (i.e., at 60%

and higher loads). As load increases, PIAS demotes more packets. Our experiments show that

while Slytherin reorders only 0.56% of total number of packets (on average), PIAS reorders 1.2%

of all packets (on average) across all loads. Because the absolute number of packet reordering

would be far greater at high loads than at low loads, Slytherin is more effective than PIAS in

reducing reordering effort.

4.2 ICON

In this section, we provide in-depth analysis of ICON’s performance in datacenter networks.
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Figure 22. Packet reordering ratio (PIAS/Slytherin)

4.2.1 Experimental Methodology

We use ns-3 [47] simulator to simulate a datacenter network and evaluate ICON’s perfor-

mance. In this section, we present the details of our evaluation methodology including topology,

workload, simulation parameters, etc.

4.2.1.1 Topology

We use ns-3 to simulate a leaf-spine datacenter topology. Leaf-spine is a commonly used

topology in many datacenters [19]. In our topology, the fabric interconnects 400 servers through

20 leaf switches and 10 spine switches. Our topology uses an over-subscription factor of 2, which

is typical. So, each of those leaf switches have 20 ports connected to the servers and 10 ports

connected to upper spine switches. All the links from servers to leaf switches, and from leaf
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switches to spine switches are 10 Gbps links. The maximum unloaded round trip time (RTT)

of our network is 80 µs.

4.2.1.2 Workload

We model our workloads based on the results presented in [39]. Our workload has a mix

of short and long flows. The flow arrivals are based on a Poisson process and source and

destination servers are chosen uniformly randomly for both short and long flows. We define

incast flows as a subset of short flows; the total load produced by short flows is equally divided

among incast flows and other normal short flows (one-to-one short flows). Our workload model

matches the one used in [49]. Our short flow sizes are randomly selected from a range of 8 KB

to 32 KB and we set long flow size at 1 MB. Our long flows contribute to 70% of the overall

network load, which matches previous work (e.g., pFabric [6]). We use a default incast degree

of 26, but we vary the incast degree and stufy our sensitivity in section 4.2.2. We evaluate

ICON’s performance using both tail and median flow completion times for short flows, and

throughput for long flows.

4.2.1.3 Compared schemes

We compare ICON to the following schemes:

• DCTCP: We implemented DCTCP, matching all the details from the original paper [10].

We set DCTCP to be our baseline, as it is commonly used in today’s datacenters.

• ICTCP: We implemented ICTCP based on their paper and we set the parameters as

suggested in the paper [11]. Our ICTCP implementation measures available bandwidth
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at end hosts and sets the next receive window according to the available bandwidth. In

the other words, the end host predicts the throughput and sets the receiver window based

on the difference between expected throughput and the observed throughput. The receive

window will be set to a smaller value if the difference is large. However, if the measured

difference is small, TCP receive window is allowed to increase normally. ICTCP is able

to set the fair share rate when a lot of packets arrive at a same time. ICTCP specifically

targets incast.

• ICON: While ICON would work on top of any transport protocol, we implement it on

top of DCTCP [10] as it is widely deployed in modern datacenters. Our proposed scheme

consists of two parts. First, each server which is a part of TCP incast, paces its TCP

window over RTT by setting appropriate pause times between sending each packet. Many

modern NICs already support this feature [50]. Second, to find the best sending rate and

pause duration for pacing, senders divide their sending rate by the number of parallel

senders which is provided by the receiver (we describe the design in chapter 3, section

3.2).

• Information-agnostic ICON (IA-ICON): We implement another version of ICON

which does not rely on information provided by receiver application (i.e., number of

parallel senders). Instead, IA-ICON paces the TCP window over RTT. While this scheme

will pace sender data regardless of number of senders, we include this method for two

reasons: (1) quantify the utility of application knowledge and (2) isolate the effect of
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pacing from rate control (i.e., IA-ICON does not start with the correct sending rate but

ICON does).

Finally, we would like to emphasize that we use identical values for parameters that are

common to DCTCP, ICTCP, and ICON (e.g., ECN threshold, buffer size, RTT). While there

are a number of packet scheduling and load balancing schemes in the last few years such as

pFabric [6], PIAS [16], CONGA [19], HULA [20], etc., we only compare ICON to DCTCP

and ICTCP as they target incasts. As such, ICON can be implemented on top of most load

balancing schemes.

4.2.2 ICON Results

In this section, we evaluate performance of ICON and compare its performance to other

competing schemes. We present the following comparisons:

• Tail (99th percentile) and median (50th percentile) flow completion times

• Average throughput of long flows

• Number of dropped packets

• Sensitivity to different incast degrees

• Distribution of queue lengths in switches

4.2.3 Flow completion time

In this section we show how ICON performs in terms of median and tail flow completion

times compared to other schemes. The results for median and tail flow completion times are
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Figure 23. Median flow completion time

shown in Figure 23 and Figure 24, respectively. In both of these figures, X-axis shows the

network load and Y-axis shows flow completion times in milliseconds. As expected, both tail

and median flow completion times of all schemes increase with increasing load. We also see

1-2 orders of magnitude difference between median and tail flow completion times, matching

several reported results [5,10,11]. Also, we see that tail rapidly increases at higher load values,

which is also expected.

While ICON slightly under-performs other schemes (i.e., by about 13 %) in median flow

completion times, it drastically outperforms (i.e., by about a factor of 7− 8 or by about 80%)

all other schemes in tail flow completion times. Because most foreground applications are
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Figure 24. Tail flow completion time

sensitive to tail, not median flow completion times, ICON’s contribution is well-suited to today’s

datacenters. In other words, ICON closes the gap between median and tail latencies, which

reduces performance variability in datacenters. Also, it is interesting to note that IA-ICON

performs quite close to ICTCP in tail flow completion times. Because IA-ICON isolates pacing

from rate control, the fact that IA-ICON performs close to other complicated rate control

schemes shows that pacing is as important as rate control in datacenter networks. The slightly

worse median flow completion times, however, do not affect ICON’s throughput, as we show

next.
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4.2.4 Average Throughput

In this section we compare average throughput of long flows for DCTCP, ICTCP, Information-

Agnostic ICON, and ICON. As we can see in Figure 25, as the load increases, long flow through-

put decreases for all schemes due to congestion in the network created by short, bursty flows;

the queuing in the network increases with load. ICTCP outperforms DCTCP, specifically at

higher loads. ICON significantly outperforms all schemes across a range of loads. Because

ICON leverages application knowledge, ICON instantly converges to the correct sending rate;

the other schemes require several RTTs to converge to the correct fair-share sending rate. On

average, ICON achieves 18% higher throughput compared to ICTCP. IA-ICON performs sim-

ilar to ICTCP, albeit with a much lesser complexity. Therefore, our throughput results also

highlight the importance of pacing.

4.2.5 Number of dropped packets

We dissect the bottomline performance of ICON by comparing the number of dropped

packets in all the schemes. Because re-transmission of dropped packets directly influences tail

flow completion times, we compare maximum number of packet drops for different schemes.

As the load increases, the number of packet drops for all schemes increase due to increased

congestion. As we see in Figure 26, ICON substantially cuts the number of packet drops.

Because ICON sets the right sending rate and paces the packets, ICON nearly eliminates packet

drops.
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Figure 25. Average throughput of long flows

4.2.6 Sensitivity to different incast degrees

We now study sensitivity of ICON and other schemes as we vary the incast degree of appli-

cations. While our default incast degree value of 26 is typical for many datacenter applications,

there is, indeed, a wide range in the incast degrees of various applications. In this experiment,

we compare the tail flow completion times of foreground flows at an incast degree of 20 and 32 to

those at an incast degree of 26, for varying loads. As shown in Figure 27, the tail increases with

higher incast degrees. Nevertheless, we see that ICON substantially outperforms the competi-

tion, even for lower incast degrees. Because the “real” incast degrees of commercial applications
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Figure 26. Maximum number of packet drops

are likely higher (e.g., NDP [12] uses incast degrees in the order of a few hundreds), ICON’s

potential improvements are likely to be even more impressive in production environments.

4.2.7 Queue length

Finally, we analyze the distribution of receiver switch’s queue length for the three schemes.

We sampled the queue lengths in one of the leaf switches connected to a sink server at 30%

load, and we analyzed its cumulative distribution.

Figure 28 shows the CDF of DCTCP, ICTCP, and ICON. We see a drastic difference between

the CDFs of these three schemes. While both DCTCP and ICTCP suffer from long tails in

queue lengths, which corresponds to their long tail flow completion times, ICON’s CDF is much
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Figure 27. Sensitivity to different incast degrees

narrower than the other schemes. ICON reduces 99th percentile queue length by a factor of

7.5 compared to ICTCP, closely matching our improvement in tail flow completion times. This

analysis shows that both rate control and pacing play a key role in reducing queuing in the

network.

4.3 ResQueue

In this section, we discuss the details of our testbed and workloads, and we provide an

exhaustive analysis of ResQueue’s performance in terms of flow completion time, throughput,

and packet drop rate.
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Figure 28. Distribution of queue lengths in switches

4.3.1 Experimental Methodology

We use ns-3 [47] simulator to simulate a leaf-spine datacenter topology, which is common in

datacenters [6]. In our topology, the fabric interconnects 400 servers through 20 leaf switches

that are connected to 10 spine switches (i.e., there is an over-subscription factor of 2). All links

are 10 Gbps and the round trip time across the network is 80 microseconds. We use workload

characteristics reported in recent studies [5, 8] to create a realistic traffic in our simulations.

Hence, our short flows’ sizes are in the range of 1KB to 6KB, while 80% of the flows are 1KB

in size. Also, we use 1 MB flows as our large flows. All servers are spread across the network

uniformly randomly and the switches use shallow buffers as suggested in prior work (e.g., [6]).
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4.3.2 ResQueue Results

4.3.2.1 Flow Completion Times

Figure 29. Normalized tail flow completion time of short flows

Tail flow completion time is the key determinant of application performance in datacenters.

Thus, we only evaluate ResQueue’s performance in lowering tail flow completion time of short

flows. Note that median flow completion time will be the same in both PIAS and ResQueue,

as ResQueue targets dropped packets only, which affects higher percentiles of flow completion

time.
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Our experiments show that ResQueue improves performance of PIAS (in terms of tail flow

completion time) by a factor of 1.6x for loads greater than 20%, on average. Figure 29 shows

the result of our experiments when incast degree (i.e., number of concurrent senders) is 32. We

discuss more about sensitivity of ResQueue’s performance to different incast degrees later in

this section.

As we see in Figure 29, although PIAS outperforms DCTCP in lowering tail flow completion

times, ResQueue lowers tail flow completion times more by reducing the total number of packet

drops. In particular, ResQueue achieves impressive gains of over 2x at higher loads (≥ 60%)

over PIAS.

4.3.2.2 Throughput

Although ResQueue is mainly designed for lowering tail flow completion times of short flows,

it improves the throughput of large flows as well. ResQueue schedules dropped packets in a

higher priority queue depending on their size. Therefore, when some large flows compete for

bandwidth, those packets that were previously dropped will get higher priority. For example, if

a packet should be scheduled in queue level-4 (based on flow’s bytes sent), it will be scheduled

in queue level-3 if and only if it is a retransmitted packet. This mechanism will expedite the

dropped packets, which provides higher throughput for large flows.

Figure 30 shows throughput comparison between PIAS and ResQueue. While the absolute

throughput decreases when load increases due to higher contention with other flows at switches,

ResQueue’s throughput remains higher than PIAS even at high loads. Instead of repeatedly

dropping packets from a small subset of flows, ResQueue distributes packet losses to more flows.
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Figure 30. Normalized throughput of large flows

As a result, more senders throttle their rates, which helps alleviate saturation. Figure 30 shows

that ResQueue’s relative advantage over PIAS increases with load. Overall, ResQueue improves

the throughput of large flows by a factor of 1.08x relative to competition, for loads greater than

20%, on average.

4.3.2.3 Packet drop rate

In this section, we analyze packet losses in DCTCP, PIAS, and ResQueue. Figure 31 shows

the maximum number of packet drops for any packet in DCTCP, PIAS, and ResQueue for

different loads. We clearly see that DCTCP and PIAS suffer higher packet loss than ResQueue

and their packet drops worsen with load. In contrast, a packet does not get dropped more than

once with ResQueue, even at high loads.
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Figure 31. Maximum number of drops for any single packet

Note that our highest priority level is reserved for retransmitted packets only and small flow

packets start from the second level and get promoted to the highest priority level upon loss.

Because retransmissions constitute a small fraction of packets, we do not observe losses in the

highest priority queue (i.e., maximum number of packet drops for any packet in Figure 31 for

ResQueue is 1 across all loads).

4.3.2.4 Sensitivity Analysis

(1) Sensitivity to incast degree: In this section, we evaluate ResQueue’s sensitivity to

incast degree. Figure 32 shows the normalized tail flow completion times of ResQueue compared

to PIAS (PIAS’ tail FCT for each incast degree is normalized to 1). We vary the incast degree

as 32 (our default incast degree), 40, and 48 along X-axis, for different loads from 40% to 80%
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(typical operating point of datacenter networks). As expected, the tail flow completion times

increase when incast degree and load increase. Overall, ResQueue achieves an average reduction

in tail flow completion times by a factor of 1.6x, for loads greater than 40%. Thus, ResQueue

achieves improvement over PIAS (i.e., normalized FCT less than 1) irrespective of incast degree

and load.

Figure 32. Sensitivity of ResQueue to incast degree (normalized FCT is 1 for PIAS)

(2) Sensitivity to size of reserved buffer: ResQueue’s main mechanism is to escalate

priority of dropped packets by storing them in a higher priority queue. Since we reserve the

queue level-1 for those retransmitted packets that belong to short flows, we need to measure
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the buffer size that we need to reserve to achieve the highest performance. Because most flows

are short, they are highly likely to use this buffer during congestion.

Our analysis shows although a retransmitted packet is likely to collide with a burst of

packets, the total number of retransmitted packets is not high.

Figure 33. Sensitivity of ResQueue’s performance to size of the reserved buffer

Figure 33 shows the sensitivity of ResQueue to size of the reserved buffer. As we see in the

figure, there is no difference between performance of ResQueue and PIAS, if the size of reserved

buffer is smaller than 5KB. Likewise, sizes larger than 20KB do not improve the performance

of ResQueue as the buffer goes unused. Therefore, we have a sweet spot between 15KB and
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20KB that minimizes packet drops for short flows and achieves high throughput for large flows.

Clearly, 20KB of dedicated buffer is not a big amount of buffer and can be easily provided by

switch vendors. Modern datacenter switches are equipped with a large (4MB to 50MB) shared

buffer that is shared among all ports. Reserving 20KB of a 4MB buffer contributes to only

0.5% of the total buffer, which is almost negligible. Thus, ResQueue’s overhead is minimal, and

our performance is robust for a range of loads and workloads.

4.4 Superways

In this section we present our evaluation methodology, including details of the topology and

the workload, and then we show the results of our experiments, including simulation and real

testbed.

4.4.1 Experimental methodology

We use ns-3 [47] simulator to simulate a datacenter network. We implemented all previously

discussed topologies including leaf-spine, Bcube [51], Jellyfish [52], and Subways [34] in our

simulations. In these topologies, we connect 400 servers through 20 leaf (outer switches in

Jellyfish) switches and 10 spine (inner switches in Jellyfish) switches. In tree topologies (e.g.,

leaf-spine, Subways, and Bcube), each of leaf switches have 20 downlinks to servers and 10

uplinks to spine switches. Also, the network fabric interconnects leaf and spine switches in a

full mesh manner. In Jellyfish, however, we connect 20 outer switches to 10 inner switches as

per [52]. The link speed between servers and leaf (outer) switches is 10 Gbps and links between

leaf switches and spine (inner) switches are operating at 40 Gbps. The longest end-to-end
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Round-Trip Time (RTT) across the fabric is 80 microseconds, which is close to that of real

datacenter networks. Also, congestion control mechanism in all topologies is DCTCP, and per

port buffer size in leaf and spine switches is 240 KB (Superways ns3 code is publicly available

at [53]).

4.4.2 Workload and Traffic

We use the workload reported in recent studies on Facebook’s datacenter network [5,8] to

create a realistic traffic in our simulations. Our short flows’ sizes are in the range of 1 KB to

10 KB, while nearly 70% of the flows are 1 KB in size. Also, as reported in [8], our long flows’

sizes are in the range of 100 KB to 10 MB, while half of the long flows are 1 MB or below.

All servers are spread across the network uniformly randomly, and 20 of the servers are incast

aggregators (i.e., 5% of all servers). Also, we used a combination of short and long flows to

produce incast. In our experiments, incast degree varies in the range of 48 to 96 among all

incast applications, and incast inter-arrival times match the reported numbers in [5].

4.4.3 Superways Results

In this section, we present the results of our evaluation using (1) ns-3 [47] simulations

(4.4.3.1–4.4.3.2), (2) a real implementation using CloudLab [54] (4.4.3.5), and (3) a cost analysis

(4.4.3.3). Our performance evaluation consists of 5 parts:

• Flow Completion Time (FCT): In datacenter networks, 99th percentile FCT is the

most important metric for measuring short flows’ performance [10]. Thus, we do not

provide detailed results of median flow completion times. However, our experiments show
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that when Superways is implemented on top of the aforementioned topologies, it results

in up to 21% improvement in median flow completion time, on average, for all loads.

• Throughput: We measure the average throughput of long flows (including those that

participate in incast) when Superways is implemented on existing datacenter topologies

to evaluate the effectiveness of Superways on throughput of long flows.

• Cost analysis: We analyze cost of implementing Superways and Subways in a small

scale datacenter. We only compare to Subways because while is similar to Superways, it

is the most recent proposal as well.

• Why connecting to spines: We will discuss the reasons that convinced us to connect

the extra links to spine switches rather than leaf switches.

• Real testbed: Finally, we will verify our simulation results in CloudLab [54]. We show

the performance of Superways in a real Web search workload, using Apache solr text

indexing servers.

4.4.3.1 Flow Completion Time

Figure 35 shows a comparison between 99th percentile flow completion times of regular

leaf-spine, Subways, Jellyfish, Bcube, and Superways/leaf-spine. We show the flow completion

times along Y-axis versus load on X-axis. As we see in Figure 34, when load increases, tail

FCT degrades for all topologies. Longer queuing delays and more packet drops are the main

reason for this performance degradation. Compared to regular leaf-spine (shown in blue in

Figure 34), Superways/leaf-spine (shown in green in Figure 34) reduces tail flow completion time
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Figure 34. 99th percentile

flow completion times

Figure 35. Reduction in 99th

percentile FCT

Figure 36. Long flows’

average throughput

Figure 37. Speedup in long

flows’ throughput after

implementing Superways

Figure 38. Cost comparison

between Subways and

Superways

Figure 39. Cost of Superways

with high incast degrees and

shallow buffers

by about 96% at the loads higher than 40%. Although regular leaf-spine performs worst among

the compared topologies, Superways/leaf-spine significantly outperforms other topologies. It

shows how efficient Superways is in absorbing incast packets. Subways performance is closer to

Superways/leaf-spine because it also provisions extra links for servers. However, since it adds
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a static number of extra links for all servers, it may not meet all incast applications’ buffer

demand in case of incast.

Our experiments show that Superways significantly reduces the tail (99th percentile) flow

completion times of short flows, when it is implemented on top of other datacenter topologies.

We implemented Superways on top of a leaf-spine topology to see how performance of leaf-spine

will improve compared to its regular form. We see the results of this experiment in Figure 34.

We show the average tail flow completion time of short flows (among various incast degrees)

along Y-axis, versus load on X-axis. As we see in the figure, when Superways is implemented

on top of a leaf-spine topology, it not only outperforms normal leaf-spine, but it significantly

outperforms other complex and expensive datacenter topologies as well. Also, Figure 34 shows

the performance of DT, which is the state-of-the-art shared buffer management technology in

existing datacenter switches. As we see in the figure, when DT is implemented on all switches

in a leaf-spine topology, it works well at lower loads only, which is not the case in many modern

datacenter networks.

We implemented Superways on top of other datacenter topologies to see how their performance

improves. The result of this experiment is shown in Figure 35. We show the reduction in

tail flow completion time along Y-axis versus load on X-axis. As we see in this figure, by

implementing Superways on top of Jellyfish (Superways/Jellyfish), flow completion time of

short flows will reduce by 97%, on average, for all loads, compared to regular Jellyfish. Also,

tail flow completion times in Superways/Bcube and Superways/Subways will reduce by 96%

and 95% on average, for all loads, compared to their regular topology. Although Subways and
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Bcube both provide additional links for servers, their tail flow completion time reduction rate

is close to that of leaf-spine and Jellyfish; which shows Bcube and Subways fail to solve incast

problem.

4.4.3.2 Throughput

Superways forwards incast packets on a handful of dedicated links so that they do not

collide with other non-incast flows. In other words, long flows will use those links that are not

congested, and therefore, their throughput will not be affected by colliding with a burst of short

flows.

In Figure 36, we show the average (among various incast degrees) throughput of long flows

along Y-axis versus load on X-axis. As we see in the figure, by implementing Superways on top

of simple leaf-spine, throughput of long flows improves by several orders of magnitude such that

it achieves higher performance compared to all other topologies at higher loads (60%-80%).

Next, we studied the impact of Superways on throughput, when it is implemented with

other datacenter topologies. The result of this experiment is shown in Figure 37. While

Superways improves long flows throughput in Bcube and Subways by 9% and 20% respec-

tively, leaf-spine topology benefits a lot from deploying Superways. Long flows’ throughput in

Superways/leaf-spine improves by about 55%, on average, for all loads. Superways improves

long flows’ throughput in Jellyfish by about 17% on average, for all loads, which shows the

throughput efficiency of Superways in both tree and graph topologies.
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4.4.3.3 Cost analysis

In this section, we study cost of implementing Superways and Subways on top of a leaf-

spine topology. Similar to previous studies on cost comparisons (e.g., [55]), we use price quotes

from different vendors to get a clear picture of the equipment cost. We used price quotes from

vendors such as FS [56], Dell [57], and retailer websites such as Amazon [58], Compsource

[59], and Cablewholesale [60]. We consider vendors such as Dell [57], Juniper [61], Cisco [62],

Brocade [63], and Huawei [64] for switches, and intel [65], HP [66], Rosewill [67], and Arista [68]

for our NICs. Although prices vary among different vendors, we considered those equipment

that satisfy the minimum requirements.

Our studies show that a 48 port 10 Gbps leaf switch would cost nearly $5K, and a 32 port

40 Gbps spine switch costs nearly $11K, on average. Also, we found the value of $80 for a

single-port 10 Gbps NIC. Bellow we use these prices to provide an exhaustive analysis on cost

of implementation of Superways and Subways.

(1) Cost analysis (Subways): We envision a datacenter network similar to the one in [34].

We consider a small datacenter network with 48 leaf switches and 24 spine switches that are

connected in a leaf-spine topology. We assume each leaf switch is connected to 48 servers

and each rack contains 48 servers plus the leaf switch that connects to them. We implement

Subways type-1 (p=2), which requires an additional link from every server to its neighboring

rack. Assuming a 42U rack with 6.5 ft height and cold aisle of 3.9 ft, on average, each server

requires a 5.2 ft cable to connect to the neighbouring rack’s leaf switch. Our price analysis on

cable cost shows that a 10 ft long cat7 cable will cost about $5, which shows that we need to pay
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$11520 (i.e., 48×48×$5) for the extra cables. Although Subways proposes a new way of wiring

that decreases the cable cost, it does not significantly reduce the overall implementation cost,

because cabling costs contribute to a small fraction of total cost of implementation. Subways

needs more leaf switches to keep the over-subscription ratio of the network unchanged, and

therefore, we need to pay 48 × $5, 000 = $240, 000 for extra leaf switches. Finally, assuming

Subways type-1 with only one extra link per each server, we need to buy one more NIC for

all servers, which costs 48 × 48 × $80 = $184320. In total, we need to pay extra $435,840 to

implement Subways on a leaf-spine topology with 2304 servers.

(2) Cost analysis (Superways): Superways’ cost is highly dependent on number of incast

applications, incast degrees, spines’ link speed, and buffer sizes at leaf and spine switches.

Bellow, we analyze Superways’ cost in different scenarios when each incast application requires

different number of extra links to absorb all incoming packets. Assuming that 3% of all servers

host incast applications (70 out of 2304), and each incast application requires one more link

to absorb all packets, we need to provide 70 extra links to connect incast servers to spine

switches. Assuming 42U racks and a rectangular server room with two rows of racks and the

rack containing spine switches located at the end of one of the rows, we need 50 ft long cables

to connect the incast servers to spine switches (worst case scenario). Our price analysis on

cable cost shows that a 50 ft cat7 cable will cost about $20, which shows that we need to pay

70 × $20 = $1400 for extra cables. Since we need to add one extra NIC for those servers that

hold incast applications, total cost of purchasing new NICs is 70×$80 = $5600. In the extreme

case that existing spine switches do not have enough available ports, we need to buy two more
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spine switches to connect to incast servers. The total cost of two extra spine switches is nearly

$22K. Therefore, if each incast server requires one extra link, the total implementation cost of

Superways will be around $28820.

Figure 38 shows the cost comparison between Superways and Subways type-1. This figure

shows the total cost of Superways for 3 different cases when 3%, 4%, and 5% of all servers

are incast applications (aggregators). Note that performance of all four schemes is the same

because each server (each incast server in Superways) has only one extra link. As we see in

Figure 38, even if 5% of all servers are hosting incast applications, which is a relatively large

number, Superways is still about 9x cheaper than Subways. Also, Figure 39 shows different

cases of Superways when more than one extra link is required per each incast server. This is the

case when incast degrees are extremely high, link speeds of both leaf and spine switches is the

same (e.g., all are operating at 10 Gbps, which is not high), and buffers are shallow. Although

having too many links for each incast server is a rare case, even with high number of extra

links, Superways still costs much less than Subways, which is due to its heterogeneous design

that focuses on one area of the network only. In other words, Superways might need more than

one link for each incast server depending on the burstiness of traffic, but, since it does not need

too many extra switches and it only requires some servers to have extra links, the total cost of

implementation remains low compared to other topologies with redundant links.

4.4.3.4 Why connect to spine switches?

There are both performance and cost related factors involved in Superways’ design. By

connecting to spine switches, which are more powerful in terms of processing speed and band-
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width, the amount of time that incast packets stay in a port’s queue will reduce compared to

leaf switches, and therefore, their average and tail FCT improves. Moreover, by providing such

dedicated links from spine switches to incast applications, long flows will no longer collide with

a batch of short incast flows on the spine switches, and therefore, they will not suffer delay

specially when packet prioritization is enabled in the network (i.e, those short incast flows will

always get the highest priority). Finally, due to large difference in link bandwidth of spine and

leaf switches, the number of links, number of server side NICs, and total number of required

switches will significantly reduce, which significantly reduces the overall cost of implementation

if we connect the extra links to spine servers.

Figure 40. Normalized tail flow completion time of short flows
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Figure 40 shows a comprehensive picture of comparing the overall performance of Superways

when we connect the extra links to spine switches versus connecting to leaf switches. As we see

from the figure, while connecting to spine switches improves both throughput and tail FCT by

up to 8%, it reduces the cost of implementation by about 7x, which is a considerable amounts of

money in medium to large scale datacenters. Thus, connecting the extra links to spine switches

would be the best option as it improves performance and reduces cost of implementation, while

adding a little complexity to the routing mechanism (i.e., we can easily update the routing table

on the SDN controller through OpenFlow messages).

4.4.3.5 Real testbed

We implemented a leaf-spine topology in CloudLab [54] to validate our simulation results

and to evaluate metrics such as CPU usage and network I/O utilization, which cannot be done

on a simulator. Our real testbed emulates 16 servers, 4 leaf switches, and 2 spine switches. The

over-subscription ratio in the leaf-spine topology is 2:1, and the leaf switches are connected to

spine switches in a full mesh manner. Also, using the same number of servers and switches,

we implemented Bcube, Subways, and Jellyfish to validate the efficiency of Superways when it

is implemented on top of these topologies. Bcube, Subways, and Jellyfish are implemented as

per [51], [34], and [52]. Our servers run Ubuntu 16.04 (kernel version 3.3) and our switches run

Open vSwitch version 2.31. We rate limit all switches to 1 Mbps, and, also, we set the transmit

queue size of spine and leaf switches to 10KB.

To create a realistic workload, we used the reported numbers in [8] and [5]. Our short and

long flows are 4 KB and 1 MB in size, and our incasts are a mix of short and long flows. While
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TABLE III

Improvements in flow completion time and throughput - Real testbed and simulations

Testbed results Simulation results

Topology Tail FCT Throughput Tail FCT Throughput

Super/leaf-spine 85.12% 38.4% 96.75% 50.7%

Super/Jellyfish 81.4% 16.3% 97.25% 17.1%

Super/Bcube 83.7% 7.1% 96.75% 11.5%

Super/Subways 80.04% 15.5% 95% 20.5%

we used iperf3 to produce all-to-all traffic between random servers, we installed Apache Solr [69]

version 8.2.0 on certain servers to emulate a real Web search traffic (including incast). These

Apache Solr servers generate light weight queries that ask other servers about a specific event

that they already saved in their database. We created incast traffic so that all incast senders

send synchronous replies to the Apache Solr servers.

4.4.3.6 Flow completion time and throughput

We provisioned three incast applications (running Apache Solr server v8.2.0) with incast

degrees of 9, 3, and 3 that are co-located on one of our servers according to calculations described

in chapter 3. We repeated the experiments 10 times to accurately measure the performance of

Superways in all topologies. Table III shows the improvement in 99th and 50th percentile flow

completion times of short flows when Superways is implemented on top of other topologies. As
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we see from the table, our testbed results are close to simulation outputs, which endorses the

efficiency of Superways in improving tail FCT of short flows. We measured the throughput

of long flows as well. Since long flows will no longer collide with bursts of short flows at the

network core, their throughput improves by up to 38.4%, as we see in Table III.

Figure 41. Normalized tail flow completion time of short flows

4.4.3.7 CPU utilization vs bandwidth utilization

Co-locating more than one incast application on a single server may arise concerns about

CPU usage of that particular server. We designed an experiment to see how CPU utilization

varies among those servers that participate in all-to-all traffic, and that of incast aggregators.
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Figure 42. Normalized tail flow completion time of short flows

Figure 41 shows the result of this experiment. The red line shows the CPU utilization of a

server with Apache Solr V8.2.0 installed on it (incast application) and the blue line shows

CPU utilization of a random server that transmits both short and long flows using iperf3. As

we see in the figure, CPU utilization of both servers is almost the same, so that the average

CPU utilization of the incast aggregator is 8.19%, while this value is 7.08% for the other

server. Therefore, co-locating incast applications on a single server will not over-utilize the

CPU as incast applications do not run compute-intensive tasks. On the other hand, we claimed

throughout the paper that incast aggregators require more bandwidth compared to other servers

due to their high number of incoming packets. To verify this assumption, we measured the

bandwidth utilization for an incast aggregator and a random server during a short period of
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time. Figure 42 shows this comparison. As we see in this figure, the incast aggregator utilizes

bandwidth much more than the other server so that while average bandwidth utilization is 17%

for an ordinary server, this value is 68% for an incast aggregator. Thus, incast applications are

indeed network bound and providing more bandwidth for them is necessary to guarantee the

highest performance.

4.5 Smartbuf

We conduct experiments to evaluate three different aspects of our approach: (1) performance

including tail latency for short flows, throughput/fairness for long flows, (2) overhead of our

algorithm, and (3) accuracy and parameter sensitivity of our buffer-demand estimation.

4.5.1 Methodology

We simulate a leaf-spine datacenter topology in which 20 leaf switches are each connected

to 20 servers. The leaf switches are connected upstream to 10 spine switches, thus creating an

over-subscription factor of 2. We implement Smartbuf in ns-3 [47] and run it on leaf switches

while spine switches are running the traditional dynamic threshold policy. While ns-3 does not

support shared memory switches, we created models of shared memory switches with a shared

buffer size of 4 MB. We model a web search workload [10] with short flows in the range of 1

KB to 32 KB and long flows varying from 1 MB to 10 MB in size. While we vary the overall

network load in our experiments, we set the long flows to contribute to 80% of the load [6].

We set the parameters used for port buffer initialization according to [35]. while link speed

of leaf switches and spine switches is 10 Gbps across the network, we set the network round
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Figure 43. 99th percentile flow completion time

trip-time to 80 microseconds, which is very close to that of modern datacenters. Also, we use

DCTCP [10] as our congestion control method in which the retransmission timeout is set to 10

ms. In our experiments, we compare Smartbuf to various policies including Static partitioning,

DT [35], Complete sharing, EDT [36], and a recent work called FAB [70]. FAB [70] extends

DT by using multiple parameters per port (see α in [35]) depending on flow priority (e.g., flow

size). While FAB assigns a larger fraction of buffer to high priority flows, it does not estimate

actual demands and therefore suffers from similar shortcomings.

4.5.2 Smartbuf’s results

First, we compare the 99th percentile flow completion times (FCT) under different loads

for the following schemes: complete (static) partitioning with an equal per-port share as the



111

baseline, partitioning with a per-port allocation of size (RTT × C)/
√
N as in [71], Complete

sharing, which allows queues to grow arbitrarily large until the buffer is full, DT, EDT, FAB,

and Smartbuf. Parameters used in DT, EDT, and FAB are chosen according to [35], [36],

and [70] respectively. Figure 43 shows their 99th percentile flow completion times (FCT) vs.

load.

As expected, complete partitioning is highly susceptible to transient bursts which is reflected

in its much higher FCT. The per-port buffer space cap in [71] (i.e., (RTT × C)/
√
N), derived

for the Internet, does not seem enough for datacenters with highly synchronized short flows

that cause incast. Also, as we see in Figure 43, complete sharing is not able to eliminate incast

induced packet drops because it will be fooled by large flows. In other words, complete sharing

allows large flows to occupy up to the whole buffer, and therefore, there will be no space left

for short-lived incast flows.

While DT allows for sharing memory between ports, it always keeps a fraction of the buffer

unallocated at any point and therefore does not absorb incasts; this observation was also made

in other papers [36, 70]. In these conditions, the uncontrolled state in EDT temporarily sets

the port threshold to the whole buffer size, and then in the controlled state when the burst is

gone, it reverts to DT. This helps the tail FCT because microbursts are expected to last for a

short time only. Recall from chapter 3, although EDT accurately detects bursts, it does not

predict their actual buffer demands and therefore cannot proportionally allocate buffer space

to ports based on their demands. AT low loads, EDT performs well. However, at high loads,

when there is a higher likelihood of multiple bursts on different ports closer in time, EDT
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Figure 44. Non-burst flows’ buffer share in EDT vs. Smartbuf

makes sub-optimal allocations and suffers from longer tails. As we see in Figure 43, Smartbuf

outperforms all the other schemes across all loads. Note that retransmission timeout (RTO)

is 10 ms in our experiments, and even at the highest load, Smartbuf nearly eliminates packet

drops and improves tail FCTs by a factor of 8. Because FAB’s performance is very close to

that of EDT, we only consider EDT in our experiments form now on.

We conducted experiments with varying buffer sizes and found that as long as the buffers

are not too small (no opportunity) or too large (no buffer contention), Smartbuf’s relative

performance remains robust. Although long flows benefit less from buffering than short flows,

aggressively depriving them of buffer space during the bursts degrades their throughput and



113

causes fairness issues. For fairness, we designed an experiment in which a long flow on one port

competes with an incast on another port. We plot the throughput of this long flow for EDT

and Smartbuf in Figure 44. We see a sudden drop in EDT’s long flow throughput as most of the

buffer space is allocated to the incast port, irrespective of its demand. In contrast, Smartbuf’s

proportional buffer allocation helps alleviate incast without adversely affecting the throughput

and fairness for long flows.

4.5.2.1 Parameter sensitivity

In this section, we discuss the sensitivity of our algorithm to two main factors that we

mentioned in Algorithm 2 β and σ. Also, we discuss the sensitivity of our scheme to different

values of k in the k-nearest neighbors algorithm. Figure 45 shows the sensitivity of Smartbuf’s

performance to k for a high load case (other loads not shown due to brevity). As expected,

smaller values of k impose less overhead but suffer from inaccurate extrapolation of buffer

demands. We achieve the best trade-off between overhead and accuracy at k = 3 and further

increase in k results only in diminishing returns.

Later, we show that our algorithm’s predicted buffer demand closely matches actual de-

mands at k = 3, thus providing a desired high accuracy (Figure 48).

The parameter β (0 < β < 1) is a threshold on buffer occupancy at any of the output

ports, which determines whether the current burst has ended. If we determine that the burst

has ended, we will insert updated values for gradient and buffer occupancy into our database.

Thus, smaller values of β may mislead us to miss some bursts (i.e, lower performance), whereas

larger values may cause us to record one large burst as several smaller bursts (i.e., high state
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Figure 45. Sensitivity study of k values

Figure 46. Sensitivity to σ at 80% load
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overhead). Our experiments show that if β is chosen between 0.2 and 0.5, it reduces the number

of entries in the Main map by 44% compared to β=0.9, while improving the performance (tail

latency) by 9% compared to when β is in the range of 0.01 to 0.19. We observed good, stable

performance for β in the range of 0.2 to 0.5.

Finally, we study the sensitivity of our algorithm to different values of σ. σ (σ > 1) is a

threshold that classifies spikes in buffer usage as burst and non-burst. In other words, if buffer

occupancy is larger than a certain threshold, switch decides to save this value because this

burst has the potential to occupy more buffer and there is a risk of packet drop. Figure 46

shows the result of this experiment. We see that we get better performance for larger values

of σ. While larger σ provides high performance, it requires more processing as the size of the

database is considerably larger. Therefore, we opt for the smallest value of σ that guarantees

high performance (e.g., 2.5 < σ < 5 in Figure 46).

4.5.2.2 Overhead

Next, we analyze the state/memory overhead of our algorithm. Figure 47 shows the max-

imum number of key-value pairs stored in our map under different loads (in a shared 4 MB

buffer). As expected, we observe that the number of entries in our database (i.e., map) scales

proportionally to the load. Nevertheless, we see that even in the highest load, we require less

than 35 entries, which shows that our design is feasible in practice. Further, as most datacenters

operate at loads between 20% and 40%, our tables require less than 20 entries.

If one were to implement our table lookup in hardware, these results imply that the hardware

(ASIC) design is feasible. A recent paper, pFabric [6] shows that one can find a minimum of
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600 entries (log (N) complexity using binary search) within about log(600) ≈ 10 clock cycles.

Assuming the worst case of minimum size 64B packets, each packet dequeue requires 51.2 ns

(in a 10 Gbps link), which translates to 40 clock cycles in a modern ASIC. Nevertheless, in

our case we need to find 3 nearest neighbors. Finding each nearest neighbor is equivalent to

finding a minimum of the distance between the query and each entry. However, the number of

entries in our case is quite small (i.e., about 30 entries in the worst case from Figure 47). So,

we require about log(30) ≈ 5 clock cycles for finding one neighbour. Therefore, we require only

about 15 clock cycles even for a naive implementation in the worst case, which still leaves about

25 clock cycles for the rest of the algorithm, which is plentiful as the other operations are not

computationally intensive and many operations can be done in parallel. As a last point, to scale

the table lookup to higher speeds (e.g., 100 Gbps), instead of performing one comparison in

each stage of the binary tree, it is feasible to have a combinatorial hardware block to maximize

the number of operations in each cycle, thanks to the extremely small footprint of our database

(map).

Smartbuf adds a bit more latency when it checks the gradient of queue length and performs

all the operations in lines 10 through 30 of the algorithm 2. However, there are less than

20 operations in this block, which means the whole algorithm (including finding 3 nearest

neighbors) costs nearly 20 CPU cycles, which translates to 10 nanoseconds in a 2 GHz CPU.

Therefore, Smartbuf’s latency is 12 times less than packet dequeue delay at the fastest existing

link (i.e., 100 Gbps link), which makes it quite feasible to implement in hardware switches.
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Figure 47. Number of entries in the hash table

4.5.2.3 Accuracy

In this section, we quantify the accuracy of Smartbuf. To quantify how precisely Smartbuf

allocates buffer according to flows’ requirements, we run an experiment in which we allow flows

to take as much memory as they need from a hypothetically unbounded memory with the

complete sharing policy and compare it to the amount predicted by Smartbuf. Figure 48 shows

predicted demands vs. ideal (oracular) demands for each load level when the difference between

the two (error) is maximum. Note that while it appears that our predicted demand is always

less than the oracular case in the figure, it shows only cases when the error is maximum; in

reality, across all bursts, there are cases when we predict a larger demand than what it really is.
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Figure 48. Predicted vs. actual buffer demands: maximum prediction error at each load

The key takeaway is that our predicted demands are very close to the oracular buffer demands

(within 9% of the ideal).

Note that depending on the index of the matched key and its nearest neighbors, under-

provisioning would not always be the case as shown in Figure 48, but it could happen more

often for the largest bursts as their signature is more likely to fall out of the range of our keys

and we effectively would pick the k = 1 nearest value in that case.



CHAPTER 5

CONCLUSION

We proposed five different approaches for tackling incast problem in datacenter networks.

Incast is mainly a many-to-one traffic pattern that exists in most of modern datacenter networks

that host Online Data Intensive (OLDI) Applications. These applications tend to collect small

portions of data and then represent it to the end user.

First, we presented Slytherin, which identifies tail packets and prioritizes them in the net-

work switches. Unlike prior approaches that emulate SJF scheduling of packets which is well-

known to minimize average flow completion times, Slytherin optimizes tail flow completion

times, a metric that is more relevant for many online datacenter applications (e.g., Web search,

Facebook). Slytherin does not require extensive support for identifying tail packets and lever-

ages already available congestion signals (i.e., ECN). Using realistic workloads on typical dat-

acenter network topologies, we showed that Slytherin reduces tail flow completions by about

18% as compared to existing state-of-the-art schemes. Further, we also showed that Slytherin

drastically cuts the queue lengths and speeds up convergence. As data continues to grow at a

rapid rate, schemes such as Slytherin that minimize network tail latency will become even more

important.

Next, we proposed ICON with a goal of improving tail latency for foreground applications

and throughput for background applications, by avoiding queue buildups that happen due to

incast at edge switches. While there has been a number of papers that show incast-induced

119
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congestion is common in datacenters, the problem remains largely unsolved. Incast is also

inherently tied to the nature of many foreground applications that perform distributed search

of small objects in large datasets. Incast cannot be fixed by having large buffers as large buffers

cause increased queuing delays and exacerbate the problem even further.

We introduced ICON, which employs fine-grained traffic pacing at the end host’s NIC.

Fortunately, many vendors are starting to introduce support for packet pacing in NICs, which

augurs well for our proposal. In addition to pacing, ICON also leverages application knowledge

to arrive at the right sending rate, without having to continuously adjust the sending rates

over several RTTs. ICON reduces the tail percentile flow completion times of short flows by

up to 89% compared to DCTCP. It also improves the throughput of large flows by up to 30%

compared to DCTCP. As incast degrees of foreground applications increase to cope up with the

exponential growth of data, schemes such as ICON would become attractive.

Next, We presented ResQueue, which identifies delayed packets and prioritizes them in

switches. Unlike prior approaches that rely only on flow size to determine priority, ResQueue

uses a combination of flow size and packet drop history to infer priority. ResQueue improves

tail flow completion times, which is the key metric for a broad class of user-facing datacenter

applications. Further, ResQueue does not require hardware changes at switches. The current

trend of increasing traffic burstiness in datacenters combined with the emphasize on low tail

flow completion times necessitate schemes such as ResQueue that consider packet history in

flow scheduling.
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In future, we plan to improve ResQueue’s accuracy in assigning flow priorities by combining

a Shortest Remaining Processing Time (SRPT) scheme with counting the total number of drops

in a flow. It would be more powerful scheme as it assigns more realistic priorities to large flows

that suffered packet drops.

Next, we presented Superways, a heterogeneous datacenter topology that is designed for

incast-heavy workloads. Based on our key observation that in most incast applications a few

aggregator processes are bottlenecked by receiver bandwidth, our proposal provides additional

bandwidth (links) for a small subset of nodes. Further, we proposed a heuristic for scheduling

critical aggregator processes in our heterogeneous topology. Our insight for the scheduler is to

greedily find the optimal number of extra links by measuring the residual buffer of the extra links

after bin-packing incast aggregators. By connecting incast aggregators to the spine switches,

Superways decreases the packet drop rate and improves the tail flow completion times of incast

flows. When combined with existing load balancing schemes, Superways distributes the incast

flows among multiple receive links, avoiding flow collision between incast and non-incast flows.

Furthermore, Superways improves fault tolerance and throughput while reducing the total cost

of implementation compared to other schemes such as Subways. As incast-heavy applications

become more prevalent, heterogeneous topologies and their associated job scheduling strategies

such as our proposal would become increasingly important.

Finally, We present Smartbuf, an agile memory management scheme for shared-memory

switches in datacenters that accurately predicts the buffer demands of ports based on switch-

local information and allocates the memory proportional to their demands. Our experiments
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show that Smartbuf outperforms existing state-of-the-art in tail latency by up to a factor of 8x

at high loads without sacrificing fairness among ports. With the advent of programmable data

planes, bursty datacenter traffic, and ever-increasing line rate, online learning approaches that

rely on only switch-local information will become appealing for resource management.
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APPENDIX (Continued)

Figure 49. Copyright - Slytherin

Figure 50. Copyright - ICON



125

APPENDIX (Continued)

Figure 51. Copyright - ResQueue
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APPENDIX (Continued)

Figure 52. Copyright - Superways
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APPENDIX (Continued)

Figure 53. Copyright - Smartbuf
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