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SUMMARY

In many longitudinal epidemiological and clinical studies, it is routine to collect multiple

repeated measures, as well as one or multiple time-to-event outcomes. The follow-ups are

usually long enough to measure some aspects of the disease. It would be interesting and

appropriate to link the longitudinal marker trajectories in a joint model approach in asso-

ciation with the time-to-event outcomes for valid inferences. The joint modeling method

has attracted increasing attention in the statistical field recently and many extensions have

been explored. In this dissertation, several research topics related to joint modeling of the

longitudinal and time-to-event data were investigated. The first part of the work was to

construct the Bayesian joint models based on two different linking structures: latent class

framework and shared random effects framework. Both single and bivariate longitudinal

outcomes were considered. The second part of this work was to propose a joint model with

a random changepoint for the non-linear longitudinal marker trajectories. We investigated

5 different formulations to characterize the transition zone for the changepoint data. We

further extended the model for a bivariate longitudinal data with correlated changepoints

and took into account the competing risks and interval censor in the survival model, which

is methodologically challenging. We adopted Bayesian approach for statistical inference and

the proposed methodologies were evaluated based on simulation studies. The motivational

application for this study is based on the Memory and Aging Project of Rush University

Medical Center. Alzheimer’s disease, like many other chronic diseases, is a neurodegenera-

tive disease involving a long-term process of cognitive decline and motor dysfunction which

often begin before the disease diagnosis. The statistical methodological development in this

dissertation aims for a better understanding of the natural history of pre-dementia cogni-

tive aging, motor function change and time to Alzheimer’s disease by joint modelling these

outcomes together for more insightful and valid statistical inferences.

xi
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1 INTRODUCTION

1.1 Joint Statistical Analysis of Longitudinal and Survival Model

In many health-related longitudinal studies, in addition to the primary endpoints for clin-

ical events, repeated measurements of response variables or biomarkers are also collected.

Both types of outcomes are measured longitudinally. Researchers often do separate analysis

using these data with well-established statistical methods, including mixed effects models

for repeated measures, and proportional hazards models for event data (Cox, 1972). How-

ever, the use of separate models may not be appropriate when the longitudinal variables are

correlated with the participants health status and primary endpoints. Namely, when the

longitudinal outcomes are of interest, medical events causing nonrandom missing or dropout

is critical for the accuracy of the longitudinal analysis; when the analysis focuses on the risks

and the survival time, without or simply adding the longitudinal responses which are usually

error-prone as the time-varying covariates in the survival model may cause biased estima-

tion. Nowadays, considerable scientific interest has focused on the relationship between the

repeatedly measured variables and the distribution of the random event time. A method

so-called joint modelling approach, in which the models of the event time distribution and

longitudinal measures are conditionally independent based on a set of latent processes, has

attracted increasing attention over the last two decades. The idea of coupling a survival

model with a longitudinal model makes it possible to exploit the information contained in

both data by dealing with the measurement errors and records that we do not have for the

complete history of the past values.

The early work on the joint model, postulated by Faucett et al., 1996 and Wulfsohn et

al., 1997, was primarily motivated from HIV studies, in particular, linking the trajectory of

CD4 counts and time to death. Nowadays, joint modeling methodology has been widely used
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and enriched. The typical setting of joint model for longitudinal and survival components

consists of three parts: (i) a model for time to events, (ii) a model for the longitudinal

markers trajectories, and (iii) linking both models through a latent structure underlying

both (i) and (ii) processes (Proust-Lima et al., 2014). The key assumption and building

block of this approach are that the two types of outcomes are conditionally independent

given the common latent subject-level process. When multiple longitudinal measures are

available, appropriate accounting for the correlations among these longitudinal outcomes

can improve the joint model’s efficiency and also the predictive ability. So far, two major

approaches to link the component processes have been developed, considering either shared

parameters or latent classes to capture the relationship between the longitudinal markers

and the time to events (Proust-Lima et al., 2014). The preference for one construction over

another depends on the real data structure, outcomes of interest and prior specifications.

Both Bayesian/Markov Chain Monte Carlo (MCMC) and maximum-likelihood estimation

(MLE) approach are used for the joint modeling analysis (Yang et al., 2016). Together

with the theoretical development of the joint models, many powerful and flexible statistical

software (e.g. SAS, R and WinBUGS) for conducting the joint modeling analysis are now

conveniently available.

In general, the use of the joint modelling approach lets us to get a deeper insight in the

relationship between the two analyzed processes. This method provides more accurate and

insightful inferences for these repeatedly measured outcomes and offers prospective prediction

of patients’ risk to diseases with the adjustment of longitudinal information.

1.2 Dementia and Alzheimer’s Disease

Before we get into the detailed statistical methods, we like to introduce and outline the

main clinical application that guided the statistical development in this work.
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Dementia is a general term for a group of brain disorders severe enough to interfere with

person’s daily life and now is a widespread and growing public health problem. There are a

number of different types of dementia, but the primary ones are Alzheimer’s disease (AD),

vascular dementia, and Lewy body dementia (Zhang et al., 2017). As the leading type of

dementia, AD accounts for some 60-80% of the dementia cases. In 2018, more than five

million people in the United States were affected by AD and AD was reported as the sixth

leading cause of death. About one in three seniors dies with AD or another form of dementia

(Alzheimer’s Association, 2019). Currently, there is no effective treatment to delay the onset

or to slow the progression of AD.

1.2.1 Alzheimer’s Disease Symptom and Progression

The first early sign of AD is change in memory, mainly with difficulty remembering

recently learned information. As the disease progresses, it leads to severe symptoms including

mood and behavior changes; deepening confusion about time, places and events; unfounded

suspicions about family members and friends; difficulties with communication and language;

and more serious memory loss and behavior change (Alzheimer’s Association, 2019).

Like many other chronic diseases, AD is characterized by a very long multi-stage degra-

dation process of cognition and large inter-individual variability, where preclinical symptoms

could gradually worsen over a number of years. Figure 1 shows the stages from preclinical to

AD onset: Stage 1 (Preclinical), no noticeable symptoms, but some identifiable biomarker

changes in the brain; Stage 2 (Mild Cognitive Impairment), early symptoms of possible AD

with measurable memory impairment and cognitive decline, but no large impact on daily

life. It is an intermediate condition between normal cognitive aging and AD. However, MCI

does not always lead to AD; Stage 3 (Dementia due to AD), significant cognitive decline,

brain impairment, and major impact on daily life (Kumar et al., 2020). Knowledge of the
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pre-diagnosis phase is very important for the understanding of the degradation process and

the early detection of subjects at high risk of AD.

Figure 1: Alzheimer’s disease progression with long degradation process of cognitive decline

1.2.2 Alzheimer’s Disease Diagnosis

Onset of AD, time-to-event of interest in our study, is based on clinic AD diagnoses with

standard criteria. Neurologists or trained professionals determine whether a person with

memory problems is having ”possible AD” where dementia may be due to other cause, or

”probable AD” when no other cause for dementia can be found. The consensus diagnosis

is based on neurological examination and medical history, cognitive performance testing.

Clinical diagnosis of AD is different from neuropathological diagnosis of AD, where AD is

definitively diagnosed after death, by examination of brain tissue in an autopsy (National
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Institute on Aging, 2017). The onset of AD in most survival models is based on the clinical

diagnosis.

1.2.3 Cognitive Decline and Cognitive Function Tests

It has been known that faster cognitive decline begins years before individuals develop

dementia (Wilson et al., 2013). The early signs including having trouble remembering,

learning new things, concentrating that affect person’s daily activities.

To identify early signs of cognitive decline, the cognitive function assessments are used as

a tool to assess the level of cognitive impairment and potential risk of AD. There are more

than thirty different types of cognitive screening tests identified to indicate the likelihood

of genuine cognitive impairment. Based on established neuropsychological profiles, it is

suggested that a comprehensive screening instrument for the tests should include six core

domains or abilities: ”Attention/working memory, new verbal learning and recall, expressive

language, visual construction, executive function and abstract reasoning.” (Cullen et al.,

2007). During a cognitive test, participants answer a series of questions and/or perform

simple tasks. For example, the tester is asked to memorize a few words, identify a picture

of a shape or object. The tests need no preparation from testers and are not recommended

to be retaken avoiding learning effects. The most common types of test are Mini-Mental

State Exam (MMSE) and Montreal Cognitive Assessment (MoCA) test. A summary score

is provided with different range and cut-offs based on the type of the test. Usually higher

scores reflect better cognitive function. A good screening test will have a high level of

accuracy in differentiating normal cognition, cognitive impairment or cognitive disorder.
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1.2.4 Alzheimer’s Disease Research Cohorts

Since approximately 50 million people are currently living with AD or other types of

dementia and cognitive decline is the hallmark feature of dementia, prevention of such decline

is a public health priority. There is a worldwide effort underway to predict, delay, and treat

this disease. Several Population-based cohort studies were designed and built during the last

half century (Chibnik et al., 2017). These cohorts use consistent methodology throughout the

course of data collection and provide needed information for understanding the epidemiology

of AD, allowing for exploration of effect modifiers or interventions evaluation.

For example, the PAQUID (Personne Agee Quid) is a population-based cohort of 3777

elderly individuals recruited in 1988 in the southwest of France (Dartigues et al., 1991). There

have been nine waves of data collection at different years after the initial data collection.

Alzheimer’s Disease Neuro-imaging Initiative (ADNI) is a global research study running since

2004, in which researchers at 63 sites across North America track the AD progression in the

human brain with imaging, genetics and bio-specimen bio-markers through the process of

normal aging, early and late MCI to dementia or AD (Petersen et al., 2010). Rush Memory

and Aging Project (MAP) is an ongoing longitudinal and clinical-pathological cohort study

of aging and AD, recruiting persons from across northeastern Illinois. Through July, 2019 the

study has enrolled 2,134 individuals. Evaluations are annual and besides cognitive function,

MAP study also supports studies of decline in motor function and disability (Bennett et

al., 2018). The data generated in the MAP cohort are used in analysis presented in this

dissertation and will be described in later sections.
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1.2.5 Risk Factors and Treatment for Alzheimer’s Disease Research

The exact causes of AD remain unknown. At one time, AD was thought to be genetic.

Over the last thirty to forty years, researchers have identified many factors that may con-

tribute to or prevent the disease. So far, research has linked the disease with the following

potentially risk factors for AD: age (the strongest risk factor), gender, family history, genetic

factors (heredity), head injury, cardiometabolic risk factors, life-style and activities and oth-

ers (alcohol, depression, medication, dietary pattern etc.) (Alzheimer’s Association, 2019).

While some risk factors like age, genotype and family history, cannot be changed, some mod-

ifiable factors are involved in the AD progression. One promising line of research suggests

that intensive risk factor modification, especially during midlife (age 45 to 65 years), has

the potential to delay or prevent a substantial number of dementia cases worldwide (Press

and Alexander, 2019). Prevention of AD by targeting risk factors including participating in

regular physical activity, staying socially active, eating a healthy diet and maintaining good

heart health, may decrease AD occurrence.

At this time, there is no cure for AD, and the treatments are largely ineffective. However,

treatment for symptoms are available, and these drugs (donepezil, rivastigmine, galantamine

and memantine) for this disease do not decelerate or prevent the progression of the disease

(Tan et al., 2014). Most medicines work the best for patients in the early or middle stage of

AD. This means that it is possible to delay the symptoms of dementia and improve quality

of life in later life by taking control of the health in young and middle-aged adult years.

Indeed, subjects with early detection with high risk of AD could be the target population

for new treatments. In ongoing clinical trials, many possible interventions are developed and

tested, including cognitive training, drug therapies, and controlling risk factors that can be

managed with effective treatments and/or through healthy lifestyle choices.
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1.3 Statistical Methods for Alzheimer’s Disease study

1.3.1 Time-to-Event Analysis of Alzheimer’s Disease

To identify potential risk factors causally associated with AD onset, many studies applied

proportional hazards regression model (Cox, 1972; Kukull et al., 2002), which is a commonly

used statistical method in biomedical research for investigating the association between the

time to clinical event and one or more predictor variables. Survival time is calculated either

from study entry or from retrospectively estimated dates of disease onset. A key assumption

of this model is that the ratio of the hazards for any two groups is constant over time, thus

the hazard curves between groups should be parallel and cannot cross.

Demographic information (e.g. age, sex, education level, and Apolipoprotein E (ApoE4)

genotype) and major medical comorbidities (e.g. heart disease, hypertension, stroke, and

diabetes) up to AD diagnosis are usually considered as covariates in AD related survival

models (Helzner et al., 2008).

Although AD is a common disease in elderly, some people do not develop AD through

their life time and are free of AD at death. An intuitive consideration is that those who

develop AD in late life are those who lived long enough to enter the age of risk for devel-

oping AD. Because the incidence of dementia rises sharply at ages greater than 75, many

population-based cohort studies and clinical trials on AD focus on those people aged 65

years and older. Recruitment of an older sample is thus inevitably biased in favor of sur-

vivors (Chang et al., 2012), so called survival bias. When death is considered as the main

reason for the dropout in study cohort versus other causes, the true relationship between

risk factors with AD incidence may not be identified using conventional survival models

that treat mortality as uninformative censoring. Death occurs before AD onset, and this

phenomenon is referred to as competing risks (Hernan et al., 2008). Like many other statis-
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tical approaches, the competing risk analysis includes both parametric and non-parametric

methods. Identifying and addressing competing risks will help eliminate or reduce bias in

predicting the probability of developing AD. Besides the cause-specific hazard (Satagopan et

al., 2004), another model called subdistribution hazard model proposed by Fine and Gray,

1999 allows to direct assess the effect of the target factor on the marginal probability func-

tion, regardless of whether the subjects are censored or failed from other competing events

(Kleinbaum et al., 2012).

Another challenge is that AD can only be diagnosed during the clinic visit, but the exact

time when AD is developed should be between the visit of diagnosis and the visit before it,

resulting in interval-censored data where time of AD occurrence can not be observed exactly.

Moreover, the aging data usually requires a long time to collect and clinic visits depend on

the availability of the participants and financial support of the study. This often causes

some gaps in time between designed AD screenings. Regarding these issues, many methods

that can handle interval-censored survival data have been developed and applied in the AD

research area (Rouanet et al., 2016; Yu and Ghosh, 2010).

1.3.2 Longitudinal Analysis of Cognitive Decline

The longitudinal designs for AD studies usually extend over a long period of time, con-

sisting of several follow-ups at fixed visit time points. The visits are often years apart to

avoid any learning effect in the tests. During each AD screening, cognitive function test

scores as well as a broad range of other health or aging related factors are collected. These

longitudinal data motivate researchers to apply methodological tools to take insights into

age-related degradation of neuronal functions and the factors contributing to the degradation

and AD.
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Cognitive function test results collected as repeated measurements are usually discrete

quantitative outcomes consisting in summary scores, which are usually continuous and

roughly normally distributed. To describe the change over time of the cognition and its

association with predictor variables, numerous exploratory analysis were performed using

linear mixed-effects model (LMEM) during the past decade (Lundervold et al., 2014; Sabia

et al., 2017). As a method for analyzing data from repeated measures designs, LMEM has

increased in popularity in the last decade. By definition, mixed models involve both fixed

and random variables and the random effects structure provides more accurate estimation

by aiding correct inference about fixed effects (Harrison et al., 2018). The LMEM relies on

three assumptions that first, the outcome is continuous, second, the random components are

Gaussian, and third, change in the explanatory variable is associated with constant fixed

change in the outcome (Proust-Lima et al., 2011). The introduction of mixed fixed and

random structure affords several non-exclusive advantages over more traditional techniques

like repeated measures ANOVA which is antiquated. Another benefit is that mixed models

do not require a complete data set when missing data are assumed to be random.

To study the cognitive function change across years, the typical setting for random ef-

fects is intercept and slope. The covariates include age, gender, education level and ApeoE

genotype (Hester et al., 2005). The interaction between factor and time of enrollment is

used to test for the differences in the effects on the rate of cognitive decline between the cat-

egories of factor. If a linear trend cannot be assumed and a non-linear decreasing trajectory

is considered, quadratic time term, B-splines or change time points are usually used inside

the linear mixed models.
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1.3.3 Joint Modeling of Cognitive Decline and Alzheimer’s Disease

The cognitive decline and the AD incidence should be analyzed simultaneously as they are

highly correlated. Taking advantage of the repeated measurements of cognitive performance

and AD clinical diagnosis information both collected in a longitudinal structure, a joint

modeling approach can be applied. On one hand, cognitive impairment is a predictor of the

AD incidence; on the other hand, the follow-up is often truncated by AD, accounting for

the non-random dropout of patients and missing data. Model jointly analyzing cognitive

decline and incident AD is considered as a powerful statistical tool capable of capturing the

association between the two processes.

This approach has been extended in different ways. AD dementia associated demograph-

ics, genomics, lifestyle behaviours, psychometric markers, vascular factors, neurological and

neuropsychological factors are also monitored during the studies in most aging projects. An

interesting extension would be to model multiple longitudinal outcomes with AD incidence.

For instance, it has been reported that motor impairments are prior to cognitive impair-

ment and changes in motor function can be consider as potential clinical responses for early

detection of dementia (Kueper et al., 2017). From the clinical point of view, investigating

multiple correlated measurements of biomarkers jointly could provide a better view of dis-

ease progression process and a better prediction on the risk for AD conversion than a single

clinical measurement. It is also interesting to address if the association may be affected by a

host of factors including age, genotype, gender which are assumed not to change throughout

the study cohort.

Furthermore, the joint modeling approach can further incorporate competing risks from

the terminal event, such as death, a changepoint in the trajectory for a particular functional

decline, functional data analysis through a functional joint model (FJM), and dynamic pre-

diction framework for predicting the trajectories in future timeline and risk of clinic event
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(Dantan et al., 2011; Li and Luo, 2019). More details on these extensions are provided in

Chapter 2.

1.4 Outline

This dissertation aims to appropriately analyze longitudinal and time-to-event data

jointly, explore the associations and describe the trajectories and characteristics of both

processes. In the next chapter, we provide a detailed review of literature on the develop-

ment of a joint modelling framework and the methods which have been applied on the joint

modeling of cognitive aging and risk of AD. We discuss about the methodological challenges

raised by taking into account the order that existed in the degradation process, the het-

erogeneity between individuals of the decline trajectory and informative dropout. We also

describe details of the Rush Memory and Aging Project cohort which is used in this study.

In the third chapter, we propose a Bayesian joint modeling analysis to link the bivariate

longitudinal outcomes with the risk of an event under latent class framework and we also

show the alternative joint modelling method using shared random effects structure. In the

fourth chapter, we introduce a joint model of bivariate random changepoints in the longi-

tudinal process coupled with competing events. The last chapter is the application of our

methodology to MAP data.
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2 LITERATURE REVIEW ON JOINT MODELING OF
COGNITIVE DECLINE AND ALZHEIMER’S DISEASE AND

MAP COHORT

In clinical and epidemiological research studies, repeated measurements of clinical vari-

ables, event history, and other types of data are simultaneously collected. Depending on the

study interest, different types of statistical analysis methods are performed.

The clinical studies are often designed to address the primary question on the effect of

an intervention or a risk factor on the survival probability. When investigating the rela-

tionship of survival time to longitudinally collected clinic markers, survival models, such as

proportional hazard (PH) model or accelerated failure time (AFT) model with time-varying

covariates, are considered as a powerful tool. However, in most cases, the observed repeated

measured covariates may not be the true values and contain intra-subject errors. For ex-

ample, cognitive function, which is not directly observed but measured through numerous

psychometric tests, contains a great deal of random errors between and within subjects. Re-

placement of the true value with error-prone time-varying covariates in the survival model

may cause biased estimation. Moreover, the time-varying covariates values are only known

at the time points at which they are measured and thus are assumed to be constant be-

tween measurements in the model. In addition, missing values on covariates are common,

and additional steps such as multiple imputation are required. On the other side, when the

aim is to study the longitudinal trajectories, for example, cognitive decline, the follow-ups

of longitudinal data may be truncated by the dropouts due to different reasons. The occur-

rence of the clinic event may induce non-random missing data. For example, subjects with

more severe pre-AD phenomenon may be more likely to withdraw from the study than the

healthier participants. There is no statistical test to check data missing at random (MAR).

Failure to take in count of this trend, ordinary longitudinal analysis like LMEM may result

in biased estimation.
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The concern of biased inferences leads to considerable recent interest in a joint model

to link the longitudinal and time-to-event data. In the last decade, in order to highlight

the multi-factorial nature of the marker-event relationship, for example, between AD and

cognition trajectory, many methods have been proposed to incorporate the two processes.

The statistical frameworks provided are beneficial and give us directions for future analysis.

2.1 Joint Model Frameworks

2.1.1 Shared Random Effects Model

The early development of the joint model was primarily motivated from HIV/AIDS stud-

ies, in particular, linking the trajectory of CD4 counts and time-to-death (Ibrahim et al.,

2010). Many of the works on joint model in early 1990s focus on imputing appropriate value

for longitudinal variable to reduce the bias due to failure to account for measurement error

(Self and Pawitan, 1992; Raboud et al., 1993; Tsiatis et al., 1995).

Rather than relying on approximations, Henderson et al., 2000 proposed a flexible joint

model in which survival and longitudinal data are conditionally independent given a zero-

mean multivariate latent Gaussian process, so called shared random effects model (SREM).

This design is based on very strong assumptions about the association between the two

outcomes and a set of random effects is assumed to capture their interdependence. Shared

random effects model belongs to the class of shared parameter models, which usually rely

on a structure of homogeneous sub-population and the trajectories of the markers smoothly

distributed and linked to the risk of event. An excellent general review article on shared

random effects models was given by Tsiatis and Davidian, 2004. In the studies of cognitive

function and risk of dementia, this shared random effects framework has been largely applied

(Gao, 2004; Li et al., 2017).
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Shared random effects approach has been applied for the joint analysis of longitudinal

data with binary outcomes (Horrocks and Heuvel, 2009) or multivariate normally distributed

longitudinal biomarkers (Rizopoulos and Ghosh, 2011). These models were soon incorpo-

rated with multiple recurrent or competing events, and therefore needed more complex as-

sociation structures. A very recent review paper of Papageorgiou et al., 2019 focused on

the shared parameter formulation of the joint modeling incorporating multiple longitudinal

outcomes of varying types.

2.1.2 Latent Class Model

Lin et al., 2002 considered a related model called joint latent class model (JLCM) in

which the common shared random effects are replaced by a latent class framework that

accommodates underlying population heterogeneity to describe the differences in prostate-

specific antigen trajectories and prostate cancer. Compared to the shared random effects joint

model, JLCM has limited literature, but is considered to be particularly suited for hetero-

geneous data. In 2003, Hashemi and Jacqmin-Gadda applied the latent class joint modeling

method on cognitive decline and AD in the PAQUID cohort (Hashemi and Jacqmin-Gadda,

2003). This was one of the first works bringing the joint modeling approach to the field of

AD research. The JLCM assumes that the correlation between the longitudinal data and

event outcomes is fully captured by the latent classes. This model stratifies the heterogeneity

in marker trajectory and the time to an event through latent classes, assuming cases in each

subgroups sharing the same longitudinal marker trajectory and the same risk of the event.

For instance, in dementia applications, to distinguish different homogeneous sub-groups,

subjects are allocated to different latent classes corresponding to cognitive ability and risk of

AD with the highest posterior probability, with the adjustment of covariates. Each class has

class specific transition intensities to AD and cognition trajectory. Because of the flexibility

in modeling of the dependence between the longitudinal marker and time to event, as well
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as the covariate effects trajectories, extensions and innovations have been proposed after-

wards. Proust-Lima et al., 2014(2) extended the JLCM to analyse simultaneously multiple

longitudinal markers from cognitive data and risk of dementia.

One of the drawbacks of the JLCM is that as the sub-models are class-specific, assump-

tions of proportionality between classes need to be made. Otherwise, too many parameters

are involved especially for large number of latent classes. In addition, when the number of

classes is too small or too big, the model has a low discriminatory ability and interpreting

the latent classes can be difficult.

Both SREM and JLCM rely on the conditional independence assumption of survival and

longitudinal processes. But the bases of the assumption of the two frameworks are different

regarding the link between the longitudinal and event onset processes. A homogeneous

population is assumed in SREM, in which the trajectory of the longitudinal outcome is

the same and the relationship between the marker and event risk is continuous. In contrast,

JLCM accounts for the heterogeneity of the population with latent class categorical structure,

where each category is under a class-specific average profile of the longitudinal marker and

risk of event. Thus classification is essential. The random effects in the JLCM are endogenous

in the pathway of latent class (see Figure 2). Proust-Lima et al., 2014 provided a good review

of latent class methods and strategies.

2.1.3 Copula Approach

Another approach to the challenge of linking these two types of outcomes is using a

copula model where Gaussian copula function constructs a joint framework by combining

the two marginal distributions relying on a dependence structure (Rizopoulos et al., 2008;

Ganjalia and Baghfalaki, 2015). The parameter estimation is conducted with the marginal

distribution and specified copula function. This method is considered as a tool to construct
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Figure 2: Shared random effects model vs Joint latent class model

joint density for an alternative reparameterization for the shared random effects model. The

copula approach has not yet been applied to the study of cognitive decline and AD.

2.2 Parameter Estimation Methods in Joint Models

2.2.1 Maximum Likelihood Estimation

Maximum likelihood (ML) method is commonly used in joint models. Maximum like-

lihood estimation (MLE) finds the values of the parameters by maximizing the likelihood

of the model and provides unbiased estimates under the true random effects distribution

assumption.

The MLE approach has been applied extensively in joint models in AD research, especially

in JLCM. Hashemi and Jacqmin-Gadda, 2003 performed maximization of a pseudo-likelihood

using Newton-Raphson type algorithm on a latent process model for jointly modeling demen-
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tia and cognition. Later, the Marquardt algorithm for optimization, a robust Newton-like

algorithm, was applied to find the MLE in joint model with multivariate cognitive measures

and competing risks of dementia and death or interval-censored dementia (Proust-Lima et

al., 2014(2); Rouanet et al., 2016). The expectation-maximization (EM) algorithm was also

implemented in the joint model to deal with the unobserved random effects. The EM al-

gorithm offers many computational advantages over direct likelihood maximization and is

commonly used for complex likelihood functions. Li et al., 2017 estimated the parameters of

functional joint model (FJM) via EM algorithm to account for functional predictors on AD

progression. Akaike information criterion (AIC) and Bayesian information criterion (BIC)

are common methods for model scoring and selection under the MLE framework. However,

data with substantial measurement error or sparsity may decrease the reliability of estimates.

Also computation of multi-fold integration can become intractable when the mixed effects

model is dealing with multiple random effects.

Maximum likelihood estimation of joint model can be implemented using the R package

”JM” (Rizopoulos, 2010), in which the log-likelihood maximization is using a hybrid opti-

mization procedure in which the estimation is first through EM algorithm, then switched

to use a quasi-Newton algorithm if convergence is not reached. Another R package ”lcmm”

focuses on JLCM and maximum likelihood estimators are obtained based on a modified Mar-

quardt algorithm (Proust-Lima et al., 2017). As statistical software is updated regularly,

many additional options are increasingly available including specification of the association

structure, competing risk settings, predictions, and plots etc.

2.2.2 Bayesian Markov Chain Monte Carlo Method

The Bayesian approach nowadays has been successfully used for parameter estimations for

different complex modeling situations in various scientific research. The fast development of
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Bayesian statistics has been seen in the past two decades. In Bayesian approach, parameters

are treated as random variables and this is the major difference from the classical statistical

theory. The distributions of the parameter are called priors. The likelihood of observations

is effectively weighted by the prior distributions. The resulting posterior distribution is the

essential outcome used to obtain the estimates of interested parameters. The Markov chain

Monte Carlo (MCMC) method, especially the Gibbs sampler, is a type of algorithm now

mostly used for parameter estimation from models with hierarchical structure, and can be

simpler to implement than the direct maximization of likelihood function. Compared to

ML method, which needs direct high dimensional integration, the MCMC sampling provides

numerous solutions to problems by samplings from posterior distribution and computing each

parameter distribution. Thus, the parameter estimation is much straightforward under the

Bayesian paradigm through the posterior distribution. For model evaluation, DIC (deviance

information criterion) and WAIC (widely applicable information criterion) have been widely

used to compare between Bayesian models.

Regarding the computational complexity for joint models where the dimension of the

random effects is large, Bayesian approach can provide alleviation of the computational bur-

dens. Indeed, many developments of joint models have been made in a Bayesian framework

recently (Lawrence et al., 2015; Dessiso and Goshu, 2017). In AD dementia and cognition

research, the Bayesian method was first considered by Hall et al. for parameter estimation

from random changepoint models of the cognitive decline in dementia population (Hall et al.,

2003). Later on, many AD studies have adopted Bayesian procedure due to its ability to deal

with multiple longitudinal outcomes and competing risks in joint models (Yu and Ghosh,

2010). It is known that, in AD research, in order to closely monitor cognition, multiple

psychormetric tests are ordered. These data provide a complex longitudinal framework that

needs to appropriately account for potential correlations. Moreover, as the risk of competing

events increases with age, a more complex event structure is required in the survival sub-

model. Estimation in high-dimensional joint models where likelihood is far too complex to
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be computed, is feasible by sampling from it. Another important application of the Bayesian

framework in AD research is to predict the efficacy and safety responses of future patients

conditional on the data observed so far. Li and Luo, 2019 developed a Bayesian functional

joint model to obtain accurate inference and provide better prediction for new subjects by

incorporating many features in longitudinal and survival data.

As the Bayesian MCMC method has the big advantage of dealing with computational

complexity, one thing we should be cautious about is that the results may rely on the prior

specification. The prior distribution can incorporate additional information from similar

studies within a joint probability model. At the same time, the choice of the prior should be

decided with care. In addition, in complex models with many parameters, autocorrelation

and convergence needs to be monitored in MCMC approach. The convergence of the MCMC

sampler after burn-in can be determined by several criteria. Gelman-Rubin diagnostic test

(Gelman and Rubin, 1992) and Geweke test (Geweke, 1992) are commonly used. Geweke

test checks the convergence based on a test for the difference between the mean of the

first part and last part of a single chain. The Gelman-Rubin diagnostics test calculates the

”potential scale reduction factor” for each parameter. A general guideline suggests that a

values less than 1.1 is good. One drawback of Bayesian approach is that each iteration of

the algorithm requires accessing the whole data which in practice makes MCMC too slow

to reach convergence especially when the dimension is large. Replacing the exact posterior

with partial posterior marginals is a possible solution.

Bayesian inference gains wide popularity with the availability of ready-to-use software

packages developed for Bayesian analysis based on MCMC. Many are free to download.

WinBUGS (Lunn et al., 2000) developed by the BUGS (Bayesian inference Using Gibbs

Sampling) project team is a powerful and flexible statistical program to perform Bayesian

analysis. In WinBUGS, the user only needs to provide the data and initial values and specify

the structural of the statistical model (prior and likelihood). The software will then carry
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out one of the MCMC algorithms to generate samples from the posterior distribution of

the specified model. Another software, OpenBUGS (Lunn et al., 2009) released in 2005 can

use more than one algorithm for the simulation for the class of full conditional distribution

of each node, providing a more flexible and extensible operating environment. For joint

model analysis, the R package ”JMbayes” (Rizopoulos, 2014) fits the models for longitudinal

and time-to-event data in a Bayesian framework and several types of association structure

between the two outcomes are provided.

2.2.3 Two-Stage Method

Two-stage method was developed by Self and Pawitan, 1992. Although it is not as popular

compared to MLE and Bayesian methods, it has been used in parameter estimation under

joint longitudinal-survival framework. In this approach, parameter estimation is conducted

separately in two-stage procedures. The first stage consists of modeling the longitudinal

components through mixed effects model without consideration of the survival information,

and in the second stage, the modeled values from the previous step are included as time-

varying covariates in a time-dependent survival model.

Two-stage method gains some advantage in ease of use and fast computation. However,

this is not an unbiased approach. When determining the correct longitudinal estimates, it

ignores the survival information, and so, possibly causes selection bias due to failing to ac-

count for informative drop outs, which can result in uncertainty in modeling the longitudinal

process. This was discussed in detail in a paper of McCrink et al., 2003.
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2.3 Extension of Joint Model and Methodological Challenges in Alzheimer’s
Disease

2.3.1 Joint Model with Non-Linear Longitudinal Outcomes

Several studies have shown that the slope of global cognitive decline was gradual at first

and then decreased dramatically within a few years prior to the diagnosis of AD or before

death (Wilson et al., 2007; Sliwinski et al., 2006). Also, there should be a wide individual

difference in rates of change in cognitive function as AD progresses, especially during the

late-life period (Amieva et al., 2008; Petersen et al., 2001). Moreover, it is believed that the

acceleration of the cognitive decline manifests through a changepoint that may depend on

subject-specific characteristics. The time point at which cognition evolution of the patients

who will develop AD in future become distinguishable from normal aging people is essentially

important (Amieva et al., 2014; Jansen et al., 2018). As more effective treatments become

available for AD, this time frame will provide invaluable information for developing new

treatments and designing prevention strategies at earlier stages of AD.

Regarding the non-linear trajectory of cognitive function, some studies modeled the

degradation process using quadratic time term, however, this setting does not allow identi-

fication of the moment when the change in rate takes place. In 2000, Hall et al. introduced

a changepoint in cognitive decline as a parameter in the piecewise linear model (Hall et al.,

2000). The changepoint is defined as ”an estimated time before diagnosis of AD, at which

the rates of decline among vases and non-cases begin to diverge”. Changepoint mixed mod-

eling has been used to describe the trajectory of a longitudinal measurement and detect the

change in the trend since the 1970s (Hinkley, 1970; Smith, 1975; Carlin et al., 1992). Hall

compared the rate of decline among those who developed AD to those who remained free of

AD. Profile likelihood method was used and this method required a common changepoint for

all subjects who had a changepoint. However, since AD dementia is a heterogeneous disorder
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with multiple phenotypes and genotypes, this same changepoint assumption might not be

appropriate. Hall later proposed a random changepoint model in which the time point of

change in decline rate was subject specific through a Bayesian MCMC approach (Hall et al.,

2003). In 2006, Jacqmin-Gadda et al. pointed out that the estimates of changepoint only

using the data from subjects diagnosed as demented during the follow-up contained selection

bias (Hall et al., 2003). Patients without AD at the end of the follow-up might be in the

preclinical phase and treating them as nondemented is not appropriate. Subsequently, to

avoid the selection bias, Jacqmin-Gadda combined a piecewise mixed model with a random

changepoint for cognitive decline and a survival model for AD risk. The changepoint was

used to link the two parts (Jacqmin-Gadda et al., 2006). A direct-likelihood approach was

used for parameter estimation.

Testing the existence of a time point of change in rate in a mixed model with repeated

measures is an area of interest in biomedical and epidemiological studies, especially in respect

to the natural history of chronic diseases. Very recently, motivated by the study of AD

dementia, Segalas et al., 2019 described a novel way to test the existence of a random

changepoint in a mixed model. This test was applied to study the shape of the pre-diagnosis

cognitive decline among the elderly and smooth transition between the two linear phases of

cognitive decline was considered in the model.

In above research, the change in rate of the cognitive decline was described with an

abrupt transition in a piecewise linear model, which is simple and offers the advantage of de-

tecting a significant immediate departure in the direction. However, this setting is artificial

and cannot not always be appropriate and realistic in practice. Indeed, given the nature of

cognitive decline, the entire trajectories are generally smooth, even at the changepoint. Al-

ternatively, several types of smooth changepoint models were proposed to imply a graduate

change between the two linear phases. Based on how the trend of transition is quantified,

changepoinit models can be broadly classified into two families: (i) piecewise (broken-stick)
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model, (ii) smooth changepoint model (Bacon-Watts model (Bacon and Watts, 1971), bent-

cable (Chiu et al., 2006), polynomial regression model (Hout et al., 2010). In application

to data of cognitive aging, Hout et al. introduced the smooth random changepoint in mod-

elling of cognitive decline and both polynomia and Bacon-Watts functions were applied in

a mixed-effects model. Later, Yang and Gao, 2013 compared the Bacon-Watts model with

the polynomial regression model and proposed a bivariate random changepoint model to

jointly model cognitive function and body mass index (BMI) over age. Both groups showed

good performances of the Bayesian approach for parameter estimation in the complex model

structure. One limitation is that only the subjects who were diagnosed as demented during

the follow-up were selected in these analysis of smooth random change. This may lead to

a selection bias due to dropouts caused by death or severe pre-dementia symptoms. Also

subjects considered as dementia-immune during the study and diagnosed after the end of

the study were excluded. To overcome this limit, an extension as a joint modelling approach

with adding AD dementia-death information would be more appropriate.

2.3.2 Joint Model with Competing Risk and Multistate

In the spirit of Hall and Jacqmin-Gadda’s work, Yu and Ghosh, 2010 proposed a joint

model that accounted for a changepoint for cognitive trajectory and mixture survival time

for dementia onset and death. As stated before, death is a major competing risk for AD

dementia. For a better estimation for the effect of covariates on AD related outcomes,

the dropouts as death cannot be ignored. The cause-specific hazard model for competing

risks is commonly used. This model included three types of status in the survival part:

(i) still alive and dementia free, (ii) dementia developed, and (iii) deceased. Yu further

divided the alive or deceased into: immune to AD or having the potential to develop AD.

The parameters in this complex model were estimated by MCMC method, which made

the computation feasible. Another competing risk analytic method called subdistribution
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hazard model proposed by Fine and Gray, 1999 is also frequently applied in AD dementia

survival analysis (Li, 2016; Kuo Hout et al., 2019). This model allows direct assessment of

the effect of the target factor on the marginal probability function. Marginal probability is

defined as the probability of onset of a particular event, regardless of whether the subjects

are censored or failed from other competing events (Kleinbaum and Klein, 2012). Like many

other statistical approaches, both above competing risk models include parametric and non-

parametric methods. It is believed that identifying and addressing competing risk will help

to eliminate or reduce bias in predicting the probability of developing AD.

As an useful improvement, considering the risk of dementia should be increased in the

phase of accelerated cognitive decline, recently Dantan et al. combined multistate survival

models and mixed models for longitudinal outcomes, assuming the risk of dementia is null be-

fore entering the accelerated decline phase in cognition (Dantan et al., 2011). The multistate

model focused on 4 states (healthy, pre-diagnosis, dementia and death) and the transitions

between them. This new model is viewed as an improvement on the random changepoint

model by handling of informative right censoring due to death.

2.3.3 Other Extensions

Mental health disorders in seniors are very complicated and look different in everyone.

Statistical methods are being developed and extended to overcome the limits of previous

models and allow us to consider more complex conditions and connections in the real world.

Besides what have been mentioned above, there are some other extensions that have been

applied on the survival analysis. First, aging study, with a long-running cohort, could have

big gaps in time between visits. The AD status is evaluated intermittently as cases can only

be determined during clinic visits. To take into account the uncertainty on the time of AD

dementia, Rouanet et al., recently proposed a joint model for interval-censored events and
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cognitive decline (Rouanet et al., 2016). Secondly, traditional AD risk analysis assumes that

everyone will eventually develop dementia and this assumption was challenged by the work

of Zhou, 2013, who introduced the concept of immune subgroup for AD research (Stong,

2013). His work hypothesizes that some people may be immune to AD. Using a logistic

regression formula to model the immune probability, and a Weibull distribution to model

the survival function for those at risk, they obtained highly statistically significant evidence

for the existence of an immune subgroup (Zhou, 2013).

In the investigation of the longitudinal mark trajectories, we have seen most articles

focusing on one type of longitudinal outcome in the joint model. As multiple outcomes

are collected during the clinical research, it will be informative to investigate the changes

over time in multiple correlated outcomes. For example, the cognition function is measured

by a group of cognitive tests that are correlated but functionally different. Hall et al.,

2000 proposed a bivariate changepoint model in which the changepoints in two different

measurements of cognitive function over age were compared. Only the intercepts of the two

scores were correlated in the model. Later, Yang and Gao, 2013, investigated the relationship

between the changepoints of cognitive and BMI measurements in a bivariate changepoint

model. In this work, only the correlation of time of changepoints was considered between

the two markers. These correlation structures are too simple to describe the association

between trajectories of the markers in the cognitive system. Very recently, Segalas et al.,

2020 proposed a bivariate random changepoint model in which the associations between the

marker-specific random effects (intercept, slope, and changepoint) were all considered.

While investigating the nature of the relationship between AD risk and cognition, it is

important to understand the whole shape of the cognitive decline before and also after AD

onset. Most of the analysis carried so far for joint modelling of cognitive decline and AD

dementia are based on the observations before or at event onset. One may wonder how

the slope of cognitive change after AD onset for those who still survive. Such extension
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in the model may involve post-diagnosis survival time and two or multiple changepoints in

cognition. Answers to these questions will be extremely helpful in early diagnosis of dementia

and later investigation on the treatment effectiveness.

2.4 Rush Memory and Aging Project Cohort

The motivational application for this research is based on the Memory and Aging Project

(MAP) of Rush University Medical Center. MAP study primarily enrolls senior residents in

the Chicago area. MAP project is a longitudinal, epidemiologic clinical-pathological cohort

study. Participants receive assessment of risk factors and detailed annual clinical evalua-

tion for the common chronic conditions of aging with an emphasis on AD related outcome

measures. This ongoing open cohort study began in 1997 and by July 2019 the study has

enrolled 2,134 individuals with a mean age of 80.0 years, 14.9 years of education at baseline

and 73.5% are female.

Sources of data include interviews, cognitive assessments, clinical evaluations, etc. These

data have been carefully created and reviewed. The methods and resulting variables that

were used in this work are listed below. The study design allows different types of analysis

to be conducted for the investigation of related AD risk factors, AD incidence, decline in

cognitive and other related outcomes.

2.4.1 Cognitive Function

A battery of 21 cognitive performance tests is administered annually for each participant

in MAP. These tests assess a range of cognitive abilities including: Logical Memory I, Logical

Memory II, Immediate story recall, Delayed story recall, Word List Memory, Word List

Recall, Word List Recognition, Boston Naming Test, Category Fluency, National Adult
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Reading test, Digit Span Forward, Digit Span Backward, Digit Ordering, Symbol Digit

Modalities Test, Number Comparison, Stroop word reading, Stroop color naming, Judgment

of Line Orientation, Standard Progressive Matrices (Bennett et al., 2012). Raw scores are

converted to Z-scores and averaged to yield a summary measures of global cognitive function

using the means from all participants.

2.4.2 Motor Function

The evaluation on motor function is based on the Unified Parkinson’s Disease Rating

Scale. Upper and lower extremity motor strength and performance tests are administered.

These include: Grip and pinch strength measured by hydraulic dynamometers, arm ab-

duction, arm flexion, arm extension, hip flexion, knee extension, plantar flexion, and ankle

dorsiflexion measured with handheld dynamometry; time and number of steps to walk 2.4

meters and to turn 360◦; participants are asked to stand on each leg and then on their toes

for 10 seconds. The number of steps off the line is recorded when walking 8 feet heel-to-toe;

and Purdue pegboard and finger tapping (Bennett et al., 2012). A global motor function

summary score is created based on the z-score of each test result from all participants.

2.4.3 Alzheimer’s Disease Diagnosis

Status of AD is evaluated at each MAP visit. The clinical diagnosis of AD was made

by neurologists or trained professionals using data including: A structured neurological

examination and medical history, cognitive performance testing, and with the assistance of an

algorithmically based rating of cognitive impairment. The AD diagnosis was based on criteria

of the joint working group of the National Institution of Neurological and Communicative

Disorders and Stroke and the AD and Related Disorders Association (Morris et al., 2015).
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2.5 Research Interests

We have explored the use of joint models in the literature focusing on the cognition and

AD dementia research. The large number of different measurements and sufficient follow-

up time that MAP provides allow us to carry out different statistical analysis to test our

hypotheses for this thesis study. To our knowledge, the joint modeling of cognition trajectory

and AD risk approach has not been yet performed in the MAP cohort study. We are

interested to see how the joint modelling approach improves the fitting to the data. Shared

random effects and latent class frameworks are both of interest to be applied. Bayesian

estimation methods will be performed, MLE method can be used as reference. As far as we

know, Bayesian inference has been barely used in the joint latent class model in AD research.

Secondly, it is widely known that cognitive decline and other factors such as BMI or motor

function decline, coexist with aging. In particular, in the MAP cohort, the data support

that decline in cognition and motor function may share a common causation and motor

impairment could serve as a phenotypic marker of pre-clinical AD (Buchman and Bennett,

2011). Dr. David Bennett, the director of the RADC at Rush University Medical Center,

mentioned: ”Motor function is related to changes in cognition. There are a lot of data

now showing that loss of cognition and motor function is due to a lifelong series of events.”

Instead of estimating the longitudinal models of cognition and motor separately, introducing

the motor function into the joint model of cognition to have bivariate longitudinal outcomes

would be more appropriate and this has never been investigated before. We like to propose a

joint model with a more complex framework considering between markers correlation coupled

with AD risk.

Thirdly, the smooth random changepoint models used to describe the two-phase of the

longitudinal marker trajectory in previous studies did not take into account the health out-

come data (mostly time-to-event) or was fitted to a particular subgroup, e.g. dementia cases.
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To avoid selection bias, we like to extend the approach to a joint model for the changepoint

and the time to event. In the model, we assume that the random changepoint is associated

with some demographic covariates. The model will be enriched with competing events and

interval censors to make it fit a more realistic situation. Additionally, as multivariate lon-

gitudinal responses can be attributed to underlying pre-diagnosis disease states, we like to

further extend the joint model for bivariate longitudinal outcomes with random changepoint

and time to event. We adopt the Bayesian procedure using MCMC sampling method for

parameter estimation and inferences for these complex models. As an application, we like to

fit the proposed joint model on the data in the MAP cohort. The investigation focuses on

the correlation between the changepoints of cognition and motor function decline and com-

parison of the time of change given the risk of AD/death information. In the meanwhile, we

will see how this random changepoint model for the markers of aging improves the prediction

of the AD risk through shared random effects.
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3 JOINT MODELING OF BIVARIATE LONGITUDINAL
OUTCOMES WITH TIME-TO-EVENT DATA

3.1 Methodology

3.1.1 Mixed-Effects Models

The most popular framework for longitudinal data analysis is the mixed-effects model.

This model allows each subject in the sample has subject-specific evolution across time. Let

Yi(tj) denote the follow-up measurements for ith subject (i=1, 2, ... , n) at a specific time

tij, j=1, 2, ... , ni, assuming n subjects under study. The mixed model is written as

Yi(t) = Yi(tij) = x>ijβ + z>ijbi + εij, (3.1)

in which

bi ∼ N(0,Σb),

εi ∼ N(0,Σε),
(3.2)

in which β is a vector of the regression coefficients for the fixed effects x>ij = [xbasei ]>, [xtimeij ]>,

[xbase×timeij ]> that consist of time, covariates, and their interaction, respectively; z>ij = [ztimeij ]>

denotes the row vector of the design matrix for the random effects bi. Particularly, bi

are assumed following a multivariate normal distribution with zero-means and variance Σb

which can be an unspecified matrix. In this way, the fixed and random terms measure

the population-level effect and subject-level effect, respectively. The measurement errors

εi are independent of bi. If no autocorrelation is specified, these errors are assumed to be

independently Gaussian distributed with mean of 0 and constant variance σ2
ε .
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3.1.2 Proportional Hazard Models

When interest is on an event outcome, both parametric (exponential or Weibull) and

semiparametric (COX) models are available to model survival data. Let T be the time to

the event, and the survival function is defined as S(t) = P (T > t). Hazard rate function is

a way to model the instantaneous rate of occurrence of the event in survival analysis. The

chance for the event occurrence, given the individual surviving until time t, can be expressed

as

h(t) = lim
∆t→0

P (t <= T < t+ ∆t)|(T >= t)
∆t = f(t)

S(t) = −dlog[S(t)]
dt

, t > 0. (3.3)

A large family of parametric survival models focusing on hazard rate function have been

applied in survival analysis. The proportional hazards model is commonly used (Cox, 1972).

The hazard at time t is described using the regression model for a subject with covariates

w>i as

hi(t|wi) = h0(t)exp(w>i α), (3.4)

in which h0(t) denotes a baseline hazard function. While no assumption about the form of

h0(t) is assumed in the semiparametric Cox model, parametric models such as exponential

and Weibull models are also popular. w>i α in the exponent is the linear combination of the

predictors. In this way, the predictors have a multiplicative or proportional effect on the

predicted hazard hi(t|wi) and the effect of increase or reduction on risk is the constant at all

duration. The corresponding survival function is given as

Si(t|wi) = S0(t)exp(w>
i α), t > 0, (3.5)

where S0(t) is a baseline survival function. Some of the covariate values are fixed during

follow-up, such as age, gender, education level. Time-varying covariate that changes over
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time during the follow-up period can also be analyzed with the regression model to estimate

its effect on survival time.

3.1.3 Latent Class Model

We have discussed the problem of using separate longitudinal and survival models when

the two outcomes are highly correlated in the introduction chapter. The joint model approach

makes it possible to properly process the information contained in both data. One approach

is joint latent class model (JLCM). The classical theory of latent class analysis was first

created as a method to explain the heterogeneity in response patterns in survey design with

binary indicator variables (Lazarsfeld, 1950). As more and more applications are discovered,

this method is no longer only considered for categorical variables, but rather as a general

modeling tool to account for heterogeneity in data. The latent class model assumes that

there are multiple (i.e. more than one) heterogeneous groups within a population. The

heterogeneous groups so called latent classes that are believed to exist, but not directly

observed, and the probability of each individual belonging to each of the latent classes can

be modelled. The joint latent class model consists of three regression submodels. Following

the notations developed in the above section, let Yij denote the longitudinal measurements

for subject i at time tij. These n subjects are divided into G latent homogeneous subgroups.

G is a finite number and usually falls within range of 2 to 6. If G=1, the whole sample is a

homogeneous case. ci is used as the class membership for subject i and ci = g if this subject

is in class g(g = 1, 2, ..., G).
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3.1.3.1 Latent Class Probability

The class membership probability π can be described with a multinomial logistic regres-

sion model:

πig = P (ci = g) = exp(x>i ξg)∑G
l=1 exp(x>i ξl)

, (3.6)

where xi including an intercept is a vector of covariates associated with the parameter vector

ξg. The elements in ξg are the coefficients of the explanatory variables for belonging to class g,

thus are class specific. Since a reference class is required to ensure identifiability as ∑G
l=1 = 1,

we choose class G as the reference with ξG = 0. Note that in practice, xi can be reduced

to only have intercept when no predictor of class membership is assumed and the regression

model reduces to a class-specific probability.

Each latent class is characterized by a class-specific distribution of longitudinal marker

and time to event. The key assumption is that these two outcomes are conditionally inde-

pendent given these latent classes and covariates.

3.1.3.2 Latent Process for the Mixed-Effects Model

Subjects can be categorized inG latent classes with different trajectories. Given the latent

class g, the conditional longitudinal outcome Yij can be expressed in a standard mixed-effects

model:

Yij|ci=g = x>ijβg + z>ijbig + εij, (3.7)

where xi is a vector of covariates for fixed effects with βg as the corresponded regression

coefficients, in which the time effect is always class specific. The fixed effects of other

covariates may or may not be class specific. big is a vector of random-effects and zi is the
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design matrix, e.g. intercept and slope. Subject level bi captures the individual variability in

the trajectories and it can have a class-specific distribution big = bi|ci=g ∼ N(0,Σbg), in which

Σbg is an unspecified variance-covariance matrix. βg and big together describe the shape and

change with time of the longitudinal outcome in a particular g class. The measurement error

term εi is following N(0, σ2
ε I) as homoscedastic independent errors.

3.1.3.3 Latent Process for the Risk of Event

Given the latent class g, using proportional hazard model, the risk of event can be

described as:

hi(t)|ci=g = h0g(t)exp(w>i αg), (3.8)

where wi is a vector of covariates associated with parameters αg in class g. The baseline

risk function h0g is specific to each latent class and can be modeled using parametric risk

functions, such as Weibull or cubic M-splines, to maintain likelihood framework.

3.1.3.4 Joint Model with More Than One Longitudinal Outcome

With regard to the longitudinal submodel, one extension is to allow for more than one

longitudinal outcome (i.e. multiple biomarkers), commonly known as a multivariate joint

model. Based on the definition of latent class modeling, these outcomes trajectories are all

class specific. This is motivated by the highly correlated clinical responses sharing the similar

pattern of change within homogeneous subgroup. For example, recent studies have shown

that cognitive and motor processes are functionally related, and a similar evolution across

time is suggested for both (Buchman and Bennett, 2011; Kueper et al., 2017). Conditional

on the latent classes, these longitudinal processes are independent. Here, we go beyond the
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standard joint model that deals with single longitudinal outcome to a model with bivariate

outcomes. We consider two longitudinal markers indicated with k=1 and 2, each evolution is

described by a mixed model specific to each class g. Assume Yijk corresponds to the measure

of kth longitudinal marker observed at the jth time point for ith subject, we have class specific

longitudinal submodel:

Yijk|ci=g = x>ijkβgk + z>ijkbigk + εijgk, (k = 1, 2), (3.9)

where xijk and zijk are vectors of covariates associated with class specific fixed effect param-

eters βgk and class specific random effects parameter bigk.

One previous study with latent class approach accommodated multiple longitudinal

biomarkers in the joint model by using a multivariate longitudinal model in which same

factors predicting all the outcomes (Jacqmin-Gadda et al., 2009) and the analysis more

focused on the overall evolution of longitudinal profile rather than a specific marker. In

contrast, in our proposed model, each longitudinal marker is considered as a independent

outcome conditional on the latent class, and different covariates or predictors (xi and zi)

are allowed to differ over the k longitudinal submodels. Specific choice of the link function

based on different distributed outcome can also be applied, for example, a logistic or Poisson

regression. The estimation of such computation intensive model can be achieved by using

Bayesian approach which is has been barely used in the joint latent class model and will be

discussed in next section.

3.1.4 Estimation and Assessment

Different estimation approaches have been utilized to fit the latent class models. For

the JLCM, the published works mostly relied on maximum-likelihood estimation (MLE).
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The difficulties when using MLE are the problem of multiple local maxima and expensive

computation burden as the number of data dimensions increases. Bayesian method could be

provided as an alternative for inferences in JLCM. Compared to MLE, Bayesian joint model

approach allows a more straightforward model assessment without the potential numerical

integration in high dimensions.

Under the conditional independence assumption, inside each latent class, the risk of event

is independent of the measured mark evolution with adjustment of covariates. The likelihood

for each subject can be expressed as:

Li(θG) =
G∑
g=1

f(Yik|ci = g; θG)f(Ti|ci = g; θG)P (ci = g|θG), (3.10)

where f(Yk|ci=g; θG) is the density of the longitudinal model for the kth outcome in class

g with mean x>ikβgk + z>ikbigk and covariance matrix zikΣbkz
>
ik + σ2

ε I; f(Ti|ci=g; θG) is the

corresponding class-specific hazard regression function; and P (ci = g|θG) = πig is probability

being in the gth class. The overall log-likelihood is l(θG) = ∑N
i=1 log(Li(θG)).

In the Bayesian approach, parameters are treated as random variables and the distribu-

tion of a parameter is called prior. Given a fixed number of classes, the parameter vector θG

contains elements (ξ>g , β>g ,Σbg, α
>
g , σε)g=1−G. A joint prior p(θ) can be specified by taking the

product of priors, which are assumed to be independent of each other. Specification of prior

distribution plays an important role in Bayesian inference. When priors are non-informative,

then Bayesian estimates would be comparable to those obtained from a non-Bayesian algo-

rithm such as a MLE algorithm.

In order to make the estimates driven by the data, priors are signed with vague distribu-

tion and have minor impact on posterior inferences. Usually, normal distribution prior is con-

sidered for each element the main effects vector β>g with N(0, 1000) and α>g with N(0, 1000);
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inverse gamma distribution is for error term variance σ2
ε ∼ gamma−1(0.001, 0.001). For ran-

dom effects variance-covariance matrix Σbg, inverse-Wishart (inverse multivariate gamma)

distribution with 2 degree of freedom is commonly used big ∼ Wishart−1(2, R), where

R = diag(0.001, 2). Subjects are modeled as belonging to the latent class for which they

have the highest class membership probabilities. The proportion of individuals in class g

can be represented by a multinomial logistic regression (formula 3.6) with class-specific co-

efficient ξg and covariate xi on group membership. Normal distributed priors are assigned

for ξ1−(G−1) ∼ N(0, 1000). For identiability, ξG = 0. Another common prior distribution

used for the latent class proportions in Bayesian is the Dirichlet distribution (Asparouhov

and Muthen, 2011): π1−G ∼ Dirichlet(δ1, δ2, ..., δG), with density Γ(δ1+...+δG)
Γ(δ1)...Γ(δG)π

(δ1−1)...π(δG−1),

where proportions (πg) sum to 1 and δg element represents the hyper-parameters regarding

the size of the g latent class. The values of δ1−G can be determined based on the knowledge

on the class membership distribution from previous studies. However, most of the time,

information about the class membership distribution is not known and weakly informative

prior is assigned with the δs all equal to a small positive number. Nasserinejad et al., 2017

suggested that δs equal to a number slightly less than half of s, where s is the number of

class-specific parameters. This setting indicates that each class must technically exist but

little additional information about final class size is provided through the prior (Nasserinejad

et al., 2017; Andrinopoulo et al., 2020).

Base on the probability density and priors, the joint posterior probability distribution

for p(θ|Y, T ) with a Dirichlet prior is

p(θ|Y, T ) ∝ p(Y, T |θ)p(θ)p(π)

= p(Y |bg, βg, σεg, πg)p(T |αg, πg)p(bg|σεg)p(σεg)p(βg)p(αg)p(g|πg)p(πg).
(3.11)
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Using a multinomial logistic regression model for the membership probability, the joint

posterior density can be written like

p(θ|Y, T ) ∝ p(Y |θ)p(T |θ)p(θ)p(g|π)p(ξ)

= p(Y |bg, βg, σεg, πg)p(T |αg, πg)p(bg|σεg)p(σεg)p(βg)p(αp)p(g|πg)p(ξg).
(3.12)

Here, p(Y |bg, βg, σεg, πg) can be further expanded to p(Y1|b1g, β1g, σε1g, π1g)p(Y2|b2g, β2g, σε2g, π2g)

for bivariate longitudinal outcomes.

The Markov chain Monte-Carlo (MCMC) method can be implemented based on the

Gibbs sampler which obtains draws from the posterior distribution. In the process, posterior

distribution for πi follows either multinomial regression or Dirichlet distribution with D(δ1 +

n1, ..., δG + nG) and is estimated over all observations; sampling of [Yi, Ti|θg] is performed

separately for each class. Label switching is a well-known issue in mixture latent class models.

There are two main approaches to deal with this problem. One approach is to impose an

artificial identifiable constraint on parameters (Celeux et al., 2000); another approach is to

employ re-labelling algorithm in each iteration to minimize the posterior expectation of some

loss function of the model parameters (Stephens, 2000). The label-switching problem is not

observed using the multinormial regression for the membership distribution.

The initial values of the main effect parameters βgs, αgs and random effects variance

matrix Σbg can be set properly in order to speed up convergence. Convergence of the sampler

is assessed informally via visual checks of trace and density plots. Posterior means and

standard deviations of the parameters are computed based on these samples after discarding

burn-in and summarized. As the choice of the number of latent classes is a challenging

question, decision on the final model should consider the model goodness of fit, reasonable

latent class sizes and meaningful interpretation of the differences between classes. The

prediction of the subject’s latent class is based on posterior class membership probability.

Some advantages of using Bayesian analysis is its ability to incorporate prior information if
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some subjects’ latent classes are known or important classification information is available

from external sources.

In practice, models are repeatedly estimated with different numbers of classes. We as-

sume an overfitted model with superfluous latent classes will converged to the true model by

eliminating the unnecessary classes and this is supported by the study of Nasserinejad et al.,

2017 and Andrinopoulo et al., 2020. The best model is selected with information criteria.

Widely Applicable Information Criterion (WAIC), also known as the Watanable-Akaike for

Bayesian model selection (Watanabe, 2010) is particularly helpful for models with hierarchi-

cal and mixture structures. This criterion is composed of the expected mean value over the

posterior distribution and the effective number of parameters:

WAIC = −1/n
n∑
i=1

logE[p(θ)] + 1/n
n∑
i=1
{Eθ[logp(θ)]2 − E2

θ [logp(θ)]}. (3.13)

It sums each data point value based on the point-wise posterior expected density distribution,

and it is considered to be more stable compared to DIC. Besides WAIC, relative entropy is

considered as an indicator for a good separation of the identified classes. Relative entropy

is calculated as 1 +
∑N

i

∑G

g
π̂iglog(π̂ig)

NlogG
, where π̂ig is the estimated posterior probability of

individual being in the latent class g. As the value of entropy decreases, the classes become

less distinguished from one to another. Entropy is used to rule out the number of classes

with a cut-off point, for example, below 0.6 (The cut-off value depends on the data and the

model complexity.) (Asparouhov and Muthen, 2014). The more discriminatory the posterior

classification is, the better the model.

So far there are not many software packages provided for fitting JCLM. Very recently,

a package ”lcmm” (Proust-Lima et al., 2017) in R software has been developed and JLCM

can be fitted through the Jointlcmm() function in this package. The estimation is based on

MLE using Marquardt algorithm (MA). Due to the occurrence of multiple local maxima in
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MLE, iterative estimation MA needs to be initialized with different initial values for θG to

ensure convergence towards the global maximum. This package does not apply on the joint

model with multivariate longitudinal outcomes.

3.2 Simulation

We conduct a simulation study evaluating the performance of the Bayesian joint latent

class modelling approach. We consider a model for bivaraite longitudinal markers, one event

and two latent classes. Parameter values are chosen to mimic the application and the data

are generated under the following settings:

The longitudinal submodel:

Yik|ci=g = β0kg + bi0 + β1kg × t+ εik, and k = 1 or 2

with β011 = 1.0, β111 = −0.02, β021 = 2.0, and β121 = −0.05 in class 1;

β012 = 2.0, β112 = −0.1, β022 = 4.0, and β122 = −0.2 in class 2;

bi01 ∼ N(0, 0.1), bi02 ∼ N(0, 0.2), εi1 ∼ N(0, 0.05) and εi2 ∼ N(0, 0.2) in both classes.

The survival submodel:

h(t)|ci=g = h0(t)exp(α0g + α1gx)

with α01 = −4.2, α11 = 0.2 in class 1;

α02 = −2, and α12 = 0.1 in class 2;

Covariate x ∼ Bernoulli(0.5).

We have 500 simulated datasets and each contains 400 subjects. For each subject, the

membership is determined according to a Bernoulli distribution with probability π1 = 0.70

for class 1 and π2 = 30 for class 2. The visit time is set as 0 to 6 (total 7 visits with equal

interval). The measurements of Y1 and Y2 share the same frequency and collecting time for

the same subject. The time of event is determined by the Weibull function in the latent
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class assuming all the subjects eventually will experience the event. Subjects with event

happening after the last visit is considered as censored and longitudinal measures after the

onset of the event are excluded. Based on the setting, we have 92.0% censored subjects with

mean follow-up time 5.7 at censoring or event in the first class and 40.3% censored with

follow-up time 4.7 in the second class.

We use both multinomial regression without covariate and Dirichlet process prior to

model the class membership probability in the proposed joint model. We fit our Bayesian

model for each simulated dataset by running a single chain MCMC using WinBUGS and the

”R2WinBUGS” package (Sturtz et al., 2005) to invoke WinBUGS from R for Bayesian anal-

ysis. A type of label switching that class switches over replications is considered during the

simulation. Relabeling algorithm is applied by comparing the parameter estimates with gen-

erating values given the true values of the parameters are known in each class and correction

can be made (Cho et al, 2013). The results summarized in Table I show that the estimator is

fairly good in terms of posterior mean, standard deviation and percentage of coverage using

either multinomial regression method or Dirichlet process for class membership probability.

3.3 Application to Memory and Aging Project Cohort

We apply the latent class joint modeling method to the Rush MAP cohort, a longitudinal

study of common chronic conditions in old age. Subjects selected in this analysis are without

any type of dementia or mild cognitive impairment at baseline. A small number of subjects

are excluded due to lack of basic demographic information, for example, age, gender, ed-

ucational level etc. We further exclude people who have less than four years of follow-up

visits. Longitudinal measurements after the time point when a person was diagnosed with

AD are not used. The final sample includes 717 participants with a mean age of 78.2 ± 6.9

years at baseline, 77.1% female, 15.0 ± 3.0 years of education, BMI 27.4 ± 5.2 at baseline
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Table I: SIMULATION STUDY RESULT FOR JOINT LATENT CLASS MODEL OF BIVARI-
ATE LONGITUDINAL OUTCOMES AND AN EVENT

Multinomial regressiona Dirichlet priorb

Parameter True value Posterior mean SD CR% Posterior mean SD CR%
Class membership
π1 0.70 0.70 NA NA 0.70 NA NA

Parameters in class 1
β011 1.0 1.000 0.006 93.0 1.000 0.007 92.8
β111 -0.02 -0.020 0.001 95.4 -0.020 0.001 95.0
β021 2.0 2.000 0.030 93.4 1.999 0.030 93.2
β121 -0.05 -0.050 0.006 94.8 -0.050 0.006 94.0
α01 -4.2 -4.311 0.395 91.4 -4.317 0.384 91.2
α11 0.2 0.219 0.452 92.0 0.222 0.450 92.4

Parameters in class 2
β012 2.0 2.000 0.012 90.8 2.000 0.012 91.4
β112 -0.1 -0.100 0.001 95.2 -0.100 0.001 95.4
β022 4.0 4.000 0.050 94.6 4.002 0.051 95.4
β122 -0.2 -0.200 0.012 95.4 -0.200 0.012 94.8
α02 -2 2.045 0.241 94.0 -2.046 0.238 92.6
α12 0.1 1.107 0.246 95.6 0.106 0.246 96.0

Common parameters
σ2(bi01) 0.1 0.100 0.007 93.8 0.100 0.006 95.0
σ2(bi02) 0.2 0.198 0.020 92.4 0.199 0.020 93.6
σ2(εi1) 0.05 0.050 0.004 94.2 0.050 0.003 94.0
σ2(εi2) 0.5 0.501 0.009 93.8 0.501 0.009 93.4
a Multinomial logistic regression modelling the class membership probability.
b Dirichlet prior for the class membership probability.
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and 20.8% ApoE4 carriers. The average follow-up time is 9.7 ± 3.5 year with a total of 132

subjects (18.4%) diagnosed with AD during the follow-up. Our objective is to jointly model

the trajectories of cognition related outcomes with AD risk conditional on the latent class.

3.3.1 Mixed-Effects Model for the Trajectories of the Cognitive Function
and Related Outcomes

Our main outcome in the longitudinal analysis is Globcog, an annual measure of global

cognitive performance derived by averaging the z-scores from 19 annual tests. Another out-

come of interest is the motor function Motor, a composite measure constructed by converting

the raw scores from 10 motor measures. There are many reports of non-cognitive symptoms,

e.g. loss of motor function, accompanied with cognitive decline during the long AD preclini-

cal phase. Also, body mass index (BMI) of all participants were collected at each evaluation.

It has been reported that weight loss precedes dementia diagnosis and weight loss is an early

marker for AD dementia disorder (Yang and Gao, 2013). Changes in BMI are associated

with increased risk of dementia (Alhurani et al., 2016).

We first like to show the trend of these longitudinal measures prior to clinical AD diagnosis

using separate mixed effects model. Since these outcomes were collected at the same visit

in MAP cohort, the time variable is shared in the data. Time is recorded as 0, 1, ..., in

years until the last follow-up or the time when AD was diagnosed. For covariates, age bl

(in year) is at the date of the first cognitive assessment (baseline); gender is coded as 0 for

female and 1 for male; edu (in year) is based on self-reported years of regular schooling; and

ApoE4 (genotyping, 1 for positive and 0 for negative) is based a high throughput sequencing.

BMI bl is BMI at baseline. These covariates are well known factors to the cognition or

motor impairment and commonly included in the analysis of AD data. BMI as an outcome

or covariate is centered by subtracting 27.
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Classical longitudinal mixed effects model with random intercept and slope is applied for

the linear trend of these outcomes as:

Globcogij = β0 + β1 × timeij + β2 × age bli + β3 × genderi + β4 × edui + β5 × ApoE4i

+ b0i + b1i × timeij + εij

Motorij = β0 + β1 × timeij + β2 × age bli + β3 × genderi + β4 × edui + β5 ×BMI bli

+ b0i + b1i × timeij + εij

BMIij = β0 + β1 × timeij + β2 × age bli + β3 × genderi

+ b0i + b1i × timeij + εij

The results are summarized in the top panel of Table II The estimated average regression

coefficient of time is -0.047 with 95% confidence interval of (-0.052, -0.042) for cognitive

decline, the coefficient of time is -0.029 with confidence interval of (-0.031, -0.028) for motor

function score and -0.098 with confidence interval of (-0.124, -0.072) for BMI, suggesting

these three measures all decline significantly over the study period. The random intercept

and slope variances estimates in these models shown as diagonal elements in Σb 2 × 2

covariance matrix are all significant with confidence interval not covering 0.

3.3.2 Proportional Hazards Model for AD risk

In this part, we start with a simple proportional hazards survival function with Weibull

baseline hazard. Subjects diagnosed with AD at baseline are excluded, resulting in a sample

size of 717, of which 132 (18.4%) developed AD later. With linear function of covariates

(age, gender, education and ApoE4) at baseline level, hazard h at time t for individual i is:

hi(t) = h0i(t)exp(α0 + α1 × age bli + α2 × genderi + α3 × edui + α4 × ApoE4i) .
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Table II: PARAMETER ESTIMATES FROM SEPARATE MODELS ON COGNITION, MOTOR
FUNCTION, BMI DECLINE AND AD RISK

Parameter Estimate 95% CI
Longtitudial mixed-effects model
Globcog
Intercept (β0) 0.941 (0.608, 1.273)
Time (β1) -0.047 (-0.052, -0.042)
Age bl (β2) -0.017 (-0.021, -0.013)
Gender (β3) -0.071 (-0.133, -0.009)
Edu (β4) 0.054 (0.046, 0.063)
ApoE4 (β5) 0.043 (-0.021, 0.106)
Ran int (σ2

0) 0.107 (0.093, 0.120)
Ran time (σ2

1) 0.003 (0.003, 0.004)
Ran cov (Cov01) -0.000 (-0.002, 0.002)
Error (σ2

ε ) 0.048 (0.048, 0.049)

Motor
Intercept (β0) 2.802 (2.630, 2.975)
Time (β1) -0.029 (-0.031, -0.028)
Age bl (β2) -0.019 (-0.021, -0.018)
Gender (β3) 0.063 (0.036, 0.090)
Edu (β4) 0.006 (0.002, 0.009)
BMI (β5) -0.010 (-0.012, -0.008)
Ran int (σ2

0) 0.023 (0.020, 0.027)
Ran time (σ2

1) 0.001 (0.001, 0.002)
Ran cov (Cov01) -0.001 (-0.001, -0.000)
Error (σ2

ε ) 0.013 (0.012, 0.014)

BMI
Intercept (β0) 14.069 (9.971, 18.167)
Time (β1) -0.098 (-0.124, -0.072)
Age bl (β2) -0.170 (-0.222, -0.118)
Gender (β3) -0.291 (-1.148, 0.565)
Ran int (σ2

0) 25.247 (22.897, 27.596)
Ran time (σ2

1) 0.079 (0.067, 0.090)
Ran cov (Cov01) -0.347 (-0.469, -0.225)
Error (σ2

ε ) 2.951 (2.855, 3.046)

Proportional hazards model
Intercept (α0) -2.880 (-2.960, -2.877)
Age bl (α1) 0.043 (0.034, 0.052)
Gender (α2) -0.028 (-0.154, 0.088)
Edu (α3) -0.013 (-0.029, 0.003)
ApoE4 (α4) 0.174 (0.066, 0.280)



47

Assumption of proportional hazards is tested using a score test based on scaled Schoenfeld

residuals (Grambsch and Therneau, 1994). The results are summarized in Table II (bottom).

Our data shows that age at baseline (β = 0.043), ApoE4 allele (β = 0.174) are strong risk

factors for AD. Gender has no effect. Education level is found to be negatively associated

(β = −0.013) with AD incidence but the effect is not significant. Earlier studies have

reported negative association between AD onset and having a higher level of education.

Interestingly, more recent research is showing that higher education level does not prevent

people from a delay in developing AD (Wilson et al., 2019).

3.3.3 Joint Latent Class Modeling of Cognition Related Outcome Decline
and AD risk

In the MAP cohort, the data suggest that age-related cognitive and motor decline are

related. To the best of our knowledge, there has been no analysis jointly modelling both

cognition and motor functions (Globcog&Motor) longitudinally with risk of AD. In the same

time, we also like to jointly model cognition and BMI (Globcog&BMI) changes across time.

Here we aim to identify subgroups of MAP participants who are similar with regard to their

longitudinal changes in aging related function markers and measures. Moreover, we like to

know if these markers’ trajectories are related to their risk of AD in a clinical meaningful

way.

In the implementation of the JLCM, for longitudinal outcomes, we are mostly interested

in the linear trend over time and the trajectories are set to be specific to each latent class while

other covariates effects, variances of random effects and measurement errors are common for

all classes. In the proportion hazard submodel, the intercept and effect of age at baseline are

considered to be class specific. The baseline risk function, the effects of gender, education and

ApoE4 are common across classes. No covariates are included in the class membership model.
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With this setting, we have parameters βg = (βint(g), βtime(g), βage bl, βgender, βedu, βApoE4, βBMI)

for fixed effects and Σb, σε for variances covariances in longitudinal submodel; γWeib, αg =

(αint(g), αage bl(g), αgender, αedu, αApoE4) for risk effects in proportional hazard submodel; ξint(g)

in the multinomial logistic regression model for class-membership probability. We run

MCMC in WinBUGS with vague priors to obtain the parameter estimates. Trace and

density plots are presented in the Appendix B.

We first compare models with varying number of latent classes. We start with model I

without classification. Corresponding to our setting for the class-specific parameters: one

intercept in the class-membership model (ξint(g)), two fixed effects in the linear trajectory

of intercept and time (βint(g) and βtime(g)) for each of the longitudinal outcome, two fixed

effects in hazard model (αint(g) and αage fb(g)), together 7 parameters are introduced to the

model when an additional latent class is considered. We only show the results for model

with up to 3 latent classes because one class tends to be empty (<3%) when total 4 classes

are assigned. This will be discussed in next the Discussion part.

Table III shows Model I to III with number of latent classes, number of parameters, de-

viance, WAIC, entropy and the posterior proportion of each class for models ofGlobcog&Motor

and Globcog&BMI. As class number increases, the fitting shows improvement with de-

creased WAIC. Comparing to Model I and II, Model III containing 3 classes yields the

smallest WAIC for both sets of outcomes. To further investigate whether model III gives

the best fit to our data, we check the posterior class membership probability to assess the

model goodness of fit and class discrimination. The posterior class membership probability

for subject i in latent class g is πig = P (ci = g|Y1i, Y2i, Ti, xcovi , θ̂G). The relative entropy of

Model III calculated based on the individual posterior probabilities of each class membership

is 0.77 and 0.86 for model Globcog&Motor and Globcog&BMI, respectively, suggesting that

model with 3 classes provides good discrimination for both joint models. A posterior classi-

fication is computed by assigning subjects to the class where they have the highest posterior
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probabilities in class membership (ĉi = max(πig)). The estimated mean probability of an in-

dividual being in each class stratified by class membership max(πig) is summarized in Table

IV. Model III for Globcog&Motor is comprised of 3 classes with 54.0%, 29.8% and 16.2%

of total subjects allocated and the mean of the posterior probabilities in each class ranges

with 92.0% (class 1), 77.2% (class 2) and 85.3% (class 3) shown as the diagonal numbers.

Model III for Globcog&BMI with classes containing 40.0%, 21.5% and 38.5% of sample has

the mean of the posterior probabilities in each class with 91.7% (class 1), 96.1% (class 2)

and 88.8% (class 3). And most off-diagonal numbers are less than or close to 10% indicat-

ing discrimination between classes is correct and classification is clear. Model of cognition

and BMI is slightly better than the model of cognition and motor function in term of class

discrimination.

Table III: MODEL COMPARISON FOR VARYING NUMBERS OF LATENT CLASSES

Model G npm deviance WAIC Entropy %class1 %class2 %class3
Cognition and Motor
Model I 1 26 -9772 -7984 NA 100
Model II 2 33 -9859 -8060 0.83 44.5 55.5
Model III 3 40 -10150.0 -8257 0.77 54.0 29.8 16.2
Cognition and BMI
Model I 1 24 27940 29869 NA 100
Model II 2 31 27880 29842 0.71 59.2 40.8
Model III 3 38 27695 29685 0.86 40.0 21.5 38.5

Table V and VI show the posterior means and 95% credible intervals of the parameters

in the longitudinal submodel for Globcog&Motor and Globcog&BMI, respectively, with

survival submodel for AD risk. The intercept terms (ξ1 and ξ2) in the class membership

probability models are both significant in both models. With adjustment of covariates, the

effects of time are all significantly different from 0 for these longitudinal outcomes in all latent

classes. In Table V, majority of the sample (class 1, 54.0%) shows ”a natural aging status”

with a relatively slow cognitive decline rate (β111 = −0.015); while the smallest group (class
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Table IV: MEAN POSTERIOR PROBABILITIES OF CLASS MEMBERSHIP

Class membershipa Prob/Class1 Prob/Class2 Prob/Class3
Cognition and Motor
Class1 (54.0%) 0.920 0.078 0.002
Class2 (29.8%) 0.157 0.772 0.071
Class3 (16.2%) 0.011 0.137 0.853
Cognition and BMI
Class1 (40.0%) 0.917 0.081 0.002
Class2 (21.5%) 0.005 0.961 0.034
Class3 (38.5%) 0.101 0.011 0.888
a Membership is determined by an individual’s highest class-specific probability.

3) with 16.2% of the sample shows the fastest decline rate of cognition (β113 = −0.162).

Class 2 (29.8%) is characterized as ”intermediate” with a more pronounced cognitive decline

(β112 = −0.056) than that of class 1, but not as dramatic as class 3. We have the same

trend with having the slowest decline rate (β211 = −0.027) in Class 1 and the fastest decline

(β213 = −0.036) in class 3 for motor function. However, the slope differences are not as

dramatic as those in cognitive decline, especially for the slopes between class 1 and class 2.

In AD risk submodel, age at baseline has significant positive association with AD risk in all

classes. The age effect shown as regression coefficient becomes weaker (α11 = 0.43 in class 1

and α13 = 0.20 in class 3) as cognition and motor functions decline faster.

In model of cognition and BMI (Table VI), the estimated intercepts and slopes for the two

outcomes are all different and distinguishable across classes. We see class 1 contains 40.0%

of total subjects and is characterized by relative ”normal aging/stable BMI” (β111 = −0.025

and β211 = −0.032) starting with the highest cognitive score (0.58) and relatively normal

BMI (24.7). Class 2 with 21.5% of the sample is categorised by ”intermediate declining

cognition/BMI” (β112 = −0.046 and β212 = −0.101). We also notice that the starting

point of BMI is the highest (34.2) among the three classes. The last class with ”rapid

declining cognition/BMI” (β113 = −0.071 and β213 = −0.156) covers 38.5% of the sample

and cognition starts from a low value (0.22). In the survival model, age at entry has a
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positive and significant effect on AD risk in all classes, and the hazard ratio per year older

varies from 1.1 to 1.2 among classes.

Figure 3 provides the predicted class-specific trajectories of Globcog&Motor function

scores (top) and Globcog&BMI (bottom) over years with the corresponding survival func-

tion (AD-free probability) of AD. Both models have 3 latent classes, but class members

could be different between the two models. The ”stable” class representing the healthiest

group (Class 1, green) has the best AD-free rate. This class is also characterized by the

highest starting point for cognition and motor function and the lowest for BMI value. The

”intermediate” class (Class 2, blue) has a relative lower rate of AD diagnoses. The highest

rate of AD incidence is observed in the ”rapid decline” class (Class 3, red). In the model of

Globcog&Motor, the incidence of AD in this class starts right at 5 years of follow up and sur-

vival function reaches the bottom after 10 years, meaning that at this time all the subjects in

this class are roughly diagnosed as AD. In the model of Globcog&BMI, the survival curves

in the three classes are different but not as dramatic as in the model of Globcog&Motor.

When we compare the subjects’ base characteristics among the 3 latent classes, we find

the classes are significantly different according to age at entry in both models (Appendix C).

Class 1, the healthiest group, includes mainly younger subjects while class 3 with the fastest

decline rate has relatively older subjects. No significant difference is observed from gender

or education level. In the model of Globcog&Motor, compared with the class 1, class 2 and

class 3 (fastest decline)’s subjects have relatively higher percentage of ApoE4 carriers and

the difference is significant.

Above analysis setting is using multinomial logistic regression without covariate predict-

ing the latent class membership. We repeat the analysis using weakly informative Dirichlet

prior for the class proportion with equal weights D(δ1, ..., δG). In particular, following the

recommendation in Nasserinejad et al., 2017, we set all δ equal to 3. As expected, the re-
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Table V: PARAMETER ESTIMATES OF MODEL III FOR COGNITION AND MOTOR FUNC-
TION (3 CLASSES)

Parameter Parameter label Posterior mean 95% CI
Membership
int class 1 ξ1 -0.560 (-0.745, -0.506)
int class 2 ξ2 -1.225 (-1.432, -1.116)

Cognition
Intercept class1 β101 0.468 (0.421, 0.514)
Intercept class2 β102 0.332 (0.273, 0.398)
Intercept class3 β103 0.383 (0.301, 0.469)
Time class1 β111 -0.015 (-0.020, -0.011)
Time class2 β112 -0.056 (-0.065, -0.049)
Time class3 β113 -0.162 (-0.175, -0.149)
Age bl β12 -0.018 (-0.022, -0.014)
Gender β13 -0.067 (-0.128, -0.005)
Edu β14 0.055 (0.046, 0.063)
ApoE4 β15 0.031 (-0.034, 0.097)
Var(Intercept) σ2

10 0.104 (0.093, 0.118)
Var(Time) σ2

11 0.001 (0.001, 0.001)
Cov(Intercept time) Cov101 -0.002 (-0.004, -0.001)
Error σ2

ε1 0.220 (0.216, 0.224)

Motor
Intercept class1 β201 1.362 (1.308, 1.420)
Intercept class2 β202 1.297 (1,236, 1.361)
Intercept class3 β203 1.282 (1.220, 1.349)
Time class1 β211 -0.027 (-0.029, -0.025)
Time class2 β212 -0.030 (-0.033, -0.027)
Time class3 β213 -0.036 (-0.040, -0.031)
Age bl β22 -0.018 (-0.020, -0.016)
Gender β23 0.063 (0.036, 0.090)
Edu β24 0.005 (0.002, 0.009)
BMI β25 -0.010 (-0.012, -0.008)
Var(Intercept) σ2

20 0.023 (0.020, 0.026)
Var(Time) σ2

21 0.000 (0.000, 0.000)
Cov(Intercept time) Cov201 -0.001 (-0.001, -0.000)
Error σ2

ε2 0.115 (0.113, 0.117)

AD risk
Intercept class1 α01 -3.088 (-3.222, -2.978)
Intercept class2 α02 -2.729 (-2.797, -2.688)
Intercept class3 α03 -2.302 (-2.367, -2.238)
Age class1 α11 0.043 (0.022, 0.058)
Age class2 α12 0.037 (0.029, 0.045)
Age class3 α13 0.020 (0.011, 0.030)
Gender α2 0.300 (-0.141, 0.745)
Edu α3 -0.006 (-0.016, 0.005)
ApoE4 α4 0.001 (-0.080, 0.080)
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Table VI: PARAMETER ESTIMATES OF MODEL III FOR COGNITION FUNCTION AND
BMI (3 CLASSES)

Parameter Parameter label Posterior mean 95% CI
Membership
int class 1 ξ1 -0.560 (-0.745, -0.506)
int class 2 ξ2 -1.183 (-1.445, -0.937)

Cognition
Intercept class1 β101 0.580 (0.533, 0.628)
Intercept class2 β102 0.434 (0.383, 0.484)
Intercept class3 β103 0.221 (0.171, 0.269)
Time class1 β111 -0.025 (-0.031, -0.016)
Time class2 β112 -0.046 (-0.055, -0.036)
Time class3 β113 -0.071 (-0.080, -0.061)
Age bl β12 -0.018 (-0.022, -0.014)
Gender β13 -0.078 (-0.123, -0.032)
Edu β14 0.053 (0.047, 0.058)
ApoE4 β15 0.002 (-0.057, 0.061)
Var(Intercept) σ2

10 0.083 (0.072, 0.097)
Var(Time) σ2

11 0.003 (0.003, 0.004)
Cov(Intercept time) Cov101 -0.003 (-0.005, -0.002)
Error σ2

ε1 0.220 (0.216, 0.224)

BMI
Intercept class1 β201 -2.257 (-2.679, -1.835)
Intercept class2 β202 7.195 (6.704, 7.691)
Intercept class3 β203 -1.183 (-1.617, -0.750)
Time class1 β211 -0.032 (-0.073, -0.008)
Time class2 β212 -0.101 (-0.15, -0.051)
Time class3 β213 -0.156 (-0.196, -0.107)
Age bl β22 -0.137 (-0.173, -0.106)
Edu β23 -0.182 (-0.255, -0.114)
Var(Intercept) σ2

20 9.686 (8.616, 10.860)
Var(Time) σ2

21 0.065 (-0.054, -0.077)
Cov(Intercept time) Cov201 -0.234 (-0.321, -0.154)
Error σ2

ε2 1.732 (1.702, 1.764)

AD risk
Intercept class1 α01 -3.193 (-3.361, -3.050)
Intercept class2 α02 -2.885 (-2.998, -2.784)
Intercept class3 α03 -2.711 (-2.792, -2.640)
Age class1 α11 0.045 (0.025, 0.067)
Age class2 α12 0.034 (0.023, 0.044)
Age class3 α12 0.035 (0.017, 0.054)
Gender α2 0.220 (-0.340, 0.767)
Edu α3 -0.006 (-0.022, 0.008)
ApoE4 α4 0.252 (0.0152, 0.352)
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Figure 3: Predicted class-specific longitudinal trajectories and AD-free probability function
a. Model of cognition and motor b. Model of cognition and BMI

sults are pretty similar. Also, we notice that as lots of observations are available, the label

switching problem barely occurs.

3.3.4 Discussion

In this section, we proposed a Bayesian joint latent class model with two longitudinal

outcomes and one event and applied it to MAP data. Latent classes provide a useful way

for representing heterogeneity in the data. Assuming the association is explained by the

latent population heterogeneity, JLCM allows us to distinguish different latent homogeneous

sub-groups and to describe the corresponding class-specific profiles of aging related declines

and risk of AD. Since JLCM does not have association parameters, there is no straightfor-



55

ward interpretation about the association. In contrast to the shared parameter joint model,

differences in event risk are not explained by between-individual variation in the longitu-

dinal response trajectories, but rather are explained by the between-class differences in the

longitudinal marker profiles.

Bayesian estimation framework has been successfully applied to latent class modeling

(LCM) (White and Murphy, 2014). However, Bayesian estimation has rarely been used for

the joint model conditional on latent class. The estimation is mainly relying on maximum

likelihood method. The difficulty is that the models need be repeatedly estimated with

different initial values to avoid local maxima for each number of latent classes. Optimum

number of classes is not guaranteed even after going back and forth in fitting models with

different settings. In addition, when additional information is added into the joint model, for

example, adding more longitudinal outcomes or considering a competing risk scenario, the

number of parameters could be doubled multiple times and computation gets more difficult.

Bayesian MCMC methods provide an alternative to burdensome computation needed in the

multivariate frameworks. Instead of direct maximization of likelihood function, sampling

from the full conditional distribution of each parameter can be reasonably straightforward.

However, comparing the computation time, Bayesian usually needs much longer time to con-

verge. Moreover, we assume a weakly informative prior for the class membership probability.

If a good deal of knowledge is present about the number of latent classes, their sizes, or other

parameter values, the researcher can specify a prior with a lot of certainty (or information)

about these elements in the model.

The difficulty of dealing with latent class models is to determine the number and size of

the classes. The reason we did not go up with 4 latent classes in the application is because

model starts to show ”empty” class in the model with more than 4 classes and MCMC has

difficulty to converge. A study by Nasserinejad et al., 2017 showed that in mixture model,

given the prior on the class membership is sufficiently non-informative, when the model
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is over fitted with more latent classes than those in the sample, the superfluous class will

asymptotically become empty. The model with non-empty classes is preferred with optimal

number of latent classes. Very recent work from Andrinopoulo et al,. 2020, using data in

the Cystic Fibrosis cohort indicated that a class is assumed empty if it contains less than

10% of the subjects. Since our model has two longitudinal and one event outcomes, it is not

practice to have too many classes which cause the interpretation and comparison between

the latent classes becoming difficult. We decide to take the model with three classes for our

analysis. The drawback is that when a small size of homogeneous group does exist in the

data e.g. 5%, Bayesian estimation does not suit the latent class analysis in such data. This

is a limitation of using Bayesian approach in our analysis for JLCM and we hope in future

we can solve this problem and analyze data in which a tiny-sized group does exist.

Another difficulty when applying JLCM is that the data collected in longitudinal cohort

studies may not always support the classification. The classification depends on the profiles

of all the outcomes as we see the model of Cognition&Motor and model of Cognition&BMI

group the MAP subjects differently. Sometimes, a clear classification may not be identifiable.

When the relationship between the longitudinal trajectories and time to event is too compli-

cated (e.g. interaction, high order intersection), interpretable numbers of classes would not

satisfy the independent assumption. This is a limitation of the latent class model. This prob-

lem might be solved by adding one or more equality constraints to the model, as suggested

by substantive considerations (Formann, 2011). Sometimes, the unidentified classification is

related to the data validity. For example, results in this chapter are based on the sample

restricted with subjects having more than 4 years of follow-up. When we choose a loose in-

clusion criteria to include subjects less than 4 years, we had a hard time to find theoretically

meaningful and interpretable classes in which sizes of each class should not be too small or too

big and independent assumption is barely held. This may be because too few observations

or too short follow-up time can not sufficiently describe the longitudinal marker trajectories

before the event takes place. Therefore, the relationship between trajectory shape of cog-
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nitive decline and risk of AD is not clearly distinguished. Missing information may cause

problems in constituting a separate class of individuals or misclassification. High quality

and representative data will have more change to yield a right classification. In the other

side, the identified classes may not necessarily always (and without further validation) refer

to existing subgroups within the population. There could be a potential problem because,

when subjects are badly separated, the classification is somewhat arbitrary, a researcher may

mistakenly accept results of latent class as the solution. While dealing with these difficul-

ties, a combination of a deep understanding of the biological and clinical mechanism, and the

use of different analytic methods may provide insights into the reliability of the statistical

inferences.

3.4 Alternative Approach: Joint Model with Shared Random Effects

3.4.1 Methodology

The most common modelling approach in the joint modelling literature is with shared pa-

rameter model. This type of model is composed of three components: (i) a submodel for time

to event, (ii) a submodel for the longitudinal marker trajectory, and (iii) parameterization

to associate (i) and (ii) processes. The basic joint model is written as

Yij = x>ijβ + z>ijbi + εij,

hi(t|wi, xi) = h0(t)exp(w>i α + f{µi(t), bi, r}), t > 0.
(3.14)

Components in the longitudinal submodel of Y have the same interpretations as they

have in the separate model (formula 3.1). In the survival submodel, wi is a vector of covari-

ates, possibly time-dependent, with associated vector of α representing the effects of fixed
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covariates. The linking function f(·) have various options which lead to different forms of

association between the longitudinal and time-to-event data. One is called ”current value”

association (rµi(t)) in which longitudinal measure µi(t) is predictive of the event risk at the

same time t. Second one is called ”current value plus slope” association (r1µi(t) + r2µ
′
i(t)).

This extends the first structure by adding the slope term at time t. The third one is called

”shared random effects” association (r>bi), which includes only the random effects from the

longitudinal submodel. bi, can be viewed as the expected subject-specific trend of the longi-

tudinal marker after adjusting for the overall mean trajectories and other covariate effects.

r quantifies the association between the longitudinal outcome to the risk of an event. The

longitudinal and survival modes are then considered jointly for less bias and more accurate

inferences. The third type so called shared random effect model (SREM) is the most popular

approach and has been extended in different ways, such as, to allow for multiple longitudinal

markers, and for competing risks setting.

When extending to additional longitudinal outcome, we have

Y1ij = x>1ijβ1 + z>ijb1i + ε1ij,

Y2ij = x>2ijβ2 + z>ijb2i + ε2ij,

(3.15)

To build the correlation between the two longitudinal processes, a multivariate normal

distribution is assumed for the two sets of random effects bi, that is:

bi =

b1i

b2i

 ∼ N


0

0

 , D =

Σb1 Σb12

Σ>b12 Σb2


 , (3.16)

in which Σb12 contains the covariances of the two sets of random effects. With b1i = (b10i, b11i)

and b2i = (b20i, b21i) denoting the random intercept and slope effects in submodel of Y1 and
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Y2, respectively, the subject-based version for the joint variance distribution is shown as:

Σb1 =

 σ2
10 Cov10 11

Cov10 11 σ2
11

 ,Σb2 =

 σ2
20 Cov20 21

Cov20 21 σ2
21

 ,Σb12 =

Cov10 20 Cov10 21

Cov11 20 Cov11 21

 ,
(3.17)

where σ2
10, σ

2
11 and σ2

20, σ
2
21 are the variances for random effects b10, b11 and random effects

b20, b21, respectively. Cov10 11 and Cov20 21 are the covariance between the intercept and

slope, and Cov10 20, Cov10 21, Cov11 20, and Cov11 21 are the covariance between the two sets

of random effects.

The error terms assume following bivariate normal distribution and independent of ran-

dom effects, ε1i
ε2i

 ∼ N


0

0

 , D =

σ2
1 0

0 σ2
2


 . (3.18)

In the survival submodel, we have additional linking element r>2 b2i from the longitudinal

model of Y2.

hi(t) = h0(t)exp(α>xi + r>1 b1i + r>2 b2i), (3.19)

where r1(r11, r12) and r2(r21, r22) are the coefficients linking the longitudinal and survival

parts through the random effects elements. Specifically, parameters r11 and r12 denote the

strength and direction of the association between Y1 and event risk induced by random

intercept and slope at the event time, respectively. r21 and r22 measure the association of Y2

and event risk in the same way.
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3.4.1.1 Estimation Method

The time to event (Ti) is conditionally independent to the longitudinal measurements

(Y1i, Y2i) given the shared random effects bi in the joint model. Let θ denote the combined

vector of all remaining unknown parameters. Conditional on bi, the joint log-likelihood can

be written as

logp(Ti, δi, Y1i, Y2i; θ) = log
∫
p(Ti, δi, Y1i, Y2i, bi; θ)dbi

= log
∫
p(Ti, δi|bi; θ)[

∏
j

p(Y1i, Y2i|bi; θ)]p(bi; θ)dbi,
(3.20)

where the contribution to the likelihood from the event submodel is

p(Ti, δi|bi; θ) = hi(Ti|bi, θ)diexp(−
∫ Ti

0
hi(s|bi, θ)ds). (3.21)

The estimates can be obtained by maximizing the marginal likelihood using the adaptive

Gaussian quadrature method (Pinheiro and Bates, 1995). The derivatives of the adaptive

Gaussian quadrature approximation can be computed using SAS PROC NLMIXED which

performs Newton-Raphson optimization for empirical Bayes minimization of random effects.

Comparing to the maximum likelihood approach which provides only the point estimates

and associated asymptotic standard error estimates for the parameters, Bayesian approach

permits full and exacts posterior inference for any parameter and can also reduce computa-

tional burdens especially with a high dimension random effect structure. The inference is

based on the joint posterior probability distribution of the longitudinal and survival outcomes

specified in form of
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p(θ, bi|Y1i, Y2i, Ti, δi) =
∏
i p(Y1i, Y2i|θ, bi)p(Ti, δi|θ, bi)p(θ, bi)p(θ)∏

i p(Y1i, Y2i, Ti, δi)

∝
n∏
i

{p(Y1i, Y2i|θ, bi)p(Ti, δi|θ, bi)p(θ, bi)}p(θ)
(3.22)

In the Bayesian approach, priors are chosen to be very vague in order to have minor

impact on the posterior inferences. The standard weakly informative priors are as follows:

βs ∼ N(0, 1000),

αs ∼ N(0, 1000),

σ2
ε ∼ gamma−1(0.001, 0.001),

bi ∼ Wishart−1(n,R), where R = diag(0.01, n) (n=2 for univariate longitudinal outcome;

n=4 for bivariate longitudinal outcomes),

γWeib ∼ gamma−1(0.001, 0.001),

rs ∼ N(0, 1000).

Samples are drawn from the posterior distribution using the Gibbs sampler. Convergence

of the sampler is checked using standard convergence diagnostics, e.g. Gelman-Rubin test.

Posterior means and standard deviations of the parameters are computed from these samples

and summarized.

3.4.2 Application to Memory and Aging Project Cohort

In this section, the proposed shared random effects joint model is fitted to the Rush MAP

data that described previously. Our focus is to determine whether and how the cognitive

performance and other related functions measured annually are associated with the time to

AD dementia.
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3.4.2.1 Joint Modeling of Cognitive Decline and AD Risk

We initialize the analysis with jointly modeling the cognitive decline and risk of AD. The

population mean response of Globcog is set as x>ijβij = β0 + β1 × timeij + β2 × age bli

+β3×genderi+β4×edui+β5×ApoE4i; random intercept and slope at subject specific level

are z>i bi = b0i+b1i×timeij; the regression equation for the log-relative-hazard of AD is set as

x>ijα = α0 +α1× age bli +α2× genderi +α3× edui +α4×ApoE4i. The association between

cognitive decline and AD risk is through a latent zero-mean bivariate Gaussian process of

random effects b0i and b1i, which are independent across different subjects.

Bayesian inferences is adopted and we use standard weakly informative prior distributions

for the parameters. We compare 4 joint models with different forms of the latent processes

b>i r linking the longitudinal and survival modes. The construction information and WAIC

for each model are shown in Table VII. We start with a simple model I without random

effects and the WAIC (631.8) is large indicating a poor fit. In Model II, we first introduce

association through the random intercept b0, which leads to a substantial decreased WAIC

(615.4) of the joint model, suggesting an association between the two submodels. Then we

further allow both random intercept and slope in the association between the two submodels

(Model III and Model IV). Comparing the WAIC of all the models, model IV yields the

smallest value (274.9), indicating the best fit. Under this model, r1 and r2 are different. The

result is consistent with what is found in BIC when we apply maximum likelihood estimation.

Table VII: MODEL SELECTION FOR JOINT MODELS WITH DIFFERENT ASSOCIATION
PATTERNS

Model b>i r WAIC(Bayesian) BIC(MLE)
I 0 631.8 3441
II r1b0 615.4 3418
III r1(b0 + b1) 495.2 3389
IV r1b0 + r2b1 274.9 3120
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We present in Table VIII (right) the posterior means of the interested parameters with

95% credible intervals based on Model IV. We found the results are similar to what we get

from the maximum likelihood approach shown in Table VI left. The association between

cognitive decline and AD incidence is explained by parameter r1 (-0.326) and r2 (-5.719),

indicating that a subject’s risk of AD is related to the cognition level at entry and the cogni-

tive decline rate. This is clinically reasonable, since better cognitive performance represents

better mental status; subjects with more rapid cognitive decline would be expected to have

a higher risk of AD. In the joint model, time, age at baseline, gender, education level but

ApoE4 are statistically significant with the cognition. In the hazard submodel, only age at

baseline is positively associated with the risk of AD and the effect of age decreases about a

half of that in the separate survival model. ApoE4, which shows a strong association with

AD risk in the separate hazard model (Table I), has no effect on AD incidence in the joint

model. The different results from the joint model tells us that information from cognition

decline has an impact on the estimation of time to AD dementia.

We show by the joint model the strong association between the cognitive decline and AD

incident through random effects. To further investigate this finding, we plot the estimated

posterior density (Figure 4a) of the median AD onset time for a participant from our study.

This subject did not have AD diagnosed during the observation period. The prediction from

the separate survival model (red) is about 10 to 20 years (Peak is 15 years) after the first

visit. Survival model with cognition score as a time-varying covariate (blue) decreases the

estimated AD onset time by approximately 5 years compared with the separate model. The

plot based on the joint modeling (green) is closer to the plot from the survival model with

time-varying variable for cognition, but predicts a little later AD onset time. We show in

Figure 4b this subject’s specific cognition trajectory. Comparing to the predicted cognitive

decline rate for overall cohort (orange), this subject has a relatively ”bad” trajectory of

cognitive decline (Green line is the subject-specific profile predicted from joint model.). The

selected subject has characteristics associated with a poor brain function degradation and
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Table VIII: PARAMETER ESTIMATES OF SHARED RANDOM EFFECTS MODEL ON COG-
NITIVE DECLINE AND AD RISK

MLE Bayesian
Parameter Mean 95%CI Posterior mean 95%CI
Longitudinal
Intercept (β0) 0.927 (0.580, 1.273) 0.943 (0.589, 1.258)
Time (β1) -0.048 (-0.053, -0.043) -0.048 (-0.052, -0.042)
Age fb (β2) -0.017 (-0.021, -0.013) -0.017 (-0.021, -0.013)
Gender (β3) -0.070 (-0.132, -0.009) -0.071 (-0.133, -0.009)
Edu (β4) 0.054 (0.046, 0.063) 0.055 (0.047, 0.062)
ApoE4 (β5) 0.041 (-0.023, 0.106) 0.043 (-0.017, 0.107)
Ran int (σ2

0) 0.106 (0.093, 0.119) 0.107 (0.095, 0.121)
Ran Cov (Cov01) -0.000 (-0.002, 0.002) -0.000 (-0.002, 0.002)
Ran time (σ2

1) 0.004 (0.003, 0.004) 0.004 (0.003, 0.004)
Error (σ2

ε ) 0.049 (0.047, 0.050) 0.049 (0.047, 0.050)

Proportional hazard
Intercept (α0) -4.675 (-5.218, -4.131) -4.589 (-4.777, -4.409)
Age fb (α1) 0.022 (0.016, 0.028) 0.022 (0.020, 0.024)
Gender (α2) 0.059 (-0.022, 0.140) 0.049 (-0.025, 0.119)
Edu (α3) 0.002 (-0.009, 0.013) 0.002 (-0.010, 0.007)
ApoE4 (α4) -0.015 (-0.090, 0.059) -0.012 (-0.075, 0.059)

Linking
Ran int (r1) -0.325 (-0.413, -0.236) -0.326 (-0.413, -0.235)
Ran time (r2) -5.958 (-6.635, -5.282) -5.719 (-6.424, -5.136)

this is reflected a shorter predicted time to AD onset in the joint model. Separate survival

analysis purely based on the demographic and genotype provides a late onset time, which is

very biased. The difference in the predicted onset time is explained by the fact that the joint

model correctly accounts for the correlation between the cognitive function and the risk of

AD. Models with time-varying covariates can help to adjust the bias as shown in the figure,

but can also lead to an overestimated or underestimated result.

3.4.2.2 Joint Modeling of Cognition and Motor Function Decline

We next investigate the two longitudinal outcomes (cognition and motor) jointly in a

mixed model with a shared random effects structure. The model is fitted using Bayesian
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Figure 4: Posterior density of time to AD and trajectory of cognition for a participant

approach. Particularly, we take inverse-Wishart prior with 4 degrees of freedom for the

variance-covariance matrix of the random effects. Compared to the model without the co-

variances between the two sets of random effects, WAIC is reduced from -7005.1 to -7067.5 for

the proposed model. The results are shown in Table IX. Both global cognitive function and

motor function scores significantly decrease across time with β = −0.048 (95%CL: -0.052,

-0.043) and β = −0.030 (95%CL: -0.031, -0.029), respectively. Age from baseline, gender,

education are associated with cognition and motor function. BMI has a negative effect on

motor function. The covariances between the two sets of the random effects Cov10 20 and

Cov11 21 are positive with 95% credible intervals different from 0, suggesting a significant

association. The individual level random effects correlation between the two outcomes indi-

cates the motor dysfunction and cognitive decline tend to go hand by hand as AD progresses

and should be modelled jointly.
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Table IX: PARAMETER ESTIMATES OF JOINT MODEL FOR COGNITION AND MOTOR
FUNCTION DECLINE

Parameter Posterior
mean

95%CL Parameter Posterior
mean

95%CL

Outcome=Globcog Outcome=Globmot
Intercept (β10) 0.981 (0.630, 1.317) Intercept (β20) 2.676 (2.502, 2.848)
Time (β11) -0.048 (-0.052,-0.043) Time (β21) -0.030 (-0.031, -0.029)
Age bl (β12) -0.017 (-0.021, -0.013) Age bl (β22) -0.018 (-0.020, -0.016)
Gender (β13) -0.073 (-0.138, -0.014) Gender (β23) 0.063 (0.037, 0.087)
Edu (β14) 0.054 (0.044, 0.062) Edu (β24) 0.005 (0.002, 0.009)
ApoE4 (β15) 0.030 (-0.030, 0.099) BMI (β25) -0.010 (-0.012, -0.008)
Ran int (σ2

10) 0.108 (0.096, 0.122) Ran int (σ2
20) 0.024 (0.021, 0.027)

Ran time (σ2
11) 0.003 (0.003, 0.004) Ran time (σ2

21) 0.000 (0.000, 0.000)
Ran cov (Cov10 11) -0.000 (-0.002, 0.002) Ran cov (Cov20 21) -0.001 (-0.001, -0.000)
Error (σ2

ε1) 0.048 (0.047, 0.050) Error (σ2
ε2) 0.013 (0.013, 0.014)

Ran cov (Cov10 20) 0.011 (0.007, 0.016)
Ran cov (Cov10 21) 0.001 (0.001, 0.000)
Ran cov (Cov11 20) 0.000 (-0.002, 0.002)
Ran cov (Cov11 21) 0.000 (0.000, 0.000)

3.4.2.3 Joint Model of Cognition and Motor Decline and AD risk

It will be interesting to include both cognition and motor function when studying the

subjective aging trajectories and AD risk in a joint modeling framework. In application,

this will be more informative because there should be more than one potential factor or

bio-marker related to disease.

Under the shared random effects modelling framework, we assume that there is a stochas-

tic dependence between cognition and motor submodels and the risk of AD through the ran-

dom effects. Based on the result from the above section, we would like to take account for

the subject level correlation between cognition and motor by assuming a multivariate normal

distribution for their random effects (bi in equation 3.16). For the survival part, we postulate

the linking process by b>i r = r11b10i + r12b11i + r21b20i + r22b21i, where (r11, r12) and (r21, r22)

are the linking parameters for the random intercept and slope effects of cognition and motor

function, respectively. Next, we perform model selection among models with different asso-
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ciation patterns. Model with fewer number of parameters and lower WAIC is preferred. We

allow a significantly longer burn-in period for each model followed by convergence diagnostics

in WinBUGS.

Table X shows the WAIC for models with different association patterns for b>i r. Compar-

ing to Model I (WAIC=-8001.9) without shared random effects, the model fit improves with

either adding the random effects from longitudinal model of cognition (Model III, WAIC=-

8376.8) or of motor (Model V, WAIC=-8128.1). However, when cognitive model and motor

model both share random effects with the AD risk model (Model VI-IX), WAIC does not

decrease as low as that of Model III. As we like to keep the model simple, Model III with

fewer number parameters and the smallest WAIC is preferred. It seems that the random

effects from the cognition model are sufficient to account for the association between the lon-

gitudinal trajectories and AD incidence. We also evaluate the Model III* which is the same

as Model III except for an independent distribution of the cognition and motor trajectories.

Higher WAIC (-8337.8) for Model III* compared to Model III suggests the correlation of

the two sets of random effects must be modelled in the joint model and the association of

cognitive decline and AD risk to be investigated need the adjustment of motor function.

Table XI shows the posterior means and 95% credible interval for Model III using

Bayesian estimation procedure. The estimated association parameters rs (γ11 = −0.332,

γ12 = −5.806) are negative and credible interval do not cover 0, meaning that higher initial

level of cognitive performance and slower cognitive decline rate are associated with a lower

risk of AD. In the random effects variance-covariance matrix (4×4) of the cognition and

motor longitudinal submodels, elements Cov10 20 and Cov11 21 reflecting the correlation of

the random intercepts and slopes between the two longitudinal models both have positive

values significantly different from zero.
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Table X: MODEL SELECTION FOR JOINT MODELS WITH DIFFERENT ASSOCIATION
PATTERNS

Model b>i r WAIC
No shared random effect

I 0 -8001.9

Random effects from model of cognition
II r11b10 -8020.5
III r11b10 + r12b11 -8376.8
III* r11b10 + r12b11 -8337.8

Random effects from model of motor
IV r21b20 -8019.4
V r21b20 + r22b21 -8128.1

Random effects from both
VI r11b10 + r21b20 -8006.8
VII r11b10 + r12b11 + r21b20 -8358.8
VIII r11b10 + r21b20 + r22b21 -8155.6
IX r11b10 + r12b11 + r21b20 + r22b21 -8358.9

* The random effects of the cognition and motor are set as independent.

To further investigate the predictive quality on survival time, we compare the estimated

posterior density of the median AD onset time based on Model III and Mode III*. We

present in Figure 5 the estimated subject-specific median AD onset time for a participant

without diagnosed AD in MAP cohort. The plot from Model III (green) differs from Model

III* (red), which does not take account the correlation between the cognition and motor

function trajectories, slightly decreasing the onset time about 2-3 years. The difference is

due to the adjustment of the motor function decline which helps to gain more power in

the analysis by inducing more accurate longitudinal bio-mark information to the event time

model.
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Table XI: PARAMETER ESTIMATES OF JOINT MODEL FOR COGNITION AND MOTOR
DECLINE WITH AD RISK

Parameter Posterior
mean

95%CL Parameter Posterior
mean

95%CL

Outcome=Globcog Outcome=Globmot

Intercept (β10) 0.874 (0.523, 1.210) Intercept (β20) 2.667 (2.497, 2.842)
Time (β11) -0.049 (-0.053, -0.044) Time (β21) -0.030 (-0.031, -0.029)
Age bl (β12) -0.016 (-0.020, -0.012) Age bl (β22) -0.018 (-0.019, -0.016)
Gender (β13) -0.075 (-0.146, -0.018) Gender (β23) 0.064 (0.039, 0.090)
Edu (β14) 0.055 (0.047, 0.064) Edu (β24) 0.006 (0.002, 0.009)
ApoE4 (β15) 0.033 (-0.031, 0.099) BMI (β25) -0.010 (-.012, -0.008)
Ran int (σ2

10) 0.107 (0.095, 0.120) Ran int (σ2
20) 0.004 (0.003, 0.004)

Ran time (σ2
11) 0.024 (0.021, 0.027) Ran time (σ2

21) 0.000 (0.000, 0.000)
Ran cov (Cov10 11) -0.000 (-0.002, 0.002) Ran cov (Cov20 21) -0.001 (-0.001, 0.000)
Error (σ2

ε1
) 0.049 (0.047, 0.050) Error (σ2

ε2
) 0.013 (0.013, 0.014)

Ran cov (Cov10 20) 0.011 (0.007, 0.016)
Ran cov (Cov10 21) -0.001 (-0.001, -0.000)
Ran cov (Cov11 20) 0.001 (0.000, 0.002)
Ran cov (Cov11 21) 0.000 (0.000, 0.000)

Outcome=time to AD

Intercept (α0) -4.237 (-4.547, -4.036)
Agefb (α1) 0.017 (0.015, 0.020)
Gender (α2) 0.064 (-0.012, 0.139)
Edu (α3) -0.002 (-0.010, 0.007)
ApoE4 (α4) -0.011 (-0.087, 0.065)

Association parameters

Ran int (r11) -0.332 (-0.416, -0.203)
Ran time (r12) -5.806 (-6.506, -5.221)
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Figure 5: Posterior distribution of median AD onset time in Model III and Model III*

3.4.3 Discussion

In this section, we use a joint modeling approach through shared random intercept and

slope effects to analyze the longitudinal marker and time to event simultaneously. We show

the joint model provides a better fit to the data and a better prediction for the risk of AD.

Bayesian and maximum likelihood methods are both used and they provide similar results.

Comparing Bayesian versus maximum likelihood approach, Bayesian method is relatively

straightforward to implement with simpler coding and has comparable running time when

model is simple. In addition, we notice the local maximum problem with Newton-Raphson

optimization and need to repeat the estimation with different sets of initial values.

Most joint modeling analysis are typically dealing with a single longitudinal outcome and

a primary event. Motivated by the clinical interest, we proposed an extended joint model

which handles bivariate longitudinal outcomes and time-to-AD. In practice, for the pur-

pose of medical decision-making, clinical studies are likely to gather all possible informative

inferences and incorporate as many as sources of data to improve prediction.
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In this chapter, two major joint modeling frameworks, latent class and shared random

effects, are discussed. Both approaches improve the model fitting and accuracy of predictions

of event risk. However, the former paradigm has no clear interpretation for the association of

the longitudinal and survival outcomes while the latter dose not account for the heterogeneity.

Recently, an interesting work done by Andrinopoulo et al., 2020, incorporated the latent

classes into the shared random effects model for a heterogeneous population. Their proposed

model is able to assess the association between the longitudinal and survival processes while

allowing for latent classes but requires an intensive computational effort.
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4 JOINT MODEL WITH RANDOM CHANGEPOINT IN
LONGITUDINAL MARKER TRAJECTORY AND

COMPETING RISKS IN SURVIVAL PROCESS

4.1 Trajectories of Longitudinal Marker with a Random Changepoint

Sometimes, a linear random effects model may not be suitable in the longitudinal anal-

ysis, if the trajectories of longitudinal marker shows nonlinearity over time. For instance,

AD is characterized by a very long-diagnosis decline, based on literature, we know that an

acceleration of the cognitive decline occurs about 2 to 5 years before the diagnosis of AD

(Amieva et al., 2005). Figure 6 shows state 0 (healthy) to state 1 with slight linear decline

in cognition corresponding to normative age-graded influences and state 1 to state 2 with an

accelerated decline corresponding to the pre-diagnosis phase of AD. Such data exhibiting a

trend of changing in direction are commonly observed in medical and environmental science,

and the two approximately linear phases are assumed linked with continuous transition with

a changepoint. Understanding the shape of this change and the critical time point for sub-

jects who develop event is a challenge and becomes increasingly important for early detection

of subjects at high risk of disease.

Previous studies modeled the trajectories using a quadratic time function or spline func-

tion, which does not allow the identification of the transition from phase 1 to phase 2 for an

accelerated drop rate. Changepoint models have been used to describe the trajectories and

trend of longitudinal measures and allow different linear functions of time corresponding to

the pre- and post-critical time point trends. In the history of the changepoint model, early

in 1970, Hinkley first considered inference about the changepoint problem in a sequence of

random variables from a frequentist approach (Hinkley, 1970). The idea was later extended

in a Bayesian framework for a continuous version of the changepoint (Carlin et al., 1992.

In 2000, Hall first used a piecewise linear mixed model to compare between AD cases vs
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Figure 6: Trajectory of change in global cognition with before diagnosis of AD

AD free subjects the trajectory of cognitive functions (Hall et al., 2000). Later, to relax the

assumption of all subjects having the same changepoint time, he applied Bayesian approach

in a random changepoint model to describe the cognitive decline (Hall et al., 2003). The

piecewise linear model (broken-stick) is a first-step candidate to describe two linear phases

with an abrupt transition and is most widely used. In practice, such sharp change is not

realistic and the non-continuity at the changepoint may cause numerical issue in parameter

estimation, such as the maximum likelihood method. Therefore, a more flexible smooth

changepoint model could characterize the overall natural trend of transition. The general

framework of the random changepoint model can be expressed as

E(Yij) =



f1(tij) tij before transitionij

f2(tij) tij during transitionij

f3(tij) tij after transitionij,

(4.1)
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where f1(.) and f3(.) are functions for the two linear phases and f2(.) is a chosen function

that describes the trend in the transition zone. Depending on the form of f2(.), changepoint

models can be classified into different types. Next, five changepoint models for multiphase

longitudinal data will be discussed: the piecewise (broken-stick) model, Bacon-Watts model

(BW), Griffiths-Miller model (GM), bent-cable model (BC) and polynomial regression model

(PR). All the models introduced are represented in Figure 7.

4.1.1 Broken-Stick Model

For the observed outcome Yij given tij and changepoint τij , the broken-stick model is

given by

E(Yij) =


β0 + β1tij tij ≤ τi

β0 + β1tij + β2(tij − τi) tij > τi

(4.2)

where β0 and β1 are, respectively, the intercept and slope before the changepoint τ , and

β1 + β2 is the slope after the changepoint. The broken-stick model with sudden change

in direction can be implemented in a Bayesian framework and parameter interpretation is

relatively easy.

4.1.2 Bacon-Watts Model

An smooth changepoint model introduced by Bacon and Watts, 1971, is given as

E(Yij) = β0 + β1(tij − τi) + β2(tij − τi)trn((tij − τi)/γ), (4.3)
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where β0 is the value of outcome at the changepoint τ . trn is the transition function which

smooths the intersection between the two lines and γ is a transition parameter. The function

of trn is restricted with the following assumptions:

1. limt→∞ trn(|t|/γ) = 1

2.trn(0) = 0

3. limγ→0 trn(|t|/γ) = sgn(t)

4. limt→∞ strn(|t|/γ) = t

Large value of the transition parameter γ indicates a gradual transition. In particular,

if γ is close to zero, the Bacon-Watts model will imply a quick change. The Bacon-Watts

model implies a smooth change, however, it has some shortcomings. One disadvantage is

that the interpretations of β1 and β2 are not straightforward and no longer have the same

meaning as the broken-stick model. Another problem is that a slight increase of the slope in

decline right before transition is implied in the model, which is not realistic for the sample

with monotonic change in rate, for example, cognitive decline in dementia applications.

4.1.3 Griffiths-Miller Model

In order to avoid the bulge just before the changepoint, Griffiths and Miller, 1973, based

on the Bacon-Watts model, excluded above assumption 2 and used trn(t) =
√
t2 + γ as a

transition function (Griffiths and Miller, 1973). They proposed

E(Yij) = β0 + β1tij + β2

√
(tij − τi)2 + γ, (4.4)



76

where β0 denotes the value of outcome at the changepoint. Direct interpretations of β1 and

β2 are not available. Only when the γ is small enough, β1 − β2 is close to the slope before

the changepoint and β1 + β2 is the slope after.

4.1.4 Bent-Cable Model

Chiu et al., 2006, considered a regression framework, so called bent-cable to analyze data

exhibit smooth transition. The bent-cable methodology provides sufficient flexibility and

interpretability. The model is parsimonious and can be expressed as

E(Yij) = β0 + β1tij + β2q(tij; τi; γ), (4.5)

where

q(tij; τi; γ) = (tij − τi + γ)2

4γ I[τi − γ < tij ≤ τi + γ] + (tij − τi)I[tij > τi + γ], (4.6)

in which, I[∗] is an indicator function that equals 1 if * is true and 0 otherwise. Like the

broken-stick model, β0 and β1 are, respectively, the intercept and slope before the change-

point τ . The q(.) function assumes a quadratic bend. γ is the transition parameter and two

γs cover the transition zone with τ in the center. In other words, the transition starts at time

τ − γ and ends at time τ + γ. When γ is very small, this model is close to the broken-stick

model. β0 + β1 is the slope of the linear phase after changepoint. Sometimes Bacon-Watts

is also called the bent-cable model, which could cause confusion.
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4.1.5 Polynomial Regression Model

Hout et al., 2010, proposed a model, called polynomial model, with regard to the mod-

elling of cognitive decline to link the two linear parts with a curve using a polynomial

function. The random smooth polynomial model is given by

E(Yij) = (β0+β1tij)I[tij < τi]+g(tij; β0; β1; β2; γ)I[τi ≤ tij < τi+γ]+(λi+β2tij)I[tij ≥ τi+γ],

(4.7)

where g is a third-degree polynomial connecting the two lines. β0 and β1 are interpreted the

same as in the broken-stick model. Change in slope starts at τ and ends at τ + γ. With

γ=0 the model becomes a broken-stick model. β2 is the linear slope after change has taken

place. Smoothness of the transition is implied with following constraints as:

g(τi) = β0 + β1τi

g(τi + γ) = λ+ β2(τi + γ)
∂g

∂tij
(τi) = β1

∂g

∂tij
(τi + γ) = β2

(4.8)

Parameter λ is derived by assuming the continuity of the two lines at τ + γ/2, which is

defined as the changepoint. λ can be represented by a function of β0, β1, β2 and γ, and based

on the assumption, it is expressed as λ = β0 + β1(τi + 1/2γ)− β2(τi + 1/2γ).

The model has the advantage of having a direct parameter interpretation on both linear

parts. The high dimensional transition allows smoother transition regimes. The shape of the

transition is not directly determined by the first linear phase but the second, thus it does

not reveal useful information regarding the rate change between the two phases.
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Figure 7: Estimated trajectories based on the Broken-stick model, the Bacon-Watts model,
Griffiths-Miller model, bent-cable model and Polynomial model.
The grey solid line represents the value of τ ; the grey dashed lines are the limits of the bend
area estimated by transition parameter γ.

Since joint modeling framework offers many advantage over the separate analysis, Jacqmin-

Gadda et al., 2006, combined a piecewise model for an acceleration in cognitive change with

a log-normal survival model. Later, Yu and Ghosh, 2010, extended the joint model with

a mixture model for survival data with death competing risk. Both groups considered the

connection between the longitudinal submodel and survival submodel only depending on the

log transformed random changepoint log(τ), which is used as a covariate in the proportion

hazard function. No additional parameters from the longitudinal model were shared with

the survival model.
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4.2 Subsurvival Function with Competing Risks

In survival analysis, an important consideration is informative censoring, namely when

participants without event are lost to follow-up before the end point due to reasons related to

the study. For example, the prevalence of AD is high among the elderly, the follow-up in the

study cohort is often interrupted by death. Participants may die before the visit following

AD onset, without being diagnosed. Also AD and death are highly correlated and share

common risk factors, such as age and gender. Thus the assumption that censored subjects

have the same AD hazard as those at-risk is not fulfilled. Neglecting the competing risks in

time-to-event will cause the estimated effect of a factor on the risk of event to be biased,

particularly for elderly patients with multimorbidity.

In the standard competing setting, the outcome is the time to either of the events or the

censoring time with an indicator for different events (δ=1 if event 1 happens first, δ=2 if

event 2 happens first and δ=0 if censored). Then the cause-specific hazard rate function is

modified from hazard function (Equation 3.3) as:

hk(t) = lim
∆t→0

P (t <= T < t+ ∆t, δ = k)|(T >= t)
∆t . (4.9)

The overall survival likelihood function is a product of multiple likelihoods, one for each type

of failure:

L =
2∏

k=1
hjP (t <= T < t+ ∆t, δ = k)|(T >= t)∆t. (4.10)

Note that some event onset time could be interval censored (e.g. AD diagnosed time)

while some event occurrence can be observed exactly (e.g. death). We assume we have both

types. For the first type of event, the failure time is between two observed times t1 and t2 and

the likelihood for interval censored cases is LEvent1i = [S(t1)− S(t2)]δEvent1i . For the second
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type of case, the likelihood is LEvent2i = f(t)δEvent2i . With right censored Li = S(t)1−δi , the

complete likelihood for survival is:

Li = [S(t1)− S(t2)]δEvent1if(t)δEvent2iS(t)1−δi . (4.11)

The hazard function hk(t) is taken to be Weibull proportional hazard specification with

shape (ak) parameter and scale (λk) parameter as h(t|λk, ak)k = λkakt
(ak−1)exp(x>α), k=1,2

for two competing events.

4.3 Joint Modeling of Longitudinal Outcomes with Changepoints and Com-
peting Events

4.3.1 Framework of the Joint Model

Since smooth changepoint models which are more realistic in practice have never been

jointly estimated with survival outcomes, we like to propose a joint model considering the

above introduced random changepoint frameworks for longitudinal marker trajectories. For

the typical 2-phase shaped change across time, such as cognitive decline, we consider just

one changepoint trajectory that comprises two linear parts linked with a curved bend.

We apply a linear mixed effects model in which the primary time is t. Let Yij be the

longitudinal response of subject i at tj; τi is the time at changepoint of longitudinal re-

sponse of subject i; εij is the residual error and is independently distributed. Additional

covariates xi are considered as β0 = β00 + β>01xi. Both population-level trend (β0, β1 and

β2) and individual-level effects (b0i, b1i and b2i) are included for the intercept and slopes.

Together we have β0i = β0 + b0i (intercept), β1i = β1 + b1i (slope before changepoint),
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β2i = β2 + b2i (slope after changepoint, interpretation varies with different settings), where

bi = (b0i, b1i, b2i)> is multivariate normally distributed N(0,Σb) with zero means and Σb as

a positive-definite matrix. The random changepoint τi is independent from random effects

bi. Based on the transition function, we have different models describing the trajectories of

longitudinal marker.

In addition, we assume that the random changepoint τi follows a truncated normal dis-

tribution N(µτi , σ2
τi

) with the constraint that τi is within a reasonable limit, for example,

between age of 50 and 120 for cognition, given little decline in cognitive performance oc-

curs until people are about 50 years old (Salthouse, 2009). Furthermore, the mean µτi is

depending on a row vector of covariates zi.

For survival submodel, we assume that event time follows a Weibull proportional hazard

model with S(t) = exp(λata−1exp(x>α)). The model will be enriched with considering the

competing risk (event 1 and event 2) and interval censored time of event 1. We here define

a shared random effects joint model linking the longitudinal marker trajectory and the time

to events. Besides x>α in the proportional hazard function, the random changepoint τi and

random effects of intercept and slopes bi are included to link the two processes.

With above described main components, we define the joint model with changepoint ex-

pressed as:
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Longitudinal submodel:

Model (1)Broken− stick

Yij = (β00 + β01xi + b0i) + (β1 + b1i)tij + (β2 + b2i)(tij − τi)I(tij − τi) + εij

Model (2)Batton−Watts

Yij = (β00 + β01xi + b0i) + (β1 + b1i)(tij − τi) + (β2 + b2i)trn[(tij − τi)/γ] + εij

Model (3)Griffiths−Miller

Yij = (β00 + β01xi + b0i) + (β1 + b1i)(tij − τi) + (β2 + b2i)
√

(tij − τi)2 + γ + εij

Model (4)Bent− cable

Yij = (β00 + β01xi + b0i) + (β1 + b1i)tij+

(β2 + b2i)
(

(tij − τi + γ)2

4γ I[τi − γ < tij ≤ τi + γ] + (tij − τi) ∗ I[tij > τi + γ]
)

+ εij

Model (5) Polynomialregression

Yij = [(β00 + β01xi + b0i) + (β1 + b1i)tij]I[tij < τi] + g(tij, β0, β1, β3, b0i, b1i, b2i, γ)I[τi ≤ tij <

τi + γ] + [λi + (β3 + b3i)tij]I[tij ≥ τi + γ] + εij

(4.12)

Changepoint submodel:

µτi = βτ0 + βτ1zi + ετi (4.13)

Survival submodel:

hk(t|h0k, αk, ζk, rk) = hk0(t)exp(αkxi + ζkτi + r1kb0i + r2kb1i + r3kb2i),

where k = 1, 2.
(4.14)

The fixed effects βs may have different interpretations depending on the time scaling. For

example, in broken-stick, bent-cable and polynomial model, β0 notes the value of longitudinal
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response at tij=0, which is not so meaningful when the time is using birth age, while β0

in Bacon-Watts and Griffiths-Miller model is the longitudinal value at changepoint τi; β1

in broken-stick, bent-cable and polynomial model is the slope before changepoint and β2

represents the slope difference of the 2 linear phases in broken-stick and bent-cable model

while β2 is the slope of phases 2 in polynomial model. In Bacon-Watts and Griffiths-Miller,

the interpretations of β1 and β2 are difficult because of the formulation, especially when the

transition parameter γ has a large value.

Note that γ is used in the smooth changepoint model (2-5) as a transition parameter

to provide flexibility to handle the transition zone (i.e. shape and width of the transition

curve). The value of γ can be data driven, rather than pre-determined value. As γ → 0, any

directional change of the slope occurs at τi. All the smooth changepoint models are reduced

to broken-stick model (1) for an abrupt transition.

This link between the longitudinal and survival model is through shared random change-

point and random effects. We assume the independence of the random changepoint and

random effects in the longitudinal model. Depending on the data to be analyzed, the shared

random element structure could be considered to link the longitudinal submodel with the risk

of the primary event or both events in the competing risk survival model. For example, in

cognition and dementia analysis, we think it is necessary to include the random changepoint

τi in both AD and death survival hazard functions, because accelerated decline in cognition

is not only observed prior to AD diagnosis but also begins about 3 to 6 years prior to death

(Wilson et al., 2003).

In the joint model we propose, all the subjects are considered to have the risk of developing

the events of interest and will all experience a changepoint if they are followed long enough.

That is we at this time do not consider cure rate model which assumes a null risk of developing

event for a portion of the subjects. Bringing the cure fraction will increase the complexity
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of the joint model by allowing some of the subjects have a linear trend and uncertainty of

the existence of a random changepoint. We may consider it in future as an extension.

4.3.2 Bayesian Inference

Because the joint likelihood is quite complicated with a large number of parameters, we

apply a hierarchical joint modeling framework for Bayesian inference to directly model the

random changepoint and risk to AD.

We first start with the broken-stick model (1), which is the simplest one among the

five. Note that the discontinuity at the breakpoint causes problems in asymptotic theory

for frequentist approach, and Bayesian method of inference could avoid such unsatisfactory

performance of asymptotics. For Bacon-Watts model (2), we use trn = tanh, i.e. the

hyperbolic tangent, which makes the computation much easier. For Griffiths-Miller model

(3), though the γ value could be predetermined as small as 0.1, which was suggested in

Segalas et al., 2020’s paper when applying on cognitive data, we here like to assign a uniform

prior for it. In polynomial model (5), g is defined as a cubic polynomial with g(x) =

a3x
3 + a2x

2 + a1x + a0. To solve the preceding linear system of four ordinal differential

equations, we follow Yang and Gao, 2013’s work and reduce g(.) to a quadratic polynomial

with the following coefficients: a2 = τi−β1i
2γ , a1 = β1i − β2i−β1i

γ
τi, a0 = β0i + τi−β1i

2γ (β2i)2. We

will present comparisons of these models with both simulated and real data.

We assign π(θ) and π(b) as the prior distributions for the unknown fixed effect parameters

θ and random effects b. The joint prior can be specified as the product of the priors, which

are independent of each other. The joint posterior probability distribution f(θ, b|Y, T ) is

proportional to f(Y, T |θ, b)π(θ)π(b) with:
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Yij|θ, b ∼ N(f(ti, τi, θ, bi), σy2)

β = (β0, β1, β2) ∼ N(µ>β, σ2
βI)

bi = (b0i, b1i, b2i) ∼ N(0,Σb)

τi ∼ N(µτ , σ2
τi

)I(min,max)

βτ = (βτ0 , βτ1) ∼ N(µ>βτ , σ2
βτ I)

γτ ∼ U(0,Maxγ)

α = (α1, α2) ∼ N(µ>α, σ2
αI)

ζ ∼ N(µζ , σ2
ζ )

r(r1, r2, r3) ∼ N(µ>r , σ2
rI).

The above specification can be modified regarding the selected changepoint formulation.

To ensure the estimates are heavily relying on the observed data, we specify priors based

on weakly informative distributions that are commonly implemented in the literature. For

parameters of fixed effects (e.g. βs, βτ s, αs, ζ, and rs), we take normal distribution with

zero mean and large variance (1000); for error terms, we use Gamma−1(0.01, 0.01). For

variance-covariance matrix Σb of random effects, we take a inverse-Wishart distribution

Σb ∼ Wishart−1(3, R), where R = diag(0.01, 3). In the cause-specific hazard function for a

competing-risk setting, we have shape (ak) and scale (λk) parameters for event k and they

both follow a Gamma−1(0.01, 0.01) distribution.

Changepoint τi and transition parameter γ are critical in modeling the shape of the

trend. An unbounded τi or γ may lead to a computational breakdown in the Bayesian

MCMC process. We see as τ →∞, f(ti, τi, ; θ, b) approaches a straight line. Too wide of the

transition interval is meaningless. Careful consideration is required to choose a reasonable

set of prior values for τi and γ. We assign a truncated normal distribution for the random

changepoint with reasonable min/max values and bounded uniform distribution (0, max) for

the transition parameter γτ > 0.
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The convergence of the MCMC samples of the parameters can be monitored by displaying

trace plots and autocorrelations. Samples after excluding the initial burn-in will be diagnosed

by standard methods, e.g. Gelman-Rubin test.

4.3.3 Simulation

Simulation studies allow the comparison of the performances of our proposed models.

We simulate the longitudinal trajectory of a marker, according to the bent-cable model

proposed by Khan and Kar, 2017. This model includes a quadratic bend in the change in

slope to provide sufficient flexibility for the transition zone. The data generated from the

bent-cable model could represent different types of changepoint data and parameters are

easily interpretable, making it more realistic in practice. To make the model simple, we

only consider the time effects (no other covariates) in the longitudinal model that Y (t) =

β0 + b0 + (β1 + b1)t + f(β2, b2, τ, γ, t) + εY , εY ∼ N(0, σ2
Y ), where the changepoint τ takes

a normal distribution N(µτ , σ2
τ ) and the mean of τ is µτ = βτ0 + βτ1x. Covariate x is a

binary variable related to changepoint. Considering the complexity of the joint models with

changepoint, long simulation time and our focus of choosing the best random changepoint

function, here we only take a single event survival model without covariate. The association

between longitudinal marker and time-to-event is depending on the changepoint τ . Random

effects from longitudinal submodels are not included due to different meanings of the effects

regarding different transition formulations in the random changepoint models. The simple

linking structure is supported by previous proposed joint models by Jacqmin-Gadda et al.,

2006 and Yu and Ghosh, 2010. Thus, the survival function is S(t) = exp(−hta) with

h = h0exp(α0 + ζτ).

The true parameter values are chosen based on the application on the real data (MAP)

to allow reasonable generalization. Specifically for each subject, we use his baseline age
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from MAP subtracted by 60 as the time at the first visit. The longitudinal measures are

annually observed until the event or with maximum 15 years and the measurement times are

assumed identical for all subjects. In all the scenarios, we take total subjects n = 400 with

ti = 1, 2, ..., 15(max) for i = 1, 2, ..., n. For each simulation, 500 data sets are generated.

We use 2000 MCMC iterations after burn-in to approximate posterior density. Posterior

summaries are averaged over the 500 replicates for each parameter, and the means and

coverage probabilities (proportion of such intervals out of 500 that capture the truth) is

calculated.

We present simulation results for three scenarios by varying the transition parameter γ,

linking parameter r and slope difference before/after changepoint.

4.3.3.1 Scenario 1

Since data may exhibit an either more or less gradual change in rate, it is important

for the joint model to be flexible to predict the width of the transition. We generate data

from a bent-cable model (quadratic bend) with (a) γ = 2 (4 years for the transition zone),

(b) γ = 0.5 (1 year, close to a broken-stick). Note that, to reduce the model complexity,

based on previous work of Yu and Ghosh, 2010 and Jacqmin-Gadda et al., 2006, we drop the

random slope term b1 before the changepoint because its estimation is close to 0 and 95%

confidence interval covers 0. β0 = 1.0 and slopes parameters are β1 = -0.1 and β2 = -0.5.

The random effect parameters for bi are: σ2
0 = 0.05, σ2

2 = 0.005, Cov02 = 0.004. The residual

of longitudinal response Y and changepoint τ are 0.04 and 9, respectively. The mean of τ

is βτ0 + βτ1x with βτ0 = 88 and βτ1 = 2.0. The binary covariate x follows Binary(0.2). We

assume Weibull distribution for survival function with a censoring rate of 0.40. We further

assume the censoring mechanism is independent of both event risk and longitudinal profile.

The linking parameter ζ in the survival function is set as -0.6 in this scenario. We then fit
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the 5 joint model with different random changepoint functions to each of the simulated data

sets. Tough different model has different parameterizations, our primary interest are the

parameters for the changepoint (βτ0 and βτ1), transition parameter γ, slopes of the 2 linear

phases (β1 and β2), and the risk of event (α and ζ).

Numerical results are summarized in Table XII. Since the direct interpretation from

Bacon-Watts and Griffith-Miller model for βs and γ are not available, the comparison for

these parameters are limited for these two models. Also note that, for polynomial model,

we use τ + γ/2 as a new τ in the comparison, which is the actual changepoint based on the

model defined above. We take β2 − β1 in the polynomial model is for the slope difference

to compare with the β2 in the generating model. For Scenario 1a (4 year-transition), the

bent-cable model and polynomial regression perform pretty well with respect to bias and

coverage rate. For other models, the posterior means are all close to the true parameter

values, while coverage rates are not as good as bent-cable, especially for the variance of the

main outcome. This is not unexpected as the bent-cable model is the generating model.

In Scenario 1b, where the transition is designed to be within a year reflecting a very short

transition period, we see a great improvement in the broken-stick model. In terms of bias

and coverage probability, bent-cable and polynomial models provide similar estimates as

those obtained using the broken-stick model. The results from scenario 1 suggest that the

proposed bent-cable and polynomial regression joint models have the flexibility to describe

the changepoint data that exhibit either an approximately abrupt or gradual transition

between the two lines.

4.3.3.2 Scenario 2

In scenario 2, we assume a relatively weaker effect of the changepoint time on the risk of

event by setting the linking parameter ζ = −0.2 in the generated data. Other parameters
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Table XII: SIMULATION STUDY RESULT FOR JOINT MODEL WITH DIFFERENT TRAN-
SITION FUNCTIONS (SCENARIO 1A AND 1B)

Broken-stick Bacon-Watts Griffith-Miller Bent-cable Polynomial
Scenario Parameter True Mean CR%e Mean CR% Mean CR% Mean CR% Mean CR%
Scenario 1a Longitudinal

β0 1.0 1.40 (0.02) - (-) - (-) 1.00 (0.94) 1.00 (0.93)
β1 -0.1 -0.11 (0.02) - (-) - (-) -0.10 (0.93) -0.10 (0.94)
β2 -0.5 -0.47 (0.00) - (-) - (-) -0.50 (0.90) -0.50 (0.89)
γ 2.0 - (-) - (-) - (-) 2.00 (0.93) 2.00 (0.93)
σε 0.2 0.20 (0.71) 0.21 (0.01) 0.20 (0.37) 0.20 (0.95) 0.20 (0.95)
Changepoint
βτ0 88.0 87.87 (0.87) 88.04 (0.94) 88.11 (0.88) 87.99 (0.95) 87.99 (0.95)
βτ1 2.0 1.95 (0.97) 1.83 (0.95) 1.85 (0.95) 1.99 (0.97) 1.99 (0.97)
στ 3.0 2.95 (0.91) 2.81 (0.59) 2.85 (0.71) 3.00 (0.92) 3.00 (0.93)
Survival
ζ -0.6 -0.61 (0.92) -0.59 (0.93) -0.58 (0.89) -0.60 (0.95) -0.60 (0.96)

Scenario 1b longitudinal
β0 1.0 1.03 (0.93) - (-) - (-) 1.00 (0.95) 1.00 (0.96)
β1 -0.1 -0.10 (0.93) - (-) - (-) -0.10 (0.96) -0.10 (0.95)
β2 -0.5 -0.50 (0.88) - (-) - (-) -0.50 (0.91) -0.50 (0.90)
γ 0.5 - (-) - (-) - (-) -0.50 (0.93) 0.48 (0.96)
σε 0.2 0.20 (0.94) 0.21 (0.09) 0.21 (0.10) 0.20 (0.94) 0.20 (0.94)
Changepoint
βτ0 88 87.99 (0.95) 88.08 (0.92) 88.09 (0.90) 87.99 (0.96) 87.99 (0.94)
βτ1 2 1.99 (0.96) 1.85 (0.95) 1.86 (0.95) 1.99 (0.96) 1.99 (0.96)
στ 3 3.00 (0.93) 2.84 (0.69) 2.85 (0.72) 3.00 (0.93) 3.00 (0.92)
Survival
ζ -0.6 -0.60 (0.95) -0.60 (0.93) -0.59 (0.93) -0.60 (0.95) -0.60 (0.95)

are the same as in scenario 1a. We compare the 5 models’ fit and the results are shown in

Table XIII top. We notice all the 5 models can provide accurate estimates with respect to

the association parameters ζ. Compared to other models, bent-cable and polynomial models

perform better in the case of other parameters.

4.3.3.3 Scenario 3

To assess the model sensitivity to the slope difference before and after the changepoint,

we consider scenario 3 to generate data for which β1 = −0.1 and β2 = −0.1, reflecting

an undramatic change in rate of decline. Other parameters are the same as in scenario

1a. In Table XIII bottom, we see the performance of the bent-cable model in comparison

with the true values is quite satisfactory. The result from the polynomial model is slightly
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Table XIII: SIMULATION STUDY RESULT FOR JOINT MODEL WITH DIFFERENT TRAN-
SITION FUNCTIONS (SCENARIO 2 AND 3)

Broken-stick Bacon-Watts Griffith-Miller Bent-cable Polynomial
Scenario Parameter True Mean CR% Mean CR% Mean CR% Mean CR% Mean CR%
Scenario 2 longitudinal

β0 1.0 1.40 (0.02) - (-) - (-) 1.00 (0.95) 1.00 (0.95)
β1 -0.1 -0.11 (0.02) - (-) - (-) -0.10 (0.95) -0.10 (0.95)
β2 -0.5 -0.47 (0.00) - (-) - (-) -0.50 (0.90) -0.50 (0.88)
γ 2.0 - (-) - (-) - (-) 2.00 (0.96) 2.00 (0.94)
σε 0.2 0.20 (0.70) 0.21 (0.02) 0.20 (0.34) 0.20 (0.94) 0.20 (0.95)
Changepoint
βτ0 88.0 87.86 (0.86) 88.03 (0.94) 88.11 (0.89) 87.99 (0.95) 87.99 (0.94)
βτ1 -2.0 1.95 (0.97) 1.79 (0.93) 1.81 (0.94) 1.99 (0.97) 1.99 (0.97)
στ 3 2.94 (0.90) 2.78 (0.49) 2.82 (0.63) 3.00 (0.94) 3.00 (0.94)
Survival
ζ -0.2 -0.20 (0.96) -0.21 (0.92) -0.21 (0.95) -0.20 (0.96) -0.20 (0.96)

Scenario 3 longitudinal
β0 1.0 1.08 (0.86) - (-) - (-) 1.00 (0.97) 1.00 (0.95)
β1 -0.1 -0.10 (0.86) - (-) - (-) -0.10 (0.96) -0.10 (0.94)
β2 -0.1 -0.10 (0.78) - (-) - (-) -0.10 (0.88) -0.10 (0.86)
γ 2.0 - (-) - (-) - (-) 1.88 (0.93) 1.89 (0.91)
σε 0.2 0.20 (0.94) 0.21 (0.14) 0.21 (0.13) 0.20 (0.95) 0.20 (0.95)
Changepoint
βτ0 88.0 87.88 (0.89) 84.73 (0.00) 84.5 (0.00) 87.99 (0.92) 87.99 (0.90)
βτ1 -2.0 1.99 (0.96) 1.07 (0.10) 1.04 (0.08) 1.99 (0.96) 2.00 (0.96)
στ 3 3.00 (0.95) 1.73 (0.00) 1.69 (0.00) 3.01 (0.93) 3.01 (0.93)
Survival
ζ -0.6 -0.61 (0.89) -0.72 (0.64) -0.73 (0.62) -0.62 (0.89) -0.63 (0.86)

off compared to the bent-cable but still acceptable. The performance of the Bacon-Watts

and Griffith-Miller models are not good with respect to both bias and coverage for the

changepoint parameters, suggesting their inadequacy in detecting the changepoint when

change in slope is not steep.

Figure 8 a-d are the boxplots of simulated bias and standard error for each estimator.

Among all the models, bent-cable leads to the best with respect to both coverage and smaller

bias. In most cases the average of the estimates are almost equal to the true values. The

performance of the broken-stick model is not as good as bent-cable for scenario 1a, 2 and

3, suggesting its inadequacy in characterizing gradual transition over time. However, we

see much improved performance of this piecewise linear model, nearly as well as the bent-

cable model, when data exhibit a quick transition trend (scenario 1b). The Bacon-Watts
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and Griffith-Miller models appear that they cannot handle the simulated data adequately,

especially when the change in slope is not large. Polynomial model’s performance is also

quite satisfactory for all the scenarios but the convergence is noticeably slow due to the

model complexity. Regarding the model’s performance and estimation efficiency, we adopt

the bent-cable model for our further analysis.

4.4 Extension: Joint Model with Bivariate Random Changepoints for Lon-
gitudinal Outcomes

Thus far, we have only examined the joint model with changepoint for one response vari-

able. Clinical and health research shows that many biological changes begin to develop before

the appearance of clinical symptoms. There have been a few studies on joint modeling the

bivariate longitudinal outcomes with different random changepoints simultaneously. In this

session, we propose a bivariate random changepoint model with a focus on the correlations

between the two changepoints. The association of the longitudinal and risk of event through

the changepoints is also interested. Above simulation study suggests a good performance

of bent-cable function in estimating the parameters for random changepoint in proposed

joint model. Motivated by data from MAP study, we develop a joint model for bivariate

longitudinal outcomes using bent-cable describing smooth transition and further extended

with competing risk process.

4.4.1 Framework of the Joint Model

Let Y1ij and Y2ij be the two longitudinal responses of subject i at tj; β10, β11, β12, b10, b11

and b12 be the fixed and random effects for Y1 with β20, β21, β22, b20, b21 and b22 for Y2; τ1i

and τ2i be the times at the changepoint of longitudinal response Y1 and Y2 of subject i,
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Figure 8: Boxplots of the estimated biases for joint models with different transition functions
in simulation study
a.scenario 1a b.scenario 1b c.scenario 2 d.scenario 3
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respectively; γ1 and γ2 be the transition parameters; ε1ij and ε2ij be the residual errors.

Taking bent-cable function for its flexibility in characterizing a changepoint trajectory, we

build the joint model of bivariate longitudinal outcomes as:



Y1ij = (β100 + β101xi + b10i) + (β11 + b11i)t1ij+

(β12 + b12i)
(

(t1ij − τ1i + γ1)2

4γ1
I[τ1i − γ1 < t1ij ≤ τ1i + γ1] + (t1ij − τ1i)I[t1ij > τ1i + γ1]

)
+ ε1ij

Y2ij = (β200 + β201xi + b20i) + (β21 + b21i)t2ij+

(β22 + b22i)
(

(t2ij − τ2i + γ2)2

4γ2
I[τ2i − γ2 < t2ij ≤ τ2i + γ2] + (t2ij − τ2i)I[t2ij > τ2i + γ2]

)
+ ε2ij,

(4.15)

where, we allow the correlation between the two longitudinal markers random effects through

following specific variance-covariance structure which is similar to (3.16 and 3.17):

bi =

b1i

b2i

 ∼ N


0

0

 , D =

Σb1 Σb12

Σ>b12 Σb2


 . (4.16)

The random changepoints τ1i and τ2i are modelled as jointly normally distributed with

unknown mean expressed with covariate z1 and z2, respectively as:

µτ1i = βτ10 + βτ11z1i; µτ2i = βτ20 + βτ21z2i, (4.17)

and the correlation between the changepoints of τ1i and τ2i is:

τ1i

τ2i

 ∼ N


µτ1i

µτ2i

 , D =

 σ2
τ1 Covτ12

Covτ12 σ2
τ2


 . (4.18)
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To model the risk of each competing event, the proportional hazard model is constructed

with full setting:

hk(t|hk, αk, ζk, rk) = hk0(t)exp[αkxi + ζ1kτ1i + ζ2kτ2i+

r11kb10i + r12kb11i + r13kb12i + r21kb20i + r22kb21i + r23kb22i],

where k = 1, 2.

(4.19)

The proposed model establish the association between longitudinal processes and the

onset of clinical events. We need to be cautious when building up the linking between the

longitudinal and survival processes using the shared parameters. Considering longitudinal

responses are usually correlated and one predictor variable in the regression function may

be linearly predicted from the other, adding both responses’ changepoint and random effects

as regressors in the proportional hazard function might lead to multicollinearity problem,

which weakens the statistical power of the joint model. Also it is not practical with too many

variables or random effects included, which will make the estimation process of the already

complex joint model slow and run into a converge problem. The selection of the best model

is most often processed by model comparison. Last, the interpretation of the results should

be clinical meaningful and guided by scientific evidence as one longitudinal trajectory could

be more specifically associated with one of the competing events than the other.

4.4.2 Bayesian Inference

Estimation of joint model with multiple random changepoints would be computationally

challenging. Here we apply a hierarchical Bayesian inferential framework for the joint model

with bivariate random changepoints. The prior distributions for most parameters are similar

to those for the univariate changepoint joint model we proposed previously. They are fairly

vague, minimally informative priors. Specifically in the bivariate changepoint framework,
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for the correlation of the random effects in the longitudinal models, we chose a inverse-

Wishart prior distribution Wishart−1(6, R), where R = diag(0.001, 6); for the jointly mod-

eled changepoints, we use variance (σ2
τ1 , σ

2
τ2) and correlation coefficient ρ to represent their

variance-covariance matrix

 σ2
τ1 ρστ1στ2

ρστ2στ1 σ2
τ2

. The prior for ρ follows uniform distribution

U(−1, 1). ρ reflects the correlation between the changepoints of the two outcomes and it is

mostly likely to be positive as the two longitudinal responses are under a similar tendency.

The priors for the linking parameters r(r11, r12, r13) each follows N(0, 1000) for outcome Y1

and r(r21, r22, r23) follows N(0, 1000) for outcome Y2. The choice of shared random elements

in each hazard function depends on the statistical feasibility and clinic meaningfulness. We

assume the linking framework for bivariate longitudinal markers and two competing events is

either relying on just one longitudinal process or achieved by assigning different longitudinal

trajectories to different events.

We obtain the estimates using MCMC method implemented by WinBUGS. The con-

vergence of the MCMC samples takes a noticeable longer time compared to the univariate

random changepoint joint model.

4.4.3 Simulation

We assess the performance of the proposed method for bivariate random changepoint

joint model in simulation studies. We would like to investigate how well the parameters are

estimated, and particularly, we are interested in assessing the performance of estimators of

the association parameters under different scenarios.

We generate data for N=400 subjects with two correlated longitudinal outcomes (Y1

and Y2) and two competing events (k = 1 and 2). The simulated data is based on the

estimated parameters from fitting the joint model with bent-cable random changepoints to
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the real data. Parameter values are chosen to allow reasonable generation. We assume the

measurement times are annual with maximum follow-up of 15 years and visit time intervals

are identical for all subjects. For the first longitudinal marker (Y1), we have β10 = 1,

β11 = −0.1, β12 = −0.5 and residual variance σ2
ε1 = 0.04, while for the second marker (Y2)

β20 = 2, β21 = −0.2, and β22 = −0.6, and σ2
ε2 = 0.25. Variance parameters for bi is given as:

Σb1 =

 0.05 0.004

0.004 0.005

 ,Σb2 =

 0.02 −0.002

−0.002 0.02

 ,Σb12 =

 0.01 −0.001

0.004 0.001

. The transition

parameters γ1 and γ2 are set as 2 (4 years transition) and 1 year (2 years transition) for

Y1 and Y2, respectively. For changepoints τ1 and τ2, we assume βτ10 = 90 and βτ11 = 2 for

the first marker while βτ20 = 86 and βτ21 = −2 for the second, respectively. The binary

covariates related to µτ1 and µτ2 are z1 ∼ Binary(0.2) and z2 ∼ Binary(0.3), respectively.

We consider two scenarios for the correlation between the changepoints: the first (Scenario

1) corresponds to highly correlated change times with variance covariance matrix

 9 10

10 16


where correlation coefficient ρ = 0.83 while the second one (Scenario 2) has

9 4

4 16

 where

correlation coefficient ρ = 0.33 for a weak correlation. For competing risks, we assume

constant baseline cause-specific hazards using Weibull distribution, which yields, on average,

17% of the subjects with event 1 and 44% with event 2 and 39% are censored. We further

assume censoring is non-informative. That is, the censoring mechanism is independent of

both competing risks and longitudinal processes. We keep association parameters ζ1 and

ζ2 for changepoints in the hazard functions, assuming random changepoint τ1 is negatively

associated with event 1 (ζ1 = −0.5), and τ2 is negatively associated with event 2 (ζ2 = −1.0).

In addition, to assess the inference sensitivity to prior specifications for γ and τ , in Sce-

nario 3 we change γ ∼ U(0, 5) to U(0, 1) (3a) or U(0, 10) (3b), representing a relatively

narrow or wider interval for transition, respectively. We also consider to release the bound-

aries of the truncated normal distribution of τi ∼ N(µτ , σ2
τ ).
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For each simulation, 500 data sets are generated. 2000 MCMC iterations after burn-in

are used to approximate posterior density. Posterior summaries are averaged over the 500

replicates for each parameter, and the means and coverage probabilities (proportion of such

intervals out of 500 that capture the truth) is calculated.

Table XIV, XV and XVI summarize the simulation results of the joint model with bivari-

ate random changepoints for scenario 1,2 and 3a. Figure 9 a-c are the boxplots of simulated

bias and standard error of the estimates. We focus on the following parameters: intercepts,

slopes and variance of the two longitudinal markers, correlation between the random effects,

time of the changepoints, variances of changepoints, and correlations between changepoints,

linking parameters between longitudinal and survival processes. As we can see, the over-

all estimation quality is good with satisfying posterior means and interval coverage under

the assumption of high (ρ = 0.83, Scenario 1) or low (ρ = 0.33, Scenario 2) correlation

between the two changepoints. We also find that when γ has a wider prior distribution

(Scenario 3b), the estimation procedure performs well (Appendix D). However, a narrow γ

prior distribution (γ ∼ U(0, 1)) leads to a poor coverage and larger bias for the parameters

inferencing about the shape of the longitudinal change (βs and γs), while other parameters

estimation remain acceptable (Table XVI). These results show that the proposed Bayesian

model is roughly robust when the true value of γ falls within the interval of uniform prior,

that is, the true γ < upper bound. Note that since γ is positive, a reasonable setting of the

lower bound of is 0. Moreover, further releasing the boundaries of the τ has no effect on

the estimation result. Though boundary seems not necessary for τ in the simulation study

where τi is simulated with an ideal normal distribution, we still suggest resealable boundary

values for τ to improve the estimation efficiency in real data.
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Table XIV: SIMULATION STUDY RESULT FOR JOINT MODEL WITH BENT-CABLE
FUNCTION (SCENARIO 1)

Parameter True Post mean SD CR%
Longitudinal
Outcome1
β10 1.0 1.00 0.09 (0.93)
β11 -0.1 -0.10 0.00 (0.93)
β12 -0.5 -0.50 0.01 (0.92)
γ1 2.0 2.01 0.10 (0.95)
σε1 0.2 0.20 0.002 (0.95)
Outcome2
β20 2 1.98 0.30 (0.92)
β21 -0.2 -0.20 0.00 (0.92)
β22 -0.6 -0.60 0.00 (0.93)
γ2 1.0 0.91 0.27 (0.92)
σε2 0.5 0.50 0.005 (0.90)

Cov10 20 0.010 0.0101 0.0032 (0.90)
Cov10 21 -0.001 -0.0009 0.0006 (0.93)
Cov11 20 0.004 0.0043 0.003 (0.88)
Cov11 21 0.001 0.0009 0.0003 (0.90)

Changepoint1
βτ10 90.0 90.00 0.17 (0.94)
βτ11 2.0 2.02 0.24 (0.95)
στ1 3 3.02 0.12 (0.96)
Changepoint2
βτ20 86.0 85.99 0.23 (0.96)
βτ21 -2.0 -1.99 0.23 (0.96)
στ2 4 4.02 0.15 (0.97)
ρ 0.83 0.83 0.02 (0.95)

Survival
Event1
ζ1 -0.5 -0.52 0.07 (0.92)
Event2
ζ2 -1.0 -1.00 0.05 (0.90)
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Table XV: SIMULATION STUDY RESULT FOR JOINT MODEL WITH BENT-CABLE FUNC-
TION (SCENARIO 2)

Parameter True Post mean SD CR%
Longitudinal
Outcome1
β10 1.0 1.01 0.09 (0.93)
β11 -0.1 -0.10 0.00 (0.94)
β12 -0.5 -0.50 0.01 (0.92)
γ1 2.0 2.01 0.10 (0.94)
σε1 0.2 0.20 0.00 (0.94)
Outcome2
β20 2 1.99 0.30 (0.91)
β21 -0.2 -0.20 0.00 (0.91)
β22 -0.6 -0.60 0.01 (0.92)
γ2 1.0 0.89 0.26 (0.94)
σε2 0.5 0.50 0.00 (0.91)

Cov10 20 0.010 0.0102 0.0033 (0.91)
Cov10 21 -0.001 -0.0009 0.0006 (0.94)
Cov11 20 0.004 0.004 0.0026 (0.87)
Cov11 21 0.001 0.0008 0.0003 (0.88)

Changepoint1
βτ10 90.0 90.00 0.18 (0.94)
βτ11 2.0 2.02 0.39 (0.94)
στ1 3 3.01 0.13 (0.94)
Changepoint2
βτ20 86.0 85.98 0.27 (0.97)
βτ21 -2.0 -1.98 0.37 (0.96)
στ2 4 4.02 0.15 (0.95)
ρ 0.33 0.33 0.05 (0.95)

Survival
Event1
ζ1 -0.5 -0.51 0.05 (0.94)
Event2
ζ2 -1.0 -1.01 0.06 (0.90)
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Table XVI: SIMULATION STUDY RESULT FOR JOINT MODEL WITH BENT-CABLE
FUNCTION (SCENARIO 3A)

Parameter True Post mean SD CR%
Longitudinal
Outcome 1
β10 1.0 1.20 0.09 (0.32)
β11 -0.1 -0.10 0.00 (0.27)
β12 -0.5 -0.48 0.01 (0.02)
γ1 2.0 0.98 0.00 (0)
σ2
ε1 0.2 0.20 0.002 (0.92)

Outcome 2
β20 2 2.03 0.29 (0.91)
β21 -0.2 -0.20 0.00 (0.91)
β22 -0.6 -0.60 0.00 (0.91)
γ2 1.0 0.69 0.14 (0)
σε2 0.5 0.50 0.005 (0.91)
Random effects
Cov10 20 0.010 0.0103 0.0032 (0.91)
Cov10 21 -0.001 -0.0008 0.0007 (0.95)
Cov11 20 0.004 0.0044 0.0029 (0.80)
Cov11 21 0.001 0.0009 0.0003 (0.87)

Changepoint 1
βτ11 2.0 1.99 0.24 (0.81)
στ1 3 2.96 0.12 (0.94)
Changepoint 2
βτ20 86.0 85.99 0.23 (0.95)
βτ21 -2.0 -1.99 0.23 (0.96)
στ2 4 4.01 0.15 (0.95)
ρ 0.83 0.83 0.02 (0.96)

Survival
Event 1
ζ1 -0.5 -0.53 0.07 (0.89)
Event 2
ζ2 -1.0 -1.01 0.06 (0.88)
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Figure 9: Boxplots of estimated biases for joint model with bivariate random changepoints
in simulation study
a.scenario 1 b.scenario 2 c.scenario 3a
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4.5 Discussion

In this chapter, to describe a changepoint trajectory of the longitudinal marker, we in-

vestigated 5 models with random changepoint coupled with survival process with competing

risks. To our knowledge there are few articles comparing the various formulations of the

random changepoint models using Bayesian approach, and this is the first time to combine

the random changepoint model for a smooth transition with time-to-event data. Also, the

changepoint is subject-specific with mean related to some covariates.

We carried out a simulation study to examine the robustness and estimating accuracy of

each changepoint joint model. The broken-stick model has limit use due to its lack of realism.

Bacon-Watts and Griffith-Miller model showed larger bias and poorer posterior interval

coverage. Moreover, interpretation of βs and γ of these two models is not straightforward,

as these parameters are linked with the shape of the transition. The polynomial model takes

considerably longer computing time, making it relatively harder to implement compared to

the bent-cable model.

To account for the variability in all the phases of the longitudinal trajectories and their

association with time-to-event data, we extended the joint models with bivariate random

changepoints. We assumed the correlation between the random changepoints as well as the

subject-specific random intercept and slope. The simulation study confirmed a good perfor-

mance of the proposed joint model. In addition, the proposed methodology is applicable to

studies that is interested in investigating the order of the changepoints of multiple markers.

The model would allow the comparison of the time of changepoint in slope between two

longitudinal markers and provide a useful framework to assess their temporal order.

Our methodology provides a flexible approach to model changepoint trajectories, and

some caution is required. First, γ plays an important role in modeling the shape and width
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of the interval, it is necessary to have its prior distribution to be adequate to describe the

transition phase. In practice, a time-series plot is useful to roughly determine the shape and

timeline of the slope change. Knowledge based on previous studies could be necessary on

choosing the priors (informative priors) and realistic initial values for τ and γ to overcome

the computational difficulties for parameter estimation.

Second, most random changepoint models in previous studies used timescale interpreted

as a delay to event onset, e.g. years before AD dementia diagnosis. It is good as long as

when only the longitudinal trajectories are investigated. However, when we include terms

regarding survival submodels to avoid a selection bias, the joint model approach makes it

necessary to use age or follow-up time from baseline as timescale because the time to event

cannot be determined for censored cases in such design. With a prospective timescale, the

joint model can also be used to make predictions of the event.

Third, the association structure between the longitudinal marker trajectories and event

risks relies on the shared random variables. The choice of random elements in each hazard

function is depending on the statistical feasibility and clinic meaningfulness. Assuming the

related trajectories of the two longitudinal outcomes with changepoints correlated at some

degree, it is not a good practice to have the random changepoint from both longitudinal

models in the same survival function. We could apply some model-selection criterion to

choose an appropriate linking framework for the joint model.

Last, the random changepoint methodology we introduced here is intended for data that

exhibit only one transition period over time. For models with multiple changepoints, the

estimation would be a computational challenge. For a smoother model, we may consider a

smooth function, for example B-spline model, which is capable of capturing the nonlinear

evolution but has difficulties when interpreting the results due to multiple basis functions.

An example of this approach is the work by Mokhles et al., 2012.
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5 APPLICATION ON MAP DATA

In the above section, we introduced the 5 random changepoint models with different

frameworks describing the transition and discussed their properties. The simulation study

results suggest the joint model with bent-cable transition function provides satisfactory per-

formance in modeling different types of changepoint data. Now we demonstrate the appli-

cation of these joint models in the MAP cohort. We first apply the methodology to assess

the existence of a random changepoint in cognitive function and motor function trajectories

by joint model with univariate longitudinal outcome. Then we model these two measures

for both changepoints in a joint modeling framework coupled with health-event data. We

restrict the data to participants having at least five cognitive function assessments (N =

717). The changepoint, τi, is the age of the center in the bent zone between the two linear

phases measured in years, and is allowed to be different across subjects.

5.1 Joint Model with Changepoint in Cognitive Decline and Risk of AD in
the Presence of Death

As the MAP data provide information for the deceased participants, adding the compet-

ing risk of death to the joint modeling framework is available. The model has two events:

AD and AD free death. Compared to Chapter 3, in the section we take into account the

changepoint in cognitive trajectory and the time to death, this approach will provide a bet-

ter fit to the data and more accurate description of the association between longitudinal

outcomes and progression of AD.
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5.1.1 Model Specification

The joint model is formulated under Bayesian framework for statistical inference. Because

joint models are applied to the whole population including events and censored data, we use

age as the timescale. We first specify the longitudinal model for the trajectory of cognitive

function. Gender and education are used as the covariates for cognitive decline. Subject-

specific changepoint τi is the age at acceleration of the decline (center of the transition

zone) and follows a truncated normal with range from 50 to 105 years. The mean µτi is

assumed related to education and ApoE4 as µτi = βτ0 + βτ1edui + βτ2ApoE4i. Note that, in

order to reduce the model complexity, following the previous work of Yu and Ghosh, 2010

and Jacqmin-Gadda et al., 2006, we drop the random effect for phase 1 slope before the

changepoint because its estimation is close to 0 and 95% confidence interval covers 0. In the

final model for cognitive function, we have

Globcogij = (β00 + β01genderi + β02edui + b0i) + β1ageij + (β2 + b1i) ∗ q(ageij; τi, γ) + εij,

where

q(ageij; τi, γ) =
(

(ageij − τi + γ)2

4γ I[τi − γ < ageij ≤ τi + γ] + (ageij − τi)I[ageij > τi + γ]
)
.

(5.1)

Time in the cause-specific hazard survival model is the age of diagnosis of AD or age at

death, and we choose education and ApoE4 as covariates in the AD subsurvival function

(hAD) while gender and education are in AD-free death subsurvival function (hD). More-

over, because of the time gap between evaluating visits, the AD onset time is considered as

interval censored between the diagnosed visit and the visit before (ti(last−1), ti(last)). The link

between longitudinal and survival processes depends on the subject-level age at changepoint

τi, random effects from cognitive trajectory bi. For a better model convergence, we center
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the age at changepoint by subtracting 90. The hazard function of the survival submodel is:


hAD(tADi) = hAD0(t)exp[αAD1edui + αAD2ApoE4i + ζAD(τi − 90) + rAD1b0i + rAD2b1i],

hD(tDi) = hD0(t)exp[αD1genderi + αD2edui + ζD(τi − 90) + rD1b0i + rD2b1i].
(5.2)

We adopt Bayesian method of inference and weakly informative priors are used. Par-

ticularly, the prior for each parameter in (β, βτ , α, ζ, r) has normal distribution with mean

0 and variance 1000. We assign inverse gamma (0.001,0.001) distribution for error term

variances. For random effects variance-covariance matrix, we take a inverse-Wishart distri-

bution Wishart−1(2, R), where R = diag(0.001). Transition parameter γ follows a uniform

distribution of (0, 5).

We construct Markov chains to approximate the posterior density. The converging be-

havior of the chain is monitored by trace and density plots. The length of the the burn-in and

convergence of the Markov chain is determined by Gelman-Rubin diagnostic test (Appendix

E).

5.1.2 Result

We summarize the posterior mean, standard deviation and 95% credible interval of the

parameters in the joint model of cognitive decline with bent-cable function for a changepoint

and AD incidence with competing risk of death in Table XVII. As it can be seen, both gender

and education are highly correlated with baseline cognitive function score. The posterior

mean of the slope before changepoint is almost flat (β1 = 0.006) and the slope increases

dramatically after the changepoint about 50 fold (β2 = 0.30), suggesting the existence of an

acceleration of the cognitive decline in the cognition trajectory. The transition parameter

γ is 2.1, indicating a bent zone of approximately 4 years based on the definition in bent-
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cable transition function. The average age at changepoint is τi = 89.0 for the sample of

717 subjects. Under the formulation, on average, the transition begins at age 86.9 (89.0-2.1)

and ends at age 91.1 (89.0+2.1) with 89.0 in the center. Figure 10 displays the estimated

subject-specific trajectories for 9 randomly selected subjects. We see a good individual fit

with predicted trajectories matching the observed cognitive scores (blue circles) using bent-

cable transition function in the joint model.

Figure 10: Individual observations and predicted cognition trajectories for randomly selected
subjects
Blue circle: observed value; Red line: predicted value.

We assume the changepoint τi follows a normal distribution N(µτi , σ2
τ ), and the result

shows µτi is related to ApoE4 (βτ2 = −3.06) but not education level. The age at the

acceleration of the cognitive decline is about 3 years earlier for ApoE4 allele carriers compared

to non-carriers. Figure 11 shows the estimated curves of the mean cognitive score given the

averaged other covariate values for case of ApoE carriers and non-carriers, highlighting the

differential evolution of the cognitive performance in the years prior to diagnosis according to

the ApoE4 genotype. Before acceleration starts, the two cases have similar cognitive function
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regardless of ApoE4. The changepoints are approximately at ages 86 (84-88 for transition

zone) and 89 (87-91 for transition zone) for ApoE4 carriers and non-carriers, respectively.

The trajectories are parallel by ApoE4 after the transition zone.

Figure 11: Expected cognitive score in the years before the diagnosis of AD by ApoE4
Red line: ApoE4+, acceleration starts at age of 84 (τ = 86); Blue line: ApoE4-, acceleration
starts at age of 87 (τ = 89).

The survival process is modeled jointly with cognitive trajectory through a series of linking

parameters, in which ζAD and ζDeath are the parameters for the changepoint associated with

risk of AD and death, respectively. Both ζs are negative (ζAD = −0.69 and ζAD = −0.49)

with credible intervals not covering 0, indicating subjects with later age at changepoint has

lower risk of AD or death comparing to the ones with earlier change in cognitive decline.

Random intercept and slope terms are both significant in the AD survival submodel (r1 =

−1.82 and r2 = −5.06). The coefficients are both negative, indicating lower cognition score

at baseline or faster decline rate in the accelerated phase is associated with a higher risk of

AD incidence. This is consistent with our result in Chapter 3 from the joint model with

shared random effects and the results from other previous studies. The AD subsurvival model
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Table XVII: PARAMETER ESTIMATES OF JOINT ANALYSIS OF COGNITIVE DECLINE
WITH BENT-CABLE TRANSITION FUNCTION FOR A CHANGEPOINT AND AD INCI-
DENCE WITH COMPETING RISK OF DEATH

Parameter Post mean SD 95%CI
Longitudinal
Intercept (β00) -0.04 0.11 (-0.24, 0.22)
Gender (β01) -0.09 0.03 (-0.15, -0.02)
Edu (β02) 0.06 0.01 (0.05, 0.07)
Age (β1) -0.006 0.001 (-0.008, -0.005)
Age (β2) -0.30 0.02 (-0.35, -0.27)
Transition (γ) 2.10 0.23 (1.64, 2.57)
Ran int (σ2

0) 0.12 0.01 (0.11, 0.14)
Ran cov (Cov01) 0.007 0.006 (-0.004, 0.018)
Ran age (σ2

1) 0.04 0.00 (0.03, 0.05)
Error (σ2

ε ) 0.03 0.00 (0.03, 0.03)

Changepoint
Intercept (βτ0) 89.70 0.44 (88.87, 90.58)
Edu (βτ1) -0.20 0.57 (-1.31, 0.93)
ApoE4 (βτ2) -3.06 0.69 (-4.42, -1.71)
Error (σ2

τ ) 34.70 2.59 (29.89, 40.12)

Survival
Event=AD
Edu (α1) 0.01 0.04 (-0.08, 0.07)
ApoE4 (α2) 0.18 0.26 (-0.35, 0.68)
changepoint (ζ) -0.69 0.03 (-0.74, -0.64)
Ran int (γ1) -1.82 0.37 (-2.51, -1.07)
Ran age (γ2) -5.06 0.64 (-6.34, -3.89)
Event=death
Male (α1) 0.71 0.25 (0.22, 1.22)
Edu (α2) -0.06 0.04 (-0.14, 0.01)
changepoint (ζ) -0.49 0.03 (-0.54, -0.43)
Ran int (γ1) -0.06 0.35 (-0.64, 0.76)
Ran age (γ2) -10.56 1.04 (-12.73, -8.65)



110

shows ApoE4 genotype increases the risk of AD, but the effect is not significant. Since we

have shown the risk of AD is highly correlated with the changepoint, which is associated with

ApoE4, we like to plot the AD-free probability function by ApoE4 in Figure 12. Compared

to non-carries, ApoE4 carriers have an earlier decline in survival rate, which starts around

the beginning of the acceleration of the cognitive decline (age of 84). For competing risk

of death, only random slope in the accelerating phase (Phase 2) is negatively associated

with the risk of death (r2 = −10.56). This is supported by recent study by Lv et al., 2019,

where they found the association of acceleration in cognitive decline with mortality and this

association was independent of initial cognitive function. We are not surprised to see males

having higher risk of death (α1 = 0.71) as many research have shown that women have lower

mortality rates compared to men. Our data also shows higher education level decreases the

risk of death (r2 = −0.06) and effect is marginally significant.

Figure 12: AD-free probability in years by ApoE4
Red line: ApoE4+; Blue line: ApoE4-
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Table XVIII: PARAMETER ESTIMATES OF JOINT ANALYSIS OF COGNITIVE DECLINE
WITH DIFFERENT TRANSITION FUNCTIONS FOR A CHANGEPOINT AND AD INCI-
DENCE WITH DEATH COMPETING RISK

Broken-stick Bacon-Watts Griffith-Miller Bent-cable Polynomial
WAIC=-1424.7 WAIC=-1439.2 WAIC=-1489.0 WAIC=-1492.2 WAIC=-1449.3

τ=88.50(SD=4.80) τ=90.33(SD=4.30) τ=90.81(SD=4.43) τ=89.01(SD=4.74) τ=89.09(SD=4.80)
Parameter mean 95%CI mean 95%CI mean 95%CI mean 95%CI mean 95%CI
β1Age bf CP

-0.008 (-0.010,-0.006) - (-) - (-) -0.006 (-0.008,-0.005) -0.006 (-0.008,-0.004)
β2Age af CP

-0.25 (-0.27,-0.23) - (-) - (-) -0.30 (-0.35,-0.27) -0.28 (-0.31,-0.25)
γ - (-) 0.29 (0.20,0.49) 2.13 (0.85,3.43) 2.10 (1.64,2.57) 4.10 (3.40, 4.82)
βτApoE4 -2.83 (-4.19,-1.53) -3.06 (-4.38,-1.70) -2.57 (-3.89,-1.24) -3.06 (-4.42,-1.71) -3.29 (-4.68,-1.93)
ζAD -0.64 (-0.71,-0.57) -0.25 (-0.29,-0.21) -0.73 (-0.78,-0.69) -0.69 (-0.74,-0.64) -0.42 (-0.46,-0.39)
ζDeath -0.39 (-0.46,-0.33) -0.17 (-0.21,-0.13) -0.40 (-0.45,-0.35) -0.49 (-0.64,-0.43) -0.27 (-0.31,-0.23)

Our model assumes that every subject develops AD eventually and consists of a change-

point in cognitive decline, and we notice that the estimated age at changepoint is not always

observed before the end of the follow-up, especially for the censored. Out of 717 subjects,

we have 132 diagnosed with AD, 200 deceased without AD and 385 censored. Among the

132 AD cases, the estimated changepoints by our proposed joint model are all (100%) taking

place before the diagnosis of AD (last visit), in which 126 (95.5%) are during the follow-up

and 6 are before their enrolled time. The changepoint is found to happen on average 4.02

(SD = 1.73) years before the diagnosis of AD. For 200 AD-free deceased cases, we have 160

(80.0%) cases with changepoint detected before death and we know death could be due to

non-natural causes or from acute abdominal conditions that could be the explanation for

part of the 20% with changepoint estimated after death. The averaged time between age

at changepoint and death is 2.12 (SD = 3.21) years. For the 385 censored cases, we have

96 (24.9%) subjects with changepoint estimated to happen before their end points. These

results are in agreement with previous research conclusion that acceleration in cognitive

decline is several years prior to dementia and death.

We also run the joint models using other transition functions as well as the bent-cable.

The important parameter estimates are summarized in Table XVIII. We see that the averaged

estimated changepoint τ is quite similar in these models, with the earliest of 88.50 years of

age and the latest 90.81 years. ApoE4 is associated with the mean of changepoint in all
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the models with similar effect coefficient (βτ ApoE4 = 2.57 − 3.29), suggesting a consistent

correlation estimation. The model with polynomial regression function shows a tension zone

as γ = 4.0 years, which matches the estimated width of the transition using bent-cable

function. The slopes before and after the changepoint are pretty comparable in Broken-

stick, bent-cable and polynomial model with that slope in phase 2 (after changepoint) is

about 40-50 times faster than the slope in phase 1. The values of γ and βage have no

direct interpretation in Bacon-Watts and Griffith-Miller functions. The linking parameter

ζ through changepoint is negatively associated with risk of AD and AD-free death in all

models. Compared to the broken-stick model, the models with smooth transition function

yield relatively smaller WAIC value. WAICs of Griffith-Miller and bent-cable models are

the smallest among all suggesting a superior fit for the MAP data. From the simulation

study, we know bent-cable has the best performance with smaller bias and better posterior

interval coverage. Another reason that we prefer bent-cable function is its straightforward

interpretation that Griffith-Miller does not provide.

Next we plot the estimated trajectories of cognitive decline according to different settings

for the transition zone in Figure 13 for a selected MAP participant with AD diagnosed during

the follow-up visit. All the models agree in terms of the time at changepoint, which is

estimated between of an age of 93-94 years. Except for the broken-stick model which shows

an abrupt change in direction, models with smooth transition function exhibit a gradual

change over time. We notice the slope in the phase before changepoint is very flat in Bacon-

Watts and is slightly slanting up in the Griffith-Miller model. The slight increase in cognition

before dramatic decline takes over is not realistic in application of cognitive aging. The plots

of bent-cable and polynomial are quite similar, and this agrees with the simulation analysis

result from Chapter 4.
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Figure 13: Estimated trajectory of cognitive decline according to different transition function
for a MAP participant

5.2 Joint Model with Changepoint in Motor function Decline and Risk of
AD in the Presence of Death

Now we would consider the non-cognitive function, such as motor, which may experience

a change of decline with a break point during the progress to AD dementia. Motor function is

a strong risk factor of AD and it was reported that change in motor performance such as gait

speed may precede the onset of cognitive impairments and dementia (Buracchio et al., 2010).

We next apply the joint model with quadratic bent-cable transition function for a changepoint

on the motor function and this has never been investigated by this method before. We assume

motor function exhibiting a similarly shaped trajectory as cognition, where it first decreases

at a slow rate in a linear fashion, then goes through a curved transition phase, followed by

a linear with an accelerated decreasing trend. For the baseline covariates in longitudinal

submodel, we choose gender and body mass index (BMI) which are reported highly related

with the motor skills in older adults (Xu et al., 2018). These two factors are also used in
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predicting the mean of the age at changepoint that µτi = βτ0 + βτ1genderi + βτ2BMI bli.

The other settings of the model are the same as those in the model for cognitive function.

Bayesian method is used for parameter estimation and we present results in Table XIX.

We find the acceleration in motor function decline appears at age of 81.6 (SD=4.5) years

on average. BMI is negatively associated with the mean of the age at changepoint (βτ2 =

−2.34), indicating motor decline is accelerated earlier for subjects with higher BMI value

while gender has no effect. The difference of the slopes before and after transition is 0.020.

The transition parameter γ is 1.7 years indicating a full length of about 3.5 year to finish the

transition. The linking parameter ζs are both significant and negative in the survival function

for AD and AD-free death. We also compare our proposed model fit (WAIC=-6585.5) with

the model for motor function decline without considering a changepoint (WAIC=-5978.8)

and the model using broken-stick function (WAIC=-6528.5). The WAIC-based criterion

suggests that joint model with bent-cable function is supported by the data more than the

other two in terms of fit. Our finding suggests the existence of a random changepoint in motor

function decline before onset of AD or death and the change in decline rate is characterized

as a gradual transition over time. We see for the AD cases (N=132) or AD-free death cases

(N=200) in our analytical cohort, all these subjects underwent accelerated motor function

decline, 9.2 (SD=2.3) years on average prior to AD diagnosis and 10.5 (SD=2.6) years before

death. The result supports the hypothesis that motor impairment is an early marker for AD

dementia. The acceleration in motor function decline can be used as useful information in

the early detection of AD dementia.

To compare the changepoint in motor decline with that in cognitive decline, we take

the difference of the two ages (τcogi − τmoti) within each subject and plot the histogram

(Figure 14a). We find majority of the changepoints of motor are prior to the changepoint

of cognition with mean difference of 7.4 (SD=3.8) years, and this is supported by previous

research result that motor impairments precede cognitive impairment in predicting dementia
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Table XIX: PARAMETER ESTIMATES OF JOINT ANALYSIS OF MOTOR FUNCTION DE-
CLINE WITH BENT-CABLE TRANSITION FUNCTION FOR A CHANGEPOINT AND AD
INCIDENCE WITH COMPETING RISK OF DEATH

Parameter Post mean SD 95%CI
Longitudinal
Intercept (β00) 2.52 0.09 (2.33, 2.69)
Gender (β01) 0.08 0.02 (0.05, 0.12)
BMI (β02) -0.11 0.01 (-0.13, -0.07)
Age (β1) -0.018 0.001 (-0.020, -0.015)
Age (β2) -0.020 0.02 (-0.023, -0.016)
Transition (γ) 1.71 1.29 (0.06, 4.59)
Ran int (σ2

0) 0.024 0.002 (0.020, 0.027)
Ran cov (Cov01) -0.002 0.000 (-0.002, -0.001)
Ran age (σ2

1) 0.000 0.000 (0.000, 0.000)
Error (σ2

ε ) 0.013 0.000 (0.012, 0.013)

Changepoint
Intercept (βτ0) 82.44 1.14 (80.18, 84.68)
Gender (βτ1) -1.28 1.13 (-3.52, 0.91)
BMI (βτ2) -2.34 0.96 (-4.25, -0.45)
Error (σ2

τ ) 46.06 6.79 (33.39, 59.76)

Survival
Event=AD
Edu (α1) 0.04 0.04 (-0.04, 0.12)
ApoE4 (α2) 0.52 0.28 (-0.03, 1.07)
changepoint (ζ) -0.18 0.02 (-0.23, -0.14)
Ran int (γ1) -2.69 1.30 (-5.20, -0.02)
Ran age (γ2) -18.16 8.02 (-33.90, 2.82)
Event=death
Gender (α1) 0.14 0.25 (-0.38, 0.61)
Edu (α2) -0.03 0.03 (-0.08, 0.02)
changepoint (ζ) -0.17 0.03 (-0.23, -0.11)
Ran int (γ1) -2.42 0.97 (-4.14, -0.21)
Ran age (γ2) -16.36 7.67 (-31.40, -1.46)
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syndromes (Montero-Odasso et al., 2014. The scatter plot in Figure 14b shows a rough linear

trend between the changepoints of the two functions. Their correlation coefficient is 0.66

indicating a strong positive association.

Figure 14: Changepoint comparison between cognition and motor function
a. Histogram plot for the age difference between changepoints (τcogi − τmoti)
b. Scatter plot of the age at changepoint for cognition and motor function

5.3 Joint Model for Cognition and Motor Function Decline with Random
Changepoint and Risk of AD in the Presence of Death

Motivated by the results from the separate analysis of the changepoint in cognition and

motor function degradation, we next use the joint model with bivariate changepoints. The

purpose of the bivariate changepoint model is to provide a useful framework to assess the

relationship between the two changepoints by taking their correlation structure into account.

It is interesting to investigate the longitudinal trajectories of cognition and motor function

simultaneously and determine whether the change in motor decline proceeds cognitive im-

pairment or vice versa.
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5.3.1 Model Specification

Based on the simulation study in Chapter 4, we see the good performance of the joint

model for bivariate longitudinal outcomes with random changepoint under bent-cable tran-

sition structure. We fit the proposed joint model of bivariate changepoint to MAP cohort

using the previously described Bayesian framework. Specifically, we use age as the timescale.

For each longitudinal outcome, we keep the same longitudinal modeling structure as in their

separate model except that we only keep ApoE4 and BMI as the covariates in the regression

function for the mean age at changepoint of cognitive decline and motor decline, respectively,

because they show significant association with the changepoint in previous analysis.



Globcogij =(β100 + β101genderi + β102edui + b10i) + β11ageij+

(β12 + b11i)qbent cable(ageij; τ1i, γ1) + ε1ij,

Globmotij =(β200 + β201genderi + β202BMIi + b20i) + β21ageij+

(β22 + b21i)qbent cable(ageij; τ2i, γ2) + ε2ij,

(5.3)

The two longitudinal outcomes are then correlated through the random effects

bcogi
bmoti

 ∼ N


0

0

 , D =

 Σbcog Σbcog mot

Σ>bcog mot Σbmot


 . (5.4)

and their changespoints

τcogi
τmoti

 ∼ N


βτcog0 + βτcog1ApoE4i

βτmot0 + βτmot1BMIi

 , D =

 σ2
τcog ρστcogστmot

ρστcogστmot σ2
τmot


 . (5.5)



118

Our particular interest is the relationship between the changepoints of cognition and mo-

tor function measures. For the linking structure between longitudinal and survival processes,

only the parameters (τ1i, b10i and b11i) based on longitudinal submodel of cognition are con-

sidered in AD and death hazard functions. We have several reasons to choose this setting.

First, based on model selection result in Chapter 3 (Table VI) for the shared random ef-

fects joint model of cognition and motor function, we see the random effects from cognition

longitudinal submodel are sufficient to describe the dependence between the longitudinal

trajectories and rate of AD incidence. Second, the changepoint of motor function appears to

be highly correlated with that in cognitive decline and keeping one changepoint (cognition)

will avoid the multicollinearity problem. The strong association between the time point of

the acceleration in cognitive decline and risk of AD or death has been proved by previous

studies. Third, when we compare the model with different linking structure (Table XX),

sharing parameters from longitudinal model of cognition in both survival functions yields

the smallest WAIC (-10305.6) and thus is preferred. Last, as the model structure is already

complex, we try to avoid using too many parameters in the model for a good estimation

efficiency.

Table XX: MODEL SELECTION FOR JOINT MODELS WITH DIFFERENT SHARED PA-
RAMETERS

Model AD survival function Death survival function WAIC
I ζADτcog + rAD1b0cog + rAD2b1cog ζDτcog + rD1b0cog + rD2b1cog -10305.6
II ζADτmot + rAD1b0mot + rAD2b1mot ζDτmot + rD1b0mot + rD2b1mot -10171.1
III ζADτcog + rAD1b0cog + rAD2b1cog ζDτmot + rD1b0mot + rD2b1mot -10078.6
IV ζADτmot + rAD1b0mot + rAD2b1mot ζDτcog + rD1b0cog + rD2b1cog -10280.7

We use Bayesian MCMC approach to obtain the estimators for the proposed joint models

in WinBUGS. The prior distributions are similar to those in the simulation study. Since the

model is complex and contains more covariates, we consider longer burn-in time and monitor

the trace and density plots of MCMC interactions to check the convergence behaviors.
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5.3.2 Result

Table XXI shows the summary statistics of the posterior distributions of parameters in

the model. The mean slope of cognitive decline is -0.005 points per year before changepoint,

-0.294 after changepoint; the mean slope before the changepoint is -0.018 and is -0.043 after

the changepoint for motor function decline. These parameter estimates are pretty similar

to those obtained from separate models and the slope change is more dramatic in cognitive

decline compared to that in motor function. The time of the acceleration in cognitive decline

comes early for ApoE4 carriers (β = −2.39) while lower BMI delays the age of changepoint

in motor decline (β = −0.69), but its effect is only marginally significant. The transition

zone for cognition and motor function decline is 4.4 years and 5.1 years, respectively. The

posterior mean of the correlation coefficient between the two changepoints is 0.89 (0.82,

0.92), suggesting that the change in cognitive decline is positively and highly correlated

with the change in motor function decline. The mean age of changepoint is 88.7 (SD=5.1)

years for cognitive function and 83.2 (SD=6.2) years for motor function. Furthermore,

we find the acceleration in motor function decline occurs in years before the acceleration of

cognitive decline for 99.4% (N=713) of the sample and the averaged within-subject difference

(τcogi − τmoti) is 5.6 (SD=2.3) years.

We also run the model in which no correlation between the two changepoints is assumed

(ρ = 0). Though the estimates for the interested parameters are similar, the reduced model

yields a much bigger WAIC (-8612.5) compared to the model considering changepoint cor-

relation (WAIC=-10305.6).

The linking parameters for the changepoint ζ between the longitudinal and survival

processes is negative (ζAD = −0.74 and ζDeath = −0.42) and significant in both AD and

Death survival functions. All the shared random effects terms are significant (r1 AD = −1.92,

r2 AD = −5.62 and r2 Death = −9.47) except for the random intercept for death risk. These
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Table XXI: PARAMETER ESTIMATES OF JOINT ANALYSIS OF COGNITION AND MO-
TOR FUNCTION DECLINE WITH BENT-CABLE TRANSITION FUNCTION AND AD INCI-
DENCE WITH COMPETING RISK OF DEATH

Parameter Post mean SD 95%CI
Longitudinal
Outcome=Globcog
Intercept (β00) 0.07 0.10 (-0.27, 0.12)
Gender (β01) -0.10 0.05 (-0.18, -0.03)
Educ (β02) 0.06 0.00 (0.05, 0.07)
Age (β1) -0.005 0.001 (-0.007, -0.003)
Age (β2) -0.29 0.01 (-0.31, -0.27)
Transition (γ) 2.22 0.18 (1.87, 2.56)
Ran int (σ2

0) 0.125 0.007 (0.112, 0.139)
Ran cov (Cov01) 0.005 0.004 (-0.003, 0.013)
Ran age (σ2

1) 0.037 0.004 (0.030, 0.045)
Error (σ2

ε ) 0.03 0.00 (0.03, 0.03)
Outcome=Globcmot
Intercept (β00) 2.56 0.06 (2.44, 2.68)
Gender (β01) 0.07 0.01 (0.04, 0.09)
BMI (β02) -0.10 0.01 (-0.12, -0.07)
Age (β1) -0.018 0.001 (-0.020, -0.017)
Age (β2) -0.025 0.002 (-0.028, -0.022)
Transition (γ) 2.54 1.26 (0.21, 4.84)
Ran int (σ2

0) 0.023 0.002 (0.020, 0.026)
Ran cov (Cov01) -0.002 0.000 (-0.002, -0.001)
Ran age (σ2

1) 0.000 0.000 (0.000, 0.000)
Error (σ2

ε ) 0.01 0.00 (0.01, 0.01)

Covcog0 mot0 0.010 0.002 (0,005, 0.015)
Covcog0 mot1 -0.002 0.000 (-0.003, -0.001)
Covcog1 mot0 0.008 0.002 (0.003, 0.012)
Covcog1 mot1 0.001 0.000 (0.000, 0.001)

Changepoint (cognition)
Intercept (β0τ ) 89.09 0.30 (88.54, 89.66)
ApoE4 (β1τ ) -2.39 0.42 (-3.31, -1.66)
Error (σ2

τ ) 40.55 2.04 (36.25, 44.41)
Changepoint (motor)
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TABLE XXI: PARAMETER ESTIMATES OF JOINT ANALYSIS OF COGNITION AND
MOTOR FUNCTION DECLINE WITH BENT-CABLE TRANSITION FUNCTION AND
AD INCIDENCE WITH COMPETING RISK OF DEATH (CONTINUED)

Parameter Post mean SD 95%CI
Intercept (β0τ ) 84.29 0.42 (83.38, 85.04)
BMI (β1τ ) -0.69 0.43 (-1.45, 0.02)
Error (σ2

τ ) 60.73 3.33 (55.34, 68.31)

correlation (ρ) 0.89 0.03 (0.87, 0.92)

Survival(Event=AD)
ApoE4 (α) 0.16 0.24 (-0.34, 0.62)
Changepoint (ζ) -0.74 0.03 (-0.79, -0.69)
Ran int (r1) -1.92 0.40 (-2.66, -1.07)
Ran age (r2) -5.62 0.62 (-6.75, -4.32)
Survival(Event=Death)
Gender (α) 0.42 0.22 (0.02, 0.89)
Changepoint (ζ) -0.42 0.02 (-0.47, -0.37)
Ran int (r1) 0.28 0.33 (-0.35, 0.92)
Ran age (r2) -9.47 0.95 (-11.34, -7.51)
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Table XXII: MODEL COMPARISON FOR JOINT MODELS WITH OR WITHOUT CHANGE-
POINT CORRELATION

Cognition Motor
Model WAIC τ̃ γCP β1 β2 τ̃ γCP β1 β2
ρ=0 -8612.5 88.6 2.0 -0.006 -0.289 80.7 1.5 -0.017 -0.035
ρ 6=0 -10305.6 88.7 2.2 -0.005 -0.298 83.2 2.5 -0.018 -0.043

results suggest the shape of the cognition trajectory across all time is strongly linked to the

risk of AD and death risk is more related to the time when the acceleration in decline starts

and the slope after. Of other covariates we put in the proportional hazard function, ApoE4

increases the risk of AD, but its effect is not significant; Men have significantly higher risk

of death (α = 0.42) compared to women.

Figure 15 shows the smoothed 3-D distribution of the random changepoints of cognition

and motor function estimated (a) from two separate joint model with AD and death and

(b) simultaneously from one joint model with AD and death. Both plots show a strong

correlation between the two changepoints. The surface is much smoother, and the peak is

very narrow and steep for the joint model with bivariate longitudinal outcomes.

5.4 Discussion

In the last chapter, the proposed methodology is demonstrated with application to the

MAP cohort. We jointly described the evolution of cognition and risk of AD dementia taking

into account a change in the linear trend in the longitudinal marker trajectory. The choice

of a smooth curve for the transition depends on the nature of the data. We adopt the bent-

cable regression method, which models the transition as a quadratic phase with unknown

width. It is desirable to formulate a model that can describe the transition zone accurately

and also provides meaningful and interpretable estimates.
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Figure 15: 3D distribution of changepoints in cognition and motor function decline

5.4.1 Implications of Results

The estimated age at changepoint in cognitive decline starts as early as 71 years old

and mean is 89. The average length before the diagnosis of AD for the changepoint is 4.0

years and is 2.1 years before death without AD diagnosed. If we also account for the death

with AD diagnosed, the average length is 4.5 year before death for the changepoint. These

results are close to what was reported previous research that Hall et al., 2000, found the

changepoint happened on average 5.1 years before diagnosis of dementia and Amieva et al.,

2005, showed a dramatic increase in the rate of decline about 3 years before the diagnosis.

Moreover, Wilson et al., 2003, found abrupt change in the rate of cognitive decline 3 to

6 years before death. Later, Hout et al., 2010, estimated the changepoint around 6 years

before death. Most recent review article based on systematic search of 35 studies for cognitive

performance and neurology outcome measures preceding dementia or death summarized that
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change for cognitive function ranged from 1 to 11 years before dementia onset time, and 3

to 15 years prior to death (Karr et al., 2018).

We reported the changepoint in cognitive decline is related to ApoE4 (β = −3.06) but not

education level. Previous studies found changepoint was delayed for participants with more

education (Yu and Ghosh, 2010; Jacqmin-Gadda et al., 2006), while other research reported

there was no education-related difference for the changepoint (Li et al., 2015). MAP cohort

has relatively higher education level compared to other cohorts and only a small portion of

the sample have less than 9 years of education. This could be a reason for not detecting a

difference in changepoint time by education. There was only one study that examined the

effect of genetic risk of ApoE4 in the changepoint model among dementia cases (Li et al.,

2015), however, they found the ApoE4 allele did not affect the location of the changepoint

before AD. Another study identified an earlier changepoint for ApoE4 carriers by roughly 9

month in cognitive functioning prior to death (Yu et al., 2013). Inconsistent findings across

studies in terms of changepoint component estimation could be due to discrepant research

designs, missing data and different analysis methods. Most previous analysis on changepoint

in cognitive decline only focused on case cohort and formulation of transition for an abrupt

change was commonly used. Our model overcomes these drawbacks by taking into account

the health status as AD dementia and death to avoid selection bias. In addition, the model

with smooth transition possesses great flexibility about the shapes of changepoint trajectories

and improves the model fitting to the data.

This is the first time that motor function trajectory is modeled for a changepoint. The

data support the hypothesis that persons who will develop AD, begin to experience acceler-

ated motor function decline many years before their diagnosis. Motor function may serve as

an early predictor of a future AD diagnosis. However, we notice the increase in the rate of

decline (2-3 times) in motor is not as dramatic as in cognitive decline (about 30 fold), and

the difference may not be easily detected in clinical practice.
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In the final application, we modeled the trajectories of cognition and motor function for

both their changepoints taking account of their correlation, and introducing the longitudinal

trajectories to the AD/death competing risks model. The analysis of bivariate outcomes

having different changepoints has been carried out previously (Hall et al., 2001; Yang and

Gao, 2013; Segalas et al., 2020). These analysis only focused on the AD dementia cases.

Moreover, the correlation structures of the two longitudinal markers are too simple and may

not capture the whole association. Some work did not use smooth transition to model the

changepoint or did not have obvious interpretation for the changes. Here, we provide a

unified framework that accounts for all the issues together, in the same time, performs the

comparison of the changepoints between the longitudinal markers.

5.4.2 Limitation

Joint modeling approach is the appropriate statistical tool for assessing the progression

of longitudinal markers accounting for the health statuses that are related with the endpoint

or vice versa. Identification of a changepoint would provide evidence for an acceleration in

trend and its location would be helpful to determine the timecourse for early detection and

treatment of the disease. Since it is a new and fast developing field in biostatistics, there are

many limitations in this thesis work that we like to mention.

First, changepoint studies may have different settings leading to different results with

respect to study design, statistical model, inclusion of covariates. As noticed, not many

covariates are considered in our model especially the interactions of time with the covari-

ates due to the joint model complexity and computation burden. Ignoring or under-use of

potential variable information may bias the results and conclusions.

Second, for modeling purposes, we only include participants with at least 5 measurements

of cognition and motor function for our analysis. This setting makes the analysis inevitably
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conditional on the subjects who are free of events for a relatively long period of time during

follow-up. This selection could lead to biased results as it limits the investigation on a subset

of population healthier than the rest of the cohort.

Third, our joint model assumes that every subject develops AD dementia eventually and

the trajectories of aging function markers consist of a changepoint. Although there is a rapid

growth in the case number each year, the prevalence of dementia is 5-8% in people aged 60+

years. In reality, there are evidence that some people are immune to AD and it was reported

that individuals exist whose brains are devoid of disease even at the age of 90 years and

beyond (Cooner et al., 2018). The standard survival model is assuming that all the subjects

will experience the event eventually when the follow-up is as long as needed. But in the

presence of a dementia free subgroup, standard survival model may not be appropriate. It

could be expected that a fraction of people, especially among non-AD cases, would present

a linear trend of cognition only. Thus, a joint model, where a cure rate is taken to separate

the subjects into one group having risk of AD with accelerated rate of cognitive decline and

another group of null risk with linear cognitive trend, should be more realistic. That is

the underlying model assumes a mixture distribution for the changepoint. If this null risk

portion exists, Kaplan-Meier survival curve of AD should exhibit a plateau. However, in

MAP data such plateau is not observed, and the null risk portion is not applicable and a

cure model does not work for our study (see Appendix A for Joint model with cure fraction).

5.4.3 Future Work

It is possible that there exists a second changepoint for another deterioration in cognition

just round the time of AD diagnosis or death. Estimation of mixed models with multiple

random changepoints could offer more realistic descriptions of late-life cognitive change but

would be computationally challenging.
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In the late-life period, the trajectories of cognition are heterogeneous as described in

Chapter 3. This is the reason for that random (subject-specific) changepoint fits better than

a fixed one. A single set of random variables (with Gaussian distribution) modeling the

correlation between the repeated measures of longitudinal markers and their relationship

with the event risk may not be sufficient. As the pattern of age-health trajectories is highly

variable and several longitudinal studies of AD dementia report the heterogeneity in the

long-term progression, characterized by the patients’ complex cognitive evolution (Goyal et

al., 2018), the link between the longitudinal outcomes and events needs to be more precisely

defined. A useful alternative would be to jointly model the cognitive decline and risk of AD

using a latent stochastic process but introducing the changepoint within each latent class.

This might lead to a heavy computation and possibility of unidentifiable latent classes,

especially when we consider a smooth transition to model the changepoint. One option is

that we can artificially designate fixed numbers of classes, for example, two latent classes

with one having an accelerated rate of cognitive decline and another with linear cognitive

trend. This approach will release the assumption that all subjects have a changepoint. The

framework should be carefully designed when multiple outcomes are introduced in the joint

model.

In this study we only focus on cognitive and motor change in the pre-AD dementia phase,

and the measures after the diagnosis are not used. It is also interesting to learn the cognition

and motor trends after dementia diagnosis and this will help to understand the whole picture

of the disease development.
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Appendix A

Cure Rate Model

Cure rate models are motivated by relatively common practical example where a fraction of the

subjects continue to survive from the event even after a long follow-up. The ”cure rate” is defined

as an asymptotic value of the survival function and is not directly observed. Cure rate model has

been applied in melanoma and breast cancer research (Cooner et al., 2018). Zhou, 2013, introduced

the concept of immune subgroup for AD research and modeled time to AD with an immune model,

which illustrated that standard survival models may give misleading results. To apply the cure rate

survival model to our case, we used a mixture cure model (MCM), which has been widely applied

for survival analysis with a cure fraction (Berkson and Gage 1952). This model postulates that

an immune fraction, c, of the subjects are cured, immune, or failure-free from the risk (event=0

forever). The survival time of the non-immune subjects follows a proper distribution with survival

function S0(t). The two groups are modeled jointly in a MCM as:

Sall(t | z) = c+ (1− c)S0(t | z). (A.6)

As the first step, we apply the MCM on the analysis of time to AD. Following of work of Yin

and Ibrahim, 2009, who developed a general class of cure models through transformation on the

population COX survival function, we have likelihood as:

L1 = −θ[1− S(t)] (for all observations)

L2 = [xβ + logρ+ (ρ− 1)log(t) + η − eη ∗ tρ] ∗ Eventi (for events)

where, xβ = α0 + α1 ∗ age+ α2 ∗ gender + α3 ∗ educ

θ = exβ (link function)

(A.7)

We use Bayesian framework with first-activation scheme setting assuming a single activation

leads to observed failure. Table XXIII provides the posterior means of the parameters. Unexpect-
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Appendix A (Continued)

edly, we estimate a rather small fraction for c, which is less than 0.01. We next examine the survival

probability plot for our data and we see that the survival probability across years is decreasing at a

constant rate and there is no trend of slowing down at later time (Figure. 16a). Cure rate models

are often used to fit the data that show a plateau (Figure 16b red) of the estimated survival curve

at a value strictly greater than zero. When the plateau of the survival curve is not observed, the

standard survival model may have an acceptable fit before censoring occurs. Based on this result,

we decide not to incorporate a cure fraction on our joint modeling analysis.

Table XXIII: CURE RATE FRACTION MODEL FOR AD INCIDENCE

Parameter Estimate 95% CI
Intercept 0.852 (-3.128, 2.336)
Agefb 0.107 (0.089, 0.125)
Gender -0.003 (-0.294, -0.271)
Educ -0.002 (0.038, 0.036)
η -11.650 (-14.130, -9.611)
ρ 1.850 (1.680, 2.031)
θ 1722
var(θ) 1387
Fraction(c) <0.01

Figure 16: Comparison of survival curves
a. MAP cohort b. Example of plateau in survival curve
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Appendix B

Trace and Density Plots of Markov Chain for Selected Parameters
in Chapter 3

Figure 17: Trace and density plots of Markov chains for selected parameters for model of
cognition and motor
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Appendix B (Continued)

Figure 18: Trace and density plots of Markov chains for selected parameters for model of
cognition and BMI
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Appendix C

Comparison of the Baseline Characteristics among Latent Classes
in Chap 3

Table XXIV: COMPARISON OF THE BASELINE CHARACTERISTICS AMONG CLASSES

Variable Class 1 Class 2 Class 3 P-value
Model of cognition and motor
Age bl, mean 77.18 78.42 81.29 0.01
Male, % 22.48 25.00 19.61 0.55
Educ, mean 15.09 15.06 14.69 0.49
ApoE4, % 17.62 23.25 27.18 0.05
Model of cognition and BMI
Age bl, mean 77.24 78.07 79.03 0.03
Male, % 22.48 25.00 19.61 0.55
Educ, mean 15.19 14.91 14.92 0.51
ApoE4, % 25.52 20.13 21.61 0.36
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Appendix D

Simulation Results for Scenario 3 in Chapter 4

Table XXV: SIMULATION STUDY RESULT FOR JOINT MODEL WITH BENT-CABLE
FUNCTION (SCENARIO 3B, γ ∼ U(0, 10))

Parameter True Post mean SD 95%CI
Longitudinal
Outcome1
β10 1.0 1.00 0.09 (0.93)
β11 -0.1 -0.10 0.00 (0.94)
β12 -0.5 -0.50 0.01 (0.90)
γ1 2.0 2.01 0.10 (0.95)
σε1 0.2 0.20 0.002 (0.95)
Outcome2
β20 2 1.99 0.30 (0.91)
β21 -0.2 -0.20 0.00 (0.91)
β22 -0.6 -0.60 0.00 (0.92)
γ2 1.0 0.89 0.27 (0.92)
σε2 0.5 0.50 0.005 (0.90)

Cov10 20 0.010 0.0101 0.0033 (0.90)
Cov10 21 -0.001 -0.0009 0.0007 (0.93)
Cov11 20 0.004 0.0043 0.0031 (0.88)
Cov11 21 0.001 0.0009 0.0003 (0.86)

Changepoint1
βτ10 90.0 90.00 0.17 (0.94)
βτ11 2.0 2.02 0.24 (0.95)
στ1 3 3.02 0.12 (0.95)
Changepoint2
βτ20 86.0 86.00 0.23 (0.96)
βτ21 -2.0 -1.99 0.23 (0.97)
στ2 4 4.02 0.15 (0.95)
ρ 0.83 0.83 0.02 (0.95)

Survival
Event1
ζ1 -0.5 -0.52 0.07 (0.93)
Event2
ζ2 -1.0 -1.01 0.06 (0.89)
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Appendix E

Trace and Density Plots of Markov Chain for Selected Parameters
in Chapter 5

Figure 19: Trace and density plots of two Markov chains for selected parameters



146

Appendix F

WinBUGS Model for Joint Latent Class Model

# Each ID [ i ] be longs to one or s e v e r a l o f K l a t e n t c l a s s e s

for ( i in 1 :N) {

# K Latent c l a s s c l a s s i f i c a t i o n

c l a s s [ i ] ˜ dcat (p [ i , 1 :K] )

# Class membership p r o b a b i l i t y

for ( k in 1 :K) {

p [ i , k ] <− x i [ i , k ] / sum( x i [ i , ] )

l og ( x i [ i , k])<− int [ k ] + s l p [ k ] ∗ cov1 [ i ]

} #end for k

# Same as p [ 1 :K] ˜ ddirch ( p i [ ] ) i f no c o v a r i a t e

# Class−s p e c i f i c r e g r e s s i o n c o e f f i c i e n t s in l o n g i t u d i n a l model

Beta11 [ i , 1 ] <− beta11 [ c l a s s [ i ] , 1 ] # I n t e r c e p t

Beta11 [ i , 2 ] <− beta11 [ c l a s s [ i ] , 2 ] # Time

Beta21 [ i , 1 ] <− beta21 [ c l a s s [ i ] , 1 ] # I n t e r c e p t

Beta21 [ i , 2 ] <− beta21 [ c l a s s [ i ] , 2 ] # Time

# Class−s p e c i f i c alpha c o e f f i c i e n t s in s u r v i v a l model

Alpha1 [ i , 1 ] <− alpha1 [ c l a s s [ i ] , 1 ] # i n t e r c e p t

Alpha1 [ i , 2 ] <− alpha1 [ c l a s s [ i ] , 2 ] # Time

# Long i tud ina l model for cont inuous outcomes Y1 and Y2

for ( j in 1 :M) {
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Appendix F (Continued)

mu1 [ i , j ] <− Beta11 [ i , 1 ] + Beta11 [ i , 2 ] ∗ t [ j ] + beta1 ∗ cov2 [ i ]

+ b1 [ i , 1 ] + b1 [ i , 2 ] ∗ t [ j ]

Y1 [ i , j ] ˜ dnorm(mu1 [ i , j ] , tau . Y1)

mu2 [ i , j ] <− Beta21 [ i , 1 ] + Beta21 [ i , 2 ] ∗ t [ j ] + beta2 ∗ cov3 [ i ]

+ b2 [ i , 1 ] + b2 [ i , 2 ] ∗ t [ j ]

Y2 [ i , j ] ˜ dnorm(mu2 [ i , j ] , tau . Y2)

} #end for j

# Weibull s u r v i v a l model

Tevent [ i ] ˜ dweib ( r , mu. eta [ i ] ) I ( Tcensor [ i ] , )

mu. eta [ i ] <− pow(mu. etachg [ i ] , −r )

mu. etachg [ i ] <− exp ( Alpha1 [ i , 1 ] + Alpha1 [ i , 2 ] ∗ cov4 [ i ]

+ alpha2 [ 1 ] ∗ cov5 [ i ] )

# Normal random e f f e c t s

b1 [ i , 1 : 2 ] ˜ dmnorm(mu. b1 [ ] , tau . rand1 [ , ] )

b2 [ i , 1 : 2 ] ˜ dmnorm(mu. b2 [ ] , tau . rand2 [ , ] )

# Class propor t ion

N2 [ i ] <− ( c l a s s [ i ]−1)∗(3− c l a s s [ i ] )

N3 [ i ] <− ( c l a s s [ i ] −1)∗( c l a s s [ i ] −2)/2

} #end for i

P2 <− (sum(N2 [ ] ) ) /N

P3 <− (sum(N3 [ ] ) ) /N

P1 <− 1−P2−P3
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WinBUGS Model for Bent-Cable Regression

# Joint model with changepoint us ing bent−cab l e func t i on

# Age i s used as the time s c a l e

for ( i in 1 :N){

for ( j in 1 :M) {

# Long i tud ina l model

Y[ i , j ] ˜ dnorm(mucog [ i , j ] , tau .Y)

x0 [ i , j ] <− ( time [ i , j ]−CP[ i ]+gamma)

x1 [ i , j ] <− pow( x0 [ i , j ] , 2 ) / ( 4 ∗gamma)

∗(1− s tep (CP[ i ]−gamma−time [ i , j ] ) )

∗(1− s tep ( time [ i , j ]−CP[ i ]−gamma) )

x2 [ i , j ] <− ( time [ i , j ]−CP[ i ] ) ∗ s tep ( time [ i , j ]−CP[ i ]−gamma)

x [ i , j ] <− x1 [ i , j ] + x2 [ i , j ]

Y[ i , j ] <− beta [ 1 ] + beta [ 2 ] ∗ cov1 [ i ] + Rand [ i , 1 ] \ \

+ beta [ 3 ] ∗ time [ i , j ] + Rand [ i , 2 ] \ \

+ beta [ 5 ] ∗ x [ i , j ] + Rand [ i , 4 ] ∗ x [ i , j ]

} #end o f j

# Regres s ion o f CP

ageCP [ i ] ˜ dnorm(meanCP [ i ] , tau .CP) I (min , max)

meanCP [ i ] <− beta .CP[ 1 ] + beta .CP[ 2 ] ∗ cov2 [ i ]

# Random e f f e c t s
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Rand [ i , 1 : 3 ] ˜ dmnorm(mu. rand [ ] , tau . rand [ , ] )

# Surv iva l model ( competing r i s k and i n t e r v a l censor )

# Transformed CP

mux [ i ,1]<−exp ( alpha1 [ 1 ] ∗ cov3 [ i ]

+ r [ 1 ] ∗CP[ i ] + r [ 2 ] ∗ Rand [ i ,1 ]+ r [ 3 ] ∗ Rand [ i , 2 ] )

mux [ i ,2]<−exp ( alpha2 [ 1 ] ∗ cov4 [ i ]

+ r [ 4 ] ∗CP[ i ] + r [ 5 ] ∗ Rand [ i ,1 ]+ r [ 6 ] ∗ Rand [ i , 2 ] )

for ( k in 1 : 2 ){

base [ i , k ] <− lambda [ k ] ∗ alpha [ k ] ∗ pow( t2 [ i ] , a lpha [ k ] −1)

h [ i , k ] <− base [ i , k ] ∗mux[ i , k ]

} #end o f k

l og surv [ i , 1 ] <− l og ( exp(−lambda [ 1 ] ∗ pow( t1 [ i ] , a lpha [ 1 ] ) ∗ mux[ i , 1 ] )

−exp(−lambda [ 1 ] ∗ pow( t2 [ i ] , a lpha [ 1 ] ) ∗ mux[ i , 1 ] ) )

l og surv [ i , 2 ] <− −lambda [ 2 ] ∗ pow( t2 [ i ] , a lpha [ 2 ] ) ∗ mux[ i , 2 ]

logL [ i ] <− d e l t a [ i , 2 ] ∗ l og (h [ i , 2 ] ) + d e l t a [ i , 1 ] ∗ l og su rv [ i , 1 ]

+ ( d e l t a [ i ,1 ] −1)∗ ( d e l t a [ i ,2 ] −1)∗ l og su rv [ i , 2 ]

+ d e l t a [ i , 2 ] ∗ l og su rv [ i , 2 ]

phi [ i ] <− 1000 − logL [ i ]

z e ro [ i ] ˜ dpo i s ( phi [ i ] )

} #end o f i
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