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SUMMARY

Some limitations and challenges prevent robots from being accepted widely as human peers.

This thesis studies prediction and learning methods to understand human intentions and address

challenges posed to collaborative robots related to translating between human and robotic

behavior. The first topic discusses the correspondence learning problem of estimating a mapping

of human embodiment to robot-joint configuration for robotic teleoperation using virtual reality.

The second topic seeks to enable robots to more accurately predict human intentions from

partial trajectories so that the robot can plan complementary activities. Finally, the research

extends to learn a daily human activity (mopping the floor) from human demonstration videos

to a robotic arm.

By projecting into a 3-D workspace, robotic teleoperation using virtual reality allows for

a more intuitive method of control for the operator than using a 2-D view from the robot’s

visual sensors. This chapter investigates a setup that places the teleoperator in a virtual

representation of the robot’s environment and develops a deep learning based architecture

modeling the correspondence between the operator’s movements in the virtual space and joint

angles for a humanoid robot using data collected from a series of demonstrations. We evaluate

the correspondence model’s performance in a pick-and-place teleoperation experiment.

More accurately inferring human intentions/goals can help robots complete collaborative

human-robot tasks more safely and efficiently. Bayesian reasoning has become a popular ap-

proach for predicting the intention or goal of a partial sequence of actions/controls using a

xiv



SUMMARY (Continued)

trajectory likelihood model. However, the mismatch between the training objective for these

models (maximizing trajectory likelihood) and the application objective (maximizing intention

likelihood) can be detrimental. In this chapter, we seek to improve the goal prediction of max-

imum entropy inverse reinforcement learning (MaxEnt IRL) models by training to maximize

goal likelihood. We demonstrate the benefits of our method on pointing task goal prediction

with multiple possible goals and predicting goal based activities in the Cornell Activity Dataset

(CAD-120).

Though mopping the floor is a mundane and tedious daily task, enabling robots to perform

it comparably to humans remains a challenge. Hand-coding desired mopping behaviors for

variable surfaces and situations is particularly difficult. In this chapter, we develop a robotic

system for mopping the floor by mimicking the human behavior demonstrated in videos. Our

approach builds upon the recent successes of imitation learning of other capabilities from human

video demonstration (e.g., pouring tasks (4)). Our first proposed robotic system uses traditional

computer vision techniques for tracking and inverse kinematics. Our second system comprises

advanced computer vision techniques, Time Contrastive Network (TCN), and reinforcement

learning. From these, we devise a reward function for the mopping task. We use a Universal

10e robotic arm attached with a mop to perform the mopping task and a first-person camera

attached on top of the robotic arm to provide feedback for robot learning.

xv



CHAPTER 1

INTRODUCTION

Today robots are becoming an integral part of human life. From delivery drones to self-

driving cars to old age assisting robots to industrial robots, these different service robots are

helping in our day-to-day life. However, there are time and resource limitations of robots that

must be addressed before they are integrated into daily operations of human life. This thesis

studies time and resource efficient ways to provide service robots with a human task domain

understanding, so they can be effective collaborators and engender trust with their human

counterparts. It aims to answer following questions:

1. How can we effectively teleoperate a robot in virtual reality (VR) using deep correspon-

dence learning?

2. Can we predict human intention more quickly based on the partial trajectory traveled by

maximizing the goal likelihood for Inverse Optimal Control?

3. Can a robot learn a day-to-day task (for example, mopping the floor) from a human

demonstration provided in the form of a video?

The Ph.D. thesis addresses these time and resource limitations of collaborative robots. The

first chapter discusses how a robot can effectively learn in a synthetic environment (VR) so that

the velocity of learning is not constrained by collecting real-world data sets. The next chapter

aims to gain understanding of human intent so the robot can extrapolate (vs mimic) what the

1
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human does or wants. The goal of the final chapter is to simplify the collection of real-world

data so the robot can learn themes, variations, and outliers of human behavior by example

from YouTube videos. The final chapter also shows the viability and challenges in translating

this 4-dimensional data (3-D plus time) pertaining to human tasks into robotic test methods.

Lastly, it discusses future research needed to ensure that these methods are ‘consumer grade’.

Many tasks are difficult and life-threatening to humans (for example, bomb diffusion, con-

ducting experiments with hazardous materials in chemical labs, etc.). Robotic teleoperation,

teleoperating (controlling) a robot from a distance is a possible way to handle the before-

mentioned problems (5; 6; 7; 8; 9; 10). The first chapter of the thesis investigates the corre-

spondence learning problem (mapping of human embodiment to robot embodiment) for robotic

teleoperation using virtual reality. In this chapter, the traditional 2D input sensor used for tele-

operation is replaced with a 3D (virtual reality) system (11; 12; 13; 14; 15; 16) to provide a depth

perspective to the teleoperators. The consumer-grade virtual reality system like HTC Vive can

track the HTC Vive components at 60Hz which is equivalent to real-time tracking. A Baxter

robot, HTC Vive, and a Kinect camera attached to the top of the robot is used to visualize the

robot space to the virtual reality system. By introducing virtual reality (11; 12; 13; 14; 15; 16),

the robotic teleoperation system encounters sparse tracking points for the human to robot cor-

respondence learning model. The traditional 2D system (9; 17; 18; 3; 19; 20) maps a human

body to a skeleton comprised of 15 joint positions. However, the HTC Vive only consists of 3

positions (two – each human wrist holding an HTC Vive Controller– and head position). Thus,

this transfer of high dimensional human end-effector (HTC Vive Controller positions) to lower-
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Figure 1. How can we effectively teleoperate a robot in virtual reality using deep
correspondence learning?

dimensional robot joint angles is a non-linear transformation problem as shown in Figure 1.

This chapter proposes a deep correspondence learning model (feed-forward neural network) to

solve this non-linear transformation of HTC Vive positions to robot joint angles.

One of the problems in a robotic teleoperation system is predicting human (the teleoperator)

intention for the robot to be prepared for conducting appropriate actions. In general, for a robot
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Figure 2. Can we predict human intention more quickly based on the partial trajectory
traveled by maximizing the goal likelihood for Inverse Optimal Control?

to be an effective peer in a typical human-robot collaborative setting it needs to predict human

intention to better plan its actions. For example, in a typical self-driving car scenario, it is

important to predict pedestrian’s intentions and other driver’s intentions to take suitable actions

on the road. Motivated by these problems, the second chapter address the problem of human

intention prediction. The goal of this problem set is for the robot to not only predict human

intentions correctly, but also more quickly. It explores maximum entropy inverse reinforcement

learning (MaxEnt IRL) algorithms for goal predictions based on partial trajectory traveled by

the human. In a typical MaxEnt IRL setting, the likelihood of the trajectory is maximized

for training the reward parameters (21; 22). However, at inference time the aim is to predict

the true goal given the partial trajectory traveled i.e., maximizing the goal likelihood as shown

in Figure 2. This second chapter attempts to fill the research gap by proposing an algorithm

for discriminatively learning MaxEnt IRL for true goal predictions based on partial trajectory

traveled. The proposed algorithm is evaluated on a goal pointing dataset (3) and Cornell

Activity Dataset (CAD-120)(23).
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Figure 3. Can a robot learn a day-to-day task (for example, mopping the floor) from a human
demonstration provided in the form of a video?

Mopping the floor is one daily task that is not very exciting for humans, so it would be great

if a robot could perform this action instead. The final work of the thesis explores robot learning

for this tedious daily task. One potential approach is to program a robot to mop by mimicking

human mopping behavior. However, human motion behavior is very difficult to capture with

hand-coded robotic programs. Another potential approach is using imitation learning, which

is robot learning from human demonstration. A human demonstration can be recorded using

motion capturing sensors that are stuck to the human body to accurately measure human

motion. However, this could bring some discomfort to the human demonstrator. One final

consideration is the recent advancement in the field of computer vision (4) which helps a robot

imitate a video of recorded human behavior from a mobile camera on a robotic arm.
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The final chapter of the thesis explores imitation learning using video demonstrations of

humans performing mopping tasks. First and third-person videos of humans mopping the floor

using a floor mop are collected. Two robotic systems are build to learn mopping motions on

a robotic arm from human video demonstrations. The first robotic system uses a traditional

computer vision technique to track the mop in human videos and then uses inverse kinematics to

move the robotic arm attached with a mop. The second system comprises advanced computer

vision techniques on Time Contrastive Network (TCN) and Reinforcement Learning (RL).

Using the collected videos, a TCN model is learned. The TCN produces embeddings that map

similarities in images from two different viewpoints that are visually different but temporally

the same. Also, the TCN can differentiate between images from the same viewpoint that may

look similar but are temporally different. A mopping task is learned on a UR 10e robotic arm

using reinforcement learning (RL). The reward function is devised for the complex mopping

task comprising of TCN embedding of human demonstration mopping video versus robot first-

person mopping video feed and z-axis value of the mop. After 15 iterations of RL, a robotic arm

can mimic human mopping behavior following video demonstration. The third-person learned

robot mopping behavior video is compared with the human third-person video demonstration

using cosine similarity of the optical flow of the mop head in both the videos at each frame.

1.1 Outline of the document

This Ph.D. thesis document is organized into five parts: Introduction; Deep Correspondence

Learning for Effective Robotic Teleoperation Using Virtual Reality; Discriminatively Learning
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Inverse Optimal Control Models for Predicting Human Intentions; Robot Learning to Mop like

Humans using Video Demonstrations; Conclusion and Future Work.

The first chapter introduces the problems in teleoperation, human intent prediction and

imitation learning methods for collaborative robot space. Then it outlines the proposed solution

to three problems addressed.

Chapter two is derived from research paper titled Deep Correspondence Learning for Effec-

tive Robotic Teleoperation using Virtual Reality (24) published at IEEE International Confer-

ence on Humanoid Robots (ICHR) 2019. This chapter introduces the correspondence learning

problem for robotic teleoperation using Virtual Reality and discusses the background and re-

lated works. Further, deep correspondence architecture is explained as an approach to solving

this problem. Lastly, this chapter explains the conducted experiments and results obtained.

Chapter three is obtained from the research paper titled Discriminatively Learning Inverse

Optimal Control Models for Predicting Human Intentions (1) published at ACM International

Conference on Autonomous Agent and Multi-Agent Systems (AAMAS) 2019. It explains the

motivation behind the human prediction task prior work in that area. Then the algorithm is

proposed for learning Inverse Optimal Control models for maximizing goal likelihood. Further,

the proposed hypothesis is confirmed using two data sets and the results are discussed.

The work presented in Chapter four is submitted to Conference on Robot Learning (CoRL),

2021 for review. This chapter aims to answer the question: Can a robot learn a day-to-day task

(for example, mopping the floor) from a human demonstration provided in the form of a video?

The chapter introduces the problem of learning a daily task from video demonstration and
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then explains our two proposed robotic system to mop the floor. Next we present experiments

conducted, results obtained and other related work to imitation learning for mopping task.

Lastly, chapter five gives the concluding statement for this thesis and directs to the future

extensions based on this thesis work.



CHAPTER 2

DEEP CORRESPONDENCE LEARNING FOR EFFECTIVE ROBOTIC

TELEOPERATION USING VIRTUAL REALITY

(Previously published as S. Gaurav, Z. Al-Qurashi, A. Barapatre, G. Maratos, T. Sarma and

B. D. Ziebart, ”Deep Correspondence Learning for Effective Robotic Teleoperation using Virtual

Reality,” 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids),

2019, pp. 477-483, doi: 10.1109/Humanoids43949.2019.9035031.)

2.1 Introduction

Tasks like performing experiments with hazardous substances or handling dangerous waste

(6; 10) are most safely performed by humanoid robots. However, often these tasks cannot be

completed successfully without human guidance. Teleoperation is one of the most popular ways

used for a human operator to remotely guide and control humanoid robots (5; 6; 25; 26; 7; 8;

9; 10). Traditionally, a teleoperator remotely watches the robot’s environment projected on a

screen (2-D view) from cameras mounted on the robot’s head (26; 25) and uses a joystick (7; 8)

or controller (9; 27; 28; 6) to operate the robot.

Depth cameras (e.g., the Microsoft Kinect) have been employed as the input sensor to

control a Baxter robot in previous work (9; 17; 18; 3; 19; 20). However, depth cameras often

suffer from sensor noise that can produce errors and poor translation for robotic teleoperation

when mapping from a tracked teleoperator skeleton to robotic joint positions. Additionally,

9
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Figure 4. (a) Visualization of the Baxter robot’s workspace captured from a depth camera
(Microsoft Kinect) and displayed on a virtual reality headset (HTC Vive); (b) demonstrator
holding HTC Vive controller slowly moves his hand from neutral position; (c) trainer moves

robot hand manually to follow human trajectory; and (d) demonstrator and trainer with
Baxter reaching the same configuration.
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having only the 2-D view of the robot’s workspace often makes it difficult for the operator to

precisely control the robot within its environment.

In contrast, recent advances in virtual reality technologies provide an opportunity to ad-

dress this difficulty. Virtual reality is popular for creating virtual environments of any room

or workspace (14; 13). Virtual reality systems like the HTC Vive typically incorporate two

controllers held by an operator that can track the human wrist with very high accuracy and

allow the operator to realistically manipulate objects in the virtual environment. Recently,

robotic teleoperation has been performed using 3D sensors like the HTC Vive and Oculus Rift

(11; 12; 13; 14; 15; 16).

The teleoperation correspondence problem of mapping from teleoperator poses or controls

to robot poses is a crucial problem for enabling robotic teleoperation using a virtual reality

system. Existing methods use linear coordinate transfer from a virtual reality frame of reference

to a robot’s frame of reference and then perform inverse kinematics to move a robot’s arm

(11; 12; 13; 14; 15). This translation mechanism can be slow and erroneous due to multiple

joint configuration solutions being provided by inverse kinematics for a single point.

In this chapter, we propose a machine learning approach for estimating an appropriate non-

linear correspondence for robotic teleoperation from human pose. We consider teleoperating the

Baxter robot using a Microsoft Kinect depth camera for perceiving the robot’s workspace and

an HTC Vive virtual reality system for visualizing the workspace and providing 3-D control,

as shown in Figure 4. First, we collect correspondence positions of human end-effectors and

Baxter joint angles by asking a demonstrator holding an HTC Vive controller to move his or her
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hand while an operator moves a Baxter arm in synchronization with the human demonstrator

(Figure 4). Second, we explore different non-linear machine learning regression models as

baseline correspondence models. Next, we explore deep learning architectures to learn a non-

linear correspondence model for HTC Vive controllers to Baxter Robot joints. We show that

our proposed deep correspondence model performs significantly better than linear and non-

linear regression baselines and helps to enable more effective robotic teleoperation using virtual

reality. To demonstrate the effectiveness of our proposed model, we conduct a simple real-life

experiment: picking up a box from the table and placing it at another location. Our proposed

deep network enables the teleoperator to perform the task faster and more effectively than the

baseline methods.

The chapter is organized as follows: we first provide related work on robotic teleopera-

tion using virtual reality. Then, we describe in detail our deep correspondence architecture

for robotic teleoperation. Next, we describe the experiments we conducted to compare our

correspondence learning approach with baseline methods and discuss the results. Lastly, we

conclude the chapter and propose future work.

2.2 Background and Related Work

2.2.1 Correspondence Learning in Virtual Reality

Virtual reality (VR) can provide a teleoperator with a first-person perspective from a robot’s

viewpoint (13). This enables high-quality demonstrations for robotic manipulation to be col-

lected (29). Fritsche et al. (13) use the Oculus Rift and Microsoft Kinect camera as teleop-

eration input and iCub as their humanoid robot. Their correspondence (transfer of human
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embodiment to the robot embodiment) is accomplished via Kinect camera skeleton tracking.

The virtual reality setup is only used to give the first-person perspective for performing the

task. As mentioned in the previous section, the Kinect camera can produce erroneous transla-

tions, preventing effective teleoperation. In this chapter, we directly learn controls from human

end-effector to robot embodiment via a deep learning approach.

Previous work uses consumer-grade virtual reality headsets (HTC Vive) supported by hand

tracking hardware that can be used to naturally teleoperate robots to perform complex tasks

with some delay (11; 14; 15). Zhang et al. (11) teach the robot via demonstrations collected in

virtual reality.

These prior works (11; 14; 15) use linear coordinate transfer from virtual reality frame of

reference to the robot frame of reference for correspondence learning. Then, they use inverse

kinematics to find robot joint angles to move the arm. Unfortunately, inverse kinematics can

provide different joint configurations for one end-effector of a robot arm. This may lead to an

undesirable joint setting that produces irregular arm movements and ultimately sometimes fails

to accomplish a task. Also, the whole process is complicated and time-consuming. We use a

linear regression baseline method to emulate these prior work for comparison.
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2.2.2 Baxter Robot

The Baxter robot is built by Rethink Robotics. It has a torso mounted on a movable

pedestal and two arms on the left and right sides of the robot (30). Each arm has seven degrees

of freedom (DOF), i.e., seven joint angles:

Rjoints = [s0, s1, e0, e1, w0, w1, s2]. (2.1)

Forward kinematics1 provides the end-effector:

Rend-effector = [xt, yt, zt, xr, yr, zr, wr], (2.2)

where the first three are translation points describing the position of Baxter’s arm end-effector

and the last four are Quaternion angles describing the rotational position.

2.2.3 Deep Learning Architecture

Deep neural networks been developed to address prediction tasks for which more conven-

tional computation approaches have proven ineffective (31; 32). They are attractive for comput-

ing the inverse kinematics and dynamics of robots because they can be trained for this purpose

1http://sdk.rethinkrobotics.com/wiki/Baxter PyKDL#baxter kinematics.py
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Figure 5. Training of the deep neural network to learn the correspondence between the Baxter
robot joint angles and the human poses where input 14 represents the position and rotation
data of HTC Vive controller placed in two respective hand of the human demonstrator and

output 7 represents the seven joint angles of one of the Baxter robot’s arm.

without explicit programming (33) and can represent complex non-linear relationships. The

basic operation carried out at a single neuron is represented as:

ai = f i(wiai−1 + bi), (2.3)

where ai is the output of layer i, f i() is the activation function of layer i, wi is the weight

matrix between layer i and layer i-1 and bi is the bias of layer i. Several algorithms have

been developed to train a neural network, including back propagation (with momentum) and

Levenberg Marquaidt algorithms (34) (35). We use deep networks for our correspondence model

in this chapter.
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2.2.4 Loss Function

The loss or evaluation functions used to evaluate our correspondence learning models are:

2.2.4.1 Mean Squared Error

The Mean Squared Error (MSE) is calculated by computing the squared difference between

actual value (Y) and predicted value (Ŷ ) and averaging over total number of values,

MSE =
1

n

n∑
i=1

(
Yi − Ŷi

)2
. (2.4)

We employ this measure to train our deep network model and evaluate the performance of its

resulting predictions.

2.2.4.2 Cosine Similarity

Cosine similarity measures the similarity between two non-zero vectors of an inner product

space based on the cosine of the angle between them:

cos(θ) =
AB

‖A‖‖B‖
=

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

, (2.5)

where A and B are vectors. We use cosine similarity to compute the loss of rotation angles of

the end-effector.

2.3 Approach

In this section, we first describe the visualization of the Microsoft Kinect depth data in

our virtual reality system. Then, we explain the underlying problem of non-linearity in the
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correspondence from the HTC Vive controller to the Baxter joint angles. Lastly, we propose in

detail our main contribution: a deep correspondence learning architecture.

2.3.1 Visualizing Microsoft Kinect depth data in Virtual Reality

We first develop a visualization of the Kinect depth point cloud data in the HTC Vive. In

the Unity application, we read the sensor data from a Kinect V1, which has a resolution of 640

x 480 pixels and an 11-bit depth. We use this collected sensor data to render a mesh in Unity

in real-time to create a point cloud representation. The color information from the collected

data is also maintained in the representation as it makes objects more discernible. We scale and

orient this point cloud to elicit realism in the visualization using manually selected parameters.

Using the Unity SteamVR plugin, we integrated the HTC Vive in the application to view the

point cloud in virtual reality. Figure 4(a) shows the visualization of Baxter’s environment in

HTC Vive headset.

The 3-D projection of the robot’s environment provides teleoperators with a first-person

perspective for performing tasks effectively. However, to accomplish a precise grasping task, we

stream frames from the Baxter wrist camera (2-D) to the HTC Vive headset. Using the Unity

engine, we display the two wrist cameras by streaming them on the top corners, as shown in

Figure 4(a). This can help the teleoperator perform a fine-grained task when the robot arm

has reached close to the target location.

2.3.2 Robotic Teleoperation using Virtual Reality

The crux of any robotic teleoperation system relies on the transformation of the human

operator’s control inputs to the robot joint values. For a virtual reality system, this involves a
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transfer of embodiment from the human to the robot that is called a correspondence. We con-

sider the setting in which the human operator holds an HTC Vive controller in each hand and

wears the HTC Vive headset to view the Baxter robot’s 3D environment from the first-person

perspective. The HTC Vive data consists of 21 data points, which comprise positions (transla-

tions xt, yt, zt) and orientations (quaternion angles xr, yr, zr, wr) of the HTC Vive headset and

two HTC Vive controllers. The orientation is provided to us in quaternion by the HTC Vive

system because it has computational advantages. We understand orientation is represented as

three degrees of freedom. However, we did not convert the quaternion to Euler angles because

it won’t have any effect on the overall training of the deep models (36; 37).

The two HTC Vive Controller positions indicate the two human end-effectors. Mapping

each position to the seven joint angles of each Baxter arm is challenging due to non-linearity.

To verify this, we compared a linear model with polynomial models to regress each one of the

joint angles from the HTC Vive data. The polynomial models outperform the linear models

with the result being statistical significant with a P-value < 10−16, thus proving that it is indeed

a non linear transformation.

2.3.3 Deep Correspondence Learning Architecture

Deep learning has proven to be an effective method for non-linear function approximation,

as explained in Section 2.2.3. In this chapter, we propose a fully connected deep neural network

architecture for our correspondence model, as shown in Figure 5. The data points from two

HTC Vive Controllers are used as input to the deep network, and the output is the required

seven joint angles of the Baxter Robot arm. We choose the position of both hands (14 data
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points) versus only the controlling hand (seven data points) as input because the location of the

other non-controlling hand helps the model better situate the relative position of the controlling

hand in the space. We use off-line training for the deep network as shown in Figure 5. The deep

network consists of five hidden layers (reason explained in Section 2.4.5) each with 64 neurons.

The motivation for deciding neurons in the hidden layer comes from the statistical difference

between human end-effector position to the Baxter joint angles as explained in the previous

section.

We use a Rectified Linear Unit (ReLU) activation function (also known as the ramp function)

f(x) = x+ = max(0, x), in the input layer, a Sigmoid response (“S”-shaped curve) f(x) =

1
1+e−x , in the five hidden layers, and a linear activation function f(x) = cx, in the output layer

in order to obtain an output in radians between -1 to 1.

We use the mean squared error (MSE), as the loss function, 1
n

∑n
i=1

(
θip − θid

)2
, where θip

is the predicted output joint angles and θid is the desired joint angles. We use ADAM (38) as

the optimizer to converge quickly to small loss.

2.4 Experiment

2.4.1 Hardware Setup

We evaluate our approach using a Baxter robot as our experimental robot in this chapter.

We use a Microsoft Kinect Depth V1 camera with frequency up-to 20Hz mounted to the head

of the Baxter robot to visualize the robot work-space or environment, and an HTC Vive as our

virtual reality platform, which publishes data with a frequency of up to 90Hz. The HTC Vive

comprises one headset, two controllers and two base stations for tracking. We use a Windows
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machines for running the VR platform that has an i7 processor, 16 GB of RAM and a GTX

1080 ROG graphics card. We use ROS (Robot Operating System) to communicate with the

hardware. We also use the Baxter wrist camera to stream frames to the HTC Vive headset

with a frequency of up to 25Hz.

2.4.2 Data Collection

A demonstrator is asked to wear the HTC Vive headset where he/she can view what Baxter

sees as shown in Figure 4-a. Also, the same demonstrator is requested to hold the two HTC

Vive controllers in respective hands. This demonstrator then moves one of their hands slowly

for 3-5 minutes in random directions. The trainer moves the corresponding arm of Baxter in

synchronization to the demonstrator’s movement, as shown in Figure 4(c). Both the demon-

strator and Baxter’s arm start moving from the same starting position in space. This data

collection process is conducted for both arms separately. The attached video contains more

details of the training data collection.

There are three components of the HTC Vive used in this setup, thus 21 data points (7

points for each component) are transferred over the network to the Robot Operating System

(ROS) environment. These 21 data points from the HTC Vive and the 7 joint angles of one

Baxter arm are recorded at 40 Hz frequency. The collected data are 44,941 data points for the

right hand and 36,155 data points for the left hand from 11 demonstrators.

2.4.3 Data Pre-processing

The 11 demonstrators who contributed to data collection are of different height and arm

length. To generalize our training, we subtract the HTC Vive headset translation positions
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(xt, yt, zt) from both HTC Vive controllers’ translation positions to measure the controllers’

movements relative to head positions. We randomly withheld one person’s trajectory data for

conducting an offline experiment. On the remaining ten demonstrators’ data, we apply leave-

one-out-cross-validation (LOOCV), i.e., training on nine people’s data and testing on the tenth.

We repeat the process with each person’s data and take the average.

2.4.4 Training of Baselines

We compare our deep correspondence model against a linear regression approach (3) with

either no, polynomial, or Gaussian expansion of the feature space, and support vector regression

with polynomial or radial basis function (RBF) kernels. The linear regression method is used

as a state-of-the-art approach to the correspondence learning problem. We observe that the

difference in average Euclidean loss between linear regression with and without expansion of the

feature space is significant, which is further evidence that the correspondence task is non-linear

in nature. The detailed result of each baseline is reported in Table I.

2.4.5 Training of Deep Learning Models

Motivated by the deficiencies of the linear and non-linear baseline models, we investigate

deep learning models. We started with a simple network having one hidden layer and exper-

imented with different activation functions (e.g., hyperbolic tangent, Sigmoid, rectified linear)

for input and output layers. For each configuration, we trained until reasonable validation loss

was obtained. We then tested the performance of the correspondence model on the Baxter

robot. The configuration of rectified linear activation functions for the input, Sigmoid activa-

tion functions for the hidden layers, and linear activation functions for the output layer gave the
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best correspondence. We then tested different numbers of layers (up to 20 layers) and different

numbers of neurons (e.g., in multiples of 16) in each layer. Using the best of numbers of layers

and number of neurons, we then trained our deep model to convergence with a difference of

training losses for the last ten epochs of less than 0.0001.

2.4.6 Experimental Setup

We conducted two types of experiments to evaluate our proposed model against the linear

and non-linear baselines.

2.4.6.1 Offline Experiment

We first find the difference between the predicted output and the ground truth for the

baselines and our deep model. We randomly selected a demonstrator’s trajectory from the Vive-

Baxter correspondence dataset comprising of 2500 pairs of poses. The corresponding Baxter’s

joint angles of this trajectory (actual/desired value) are considered as ground truth. The

trajectory is passed to the linear regression correspondence model, the best non-linear regression

model, and the deep network correspondence model. The respective output joint angles from

both models are recorded. We apply forward kinematics to output Baxter’s arm joint angles

(ground truth, linear regression, non-linear regression, and deep network) to calculate Baxter’s

arm end-effectors, as shown in Figure 7. The simultaneous movement of the Baxter robot arm

using position control for each of the four models is demonstrated in an attached video.

We compute the Euclidean distance of Baxter’s end-effector as provided by the correspon-

dence model with the ground truth position, as shown in Table II. To measure the loss in

rotational angle of Baxter’s end-effector, we compute the cosine similarity between the pre-
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Figure 6. (a) Pick and place experiment setup in virtual reality, (b) Teleoperator reaching the
object (white box) kept at position A in virtual reality, (c) Teleoperator picking up the white
box from position A and moving to position B in virtual reality, (d) Baxter teleoperated to

reach the object (white box) kept at position A, (e) Pick and place experiment setup in
reality, (f) Baxter teleoperated to reach the object (white box) kept at position A, (g) Baxter
teleoperated to pick up the white box from position A and moving to position B, (h) Baxter

teleoperated to place the box at position B.
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dicted angles and the ground truth as shown in Table III. The graph between predicted end-

effector from linear regression vs deep network vs ground truth is plotted in Figure 7 for three

translation position and four rotational angles respectively.1

2.4.6.2 Real-time Robotic Teleoperation

We use a simple pick and place task (Figure 6) for our second set of experiments. A

teleoperator is asked to wear the HTC Vive headset where he/she can view the virtual robot

environment, as shown in Figure 6(a). The teleoperator must move the Baxter arm from a

neutral position to position A where a white box is placed, grasp the box, and move it from

position A to position B within one minute to be considered successful. Figure 6(a)-(d) shows

the steps conducted by the teloperator in the Virtual reality and Figure 6(e)-(h) demonstrates

corresponding steps performed by Baxter robot using the proposed deep correspondence model.

This task is repeated by two different teleoperators using linear regression, the best performing

non-linear model (SVR-RBF), and our proposed deep architecture. There are five trials for

each model and each of them is randomized. Thus, we collected ten samples for each model to

compare success rate.

In real-time, the two HTC Vive controller positions (after subtracting the HTC Vive head-

set’s translation position) are passed to the trained model. The output (7 Baxter’s arm joint

angles) from the trained correspondence model is then passed to the Baxter, which moves its

arm using position control, as shown in Figure 6. The average time taken to complete this task

1SVR (RBF) does not provide significant improvement, but clutters the differences between deep and
linear, so we do not include it.
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TABLE I

RESULTS (TEST LOSS IN RMSE) OF HTC VIVE CONTROLLER TO BAXTER
CORRESPONDENCE MODELS

Model Left Arm (rad) Right Arm (rad)

Linear Regression 0.6430 0.6699

Kernel Regression (Poly=2) 0.5808 0.5840

Kernel Regression (RBF) 0.5788 0.6196

SVR (Poly=2) 0.6019 0.4863

SVR (Poly=3) 0.5716 0.4758

SVR (RBF) 0.4944 0.4567

Deep Networks 0.0735 0.0659

TABLE II

EUCLIDEAN DISTANCE MEASURE FROM GROUND TRUTH BAXTER’S
END-EFFECTOR POSITION TO PREDICTED BAXTER’S END-EFFECTOR

Model Euclidean Loss (m)

Linear Regression 0.3414

SVR (RBF) 0.2173

Deep Network 0.0267

and the success rate of each model is reported in Table IV. The detailed video on collection of

training data and the pick and place experiment can be found here.

2.5 Results and Discussion

Table I describes the evaluation results of the HTC Vive controller to Baxter arm joint

angle correspondence. As shown in this table, the MSE for the Baxter joint angles using the

simple linear regression model is very high (i.e., a poor correspondence). All of the four non-
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Figure 7. (a)-(c) Robot end-effector positions (xt, yt, zt) plotted for Ground Truth vs Linear
Regression vs Deep Network; (d)-(g) Robot end-effector rotational angles (xr, yr, zr, wr)

plotted for Ground Truth vs Linear Regression vs Deep Network.



27

TABLE III

COSINE SIMILARITY RESULT
Linear Regression SVR (RBF) Deep Network

xr 0.467 0.628 0.986

yr 0.863 0.876 0.976

zr 0.560 0.785 0.985

wr 0.160 0.428 0.959

TABLE IV

SUCCESS RATE OF PICK & PLACE EXPERIMENT
Success Rate (%) Average Time (sec)

Linear Regression 60 56

SVR (RBF) 70 50

Deep Network 80 41

linear models performed better than the linear regression model and Support Vector Regression

(SVR) with a Radial Basis Function (RBF) kernel performed best on the LOOCV test. Thus,

we selected SVR (RBF) as our non-linear baseline model.

The deep network provided substantially lower error, with a decrease in MSE for the left

hand by a factor of 8.74 compared to the linear model and a factor of 6.73 to SVR (RBF). A

similar decrease in MSE can be seen for the right arm. This demonstrates that our proposed

deep architecture more successfully models the non-linearity in the Vive-Baxter correspondence

data.
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Table II shows the Euclidean distance between the robot’s ground truth end-effector and

predicted end-effector positions. According to Table II, the Euclidean distance loss between

linear regression to ground truth robot’s end-effector is 0.3414 meters and SVR (RBF) non-

linear model to ground truth is 0.2173 meters. On the other hand, the Euclidean distance loss

between ground truth using the deep network is only 0.0267 meters. Also, the attached video

clearly demonstrates the difference of performance across the four models (ground truth, linear

regression, non-linear regression, and deep network) in the real teleoperated arm movement

of the robot. Thus, we have demonstrated significant amounts of improvement in predicted

end-effector by our proposed deep network compared to linear and non-linear baselines.

Table III shows the cosine similarity between the rotational angles of the predicted end-

effector with the ground truth. For all four rotational angles, our deep model outperforms the

baseline linear and non-linear regression by a large margin. Therefore, our deep correspondence

model enables more appropriate control of end effector orientation for fine-grained manipulation

tasks.

The translation positions (xt, yt, zt) and rotational angles (xr, yr, zr, wr) are plotted for

Baxter’s end-effector for ground truth, linear regression and our deep network in Figure 7. We

infer from these seven graphs that the deep learning model follows the ground truth very closely

whereas linear regression is far away from the ground truth.

Figure 6 shows snapshots of Baxter performing a pick and place task using the deep cor-

respondence model. We report the results of this experiment in Table IV. Success rates and

average completions times both improve from the linear regression model to the non-linear re-
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gression model (SVR with RBF kernel), and from the non-linear model to our deep learning

approach. We find that our approach provides the highest success rate and lowest average

completion time. Thus, our offline performance successfully transfers to real-time control.

2.6 Conclusion and Future Work

We have successfully trained correspondence models for HTC Vive Controller to Baxter’s

arms. Our proposed deep model achieves better results than linear and non-linear regression

baseline models for correspondence-based evaluations. In the real-time experiment, our deep

network performed better than baselines model, resulting in faster completed tasks.

In this chapter, we have investigated the problem of correspondence learning for teleoper-

ating the hands of a humanoid robot. In future work, we plan to extend our approach to a

complete humanoid robot (e.g., Nao) (13; 12; 5; 9; 6; 28). This will help better collect train-

ing data for teaching humanoid robots and also perform effective real-time humanoid robotic

teleoperation.

We are planning to evaluate more complex tasks, like “opening a jar” and tasks mentioned

by Whitney et al. (2018) (15). To improve the completion time and smooth teleoperation, we

are planning to apply methods for goal predictions (3; 1) using our trained HTC Vive to Baxter

arm correspondence model. This will help the teleoperated robot reach the goal in less time

and with less distance traveled compared to previous work (3).

In the future, we would like to improve the visualization of the robot’s environment in virtual

reality using better 3-D cameras and better visualization techniques. We would like to incor-

porate better data collection techniques involving HTC Vive (29). Moreover, we are planning
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to apply other deep learning techniques such as recurrent neural networks that accommodate

the sequential nature of points in the trajectory.
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CHAPTER 3

DISCRIMINATIVELY LEARNING INVERSE OPTIMAL CONTROL

MODELS FOR PREDICTING HUMAN INTENTIONS

(Previously published as S. Gaurav and B. Ziebart, ”Discriminatively Learning Inverse

Optimal Control Models for Predicting Human Intentions,” 2019 In Proceedings of the 18th

International Conference on Autonomous Agents and MultiAgent Systems (AAMAS ’19). In-

ternational Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, pp

1368–1376.)

3.1 Introduction

Humans and robots work in close collaboration for many tasks (39; 40; 41; 42; 43; 44)

or simultaneously pursue separate tasks in shared workspaces (45; 46; 47; 48). To enable

effective task completion in either setting, robots should be able to anticipate human intentions

prior to the completion of the pursued task. Doing so enables a robot to plan compatible

actions ahead of time that are more productive for collaborative tasks or with fewer resource

conflicts in separate tasks. For example, self-driving vehicles that can predict pedestrians’

intentions and behaviors can navigate more safely and efficiently at intersections. However,

improved methods for predicting human intentions are needed to support these examples of

more synergistic decision making in autonomous systems.

31
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Bayesian reasoning has been predominantly used to address the goal prediction task. Under

this perspective, a predictive model of the trajectory of decisions given the goal is employed—

along with a prior distribution over goals—to obtain the posterior distribution over goals.

Numerous methods for the trajectory likelihood model have been employed (49; 23; 22; 50; 51;

52), ranging from simple goal-conditioned Markov models (53; 54) to inverse planning (52) and

imitation learning methods (50). Central to all of these methods is that the trajectory likelihood

models are designed and optimized with sole consideration to trajectory prediction rather than

goal prediction. While Bayes theorem holds for the true distributions of goal posteriors and

trajectory likelihoods, it can produce error-prone goal posteriors when the likelihood model is

noisily estimated from limited amounts of available data.

In this chapter, we investigate training maximum entropy inverse reinforcement learning

models (21) to maximize goal prediction likelihoods rather than trajectory likelihoods. In

section 3.3, we develop our method for calculating the gradient for the likelihood of the final

goal. By experimenting with an object reaching task with trained reward function from our

new approach, we realize an average probability for the true goal given approximately 50% of

the trajectory traveled that is not realized until 70% of the trajectory is traveled using the

trajectory-based likelihood method (22). Also, we also evaluate our method on the Cornell

CAD-120 dataset (23).

The chapter is organized as follows: we start with a summary of background information

on decision processes, previous work on predicting human intention, the inverse optimal con-

trol formulation for imitation learning, and goal prediction using an inverse linear-quadratic
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regulation (LQR) formulation. Next, we describe in detail our algorithm for obtaining goal pre-

dictions from the MaxEnt IRL model trained using goal likelihood maximization rather than

trajectory likelihood maximization. Next, we explain the experimental setup used to evaluate

our proposed method. The result section summarizes the results obtained by our goal likeli-

hood method versus the trajectory likelihood method and other baselines. Lastly, we provide

conclusion and propose future work.

3.2 Background and Related Work

3.2.1 Decision Processes and Goal Prediction

A wide variety of tasks can be represented using sequential decision process formulations.

A Markov Decision Process (MDP) is defined1 as a tuple (S,A, τ , R), where:

• state S is from a finite set of states s ∈ S;

• action A is from a finite set of actions a ∈ A;

• τ is the state transition probability from state s under action a;

• R(st) is the reward or cost received by visiting state st.

A sequence of states and actions, s1, a1, s2, a2, s3, . . . , sT , aT , is produced by applying a decision

policy π(at|st) to the state transition dynamics of the decision process, τ(st+1|st, at).

In many domains, the decision processes for similar tasks differ only in small ways. We

consider these differences being parameterized by a goal state g (where g ∈ G, is set of all

1We denote random variables with uppercase letters, fixed variables in lowercase, and matrices in
boldface uppercase.
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possible goals in the environment) that indicates the successful accomplishment of the goal

when it is reached at final time step tf (i.e., stf = g). In contrast, if the goal state is not

reached (i.e., stf 6= g), a large cost (or negative reward) is incurred. More generally, the reward

function can be parameterized by the goal g as: Rg(s).

In this chapter, we also consider continuous-valued states and actions that can be modeled

using a linear-quadratic regulation (LQR) formulation. In LQR, the dynamics of a system

being investigated are represented by a linear relationship,

st+1 = Ast + Bat + εt, (3.1)

where st denotes the state of the system at time t, at denotes the action at time t, εt denotes

some zero mean Gaussian noise, and A and B define the system dynamics. The Equation 3.1

contains position and velocity term which corresponds to the dynamics by which robot is driven

i,e. the torque and force applied to move motors which in turn causes motion in robot. The

state-action cost function,

cost(st, at) =

at
st


T

M

at
st

 , t < tf , (3.2)
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is a quadratic function that penalizes the dynamics of the system/control at each time step. We

also incorporate a final state quadratic cost that penalizes the final state, stf , from deviating

far from the desired goal g characterized by state sg,

cost(stf ) = (stf − sg)
TMf (stf − sg), (3.3)

where M and Mf are cost parameters. Similar to the MDP setting, the time-invariant state-

action cost function and the final state cost can vary depending on the goal being pursued.

For the discrete MDP setting and the continuous LQR setting, the goal prediction task is

defined as follows.

Definition 3.2.1. The goal prediction task seeks a probability distribution over potential

goals given a partial sequence of states: P (stf = g|s1, . . . , st) for discrete decision processes

and P (G = g|s1, . . . , st) for continuous control processes. In the discrete setting, the exact goal

state is reached whereas the final state need only be sufficiently close to state g in the continuous

setting.

3.2.2 Existing Goal Prediction Methods

Many goal prediction methods approach the goal prediction task using Bayesian reasoning.

Given a generative, goal-conditioned model of the state sequence, P (s1:t|g), the goal posterior

is obtained using Bayes theorem:

Pθ(gi|s1:ti) =
P (s1:ti |gi)P (gi)∑
g′∈G P (s1:ti |g′)P (g′)

, (3.4)
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where s1:ti is the partial trajectory of states from time step 1 to time step ti, gi is the inferred

goal, and g′ of a goal from the set of pre-defined goals (G) in the environment.

A simple Bayesian approach for the discrete setting is the goal-conditioned Markov model

(53; 54). It estimates the next state given the current state and goal based on the empirical

frequency,

P (st+1|st, g) =
count(st+1, st, g) + αst+1,st,g

count(st, g) + αst,g
,

where count(·) is the number of occurrences in the training dataset and α provide a set of

optional pseudo-count values. The state trajectory likelihood of (Equation 3.4) is:

P (s1:t|g) = P (s1)

tf−1∏
t=1

P (st+1|st, g).

Predestination (55) uses Bayes theorem to infer destinations from driving routes. It uses a

history of driver destinations and driving behaviors to predict where the driver is heading (final

destination). Similarly, comMotion (56) uses a set of previously visited destinations to predict a

person’s destination using a Bayes classifier. More sophisticated trajectory likelihood modeling

approaches treat the prediction tasks as the “inverse” of a planning process (52; 51; 57; 58). For

example, Baker, Tenenbaum & Saxe et al. (52) use inverse planning, which assigns a probability

distribution to different plans, to compute goal inferences. They investigated three different

settings for goal prediction: single underlying goal, complex goals, and changing goals. In this

chapter, we consider the single underlying goal setting and leave extensions to the other settings

as future work.
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Maximum Entropy Inverse Reinforcement Learning (MaxEnt IRL) (21), which we describe

in more detail in the next subsection, uses a trajectory likelihood model to predict driver

destinations given partial driving trajectories. It has also been used to predict user intent for

robotic teleoperation with application to brain-computer interface (BCI) manipulation tasks

(49). In another extension of MaxEnt IRL, the notion of legibility and predictability (51) are

used to interpret action analogy, and by Holladay et al (57) to generate pointing configurations

that make the goal object legible.

All of the these works use generative models of the trajectory distribution to enable goal

prediction using Bayesian reasoning. Though less prevalent, there is some work on discrimi-

native approaches for goal prediction given partial trajectory (59; 60). The Delphian Desktop

(60) predicts user intentions in a desktop environment given the cursor trajectories using sim-

ple linear regression based on features like peak velocity and distance to the target. Logistic

regression (61) has been used to predict the goal given partial trajectory (62) based on features

like cosine of the angle, distance using peak velocity, and curve fitting for predicting intended

goal. Additionally, the anticipatory temporal conditional random field (ATCRF) (63) and ob-

ject affordances (23) is used to anticipate human activities. They have produced the Cornell

Activity Dataset (CAD-120) (23) for their experiments. We use the same CAD-120 dataset for

evaluating our method and compare against this approach.

3.2.3 Maximum Entropy Inverse Optimal Control

Inverse optimal control (also known as inverse reinforcement learning) (64; 65; 66) consid-

ers a Markov decision process without a reward function and learns the reward function that
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rationalizes demonstrated decision sequences (66). Assumption a reward function linear in the

state feature vectors parameterized by reward parameter θ, R(st) = θ · φ(st), Abbeel & Ng et

al. (66) propose the apprenticeship learning approach based on Inverse Reinforcement Learning

(65). They devise a strategy of matching feature expectations between expert’s policy (πE) and

learner’s policy (π̃):

∣∣∣∣∣
∣∣∣∣∣E
 tf∑
t=1

φ(St)
∣∣∣πE
− E

 tf∑
t=1

φ(St)
∣∣∣π̃
 ∣∣∣∣∣
∣∣∣∣∣
∞

≤ ε, (3.5)

where ε is the largest error allowed when approximately matching feature vectors. While useful

for prescriptive behavior in imitation learning tasks, this approach is not as useful for prediction

due to the ambiguities arising from many different mixtures of deterministic policies producing

the same feature counts.

Ziebart et al. (21) employed the principle of maximum entropy (67) to resolve the ambiguity

of mixing policies to match feature counts by selecting a probability distribution:

Pθ(s1:tf ) =
e
∑tf
t=1 θ

Tφ(st)

Zθ
(3.6)

where Zθ =
∑

s′1:tf
e
∑
t θ
T ·φ(s′t) is the partition function and s1:tf is the trajectory or path traveled

from time step 1 through tf . The parameters θ that maximize the trajectory log likelihood,

θ∗ = argmax
θ

∑
s1:tf∈Ξ

logP (s1:tf |θ), (3.7)
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are employed by the model. Further, the gradient of Zθ (partition function) is established in

Lemma 3.2.2.

Lemma 3.2.2. The gradient of the partition function, Zθ, is:

∇θ logZθsa→b = −E
[ tf∑
t=1

φ(St)|S1 = a, Stf = b
]

= −E
[
φ(Sa→b)

]
.

Proof. Using the definition of Zθ from Equation 3.6 we have,

∇θ logZθsa→b =
1

Zθsa→b

∑
s1:tf :s1=a,stf=b

e−costθ(sa→b)(−φ(sa→b))

= −
∑

s1:tf :s1=a,stf=b

P (sa→b)φ(sa→b)

= −E

 tf∑
t=1

φ(St)|S1 = a, Stf = b

 = −E
[
φ(Sa→b)

]
.

Following from Lemma 3.2.2, the gradient of the trajectory log likelihood function for a set

of trajectories and corresponding goals, denoted by Ξ, is:

∇θ log
∏

(s1:tf ,g)∈Ξ

P (s1:tf |θ, g) = E
[
φ(S1:tf )|g

]
− φ(s1:tf ). (3.8)

Thus, when maximized, this gradient is zero and the expected feature counts must match the

training data feature counts.
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In this chapter, we extend MaxEnt IRL to predict human intentions given partial trajectory

by maximizing the true goal likelihood instead of the trajectory likelihood.

3.2.4 Inverse Linear-Quadratic-Regulation

Maximum entropy inverse reinforcement learning methods for MDPs have been extended to

linear-quadratic regulation (LQR) settings to learn the M and Mf coefficient matrices (reward

parameters) from demonstrated behaviors using the principle of maximum causal entropy (68).

Under this model, computing the features φgi of the partial trajectory (s1:ti) given the goal (gi),

φgi(s1:ti) =

ti−1∑
t=0

at
st


at
st


T

(3.9)

the expectation of the features φgi(sti→gi) of the remaining trajectory (sti→gi) from the current

position (ti) to the goal (gi),

E[φgi(Sti→gi)|gi] =

tf−1∑
t=ti

(
µatstµ

T
atst + Σatst

)
, (3.10)

the expectation of the features φgi(s1→gi) of the complete trajectory (S1→gi) from the starting

point to the goal (gi),

E[φgi(S1→gi)|gi] =

tf−1∑
t=1

(
µatstµ

T
atst + Σatst

)
, (3.11)
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can be achieved efficiently based on the fact that all marginal state probabilities are multivariate

Gaussians with analytical expressions mean (µatst) and variance (Σatst) for these expectations.

Finally, the probability of the true goal (gi) given the partial trajectory (s1:ti) is obtained using

Bayes theorem as;

P (gi|s1:ti) ∝ P (gi|st)
tf∏
i=1

π(at|st, gi). (3.12)

This predictive linear-quadratic regulator (22) for inverse optimal control is used to predict

human intentions and trajectory forecasting. Promising results have been demonstrated on the

Cornell Activity Dataset (CAD-120) (23). In this chapter, we have extended the technique used

in (22) by training the MaxEnt IRL model by maximizing true goal likelihood.

3.3 Approach

Maximum Entropy Inverse Reinforcement Learning (MaxEnt IRL) is a widely used method

to infer the true goal or intentions of a sequential decision maker given a partial trajectory

by employing Bayesian reasoning. The reward parameters in the MaxEnt IRL setting are

trained via maximizing the trajectory likelihood as shown in Equation 3.8. The trajectory

likelihood models are designed and optimized solely with consideration to trajectory prediction

rather than goal predictions. While Bayes theorem, the foundation of Bayesian reasoning, holds

correctly for the true distributions of goal posteriors and trajectory likelihoods, it can produce

error-prone goal posteriors when the likelihood model noisily estimated from limited amounts

of available data. To address this problem, in this section, we develop our approach for training

the MaxEnt IRL model for goal prediction using goal likelihood maximization in place of the

traditional trajectory likelihood maximization approach.
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3.3.1 Goal Likelihood Maximization Formulation

To derive our optimization procedure, we first establish Lemma 3.3.1 for computing the

gradient (∇θ) of the log likelihood of a partial trajectory given a goal (Pθ(s1:ti |gi)) with respect

to the reward parameter (θ).

Lemma 3.3.1. The gradient for computing the probability of a partial trajectory (s1:ti) given

the goal (gi) can be separated into the sum of expectations and the feature vector,

∇θ logPθ(s1:ti |gi) =− φgi(s1:ti)− E
[
φgi(Sti→gi)|gi

]
+ E

[
φgi(S1→gi)|gi

]
.

Proof. Using the definition from Equation 3.6, we have:

logP (s1:ti |gi) = −costθ(s1:ti) + log(Zθsti→gi
)− log(Zθs1→gi

)

[Since, log m
n = logm− log n]. Taking the gradient with respect to the reward parameter θ and

simplifying after using Lemma 3.2.2 proves Lemma 3.3.1.

Next, using Lemma 3.3.1, we establish the maximum goal likelihood gradient for MaxEnt

IRL given a partial sequence of states.

Theorem 3.3.2. The gradient for MaxEnt IRL for maximum goal likelihood given a partial

trajectory decomposes into a sum of expectations, features and probabilities,
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∇θ logPθ(gi|s1:ti) = −φgi(s1:ti)− E
[
φgi(Sti→gi)|gi

]
+ E

[
φgi(S1→gi)|gi

]
+
∑
g′∈G

P (g′|s1:ti)
(
φg′(s1:ti) + E

[
φg′(Sti→g′)|g

′
]
− E

[
φg′(S1→g′)|g′

])
,

where: s1:ti is the partial trajectory from time step 1 to ti, gi is the true goal and g′ are the

possible goals (G) in the environment.

Proof. Taking the gradient with respect to θ of the goal log likelihood, after expanding using

Equation 3.4:

∇θ
(

logPθ(s1:ti |gi) + logP (gi)− log
∑
g′∈G

Pθ(s1:ti |g′)P (g′)
)

(a)
= ∇θlogPθ(s1:ti |gi) +∇θ logP (gi)− log

∑
g′∈G

Pθ(g
′|s1:ti)∇θPθ(s1:ti |g′)P (g′)

(b)
= −φgi(s1:ti)− E

[
φgi(Sti→gi)|gi

]
+ E

[
φgi(S1→gi)|gi

]
−
∑
g′∈G

P (g′|s1:ti)
(
− φg′(s1:ti)− E

[
φg′(Sti→g′)|g′

]
+ E

[
φg′(S1→g′)|g′

])
,

where: (a) follows from properties of the gradient applied to logarithms and the definition of

the goal posterior and (b) is obtained after employing Lemma 3.3.1.

This gradient trivially equals zero when the goal predictions are perfectly correct (i.e.,

P (tf = gi|s1:ti) = 1). However, this is often difficult to achieve when training from noisy

data. In general, optimizing the reward parameter to maximize goal likelihood is non-concave.

However, we can obtain a reasonable local maxima by changing the starting conditions and
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other factors. For example, initializing the reward parameter optimization at the maximum

trajectory likelihood parameters guarantees no worse parameters than the trajectory-based

approach.

Algorithm 1 Learning IOC model for goal prediction

Input: The reward parameter θ; Set of training trajectories reaching goals Ξ; Set of Goals G
Output: The optimized/learned reward parameter θ
1: for (s, gi, ti) ∈ Ξ do
2: Extract partial trajectory s1:ti

3: ∇θ ← −φgi(s1:ti)− E
[
φgi(Sti→gi)|gi

]
+ E

[
φgi(S1→gi)|gi

]
4: for g’∈ G do

5: ∇g′ ← φg′(s1:ti) + E
[
φg′(Sti→g′)|g′

]
− E

[
φg′(S1→g′)|g′

]
6: Compute P (g′|s1:ti)
7: ∇θ ← ∇θ + P (g′|s1:ti)∇g′
8: end for
9: θ ← θ + η∇θ
10: end for
11: return θ

The learning procedure (Algorithm 1) takes as input an initial reward parameter, a set

of training trajectories, and a set of possible goals in the space. It iterates over randomly

selected training trajectories, extracting the partial trajectory from the selected trajectory, i.e.,

s1:ti , and then constructs the full gradient from its components in step 3, step 5, and step 7.

Step 3 computes the difference in expected features for the true goal. Step 5 computes the

same differences for each possible goal and then Step 7 weights these by the goal probabilities.



45

Lastly, Step 9 applies a gradient step weighted by η to improve towards locally optimal reward

parameters θ∗ using expectations computed for the true goal and all other goals. In practice,

more sophisticated gradient-based updates (69; 70) can be employed. The algorithm repeats

steps 2 through 8 (with decreasing learning weights) for all of the training trajectories until

approximately converging to a locally optimal point.

We note the contrast from previous goal prediction methods using MaxEnt IRL trained

by maximizing the likelihood over the trajectory to train the reward parameter as explained

in (Equation 3.8). Critically, the likelihood of the correct goal given a partial sequence of ac-

tions is inferred using Bayesian reasoning. This produces a mismatch between the training

and application objective and can produce error-prone goal likelihoods. Thus, the most signif-

icant advantage of training using the proposed method (maximum goal likelihood) is that we

maximize the likelihood over the true goal, which correctly matches the application objective.

3.3.2 Extension to Linear-Quadratic Regulation

Algorithm 1 provides a general algorithm for MaxEnt IRL trained to maximize goal pre-

diction for the case of discrete state/action decision processes. We can extend this general

method to other settings/controllers to match other real-life scenarios. In this chapter, we use

inverse LQR to conduct our experiments and we have the cost function M and Mf to train as

mentioned in section 3.2. In algorithm 1, for our inverse LQR setting we replace the reward

parameter θ with M and Mf . The computation of terms of Algorithm 1 in inverse LQR formu-

lations can be referred from Equations (Equation 3.9), (Equation 3.10), (Equation 3.11), and

(Equation 3.12) from section 3.2.4.
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Figure 8. A partial trajectory (S1:ti) and distribution for two goals in the space at a
trajectory point St. Inverse LQR with the trained reward parameters using the algorithm 1

are used to calculate the distributions for both goals.

Figure 8 depicts the scenario of goal prediction based on the partial trajectory traveled in a

real-time situation. There is an agent who starts from the starting point s1 and travels to point

st. The goal set G consists of two goals: gi and gj . At trajectory point st, we can compute

goal distributions for both goals in the space based on the partial trajectory s1:t covered. The

color contours represent the corresponding probability distribution (likelihood) of the goal. The

corresponding mathematical expressions for each action conditioned on goal in the figure provide

the goal probability in the inverse LQR setting, as part of Equation 3.12. These distributions

are calculated using the trained reward parameter from Algorithm 1. The most probable goal
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can be obtained from the posterior goal distribution. In Figure 8, for example, goal gi is the

most probable. Thus, in this way we predict the goal given the partial trajectory in real-time.

3.3.3 Complexity Analysis

The time complexity of the discrete case proposed in Theorem I is O(|G||S||A|T ), where G

is the set of potential goals, S is the set of states, A is the set of action and T is the total time

steps in the trajectory (i.e., trajectory length). In this chapter, we have implemented the above

general algorithm for the inverse LQR setting which is an example of the continuous case. So,

the time complexity of the proposed algorithm for inverse LQR setting requires O(T ) matrix

updates.

The most significant advantage of using this approach is that the matrix updates only need

to be computed once when performing inference over sequences sharing the same time horizon

and goal positions. Further, to improve the efficiency of our computation we used the Armadillo

C++ linear algebra library for fast linear computations (71).

3.4 Experimental Setup

In this section, we explain our experimental setup used for evaluating our proposed Algo-

rithm 1 from Section 3.3 for the inverse LQR setting. We have used two real-life datasets to

evaluate our proposed method.

3.4.1 Goal Pointing Task Data

For our first set of experiments, we have used an existing dataset of pointing tasks (3).

The data was collected using a Baxter robot from Rethink Robotics and a Microsoft Kinect

camera. For the training data, 10 balls were hung from the ceiling (5 on both sides of the Baxter
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Figure 9. The steps of a task in our testing sequence from a pointing dataset (3) include
starting from the robot’s neutral position (a) and then teleoperating the arm of the robot (b)

to the goal location (c) at which point confirmation is displayed on the robot’s screen (d).
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robot), and a teleoperator was asked to stand in front of the Kinect Camera (input sensor).

The teleoperator was asked to reach the displayed ball number on Baxter’s head-mounted

display from a neutral position. Another operator moved Baxter’s corresponding arm in zero

gravity mode from a neutral position to the displayed goal in synchronization with the human

arm motion. This Kinect-Baxter correspondence data was used to train a linear regression

correspondence model for robotic teleoperation. Further, we used the training sequence to

extract states and actions for inverse LQR system and trained cost functions M and Mf .

The 10 hanging balls from the ceiling were then shuffled to new positions (different from

the training set-up) for the testing phase. The 18 teleoperators were asked to teleoperate the

Baxter robot’s arm by standing in front of the Kinect camera from a neutral position to reach

the goal that was displayed on the Baxter head-mounted screen. This process was repeated

for each goal and three different control assistance method ((i) Sigmoid assist, (ii) Step assist,

and (iii) No assist), for details please refer to (3). The three control assistance methods were

also repeated twice in random order to maintain consistency. Thus, each person performed 60

trajectory sequences of reaching the displayed goal.

In total, the dataset consisted of 1080 goal reaching trajectories. Figure 9 explains the steps

of test data collection. The dataset contains the Kinect skeleton values, the Baxter end-effector

position while the volunteer was teleoperating the Baxter robot and the probability distribution

across all five goals along the trajectory. In this chapter, we use the Baxter end-effector positions

as the trajectory points (states) for training and testing of the inverse LQR model.
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3.4.2 Cornell Activity Dataset (CAD-120)

For our second set of experiments, we employed our Algorithm 1 to train reward parameters

on the publicly available Cornell Activity Dataset (CAD-120) to strengthen our claim. This

dataset consists of 120 depth camera video of daily activities. There are ten high-level activities:

making cereal, taking medicine, stacking objects, unstacking objects, microwaving food, picking

objects, cleaning objects, carrying food, organizing objects and eating a meal. These activities

are further divided into ten sub-activities: reaching, moving, pouring, eating, drinking, opening,

placing, closing, cleaning and null. For example, the task of making cereal can be broken down:

reaching (cereal box), moving (cereal box on top of bowl), pouring (from cereal box to a bowl),

moving (cereal box to the previous position) and null (moving the hand back).

In this study, we have divided the trajectories based on the above 10 sub-activities. We

disregarded null sub-activity as it has an undefined goal or intention. First, we extracted goals

for each of the trajectory in the sub-activity. Second, we trained the cost functions M and Mf

for each of these sub-activities separately. We withheld 10% of each sub-activity dataset for

testing and used the rest 90% to train the reward parameters (i.e., M and Mf ). Similar to the

previous experiment, trajectory points were used as states and final trajectory point as goal

state.

3.4.3 Estimating the Reward Parameters

The inverse LQR model used in this chapter has two separate reward/cost parameter ma-

trices M and Mf to train. To provide the strongest guarantees, we first train the reward

parameters using the maximum trajectory likelihood method as explained in (Equation 3.8) on
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the training data for both datasets. Then we use these trained reward parameters to initialize

Algorithm 1 to learn using our proposed method for maximizing goal likelihood on the training

data.

We have used accelerated stochastic gradient descent with an adaptive learning rate (69; 70)

and L1 regularization on both parameters simultaneously. This regularized approach prevents

over-fitting over the demonstrated trajectories of the datasets used in this chapter. In the next

section, we would describe goal predictions using inverse LQR controller on the test data for

both datasets.

3.4.4 Goal Prediction via Inverse LQR

Following the existing formulations employed for maximum trajectory likelihood methods

(3), a goal is defined as a location in xg, yg, zg translational space that we want the robot arm

end-effector to approximately reach. The end-effector is the endpoint of the robot arm, which is

calculated using forward kinematics (72). The end-effector consists of xt, yt, zt translational and

xr, yr, zr, wr quaternion angles as rotational dimensions referenced from the associated robot’s

coordinate frame. We have considered only translational dimensions for goal positions.

Following the approach outlined for the inverse LQR setting (22), the authors of (3) assume

the linear dynamics of (Equation 3.1), in which the state of the end-effector is defined as,

st = [xt, yt, zt, ẋt, ẏt, żt, ẍt, ÿt, z̈t, 1]T , (3.13)
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Figure 10. (a) Plot showing comparison of logloss by our goal likelihood maximization method
to the trajectory likelihood maximization model on goal pointing task data; (b) Change of
probability distribution over goals across a trajectory of reaching goal #3 using trajectory
likelihood maximization model; (c) Change of probability distribution over goals across a

trajectory of reaching goal #3 using goal likelihood maximization method; (d) Plot showing
comparison of logloss by goal likelihood to trajectory likelihood on CAD-120.
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and end-effector actions as

at = [ẋt, ẏt, żt]
T , (3.14)

where (ẋt, ẏt, żt) are velocities, (ẍt, ÿt, z̈t) are accelerations, and a constant of 1 is added to

the state representation to incorporate linear features into the quadratic cost function in

(Equation 3.2). Additionally, goal state i of the end-effector is represented using only the

goal’s translational position,

gi = [xgi , ygi , zgi , 0, 0, 0, 0, 0, 0, 0]T . (3.15)

To compute goal predictions along the test trajectories, we train the reward parameters M

and Mf using our proposed method (maximum goal likelihood) as described in Algorithm 1 on

the training data. From these trained cost matrices, the probabilities of different possible goal

states are inferred given the observed partial trajectory of the end-effector in real time. The

process is clearly depicted in Figure 8 and (Equation 3.12). These goal state probabilities are

P (gi|s1:ti) and the probability of the most likely intended goal of the partial trajectory, I, is,

I = max
i
P (gi|s1:ti). (3.16)

3.4.5 Prior Distribution

The inverse LQR goal prediction method is a Bayesian inference method that benefits

significantly from a prior distribution over the possible goals (22). In the previous trajectory
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likelihood maximization experiment (3), they used a distance prior similar to the one used in

previous work (22),

P (gi|st) ∝ e−βdist(st,gi), (3.17)

where dist(st, gi) is a function that computes the Euclidean distance between the spatial coor-

dinates of st and gi, and β is an adjustable coefficient that increases the importance of distance

on the distribution. As dist(st, gi) decreases, P (gi|st) increases effectively making closer targets

more probable. We have used the same formulation for most intended goal prediction for both

experiments in this chapter.

3.4.6 Baselines

To compare our goal likelihood method on goal pointing task data from the two datasets, we

use the nearest target (predicting the nearest goal as the true goal along the trajectory points)

prediction. It is the simplest baseline for goal prediction, and all methods should be expected

to perform better than it. We additionally use logistic regression (62) as the discriminative

method comparison baseline. Also, we compare with the previous approach of constructing

a model using trajectory likelihood maximization (22). For CAD-120 dataset, in addition to

comparing to the trajectory likelihood method, we also compared our method with ATCRF

(63).

3.4.7 Evaluation Metrics

To evaluate our proposed method against the existing trajectory maximum likelihood method,

we use two evaluation metrics. First, we compute the logarithmic loss for true goal probability
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TABLE V

A COMPARISON OF THE TRAJECTORY LIKELIHOOD MODEL, THE GOAL
LIKELIHOOD MODEL, AND THE NEAREST GOAL BASELINE FOR THE GOAL

POINTING TASK DATASET EVALUATED USING THE ACCURACY, MACRO
PRECISION, AND MACRO RECALL GIVEN VARIOUS FRACTIONS OF THE

TRAJECTORY.
Fraction of the trajectory

Method Measure 20% 40% 60% 80% 100%

Nearest
Goal

Accuracy 21.4 28.6 58.6 100 100
Macro Prec. 50.0 50.0 50.0 100 100
Macro Recall 10.7 14.2 39.3 100 100

Trajectory
Likelihood

Accuracy 28.6 28.6 64.3 100 100
Macro Prec. 50.0 50.0 50.0 100 100
Macro Recall 14.3 14.3 32.2 100 100

Goal
Likelihood

Accuracy 28.6 35.7 92.8 100 100
Macro Prec. 50.0 50.0 50.0 100 100
Macro Recall 14.3 17.9 46.5 100 100

across the whole trajectory. The logarithm loss has been plotted for both methods at various

fractions of the trajectory covered in Figure 10-a on pointing task dataset and Figure 10-d on

CAD-120. Second, we compute the accuracy of our proposed method and other baselines across

different fractions of the trajectory in predicting the true goal. We have also reported precision

and recall for both methods. Table V and Table VI report the results for both datasets.

3.5 Results and Discussion

The proposed optimization of the reward parameter to maximize goal likelihood involves

maximizing a non-concave function. This prevents any guarantees of convergence to a global

optimum. However, still, we can reach some local maximum that provides a better result than

previous trajectory-based optimization methods. We have experimented with three different
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TABLE VI

A COMPARISON OF THE TRAJECTORY LIKELIHOOD MODEL, THE GOAL
LIKELIHOOD MODEL, AND THE ATCRF MODEL FOR THE CAD-120 DATASET

EVALUATED USING ACCURACY, MACRO PRECISION, AND MICRO PRECISION
GIVEN VARIOUS FRACTIONS OF THE TRAJECTORY.

Fraction of the trajectory
Method Measure 20% 40% 60% 80% 100%

ATCRF
(63)

Accuracy - - - - 86.0
Macro Prec. - - - - 84.2
Macro Recall - - - - 76.9

Trajectory
Likelihood

Accuracy 80.9 82.5 84.1 90.4 100
Macro Prec. 65.0 73.4 79.1 87.5 100
Macro Recall 77.3 91.4 94.2 96.2 100

Goal
Likelihood

Accuracy 81.8 86.4 90.1 100 100
Macro Prec. 71.8 78.1 83.3 100 100
Macro Recall 75.0 81.0 87.5 100 100

starting points to train the cost function M and Mf : (1) initial values of all 0; (2) pre-trained

initial values using the optimization objective of past work (i.e., trajectory likelihood maximiza-

tion); and (3) randomized starting points. We find convergence to very similar parameters with

all three of the different starting points, indicating that we can reach a stable local maxima

without strong sensitivity to the initial values.

We have tested our method on two different real-life datasets involving human and robot

goal-directed movements. Figure 10-a illustrates the logarithmic loss of the correct goal predic-

tion given a partial trajectory computed across the fraction of the trajectory for the pointing

task dataset. The black color represents the trajectory likelihood method and the green color

represents the proposed goal likelihood approach. It is evident from Figure 10-a that the goal
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likelihood maximization method’s logarithmic loss decreases faster and reaches the true goal

probability in approximately 50% of the trajectory. On the other hand, the trajectory likeli-

hood maximization method achieves the same performance at 70% of the trajectory. In both

settings, we have used a distance prior, so the probability distribution rapidly increases from

a uniform distribution as the true goal may be farther from the neutral position than other

targets.

To illustrate the behavior of the goal prediction methods, we select a trajectory from pointing

task test data and plot the probability distribution across five goals along the trajectory length

in Figure 10-b and c. The plot of the resulting distribution in Figure 10-b corresponds to

the trajectory likelihood method and Figure 10-c corresponds to our proposed goal likelihood

maximization method. We can see that our goal likelihood maximization method performs

better than the trajectory likelihood maximization method. Our proposed method realizes a

high probability prediction for the true goal much earlier than the previous trajectory likelihood

maximization method with a smoother transition across different goal probabilities.

Figure 10-d shows the logarithmic loss of goal prediction along the trajectory for reaching

a goal from the CAD-120 dataset. The trajectory likelihood maximization method is repre-

sented by the black color and our proposed goal likelihood maximization method is shown in

green. The plot clearly shows that our goal likelihood maximization method predicts the true

goal (approximately 60%) much earlier in the trajectory than the trajectory likelihood method

(approximately 80%).
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In Table V, we report the accuracy, precision, and recall for goal prediction for three meth-

ods, i.e., the nearest goal predictor, trajectory likelihood maximization model, and the goal

likelihood maximization model. Both the previous (trajectory likelihood) and proposed (goal

likelihood) models perform significantly better than the simplest baseline method, i.e., the near-

est goal baseline. At 40% and 60% of the trajectory, our proposed goal likelihood-based method

outperforms the trajectory likelihood-based method by a noticeable margin. The result also

matches with our log loss metrics as shown in Figure 10-a. We also compare our results with a

logistic regression model (62) as the generative method baseline. The reported goal prediction

accuracy of 57.9% is obtained from a partial trajectory of length 60 time-steps. The average

range of the trajectories of pointing task dataset is 110 time-step. So, at 60% of the trajectory

length, we found that our proposed method predicts the true goal with an accuracy of 92.8%,

which is significantly better than logistic regression.

Table VI shows the performance results of the experiment conducted on the CAD-120

dataset. We compared the performance of our proposed goal-based method with other baselines

based on trajectory likelihood maximization and the ATCRF model (only result for 100% is

available). We can see that the trajectory likelihood method achieves comparable accuracy at

40% of the trajectory what is not realized until 100% of the sequence is observed using the

ATCRF model. The result of the ATCRF method is on the unmodified CAD-120 dataset,

which consists of null sub-activities, which prevents it from achieving 100% accuracy even

when observing the complete trajectory. From the beginning of the trajectory, our proposed

goal-based method outperforms the trajectory-based method by a considerable margin, which
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matches the log loss results shown in Figure 10-d and achieves 100% accuracy in prediction at

80% of the trajectory.

Thus, these experiments strongly support our claim that by re-training the MaxEnt IRL

approach using goal likelihood maximization for goal predictions, we can achieve better and

faster goal prediction than existing methods—specifically those based on trajectory likelihood

maximization. As this is an important subproblem for planning symbiotic robot behavior, we

believe these improvements will help increase the productivity of human-robot collaborative

tasks when used appropriately.

3.6 Conclusion and Future Work

In this chapter, we have proposed training inverse reinforcement learning models that were

initially designed for policy estimation, to instead be optimized for goal prediction. We derived

the gradient for optimizing goal likelihoods under the general discrete maximum entropy inverse

reinforcement learning (MaxEnt IRL) setting and under the continuous inverse linear-quadratic

regulation (LQR) setting. We demonstrated that our goal likelihood maximization method

provides significant improvements for goal prediction compared to previous methods based on

trajectory likelihood maximization in practice. Thus, with our new approach, we can more

accurately infer intended goals farther in advance than previous approaches, enabling robots to

know human intentions to make more compatible decisions.

As future work, we will test our method on real-world human-robot tasks like assisting

robotic teleoperation (3). These tasks often involve additional complications that should also

be modeled to improve goal prediction. For example, though we have assumed that the robot’s
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workspace is free of obstacles in this chapter, many real-world robotic workspaces contain

numerous obstacles. We plan to extend our goal prediction optimization approach to the

hybrid, two-level imitation learning method (73) that incorporates discrete waypoints at the

top level and employed LQR predictions conditioned on the waypoints at the bottom level.

We believe that through arm motion demonstrations of obstacle avoidance during training,

the cost function can be learned to reason about arm movements around obstacles in testing

environments. Further, in this chapter, we have assumed that the goals are static in the

environment. We will relax this assumption by allowing goals to change over time without

being reached (52; 19).
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CHAPTER 4

ROBOT LEARNING TO MOP LIKE HUMANS USING VIDEO

DEMONSTRATIONS

4.1 Introduction

Many daily tasks such as mopping may seem mundane to humans, but are surprisingly hard

to automate effectively and comprehensively. Best in class approaches such as the Roomba

provide one-size-fits-all solutions, but struggle with hard floors, grout, situations with space

constraints (e.g. bathrooms) and so on. Teacher-student approaches such as imitation learning

offer the potential of efficiently teaching specialized heuristics to robots (74; 75; 76; 77; 78; 79; 4),

especially if the input problem (demonstrating human teacher behavior) can be addressed at

scale. The option of instrumenting humans with sensors (via motion-tracking suits or other

sensors) has been pursued as one way to obtain such input. However, sensor-based approaches

don’t scale well, and alter the natural human behavior we are trying to mimic. Video is a more

natural recording mechanism, but it is less precise and typically requires machine learning (ML)

to interpret useful signal. This chapter develops and applies imitation learning from video input

to stylistically mimic effective human mopping movements by a robotic arm.

Artificial Intelligence has made great progress in imitating human behaviors from video

demonstrations like the imitation of pouring tasks using a robotic arm (4). Similarly, a robot

can learn a mopping task from a human mopping demonstration in the form of a video. It is

61
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Figure 11. Robot learning to mop from human mopping video demonstration.

very convenient for a human to record a video of themselves mopping the floor, which could

be used to teach robots to mop inside a home. There is also an abundance of freely-available

videos that can be used as demonstrations to learn mopping skills for a robotic arm.

In this chapter, we learn mopping behavior from human video and imitate it using a robotic

arm attached with a mop, as shown in Figure 11. We build two robotic systems to learn

and imitate mopping behavior from human demonstration collected using a camera. The first

robotic system is a control-based approach that uses a traditional Computer Vision tracking

method to track (x, y) position of the mop in human demonstration video and inverse Kine-

matics to transform the mop (x, y) tracked position to robot joint configurations. Our second

robotic system is a learning-based approach that uses an advanced computer vision method,
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the Time Contrastive Network (TCN) (4) to learn a multi-view (first and third person) TCN

embedding on human demonstration videos. The trained TCN model reduces high-level human

demonstration videos to a low-level 32-bit embedding per frame to teach the robot to mop. To

learn the mopping motion on a robotic arm, we use reinforcement learning (RL), more precisely

PILQR, which is a combination of model-based and model-free algorithms (80). We compare

the robot’s first-person TCN embedding of performing the mopping task with the third-person

human demonstration TCN embedding as the reward to RL and update the robotic motion to

better imitate the task. For effective learning of the human video motion to the robot using

RL, we devised a reward function which is a combination of TCN embedding-based reward and

z-axis based reward to constrain the mop to contact the floor at all-time during the mopping

task.

There are several approaches to build cleaning robots (81) to wipe, scrub or sweep sur-

faces using classical control (position control (82; 83; 84; 85; 86; 87; 88; 89), and force control

(90; 91; 92; 93; 94; 95)), learning based (supervised learning (96; 97; 98), and learning from

demonstration (95; 99; 100; 101; 102; 103), and reinforcement learning (104; 105)). Most of

these methods use kinesthetic teaching to move the robot or plan a trajectory across given

points for cleaning surfaces but not necessarily imitate human behavior. We are the first to

build an end-to-end learning-based robotic system that learns human mopping behavior from

human video demonstration. We use a Universal Robots (UR)-10e1 robotic arm attached to a

1https://www.universal-robots.com/products/ur10-robot/
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Swiffer mop. A first-person camera is placed to the robotic arm to provide the reward to the

RL algorithm to correct its robotic arm motion to imitate human motion.

The chapter is organized as follows: We start by describing our two robotic systems to

perform mopping by imitating human behaviors from video data. Next, we explain the experi-

mental setup used to evaluate our proposed robotic system. The results section summarizes the

results obtained for the two proposed robotic systems. Then, we provide a summary of back-

ground information on imitation learning, previous work on imitation learning from videos, and

mopping robots. Lastly, we provide conclusions and propose future work.

4.2 Approach

Mopping the floor is an essential daily task. We devised two robotic systems to perform

mopping using a robotic arm by imitating human mopping behaviors from videos of the activity.

In this section, we explain our two proposed robotic systems. The first robotic system comprises

of a traditional computer vision technique for tracking and then uses inverse kinematics to move

the robotic arm. The second robotic system uses an advanced computer vision technique, Time

Contrastive Networks (TCN) (4) and reinforcement learning to move the robotic arm to mimic

human mopping behavior from videos of the activity.

4.2.1 Method 1: Tracking and Inverse Kinematics Approach

The first system is a position control-based robotic system built of traditional Computer

Vision tracking method and Inverse Kinematics. This method serve as baseline to our proposed

learning-based method. There is a yellow box (3 X 4 ft) made in front of humans where they

perform mopping tasks and a similar yellow box is marked in front of the robot mopping area.



65

One of the ways to track the movement of the mop head is using OpenCV’s object tracking

functionality. We can localize the position of the mop head inside the yellow square by utilizing

knowledge of the real-world coordinates of the corners of the yellow square. Since the video

is affected by lens distortion as well as projective transformation (parallel lines not appearing

parallel), it is important to correct these factors and get an orthographic view of the yellow

square. This can be achieved by computing a perspective transformation matrix. We choose

four corner points of the yellow square in a video frame as the boundaries of the new area of

interest. Then we map each corner in the frame with a corner in a new square image that is

theoretically bounded by the yellow square. For example, the top-left corner of the yellow square

becomes the top-left corner of the new image specified as (0, 0). We use these mappings between

the corners of the yellow square and the corners of the new image to compute a perspective

transformation matrix that is used to map points from the original frame to an approximate

orthographic view. Then we can warp the yellow square into the orthographic view using the

computed matrix and can perform this operation for every frame since the 3rd person videos

involve a static camera in which the position of the yellow square does not change.

Once we have the perspective transformed videos, we track the mop head using the object

tracking functionality present in OpenCV. We use the Boosting tracker, which is an online

version of the AdaBoost classifier (106), that gets trained to classify the target object as new

frames come in. We supply the initial bounding box of the mop head in the first frame and

feed it to the tracker which updates the bounding box to the position of the mop head. To

track the position of the mop in the real world, we first find out the coordinates of the corners
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of the yellow square with respect to the robot’s coordinate system. Since the new frames are

warped using a perspective transformation, these real-world coordinates form the boundaries of

all these frames. Then we can derive the real-world coordinates of the mop head by first finding

the centroid of the bounding box and then translating the pixel coordinates of the centroid

from the top-left corner, to the real-world coordinates.

The fully defined mop head pose is created by using the obtained coordinates (x, y) of the

mop head from the human demonstrated video, a fixed z height of the mop on the floor, and

a fixed orientation. For each time step, we append the resulting pose to an array of waypoints

for the robot to follow. The robot is controlled using ROS Kinetic (Robot Operating System

(107)) and a UR 10e robot model with updated kinematics to include a mop handle and mop

head-end effector. We publish the waypoint array to the MoveIt 1 Motion Planning Framework

to compute a Cartesian path with reference to the mop head using inverse kinematics (108).

We start the robot at an initial joint position and restrict the joint limits of the robot arm for

each joint angle from +/- 2π to +/- π to resolve the multiple possible joint configuration issues

of inverse kinematics. The resulting joint configuration obtained for each time step corresponds

to the obtained mop head position (x,y) from the human demonstration video, and we then

send the joint angles to the robot to move the arm.

1https://moveit.ros.org/
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4.2.2 Method 2: Time Contrastive Network and Reinforcement Learning Approach

In this subsection, we describe our proposed learning-based robotic system that is a com-

bination of Time Contrastive Networks (TCN) and Reinforcement Learning (RL). We took

inspiration from the pouring task presented by Sermant et al 2017 (4) and devised a new

reward function to perform the mopping task on a robotic arm from human demonstration

provided in the video.

4.2.2.1 Time Contrastive Network

The main goal is to mimic human mopping behavior provided in the video to a robotic arm.

The video is a high-level representation of the task. The 32-bit embedding provided from TCN

(4) can be a good low-level representation of the video and can be used as a reward to train

our robotic arm to mimic human mopping behavior.

In our day-to-day life, we observe something in our third-person view and perform the task

in our first-person view. Similar to this analogy, we use a multi-view (first-person and third-

person) video of the mopping task performed by humans to train a TCN model. The TCN is

a deep neural network architecture comprising of pre-trained InceptionV3 (109) on ImageNet

dataset (110) and embedding layer (conv2D, spatial softmax and fully connected layer) as shown

in the Figure 12. The positive frame is extracted from one of the view videos and the anchor

frame is extracted from the same temporal frame from another view video. A negative frame

is extracted from a distance (α) of some frames (one-sec equivalent frames difference) from

the positive frame. Figure 13 depicts the all three frames extraction from two views of the
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task videos. A positive frame, anchor frame, and negative frames are given input to the TCN

network. The TCN provides 32-bit embedding of the input frames which is used to compute a

loss. The embedding of an input image is ’x’ is represented by f(x) ∈ R. In this case, we use

a triplet loss (111; 4) to have positive (f(xpi )) and anchor (f(xai )) frames closer to each other

(similar embedding values) and negative frame (f(xni )) farther or in a different cluster. The

triplet loss can be given as:

∥∥f(xai )− f(xpi )
∥∥2

2
+ α <

∥∥f(xai )− f(xni
∥∥2

2
, ∀(f(xai ), f(xpi ), f(xni )) ∈ T (4.1)

where T is set of all possible triplets in the training set.

4.2.2.2 Reinforcement Learning to learn mopping behavior

The main problem we are trying to solve is to perform Imitation Learning from human

mopping video demonstration to a robotic arm attached with a mop. For reinforcement learning,

the big challenge is to find a good reward function for the real-life task. We resolved this issue

using a TCN based reward function that is obtained from a human video demonstration. We

can represent the problem of robot learning for a mopping task as the Markov Decision Process:

• State (xt): Joint angles of the robot; Joint Velocities of the robot; Robot first-person

video TCN embedding; Z-axis of the mop

• Action (ut): Robot Joint angles ;

• τ is the state transition probability for next state xt+1 from state xt under action ut;

• Reward (R(xt)) is the reward or cost received by visiting state xt
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Figure 12. Time Contrastive Network Architecture
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Figure 13. Frames extraction from videos for TCN
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The main contribution of this chapter is devising a reward function for a mopping task. We

used a mixture of TCN based reward and z-axis of the mop reward. The TCN based reward

takes a frame from the human third-person video and a frame from the robot’s first-person video

of performing the mopping task and passed it to a trained TCN network which outputs 32-bit

embedding of both the input frames. The TCN reward as shown in (Equation 4.2) comprises

of squared euclidean loss which gives larger gradients when the embeddings are further apart

(in our case robot mop is far away from human demonstration mop) and a Huber-style loss

to ensure fine-grained movements of the mop with respect to the human demonstration. The

TCN loss helps us to correctly position the mop on the floor by imitating human mopping

behavior. However, there is a z component of the mop that is difficult to capture from the

video demonstration. Also, during our RL training we noticed it was very difficult to imitate

mopping behavior using only TCN loss. Thus, we devised a second loss based on the z-axis of

the mop as shown in (Equation 4.3). This reward helps us to keep the mop on the floor all the

time by subsequently penalizing it for having the mop in the air or going below ground level.

We have experimented with different z based rewards, for example linear function etc.

Let T be the total time step of the video sequence; V = (v1, . . . , vT ) be the TCN embedding

of each frame of the third-person human video demonstration sequence; W = (w1, . . . , wT ) be

the TCN embedding of each frame of the first-person robot video sequence. Then the TCN

reward is given by,

R(vt, wt) = −α‖wt − vt‖22 − β
√
γ +‖wt − vt‖22 (4.2)
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where α and β are empirically chosen weights for squared euclidean loss and Huber-style loss

and γ is a small constant.

R(Z) =


a1(b1 + Zvalue)

2, if Zvalue ≥ zconst

a2(b2 + Zvalue)
2, otherwise

(4.3)

where Zvalue is the value of the robot mop and zconst is the constant z value recorded when

mop is on the floor. a1 and b1 are empirically chosen constants used when the mop is above the

ground and a2 and b2 for penalizing more if the mop is going beyond the ground level (zconst).

We have used PILQR (80) as our reinforcement learning (RL) algorithm which is a com-

bination of model-based and model-free approach. The PILQR method is sample efficient and

has good success with real-world robotics tasks. The details of PILQR is explained in the next

subsection 4.2.2.3.

4.2.2.3 Reinforcement Learning (PILQR) Details

Let p(ut|xt) be a robot policy that defines a probability distribution over robot action ut

conditioned on the state xt at each time step t of the mopping task trial. We use policy search

to optimize the policy parameter θ. Let τ = (x1, u1, . . . , xT , uT ) be a trajectory consisting of

states and actions. For a given cost function c(xt, ut), we can define the trajectory cost as

c(τ) =
∑T

t=1 c(xt, ut). The policy is optimized with respect to the expected cost of the policy

J(θ) = Ep
[
c(τ)

]
=

∫
c(τ)p(τ)dτ , (4.4)
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where p(τ) is the policy trajectory distribution given the system dynamics p
(
xt+1|xt, ut

)

p(τ) = p(x1)
T∏
t=1

p
(
xt+1|xt, ut

)
p(ut|xt) . (4.5)

In this chapter, we use time-varying linear-Gaussian (TVLG) controller p(ut|xt) = N (Ktxt+

kt,Σt). We apply PILQR(80) reinforcement learning method to learn these TVLG controllers

on a real robot. PILQR combines model-based and model-free policy updates for sample-

efficient learning of tasks with complex system dynamics.

Let S(xt, ut) = c(xt, ut) +
∑T

j=t+1 c(xj , uj) be the cost-to-go of a trajectory starting in state

xt by taking an action ut and following the policy p(ut|xt) thereafter. For each iteration i,

PILQR performs a KL-constrained optimization of S(xt, ut):

min
p(i)

Ep(i) [S(xt, ut)] s.t. Ep(i−1)

[
DKL

(
p(i)‖ p(i−1)

)]
≤ ε,

where limiting the KL-divergence between the new policy p(i) and the old policy p(i−1) leads to

a better convergence rate. The optimization is divided into two steps. The first step involves

performing a fast model-based update using an algorithm LQR-FLM (112), which is based

on the iterative linear-quadratic regulator (iLQR) (113) and approximates S(xt,ut) with a

linear-quadratic cost Ŝ(xt, ut). The second step optimizes the residual cost-to-go S̃(xt, ut) =

S(xt, ut) − Ŝ(xt, ut) using a model-free method PI2 (114; 115) to produce an unbiased policy

update.
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4.3 Experiment

In this section, we explain our human mopping video data collection, data pre-processing &

video alignment, TCN training, simulation building, RL training on the real robot mimicking

human mopping behavior from video demonstration.

4.3.1 Hardware Used

For human mopping video demonstration data collection, we use two GoPro Hero 8 cameras

with 60Hz resolution to record first and third person video of the mopping task. We use a

Universal Robot UR10e mounted on a fixed pedestal stand. We 3D printed an attachment to

the robot to connect a mop. We used Swiffer mop for our mopping task. We use Amcrest wifi

camera on top of the robot to record first-person video.

4.3.2 Data Collection

First, we prepared the work area for data collection. On the floor, we marked an area of 3feet

by 4feet with a yellow boundary. One of the cameras was mounted stationary on a benchtop

for third person shot and another camera was mounted to a head strap for the first person shot.

There are four types of motion that we collected as described in Figure 14. Each demonstrator

performed each type of motion twice. There were 15 demonstrators who performed the mopping

task using a floor mop.

4.3.3 Data Pre-processing and Video Alignment

The collected video data is high resolution and reduced to 1080p to avoid memory issues

during pre-processing and training. The audio is removed to reduce the size of the videos. The
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Figure 14. (a) Saw tooth straight forward/angle back, (b)Forward + left 90◦, (c) Forward +
right 90◦, (d) Scrubbing between point 1 and 2
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next step in the pipeline is to align first and third-person perspectives with each other which

were a strong assumption for TCN training.

Multi-perspective videos are a set of videos captured from different viewpoints by different

cameras, each in their own position in space. Often, the cameras are out of sync and start their

recordings at different times. This in turn causes the resulting videos to be out of sync as well.

Training the Time Contrastive Network (TCN) on unsynchronized videos will make it learn the

wrong representations that can later have an adverse impact on training the RL model. Thus,

it becomes extremely important to perform video synchronization across all the perspectives

before initiating the training of TCN.

There are several deep learning approaches to detect objects and their motion in videos.

However, they require a large amount of annotated training data. Data annotation can be a

very tedious process requiring lots of time and effort. In addition to that, training an object

detection model can take up to a couple of days depending on the amount of training data and

compute hardware. They can often end up being overkill, which restricts us from using deep

learning approaches for object detection.

All the videos in our dataset had a camera operator off-frame bringing in a blue-colored

sheet of paper into the frame and back out of it as shown in Figure 15(a) to signal to the

demonstrator to start performing the task much like a clapperboard is used in film making

to assist in picture and sound synchronization. Thus, we have a unique moving object whose

direction of motion can be tracked and potentially be used to identify temporally similar video

frames in out-of-sync multi-perspective videos. The object to be tracked is unique compared
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Figure 15. (a) Blue sheet to signal the demonstrator to start performing task (b) Temporal
arrangement of frames before synchronization (c) Temporal arrangement of frames after

synchronization.
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to other objects in the video, so the object can be easily detected using a traditional computer

vision approach.

Once the object is detected, its position and center in the image can easily be inferred. We

do this for every video frame. When the object is in motion, before it changes direction, the

‘x’ and ‘y’ coordinates of its center are strictly increasing or decreasing. We keep on discarding

the frames till this trend breaks. This event may occur at different points on each video of a

different perspective. The resulting videos are perfectly synchronized because all frames were

dropped before the occurrence of this event. Since the demonstration is not started until this

event occurs, the dropped frames don’t hold any significant information.

Figure 15(b) shows the temporal position of each frame of third-person and first-person

videos of the same demonstration before alignment and Figure 15(c) shows their temporal

positions after alignment. The highlighted frames in both the figures are the ones where the

blue sheet changes direction.

Once the videos were satisfactorily aligned, they were clipped to segregate four different

tasks. In total, there were 30 videos for each type of motion. Later, they were renamed to

comply with requirements of the script used to convert them to TensorFlow record files having

“.tfrecord” extension. This data format conversion helps TensorFlow process data faster and

thus speeding up the training process.

4.3.4 Training TCN model

The input to the TCN is a batch of video frames (both first and third perspective). These

video frames fall into three categories - anchor, positive and negative. Anchor frames are
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third person video frames that serve as reference, positive frames are first person frames that

correspond to the same timestep as anchor frames and negative frames are first person video

frames that are from a different timestep compared to anchor frames. The TCN then produces

embeddings for each frame in the batch. To evaluate the outputs, we use triplet loss that

specifies how far away the positive embeddings are from the anchor embeddings compared to

negative embeddings. This loss is propagated backwards to train the model.

During training, frames in multiple views at the same time step are pushed close to each

other in an “embedding” space. During the learning process, first person frame of the robot

is continuously compared with the corresponding third person frame from an expert using the

trained model. Closeness of these frames in the embedding space is obtained which can be used

to let the robot know how closely it is imitating the expert.

4.3.5 Simulation of UR10e with mop

We simulated the UR10e robot holding a mop using ROS Kinetic and Gazebo. ROS provides

a flexible control framework to calculate robot kinematics, joint trajectories and pass sensor

messages. The UR10e robot is configured in ROS using the Universal Robots ROS Driver

package which contains all of the base level robot data required for simulation and control.

We created a mop end effector URDF (Universal Robot Description Format) that consists of a

mop handle link connected to a mop head link by 2 degree of freedom revolute joint. The mop

handle is attached to the tool flange of the robot by a fixed virtual joint. We simulated the

robot with mop in Gazebo using the existing ROS interface. To create the Gazebo simulation

world, we affix the robot base joint to a fixed table matching the height of the physical robot
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stand and added a yellow rectangle outline on the ground in the same location as the human

demonstration video.

To control the robot Gazebo simulation, we used both direct joint angles and Cartesian

planning using inverse kinematics. To start the simulation, the robot is first sent to a fixed

home position using constant joint angles. The robot then follows a series of Cartesian points

in X,Y,Z space to mimic the human demonstration video. The input waypoints calculated from

the human demonstration video correspond to the position (x, y) of the mop head and not the

robot. To solve for this, we use MoveIt and the URDF of the robot holding a mop to calculate

the robot joint angles that correspond to a mop head pose using inverse kinematics.

4.3.6 Learning Human mopping to the robotic arm using RL

Due to time constraint we only learned the scrub task on the robot using RL. We selected

a third-person human scrubbing video from test set and passed it to trained scrub TCN model

and obtained the 32-bit embedding per frame for the video. Then we mount a wifi camera

next to the robotic arm to record first person video of the robot performing the task. We use

trajectory based RL optimization for learning the policy. So, we perform the mopping task

with the current policy and record the trajectory video and update the policy at the end of

each iteration. We start the training with 10 randomly generated samples and run 15 iterations

to finally reach a policy which looks very similar to human mopping demonstrations. During

training, the mop goes beyond the ground surface, so we had to perform most of the training

in simulation until the robot is mopping on the ground surface and not mopping into the
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ground. Then we transfer the learned policy in simulation to a real robot and performed the

final training of the mopping task on the robotic arm.

4.3.7 Evaluation of the Robot mopping system

First we evaluate our TCN model by passing two test videos from two different demon-

strators (first-person video of one person and third-person video of another demonstrator) and

observe how well the videos are paired. The pairing video examples can be seen in the attached

video with the paper.

We use two methods to evaluate our mopping robotic system. The robotic arm perform the

mopping task using a learned policy and we record the third-person view video for evaluation.

4.3.7.1 Cosine Similarity

We compared the third-person recorded video against the human third-person video demon-

stration to evaluate the robot imitation of human behavior from video. There are various tech-

niques to measure the similarity between different images (116; 117), but since our experiments

involve imitating behavior in different environments, we choose optical flow techniques to com-

pare the motion between frames instead. Optical flow provides an estimation of motion based

on changes in pixel intensity across time.

For cosine similarity 1 based evaluation, we use dense optical flow (finding the flow vectors

for the entire frame), specifically the Farneback method (118) provided in OpenCV. Since the

mop is constrained inside the yellow square, we first crop out the portions outside of the square

1https://en.wikipedia.org/wiki/Cosine similarity
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in all the frames of both the human and robot videos to reduce the effect of noise due to

background movement. We then compute a mean vector from all the flow vectors obtained

which represents the overall motion inside the yellow square on the ground, and compute a

cosine similarity measure between the mean vector of the human frame and the mean vector of

the robot frame. A similarity of +1 indicates that the mop is moving in the same direction in

both the videos, whereas a similarity of -1 means that the mop is moving in opposite direction.

4.3.7.2 Euclidean Distance Loss

From our first method, we have obtained an approximate location of the mop in the human

demonstration. We can compute the mop location while the robot is performing a task using

learning RL policy. So, we can compute the Euclidean distance 1 between human demonstration

mop location and the robot mop location.

4.4 Result

We achieved correct TCN pairing results from two different human demonstration videos

as shown in the attached video. It indicates that our TCN model is trained properly. After

training our robotic arm to mimic a human scrub motion (third-person video) using RL with

our proposed reward function, we can see in the attached video that both methods successfully

mimic the human mopping motion from video. The video shows that method 1 (TCN & RL)

imitates the mopping motion better than method 2(Tracking & IK).

1https://en.wikipedia.org/wiki/Euclidean distance
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TABLE VII

EVALUATION RESULT OF THE TWO METHODS
Average Cosine Similarity Euclidean Distance Loss

Method 1
(Tracking and IK)

0.4752 0.126 m

Method 2
(TCN and RL)

0.7218 0.019 m

Table VII summarizes our evaluation of the third-person robot mopping using trained RL

policy video versus third-person human mopping demonstration video. Column 2 in Table

Table VII shows the cosine similarity comparison and column 3 shows the Euclidean distance

comparison between two methods. The cosine similarity of method 1 is higher than method

2 which indicates that the mop is closely imitated using our method 2 than method 1. The

Euclidean distance between the human mop and robot mop is very low for method 2 than 1.

Thus, our proposed method 2 is successfully and accurately able to imitate the human mopping

behavior from video.

4.5 Related Work

There are several efforts to build a robot system that can clean a surface by wiping

or sweeping or scrubbing. Broadly, those can be divided into control-based methods and

learning-based methods. For control-based methods, researchers use position-control meth-

ods (82; 83; 84; 85; 86; 87; 88; 89) for planning the trajectories for cleaning the surface using

inverse kinematics (IK). For our first robotic system (baseline method), we took inspiration

from position-control-based methods to move the robotic arm using IK once we obtain the po-
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sition of the mop from the video. Several methods (90; 91; 92; 93; 94; 95) use force-control for

constrained motion to produce cleaning actions. They use a force sensor attached to the robot

feedback to plan the cleaning trajectory. However, force control fails to plan for continuously

chaining force scenarios (uneven surfaces) and has some erroneous measurement from the force

sensor. We plan to include force in our proposed learning-based robotic system as part of future

work.

In the learning-based method, previous research (96; 97; 98) uses kinesthetic teaching to

provide the robot with a motion to perform the sweeping task. To make the robot more au-

tonomous for a cleaning task, (95; 99; 100; 101; 102; 103) developed a learning from demonstra-

tion approach using dynamic movement primitives (DMPs), Gaussian mixture model (GMM),

Gaussian mixture regression (GMR), Hidden Markov model (HMM).

Imitation learning is a way to teach an agent (robot in our case) to perform a task by

demonstration. Imitation learning has become a very popular method for teaching robots new

skills or daily life activities (74; 75; 76; 77; 78; 79; 4). Recently, there is growing interest in

learning skills from video demonstration (4; 79; 104; 119; 120; 121; 122; 123; 124). Sermanet

et al. 2017 (4) proposed a Time Contrastive Network (TCN) to learn an embedding for the

multi-view task performing video demonstration. They successfully performed a pouring task

using a human pouring video demonstration on a Kuka robotic arm. For our proposed learning-

based robotic system, we use the TCN approach to transform video mopping demonstration

(high-level representation) to an embedding (low-level representation) which is used as a reward
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for the robot to mop like a human demonstration. We trained the TCN model using human

mopping demonstration.

4.6 Conclusion and Future Work

In this chapter, we successfully built two robotic systems to mop like a human by learning

from video demonstrations. First, we collected human mopping video demonstrations (first

and third-person) for four different types of mopping motions. Second, we trained the TCN

network for mopping motions and evaluated the performance of the trained TCN network.

Then we devised a reward function for the mopping task and used RL to train the robotic arm

to mimic human mopping behavior from the video demonstration. Both methods successfully

mimic human mopping behavior. The learning-based method of TCN and RL imitates human

behavior more precisely than the method on tracking and IK.

This research work opens up avenues to teach robots difficult daily tasks using video demon-

stration. We can use TCN plus other task-specific reward functions to teach robots daily house-

hold tasks. In this chapter, we build a robotic system with a fixed base. In the future, we can

attach a mobile base to the robot and use the robot to move around and mop the floor. In this

chapter, we imitate the position (x, y, and fixed z) of the mop from human mopping videos.

However, for a mopping task, force is an important component for cleaning the floor. In future,

we can incorporate force applied by human on the mop in our proposed robotic system. We

can collect additional force data from human mopping by placing a load sensor on the mop.

Then we can replace fixed z in our reward function with the corresponding force applied across
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the z-axis. Additionally we can use hybrid position-force control (125) methods to incorporate

force in the mopping robotic system.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this Ph.D. thesis, we successfully solved three problems related to prediction and learning

methods for collaborative robots.

We have successfully trained correspondence models for HTC Vive Controller to Baxter’s

arms. Our proposed deep model achieves better results than linear and non-linear regression

baseline models for correspondence-based evaluations. In the real-time experiment, our deep

network performed better than baselines model, resulting in faster completed tasks.

Further, we have proposed training inverse reinforcement learning models that were initially

designed for policy estimation, to instead be optimized for goal prediction. We derived the

gradient for optimizing goal likelihoods under the general discrete maximum entropy inverse

reinforcement learning (MaxEnt IRL) setting and under the continuous inverse linear-quadratic

regulation (LQR) setting. We demonstrated that our goal likelihood maximization method

provides significant improvements for goal prediction compared to previous methods based on

trajectory likelihood maximization in practice. Thus, with our new approach, we can more

accurately infer intended goals farther in advance than previous approaches, enabling robots to

know human intentions to make more compatible decisions.

Lastly, we solve a tedious daily life task, mopping the floor, where we perform imitation

learning from human demonstrated videos of mopping the floor onto a robotic arm. We success-

fully built two robotic systems for learning mopping task from videos, one based on tracking and

87
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invese kinematics, and the second comprises of TCN and reinforcement learning. The robotic

arm is able to mop similar to human videos using both methods. However, robot performs

mopping more accurately using method 2 (TCN and RL) than the method 1 (tracking and

inverse kinematics).

The work performed in this Thesis assumes that the robot space does not contain any

obstacles. However, in real-life scenarios, we encounter obstacles most of the time. We can

extend our methods by employing obstacles in the robot workspace.

In the future, we can combine Chapters two and three for building a robust robotic teleop-

eration system to enable robots to perform more complex tasks like peg hole insertion tasks.

The human intent prediction method developed in Chapter three can predict human behaviors

that can help in better planning of the robotic mopping motions for the Chapter four robot

system.

For Chapter four mopping robotic system, we can use virtual reality-based robotic teleop-

eration methods from Chapter two to aid the RL training. The human in virtual reality can

observe robot mopping training and correct them in real-time by providing correction feedback

through VR controllers. It will reduce the training time and help the robotic arm learn accurate

human mopping behaviors.

Lastly, we can extend Chapter four imitation learning for mopping tasks on a robotic arm

to protocol-less videos or publicly available video sources example YouTube.
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Appendix A

IEEE COPYRIGHT POLICY

The IEEE does not require individuals working on a thesis to obtain a formal reuse license.

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual

material) of an IEEE copyrighted paper in a thesis: 1) In the case of textual material (e.g.,

using short quotes or referring to the work within these papers) users must give full credit

to the original source (author, paper, publication) followed by the IEEE copyright line ©

[year of original publication] IEEE. 2) In the case of illustrations or tabular material, we re-

quire that the copyright line © [Year of original publication] IEEE appear prominently with

each reprinted figure and/or table 3) If you expect to use a substantial portion of the original

paper, and if you are not the senior author, please obtain the senior author’s approval. Re-

quirements to be followed when using an entire IEEE copyrighted paper in a thesis: 1) The

following IEEE copyright/ credit notice should be placed prominently in the references: ©

[year of original publication] IEEE. Reprinted, with permission, from [author names, paper

title, IEEE publication title, and month/year of publication] 2) The published version of an

IEEE copyrighted paper can be used when posting the paper or your thesis on-line. 3) In

placing the thesis on the author’s university website, please display the following message in a

prominent place on the website: In reference to IEEE copyrighted material which is used with

permission in this thesis, the IEEE does not endorse any of [university/educational entity’s

name goes here]’s products or services. Internal or personal use of this material is permitted.
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Appendix A (Continued)

If interested in reprinting/republishing IEEE copyrighted material for advertising or promo-

tional purposes or for creating new collective works for resale or redistribution, please go to

http://www.ieee.org/publications standards/publications/rights/rights link.html to learn how

to obtain a License from RightsLink.

Much of the work presented in chapter 2 has been accepted for publication in the proceedings

of IEEE International Conference on Humanoid Humanoid Robots (ICHR) 2019 (24). Specific

figures used in this thesis that are included in the accepted paper (24) are:

• Figure 4

• Figure 5

• Figure 6

• Figure 7

• Table I

• Table II

• Table III

• Table IV

In reference to IEEE copyrighted material which is used with permission in this thesis, the

IEEE does not endorse any of University of Illinois at Chicago’s products or services. Internal

or personal use of this material is permitted. If interested in reprinting/republishing IEEE

copyrighted material for advertising or promotional purposes or for creating new collective

works for resale or redistribution,
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please go to http://www.ieee.org/publications standards/publications/rights/rights link.html

to learn how to obtain a License from RightsLink.
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