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SUMMARY 

  The microbiome plays a vital role in development and regulation of multiple physiological 

functions affecting human health. In particular, the dysbiosis of the gut microbiome has been linked to 

multiple metabolic diseases such as obesity, type 2 diabetes, and inflammatory bowel disease. Over the last 

decade, sequencing technologies have allowed us to characterize the microbiome community at increasing 

levels of resolution. Despite advances in the characterization of the microbiome community, the 

mechanisms by which the microbiome community interacts with its host to drive physiological changes are 

not fully understood. This is due to the complex nature of how the individual microbes within the 

community interact with each other and the host at a metabolic level.  

  To handle the complex nature of the microbiome, studies have turned to machine learning 

approaches for tasks such as host phenotype prediction. These methods identify subjects who may be at 

risk for developing certain diseases and identify disease-specific microbial biomarkers. However, to obtain 

a better understanding of the underlying mechanisms leading to disease pathogenesis, additional data 

modalities, such as metabolomics, metagenomics, and host genomics, should also be considered. Not only 

is the integration of multiple data modalities in computational modeling a challenge in itself but doing so 

also greatly increases the complexity of the data to which computation models are being designed to model. 

  In this thesis, we will present computational methods and tools we have developed for the 

integration of multiple data modalities in different microbiome analyses. The first is the integration of 

phylogenetic information with microbial abundance for the task of host phenotype prediction in our tool, 

“PopPhy-CNN”. The second is the integration of metabolomic abundance with microbial abundance for 

the inference of microbe-metabolite interactions in our tool, “MiMeNet”. The last is the integration of 

patient characteristics and external factors with longitudinal microbiome abundance profiles for the  
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SUMMARY (CONTINUED) 

modeling of dynamic shifts in microbiome communities in our tool, “DiRLaM”.   Together, these methods 

aim to provide a suite of robust and scalable tools, assisting researchers in predicting host disease status, 

identifying microbes related to disease, uncovering the metabolic function of these microbes, and 

identifying potential treatment routes for improving patient health through microbiome targeted 

therapeutics. 
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Chapter 1 

 

Introduction 

 
  The microbiome consists of a community of microscopic organisms cohabitating in a shared 

environment and has been shown to impact both host development, normal metabolic processes, as well as 

the pathogenesis of various diseases. Of particular interest is the microbiome of the human gut, which has 

been linked to multiple metabolic diseases such as inflammatory bowel disease (IBD), obesity, and type 2 

diabetes (T2D) (Franzosa et al., 2019; Kostic et al., 2015; Tilg & Kaser, 2011) as well as other non-

metabolic diseases such as colorectal cancer and atherosclerotic cardiovascular disease (Ahn et al., 2013; 

Jie et al., 2017). The dysregulation leading to the pathogenesis of these diseases is largely suspected to 

occur at the metabolic level through interactions between the microbiome and the host (Kinross, Darzi, & 

Nicholson, 2011). Therefore, identifying microbes associated with disease status and uncovering the 

metabolic function of these microbes can facilitate the development of novel therapies that either alter the 

microbiome (probiotic/prebiotic) or target metabolic pathways (Cani & Delzenne, 2011; Helmink, Khan, 

Hermann, Gopalakrishnan, & Wargo, 2019; Preidis & Versalovic, 2009).  

  Given the microbiome’s role in various diseases, one important task is the identifications of 

associations of microbes with host disease phenotype. One common approach for associating microbes to 

host disease status has been through microbiome-wide association studies (MWAS) (Gilbert et al., 2016), 

which use different statistical approaches such as DESeq2 (Love, Huber, & Anders, 2014) and ANCOM 

(Mandal et al., 2015) to identify groups of microbes associated with disease status. Recently however, 

machine learning (ML) and especially deep learning (DL) models demonstrated the potential of developing 

a microbial biomarker signature for the prediction of the host phenotype (Ditzler, Polikar, & Rosen, 2015; 

LaPierre, Ju, Zhou, & Wang, 2019; Pasolli, Truong, Malik, Waldron, & Segata, 2016; Wingfield, Coleman, 

McGinnity, & Bjourson, 2016). Due to their abilities to capture complex relationships within data, ML and 
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DL models are believed to be well suited for the modeling of microbiome and microbial community 

metabolome data, allowing for more robust identification of disease related microbial biomarkers (Geman 

et al., 2016; LaPierre et al., 2019).  Additionally, the use of ML models to predict host phenotype allows 

for the construction of clinical tools for quickly diagnosing new patients based on their observed 

microbiome (Cammarota et al., 2020; Manandhar et al., 2021).  

Once a set of disease-related microbes has been identified, there is a challenge in identifying the 

underlying mechanisms of the metabolic dysregulation caused by the microbial biomarkers. The 

identification of these microbiome-metabolome interactions contributing to the development of disease is 

essential for both understanding microbiome’s overall effect on host health, as well as for the development 

of metabolic targeted clinical therapies for the prevention or management of disease (Cani & Delzenne, 

2011; Helmink et al., 2019; Skelly, Sato, Kearney, & Honda, 2019). To uncover these interactions, previous 

methods have leveraged a priori knowledge (Edwards, Covert, & Palsson, 2002; Larsen et al., 2011). 

However, the reliance on a priori knowledge makes it impossible to discover novel interactions. Recently, 

studies generating paired microbiome and metabolome data have emerged, allowing for data-driven models 

to reveal the underlying microbe-metabolite interactions leading to metabolic dysregulation and disease. 

The emergence of these datasets has given rise to a need for data-driven computational tools and 

methodologies for the integration and exploration of paired microbiome-metabolome data. 

In addition to the identification of a disease related set of microbial biomarkers, the development 

of therapeutic treatments and interventions requires an understanding of how the microbiome community 

changes over time when certain stimuli are applied. This requires the collection and modeling of 

longitudinal microbiome data combined with additional host characteristic information. To infer the 

dynamics of the microbiome community, studies have often used methods such as Boolean Networks, 

Dynamic Bayesian Networks (DBN), or generalized Lotka-Volterra equations (gLV) (Bunin, 2017; 

Claussen et al., 2017; Joseph, Shenhav, Xavier, Halperin, & Pe’er, 2020; Lugo-Martinez, Ruiz-Perez, 

Narasimhan, & Bar-Joseph, 2019; Michael J McGeachie et al., 2016; Ruiz-Perez et al.; Shenhav et al., 
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2019; Steinway, Biggs, Loughran, Papin, & Albert, 2015). These methods have shown success in early 

disease-related microbiome datasets (Lloyd-Price et al., 2019). However, each method is computationally 

constrained with regards to both sample size and feature size. This is quickly becoming a challenge with 

the emergence of larger longitudinal microbiome datasets as well as an increased resolution in sequencing, 

allowing the analysis of the microbiome community at the species or even strain level. As such, the 

development of scalable computational models describing the interactions between the specific microbiome 

community components is critical for understanding the underlying function and dynamics of the 

microbiome (Waldor et al., 2015). 

 

 1.1 Problem Identification 

  For the task of predicting host phenotype, recent studies have shown that constructing abundance 

of features using the hierarchical structure of the taxonomic tree can lead to better classification 

performance (Oudah & Henschel, 2018; Qiu, Tian, & Zhang, 2015). However, there has been a lack of 

integration of taxonomic information in deep learning frameworks. At the time of our work, there had been 

only two DL models using phylogeny for the prediction of host disease. The first trains a convolutional 

neural network (CNN) using the phylogenetic patristic distance to group the observed microbes together 

(Fioravanti et al., 2018). However, this model does not consider the hierarchical features of the entire tree. 

More recently, a method using graph convolutional neural networks (GCNN) has been put forward (Khan 

& Kelly, 2020). Using multiple multi-class disease dataset, they found that the GCNN model outperformed 

current state-of-the-art ML methods. However, both methods apply their CNN models as a black box; 

neither method extracts important features used in the prediction task. Therefore, an interpretable deep 

learning model that can integrate multiple hierarchies of taxonomy could potentially improve host 

phenotype prediction as well as provide a more robust set of microbial biomarkers. 
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  Another task in microbiome studies is uncovering the underlying metabolic function of different 

microbes. Previous methods have used a priori stoichiometric knowledge in order to model microbe-

metabolite interactions (Edwards et al., 2002; Larsen et al., 2011). However, because they rely on a priori 

knowledge, these methods are unable to uncover new relationships. With the emergence of metabolomic 

data, it is now possible to learn microbe-metabolite relationships in a data-driven manner, which may lead 

to novel discoveries and downstream hypothesis generation. To our knowledge, only two tools are available 

for this task by using microbial features to predict metabolomic features. The first uses Elastic Net linear 

regression, which we believe is not well suited to capture the non-linear nature of microbe-metabolite 

interactions (Mallick et al., 2019). The second uses a neural encoder with positive weights to learn a latent 

space between the microbiome and metabolome (Le, Quinn, Tran, & Venkatesh, 2019). By only allowing 

for positive weights, it cannot model the microbial degradation of metabolites. In addition, the 

interpretability of the model diminishes through the use of the latent space. Therefore, there is a need for 

an interpretable model that can capture the complex interactions between the microbiome and metabolome.  

  In addition to identifying disease-related microbial biomarkers and their metabolic function, it is 

important to be able to model the dynamic structure of the microbiome under different conditions. This will 

empower clinicians and researchers to better understand how to treat a patient by altering their microbiome 

from an unhealthy composition to a healthy one. Current methods for modeling microbiome dynamics rely 

on probabilistic models such as Boolean or Dynamic Bayesian Networks (Äijö, Müller, & Bonneau, 2018; 

Michael J McGeachie et al., 2016; Shafiei et al., 2015). However, these methods cannot handle large sets 

of features, and as such, integrating large amounts of patient data is not feasible. By using deep learning 

models, multiple types of data can be integrated seamlessly, allowing for scalable modeling of microbiome 

dynamics. 
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1.2 Thesis Outline 

The research in this dissertation focuses on developing novel deep learning methods for analyses 

of the microbiome that integrate microbiome abundance data with additional omics data in order to provide 

a better understanding of the microbiome’s role in the development of disease. The research described in 

this dissertation is organized in the following manner: 

 

Chapter 2 provides a background of microbiome research and the different physiological functions 

the microbiome has on the host. We discuss common analysis procedures for microbiome data used in 

disease-related studies. Additionally, we will discuss the training and interpretation of common ML 

methods used in microbiome studies. Lastly, we will discuss common deep learning frameworks and their 

applications across multiple domains of computational biology. This chapter is partially based on the 

publication: 

• Reiman, Derek, Ulises Sosa, and Yang Dai. "Machine Learning in Identification of Disease-

Associated Microbiota." Inflammation, Infection, and Microbiome in Cancers: Evidence, 

Mechanisms, and Implications: 431. 

 

   In Chapter 3, we will briefly discuss recent ML approaches for the prediction of host phenotype 

and discovering disease-related microbial biomarkers and their current limitations. We will then introduce 

three frameworks that we have developed to address the varying limitations. The first framework, “PopPhy-

CNN”, uses a convolutional neural network framework that integrates phylogenetic information to spatially 

organize microbial abundance data, improving the performance of host phenotype prediction across 

multiple complex disease states and allowing for the identification of disease-related microbial biomarkers 

and different taxonomic levels. The second framework, “Meta-Signer”, further improves the identification 
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of disease-related microbial biomarkers by combining the microbial features identified by “PopPhy-CNN” 

with microbial features found across multiple ML methods. “Meta-Signer” uses a rank aggregation 

approach to combine the multiple ranked lists into a single, robust list of disease-related microbial 

biomarkers. The last framework employs a conditional adversarial network model in order to augment 

microbiome datasets to improve the performance of host phenotype prediction. Better prediction of host 

phenotype, especially in more complex disease states, will result in the identification of more robust 

microbial biomarkers for early diagnosis and as potential targets for downstream studies of probiotic 

therapy. This chapter is based on the following list of publications: 

• Reiman, Derek, Ahmed Metwally, and Yang Dai. "Using convolutional neural networks to explore 

the microbiome." 2017 39th annual international conference of the IEEE engineering in medicine 

and biology society (EMBC). IEEE, 2017. 

• Reiman, Derek, Ahmed A. Metwally, Jun Sun, and Yang Dai. "PopPhy-CNN: a phylogenetic tree 

embedded architecture for convolutional neural networks to predict host phenotype from 

metagenomic data." IEEE journal of biomedical and health informatics 24, no. 10 (2020): 2993-

3001. 

• Reiman, Derek and Yang Dai. Using Conditional Generative Adversarial Networks to Boost the 

Performance of Machine Learning in Microbiome Datasets. In Proceedings of the 1st International 

Conference on Deep Learning Theory and Applications - DeLTA, ISBN 978-989-758-441-1. 2020 

• Reiman, Derek, Ahmed A. Metwally, Jun Sun, and Yang Dai. Meta-Signer: Metagenomic 

Signature Identifier based on rank aggregation of features [version 1; peer review: 1 approved with 

reservations, 1 not approved]. F1000Research. 2021; 10:194 

• Reiman, Derek, Ali M. Farhat, and Yang Dai. "Predicting host phenotype based on gut 

microbiome using a convolutional neural network approach." In Artificial Neural Networks, pp. 

249-266. Humana, New York, NY, 2021. 
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   In Chapter 4, we will discuss the current state of methodologies for inferring microbe-metabolite 

interactions and their limitations. Then, we will introduce our novel framework “MiMeNet”, one of the first 

data-driven approaches to leverage paired microbiome-metabolome data for identifying novel microbiome-

metabolome interactions. “MiMeNet” uses a neural network approach for the prediction of the entire 

metabolome from the host’s or environment’s microbiome community. By modeling the entire metabolome 

at once, “MiMeNet” leverages shared information across similar metabolites to improve the overall 

performance of the model. Additionally, the modeling of the entire metabolome makes “MiMeNet” more 

scalable than the current univariate approaches. The weights of the trained neural network are then used for 

both the clustering the microbes and metabolites into functional modules and the identification of module-

module interactions. “MiMeNet” is evaluated on three paired microbiome-metabolome datasets, one of 

which comprised of healthy subjects and patients with IBD. Using the IBD dataset, “MiMeNet” clustered 

the microbes and metabolites into modules, some of which were strongly associated to disease status. In 

particular, “MiMeNet” was able to group the metabolites into functional groups in which the members of 

a module shared similar metabolic class or pathway. By linking these functional metabolic modules with 

microbial modules, “MiMeNet” not only was able to identify previously validated microbe-metabolite 

interactions, but also provide novel microbe-metabolite interactions, allowing for future hypothesis 

generation and potential candidates for metabolic targeted therapy. This chapter is based on the following 

publication: 

• Reiman, Derek, Brian T. Layden, and Yang Dai. "MiMeNet: Exploring microbiome-metabolome 

relationships using neural networks." PLoS Computational Biology 17, no. 5 (2021): e1009021. 
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  Finally, in Chapter 5, we will discuss current methods used to model microbe-microbe and 

microbe-environment interactions using longitudinal microbial abundance data and their limitations. We 

will then introduce our work based on a conference paper to address these limitations in which we use three 

longitudinal mouse microbiome datasets to model the dynamics of the microbiome community based on 

two different diets (D. Reiman & Dai, 2019). In this work, we combine two DL frameworks: an autoencoder 

(AE) for reducing the microbiome community into an intrinsic latent structure and a deep neural network 

(DNN) for modeling the microbiome dynamics within the reduced latent space. The use of the AE allows 

for the reduction of noise in the data, a common challenge in microbiome data, while the use of the DNN 

allows for better modeling of complex relationships. Additionally, by modeling the dynamics within the 

latent space, the number of DNN parameters are kept to a minimum. Furthermore, we will present the 

extension of this work into a larger framework, “DiRLaM”. “DiRLaM” extends the previous work in three 

ways. First, it applies a novel diversity-regularization effect on the AE model to reduce the noise in 

microbiome datasets. Second, it applies interpolation within the latent space rather than through traditional 

splining techniques Lastly, we expand it to incorporate additional environmental factors other than diet and 

facilitate both the identification of which factors are significant in the modeling of microbiome dynamics 

and how these factors impact the dynamics of the microbiome community as well. We show that DiRLaM 

is more stable and more robust to noise in microbiome data compared to current methods.  This chapter is 

based on the following conference paper as well as work extending the conference paper, currently being 

written for journal submission: 

• Reiman, Derek, and Yang Dai. "Using Autoencoders for Predicting Latent Microbiome 

Community Shifts Responding to Dietary Changes." In 2019 IEEE International Conference 

on Bioinformatics and Biomedicine (BIBM), pp. 1884-1891. IEEE, 2019.  
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1.3 Significance of Thesis Work 

The development of these therapeutics requires an understanding of which microbes are associated 

with disease and the underlying metabolic dysregulation caused by these microbes. The methods/tools 

presented in this thesis are designed to improve microbiome analyses using different DL methodologies to 

either augment or integrate additional data modalities in novel approaches. Specifically, “PopPhy-CNN” 

integrates phylogenetic spatial information to improve the prediction of host phenotype in complex multi-

class disease states. “PopPhy-CNN” not only facilitates the identification of disease-related microbial 

biomarkers at different taxonomic levels but can also be used to develop powerful diagnostic tools for 

complex diseases. We show that the task of host phenotype prediction can be further improved by 

augmenting microbiome dataset with synthetic data generated from a CGAN model. “MiMeNet” is one of 

the first data-driven approaches to integrate paired microbiome-metabolome data and facilitates the 

clustering of microbes and metabolites into meaningful functional modules, empowering the identification 

of novel microbe-metabolite interactions underlying the metabolic dysregulation of disease. The last tool, 

“DiRLaM”, is the first DL approach for modeling microbiome dynamics to our knowledge, and it combines 

an AE and DNN to integrate environmental factors with microbiome data in longitudinal study to accurately 

model longitudinal microbiome data and identify significant environmental factors affecting the 

microbiome community dynamics. The identification of these factors and their effect on the microbiome is 

critical in the identification and testing of therapeutic interventions designed to target the microbiome. 

Together, this work aims to provide a suite of robust and scalable tools, assisting researchers in predicting 

host disease status, identifying microbes related to disease, uncovering the metabolic function of these 

microbes, and identifying potential treatment routes for improving patient health through microbiome 

targeted therapeutics. 
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Chapter 2 

 

Overview of Microbiome Studies in Disease and Machine Learning Methods 

 

Copyright 2021 The American Physiological Society. Reprinted, with permission, from Reiman, Derek, 

Ulises Sosa, and Yang Dai. "Machine Learning in Identification of Disease-Associated Microbiota." 

Inflammation, Infection, and Microbiome in Cancers: Evidence, Mechanisms, and Implications: 431. 

 

2.1 Microbiome Studies in Disease 

The microbiome is a collection of microscopic organisms (bacteria, fungi, protozoa, and viruses) 

that live in s shared environment. This collection of microbes is considered to functionally interact with its 

host or environment. The microbiome communities on and within the human body have been shown to 

impact host physiology, normal metabolic processes, as well as the pathogenesis of various diseases.  These 

microbial communities can be shaped by many factors such as host genetics and lifestyle (Turnbaugh et al., 

2007; F. Xu et al., 2020), hormones (Mallott, Borries, Koenig, Amato, & Lu, 2020), diet (Carmody et al., 

2015; Creswell et al., 2020), and geographical location (J. Chen et al., 2016; Gaulke & Sharpton, 2018) 

(Figure 1). 

In particular, the human gut microbiome, which is the combination of the stomach and intestinal 

microbiomes, has been linked to a wide range of functional roles within the human body (Figure 2). Like 

other microbiome communities, the gut microbiome provides a protective layer against pathogens 

(Hansson, 2012) in addition to the production of essential vitamins and nutrients for the host (Rowland et 

al., 2018). Early microbiome studies were also able to quickly associate the gut microbiome to a variety of 
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metabolic and immune-mediated diseases such as inflammatory bowel disease (IBD), obesity, and diabetes 

miletus (Franzosa et al., 2019; Hartstra, Bouter, Bäckhed, & Nieuwdorp, 2015; Kostic et al., 2015; Morgan 

et al., 2012; Tilg & Kaser, 2011; Turnbaugh et al., 2006; Zheng, Li, & Zhou, 2018).  More recently, studies 

have shown unique capabilities of the gut microbiome, such as its critical role in the development and 

modulation of the central nervous system, in what has been called the “brain-gut-microbiome” axis (Martin, 

Osadchiy, Kalani, & Mayer, 2018). Additionally, the gut microbiome has been shown to play a significant 

role in the development and modulation of the immune system (V. L. Chen & Kasper, 2014; Tomkovich & 

Jobin, 2016). The gut microbiome has even been implicated in having an impact on a patient’s response to 

immunotherapy treatment for different cancer types (Gopalakrishnan, Helmink, Spencer, Reuben, & 

Wargo, 2018; Routy et al., 2018).  
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Figure 1. Common microbiome sites of study on and within the human body. The microbiome of 

the human body is affected by many external factors. Commonly studied sites and their function are 

shown here.  



   

 

13 

 

  

 
 

 

 

Figure 2. Functional roles of the gut microbiome. The gut microbiome has been shown to have a wide range of functional roles 

in human health including disease association, providing physical protection from invading pathogens, production of essential 

nutrients, modulation of the central nervous system and immune system, and influencing host response to cancer immunotherapy. 
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Therapeutic Interventions for the Microbiome 

Because of the important physiological roles that the gut microbiome plays both locally and 

systemically, clinicians and researchers are beginning to look at this environment as a key target of 

therapeutic treatment and intervention. In addition to these emerging discoveries regarding the role of the 

gut microbiome, advances in genomic sequencing and molecular diagnostics have changed our approach 

to health and medicine by allowing more personalized treatments based on individual characteristics. Taken 

together, the microbiome is emerging as an important component on the frontier of precision medicine, as 

it not only is shaped by individual variability, but it is also a modifiable factor that is susceptible to targeting 

by therapeutics (Kashyap, Chia, Nelson, Segal, & Elinav, 2017) (Figure 3). 

Early therapies have used fecal microbiome transplants (FMT) from healthy subjects to reconstruct 

the gut microbiome of patients with diseases such as obesity or Clostridium difficile, a pathogenic microbe 

of the gut (Marotz & Zarrinpar, 2016; Mattila et al., 2012). Although FMT has demonstrated success, there 

have been a few reports of adverse effects and a lack of safety trials to evaluate these immediate adverse 

effects and long-term effects (Harsch & Konturek, 2019; Kaźmierczak-Siedlecka et al., 2020).  

A more subtle approach to the modulation of the gut microbiome is with probiotics or prebiotics. 

Instead of reconstructing the microbiome, probiotics introduce small amounts of microbial organisms to 

confer a health benefit to the host. Prebiotics, on the other hand, contain fermentable, non-digestible 

oligosaccharides which are used to stimulate the growth of beneficial indigenous gut bacteria. These are 

often used together in what is referred to a synbiotic, due to their synergistic effects. Although probiotics 

have been shown to be effective in the treatment of gastrointestinal diseases (Ritchie & Romanuk, 2012), a 

recent study has found that the efficacy of probiotics is both dependent on the microbial strain used as well 

as the disease being treated (McFarland, Evans, & Goldstein, 2018). Therefore, for the development of 

more efficient probiotic therapies, there is a need to better understand not the functional role of microbes at 

a high resolution (e.g., species or strain) but also how microbes functionally contribute to disease status.  
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Figure 3. A personalized approach to microbiome therapeutics. Host characteristics contribute to the variability of the host 

microbiome. Additionally, different therapeutics can modulate the host microbiome in different ways, leading to an altered 

microbiome community and host phenotype.  
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Microbiome Sequencing and Characterization 

The birth of next generation sequencing (NGS) technologies has revolutionized how we study and 

characterize the microbiome. The earliest sequencing approach to analyze the microbiome was the 

amplicon analysis of the 16S ribosomal RNA (rRNA) gene sequence (D’Amore et al., 2016; Janda & 

Abbott, 2007; Sanschagrin & Yergeau, 2014). The 16S rRNA gene is used since it is widely conserved 

among microbes containing interspersed hypervariable region. In 16S rRNA gene sequencing, the 16S 

rRNA region is identified using primers specific to the conserved region and amplified polymerase chain 

reaction. The sequences of the hypervariable regions are then used to construct operational taxonomic units 

(OTUs), which can then be annotated with microbial taxonomy. However, this method is limited in the 

level of resolution it can achieve. Due to the slow evolutionary rate of the 16S rRNA gene, the sequence is 

not reliable in differentiating microbes at a species level or below (Maroniche, García, Salcedo, & Creus, 

2017). In addition, the effects of homologous gene recombination and horizontal gene transfer of the 16S 

rRNA gene can lead to the taxonomic mislabeling of OTUs (Teyssier, Marchandin, Siméon De Buochberg, 

Ramuz, & Jumas-Bilak, 2003; Tian, Cai, Zhang, Cao, & Qian, 2015). 

More recently, metagenome shotgun (MGS) sequencing has been used to sequence random 

fragments of the microbial genomes. Gene sequences can then be mapped to reference genomes to identify 

the taxa present in the community. Additionally, these gene sequences can provide a functional profile of 

the microbiome community. One advantage that the MGS sequencing approach has over the 16S rRNA 

sequencing approach is that microbes can be more accurately annotated to the species or even strain level. 

However, even though the cost of MGS sequencing has fallen over the years, it remains more expensive 

than its 16S rRNA sequencing counterpart (Quince, Walker, Simpson, Loman, & Segata, 2017; Scholz, Lo, 

& Chain, 2012) and requires a higher coverage of sequencing (Sims, Sudbery, Ilott, Heger, & Ponting, 

2014). 
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The sequencing of microbial communities provides us with different ways of characterizing 

microbes and their communities. Through the counting and annotation of sequence reads, we can identify 

which microbes are present in the microbiome community and how abundant each microbe is. This is most 

often represented as a vector of values where each position represents the abundance of a microbial features. 

When considering multiple samples, this is expressed as an abundance matrix where each row represents a 

microbial feature, and each column represents a sample. In order to compare the communities between 

samples, the abundance values are normalized by library size, resulting in compositional data. This is 

usually either done in the form of relative abundance (RA), additive log-ratio (ALR), or centered log-ratio 

(CLR) values. Given a microbial abundance vector ! with n microbial features, these transformations are 

applied as, 

"#(!) = ' (!∑ (""
, (#∑ (""

, … , ($∑ (""
,	  (2.1) 

#."(!) = 'log 2(!(%
3 , log 2(#(%

3 , … , log 2(%&!(%
3,  (2.2) 

4."(!) = 'log (!
5(!) , log

(#
5(!) , … , log		(

($
5	(!), 

 (2.3) 

The transformation into RA values (Equation 2.1) divides each microbial abundance with the total 

abundance within the sample, resulting in values ranging between 0 and 1 and with the property that the 

sum of all the transformed values within a sample will add up to 1. The transformation into ALR values 

(Equation 2.2) selects a single arbitrary abundance value, (%,  and divides every other abundance by the 

chosen value before taking the log value. The transformation into CLR values (Equation 2.3) divides each 

abundance value by the geometric mean of the abundance vector, 5(!) before taking the log value. 

In addition to characterizing whole microbiome communities, NGS sequencing provides us with a 

means to characterize the similarity and differences of microbes through phylogeny. Phylogenies are 

commonly estimated by using multiple sequence alignment on a set of collected gene sequences and then 
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applying models of mutation to infer most-likely evolutionary paths (Washburne et al., 2018). This is most 

commonly done using the 16S rRNA gene sequence. However, other core genes have been used as well in 

past studies (Matsen, 2015). The distance between microbial taxa or OTUs can then be visualized using 

either a rooted or unrooted tree, where each node represents a microbial taxon or OTU, and the edge length 

between them represents the evolutionary distance. 

The combination of microbiome abundance and phylogenetic similarity facilitates the 

characterization of diversity in microbiome communities both locally and globally. This is commonly done 

by quantifying both the distribution of microbial abundances (evenness) as well as the total number of 

observed microbes within samples (richness). We use two types of diversity metrics to describe microbiome 

communities: alpha diversity and beta diversity. 

Alpha diversity quantifies the diversity of a single microbiome community. It summarizes the 

distribution of microbial abundances in a sample into a single value that depends on the richness and 

evenness of the microbiome community. Two general methods for calculating alpha diversity are the 

Shannon Index (Equation 2.4) and inverse Simpson Index (Equation 2.5) (Lande, 1996). 

!(#) = −'(! log((!)
!

    (2.4) 
 

,(#) = 1
∑ (!"!

    (2.5) 
 

Here x is a vector of microbiome abundance values that have been transformed to RA values (Equation 

2.1). Neither the Shannon Index nor the inverse Simpson Index uses phylogenetic similarity information 

for the calculation of alpha diversity. In contrast, a widely used method that uses only phylogenetic 

similarity is Faith’s Phylogenetic Diversity (Faith’s PD) (Faith, 1992). This metric is calculated as the sum 

of the branch lengths of a phylogenetic tree connecting all microbial features present within a sample and 
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does not incorporate microbial abundance into the calculation. There are advantages to both using 

abundance and to using phylogenetic similarity to quantify the variation within samples. Therefore, 

methods have been developed that integrate the two, such as an extension of the Shannon Index to 

incorporate phylogenetic distance (Allen, Kon, & Bar-Yam, 2009).  

 Unlike alpha diversity which characterized the variation of a single sample, beta diversity is used 

to compare microbiome samples by quantifying similarity or dissimilarity between them. The most 

common measures for beta diversity are Bray-Curtis dissimilarity, Jaccard Index, and UniFrac distance. 

The Bray-Curtis dissimilarity is used to measure the compositional dissimilarity between two microbiome 

samples (Bray & Curtis, 1957).  

64(!', !() = 1 − 24
:! + :#

    (2.6)  

Here !' and !( are microbiome abundance vectors, C is the sum of minimum values across all microbial 

features between !' and !(, and :! and :# are the total abundances across all microbial features in !' and 

!(, respectively. The Jaccard Index measures the similarity between two communities based on the 

presence or absence of microbes by dividing the intersection of microbial features in both samples by the 

union of microbial features across both samples. UniFrac uses phylogenetic similarity to calculate 

evolutionary distances between microbiome communities (Lozupone & Knight, 2005). For each sample, 

the edges of the phylogenetic tree that lead to observed microbial features are collected. The distance 

between two samples can then be calculated as the sum of branch lengths that are not shared divided by the 

sum of all edge lengths found in the phylogenetic tree. Additionally, there is a weighted version of UniFrac 

that weights the phylogenetic differences according to the RA values of each lineage. By pairwise 

comparing microbiome communities using beta-diversity measures, we can construct a similarity or 

dissimilarity (depending on the method used) matrix. This matrix can be used to visualize the relationships 
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between samples through ordination techniques such as Principal Coordinates Analysis (Borg & Groenen, 

2005) .  

The last data type obtained from NGS sequencing is specific to MGS sequencing. By sequencing 

all the microbial genes, a gene table can be constructed in a similar fashion to the microbial abundance 

table, however here each row represents a microbial gene. By using microbial gene abundance rather than 

microbial abundance, we are able to analyze the communities at a functional level. Important genes 

identified by analyses can then be used to identify functional enrichment and mapped to gene or metabolic 

pathways (De Filippo, Ramazzotti, Fontana, & Cavalieri, 2012). An overview of NGS technologies and 

generated data is shown in Figure 4. 
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Figure 4. NGS methods for microbiome sequencing. (Top) 16S rRNA sequencing amplifies and sequences 16S rRNA genes and groups 

sequences into OTUs. OTUs are then annotated taxonomically, providing abundance and phylogenetic information. (Bottom) MGS 

sequencing amplifies and sequences all microbial genes. 
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2.2 Standard Microbiome Analyses 

 In this section, we will review common analyses of disease-related microbiome datasets based on 

the data generated using NGS technologies: the identification of microbial biomarkers, the prediction of 

host phenotype, the inference of microbe-metabolite interactions, and the modeling of the microbiome 

community dynamics. The work presented in the following chapters of this dissertation will address 

challenges in these analyses to improve upon existing methods. 

 

2.2.1 Identification of Microbial Biomarkers 

One of the major objectives of microbiome studies is the identification of specific microbes 

associated with changes in host phenotype. In the context of disease, knowing which of these microbial 

taxa or OTUs can help further the understanding of the underlying disease mechanism (Sun & Chang, 

2014). In addition, it can facilitate both the development of clinical therapeutic interventions as well as the 

earlier diagnoses of patients. For this task, methods can be organized into two different approaches: 

statistical and ML. 

Statistical analyses have used both parametric and non-parametric approaches to identify 

differentially abundant microbes between case and control groups using microbiome abundance data. 

Parametric methods are driven by assumptions about the underlying distribution of the data. Methods using 

generalized linear models, such as edgeR (Robinson, McCarthy, & Smyth, 2010) and DESeq2 (Love et al., 

2014) have been adopted from gene expression analyses and widely applied to microbiome count data. 

Additionally, non-parametric methods have been used when handling microbiome abundance data that has 

undergone a compositional transformation. One method, ANCOM (Mandal et al., 2015), uses the log-ratio 

of all pairs of microbes to test for a difference in means. Another tool, ALDEx2 (Fernandes, Macklaim, 

Linn, Reid, & Gloor, 2013), uses a Dirichlet-multinomial model to infer original abundance from counts 
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by finding the expectation of multiple simulated instances of the data. It then uses the Wilcoxon rank-sum 

test to identify differentially abundant microbes across two or more groups. These statistical methods have 

enhanced the detection of microbial group association with respect to disease studies. However, as 

univariate methods, they may fail to detect complex multivariate nonlinear associations since they cannot 

consider the complex nature of the microbiome community as a whole.  

The use of ML approaches has been motivated by the findings that a microbial signature is complex 

in nature, involving simultaneous over- and under-representations of multiple microbial taxa (Knights, 

Parfrey, Zaneveld, Lozupone, & Knight, 2011; T. Wang & Zhao, 2017). ML approaches are commonly 

structured as a supervised learning task of predicting the host phenotype from the microbiome community 

abundance, which will be introduced in the next section. Once an ML model has been trained for this task, 

microbial input features can be evaluated based on their importance in making predictions.  Methods such 

as random forest (RF), Elastic Net regression, least absolute shrinkage and selection operator (LASSO) 

regression, and support vector machines (SVMs) have been applied successfully for identifying a microbial 

biomarker signature (Pasolli et al., 2016; Wingfield et al., 2016; Zhang et al., 2015). These methods will be 

further discussed in Section 2.3. Additionally, the use of a deep neural networks (DNNs) has been applied 

in the hope that DNNs could identify more complex relationships for host phenotype prediction. However, 

the evaluation of DNNs compared to other ML methodologies when using microbiome abundance data is 

still incomplete (Ditzler et al., 2015; LaPierre et al., 2019).  

There are a couple of challenges in the identification of microbes associated to disease status. 

Parametric statistical models are based on assumptions of the underlying distribution of the data being 

modeled, and this can cause the statistical model to be biased if the microbiome data does not support that 

assumption. Non-parametric methods for compositional abundance data, on the other hand, do not have any 

underlying assumptions or biases. However, individual compositional abundance values are no longer 

independent of each other as the abundance of one feature is dependent on the abundance of all other 

features. This can lead to spurious correlations and larger model variances, especially when using univariate 
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methods (Xia & Sun, 2017). On the other hand, ML methods are believed to be able to model the complex 

nature of the microbiome community as a whole, however these methods have their own challenges. ML 

methods, and especially DL methods, require larger amounts of samples compared to statistical methods in 

order to generate robust and generalizable models. This is often a challenge in microbiome data since 

generated datasets are often relatively small in sample size, and without regularization and careful training, 

ML methods can quickly overfit the data leading to trained models with high variance.   

 

2.2.2 Prediction of host phenotype 

 The prediction of host phenotype from microbial community abundance is often performed 

together with the identification of microbial biomarkers. Models with the ability to predict disease status 

from a subject’s microbiome can facilitate the development of diagnostic tools, allowing for early detection 

of disease development or susceptibility in subjects. Many recent studies have employed traditional ML 

approaches such as RFs, LASSO regression, and SVMs and shown success in the prediction host phenotype 

(Pasolli et al., 2016; Wingfield et al., 2016; Zhang et al., 2015). Additionally, there is growing interest in 

the use of DL models due to the ability of deep architectures to better model more complex systems, 

allowing for the better identification of the interactions of microbial taxa in disease prediction. 

One challenge in the task of predicting host phenotype is the selection of an ML model. Varying 

levels of predictive performance have been reported across different ML models and disease studies, and 

therefore it is impossible to know the best suited model for a new dataset without extensive evaluation of 

multiple methods. Additionally, the preprocessing of data and compositional transformations can have 

different effects on different ML models. Another challenge, discussed in the previous section as well, is 

that ML and DL methods require a relatively large amounts of samples. This is often a challenge in 

microbiome data since generated datasets are often relatively small in sample size, and without 
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regularization and careful training, ML and DL methods can quickly overfit the data leading to models that 

are not generalizable and perform poorly on new and unseen data.   

 

2.2.3 Inference of Microbe-Metabolite Interactions 

While previous studies have uncovered various microbe-disease associations, more recent work 

has further revealed the central role of bacterial metabolites in host health (Feng et al., 2016; McHardy et 

al., 2013; Parker, Lawson, Vaux, & Pin, 2018). Based on these findings, the identification of microbiome-

metabolome interactions has become of great interest. Understanding how different microbes contribute to 

the overall metabolic activity of the host is essential not only for understanding the underlying physiological 

mechanisms of metabolic dysregulation leading to disease onset or severity, but also for the development 

of therapeutic interventions designed at modulating the microbiome community for the prevention or 

management of chronic metabolic disease (Cani & Delzenne, 2011; Helmink et al., 2019; Skelly et al., 

2019). 

Previous studies investigating the interactions between the microbiome and metabolites have often 

relied on a priori annotations of microbial enzymes and metabolic pathways. One prominent method, 

Predicted Relative Metabolic Turnover (PRMT) (Larsen et al., 2011), uses microbial genome annotations 

to first predict the abundance of specific microbial enzymes from the overall microbial community. 

Annotated metabolic pathways containing stoichiometric coefficients of the inferred enzymes are used to 

then predict the overall change in each metabolite within the system. The second method is constraint-based 

stoichiometric modeling using flux balance analysis (FBA) to learn the flux rate of metabolites in the 

microbiome community (Biggs, Medlock, Kolling, & Papin, 2015; Edwards et al., 2002; Gottstein, Olivier, 

Bruggeman, & Teusink, 2016). FBA calculates the flow of metabolites through a predefined metabolic 

network, making it possible to predict rate of production or consumption given metabolites in the 

microbiome community. However, since both PRMT and FBA rely on a priori information regarding the 
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structure and stoichiometry of metabolic pathways, they are limited from identifying novel metabolic 

findings. 

More recently, however, paired microboime-metabolome datasets have emerged and allowed for 

the identification of microbiome-metabolome interactions in a data-driven approach (i.e.. these methods no 

longer require a priori annotated knowledge). As data-driven methods, they do not suffer from the 

limitation as the previously discussed methods and are able to identify novel microbiome-metabolome 

interactions. A recently developed method, MelonnPan, uses linear Elastic Net regression to predict a 

metabolite abundance from microbial relative abundance data (Mallick et al., 2019). Specifically, the 

abundance of a single metabolite !! is modeled as, 

!! = #" +%##&#    (2.7)  

Since MelonnPan is using an Elastic Net model, it is constrained by 

(1 − *)%,##, + *%##$ ≤ .						0. ..			0 < 	* < 1    (2.8)  

Here . is the threshold ceiling of the Elatic Net penalty and * is the ratio of "" and "# regularizations. In 

another study, the authors develop a neural encoder-decoder to encode the microbial community abundance 

into a reduced space, and then decoded the reduced space to the paired metabolome (Le et al., 2019).  

 

2.2.4 Longitudinal Modeling of the Microbiome Community Structure 

The last analysis of microbiome data we will discuss is the longitudinal modeling of the 

microbiome community structure. The understanding of how the microbiome community changes over 
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time, especially with regards to subject characteristics and various external stimuli, is critical in the 

development of therapeutic interventions designed at modulating the microbiome.  

The modeling of longitudinal microbiome data faces many challenges, especially with regards to 

data collection. Microbiome data is confounded by noise, often coming from factors such as the dropout of 

microbial features in time-points, missing and unaligned time-points, and the varying speed of microbial 

dynamics between subjects. To address these challenges, many methods use smoothing splines for the 

interpolation missing data and correction of noise (Lugo-Martinez et al., 2019; Shafiei et al., 2015). This 

interpolation helps smooth out noise and facilitates the sampling and evaluation of equal time points across 

subjects. 

 There have been three widely used methods for modeling the dynamics of the microbiome 

community which have been successful in previous studies: Boolean networks (Claussen et al., 2017; 

Steinway et al., 2015), Dynamic Bayesian networks (Michael J McGeachie et al., 2016; Ruiz-Perez et al.; 

Shafiei et al., 2015), and generalized Lotka-Volterra (gLV) equations (Joseph et al., 2020; Kuntal, Gadgil, 

& Mande, 2019; Stein et al., 2013).  

The network-based methods represent microbial abundance features as nodes in a network. Boolean 

networks have been used to model different biological processes including microbiome dynamics, gene 

regulatory networks, and cell cycle dynamics (Chai et al., 2014; Claussen et al., 2017; Davidich & 

Bornholdt, 2008; Steinway et al., 2015). Boolean networks represent nodes as binary states of either “on” 

or “off” and the state of each node is updated over time using Boolean functions. Nodes are connected by 

directed edges, and node states are updated in discrete time transitions (e.g. t to t + 1) based on Boolean 

combinations (AND, OR, NOT, etc.) of their parent node states (Schwab, Kühlwein, Ikonomi, Kühl, & 

Kestler, 2020).  

Dynamic Bayesian networks (DBNs) are an extension of Bayesian networks. In a Bayesian 

network, each node represents a microbial feature as a random variable and each edge represents the 
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conditional probability of the target node. DBNs can extend this network to a first-order Markov process 

by structuring the network in a way to contain a set of nodes for time # and a set of nodes for the same 

microbial features at time # + 1 with directed edges connecting nodes in time # to nodes in time # + 1. In 

addition, discrete clinical variables can be present at time t with directed edges to microbial features at time 

# + 1. In this way, the DBN is composed of a directed acyclic graph G. Variables in G can either be discrete 

variables Δ or continuous variables Ψ. We will use '()) to represent the set of parents of variable ) in G. 

The DBN specifies a set of conditional probability distributions P over Δ and a set of conditional linear 

Gaussian density functions F over Ψ (Michael J McGeachie et al., 2016). We can then write the multivariate 

normal mixture density over all variables as, 

+(Δ)	F(Ψ|Δ) =23(4|'(4))
$∈&

25(!|'(!))
'∈(

    (2.9) 
 

Since we may have both continuous and discrete nodes in the DBN model, we can model 

continuous variables using a Gaussian regression model based on continuous parents (6) and discrete 

parents (7). 

5(!|7, 6)	~:(;) +	<;!
(+)7! +	<;-

(.)6- , =#)    (2.10)  

Here ;) is the intercept, ;!
(+) is the set of regression coefficient for discrete parents, ;-

(.) is the set of 

regression coefficients for the continuous parents, and =# is the variance. Then, using the data set, D, and 

graph structure G, we can directly infer the parameters Θ with maximum likelihood estimation,  

max
/,1

+(A|B, C)+(B, C) = +(A, B|C)+(C)    (2.11)  

While maximizing the likelihood, we also penalize overly complicated graph structures. A common way is 

to use the Bayesian information criterion score to penalize larger number of total parameters in G. 
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DEF = G	log	(:) − 2 logM+(A|B, C)N    (2.12)  

Here d represents the total number of parameters (|B|) and N is the number of time points in the dataset D. 

The network with the lowest Bayesian information criterion score is selected as the final network model. 

Once the network structure and parameters are learned, the DBN can be used to infer the transition of the 

microbiome community from time t to time t + 1 (Z. Ghahramani, 1997).  

The Lotka-Volterra equations were originally designed to model predator-prey ecological systems. 

Unlike the original Lotka-Volterra equations (Wangersky, 1978), which only consider predator-prey 

interactions, gLV equations allow for all possible combinations of interspecies interactions, such as the 

commensalism and competition interactions observed in microbiome communities (Bunin, 2017; 

Wangersky, 1978). This approach models the community as a set of ordinary differential equations where 

each equation represents the change of a single microbe’s abundance considering an intrinsic growth rate 

and microbe-microbe interactions.  

G4!
G#

= 4! OP! +< ∝!- 4-

2

-3"
R	    (2.13) 

 

Here 4! is the abundance of the S45 microbial feature, P! is the growth rate of the microbe, and ∝!- is the 

interaction coefficient between the S45 and T45 microbial feature. To solve these equations, we can estimate 

it as a log-lagged differences in abundances 

1
4!

G4!
G#

= OP! +< ∝!- 4-

2

-3"
R	    (2.14) 
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Gln	(4!(#))
G#

= 4! OP! +< ∝!- 4-

2

-3"
R	

   (2.15)  

lnM4!(#67")N − lnM4!(#6)N ≈ OP! +< ∝!- W
4-(#67") + 4-(#6)

2
X

2

-3"
RΔ#	

   (2.16)  

We use the trapezoid rule to approximate Equation 2.15 as Equation 2.16. Regression models can then be 

used on the log-lagged difference approximation using absolute abundance values in order to estimate the 

model coefficients (P and ∝). A recent study has put forth a gLV model designed to handle compositional 

microbiome data in which they showed improvement in dynamic modeling compared to standard gLV 

models (Joseph et al., 2020).  

Although these methods have shown success in past studies, these methods all share similar 

constraints in that they are heavily constrained by the number of samples and features. This makes them 

well suited for smaller datasets, but as NGS technology continues to improve, we are not only seeing larger 

microbiome studies with more samples, but we are able to identify microbial features at higher resolutions. 

This results in datasets that are increasing not only in sample size but also feature size. Additionally, the 

integration of host characteristics and external stimuli further increases the number of inputs considered. 

Therefore, to address these limitations, there is a need for scalable computational models that can use larger 

datasets to accurately model microbiome community dynamics. 

 

2.3 Machine Learning Methodologies 

 In this section we will review some of the common ML methods used in microbiome 

studies (RF, SVMs, logistic regression, and neural networks).  
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Random Forest 

RFs are decision tree learning models trained in an ensemble fashion, taking the average of the 

ensemble to give a robust decision tree (Ho, 1995). Given a set of samples = {Z", Z#, … , Z2} with k classes, 

the model trains a set of decision trees and takes the average of the trees to give a single robust decision 

tree. Each tree is trained using a bootstrapped subset of the training data. While growing each tree, a 

decision rule is made at each node by selecting the best feature from a random subset of features that best 

splits the data into two subsets. Decision rules are evaluated using entropy or the Gini impurity metric. In 

our tutorial, we will use the Gini impurity for making decisions. For a set of samples with ] classes, let 3! 

be the proportion of samples of class S for S ∈ {1 … ]}. The Gini impurity of the set is calculated as 

E1(3) = 1 −<3!
#

6

!3"
	  (2.17) 

Once a RF model is trained, features can then be evaluated using the mean decrease impurity. For each 

node, an importance score for the feature being split upon is calculated as the decrease in the Gini impurity 

from before and after the split weighted by the proportion of total samples that were split. A feature’s overall 

importance is then calculated by averaging the weighted scores of that feature over all the decision trees in 

the ensemble.  

Another characteristic of the RF models that we will look at is to determine how generalizable the 

model is. Since each tree is trained with a bootstrapped set of the training data, we will have a subset of 

samples that were not used for building the tree. These samples are called the out-of-bag (OOB) samples, 

and they can be used to evaluate the accuracy of their respective tree, giving an OOB score. This score tells 

us how well each decision trees predicted its OOB samples and can give us a sense of how generalizable 

the model is. 
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 Support Vector Machines 

SVMs are supervised ML models that learn the best hyper-plane to separate two classes of data 

(Cortes & Vapnik, 1995). The orientation and position of this hyperplane are determined by a subset of data 

points, called support vectors, which lie close to the hyperplane. The hyperplane will be determined by a 

set of weights (_) and an intercept (`) through model training. The class of a microbiome sample Z! 

represented by m features can then be predicted as 

!a = bScd	(_8Z! + `)	  (2.18) 

 SVM models can use different types of kernels in order to transform the data to higher dimensions 

in order to better split the data. The simplest kernel is the linear kernel which considers the distance between 

two points as the inner product, eMZ! , Z9N = 〈Z! , Z-〉 = Z!
8Z-. Although simple, the benefit of the linear 

kernel is that it allows for direct interpretations of the weight values. For example, under the linear kernel, 

each weight h- in Equation 2.18 represents the importance of a feature j in determining the class label. 

 

 Logistic Regression 

Logistic regression is a ML model that uses a logistic function to model a binary-dependent 

variable (John Lu, 2010). Given a set of samples i	 = 	 {Z",  Z#,  … ,  Z2}, a logistic regression model 

predicts the class of a sample by using a threshold value (e.g., 0.5) on the value, 

!a! =
1

1 + k:	(<=!7>")
	

    (2.19) 
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Here l) is a bias value, and m  represents the vector of weights to be multiplied by the vector of features. 

During training, we can penalize these weights in order to regularize the model, helping to prevent 

overfitting. The two most common forms of regularization are the "" and "# regularizations, 

""(m) =<nl-n
-

  (2.20) 

"#(m) =<l-
#

-
  (2.21) 

The "" regularization technique will penalize the weights in such a way that many weights will become 0, 

effectively removing the respective feature from the predictive model. On the other hand, the "# 

regularization technique will penalize the weights in order to prevent any large weights, which could lead 

to unstable predictions. A third regularization technique, Elastic Net regularization, uses both "" and "# 

regularizations when fitting the model (H. Zou & Hastie, 2005). These regularizations are used in other 

linear models as well. Least absolute shrinkage and selection operator (LASSO) regression models use least 

squares regression in conjunction with "" regularization (Tibshirani, 1996). Ridge regression is a least 

squares regression model that uses "# regularization (Hoerl & Kennard, 1970).  

 

 Neural Network 

An artificial neural network (ANN) or multilayer perceptron neural network (MLPNN) is a fully 

connected network composed of hidden layers of nodes, most commonly as perceptrons. The value of a 

perceptron is a linear combination of the values from the previous layer that is then passed to a nonlinear 

activation function (Dreyfus, 1990). This allows neural network models to uncover nonlinear relationships 

within data. More explicitly, the values of the o45 hidden layer p? is calculated as 
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ℎ? = 	r	(s?
8p?:" + t?)  (2.22) 

where ℎ?:" are the values from the previous hidden layer, s? are the weights connecting p?:" to p?, t? is 

the bias values to the nodes of layer l, and r is a non-linear activation function. The non-linear activation 

functions applied at each hidden layer are what give the neural network the capabilities of learning complex 

non-linear patterns. The entire network can be trained using a loss function, using the loss error and back-

propagation to tune the network weight parameters until the network has been trained. 

A DNN is defined as a fully connected neural network with at least two hidden layers between the 

input and output layer (W. Liu et al., 2017; Nielsen, 2015). DNNs have recently become the standard tool 

for solving a variety of different problems, ranging from computer vision, natural language processing, and 

computational biology (Deng & Liu, 2018; W. Liu et al., 2017; Razzak, Naz, & Zaib, 2018). By providing 

multiple hidden layers between the input and output, the network can capture more complex patterns. The 

DNN model is the foundation of which other DL models come from. In the next section I will present 

variations of the DNN framework specialized for different tasks. 

 The interpretation of neural network models is not as direct as other ML approaches. In the 

frameworks presented in this dissertation, we will use a method by Olden et al. to evaluate each feature by 

looking at its cumulative impact on prediction (Olden, Joy, & Death, 2004). This is done by multiplying 

the weight matrices of the of every layer in the set of layers L, resulting in a matrix of scores where each 

row represents an input feature and each column represents an output feature.  

u =2s?
?∈@

  (2.23) 
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The numerical score at a position represents how much the respective input’s value attributes to the 

respective output’s value, where a positive value represents that the output increases as the input increases 

and a negative value represents that the output will decrease as the input increases.  

 

2.4 Deep Learning Methodologies 

 Deep learning is an extension of ML, and of neural networks in particular. The methods used in 

DL are built upon neural networks of many layers, resulting in the name deep neural network. In this 

section, I will discuss some of the common DL frameworks which will be used as the foundation of the 

works presented in this dissertation. 

 

Convolutional Neural Network 

 Convolutional neural networks are DNN models connected in a way as to capture local spatial 

patterns (Albawi, Mohammed, & Al-Zawi, 2017). This is done by using kernels of shared weights that 

slides across multi-dimensional input data. As such, these models are specifically powerful when using 

visual or sequential data. As a kernel slides across the multi-dimensional image, it calculates a discrete 

convolution to generate a new multi-dimensional matrix called a feature map. This results in a single feature 

map for each kernel where each kernel tries to find a unique spatial pattern in the input matrix. Each 

generated feature map then undergoes pooling, usually in the form of max pooling. The reduced feature 

maps can either go through additional convolutional layers followed by additional pooling, or they can be 

flattened and passed through fully connected layers before finally going to the output layer. An overview 

of a standard CNN architecture as well as examples of the convolution and max pooling process are shown 

in Figure 5. 
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Convolutional neural networks have seen a great amount of success in computational biology, 

largely due to the sequential nature of DNA, RNA, and protein data. A study by Kelley et al. designed a 

CNN framework to learn the functional activity of DNA via chromatin accessibility from using DNA 

sequence data (Kelley, Snoek, & Rinn, 2016). Their tool, “Basset”, showed good predictive performance, 

but more importantly, allows researchers to perform saturation mutagenesis very quickly in silico. Using 

the nature of protein sequences, CNN models have been applied to tasks such as the prediction of protein 

secondary structure (S. Wang, Peng, Ma, & Xu, 2016) and the prediction of protein-protein interactions 

(Hashemifar, Neyshabur, Khan, & Xu, 2018). With regards to medical image data, CNNs have been widely 

utilized to facilitate medical tasks including the identification and quantification of immune cells in 

immunohistochemistry staining (Ting Chen & Chefd’Hotel, 2014) as well the diagnosis and classification 

of tumors across different cancer types (L. Li et al., 2020; L. Zou et al., 2019).  
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Figure 5. Architecture of a CNN model. (A) Multiple kernels of weights (receptive fields) slide across an input image to generate respective 

feature maps through. Max-pooling is performed on feature maps for dimension reduction. The resulting feature maps after N convolutional and 

pooling layers are flattened and passed through fully connected layers before the output layer. (B) An example of a 4x4 input and 2x2 kernel to 

generate the respective 3x3 feature map. (C) An example of max pooling on a 4x4 feature map using 2x2 pooling.  (Angermueller, Pärnamaa, 

Parts, & Stegle, 2016) 
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Autoencoder 

Autoencoders are DNN models that can be broken up into an encoder function and a 

decoder function and is used in DL for dimension reduction (Kramer, 1991). The encoder consists 

of the input layer, followed by a set of hidden layers that reduce in size with each layer, and finally 

a latent layer. The latent layer is the smallest hidden layer of the network and represents the feature 

reduced space of a given input. The decoder consists of the latent layer, followed by a set of hidden 

layers that grow in size with each layer, and finally the output layer. The network is trained such 

that the output tries to reconstruct the input as close as possible. This forces the network to 

compress the input into a meaningful way such that it can be decoded efficiently to retain as much 

of the original information as possible. Because of this, not only are AEs used for dimension 

reduction, but they are also useful for reducing the noise in data. An example of a standard AE 

model is shown in Figure 6. 

With advancements in DL frameworks, many variations of the standard AE have been 

developed. One common variation of the AE is the variational autoencoder in which the data is 

encoded into a latent multivariate distribution (D. P. Kingma & Welling, 2013). By representing 

the latent space as a multivariate distribution, variational autoencoders not only provide feature 

reduction, but they can also be used as generative models through sampling of the latent space. 

Another variation is the sparse autoencoder, where a penalty is applied to the latent layer to enforce 

a predefined level of sparsity (Ng, 2011). By enforcing sparsity within the latent layer, many of 

the latent nodes are forced to be inactive. This has been shown to improve the overall 

representation learning of the latent space, which can further improve downstream tasks utilizing 

the latent representations. Denoising autoencoders are another common framework in which the 

original input is corrupted by noise and the model learns to reconstruct the corrupted data back to 
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the original values (Goodfellow, Bengio, & Courville, 2016). By injecting noise into the input, 

denoising autoencoders have been shown to be even more robust to the noise within data. 

Autoencoders have been widely used in computational biology for denoising, imputation, 

and feature reduction. Recent studies have used AE frameworks in order to impute single-cell 

RNA-Seq data (Talwar, Mongia, Sengupta, & Majumdar, 2018; Trong et al., 2020), which suffers 

from a high level of dropout noise. A study by Chen et al. constructed an AE model that was 

shaped using a priori knowledge of gene sets to mask weights by only connect genes as inputs to 

their respective gene sets in the first hidden layer, resulting in improved classification of tumor 

subtype on TCGA data (H.-I. H. Chen et al., 2018). Another group recently used a variational 

autoencoder trained on protein sequences to generate new sequences representing functional 

protein variants (Hawkins-Hooker et al., 2021).  
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Figure 6. Architecture of an AE model. An input vector is passed through the encoder part of the neural network to a reduced latent space 

representation. The latent representation is then passed through the decoder part of the neural network to the output. An AE is trained to 

minimize the distance between the input and output values. 
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Generative Adversarial Networks 

Generative adversarial networks (GANs) are a set of two DNNs that compete against each other 

(Goodfellow et al., 2014). The first DNN is a generator network that takes in a set of random prior values 

as an input and generates synthetic data close to the observed data of the used dataset. The second network 

is the discriminator network which takes in either a real or synthetic sample and predicts the probability 

that the input data is real. The networks are trained in an adversarial fashion, such that the generator’s task 

is to try and fool the discriminator and the discriminator’s task is to predict if an observed sample is real or 

synthetic.   Both generator and discriminator networks are trained in an iterative fashion such that in each 

epoch, the discriminator is first trained on the generated and real samples and the network weights are 

updated. After the discriminator has been updated, the generator is updated using information on how the 

discriminator made its predictions. The cost functions for the discriminator and generator are shown below. 

!! =
1
$%−log[+(-")] − log	[1 − +(1	(2#)]

$

"
  (2.24) 

!% =
1
$%log3+41(2")56

$

"
  (2.25) 

Here $ represents the number of real samples, 7" represents a vector of priors for the generator, 8" is a vector 

of a real data. +(-#) is the discriminator’s prediction that 8" a real sample and 1(2#) is the generated 

synthetic sample given the vector of prior noise 2". Once fully trained, the generator network can be used 

to generate large amounts of realistic data. An example of a standard GAN framework is shown in 

Figure 7. A common extension of GANs is the conditional generative adversarial network (CGAN) (Mirza 

& Osindero, 2014). In the CGAN architecture, additional side information is passed to both the generator 

and discriminator networks, allowing for the construction of synthetic data under different conditions. 
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 Generative adversarial networks have become utilized in computational biology for tasks such as 

denoising and data generation. Using single-cell RNA-Seq, Ghahramani et al. used a GAN framework to 

generate synthetic expression data across multiple cell subtypes (A. Ghahramani, Watt, & Luscombe, 

2018). Another study was able to model the class-switch recombination process in B-cells at a single-cell 

resolution using a CGAN model (Derek Reiman et al., 2021). Lastly, DeepHiC was published by Hong et 

al. based on a GAN framework which showed success in enhancing the resolution of low resolution Hi-C 

data (Hong et al., 2020). 
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Figure 7. Architecture of a GAN model. Real samples are drawn from real data (blue). Fake samples are generated from a generator network 

(G) given a set of random noise priors. The discriminator predicts if the sample it is given as an input is real or fake. 



   

 

44 

Chapter 3 

 

Deep Learning Frameworks for the Prediction of Host Phenotype 

 
Copyright 2020 Creative Commons Attribution 4.0 License. Reprinted, with permission from 

Reiman, Derek, Ahmed A. Metwally, Jun Sun, and Yang Dai. "PopPhy-CNN: a phylogenetic tree 

embedded architecture for convolutional neural networks to predict host phenotype from metagenomic 

data." IEEE journal of biomedical and health informatics 24, no. 10 (2020): 2993-3001. 

 

Copyright 2021 Creative Commons Attribution 4.0 License. Reprinted, with permission from 

Reiman, Derek, Ahmed A. Metwally, Jun Sun, and Yang Dai. Meta-Signer: Metagenomic Signature 

Identifier based on rank aggregation of features [version 1; peer review: 1 approved with reservations, 1 

not approved]. F1000Research. 2021; 10:194 

 

Copyright 2020 IEEE. Reprinted, with permission from Reiman, Derek and Yang Dai. Using 

Conditional Generative Adversarial Networks to Boost the Performance of Machine Learning in 

Microbiome Datasets. In Proceedings of the 1st International Conference on Deep Learning Theory and 

Applications - DeLTA, ISBN 978-989-758-441-1. 2020 

 

3.1 Introduction 

One of the major objectives of microbiome studies is the identification of specific microbes related 

to changes in host phenotype. In the context of disease, the identification of these microbial taxa, often in 

the form of operational taxonomic units (OTUs), can facilitate earlier diagnoses, the development of 

microbial reconstitution (e.g., Probiotic) therapies (Preidis & Versalovic, 2009; Vindigni, Zisman, Suskind, 
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& Damman, 2016), and help further the understanding of the disease mechanism (Sun & Chang, 2014). For 

this task, methods can be organized into two different approaches: statistical and machine-learning. 

Both parametric and non-parametric statistical analyses have been used to identify differentially 

abundant microbes between case and control groups using microbiome data. Parametric methods using 

generalized linear models such as edgeR (Robinson et al., 2010) and Deseq2 (Love et al., 2014) have been 

widely applied to metagenomic count data. Additionally, non-parametric methods have been used when 

handling microbial composition abundance. One widely used method, ANCOM (Mandal et al., 2015), uses 

the log-ratio of all pairs of microbes to test for a differences in means. Another, ALDEx2 (Fernandes et al., 

2013) uses a Dirichlet-multinomial model to infer abundance from counts and uses the Wilcoxon rank-sum 

test to identify differentially abundant microbes. Although these methods have been useful in discovering 

biological insight to disease, as univariate analyses they cannot consider the complex nature of the 

microbiome community structure as a whole. In addition, a previous study has shown that these methods 

do not control the false discovery rate (Hawinkel, Mattiello, Bijnens, & Thas, 2017). Because of these 

limitations, the association of the microbes to a specific diseases has shown contradictory results across 

studies (Finucane, Sharpton, Laurent, & Pollard, 2014; Knights et al., 2011). 

Recently, ML approaches have been advocated for, motivated by the findings that a microbial 

signature may be complex, involving simultaneous over- and under-representations of multiple microbial 

taxa at distinct taxonomic levels (Knights et al., 2011; T. Wang & Zhao, 2017). Previous studies have 

shown that random forest (RF), least absolute shrinkage and selection operator (LASSO), and support 

vector machines (SVMs) have the potential of identifying a microbial biomarker signature for the prediction 

of the host phenotype (Pasolli et al., 2016; Wingfield et al., 2016; Zhang et al., 2015). Additionally, DNNs 

have been proposed in the hope that DNNs could identify more complex relationships for host phenotype 

prediction, however the evaluation of DNNs is incomplete and DNNs were superior than other standard 

ML models (Ditzler et al., 2015; LaPierre et al., 2019). As a deep learning model, DNNs learn the intricate 

structure within data by iteratively changing their parameters through backpropagation. This type of 
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representation learning allows the model to intrinsically construct hierarchical feature representations from 

the raw data, removing the need for hand-engineered features (LeCun, Bengio, & Hinton, 2015). Recently, 

Ph-CNN was designed to integrate microbial abundance with phylogenetic information using a different 

deep learning model, a convolutional neural network (CNN) (Fioravanti et al., 2018). Ph-CNN clusters 

groups of microbes based on their phylogenetic patristic distance. This was inspired by findings from 

studies showing that constructing abundance of features using the hierarchical structure of the taxonomic 

tree can improve prediction performance (Oudah & Henschel, 2018; Qiu et al., 2015). However, although 

Ph-CNN uses phylogenetic distances to group microbes, it does not fully explore abundances at different 

hierarchies of the tree. 

 

3.1.1 Problem Definition 

In this chapter, we will present methods designed to improve both the prediction of host phenotype 

and the identification of disease related microbes. 

1. Structurally integrating taxonomic and microbial abundance data in DNNs will improve 

prediction of host phenotype and facilitate the identification of associated microbial 

biomarkers at different taxonomic levels. 

2. The use of multiple ML methods to evaluate and identify disease related microbes into a 

single ranked list will generate a more robust set of disease biomarkers. 

3. Non-parametric modeling of microbiome data to generate synthetic microbiome data 

samples will improve downstream analyses such as host phenotype prediction. 
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3.1.2 Significance 

The first work presented, PopPhy-CNN, is a novel deep learning framework that integrates 

phylogenetic spatial information to improve the prediction of host phenotype. PopPhy-CNN improves 

prediction performance in complex multi-class disease datasets and facilitates the identification of disease-

related microbial biomarkers at different taxonomic. The second work presented, Meta-Signer, uses an 

ensemble of machine learning models to identify a robust list of disease-related microbes. The third work 

uses adversarial networks to generate realistic synthetic microbiome data. We show that the use of this 

synthetic data to augment microbiome datasets can be improve the prediction of host disease. Together, 

these methods improve on existing methods for host phenotype prediction and the identification of disease-

related microbial features, potentially allowing for the development of stronger diagnostic tools for 

clinicians. 
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3.2 PopPhy-CNN: A Phylogenetic Tree Embedded Architecture for Convolutional 

Neural Networks to Predict Host Phenotype From Metagenomic Data  

 In this section, we present PopPhy-CNN, a CNN framework that integrates the spatial information 

captured by phylogenetic similarity with microbial abundance to improve host phenotype prediction. We 

will demonstrate that PopPhy-CNN outperforms state-of-the-art ML approaches in complex multi-class 

disease datasets. In addition, PopPhy-CNN facilitates the identification of disease related microbes at 

different taxonomic levels. 

 

3.2.1 PopPhy-CNN Framework 

The core of the PopPhy-CNN framework can be split into three main steps. In the first step, the 

microbial taxa found in the dataset are used construct a taxonomic tree. The leaves of the taxonomic tree 

are assigned their respective abundance values, and ancestral nodes are calculated as the sum of their 

children. Each populated tree is then represented as a two-dimensional matrix. In the second step, the 

matrices are used to train a CNN model for the prediction of host phenotype. Lastly, in the third step, the 

trained CNN model is used to identify areas of the taxonomic tree associated with different disease states. 

An overview of the framework is shown in Figure 8. 
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Figure 8. Flowchart of PopPhy-CNN. The annotated taxa and count table are used to create and 

populate a taxonomic phylogenetic tree. The tree is then represented as a matrix and used to train a 

CNN. Features are extracted from the trained model. 
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Tree-Matrix Representation 

PopPhy-CNN uses NCBI’s taxonomic tree of life as the backbone for all of its taxonomic trees. 

Since it is a taxonomic tree, there was no annotated distance between nodes and a constant distance of one 

between nodes in the tree is assumed. The tree is instead structured using ancestral nodes from both 

taxonomic groups and subgroups with no defined distances between nodes. Therefore, we consider the 

distance between any two nodes by the number of nodes between them. Using the microbial taxa found in 

the supplied dataset, the tree is pruned. In specific, we retain only leaf nodes annotated by observed 

microbial taxa as well as their ancestral nodes.  

 Once the tree has been pruned, we use the tree structure as a template to construct a populated tree 

for each sample. Specifically, for each sample, we begin by assigning each node with an abundance of zero. 

Then the observed taxa abundances are assigned to their respective nodes. Lastly, for each ancestral node, 

the sum of their children’s abundance values is added to its own abundance. The algorithm for tree 

population is outlined in Algorithm 1.  

 

 

 
 

Algorithm 1. Tree Population 
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 Next, we represent each sample’s populated tree as a matrix according to Algorithm 2. An example of 

populating a tree and representing it as a matrix is shown in Figure 9. 

 

 

 

 
 

 
Algorithm 2. Tree-Matrix Representation 

 
 

 
 

Figure 9. Populating taxonomic tree and matrix representation. Microbial taxa are used to prune a 

taxonomic tree. The abundance data is used to populate the tree, and then the tree is represented as a 

matrix.  
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Convolutional Neural Network Model 

CNN models are neural network models based on the visual cortex and are designed to capture 

local spatial pattern (Fukushima, 1980). They have been widely used in natural language processing and 

image processing tasks with great success (Tao Chen, Xu, He, & Wang, 2017; Zhiqiang & Jun, 2017). 

Standard CNNs are composed of convolutional layers followed usually by at least one fully connected 

layer. Each convolutional layer is composed of multiple kernels, each of which transforms an input matrix 

! into a feature map of velocities through a convolutional operation. The feature maps composed of these 

velocities are then passed through a non-linear activation function and subsampled through max or mean 

pooling to give a matrix of activations. An overview is shown in Figure 10.  

 

 

 
 

Figure 10. A kernel k slides over the input matrix. Each position in the feature map contains a velocity 

which is the element wise sum of the Hadamard product between " and a submatrix of #. We call this 

submatrix a reference window and denote it as $. 
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For a given kernel " with weights %	(#) of size m x n and input #, the velocity of point (i, j) is calculated 

as: 

&'((#)(*, ,) = //#(* + 1, , + 2) ∗ %(#)	(5 − 1, 7 − 2)

%

&'(

)

*'(
  (3.1) 

PopPhy-CNN’s architecture consists of two convolutional layers followed by a single fully 

connected layer and a single output layer. The first convolutional layer contains a rectangular filter to scan 

areas of local features in the input matrix. The second convolutional layer consists of a single 1x1 kernel to 

collapses the set of feature maps from the first convolutional layer into a single feature map, reducing the 

number of network parameters. Each layer uses the exponential linear unit (ELU) activation function. The 

ELU activation function, shown in Equation 3.2, has been shown to improve classification accuracy while 

also fixing the vanishing gradient problem often observed in deep neural networks (Clevert, Unterthiner, & 

Hochreiter, 2015). 

89:(;) = <
;	; > 0

?('+ − 1)	; ≤ 0  (3.2) 

Finally, the softmax activation function was applied to the output layer for class prediction. The 

softmax function normalizes the output velocities into a probability distribution in order to predict the 

probability that a specific sample belongs to each class. Given a vector of velocities B, the softmax 

activation of each velocity is calculated as shown in Equation 3.3.  

CDEF5G;(H,) =
'-!

∑ '-".
  (3.3) 

The model was trained using the ADAM optimizer (D. Kingma & Ba, 2014) and a weighted 

negative log loss function to help address class imbalance. To prevent overfitting, we regularize the 

networks using both 9/ and 90 normalization penalties on the weights. This resulted in the overall loss 

function is shown in Equation 3.4. 
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9D22 = −J
712134
75

K ln(G5) +	N//|%4|
4∈7

+	N0/‖%4‖0
4∈7

  (3.4) 

Here, given an input whose true label is Q, 712134is the total number of samples in the dataset, 75 is the 

number of samples for class Q, N/ and N0 are the 9/ and 90 regularization parameters respectively to penalize 

the weights W for each layer in the set of layers L. In addition, we used dropout in our network over the 

fully connected layers in order to help prevent overfitting.  

 

Feature Extraction 

A previous study has shown that using feature maps captured by CNN models as features for other 

machine learning models yielded better results than using the raw features (Athiwaratkun & Kang, 2015). 

Therefore, we focus on the post analysis of the feature maps generated by the first convolutional layer to 

identify microbial taxa associated to disease status. To do this, we take the feature maps generated by a 

kernel k across all the samples for a specific class c in the training set. For each of these feature maps, we 

take the positions of a proportion of maximum values specified by a given hyper-parameter, R/. We then 

select the maximums which were found in at least a proportion, R0, of the samples for that class. For each 

position selected, we trace its location in the feature map back to the submatrix of the input ! from which 

it was calculated and call this matrix S the reference window of that position, as shown in Figure 10. Every 

position (i, j) of a reference window represents some node v from the phylogenetic tree with a taxonomic 

label, f. We calculate the importance of each feature f given the reference window R for sample S as its 

proportion of the velocity. 

T&
(#)(E|$) =

%(#)(*, ,) ∗ $8	(*, ,)
∑ 	(U%(#)U	⨀	$&)

									2. F. $(*, ,) ⟷ E  (3.5) 
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Some taxa may score highly in a small subset of samples but may not be important considering all of the 

samples. To identify consistently important features, we calculate the mean importance value of a feature f 

across all samples in class c given a single reference window R and kernel k. 

T5
(#)(E|$) =

∑ T&
(#)

&∈5 	(E|$)
75

	  (3.6) 

Here nc represents the number of samples in class c. Since a feature can be scored in multiple reference 

windows within and across kernels, we select the single importance value of f as the maximum over all 

reference windows containing f across all kernels, k. 

T5 	(E) = max
9,#

{T5
(#)(E|$)}	  (3.7) 

Lastly, we assigned a final feature score S for a feature from the perspective of class c as the difference of 

the feature importance using all the samples with class c and the feature importance using all the samples 

not with class c, creating a list of feature scores for each class. The algorithm for feature extraction and 

evaluation from the CNN model is shown in Algorithm 3. 

C5(E) = T5(E) − T5̅	(E)	  (3.8) 
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Algorithm 3. CNN Feature Evaluation 
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3.2.2 Experiments and Results 

Data Used in Evaluation 

We used nine binary class publicly available disease related microbiome datasets to evaluate 

PopPhy-CNN. Three datasets were obtained from the MetaML package (Pasolli et al., 2016): cirrhosis (N. 

Qin et al., 2014), obesity (Le Chatelier et al., 2013), and type 2 diabetes (Karlsson et al., 2013; J. Qin et al., 

2012). These datasets contained microbial taxa abundance at both genus and species levels. The six other 

datasets were taken from an IBD study (Sokol et al., 2017). The dataset was separated into three disease 

categories: Crohn’s disease (CD), ileal Crohn’s disease (iCD), and ulcerative colitis (UC). Each dataset was 

further broken into two sets where one set constitutes patients with who were in remission (r) and one set 

with patients whose condition was flaring (f). The number of samples in features for each dataset is shown 

in Table I. 

 

 

 

 

TABLE I. SUMMARY OF BINARY CLASS DATASETS IN POPPHY-CNN EVALUATION 
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  We also evaluated PopPhy-CNN using three multi-class real datasets. For the first dataset, we 

stratified the obesity dataset into three groups using BMI rather than two. For the second dataset, we 

combined all six IBD datasets into a single dataset with seven classes. The third dataset was constructed by 

combining the cirrhosis, type 2 diabetes, and obesity datasets together as well as with a colorectal cancer 

dataset (Zeller et al., 2014) and a different IBD dataset (J. Qin et al., 2010) We further evaluated PopPhy-

CNN on large synthetic datasets containing 3,5,7, and 9 classes. For the construction of synthetic data, we 

used the R package SparseDOSSA (Ren B, 2020). A summary of the multi-class datasets is shown in Table 

II. Principal Coordinates analysis (PCoA) plots of the IBD, Multi-Disease, and Syn9 datasets using Bray-

Curtis dissimilarity are shown in Figure 11. 

Lastly, we construct two binary synthetic datasets for evaluating the robustness of 

PopPhy-CNN. The smaller dataset (SynA) contains 750 samples and 500 features. The larger 

dataset (SynB) contains 1500 samples and 1000 features.

TABLE 2. SUMMARY OF MULTI-CLASS DATASETS IN POPPHY-CNN EVALUATION 
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Figure 11. Principal Coordinate Analysis (PCoA) plots of the multi-class IBD, Multi-Disease, and Syn9 datasets. PCoA plots showing the 

complexity of multi-class disease data. Each point represents a sample which is colored by its respective class. 
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Evaluation of Host Phenotype Prediction 

PopPhy-CNN was benchmarked using 10-fold cross-validation against RF, SVM, LASSO, a multi-

layer perceptron neural network (MLPNN) with two fully connected layers, a 1D-CNN model using one 

convolutional layer with two fully connected layers, and Ph-CNN, which was designed using information 

of the phylogenetic tree. Data were min-max normalized between 0 and 1 before training. For evaluation 

of binary datasets, we use the area under the receiver operating characteristic curve (AUC-ROC), area under 

the precision-recall curve (AUC-PR), Matthew’s correlation coefficient (MCC) and F1 score. For the 

evaluation of multiclass datasets, we only use MCC. 

We observe that PopPhy-CNN is competitive in real world binary datasets, however it is not 

superior to RF models, which have often been considered the state-of-the-art machine learning method in 

microbiome studies. Prediction evaluation on binary datasets is shown in Table II. However, when we 

increase the complexity of the dataset by introducing more classes and stratifying across different disease 

states, we see that PopPhy-CNN is much more robust than RF models and PopPhy-CNN scales much better 

as the number of classes increases. Prediction evaluation of multi-class datasets is shown in Table IV and 

Table V. 
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TABLE III. POPPHY-CNN EVALUATION OF BINARY DATASETS 

 
 

TABLE IV. POPPHY-CNN EVALUATION OF REAL MULTI-CLASS DATASETS 

 
 

TABLE V. POPPHY-CNN EVALUATION OF SYNTHETIC MULTI-CLASS DATASETS 
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Computational Complexity and Robustness 

To evaluate the complexity of our model, we recorded the amount of time it took to train a single 

model using varying sample and input feature sizes. We created synthetic datasets of 500, 1000, 2500, 5000, 

and 10,000 samples, each with 500 features. Additionally, we created datasets with 500, 750, 1000, 1250, 

and 1500 features, each with 500 samples. The average training for training a single model over 10-fold 

cross-validation was calculated and is shown in Figure 12. 

 

 

 

 

 

Figure 12. Time complexity for machine learning models based on (A) number of samples and (B) 

number of features. Running time in seconds of PopPhy-CNN, RF, LASSO, SVM, MLPN, and CNN-

1D models are shown under increasing number of samples and features. 
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 For consistency, all neural network models were trained to 50 epochs using an NVIDIA Titan XP 

GPU. We observed that RF models had the largest overhead and that SVM models scaled the worst. We 

also observed that PopPhy-CNN increased more than the other neural network-based models. This is due 

to the increased input space of the matrix representations of the populated trees. However, despite this, 

PopPhy-CNN was still observed to train faster than RF models. 

We then evaluated how the parameter size of the neural network models scaled based on the original 

input size. The MLPNN and CNN-1D models scaled almost identically while PopPhy-CNN scaled at a rate 

5.08 times faster than the other two. This was expected since the matrix representation was also shown to 

scale in size on average 4.93 times the number of nodes in the tree used for the matrix representation. The 

scaling of the three neural network-based models is shown in Figure 13. 

 

 

 

Figure 13. Number of parameters in PopPhy-CNN, CNN-1D, and MLPNN models based on input 

size. Number of total network parameters for PopPhy-CNN, MLPNN, and CNN-1D models as the input 

space of the data increases. 
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Lastly, we tested the robustness of PopPhy-CNN using 5-fold and 3-fold cross-validation to 

increase the size of the held-out test set while reducing the size of the training set. We performed this 

analysis on the cirrhosis dataset as well as two synthetic datasets, SynA and SynB. When holding out 20% 

using 5-fold cross-validation, the AUC-ROC for cirrhosis was 0.916 (2.66% decrease), for SynA was 0.928 

(0.24% decrease), and for SynB was 0.927 (0.24% decrease). When using 33% as held out data during 3-

fold cross-validation, the AUC-ROC for cirrhosis was 0.917 (2.66% decrease), for SynA was 0.900 (2.92% 

decrease), and for SynB was 0.904 (2.78% decrease). In total, this shows that PopPhy-CNN is robust to 

using larger sets of held-out data even for datasets with moderate size. 

 

Evaluation of Extracted Features 

We used the Cirrhosis, Obesity, and T2D datasets at the genus level for and extracted feature scores 

for each dataset. We used the values !!	= 0.01 and !" = 0 in the feature extraction method. This means that 

we consider only the top 1% of values in each feature map of each sample. This allows a fair baseline 

comparison across the datasets from which the tuning of the parameters may lead to stronger feature 

evaluations. We constructed a single ranked list using the absolute value of a feature’s score between the 

two classes as the ranked value.  

To evaluate the informativeness of the extracted features, we tested if they could be used improving 

prediction in SVM. To do this, we trained SVM models using the top ranked features from the original 

OTUs ranging from the top 5, 10, 15, 20, and 25. We compared PopPhy-CNN’s extracted features with the 

ranked lists based on signal-to-noise ratio, Wilcoxon test p-values, and the average feature rankings from 

the RF models trained using 10-fold cross-validation. SVM models were trained using 10-fold cross-

validation and results for the three datasets are shown in Figure 14. 

For the cirrhosis dataset, we observed that the higher ranked features of PopPhy-CNN performed 

best, followed by the features identified by RF. The features identified by the Wilcoxon rank-sum test were 
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not stable and showed a decrease in prediction performance before increasing afterwards. In the obesity 

dataset, we observe that PopPhy-CNN and the Wilcoxon rank-sum features perform similarly, however the 

RF features perform poorly. In the T2D dataset, all models performed about the same. PopPhy-CNN was 

the only method to perform competitively in all three datasets.  
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Figure 14. Benchmarking of top 25 features extracted from PopPhy-CNN for Cirrhosis, Obeisty, and T2D datasets. Features extracted 

from PopPhy-CNN (teal) are benchmarked against features found by RF (purple), signal-to-noise ratio (brown), and a Wilcoxon rank-sum 

test (red). 
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Extraction of Biologically Relevant Features 

Lastly, we analyzed the scored the features of the cirrhosis dataset for both healthy and disease 

cases (see Feature Extraction). Using Cytoscape, we visualized the taxonomic tree and annotated nodes and 

edges as associated with healthy and cirrhosis disease states. The score for each node was calculated as 

shown in Equation 3.8 and the score for an edge was the mean between the two connected nodes. The 

visualization of the tree and top scoring leaf nodes is shown in Figure 15. 

 In the cirrhosis patients, PopPhy-CNN identified Veillonella, Streptococcus, Haemophilus, 

Prevotella, and Actinomyces as associated microbial biomarkers. In the healthy subjects, Alistipes, 

Rumminococcus, Roseburia, Clostridium, and Bilophila were identified. Many of the top ranked features 

were also identified in the original study (N. Qin et al., 2014). Additionally, a separate study on a different 

cohort of subjects with cirrhosis found similar results, showing that Streptococcus, Veillonella, and 

Prevotella were associated with Interleukin-23 (IL-23) and Interleukin-2 (IL-2), both of which have been 

shown to be associated with inflammatory gut disease (Bajaj et al., 2012; Duvallet, Semerano, Assier, 

Falgarone, & Boissier, 2011). We also observed cases in which ancestral nodes had much larger scores than 

their children, possibly implying that no single child feature was discriminative between disease states, but 

that the collection of them was. For example, the family Bifidobacteriaceae had a score of 0.292 while its 

children had much lower scores. Although this family of microbes was not identified as important in the 

original study, a different study has shown that microbes in the Bifidobacteriaceae family produce 

glutamate dehydrogenase, a protein found to have higher expression levels in patients with Cirrhosis (Wei 

et al., 2016). Therefore, the aggregation of all the genera under Bifidobacteriaceae should be more 

discriminative than any single genus, as observed in the feature analysis extracted by PopPhy-CNN. 
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Figure 15. Visualization of cirrhosis features identified by PopPhy-CNN associated with cirrhosis (red) and healthy (green) states. 

The table shows high ranking leaves of annotated subtrees. The top 5 ranked features are bolded. 
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3.2.3 Conclusion 

  PopPhy-CNN integrates taxonomic structure with microbial abundance features to improve 

prediction performance. It has been shown to be competitive in binary disease datasets and outperforms 

state-of-the-art methods in more complex multi-class datasets. In addition, it extracts associated microbial 

features at various levels of taxonomy, providing additional biological insights for downstream analyses. 

PopPhy-CNN is implemented in Python3 and is freely available at www.github.com/YDaiLab/PopPhy-

CNN. 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

70 

3.3 MetaSigner: Metagenomic Signature Identifier Based on Rank Aggregation of 

Features 

 Even with the success of ML models for host phenotype prediction, it is a challenging task for users 

to determine what is the best ML model and how many features are needed in order to achieve robust 

prediction, especially on external validation datasets. In addition, each ML algorithm may generate different 

feature importance rankings (T. Wang & Zhao, 2017; Zhang et al., 2015), complicating the decision on a 

consistent and informative signature for the host phenotype of interest.    

 

3.3.1 MetaSigner Framework 

Meta-Signer uses RF, SVM, Logistic Regression, and MLPNN models to evaluate importance of 

each microbial taxon and generates a ranked list of microbial features per model. It aggregates all the ranked 

lists using a procedure “RankAggreg” based on the cross-entropy method or the genetic algorithm (Pihur, 

Datta, & Datta, 2009). Finally, Meta-Signer reports the top-ranking features specified by the user and 

generates the ML models using these features. Meta-Signer’s workflow is shown in Figure 16.  

 

User Input 

Meta-Signer requires three input files and allows for an optional fourth file in order to run. The 

inputs to Meta-Signer are: 

1. A tab separated file of taxa abundance values where each row represents a taxon and each 

column represents a sample (required) 
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Figure 16. The Meta-Signer workflow. Large rounded rectangles represent different modules of the workflow. Microbial abundance is 

preprocessed and filtered, and then used to train ML models. Features are ranked for each model and an overall aggregated feature ranking 

is constructed. Meta-Signer generates portable, user-friendly HTML files for visualization as well as ML models trained on a subset of 

high ranking features. SVM, support Vector Machine; MLPNN, multiple-layer perceptron neural network; ML, machine learning.  
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2. A line separated list of response values where each row represents the phenotypic response 

of a sample where the first column in the abundance table should be the taxonomic 

identification of the taxon (required) 

3. The run configuration file with user specified parameters (required) 

4. The model parameters for the neural network architectures in JSON format (optional) 

If the fourth optional file is not found, Meta-Signer will tune the parameters and save them for later use.  

 

Machine Learning Models 

Meta-Signer includes three classic ML models (RF, Linear SVM, Logistic Regression), as well as 

an MLPNN model. The classic ML models are implemented using the “scikit-learn” Python package 

(Pedregosa et al., 2011), and the MLPNN model is implemented using TensorFlow (Abadi et al., 2016).  

RFs are decision tree learning models trained in an ensemble fashion, taking the average of the 

ensemble to give a robust decision tree (Ho, 1995). While growing each tree, a decision is made at each 

node by selecting the feature from a random subset of features that best splits the data into two subsets 

based on the Gini impurity of each subset. Given a set of data points with k classes, let !! be the proportion 

of samples of class i for i ∈ {1...k}. The Gini impurity of the set is calculated as  

#"(!) = 1 −)!!#
$

!%&
	  (3.9) 

Once trained, features are then extracted by evaluating the mean decrease impurity. For each node, the 

importance of the feature node being split on the decision tree is calculated as the decrease in Gini impurity 

before and after the split. This value is then weighted by the proportion of total samples that were split upon 
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that node. A feature’s importance is then calculated by averaging the weighted importance values of nodes 

that split using that feature across all trees in the ensemble.  

SVMs are supervised ML models that learn the best hyper-plane to separate two classes of data 

(Cortes & Vapnik, 1995). For MetaSigner, we implement linear SVMs in which a set of weights (w) and 

an intercept (b) will be learned. The class of the sample +! can then be determined as  

,- = ./01	(2'3! + 5)	  (3.10) 

Since the weights can be used to rank the importance of features, we used the linear SVMs in MetaSigner 

for feature extraction. Once trained, features can be ranked using the absolute value of the learned weight 

parameters.  

Logistic Regression fits a logistic function to estimate the prob- ability of binary classification; 

however, it can be extended to multi-class scenarios (John Lu, 2010). The model predicts the probability 

of a sample 3! being the positive class as, 

,-! =
1

1 + 6(	(+,!-.")
	

  (3.11) 

where 7 are the weight parameters which are learned and 80 is the bias value. 9& regularization is used in 

order to penalize the absolute value of the weights, eliminating a portion of the features to create a sparse 

model. Given a set of samples +!		(/ = 1,… , 1) where each sample has < features and a binary class label 

,!, the model minimizes the cost, 
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= =
1
1)

[,! log(,-!) + (1 − ,) log(1 − ,-!)] + C)|81|
1

2

!%&
  (3.12) 

where the weight parameters are penalized with the regularization parameter C. Once trained, the 8 values 

are used to rank features based on their absolute value.  

 Neural networks are consisted of multiple layers of nodes that are fully connected with edges 

constituting weights (Nielsen, 2015). The values of a hidden layer are a linear combination of the values 

from the previous layer which is passed through a non-linear activation function. More explicitly, the 

values of a hidden layer ℎ3 is calculated as, 

ℎ3 = 	F	(G3
'H3(& + I3)  (3.13) 

where ℎ3(& are the values from the previous hidden layer, G3 are the weights connecting H3(& to H3, I3 is 

the vector of bias values, and F is a non-linear activation function. Meta-Signer uses the Rectified Linear 

Unit activation function for hidden layers and the softmax activation function on the output layer. The 

entire network is trained using a single loss function, 

= = − log(J4) + C)‖G3‖#
3∈6

  (3.13) 

Here J4 is the predicted softmax probability of a sample’s true class c. The second term performs 9# 

regularization on the network weights and is penalized by λ. The MLPNN features were evaluated using a 

method by Olden et al. by taking the running product of all the weight matrices in the learned networks 

(Olden et al., 2004). The product results in a matrix that has a column for each class and a row for each 
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feature, and the value at a given index is that feature’s cumulative impact for that class. We then consider 

a feature’s importance as the maximum impact across classes to create a single ranked list. 

 

Rank Aggregation 

For each partition of the cross-validation, we generate a single ranked list for each of the ML 

models. Once the entirety of the cross-validated training is complete, the entire set of all ranked lists across 

all models is aggregated into a single top-k ranked list by minimizing the distance between the set of ranked 

lists and the top-k list, where k is specified by the user in the configuration file. More specifically, given a 

set of ranked lists {M&, … , M7}, the top-k ranked list, OP, is determined as,  

OP = argmin
8∈6

)V! 	W	(O, M!)
7

!%&
  (3.14) 

Here, L is the state space of top-k rankings, V! is a weight associated with M!, and W	(O, M!) is the 

distance between a proposed top-k ranked list, θ, and M!. The aggregation is performed using the R package 

RankAggreg (Pihur et al., 2009). This package uses either a genetic algorithm or cross-entropy based 

approach with Markov Chain Monte Carlo sampling to find the top-k features that minimize the sum of the 

distances between each of the input sets and the generated top-k set. The distance used is the Spearman’s 

Correlation. Each input ranked list is weighted in the aggregation by the area under the receiver operating 

curve (AUC). 
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User Output 

Meta-Signer provides a summary of the results in a portable HTML file. The file contains a 

description of the run and evaluation metrics for the different models in the form of boxplots. It also pro- 

vides the distribution of the feature importance scores for each ML model. Lastly, it provides a list of the 

top-k taxa selected from the original taxa, the proportion of individual ranking sets that each taxon was 

present in the top-k, the rank and p-value under a PERMANOVA test, and the class in which the taxon was 

found to be predictive for. All images are encoded into the file, allowing the HTML file to be moved without 

considering the location of the images. 

 

3.3.2 Experiments and Results 

Data Used in Evaluation 

We demonstrate Meta-Signer on a dataset of patients with inflammatory bowel disease (IBD) from 

the Prospective Registry in IBD Study at MGH (PRISM) (Franzosa et al., 2019), which enrolled patients 

with a diagnosis of either Crohn’s disease (CD) or ulcerative colitis (UC). The dataset includes 68 samples 

with CD, 53 samples with UC, and 34 healthy samples.  

In addition, we will use Meta-Signer to evaluate an external IBD dataset. This dataset consists of 

two independent cohorts from the Netherlands (Tigchelaar et al., 2015). The first cohort consists of 22 

healthy subjects who participated in the general population study LifeLines-DEEP in the northern 

Netherlands. The second cohort consists of subjects with IBD from the Department of Gastroenterology 

and Hepatology, University Medical Center Groningen, Netherlands and includes 20 samples with CD and 

23 samples with UC. Together, both the PRISM dataset and the external IBD dataset included 201 microbial 

features. Datasets were evaluated using all three classes as well as in a binary case by combining CD and 
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UC samples. Any taxon not found in at least 10% of samples or with less than 0.001 mean abundance was 

removed. 

Model Training and Rank Aggregation 

 All ML models were trained under a scheme of 10 iterations of 10-fold cross-validation. 

Evaluations of AUC, MCC, precision, recall, and F1 score are shown in Table VI. The genetic algorithm 

method was used for rank aggregation to generate a candidate list with a maximum of 50 features. The 

ranked microbial feature section of the HTML output is shown in Figure 17. 

 

 

 

 

 

 

TABLE VI. MEAN CROSS-VALIDATED RESULTS OVER THE PRISM DATASET USING META-
SIGNER. STANDARD DEVIATION IS SHOWN IN PARENTHESES. 
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Evaluation of Ranked Features 

We compared the features ranked using Biosigner (Rinaudo, Boudah, Junot, & Thévenot, 2016), 

another tool that uses an ensemble of ML approaches to identify important features, and the PERMANOVA 

test’s p-value. For Biosigner, we varied the “pvalN” parameter using 0.05, 0.1, and 0.2 to change the levels 

of significance. We used the top 30 taxa from each method, except for Biosigner, which identified less than 

30 taxa. We then trained machine learning models on entire PRISM dataset using the features selected from 

each method and evaluated predictions on the external test set for both binary classification and for three 

classes. Biosigner was not used for multi-class classification due to the limitations of the tool. The results 

for binary and three class cases are shown in Table VII and Table VIII respectively. 



   

 

79 

  

 
 
Figure 17. HTML output of aggregated ranked list for microbes predictive in PRISM dataset. Meta-Signer provides the use 

an HTML output of ranked microbial features and reports how often the feature was found in the top-k ranked features across 

cross-validated models, the enriched class, the feature rank based on a PERMANOVA analysis, and the PERMANOVA adjusted 

p-value. 
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TABLE VII. MEAN CROSS-VALIDATED RESULTS OF EXTERNAL DATASET USING TOP 30 RANKED FEATURES 

TO TRAIN ON PRISM DATASET USING BINARY CLASSIFICATION. 
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TABLE VIII. MEAN CROSS-VALIDATED RESULTS OF EXTERNAL DATASET USING TOP 30 RANKED 

FEATURES TO TRAIN ON PRISM DATASET USING THREE CLASSES FOR CLASSIFICATION. 
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3.3.3 Conclusion 

We developed Meta-Signer as a user-friendly tool to identify a robust set of highly informative 

microbial taxa. Meta-Signer uses an ensemble of ML approaches to construct a single, robust ranked list of 

microbial features that are predictive of human disease status, which in turn will empower down-stream 

hypotheses of disease related microbiome studies. Meta-Signer is publicly available and can be downloaded 

from https://github.com/YDaiLab/Meta-Signer.  
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3.4 Boosting Host Phenotype Prediction Through Conditional Generative Adversarial 

Modeling 

Even with advances in ML approaches for predicting host phenotype in microbiome 

studies, one persistent challenge is the relatively small size of microbiome datasets. It is often the 

case that datasets have a far greater number of features than the number of samples, which can 

quickly lead to the overfitting of ML models. One direct way to address this limitation is to 

augment datasets with realistic synthetic data to increase the total sample size. However, statistical 

modelling of the underlying distribution of microbiome data has been a long-standing challenge 

due to the sparsity and over-dispersion found in microbiome data. There have been many 

approaches proposed over the past decade, however there is still no consensus as to which models 

and underlying assumptions are best suited for handling the complexity of the data (Kurilshikov, 

Wijmenga, Fu, & Zhernakova, 2017; L. Xu, Paterson, Turpin, & Xu, 2015). In this section, we 

will present a framework using conditional generative adversarial networks (CGAN) to non-

parametrically model microbiome data in order to generate realistic synthetic data. We further 

show that augmenting a real microbiome dataset with these synthetic samples can boost the 

performance of downstream tasks, such as host phenotype prediction. 

 

3.4.1 Framework 

 In order to generate synthetic microbial community structures, we utilize a CGAN architecture. A 

CGAN is composed of two competing networks: a generator and a discriminator. The task of the generator 

is to learn to generate synthetic data representative of real data while the discriminator tries to determine if 

a given sample is synthetic or real. The generator is trained to maximize the probability of the discriminator 

in misclassifying samples. At the same time, the discriminator is trained to minimize this probability. 
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The generator, G, of the CGAN model requires two sets of inputs: a set of priors and the conditional 

side information. Our framework uses priors from the uniform distribution ~"	(−1, 1). Both inputs are fed 

through multiple fully connected hidden layers and finally to an output layer. Batch normalization is 

performed at each layer. The leaky ReLU activation function with ) = 0.1 is performed after each batch 

normalization.  

-./01	2.-"(3) = 4 	3							3 > 0
	)3							3 ≤ 0  (3.15) 

The output of the generator represents a vector of microbial abundance features.  

The discriminator, 7, takes a sample of microbial abundance features as an input in addition to the 

side information. The inputs are passed through multiple fully connected layers. Batch normalization is 

performed at each layer. The leaky ReLU activation function with ) = 0.1 is performed after each batch 

normalization. The discriminator has an output of a single node using the sigmoid activation function. The 

sigmoid function is used so that the output is a value ranging from 0 and 1. The output of the discriminator 

represents the prediction of the probability that the given sample of data is real. 

Both generator and discriminator networks are trained in an iterative fashion such that in each 

epoch, the discriminator is first trained on the generated and real samples and the network weights are 

updated. After the discriminator has been updated, the generator is updated. The cost functions for the 

discriminator and generator are shown below. 

8! =
1
9:−log[7(?" , @")] − log	[1 − 7(B(C" , @"), @")]

#

"
  (3.16) 
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8$ =
1
9:log[7(B(C" , @"), @")]

#

"
  (3.17) 

Here 9 represents the number of real samples, C" represents a vector of priors for the generator, ?" is the 

relative abundance vector of a real microbial community sample, and @" is the side information that the 

networks are conditioned on. 7(?" , @") is the discriminator’s prediction if ?" is real given the side 

information @". B(C" , @") is the generator’s prediction of a synthetic sample given the prior noise C" and side 

information @". A figure showing the architecture of our CGAN is shown in Figure 18.  

During training, models were saved every 500 iterations. Additionally, the Principal Coordinate 

Analysis (PCoA) of the training set, generated set, and the combination of the two sets was visualized and 

stored. The Bray-Curtis dissimilarity measure (Bray & Curtis, 1957) was used in calculating the distance 

matrix for PCoA. The Bray-Curtis dissimilarity quantifies the microbial compositional dissimilarity 

between two different samples. Given two microbial samples, 3% and 3&, the Bray-Curtis dissimilarity 

between the two samples is calculated as 

D8(?% , ?&) = 1 − 28%&
F% + F&

  (3.18) 

Here 8%& is the sum of the lesser values for the abundances of each species found in both ?% and ?&. F% 

and F& are the total number of species counted in ?% and ?& respectively. Visual analysis of the PCoA plots 

and the overlap of the original and generated data was used to select the best model.
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Figure 18. CGAN architecture. A set of prior noise and side information corresponding to sample are used to generate a 

synthetic sample. The discriminator then uses the side information to predict if a given sample is real or synthetic. 
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3.4.2  Experiments and Results 

Data Used in Evaluation 

We evaluate our CGAN model using the data reported from two different cohorts of patients with 

inflammatory bowel disease (IBD). The Prospective Registry in IBD Study at Massachusetts General 

Hospital (PRISM) enrolled patients with a diagnosis of IBD based on endoscopic, radiographic, and 

histological evidence of either Crohn’s Disease or Ulcerative Colitis. The second dataset is used specifically 

for external validation and consists of two independent cohorts from the Netherlands (Tigchelaar et al., 

2015). The first consists of 22 healthy subjects who participated in the general population study LifeLines-

DEEP in the northern Netherlands. The second cohort consists of subjects with IBD from the Department 

of Gastroenterology and Hepatology, University Medical Center Groningen, Netherlands. This will be used 

as the validation dataset. Processing of the stool samples collected for both datasets is described in the 

original study (Franzosa et al., 2019). Briefly, metagenomic data generation and processing were performed 

at the Broad Institute in Cambridge, MA. Quality control for raw sequence reads was performed and reads 

were taxonomically profiled to the species level using MetaPhlAn2 (Segata et al., 2012). The relative 

abundance values are publicly available and were obtained from the original study. Microbial relative 

abundance features present in less than 20% of samples or with a mean abundance less than 0.1% across 

all samples of both the PRISM and Validation sets were removed from the analysis, resulting in a total of 

93 microbial features in the PRISM and Validation datasets. 

 

Model Training 

We use a vector of priors of size 8 for the input !! and a vector of size 2 representing the one-hot 

encoded value of the disease state (IBD or healthy) as the input "! and concatenate the two inputs together. 

The concatenated input is then passed through two fully connected layers of size 128. The output layer of 
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the generator is a vector of size 93 representing the microbial features. The softmax activation function in 

used in order to reconstruct the relative abundance of the microbial community.  

The discriminator network takes a vector of size 93 representing microbial relative abundance 

features as an input in addition to vector of size 2 representing the one-hot encoded disease state for that 

sample. The two inputs are concatenated and fed through two fully connected layers of size 128. The output 

of the discriminator is a single node with a sigmoid activation to shrink the prediction value to be between 

0 and 1. 

Models were trained using 10-fold cross-validation. In each partition, 90% of the PRISM dataset 

was used to train the CGAN model. CGAN models were trained for 30,000 iterations in which 32 random 

samples were selected at each iteration as real samples. A synthetic sample was generated for each of the 

32 real samples using the sample’s respective disease state as the side information. The 32 real and 32 

synthetic samples were then fed to the discriminator for training and the discriminator was updated based 

on Equation 3.16. After updating the discriminator, the discriminator is again used to predict the synthetic 

samples and the generator is updated based on Equation 3.17. Both networks were trained using the 

ADAM optimizer (D. Kingma & Ba, 2014) with a learning rate of 5	x	10"#. Models were selected based 

on visual inspection of PCOA overlap of real and synthetic data using the same set of class labels. An 

example showing the PCOA of a selected model from the cross-validated training is shown in Figure 19. 

For the implementation and training of our CGAN models we used the TensorFlow (Abadi et al., 2016) 

package in Python. 
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Trueness of Synthetic Data 

In order to check how well the generated samples represent the real samples, we compare the 

distributions of the alpha and beta diversities for IBD and healthy samples. Alpha diversity is a local 

measure of species diversity within a sample. It characterizes the microbial richness of a community. For 

our analysis, we use the Shannon Entropy metric to quantify the alpha diversity of samples. Given a sample 

( with ) relative abundance values, the Shannon Entropy is calculated as 

!(#) = −'(! log,(!-
"

!#$
  (3.19) 

 
 

Figure 19. Principal Coordinate Analysis (PCoA) of the training (left), generated (middles), 

and combined (right) datasets using the Bray-Curtis dissimilarity. Red points represent patients 

with IBD and blue points represent healthy subjects. 
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Beta diversity, on the other hand, allows us to quantify how similar samples are to each other. In 

our study, we use the Bray-Curtis dissimilarity as a distance measure of beta diversity, calculated as 

described in Equation 3.18. To demonstrate the behavior of the CGAN model, we visualize the diversity 

metrics for the training set and for 10,000 generated samples using the selected best model. In addition, we 

calculate the diversity metrics of a set of 10,000 generated samples using the random initialization of the 

CGAN before any training to show the initial random distribution. Before calculating the diversity metrics, 

we clipped the generated samples in order to introduce zero values. The softmax function used to generate 

samples provides a vector entirely of positive values. However, in reality, microbiome data very sparse. 

Therefore, to induce this sparsity into the generated samples, we calculated the minimum value across all 

species found in the training set. We used this value as a threshold and set any generated value less than the 

observed minimum to zero. After clipping the generated sets, we calculated the diversity metrics. When 

considering beta diversity, we only considered the Bray-Curtis dissimilarity from the training set to itself, 

the training set to the best generated samples, and the training set to the randomly generated samples.  

The distributions of alpha and beta diversity for one of the cross-validated partitions are shown in 

Figure 20. We observed that the data generated from the selected best model followed very similar 

distributions of the alpha and beta diversities of the data used to train the CGAN. We did notice that the 

beta diversity within the training set had a spike near one, however upon post-analysis we discovered that 

it was caused by samples with only a few numbers of microbial species present. 
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Figure 20. Distributions of alpha and beta diversities of real and synthetic microbiome data. 

Histograms show alpha (top) and beta (bottom) diversity distributions for original (blue) and 

synthetic (orange) samples. Diversity metrics generated from generated from samples before any 

training are shown in green. 
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Generated Data Improves Prediction Performance 

For each of the partitions in the 10-fold cross-validation, we simulated 10,000 samples for both 

IBD and healthy groups using the selected best model. Relative abundance values were then log-

transformed and normalized to zero mean and unit variance. Next, we trained logistic regression and 

multilayer perceptron neural network (MLPNN) models to predict disease status using microbial features. 

For each partition of the cross-validation training, two sets of MLPNN and logistic regression models were 

trained. One set of models was trained using the original samples in the partition of the training set. The 

second set of models was trained using the 10,000 simulated samples generated by the CGAN trained on 

the training set.  

To train a logistic regression model on each 90% used as training set, we performed internal 5-fold 

cross-validation grid search over *$, *%, and Elastic Net regularizations considering 10 penalty strengths 

spaced evenly on a log scale ranging from 1 to 10,000. Logistic regression models were trained using the 

Python scikit-learn package (Pedregosa et al., 2011).  

MLPNN models were trained using two fully connected hidden layers with 256 nodes each and 

dropout with a rate of 0.5 after each layer. Leaky ReLU with an alpha of 0.1 was used as the activation 

function. The output layer contained two nodes using the softmax activation to predict the disease state. 

Networks were trained using the ADAM optimizer with a learning rate of 1x10
-4

. We set aside 20% of the 

training set as a validation set, and networks were trained until the loss of the validation set had not 

decreased for 100 epochs. The implementation and training of the MLPNN models were again done using 

the TensorFlow (Abadi et al., 2016) package in Python. Using the trained logistic regression and MLPNN 

models generated from a fold’s training set as well as the generated dataset, we calculated the area under 

the receiver operating characteristic curve (AUC-ROC) using the fold’s 10% held out data of true observed 

values. We observed that for logistic regression, the models trained using the generated sets had an average 

AUC-ROC of 0.849, while the models trained on the original data had an average AUC-ROC of 0.778 
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across the 10 folds. Similarly, for MLPNN models, the AUC-ROC had a value of 0.889 when training on 

the generated data and 0.847 when training on the original data. Using a Wilcoxon Signed-Rank test, the 

AUC-ROC when using the generated samples was significantly larger than that of when using the original 

data with a p-value of 0.0249 for logistic regression models and a p-value of 0.0464 for MLPNN models. 

Boxplots of the AUC-ROC values when using original and generated datasets are shown in Figure 21. 

These results demonstrated that the CGAN augmented datasets can boost the predictive power of the ML 

models. 

 

 

 

Figure 21. Boxplots for the AUC-ROC values across 10-fold cross-validation for logistic 

regression and MLPNN models trained on original and synthetic data. Cross validated 

evaluations of logistic regression and MLPNN models trained on original (green) and data 

augmented with synthetic samples (yellow). 
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Synthetic Data is Predictive of External Dataset 

To evaluate if the synthetic samples generated from the CGAN model were generalizable to a 

dataset of a similar study, we trained a CGAN model using the entire PRISM dataset. The CGAN is trained 

for 30,000 iterations and models as well as PCOA visualization of the real and synthetic samples are saved 

every 500 iterations. The best model is selected based on the PCOA comparison between the training and 

generated sets. A PCOA visualization of the PRISM dataset combined with the synthetic data generated 

from the best model and the external validation set is shown in Figure 22.  

Using the best model, we evaluate if the generated samples can improve the task of predicting IBD 

status. Logistic regression and MLPNN models are trained in a similar fashion as outlined in the previous 

section. The model was trained using 10,000 generated samples from a CGAN model that was trained on 

the entire PRISM dataset. We then evaluate the model performance on the true observations of the external 

validation IBD dataset. We observed an improvement in AUC-ROC from 0.734 to 0.832 in logistic 

regression models and from 0.794 to 0.849 in MLPNN models. This demonstrates that the synthetic samples 

generated using one cohort can augment the analysis of a different cohort.  

Lastly, we analyzed the distribution of alpha and beta diversities of the original PRISM dataset, the 

samples generated after training a CGAN on the whole PRISM dataset, and the external validation dataset. 

The alpha diversity is calculated for each dataset using the Shannon Entropy metric. The beta diversity 

within the PRISM dataset, from the PRISM dataset to the generated samples, and from the external 

validation dataset to the generated samples was calculated. In addition, we compared the random diversities 

from the randomly initialized CGAN before training. The alpha and beta diversities are shown in Figure 

22.  

We observed that the beta diversity between the PRISM dataset and the synthetic samples generated from 

it displays similar distributions. Additionally, the distribution of the beta diversity values between the 

external validation set and the synthetic samples follow a similar pattern, suggesting that the CGAN model 



 

 
 

95 

did not overfit the PRISM dataset and is robust in generating synthetic samples. We also observed that the 

alpha diversities within the PRISM, synthetic, and external validation datasets showed similar distributions. 

In particular, the alpha diversity within the samples of IBD patients was very similar.  The distributions in 

the healthy samples were slightly different in each of the datasets, however we suspect this may be due to 

the fact that there were far fewer cases of healthy samples in the original PRISM dataset. 
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Figure 22. CGAN analysis on External dataset. (left) PCOA visualization of the combination of the PRISM dataset, synthetic data 

generated by the best CGAN model, and the external validation set. Red points represent patients with IBD and blue points represent 

healthy patients. (right) Distributions of beta diversity based on the Bray Curtis dissimilarity and Shannon alpha diversity between the 

training set and itself, the validation, the generated (CGAN), and random datasets for IBD and healthy samples. 

 
 

 



   

 

97 

3.4.3 Conclusion 

 Using two different cohorts of subjects with IBD, we have demonstrated that the synthetic samples 

generated from a CGAN framework are similar to the original data in both alpha and beta diversity metrics. 

In addition, we have shown that augmenting the training set by using a large number of synthetic samples 

can improve the performance of logistic regression and MLPNN in predicting host phenotype. By 

generating a large number of synthetic microbiome samples that resemble the original data, we show that 

it is possible to improve the performance of ML models trained on the generated synthetic samples. Not 

only can this provide better predictive models of patient disease status, but the improved predictive 

performance can also lead to a more robust set of microbial features extracted from these ML models that 

have been augmented with synthetic data. 
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Chapter 4 

 

Identify Underlying Microbe-Metabolite Interactions by Integrating Microbiome and 

Metabolomic data 

 

Copyright 2021 Creative Commons Attribution 4.0 License. Reprinted, with permission from Reiman, 

Derek, Brian T. Layden, and Yang Dai. "MiMeNet: Exploring microbiome-metabolome relationships using neural 

networks." PLoS Computational Biology 17, no. 5 (2021): e1009021. 

 

4.1 Introduction 

The advance in microbiome and metabolome studies has generated rich omics data revealing the 

involvement of the microbial community in the development of host disease. This involvement is believed 

to happen through interactions with their host at a metabolic level. While previous studies have uncovered 

various microbe-disease associations, more recent work has further revealed the central role of bacterial 

metabolites in host health (Feng et al., 2016; McHardy et al., 2013; Parker et al., 2018). Studies have also 

shown that the abundance of metabolic pathways is relatively consistent despite considerable variability in 

taxonomic composition among individuals, suggesting that the metabolic impact of the microbiome is an 

emergent property of the microbial community as a whole (Benson, 2016; Lee-Sarwar, Lasky-Su, Kelly, 

Litonjua, & Weiss, 2020). Thus, the identification of microbiome-metabolome interactions contributing to 

the overall community metabolic activity is essential not only for understanding microbiome’s effect on the 

host’s health, but also for the development of therapeutic interventions for the prevention or management 

of chronic metabolic disease (Cani & Delzenne, 2011; Helmink et al., 2019; Skelly et al., 2019). 
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The majority of previous studies integrating microbiome and metabolomic data have used a priori 

annotations of microbial enzymes and metabolic pathways to model the metabolic change driven by the 

microbial community. One prominent method, Predicted Relative Metabolic Turnover (PRMT) (Larsen et 

al., 2011), uses microbial genome annotations to first predict the abundance of microbial enzymes from the 

microbial community. Then it uses annotated metabolic pathways to predict the change in metabolites based 

on the abundance of microbial enzymes. The other commonly used method is constraint-based 

stoichiometric modeling using flux balance analysis (FBA) to learn the flux rate of metabolites in the 

community (Biggs et al., 2015; Edwards et al., 2002; Gottstein et al., 2016). Both PRMT and FBA rely on 

a priori information through either microbial or metabolic annotations, limiting them from identifying 

novel metabolic findings. 

More recently, data-driven methods have emerged using paired microboime-metabolomc data to 

identify microbe-metabolite interactions. Since these methods no longer require a priori annotated 

knowledge, they do not suffer from the same limitation of not being able to discover novel interactions. 

One method, MelonnPan, uses linear Elastic Net regression to predict single metabolite abundances from 

microbial relative abundance data (Mallick et al., 2019). Although MelonnPan showed promising results, 

the method itself is limited to only capturing linear combinations of microbial features and may not be well 

suited for the complex nature of microbe-metabolite interactions. More recently, a group published a neural 

encoder-decoder (NED) for predicting the entire metabolic community from microbial features (Le et al., 

2019). They enforce sparsity in the network weights and only allow for positive weights. The harsh 

constraints remove the ability for the model to capture negative interactions of metabolic degradation by 

microbes, greatly reducing the learning capacity and interpretability of the model. 
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4.1.1 Problem Definition 

A DNN model can better model the complex nature of microbe-metabolite interactions through the 

task of predicting the metabolic community given microbial feature and facilitate the identification of 

microbial and metabolic modules in the dysregulation of disease.  

 

4.1.2 Significance 

MiMeNet is one of the first data-driven approaches to integrate paired microbiome-metabolome 

data. By modeling the entire metabolome at once, MiMeNet uses multivariate learning to use shared 

information across metabolites. Additionally, by modeling of the entire metabolome at once, MiMeNet is 

more scalable than the current univariate approaches. In addition to metabolome prediction, MiMeNet 

clusters microbes and metabolites into meaningful functional modules, empowering the identification of 

novel microbe-metabolite interactions underlying the metabolic dysregulation of disease. 
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4.2  MiMeNet: Exploring Microbiome-Metabolome Relationships Using Neural Networks 

We present MiMeNet, a framework utilizing DNN models to predict the metabolite abundance 

using microbial abundance features. In addition, the trained DNN models are easily interpretable and 

facilitate the grouping of microbes and metabolites into functional modules for a module-based interaction 

network. 

 

4.2.1 MiMeNet Framework 

MiMeNet can be split into four main steps. In the first step, paired microbiome and metabolomic 

data are used to train an ensemble of DNN models. Each model is trained to predict the metabolomic 

features using the microbial abundance features. In the second step, metabolites that can be well-predicted 

from the microbial features are identified. In the third step, the set of trained models are used to construct 

an interaction matrix between the microbial features and the well-predicted metabolites. The interaction 

matrix is further filtered by removing microbes with no significant interaction scores. Lastly, in the fourth 

step, the interaction matrix is biclustered to produce functional microbial and metabolic modules. These 

modules can then be used to construct a bipartite interaction network. An overview of the framework is 

shown in Figure 23. 
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Figure 23. Framework of MiMeNet learning model. MiMeNet uses paired microbiome and metabolome data as input. Microbiome abundance 

features (green) are used to train a neural network to predict metabolite abundance features (blue). Well-predicted metabolites are identified and 

the trained models are used to learn a microbe-metabolite interaction matrix. The interaction matrix is biclustered into microbial and metabolic 

modules which are then used to construct a module-based interaction network.  
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Neural Network Model 

An MLPNN model is composed of multiple fully connected hidden layers composed of 

perceptrons. The values !! of the hidden layer " are calculated as: 

!! = $	(!!"#'!"# + )!"#)  (4.1) 

Here '!"# are the weights connecting the perceptrons of the "$% layer with the previous layer with values 

and )!"# are the bias values between the "$% layer and the previous layer, and $ is a non-linear activation 

function. MiMeNet uses the rectified linear unit (ReLU) as its activation function. 

+,-.(/) = 0	/					/ > 0
0					/ ≤ 0

  (4.2) 

Previous studies have shown that the ReLU activation helps avoid the problems exploding and vanishing 

gradient in DNN training (Hara, Saito, & Shouno, 2015). We regularized MiMeNet using -& regularization. 

Additional regularization was applied through dropout at each hidden layer, where a portion of the nodes 

and their weights are masked for a given epoch. MiMeNet was trained using the ADAM optimizer (D. 

Kingma & Ba, 2014) and the mean squared error (MSE) loss function, giving the loss function shown in 

Equation 4.3. 

-455 =
1
7
8(9' − 9(;)&
)

'*#
+ <#8‖'!‖&

!∈,
  (4.3) 

Here, 7 is the number of training samples and - is the total number of hidden layers in the DNN model. 

The first term is the MSE of the observed metabolites > and the predicted metabolites >;, and the second 

term is -& regularization with a penalty controlled with the coefficients <#.  
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Identifying Well-Predicted Metabolites 

In order to identify which metabolites are well-predicted by MiMeNet, we construct a background 

distribution of SCC values by training 100 iterations of 10-fold cross-validation where the samples in both 

the microbiome and metabolomic data were each randomly shuffled. From each trained model, we 

calculated the SCC for between the observed and predicted metabolites and used the entire set of SCC 

values as the background distribution. We then defined a metabolite to be well-predicted if its SCC is above 

the 95th percentile of the background distribution of SCC values. 

 

Constructing an Interaction Score Matrix 

Microbe-metabolite interaction scores are calculated using Olden’s method for understanding 

variable contributions in neural network models (Olden et al., 2004). Olden’s method works by multiplying 

the weights of each hidden layer together, as shown in Equation 4.4. This results in a single matrix where 

each row represents an input feature and each column represents an output feature. 

? =@'!
!∈,

  (4.4) 

Here " is the current layer in the set of L layers, and '! is the weight matrix connecting layer " − 1 and 

layer ". Each element in ? represents a microbe-metabolite feature attribution score. A positive value 

indicates that an increase of the microbe will lead to an increase of the metabolite and a negative value 

indicates that an increase of the microbe will lead to a decrease of the metabolite. For the subsequent 

procedure, we only retained the columns of the feature attribution matrices representing the well-predicted 

metabolites. 
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Identifying Significant Microbes 

Denoting ?' as the feature attribution score matrix for the A$% trained model (n = 100 models 

resulted from the 10 iterations of 10-fold cross-validation), we calculated the mean feature attribution 

matrix as 

?B =
1
C
8?'

-

'*#
  (4.5) 

To identify microbes with significant associations, we further calculated feature attribution score matrices 

from the network models used to generate the background correlation distributions and calculated the mean 

feature attribution score matrix, which was then flattened into a vector and a threshold was set at the 97.5 

percentile. Any feature attribution score in the observed dataset with an absolute value above the threshold 

was considered significant. Finally, any microbe with at least one significant feature attribution score with 

any metabolite was considered to be significant and the rows representing non-significant microbes were 

filtered out from D̿ as well as from all feature attribution score matrices Si used in subsequent analyses. 

 

Construction of Microbial and Metabolic Modules  

We normalized the values in each feature attribution score matrix D' 	by dividing the significant 

threshold score identified from the background and clipped values to be between -1 and 1. In doing so, 

every significant attribution score was treated with equal magnitude. We recalculated D̅	using the 

normalized Si so that each element in D̅	is also between -1 and 1. The normalized matrix D' 	was then used 

to cluster microbes (rows) and metabolites (columns) separately based on the Euclidean distance and 

complete linkage using Seaborn’s clustermap function in Python. Modules were constructed by cutting 

each dendrogram at a given height. To determine the number of clusters for microbes, for each fixed k, 
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ranged from 2 to 20, a k-clustering of the rows using each normalized Si was generated. Then a consensus 

matrix M (k) was calculated as the mean connectivity matrix across all k-clustering results (n = 100), 

G	(0) =
1
C
8H'

	(0)
-

'*#
  (4.6) 

I'
(0)(J, L) = 1				AM	M,JNOP,5	J	JCQ	L	JP,	AC	Nℎ,	5JS,	T"O5N,P								  (4.7) 

I'
(0)(J, L) = 0				AM	M,JNOP,5	J	JCQ	L	JP,	C4N	AC	Nℎ,	5JS,	T"O5N,P  (4.8) 

where I'
	(0) is the connectivity matrix of the clustering using k clusters on Si. We further calculated the area 

under the cumulative distribution function (CDF) for the consensus matrix of each clustering, 

U(0) =8	(/2 − /2"#)V	(/2)
3

2*#
  (4.9) 

where /2 is the W$% value from the set {0.01, 0.02, 0.03, …, 0.99, 1.0} and V	(/2) is the proportion of 

entries in consensus matrix G	(0)	that are less than /2. Lastly, we calculated the proportional change in 

area as the number of clusters changed, 

ΔY =
U(0) − U(0"#)

U(0"#)
  (4.10) 

This value represents how much cleaner the consensus matrix gets if we increase the number of clusters by 

1. We set a threshold of Δk = 0.025, indicating that increasing the cluster by 1 more would give less than a 

2.5% increase in the area under the CDF. The best cluster number k* was selected as the largest value 

of k that resulted in Δk larger than the threshold. Further details of this analysis can be found in Monte et 

al. (Monti, Tamayo, Mesirov, & Golub, 2003). The number of metabolite clusters was determined using 

the same procedure. The best cluster numbers for microbes and metabolites are then denoted as Y#∗ and Y&∗, 
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respectively. The final set of microbial and metabolite modules are then determined by 

biclustering D̅ using Y#∗ and Y&∗ to cluster the rows and columns respectively. 

 For visualization of the microbe-metabolite interaction network, the score between a pair of 

microbe and metabolite modules was calculated as the average normalized feature attribution score 

in D̅  between each microbe and metabolite within the two modules. For visualization purposes only we 

removed any score whose absolute value was less than 0.25. Networks showing microbe and metabolite 

modules and the interactions between them were constructed using Cytoscape (Shannon et al., 2003). 

 

4.2.2 Experiments and Results 

Data Used in Evaluation 

We evaluated MiMeNet using three different datasets. The first dataset was taken from a published 

study of patients with inflammatory bowel disease (IBD) (Franzosa et al., 2019). It includes one cohort 

from the Prospective Registry in IBD Study at MGH (PRISM), which enrolled patients with a diagnosis of 

IBD based on endoscopic, radiographic, and histological evidence of either Crohn’s Disease (CD) or 

Ulcerative Colitis (UC). This dataset has 121 IBD patients and 34 controls and is named as IBD (PRISM). 

Additionally, it includes an external validation dataset using two other cohorts. One consists of 20 healthy 

subjects who participated in LifeLines-DEEP, a general population-based study in the northern Netherlands 

(NLIBD) (Tigchelaar et al., 2015). The second cohort consists of 43 subjects with IBD taken from the 

Department of Gastroenterology and Hepatology at the University Medical Center in Groningen, 

Netherlands. This dataset is named as IBD (External). The processing of the stool samples collected is 

described in the original study (Love et al., 2014). A total of 201 microbial species and 8848 metabolites 

were identified for the IBD (PRISM) and IBD (External) datasets. 
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The second dataset was taken from a study that collected 172 lung sputum samples from patients 

with cystic fibrosis (Quinn et al., 2018). Microbial features were generated using 16S rRNA gene 

sequencing and abundance was collected at the genus level, resulting in 657 unique microbial features. 

Metabolomic data were generated using LC-MS/MS technology, resulting in 168 unique metabolites. 

The third dataset represents microbial and metabolic activity caused by soil wetting at five-time 

points across four biocrust successional stages (Baran et al., 2015). Biocrust soil water for each sample was 

analyzed by LC/MS for metabolite detection. Metagenomic shotgun sequencing was used to profile the 

microbial community and the authors used the 50S ribosomal protein L15 to map microbial taxa. A total of 

466 microbes and 85 metabolites were detected. A summary of the datasets is shown in Table 9. 

 

 

 

 

Any input or output feature that is present in less than 10% of samples was removed. Microbiome 

and metabolomic data were then transformed using the centered log-ratio (CLR) transformation:  

I-+(Z) = [log
/#
_(Z)

, … , log		(
/3
_	(Z)

a  (4.11) 

TABLE IX. SUMMARY OF DATASETS USED IN MIMENET EVALUATION. 
  

Case Control # Microbes # Metabolites 
IBD (PRISM) 68 (CD), 53 (UC) 34 201 8848 

IBD (Validation) 20 (CD), 23 (UC) 33 201 8848 
Cystic Fibrosis 172 - 657 168 

Soil - 19 466 85 
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where x is the abundance vector of a sample, _(Z) is the geometric mean of x, and m is the number of 

features. A pseudocount of 1 was added to each entry of x before the CLR transformation to prevent taking 

the log of 0 values. The only exception was for the IBD (PRISM) and IBD (External) microbe values, which 

were obtained in relative abundance (RA). 

 

Model Training 

The overall evaluation of MiMeNet prediction was conducted using 10 iterations of the 10-fold 

cross-validation, and the average of the correlations between the predicted and observed values for 

metabolites was reported. More explicitly, during the 10-fold cross-validation, each dataset was partitioned 

into two subsets: 90% for training and 10% for testing. For each training partition, the 90% of the data was 

further split into 80% for model training and 20% for validation. After finishing one iteration of 10-fold 

cross-validation, the SCC between the predicted and the observed was calculated for each metabolite. To 

prevent overfitting, MiMeNet models were trained using early stopping. After each iteration of updating 

network weights using the 80% of the training set, the loss of the validation set was calculated. The training 

process was terminated when the loss of the validation set has not improved within 40 iterations, and the 

network weight parameters were set to the values of the best performing model on the validation set. Finally, 

the average of the SCC values was calculated after repeating the 10-fold cross-validation procedure for 10 

times. For the IBD datasets, a final model trained on the full IBD (PRISM) dataset was then evaluated on 

the IBD (External) data set.  
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 Hyper-parameter Tuning 

Hyper-parameter tuning was performed on the first training partition during cross-validation. To 

determine the optimal set of hyper-parameters (number of layers, layer size, λ, and dropout rate), we 

performed a cross-validated random search using a nested 5-fold cross-validation. We allowed for 1, 2, and 

3 hidden layers of sizes 32, 128, and 512. The -& regularization parameter (λ) was selected from 10 different 

values between 0.0001 and 0.1, evenly spaced on a log scale. Dropout was selected from 0.1, 0.3, and 0.5. 

The average SCC was calculated after a model was trained. We evaluated 20 sets of hyper-parameters and 

selected the best performing set for the rest of the 10-fold cross-validation. The optimal hyper-parameters 

used for subsequent evaluations are shown in Table X. 

 

 

 

 

Identification of Well-Predicted Metabolites 

Using the background distributions generated by MiMeNet, the cutoffs for SCCs between the 

predicted and observed abundances of metabolites were found to be 0.136, 0.129, and 0.410 for the IBD 

(PRISM), cystic fibrosis, and soil datasets, respectively. Based on these cutoff values, MiMeNet identified 

metabolites to be well-predicted for 6857 (77.50%) of the 8848 metabolites in the IBD (PRISM) dataset, 

TABLE X. SUMMARY OF OPTIMAL HYPER-PARAMETERS IN MIMENET MODELS. 
  

Layer Size Number of Layers b5 Penalty Dropout 
IBD (PRISM) 512 1 0.001 0.5 
Cystic Fibrosis 128 2 0.005 0.3 

Soil 128 1 0.0001 0.5 
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143 (94.08%) of the 152 metabolites in the cystic fibrosis dataset, and 29 (34.12%) of the 85 metabolites 

in the soil dataset. The distributions of the SCCs in the background and observed data are shown in Figure 

24. The soil dataset had the lowest percent of well-predicted metabolites, which could be due to the larger 

cutoff. We suspect that this is from the bootstrapping procedure being performed on the dataset of small 

size as well as the fact that the dataset is longitudinal and samples may be correlated with each other. Our 

evaluation shows the strong predictability of the MiMeNet models trained on data with reasonable sample 

sizes. 

 

 Effect of Multivariate Learning 

To evaluate if multivariate learning improves the prediction of the metabolomic profiles, we trained 

two separate models using 10 iterations of 10-fold cross-validation using the IBD (PRISM) dataset. The 

first model was trained to predict the entire set of metabolites, and the second model was trained to predict 

the 466 annotated set of metabolites without including the rest of the metabolites. We then compared the 

SCCs of the 466 metabolites from both models and observed that by training on the entire set of metabolites, 

the number of well-predicted metabolites for the annotated set increased from 333 to 366. Additionally, the 

SCCs of the annotated metabolites significantly increased from 0.259 to 0.309 when using all the 

metabolites to train MiMeNet (P < 10−47, the Wilcoxon signed-rank test). The scatter plot comparing the 

prediction correlation performances is shown in Figure 24. 

Next, we evaluated the robustness of MiMeNet by gradually increasing noise to the annotated set 

of metabolites. Specifically, with 10-fold cross-validation, we trained models using all the metabolites and 

using only the annotated set to predict the 466 annotated set. For each partition of the cross-validated 

training, we added Gaussian noise to the annotated metabolites within the training data. We observed that 

the two models performed similarly under small amounts of noise. However, once the noise increased to 

higher levels and had a variance greater than 2, the models trained only on the annotated set collapsed and 
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could no longer predict the annotated metabolites. On the other hand, the models trained using all the 

metabolites were much more robust to the noise at higher levels and could predict the annotated metabolites 

to a much greater degree compared to those trained using only the annotated set (Figure 24). These results 

show the MiMeNet framework benefited from multivariate learning.
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Figure 24. Distribution of background SCC values and evaluation of multivariate learning in MiMeNet. Background (blue) and observed 

(orange) distributions are shown for the (A) IBD (PRISM), (B) cystic fibrosis, and (C) soil datasets. The red vertical line denotes the 95th percentile 

of the background correlations and the gray area represents the well-predicted region using this threshold. (D) Scatter plot comparing the annotated 

metabolite correlations between models trained on just the annotated set and models trained on the full set of metabolites. (E) Mean correlation and 

(F) number of well-predicted metabolites found in models trained on the annotated set of metabolites and full set of metabolties as Gaussian noise 

is added to the annotated metabolite set input. All results in (D)- (F) are for prediction of the annotated metabolites. 
 

 



   

 

114 

Robustness to Training Set Size and Hyper-parameter Selection 

To evaluate MiMeNet performance on different sizes of data for training and testing, we compared 

the k-fold cross-validated prediction correlations (k = 10, 5, 3, and 2) using the IBD (PRISM) and cystic 

fibrosis datasets (the soil dataset was excluded from this analysis due to the small data size). In the IBD 

(PRISM), we only observed a slight decrease in performance (mean correlation coefficient decrease from 

0.297 to 0.218) as the number of partitions decreased. Similarly, in the cystic fibrosis dataset, the correlation 

dropped slightly from 0.457 to 0.410. Additionally, we evaluated performance on random subsetting of 

100%, 80%, 60%, and 40% of the entire datasets. For each level of subsetting, 3 random sets of subset data 

were generated. Then, for each set of data, network hyper-parameters were tuned and 10 iterations of 10-

fold cross-validation were performed to evaluate how reducing the number of overall samples affected the 

prediction correlation. As the size of the dataset decreased, we observed a decrease in the IBD (PRISM) 

dataset from a mean correlation of 0.287 to 0.179, and a decrease in the cystic fibrosis dataset from a mean 

correlation of 0.443 to 0.364. Moreover, we evaluated the IBD (External) dataset for each MiMeNet model 

trained on the IBD (PRISM) dataset and observed a decrease in mean correlation from 0.222 to 0.162. Even 

though there was a decrease in overall correlations as expected, we show that MiMeNet can still predict the 

metabolomic profiles when using smaller sets of training data. Boxplots showing the mean prediction 

correlations are shown in Figure 25. 

We also compared the performance of the prediction using two types of microbial abundance 

representations: relative abundance (RA) and the centered log-transformation of abundance (CLR). The 

prediction correlations in the IBD (PRISM) dataset were comparable between both transformations, 

however, we saw an increase in correlations in the cystic fibrosis and soil datasets when using CLR. In 

addition, we observed an improvement in prediction performance on the IBD (External) test set when using 

the CLR transformation Figure 26.
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Figure 25. Mean correlation analysis in MiMeNet using different amounts of training data. Correlations for 10-, 5-, 3-, and 2- fold 

cross-validation evaluations are shown for the (A) IBD (PRISM) and (B) cystic fibrosis datasets. (C) Subsets of the IBD (PRISM) and 

cystic fibrosis corresponding to 100%, 80%, 60%, and 40% of the total samples are used as an input for MiMeNet. Three random datasets 

for each level of subsetting were created and then mean correlation using 10 iterations of 10-fold cross-validation is calculated across the 

three. In addition, models trained on the complete subsets of the IBD (PRISM) data are used to evaluate the IBD (External) test set. 
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Figure 26. Comparison of prediction correlation when using relative abundance and centered log-ratio. Scatterplots comparing metabolite 

correlation prediction between data transformed to relative abundance (RA) and centered log-ratio (CLR) for (A) IBD (PRISM), (B) cystic fibrosis, 

(C) soil datasets using 10 iterations of 10-fold cross-validation, and (D) IBD (External) test predictions using models trained on the full IBD 

(PRISM) dataset. 
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Lastly, we evaluated if sharing the learned hyper-parameters across all cross-validated partitions in 

MiMeNet lead to overfitting. Although performing a single run of hyper-parameter tuning that is shared 

allows for much more computational efficiency, it could potentially be a source of bias. We evaluated the 

IBD (PRISM) and cystic fibrosis datasets using a single shared hyper-parameter set learned on the first 

partition against cross-validation where hyper-parameters are tuned every partition. Using the IBD 

(PRISM) dataset, we observed an increase in mean SCC when tuning every iteration, while in the cystic 

fibrosis dataset, we observed a decrease in mean SCC. Despite the decrease of performance in the cystic 

fibrosis dataset, 141 of the 143 significantly correlated metabolites were still identified. Comparisons of the 

two evaluations for each dataset are shown in Figure 27. Together, MiMeNet shows a robust performance 

using the proposed parameter-tuning procedure. 
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Fig. 27. Performance comparison of models trained using shared hyper-parameters against models 

trained with tuning hyper-parameters every cross-validated partition. Using 10-iterations of 10-fold cross-

validation, evaluations using shared hyper-parameters tuned from the first partition (Tune Once) were compared 

against evaluations with tuning for each partition (Tune Every Partition) for the IBD (PRISM) and cystic fibrosis 

dataset. Each point represents the mean SCC of a metabolite and the red lines represent the determined SCC 

threshold for significantly well-predicted metabolites. 
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Evaluation of Prediction Performance 

For benchmarking, we first compared MiMeNet to MelonnPan, a recent model that uses Elastic 

Net linear regression to predict metabolite abundance from microbial abundance features (Mallick et al., 

2019). Elastic net regression applies a linear combination of both !! and !" regularizations to avoid 

overfitting. In the case of MelonnPan, a linear model is trained for one metabolite at a time and cannot 

benefit from multivariate learning. In our study, MelonnPan was evaluated using the same data partitions 

of the 10 iterations of 10-times cross-validation for each dataset. However, in the case of the IBD (PRISM) 

dataset, only the annotated metabolites were predicted due to the large running time for the entire metabolite 

set. On the other hand, MiMeNet was trained to predict all metabolites in the IBD (PRISM) dataset. We 

observed that in each of the datasets trained using cross-validation, MiMeNet has a higher correlation for 

prediction across all metabolites when compared to MelonnPan. In the IBD (PRISM) dataset, the mean 

correlation increased from 0.108 to 0.309 when evaluating the annotated metabolites. When training 

MiMeNet only on the annotated metabolites, we observed a similar result with an increased correlation to 

0.259. In the cystic fibrosis dataset, the mean correlation increased from 0.276 to 0.457. In the soil dataset, 

the mean correlation from MelonnPan was -0.272 and was increased to 0.264 using MiMeNet. Moreover, 

we evaluated the performance of the models obtained from MelonnPan and MiMeNet using the IBD 

(External) dataset on the annotated metabolites. The mean correlation of the annotated metabolites was 

increased from 0.168 to 0.275. Comparisons between MiMeNet and MelonnPan for each dataset are shown 

in Figure 28 when considering all metabolites and Figure 29 when considering only the annotated 

metabolites in the IBD (PRISM) dataset for model training.  
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Figure 28. Comparison of MiMeNet with MelonnPan. Scatterplots showing the comparison of SCC 

values between observed and predicted metabolites when using MiMeNet and MelonnPan for the (A) 

PRISM IBD, (B) cystic fibrosis, (C) soil, and (D) IBD Validation datasets. 
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Figure 29. Comparison of MiMeNet with MelonnPan for IBD (PRISM) using only annotated 

metabolites for training.  MieMeNet is trained just using the annotated metabolites rather than the 

entire set of metabolite features. 
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Additionally, within the IBD (PRISM) dataset, MiMeNet identified 351 well-predicted metabolites 

from the 466 annotated metabolites. Even though MelonnPan uses a default correlation cutoff of 0.3, when 

using the same correlation cutoff derived by MiMeNet, MelonnPan identified 198 well-predicted 

metabolites of which 181 were identified by MiMeNet. In the cystic fibrosis dataset, MiMeNet identified 

143 well-predicted metabolites while MelonnPan identified 104. In the soil dataset, MiMeNet identified 29 

well-predicted metabolites while MelonnPan identified 4. When training using the entire IBD (PRISM) 

dataset to predict the IBD (External) test data, MiMeNet identified 308 well-predicted metabolites while 

MelonnPan identified 186, of which 160 were also identified by MiMeNet. The overlap of the two methods 

across all datasets is shown in Figure 30.  

When analyzing the overall prediction correlation and number of well-predicted metabolites, we 

observed that MiMeNet’s improvement was not a global improvement across all metabolites, but rather it 

came from MiMeNet being able to model a large set of microbes that MelonnPan could not. For example, 

in the IBD (PRISM) dataset, there were 237 metabolites with a negative prediction correlation. Of these 

metabolites, MiMeNet was able to predict 160 with a correlation above the determined cutoff. These 

metabolites also made up the set of metabolites with a prediction correlation of 0 in the IBD (External) set 

when using MelonnPan. Upon investigation, this set of metabolites was predominantly composed of 

triacylglycerols, long-chain fatty acids, and bile acids. These three classes of metabolites have been shown 

to interact with various microbes as well as relate to IBD patients. 
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Fig. 30. Overlap of significant metabolites identified by MiMeNet and MelonnPan. Venn diagrams 

showing the overlap of significant metabolites identified by MelonnPan (red) and MiMeNet (green) in 

different datasets. 
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We observed that the running time of MiMeNet was robust and did not scale largely with the 

number of metabolites as all three datasets complete in similar timespans as shown in Table XI. These 

results show that MiMeNet benefited from multivariate learning, the scalability of MLPNN, and the ability 

of MLPNN in capturing complex relationships between microbiome and metabolomes. 

 

 

In addition, we benchmarked MiMeNet against other general regression models, i.e., 

Random Forest (RF), multivariate Elastic Net, and canonical correlation analysis (CCA) models 

using 10 iterations of 10-fold cross validation. Based on three evaluation metrics, i.e., SCC, 

Pearson correlation coefficient (PCC), and mean absolute error (MAE), we observed that for the 

IBD (PRISM) and cystic fibrosis datasets, MiMeNet and RF models performed best. For the soil 

dataset, we observed that CCA models performed the best, which may be due to the extremely 

small sample size of the soil dataset. When models were trained on the entire IBD (PRISM) dataset 

to predict the IBD (External) dataset, we observed that MiMeNet outperformed all other models. 

Results for CLR and RA evaluations are shown in Table XII and Table XIII respectively. 

Additionally, an evaluation of RF and CCA for training on the entirety of the IBD (PRISM) dataset 

to predict the IBD (External) dataset is shown in Table XIV. 

TABLE XI. RUNNING TIME OF MIMENET AND MELONNPAN 
  

MiMeNet Running Time (H:M:S) MelonnPan Running Time (H:M:S) 
IBD (PRISM) 1:11:39 16:33:04 
Cystic Fibrosis 1:18:05 3:47:27 

Soil 1:54:24 1:31:29 
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TABLE XII. EVALUATION OF MIMENET, RF, ELASTIC NET, AND CCA MODELS USING CLR TRANSFORMED DATA. 

 
  MiMeNet RF Elastic Net CCA (k=10) CCA (k=20) CCA (k=40) 

IBD 
(PRISM) 

SCC 0.31 ± 0.01 0.25 ± 0.01 0.25 ± 0.01 0.03 ± 0.02 0.05 ± 0.02 0.05 ± 0.02 

PCC 0.25 ± 0.02 0.27 ± 0.01 0.21 ± 0.01 0.01 ± 0.03 0.03 ± 0.04 0.01 ± 0.03 

MAE 1.48 ± 0.01 1.38 ± 0.01 1.50 ± 0.02 1.81 ± 0.07 2.19 ± 0.13 2.94 ± 0.15 
        

Cystic 
Fibrosis 

SCC 0.46 ± 0.01 0.42 ± 0.01 0.39 ± 0.01 0.14 ± 0.01 0.20 ± 0.01 0.27 ± 0.01 

PCC 0.48 ± 0.01 0.45 ± 0.01 0.45 ± 0.01 0.14 ± 0.01 0.20 ± 0.02 0.28 ± 0.01 

MAE 2.89 ± 0.01 2.98 ± 0.05 3.13 ± 0.01 4.70 ± 0.09 4.89 ± 0.14 5.11 ± 0.04 
        

Soil 

SCC 0.26 ± 0.03 0.17 ± 0.06 0.40 ± 0.02 0.46 ± 0.03 - - 

PCC 0.29 ± 0.03 0.18 ± 0.08 0.43 ± 0.03 0.48 ± 0.03 - - 

MAE 0.94 ± 0.01 0.98 ± 0.04 0.87 ± 0.02 1.06 ± 0.03 - - 
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TABLE XIII. EVALUATION OF MIMENET, RF, ELASTIC NET, AND CCA MODELS USING RA TRANSFORMED DATA. 

 
  MiMeNet MelonnPan RF Elastic Net CCA (k=10) CCA (k=20) CCA (k=40) 

IBD 

SCC 0.27 ± 0.01 0.11 ± 0.01 0.24 ± 0.01 0.18 ± 0.01 0.02 ± 0.03 0.03 ± 0.02 0.04 ± 0.02 

PCC 0.18 ± 0.01 0.06 ± 0.01 0.16 ± 0.01 0.12 ± 0.01 0.01 ± 0.02 0.01 ± 0.02 0.01 ± 0.02 

MAE 
5.03 x 10-4  
± 4.2 x10-8 

1.51 x 10-3  
± 1.26 x 10-4 

4.042 x 10-4 ± 
2.65 x10-6 

0.002  
± 7.75 x 10-6  

6.51 x 10-4  
± 3.03 x 10-5 

8.35 x 10-4  
± 3.45 x 10-5 

8.12 x 10-4  
± 3.45 x 10-5 

         

Cystic 
Fibrosis 

SCC 0.32 ± 0.01 0.28 ± 0.01 0.43 ± 0.01 0.31 ± 0.01 0.08 ± 0.01 0.14 ± 0.01 0.19 ± 0.01 

PCC 0.26 ± 0.06 0.30 ± 0.01 0.47 ± 0.02 0.35 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 

MAE 
0.006  

± 1.65 x 10-6 
0.005 

 ± 3.5 x10-5 
0.005 ± 0.03 

0.006  
± 8.62 x 10-5 

0.03 ± 0.010 0.067 ± 0.013 0.116 ± 0.013 

         

Soil 

SCC 0.14 ± 0.05 -0.27 ± 0.04 0.19 ± 0.06 0.29 ± 0.01 0.33 ± 0.02 - - 

PCC 0.07 ± 0.05 -0.27 ± 0.03 0.11 ± 0.04 0.22 ± 0.01 0.18 ± 0.04 - - 

MAE 
0.008 ± 2.00 x 

10-4 
0.006 ± 1.06 x 

10-4 
0.006 ± 3.71 x 

10-4 
0.011 ± 0.009 0.021 ± 0.002 - - 
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TABLE XIV. EVALUATION OF MIMENET, RF, ELASTIC NET, AND CCA MODELS ON IBD (EXTERNAL) DATASET. 

 

  MiMeNet MelonnPan RF Elastic Net 
CCA 

(k=10) 
CCA 

(k=20) 
CCA 

(k=40) 

Centered Log-Ratio 

SCC 0.24 - 0.19 0.21 0.05 0.12 0.06 

PCC 0.25 - 0.22 0.2 0.03 0.11 0.04 

MAE 1.34 - 1.37 1.98 1.31 1.31 1.34 
         

Relative Abundance 

SCC 0.21 0.17 0.17 0.15 0.07 -0.02 0.01 

PCC 0.17 0.16 0.17 0.13 0.05 -0.02 -0.02 

MAE 4.10 x 10-4  0.001 0.0001 4.24 x 10-4  4.37 x 10-4  4.37 x 10-4 4.52 x 10-4  
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Lastly, we compared MiMeNet to the NED model using the PRISM IBD dataset. The other datasets 

were not evaluated using NED due to limitations of its implementation during the time of evaluation. 

Although both methods implemented neural network-based approaches to model the full-scale 

metabolomic profile, when comparing with the NED model, we observed a large portion of metabolites 

with a correlation of predicted to observed to be 0. This means that the NED model was not able to model 

these metabolites, and we suspect this is due to the harsh constrains imposed by the model of sparsity and 

positive weights. Comparison between MiMeNet and NED is shown in Figure 31. 

 

 
Figure 31. Comparison of MiMeNet with BiomeNED. Scatterplots showing the comparison of SCC 

values between observed and predicted metabolites when using MiMeNet and BiomeNED for the 

PRISM IBD dataset. 
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Identification of Microbial and Metabolic Modules 

For the analysis and visualization of microbial and metabolic modules, we focus on the IBD data 

since it contains both control and case samples. We computed the feature attribution scores for all pairs of 

microbes and the 6857 well-predicted metabolites using the network weights of the trained models obtained 

from the IBD (PRISM) data set. We identified 163 microbes that had at least one significant attribution 

score with a well-predicted metabolite. A positive score means that the microbe contributes positively to 

the prediction of the abundance of the metabolite. Likewise, a negative score contributes negatively to the 

prediction of the abundance of the metabolite. To reveal the pattern of attribution scores, we grouped the 

microbes and metabolites into modules using biclustering. We identified 8 modules of microbes and 

metabolites respectively based on clustering shown in Figure 32 and computed the module feature value 

as the average abundance of features within the module for each sample.  

We further went to examine if a module is enriched for one patient group (IBD or healthy) by 

comparing the average normalized feature values of the members within the module between the two groups 

using the IBD (PRISM) samples (P<0.05, Wilcoxon rank-sum test). We observed that 7 of the 8 microbial 

modules were significantly different between groups using the IBD (PRISM) data. Using the IBD (External) 

data, two of the modules were still significantly different; and even though other modules were no longer 

significant, they shared similar trends in the differences between groups. We also found that 7 of the 8 

metabolic modules were significantly different between groups using the IBD (PRISM) data and when 

using the IBD (External) data, the same 7 modules were also significantly different between groups. 

Boxplots showing enrichment results between healthy and disease patients across all modules is shown in 

Figure 33. 
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Figure 32. Module biclustering of IBD (PRISM) dataset. MiMeNet identified 8 microbial (row) and 8 

metabolic (column) modules. Biclustering was done using hierarchical clustering using complete linkage 

and Euclidean distance. 
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Figure 33. Microbial and metabolic module abundance by patient status in the IBD (PRISM) dataset. 

The mean normalized abundance of members within modules are shown here for healthy patients and IBD 

patients from the IBD (PRISM) dataset using (A) microbial and (B) metabolic modules and from the IBD 

(External) dataset using (C) microbial and (D) metabolic modules identified by MiMeNet. P-values from a 

two-sided Wilcoxon rank-sum test are shown on the bottom. 
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To further examine the MiMeNet’s predictive performance in each metabolite module, we 

calculated the mean SCC and PCC values of members within each module from both the cross-validated 

evaluation and the evaluation on the IBD (External) data. For the cross-validated evaluation, the mean SCC 

for each module ranged from 0.25 to 0.41 and the mean PCC ranged from 0.21 to 0.35, showing that each 

module contributed to the overall prediction performance of the MiMeNet model. On the IBD (External) 

evaluation, the mean SCC ranged from 0.14 to 0.28 and the mean PCC ranged from 0.06 to 0.25. Although 

the values decreased in the IBD (External) data, the modules with higher mean SCC and PCC values in the 

cross-validated evaluation were also the modules with the higher SCC and PCC values in the IBD (External) 

data. Taken together, these results show that the predictive ability as well as the information carried by the 

collective members of each module were transferrable to an external cohort of patients. Mean SCC values 

for each model in the IBD (PRISM) and IBD (External) datasets are shown in Figure 34. 

Next, we compared the microbial modules in the IBD (PRISM) dataset identified by MiMeNet to 

those identified by the Weighted Correlation Network Analysis (WGCNA) (Methods). The module features 

of a sample were calculated as the average normalized abundance of the members within the module. Using 

the Jaccard similarity between the members of the modules as well as the Spearman correlation coefficient 

between module features across samples, we observed only a small consensus between the two groupings 

as shown in Figure 35. 
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Figure 34. Mean Spearman and Pearson correlation per metabolite module. For each metabolite module, the (A) mean 

SCC and (B) mean PCC values of the members within the module are shown using the cross-validated evaluation on IBD 

(PRISM) as well as when evaluating the IBD (External) data. 
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Figure 35. Jaccard Index and Spearman correlation between module features of WGCNA and MiMeNet modules. Jaccard 

Index values (left) and Spearman correlation p-values (right) shown in the boxes for reference. 
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To evaluate how well MiMeNet’s modules captured underlying functional activity, we 

evaluated the module’s predictive performance when trying to predict the disease status of a 

sample. To do so, we constructed module-based features by taking the average normalized 

abundance value of the members within each module. We then trained small neural network 

models using 3 layers of 32 nodes to predict IBD status using either microbiome or metabolic 

module-based features. We compared this evaluation to models trained on the original features as 

well as modules detected by WGCNA. We observed that MiMeNet’s modules were significantly 

more predictive than those identified by WGCNA. In addition, we observed no loss of predictive 

performance when compared to models trained on the original features, suggesting that although 

MiMeNet was never given disease status, it was able to group microbes and metabolites 

representative of the underlying metabolic dysregulation of the disease. AUC-ROC values for 

models trained using microbiome and metabolic features are shown in Figure 36. 

Lastly, using the microbial and metabolic modules, we constructed a bipartite interaction 

network. Interaction scores were taken as the mean pairwise interaction score between members 

of a microbial and metabolic module. The bipartite graph constructed from the microbial and 

metabolic modules generated from the IBD dataset is shown in Figure 37. 
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Figure 36. AUC values for prediction of IBD status using MiMeNet modules, WGCNA 

modules, and original features. AUC values using microbial (left) and metabolic (right) features. 

Modules derived from WGCNA (blue) and MiMeNet (orange) are compared to the models trained 

on the original values (green). 
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Figure 37. Bipartite interaction network. Bipartite module-based interaction network between microbial (left) and metabolic (rigt) 

modules identified in the PRISM IBD dataset. Modules enriched in IBD and healthy patients are grouped together. Green edges 

represent a positive interaction and red edges represent a negative interaction. 
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Biological Function of Modules 

We further went to examine if a module is enriched for one patient group (IBD or healthy) by 

comparing the average module feature values of the two groups (P<0.05, Wilcoxon rank-sum test). Four 

metabolic modules were enriched in healthy subjects. The first module (module 2) contained medium chain 

fatty acids (MCFA), triterpenoids, and cholesterols. Triterpenoids have been shown to have an anti-

inflammatory effect as well as enhancing intestinal tight junctions and have been explored as therapeutic 

options for treating IBD (Dong et al., 2020; C. Liu et al., 2015; Mueller, Triebel, Rudakovski, & Richling, 

2013). Additionally, both cholesterols and MCFAs have been shown to be reduced in subjects with IBD 

(Agouridis, Elisaf, & Milionis, 2011). The second module (module 3) contained MCFA molecules as well 

as secondary bile acids. Secondary bile acids which have found to be reduced in IBD patients in previous 

studies (De Preter et al., 2015; Heinken et al., 2019). The third module (module 7) was composed of short-

chain fatty acids (SFCA) which have been shown to be protective against IBD (Parada Venegas et al., 

2019). The final module (module 8) contained triradylcglycerols, which have been reported to be lowered 

in subjects with IBD (Agouridis et al., 2011). 

Similarly, three metabolic modules were found enriched in IBD patients. The first module (module 

1) was composed of primary bile acids, amines, amino acids, cholesteryl esters, and long chain fatty acids 

(LCFA). Primary bile acids deconjugated to secondary bile acids by microbes in the gut. Studies have found 

that subjects with IBD have an impaired ability of the deconjugation of primary bile acids, causing a greater 

abundance of primary bile acids (Heinken et al., 2019). Additionally, primary bile acids have been shown 

in previous studies to bind to the Farnesoid X receptor, which is linked to the elevated immune response 

observed in IBD (Vaughn et al., 2019). Cholesteryl esters have also been shown to be enriched in subjects 

with IBD, due to lipid mobilization and increased intestinal permeability (Tefas, Ciobanu, Tanțău, Moraru, 

& Socaciu, 2020). Interestingly, the amine group within this module composed of only N-

acylethanolamines as well as sphingosine. N-acylethanolamines have been shown to alter the gut 

microbiome and increase the levels of lipopolysaccharides in the intestines (Fornelos et al., 2020). 
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Sphingosine in conjunction with fatty acids make up ceramide, another metabolite found within this 

module. Ceramide is a precursor to sphingosine-1-phosphate, a signaling sphingolipid which is believed to 

increase inflammation in the gut (Suh & Saba, 2015). The largest group in this module, however, comprised 

of 31 (24.4%) different amino acids. Amino acids have been found in a previous study to be elevated in 

IBD patients due to the increase in the bacterial enzyme urease. Elevated urease promotes a flux of nitrogen, 

which is then used for the synthesis of amino acids by the host (Ni et al., 2017). The second module (module 

4) contained LCFAs, glycerolipids, glycerophospholipids, and sphingolipids. Previous studies have shown 

that bacterial-derived sphingolipids have been shown to play a crucial role in the development of IBD 

through multiple signaling pathways (Abdel Hadi, Di Vito, & Riboni, 2016). The elevated glycerolipids 

and glycerophospholipids were also identified in the original study (Franzosa et al., 2019). The third module 

(module 5) contained mostly conjugated bile acids. Similar to primary bile acids, conjugated bile acids have 

been shown to be elevated in IBD subjects due to the decreased ability to deconjugate the bile acids into 

secondary bile acids. 

 

4.3 Conclusion 

Based on our analyses, MiMeNet effectively integrates microbiome and metabolomic data to 

uncover functional microbial and metabolic modules and interactions between them. By training an 

ensemble of DNN models, MiMeNet provides superior predictive performance of the metabolic community 

using microbial features compared to other state-of-the-art methods. Additionally, the models facilitate the 

clustering of microbes and metabolites into meaningful functional modules, which we show can capture 

the underlying dysregulation of disease. MiMeNet is publicly available and can be downloaded from 

https://github.com/YDaiLab/MiMeNet.
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Chapter 5 

 
 
 

Deep Learning Networks with Diversity-Regularized Autoencoder for 

Modeling Longitudinal Microbiome Data 

 

Copyright 2019 IEEE. Reprinted, with permission from Reiman, Derek, and Yang Dai. "Using 

Autoencoders for Predicting Latent Microbiome Community Shifts Responding to Dietary Changes." In 

2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1884-1891. 

 

5.1 Introduction 

Engineering the gut microbiome for the treatment of disease is an exciting new direction in medical 

science (Creswell et al., 2020; Holmes et al., 2012; Ronda, Chen, Cabral, Yaung, & Wang, 2019; Staley et 

al., 2018). A recent study using mouse models showed microbial engineering to be effective in treating 

hyperammonemia (Shen et al., 2015). Currently, fecal microbiota transplants are the medical procedure to 

induce microbiome engineering for therapeutic purposes. Although they have been shown to be effective, 

these procedures have an extreme effect in microbial reconstitution and introduce a wide variety of 

exogenous strains of unknown function to the host, and the long-term effects of this extreme change are 

unknown (S. S. Li et al., 2016; Smillie et al., 2018). A recent study using mouse models showed that fecal 

transplants into healthy mice were able to later lead to the development of IBD (Fischer, Bittar, Papa, 

Kassam, & Smith, 2017). In order to address the risk of the extreme microbial reconstitution that fecal 

transplants induce, there is a need for understanding how to alter the microbiome community structure of a 

patient using controlled treatment factors (Gilbert et al., 2016). Uncovering the nature of how to precisely 

control a patient’s microbiome requires accurate modeling of the dynamics of the microbiome community 

under varying conditions. Such models will empower the identification of microbiome-targeted therapies 
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as clinicians and researchers will be able to identify which factors and stimuli can be used in order to drive 

a patient’s microbiome to a healthier composition.  

The microbiome composition is a major factor in defining future microbiome composition, 

especially in the gut microbiome (Shenhav et al., 2019). However, the modeling of longitudinal microbiome 

data faces many challenges due to the inherent noise of microbiome data, which is further confounded by 

missing data and the varying speed of microbial dynamics between subjects. Current methods use 

smoothing splines for the interpolation of missing data (Lugo-Martinez et al., 2019; Shafiei et al., 2015). 

However, splines only consider a single microbe’s abundance for interpolations. This presents a challenge 

when working in the compositional profile, which is often the case when performing microbiome analyses. 

By interpolating the compositional abundance of individual microbes, the constraints of the compositional 

landscape are ignored, and additional steps are required to realign the microbiome community abundance 

values at each interpolated point.  

 Two common methods for modeling the dynamics of the microbiome community are Boolean and 

Bayesian networks (Äijö et al., 2018; Claussen et al., 2017; Michael J McGeachie et al., 2016; Ruiz-Perez 

et al.; Shafiei et al., 2015; Steinway et al., 2015). Both methods represent microbial abundance features as 

nodes in a network. One set of nodes is used to represent the current microbial abundance values, and the 

second set of nodes is used to represent the microbial abundance values of the next time step, with directed 

edges connecting nodes from the first set to nodes in the second set. Boolean networks represent nodes as 

binary states of either “on” or “off” which are updated over time using Boolean functions. By discretizing 

microbial abundance values, the network ignores gradual changes in abundance and focuses more on the 

logical organization of the entire system. Although being the simpler of the two network approaches, 

Boolean networks have shown to be successful in modeling microbial dynamics of small systems (Claussen 

et al., 2017). Dynamic Bayesian networks, on the other hand, use each node to represent a random variable 

and each edge represents the conditional probability of the target random variable. Recently, an 

implementation of a Dynamic Bayesian network that could also integrate discrete clinical data was put 
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forward (Lugo-Martinez et al., 2019; Ruiz-Perez et al.). However, these methods are constrained by the 

number of features as well as node connections in the network, and as such, stringent filtering or hand-

selecting features is often required. Additionally, with these limitations, integrating large amounts of patient 

data is not feasible.  

Another approach to modeling the dynamics of a microbiome community is using generalized 

Lotka-Volterra (gLV) equations (Joseph et al., 2020; Kuntal et al., 2019; Stein et al., 2013). Unlike the 

original Lotka-Volterra equations, which only consider predator-prey interactions, gLV equations allow for 

all possible combinations of interspecies interactions, such as commensalism and competition (Bunin, 

2017; Wangersky, 1978). This approach models the microbiome community as a set of ordinary differential 

equations where each equation represents the change of a single microbe’s abundance considering an 

intrinsic growth rate and a collection of pairwise interactions with all other microbes in the community. 

However, these methods share similar constraints to their network-based counterparts in that they are 

heavily constrained by the number of samples and features. 

 Lastly, a few studies have turned to neural network approaches for modeling the effects of microbe-

microbe interactions and environmental factors and the microbiome community structure dynamics 

(García-Jiménez, Muñoz, Cabello, Medina, & Wilkinson, 2021; Larsen, Field, & Gilbert, 2012). In a study 

by Larsen et al., a DBN model is used to first generate a directed acyclic graph. The nodes and edges from 

the DBN model are then used to construct an artificial neural network (ANN) model to capture the complex 

nature of the microbe-microbe for modeling the longitudinal dynamics of the microbiome community. 

Although the model showed an improvement in modeling longitudinal microbiome data, by relying on the 

DBN to identify important nodes and edges, the method shares the same limitations of DBN models, that 

is that the method is constrained by sample and input feature size.  Another study by García-Jiménez et al. 

use an autoencoder (AE) network in order to construct a latent representation of the microbiome 

community. The authors then create a second encoder network in order to construct a latent representation 

of environmental factors and align the microbiome and latent environmental spaces. In doing so, the 
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environmental factors alone can be used to predict the microbiome community. Although the method shows 

success in predicting the latent microbiome structure of soil samples in different weather conditions, it only 

predicts the current microbiome community rather than predicting a future microbiome community. As 

such, it is not suited for modeling the dynamics of the microbiome community and capturing microbe-

microbe interactions as well as the effects of environmental factors.  

 

5.1.1 Problem Definition 

In this work, we develop a novel two-step framework using DNN models to address the challenges 

and limitations described above: 

1. The first step will employ the use of an AE model in order to encode the microbiome 

community into a reduced latent space. In doing so, we will reduce the inherent noise found 

in microbiome data and provide a platform for interpolating the entire microbiome 

community at once such that the compositional constraints are maintained.  

2. The second step will model the dynamics of the microbiome community using the reduced 

latent representation. By using this reduced feature space, the overall number of parameters 

for the DNN model is reduced and the model focuses on shifts in the intrinsic latent 

structure of the microbiome community. In addition, our DNN model is scalable with 

respect to input space, allowing for large amounts of external and host-related factors to be 

seamlessly integrated. 

 

5.1.2 Significance 

 With increasing amounts of longitudinal microbiome data being generated in conjunction with 

additional types of omics data, our two-step framework utilizing DNN models will not only be scalable to 

sample and feature size, but also provide accurate modeling of the dynamics of microbiome communities 
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and identify how external factors impact these dynamics. In doing so, we will empower researchers to 

generate novel hypotheses for identifying potential treatment routes to improve patient health through 

microbiome targeted therapeutics. 

 

5.2 Using Autoencoders for Predicting Latent Microbiome Community Shifts 

5.2.1 Preliminary Framework 

The proposed framework for modeling microbiome community dynamics is described in two parts. 

In the first part, we will train an autoencoder (AE) network to capture the latent space of the observed 

microbiome data. In the second part, we will train a DNN model that can integrate dietary information with 

the latent microbiome community structure in order to predict the structure in the next time point. 

 

Autoencoder Framework 

In the first step of our framework, we propose the use of an AE to compress the microbial 

community structure into a latent space. An AE is an unsupervised learning model trained to reconstruct 

the original input after first encoding it into a reduced latent space (Baldi, 2012). Specifically, given a data 

set of n samples ! = {$!, $", … , $#} in ℝ$ (p is the number of input features), and a neural network 

architecture, it learns to encode the input to a smaller latent space, ) ∈ ℝ% (d < p), and then from ) 

reconstruct the output !+ = {$,!, $,", … , $,#} to be as close as possible to the original input. The AE model 

uses the ReLU activation function for hidden layers and the sigmoid activation function on the latent layer. 

Since we will be using relative abundance values, the softmax activation is applied to the output layer and 

the network is trained using the Kullback-Leibler divergence loss shown in Equation 5.1.  
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	. = 1
01234	($&|$,&)

&
+ 9!:|;'(|:

"	  (5.1) 

Here 0 is the number of samples, the first term is to measure the reconstruction loss, and the second term 

is an L2 regularization term to penalize the weights learned in the AE (<'() scaled by a parameter 9!. To 

further stabilize the model, we include a denoising by adding Gaussian noise following ~>	(0, 0.01). An 

overview of the AE model is shown in Figure 38. 

 

Integrative Deep Neural Network Model of Dynamics 

 The preliminary model uses a single fully connected layer using the ReLU activation function and 

an output layer using the sigmoid activation function. By using the decoder trained from the AE model, we 

decode the predicted latent space )A)*! into the predicted   $,)*!. This allows us to use the Kullback-Leibler 

divergence (KLD) to compare the predicted microbiome community to the observed microbiome 

community, $)*!. The dynamic prediction model was trained using the cost function shown in Equation 5.2. 

	. = 1
B11 234	($+)*!|$,+)*!)

)+
+ 9":|;,-.|:

"	  (5.2) 

Here, B is the number of samples used in the training process such that C represents a unique subject and D 

represents a time point. The first term is the Kullback-Leibler divergence between the predicted microbiome 

community and interpolated microbiome community at that time point, and the second term is the L2 

regularization on the weights learned in the dynamic prediction model (;,-.) scaled by a parameter 9". 

Further regularization was performed using dropout to remove a certain proportion of nodes from the fully 

connected layer. Prior to training, the learned weights of the AE model are locked as the loss gradient passes 

through the decoder part. An overview of the dynamic prediction model is shown in Figure 39. 
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Figure 38. Autoencoder model. The autoencoder compresses the original input x into the latent vector z. The network is trained by 

minimizing the distance between the reconstructed output, !", with the input x. 
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Figure 39. Preliminary integrative DNN network for prediction of microbiome dynamics. The DNN model integrates the 

microbial community x at time t with dietary factors to predict the microbial community at time t+1. 
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5.2.2 Preliminary Results 

 Datasets Used in Evaluation 

  For the pilot study of our model we chose three sets of experimental data that measure the gut 

microbiome in mice under different dietary conditions (Carmody et al., 2015). In the first dataset, the 

microbiomes of 60 outbred mice were examined in which consecutive dietary shifts between high-fat, high-

sugar (HFHS) diet and low-fat, high-plant-polysaccharide (LFPP) diet had occurred. Mice were fed the LFPP 

diet until the age of 7 weeks, at which point they were then fed a HFHS diet for a week, followed by a LFPP 

diet for a week, and then finally a HFHS diet for 2 months. Fecal samples were taken weekly starting at week 

4, with an additional 4 samples taken between weeks 7 and 8 (the first shift from a LFPP diet to a HFHS 

diet. The dataset represents a total of 977 data points across 18 time points in 98 days.  

 The second dataset is composed of 35 C57BL/6J adult male mice where each mouse is fed the same diet 

for a week. There are seven available diets that represent different percentages of HFHS (0, 1, 10, 25, 50, 

75, 100). The remaining percentage of the diet consisted of the LFPP diet. Fecal samples were collected after 

one week, resulting in a total of 67 data points. 

 The third dataset included 15 C57BL/6J male mice split into four groups over the course of 38 days. All 

four groups were fed LFPP diet for the first four days and HFHS for the final seven days of the experiment. 

Two control groups were fed only LFPP or HFHS for the duration of the experiment. The third and fourth 

groups oscillated between HFHS diet and LFPP diets, switching every three days. 

  All samples were analyzed with 16S rRNA gene sequencing data obtained from MG-RAST using the 

‘matR’ package in R and processed at the genus level. A summary of the datasets is shown in Table XV. 
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Hyper-parameter Tuning 

  We performed hyper-parameter tuning in two steps for the autoencoder using the outbred dataset, 

training 10 models in a cross-validated fashion for each parameter set. We chose to use this dataset to 

determine the network architecture since it has the largest number of samples, and we believed the other 

datasets would share a similar optimal architecture. First, we kept the fully connected and latent layers 

constant using 128 and 64 nodes, respectively, and tuned the regularization parameter !! over the values 

{1.0, 0.1, 0.01, 0.001, 0.0001}, finding that the value of 0.0001 was optimal. Next, keeping the tuned !! 

constant, we changed the size of the fully connected layers and latent layer, and we found that a model with 

a fully connected layer of 128 nodes and a latent layer of 64 performed best. A validation set consisting of 

20% of the training mice was used for early stopping. Inputs were log-normalized before being passed 

through the network. The mean and standard deviation of reconstruction MAE and KLD values for layer 

combinations can be found in Table XVI.  

 

TABLE XV. SUMMARY OF DATASETS USED IN DYNAMIC MODEL EVALUATION 
 

Dataset Mice Time Points Samples OTUs 

Outbred 60 18 977 399 

Gradient 35 2 67 183 

Oscillator 15 38 536 239 
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  To tune the dynamic model, we performed a similar hyper-parameter tuning approach in two steps. 

For the first step, we kept the fully connected layer fixed at a size of 128 and tuned the regularization 

parameter !" over the values {1.0, 0.1, 0.01, 0.001, and 0.0001}, finding 0.0001 to be optimal again. Next, 

keeping !" fixed, we evaluated different layer sizes and found 256 nodes to perform best. The mean and 

standard deviation of reconstruction MAE and KLD values of dynamic predictions for layer combinations 

can be found in Table XVII.  

 

 

TABLE XVI. SUMMARY OF AUTOENCODER HYPER-PARAMETER TUNING. 
 

Layers MAE (± SD) KLD (± SD) 

128 x 64 5.44 x 10-4 (± 5.60 x 10-5) 0.107 (± 0.019) 

128 x 32 5.71 x 10-4 (± 5.89 x 10-5) 0.116 (± 0.019) 

128 x 16 6.16 x 10-4 (± 5.95 x 10-5) 0.129 (± 0.024) 

64 x 32 6.76 x 10-4 (± 6.75 x 10-5) 0.148 (± 0.026) 

64 x 16 7.21 x 10-4 (± 7.02 x 10-5) 0.163 (± 0.026) 

 

TABLE XVII. SUMMARY OF DYNAMIC MODEL HYPER-PARAMETER TUNING. 
 

Layer MAE (± SD) KLD (± SD) 

512 5.51 x 10-3 (± 4.17 x 10-3) 0.126 (± 0.166) 

256 5.50 x 10-3 (± 4.15 x 10-3) 0.124 (± 0.158) 

128 5.51 x 10-3 (± 4.18 x 10-3) 0.127 (± 0.177) 

64 5.52 x 10-3 (± 4.21 x 10-3) 0.129 (± 0.168) 

32 5.53 x 10-3 (± 4.29 x 10-3) 0.137 (± 0.170) 
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Evaluation of Dynamic Modeling 

Each dataset was evaluated using 10-fold cross-validation. We benchmarked our model against 

three other models: an ANN using a latent space derived from Principal Component Analysis (PCA), an 

ANN using the smoothed OTU values, and DBN Model. The PCA latent space was generated by taking 

the number of principal components required to reach 90% explained cumulative variance. The same 

network parameters of the ANN used in the models using the AE latent space were used for the other ANN 

models. The DBN was built as a hybrid discrete/continuous DBN using CGBayesNet (Michael J. 

McGeachie, Chang, & Weiss, 2014). In order to train the DBN models to have a stable solution, we reduced 

the number of OTUs by filtering out OTUs which were not present in at least 10% of the samples. This 

resulted in 63, 84, and 61 OTUs in the outbred, gradient, and oscillator datasets, respectively. In order to 

perform fair evaluations, metrics were computed using only this subset of OTUs for all models. The results 

are shown in Figure 40. 
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Figure 40. Evaluation of microbiome dynamic modeling. We compare our framework with the same DNN approach using original and 

PCA features as well as a DBN able to integrate discrete clinical information. All models are evaluated using 10-fold cross-validation. The 

mean KLD is shown above each boxplot. 
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5.3 DiRLaM: Diversity-Regularized Autoencoder for Modeling Longitudinal 

Microbiome Data 

 Upon observing the predictive power of our preliminary model, we expanded upon it, resulting in 

a larger framework which we have named “DiRLaM”. Here we expand on the preliminary model in two 

major ways: 

1. The AE model is additionally used for interpolation across the microbiome community 

structures. 

2. Diversity metrics are used to regularize the AE network rather than !! regularization. 

 

5.3.1 DiRLaM Framework 

Autoencoder Framework 

 The AE model used in DiRLaM follows a similar structure as the one outlined in Section 5.2.1 with 

a few changes. To improve the overall stability of the model, the ReLU activation function was replaced 

with the Leaky ReLU activation function with " = 0.1. 

!'()*	,'!-(/) = 1 	/							/ > 0
	"/							/ ≤ 0

  (5.3) 

 Additionally, batch normalization was applied after the hidden layers. Batch normalization learns a 

function over the training period to normalize the values of each node within a hidden layer across samples 

to have a mean of 0 and a variance of 1. This speeds up the training time by reducing the number of epochs 

required for convergence while also providing additional regularization to stabilize the model (Ioffe & 

Szegedy, 2015). 
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Interpolating Across the Latent Space 

 In addition to feature reduction, AE models have widely been used as generative models by 

performing interpolation within the latent space (Berthelot, Raffel, Roy, & Goodfellow, 2018; Cristovao, 

Nakada, Tanimura, & Asoh, 2020; Makhzani, Shlens, Jaitly, Goodfellow, & Frey, 2015). This is performed 

by calculating the linear combination of two points within the latent space. More specifically, given 4" and	

4!	as	two	different	points	in	the	latent	space,	using	a	mixing	coefficient	0	<	"	<	1,	an interpolated point 

within the latent space 4# is calculated as, 

 !! = # ∗ !" + (1 − #) ∗ !#  (5.4) 

 *+!	 = ,-./0-1	(!!)  (5.5) 

An overview of DiRLaM’s AE model with interpolation is shown in Figure 41. 

To enforce that the latent space remains smooth, adversarial regularization is often used through 

the use of a critic model (Makhzani et al., 2015). However, since DiRLaM is designed for microbiome data, 

we instead decide to regularize the AE model using diversity metrics, specifically alpha and beta diversities. 

By enforcing smooth transitions of alpha and beta diversities, the AE becomes more robust and does not 

overfit the noise often found within microbiome data. For regularizing alpha diversity, we define a 

regularization term as the difference between the alpha diversities of the decoded interpolated point and the 

sum of the alpha diversities of the two observed points from which the interpolated point was generated 

from, weighted by the mixing coefficient " (Equation 5.4).  

For calculating alpha diversity, we use Shannon’s Entropy, denoted as H(.), and we regularized 

alpha diversity according to Equation 5.6 and Equation 5.7. 

,'J$%&'(	(K", K!, ") = L(KM#) − [	" ∗ L	(K") + (1 − ") ∗ L	(K!)]  (5.6) 



 

 
 

155 

L(K) = 	−S / 	(+) logT/ 	(+)U
+

  (5.7) 

Here, /(+) denotes the V-' microbial feature of a sample. For regularizing beta diversity, we define a 

regularization term as the difference between the beta diversity of the two observed points from which the 

interpolated point was generated from, and the beta diversities between the decoded interpolated point with 

the two original observed points respectively, weighted by the mixing coefficient " (Equation 5.6). For 

calculating beta diversity, we use the Bray-Curtis dissimilarity, denoted as BC(.,.), and we regularized beta 

diversity according to Equation 5.8 and Equation 5.9. 

,'J./-(	(K", K!, ") = WX(K", K!) − [	WX(K", KM#) + WX	(K!, KM#)]  (5.8) 

WX(K", K!) = 	1 −S min		(
+

/"
(+), /!

(+))  (5.9) 

To exhaustively combine different points for interpolation during training, we construct training points by 

randomly sampling two different microbiome inputs and randomly drawing "~-	(0,1). Using these two 

regularization terms, the loss of a single training point, (K", K!, "), is calculated as,  

	X(K", K!, ") =
0123K"4KM"560123K!4KM!5

! +  

Z$	[,'J$%&'((K", K!, ")[
!
+ 

Z.	|,'J./-((K", K!, ")	|!	 

 (5.10) 

Here Z$ and Z. are scalers that control the strength of the alpha and beta diversity regularization terms 

respectively. 
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Integrative Deep Neural Network Model of Dynamics 

 The dynamic prediction model used in DiRLaM follows a similar structure as the one outlined in 

Section 5.2.1 with a few changes. To improve the overall stability of the model, the ReLU activation 

function was replaced with the Leaky ReLU activation function with " = 0.1 (Equation 5.3). Additionally, 

batch normalization was applied after the hidden layers. In addition, we have expanded the inputs to be able 

to account for not only dietary information but also patient-specific clinical information and genotypic 

information. For integration, continuous data is scaled to be between 0 and 1 and discrete data is one-hot 

encoded. An overview of the integrative DNN framework is shown in Figure 42. 

 

Identification of Significant External Factors 

We identify significant external factors by evaluating the change in prediction performance of the 

DNN model when masking each factor with noise. Specifically, once the DNN model is trained, we 

iteratively replace the input nodes of each factor with noise and recalculate the KLD of dynamic predictions. 

Noise for factors of continuous data is sampled from ~-	(0,1), and noise for factors of discrete data is 

created by randomly setting one of the factor’s nodes to 1 and the rest to 0. For each subject evaluated, we 

calculate the subject’s KLD using the noisy input as the mean KLD between interpolated time points and 

predicted time points across all time points of that subject. We then calculate the change in KLD for each 

subject as the ratio of the subject’s KLD from the noisy model divided by the original subject KLD when 

all external factors are used. In this way, a value greater than 1 represents a decrease in performance for 

that subject when masking the given factor with noise. To evaluate if masking a factor with noise 

significantly reduced the overall performance, we use a one-tailed Wilcoxon sign-rank test to determine if 

the change in subject KLD values across all subjects is significantly greater than 1. Any factor with a p-

value less than 0.05 is identified to be significant for dynamic prediction. 
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Figure 41. Autoencoder with latent space interpolation for DiRLaM model. Microbiome abundance vectors !! and !" are 

encoded using the AE encoder function (Enc) into latent representations "! and "". A mixing coefficient, #, is randomly selected 

between 0 and 1, and a latent interpolation "# is calculated as #	("!) + (1 − #)(""). All three latent representations are decoded 

with the AE decoder function (Dec) into the reconstructions !*$, !*%, and the interpolated microbiome community !*&. 
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Figure 42. Integrative DNN network for prediction of microbiome dynamics. The DNN model integrates the microbial community 

M at time t with clinical factors, C and dietary factors D to predict the microbial community at time t+1. 
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Deriving Microbial Modules from Latent Space 

We derive microbial modules using the decoder part of the AE model. Specifically, we first 

calculate a baseline signal by decoding a zero vector. This represents the baseline reconstructed microbiome 

community when there is no signal going into the decoder. 

!!"#$%&'$ = #$%&'$(	(+,,⃗ )  (5.11) 

Next we calculate the reconstructed microbiome community associated with each latent node by iteratively 

decoding zero vectors that contain a single one in the respective latent node. This can quickly be done by 

decoding an identity matrix that is the size of the latent space, /(. 

0 = #$%&'$(	(/()  (5.12) 

Then, to evaluate the effect each latent node has on the microbiome community, we subtract the 

reconstructed baseline community from each row of E. This will give us the change in the microbiome 

community across each dimension of the latent space. 

1 = 0 − 3,,⃗ 	(!!"#$%&'$))  (5.13) 

Here 3,,⃗  is a vector of ones used to broadcast the subtraction of !!"#$%&'$ to each row of E. To identify 

microbial modules, we first scale the columns of R (the latent effects for each microbe) to have a mean of 

0 and a variance of 1, and then we apply hierarchical clustering with complete linkage and Euclidean 

distance. Doing so will result in groups of microbes that change in similar patterns within the microbiome 

community latent space. Lastly, we calculate the mean latent effect within a module as the average value 

of each row across the columns defined by a module’s members in R, and we denote this as 14.  
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Deriving Module Interactions 

We identify interactions between modules and the effects of external factors using Olden’s method 

(Olden et al., 2004). Olden’s method works by cumulatively multiplying the weights of each hidden layer 

together, as shown in Equation 5.14. This results in a matrix where each row represents an input feature, 

and each column represents an output feature. 

6 =78%
%∈+

  (5.14) 

Here 9 is the current layer in the set of L layers within the trained network, and 8% is the weight matrix 

connecting layer 9 with the previous layer. 

We then partition S into two submatrices, one that contains the rows corresponding to the latent 

microbial inputs (6%",$',) and one that contains the rows corresponding to the external factor inputs 

(6-".,/0). Since we know that the predicted latent structure is dependent on the current latent, we mask this 

effect by setting the trace of 6%",$', to have zero values. Both 6%",$', and 6-".,/0 are normalized to have a 

mean of 0 and variance of 1 across all values.  

Using 6%",$', and 14, we can calculate the interaction matrix between modules (U) and the 

interaction matrix of external factors to modules (V). Each value in these matrices represents a directed 

effect that the row-corresponding feature has on the column-corresponding feature.  

: = 14) 	(6%",$',)14  (5.15) 

; = 	(6-".,/0)14  (5.16) 

These matrices represent module-module interactions and effects of external factors, which can then be 

further visualized using Cytoscape (Shannon et al., 2003).  
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5.3.2 Experiment and Results 

 Datasets Used in Evaluation 

 We used five datasets in the benchmarking and evaluation of “DiRLaM”. The first two datasets are 

synthetic datasets generated using the R package “microbiomeDASim” (Williams, Bravo, Tom, & Paulson, 

2019). Using this tool, 50 sets of true microbiome observations containing 100 OTUs were generated over 

the course of 60 days. We consider the first 30 days and last 30 days to differ in a single external factor 

with 10 OTUs being differentially abundant between the two timeframes. An example showing the 

dynamics of the 10 differentially abundant OTUs for a single sample is shown in Figure 43. 

 

 

 

Figure 43. Sample of true observations for synthetic data. Image shows dynamics of the abundance 

of the 10 synthetic differentially abundant microbes within one sample between the first 30 days and 

the last 30 days. 
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Using these true observations, we generate two different datasets using different levels of noise. 

Noise is added in the form of the dropping of time points as well as through the masking of OTUs. In 

doing so, the synthetic data will now have missing and unaligned time-points between samples as well as 

OTU dropout, both of which are commonly seen in real microbiome data. To generate the first dataset, for 

each set of observations we drop 33% of the time-points in each timeframe as well as mask 33% of the 

OTUs at each time point. We refer to this dataset as “Synthetic (Low Noise)”. To generate the second 

dataset, for each set of observations, we drop 66% of the time-points in each timeframe as well as mask 

50% of the OTUs at each time point. We refer to this dataset as “Synthetic (High Noise)”. Examples 

showing the dynamics of the 10 differentially abundant OTUs for a single sample in “Synthetic (Low 

Noise)” and “Synthetic (High Noise)” are shown in Figure 44 and Figure 45, respectively. 

 

 

Figure 44. Sample of observations for Synthetic (Low Noise). Image shows dynamics of the abundance 

of the 10 synthetic differentially abundant microbes within one sample between the first 30 days and 

the last 30 days. Noise is injected by dropping 33% of time points and setting 33% of microbial 

abundance values to 0 at each remaining time point. 
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In addition to synthetic data, we use three real-world datasets. The first dataset is the outbred mouse 

dataset used in the preliminary study was described in Section 5.2.2. The second dataset represents the 

vaginal microbiota and was collected by Gajer et al. (Gajer et al., 2012). This study contains vaginal 

microbiome samples of 32 reproductive-age healthy women over a 16-week period. It consists of 937 self-

collected vaginal swabs sampled twice per week, resulting in a total of 330 OTUs. The data also contains 

clinical and demographic attributes such as Nugent score, menstruation period, race, and age. The last 

dataset from La Rosa et al. contains microbiome samples collected from the guts of newborn infants (La 

Rosa et al., 2014). The dataset includes 58 pre-term infants in the neonatal intensive care unit (NICU) and 

was collected during the first 12 weeks of life. Samples were collected sampled every one or two days. In 

total, there are 922 infant gut microbiome measurements with a total of 29 OTUs. Additionally, the dataset 

 

Figure 45. Sample of observations for Synthetic (High Noise). Image shows dynamics of the abundance 

of the 10 synthetic differentially abundant microbes within one sample between the first 30 days and 

the last 30 days. Noise is injected by dropping 66% of time points and setting 50% of microbial 

abundance values to 0 at each remaining time point. 
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includes gestational age at birth, post-conceptional age when the sample was obtained, mode of delivery, 

antibiotic use, type of milk used, and room ID.  

For each dataset, OTUs with a maximum relative abundance value less than 0.1% or that were 

present in less than 5% of the total samples were removed. This did not impact the synthetic datasets, but 

the mouse, vaginal, and infant gut datasets were reduced to 73, 75, and 12 OTUs, respectively. In addition, 

one subject (subject 5) was removed from the vaginal dataset due to inconsistencies in the microbiome and 

metadata matching, and in the infant gut dataset, subjects containing less than 10 time-points were removed, 

reducing the total time-points to 840. 

 

Hyper-parameter Tuning and Model Training 

 Hyper-parameters were hand-tuned using the synthetic datasets evaluated on the true observations. We 

found that a hidden layer size of 32 and a latent size of 8 was sufficient before a noticeable drop in performance. 

We used the same layer sizes for the mouse and vaginal datasets since they had a similar number of OTU features. 

We reduced the hidden and latent layer sizes to 16 and 4 for the infant gut dataset due to the greatly reduced 

number of OTU features compared to the other datasets. Since the diversity-regularized AE model randomly 

samples time-points, we construct batches of 1,024 training sets and train the AE model for 5,000 iterations. 

Dynamic prediction models used two hidden layers that were each twice the size of the latent space input. Similar 

to the preliminary model, the DNN model for dynamic prediction is trained with early stopping, using 20% of 

the training data as a validation set. AE and DNN models for all experiments were trained using 5-fold cross-

validation, where partitions were stratified by subject IDs.  
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 Effect of Diversity Metric Regularization 

 In order to evaluate the effects of the alpha and beta diversity terms and tune the proper value of 

this hyper-parameter, we perform a grid search of !! and !" where each penalty value was from the set {0, 

0.5, 1.0, 2.0, 5.0, 10.0}. Using different strengths of !! and !", AE models were trained on the “Synthetic (Low 

Noise)” and “Synthetic (High Noise)” datasets, and the Kullback-Leibler divergence between the reconstructed 

values and the true synthetic values were calculated. In both datasets, we observed that the alpha diversity 

regularization was harmful to model learning. However, the beta diversity regularization improved the 

performance of the AE model. Based on these observations, we removed the alpha diversity regularization term 

and used !" = 2 for all subsequent experiments and evaluations. Heatmaps showing the trend of Kullback-

Leibler divergence values for the “Synthetic (Low Noise)” and “Synthetic (High Noise)” datasets are shown in 

Figure 46. 
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Figure 46. Heatmap of KLD values for Synthetic (High Noise) across varying levels of alpha and beta diversity regularization. Alpha 

and beta diversity penalties are evaluated at {0, 0.5, 1, 2, 5, 10} in a grid-wise pairing. The average KLD across subjects is calculated for each 

combination. 
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Evaluation of Interpolation 

 We first evaluated the effectiveness of our AE model using diversity regularization. AE models 

were trained on the “Synthetic (Low Nosie)” and “Synthetic (High Noise)” datasets and time points were 

evenly interpolated such that there were 20 time points in a single day period. Time points that fell on whole 

day values were compared to the original true synthetic values, and a KLD value was calculated for each 

sample as the mean KLD between each of the reconstructed interpolated time-points and true time-points 

for that sample. The overall evaluation of the interpolation method was then calculated as the mean of the 

sample KLD values. We compared our method with: 

• Interpolation of the latent space using a baseline AE model with no diversity regularization 

• B-spline smoothing followed by the training of a baseline AE model on the smoothed values 

• B-spline smoothing with no AE 

• Interpolation across the latent space identified by PCA 

• B-spline smoothing followed by PCA encoding and decoding on the smoothed values 

 

We observed that, when no noise is present (i.e., if trained on the original true synthetic values), a 

B-spline was optimal since there is no noise and it passes through the true observed points. However, when 

training on “Synthetic (Low Noise)” and “Synthetic (High Noise)”, the B-spline became very unstable as 

it overfit the noise of the data. As the noise increases, the AE model using diversity regularization performed 

the best, followed by the two methods using a baseline AE model. Based on this observation, we saw that 

by constraining the interpolation to smoothly transition in beta diversity between points, the model became 

more robust to the noise and was able to better recapture the true synthetic values. In addition, we observed 

that the AE model performed better than PCA for encoding, decoding, and interpolation. A table of mean 
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KLD values for the synthetic datasets is shown in Table XVIII and visualizations of interpolation for a 

single sample using each method is shown in Figure 47 and Figure 48 for the “Synthetic (Low Noise)” 

and “Synthetic (High Noise)” respectively. 

 

 

 

 

 

TABLE XVIII. EVALUATIONS OF DIFFERENT SPLINING TECHNIQUES BASED ON THE KLD WITH 

THE TRUE SYNTHETIC DATA VALUES. 

 No Noise  

 (T = 60) 

Low Noise 

 (T = 40) 

High Noise 

 (T = 20) 

Baseline Autoencoder 
Interpolation 0.289 (0.063) 0.351 (0.061)* 0.414 (0.075)* 

Diversity Regularized 
Autoencoder Interpolation  0.315 (0.065) 0.339 (0.061) 0.359 (0.064) 

B-Spline and Baseline 
Autoencoder 0.311 (0.067) 0.349 (0.064)* 0.416 (0.076)* 

B-Spline and PCA 0.396 (0.112) 0.642 (0.221)* 0.949 (0.306)* 

PCA Interpolation 0.243 (0.062) 0.357 (0.105)* 0.458 ( 0.265)* 

B-Spline on Raw Data 0.00 (0.00) 2.092 (0.489)* 2.766 (0.667)* 

 

Asterix (*) represent values that are significantly greater than the KLD evaluation of the Diversity Regularized 

Autoencoder Interpolation. P-values were determined using a Wilcoxon sign-rank test over KLD values for each 

sample. 
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Figure 47. Sample interpolations for Synthetic (Low Noise) using different evaluated methods. 

Interpolation of the 10 differentially abundant microbes using various interpolation methods: (top left) 

interpolation within baseline AE latent space, (top right) interpolation within diversity-regularized 

AE, (middle left) B-spline on raw abundance values, (middle right) baseline AE reconstruction after 

using B-spline on raw abundance values, (bottom left) PCA reconstruction after using B-spline on 

raw abundance values, (bottom right) interpolation in the PCA latent space. 
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Figure 48. Sample interpolations for Synthetic (High Noise) using different evaluated methods. 

Interpolation of the 10 differentially abundant microbes using various interpolation methods: (top left) 

interpolation within baseline AE latent space, (top right) interpolation within diversity-regularized 

AE, (middle left) B-spline on raw abundance values, (middle right) baseline AE reconstruction after 

using B-spline on raw abundance values, (bottom left) PCA reconstruction after using B-spline on 

raw abundance values, (bottom right) interpolation in the PCA latent space. 
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Evaluation of Dynamic Prediction 

 Next we evaluated how well the dynamic predictions using the DNN model. We benchmarked the 

DNN model against a DBN. For each dataset, time points representing microbiome community abundance 

values were uniformly interpolated such that there were 20 time points within a single day. We then 

evaluated the dynamic prediction after a single day given the current latent microbiome structure as well as 

specific external and patient characteristics. DNN models were trained using all pairs of interpolated time 

points separated by one day in a sliding-window fashion (i.e. {(1.00, 2.00), (1.05, 2.05), (1.10, 2.10), …}. 

To maintain a feasible running time, we removed the time points that fell between days and DBN models 

were only trained on pairs of time points where the day was a whole number value (i.e. {(1.00, 2.00), (2.00, 

3.00), (3.00, 4.00), …}. In addition, we trained DNN and DBN models using latent and reconstructed values 

using the same linear interpolation of the PCA latent space. All models were evaluated by first calculating 

a mean KLD for each sample based on the predicted value and interpolated of each predicted time-point, 

and then calculating the mean KLD across all samples. 

 The synthetic and mouse datasets contained only one external factor each with two unique values. 

To integrate these factors, we performed one-hot encoding and concatenated the values to the latent 

microbiome inputs of the DNN and DBN models. Figures showing the performance for the synthetic 

datasets and the mouse dataset are shown in Figures 49-51. 

For the vaginal dataset, Nugent score and age were min-max scaled to be between 0 and 1. There 

were four unique discrete values for race, however, due to two of the values being rare, we combined the 

race values into two binary values representing white and non-white. The menstruation state was also 

converted into two binary values. The evaluation using the vaginal dataset is shown in Figure 52. 

For the infant gut dataset, gestational age and postgestational age were min-max scaled to be 

between 0 and 1. Gender, room, and method of birth each contained two unique values and were one-hot 

encoded. Milk contained four unique values and was one-hot encoded. Time on antibiotics was already 
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given as a percentage, so no scaling was performed since it ranged between 0 and 1 already. The evaluation 

using the infant gut dataset is shown in Figure 53. 

We observed that when using the latent space learned from the AE models, the DNN model outperforms 

the DBN model in the synthetic and mouse data and the two methods are comparable in the vaginal and infant 

gut datasets. Additionally, models using the latent space always outperform models using reconstructed values. 

When using reconstructed values, the DNN model always outperforms the DBN model, showing the DNN 

model’s ability to handle larger input feature spaces. Lastly, we observed that using interpolation generated from 

the AE latent space performed better than using interpolation generated from PCA latent space. 
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Figure 49. Prediction of next time point using NN and DBN models for Synthetic (Low Noise) dataset. Boxplots on the left 

represent models trained on latent and reconstructed values from the diversity regularized AE. Boxplots on the right represent models 

trained on latent and reconstructed values from PCA interpolation. 

 



 

 
 

174 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50. Prediction of next time point using NN and DBN models for Synthetic (High Noise) dataset. Boxplots on the left represent 

models trained on latent and reconstructed values from the diversity regularized AE. Boxplots on the right represent models trained on 

latent and reconstructed values from PCA interpolation. 
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Figure 51. Prediction of next time point using NN and DBN models for mouse dataset. Boxplots on the left represent models trained 

on latent and reconstructed values from the diversity regularized AE. Boxplots on the right represent models trained on latent and 

reconstructed values from PCA interpolation. 
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Figure 52. Prediction of next time point using NN and DBN models for vaginal dataset. Boxplots on the left represent models trained 

on latent and reconstructed values from the diversity regularized AE. Boxplots on the right represent models trained on latent and 

reconstructed values from PCA interpolation. 
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Figure 53. Prediction of next time point using NN and DBN models for infant gut dataset. Boxplots on the left represent models trained 

on latent and reconstructed values from the diversity regularized AE. Boxplots on the right represent models trained on latent and 

reconstructed values from PCA interpolation. 
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Identification of Important External Factors 

 We identified important external factors during the 5-fold cross-validation evaluation of the 

datasets. For each partition, the test set was evaluated using the original trained model, and the models in 

which the inputs of respective external factors were replaced with noise. The change in KLD was evaluated 

on the test samples for each partition, and results showing the change in KLD across samples for each factor 

are shown in Figure 54. In the mouse dataset, diet was found to be significant with ! = 8.15	x	10!"#. In 

the vaginal dataset, menses was found to be significant with ! = 0.003. In the infant gut dataset, we found 

gender to be significant at ! = 0.023, the method of birth to be significant at ! = 0.013, the amount of 

breast milk consumed to be significant at ! = 0.001, and the proportion of days on antibiotics to be 

significant at ! = 2.94	x	10!$. 
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Figure 54. Evaluation of change in KLD values to determine factor significance. Points represent a subject and the value of the 

y-axis represents the ratio of the mean subject KLD when masking the respective factor with noise divided by the mean subject KLD 

when no masking is performed. A value greater than 1 represent a decrease in overall performance for that subject. 
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Identification of Biological Effects of External Factors 

 We clustered the mouse and vaginal datasets into 8 microbial modules and the infant gut dataset 

into 6 microbial modules. An example of the clustering of R and construction of !" for the mouse dataset is 

shown in Figure 55. 

 In the mouse dataset, we observed that the HFHS diet had a strong positive influence on Module 0 

and Module 4. Combined, these two modules showed a significant enrichment (adjusted # = 0.018) for 

HFHS diet consumption using taxon set enrichment analysis in the MicroboimeAnalyst tool suite (Dhariwal 

et al., 2017). Next, we analyzed the trends of individual OTUs to see how well the dynamic model could 

predict the change of the microbiome community based on the changes in diet. Among the OTUs that were 

highly abundant, the model found that eating a HFHS diet led to an increase in Clostridium, Eubacteirum, 

Faecalbacterium, Ruminococcus, and Blautia, which have been associated with HFHS diets (Murphy, 

Velazquez, & Herbert, 2015; Xiao et al., 2017). The membership of microbial modules for the mouse 

dataset is shown in Table XIX and the visualization of the interaction network is shown in Figure 56. 

 In the vaginal dataset, we observed that the effect of menses had a strong negative impact on the 

abundance of Lactobacillus iners and Lactobacillus jensenii. Previous studies have observed a similar effect 

in which the abundance of these microbes as well as other species of the Lactobacillus genera will rapidly 

increase before menstruation, and the decrease during menstruation before the vaginal microbiome is again 

stabilized (Santiago et al., 2011; Srinivasan et al., 2010). Membership of microbial modules for the vaginal 

dataset is shown in Table XX and the visualization of the interaction network is shown in Figure 57. 

 In the infant gut dataset, we observed multiple significant external interactions. When analyzing 

the level of breast milk consumed by the infant, we saw a trend that the higher the percentage went in the 

discretization, the stronger the impact on Module 4, which contained only Gammaproteobacteria, an 

observation found in previous studies as well (Boudry et al., 2021; Lemas et al., 2016). This microbe is 

considered a ‘pioneer’ microbe of the infant gut that is critical for the development of the immune system, 
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specifically through the regulation of IgA response (Mirpuri et al., 2014; Tomkovich & Jobin, 2016). This 

response stimulates the immune system, which in turn starts to shape the gut microbiome into a more mature 

microbiome by reducing levels of Proteobacteria for Firmicutes and Bacteroides. In addition, we see that 

vaginal delivery is shown to have a positive effect on the abundance of Actinobacteria, Bacilli, Clostridia 

(Module 0). These microbes have been shown to inoculate infants that undergo vaginal delivery in previous 

studies and are important microbes in the development of the mature microbiome in humans (Kim, Sitarik, 

Woodcroft, Johnson, & Zoratti, 2019; Milani et al., 2017).  Membership of microbial modules for the infant 

gut dataset is shown in Table XXI and the visualization of the interaction network is shown in Figure 58. 
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Figure 55. Clustering of mouse dataset into microbial modules. Mouse dataset is clustered into microbial modules using R matrix 

(left). The mean latent effect within each module is then calculated as !" (right).  
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TABLE XIX. MICROBIAL MODULE MEMBERSHIP FOR MOUSE DATASET. 

Module 0 Module 1 Module 2 Module 3 

Lachnospiraceae 
Ruminococcus 
Clostridiales 
Eubacterium 
Ruminococcaceae 
Blautia 
Acetivibrio 
Pseudobutyrivibrio 

Butyrivibrio 
Tissierella 
Bavariicoccus 

Enterococcus 
Lactobacillus 
Bacteroides 
Syntrophococcus 
Barnesiella 
Collinsella 
Enterorhabdus 
Staphylococcus 
Anaerostipes 
Bacillus 
Acholeplasma 

Peptostreptococcus 
Atopobacter 
Alistipes 
Paenibacillus 
Bifidobacterium 
Macrococcus 
Roseburia 
Chloroherpeton 
Prevotella 
Ethanoligenens 

Tannerella 
Corynebacterium 
Globicatella 
Ricinus 
Nocardiopsis 
Phascolarctobacterium 
Brevibacterium 
Brachybacterium 
Dialister 
Vibrio 

Parabacteroides 
Hespellia 
Butyricimonas 
Flavobacterium 
Cryptobacterium 
Erysipelothrix 
Akkermansia 

Tetragenococcus 
Streptococcus 
Chlorobaculum 
Rikenella 
Atopobium 
Alicyclobacillus 

 
Module 4 

 

 
Module 5 

 

 
Module 6 

 

 
Module 7 

 
Clostridium 
Candidatus Phytoplasma 
Unclassified (derived from Bacteria) 
Lactococcus 
Faecalibacterium 

Pyramidobacter 
Porphyromonas 
Butyricicoccus 
Alkaliphilus 
Unclassified  
Geobacillus 
Burkholderia 
Sphingobacterium 
Desulfotomaculum 

Marinilabilia 
Cytophaga 

Erysipelotrichaceae 
Odoribacter 
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Figure 56. Module based interaction network with external factor effects for mouse dataset. Circles represent microbial modules 

and squares represent external actors. Green edges represent a positive interaction and red edges represent a negative interaction. 
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TABLE XX. MICROBIAL MODULE MEMBERSHIP FOR VAGINAL DATASET. 

Module 0 Module 1 Module 2 Module 3 

L. iners 
L. jensenii 

L. crispatus 
 

Atopobium 
Prevotella 
Sneathia 
Ruminococcaceae.3 
Mobiluncus 
Megasphaera 
Lachnospiraceae.10 
Coriobacteriaceae.3 
Allisonella 
Coriobacteriaceae.1 

L. gasseri 
Corynebacterium 
Finegoldia 
Bifidobacterium 
L.otu4 
Ruminococcaceae.5 
Peptostreptococcus 
Staphylococcus 
Lachnospiraceae.2 
Ureaplasma 

Blautia 
Incertae_Sedis_XI.1 
Bacteroides 
L.otu3 
Facklamia 
Arthrobacter 
Mollicutes.1 
L.vaginalis 
Oscillibacter 
Brevibacterium 

L.otu2 
Roseburia 
Ruminococcaceae.1 
Arcanobacterium 
L.otu1 
Ralstonia 

 
Module 4 

 

 
Module 5 

 

 
Module 6 

 

 
Module 7 

 
Parvimonas 
Anaerococcus 
Moryella 
Veillonella 
Escherichia.Shigella 
Dialister 
Campylobacter 
Incertae_Sedis_XI.2 
Bulleidia 
Actinomyces 

Enterococcus 
Fastidiosipila 
Actinobaculum 
Xylanibacter 
L.plantarum 

Gardnerella 
Aerococcus 
L.otu5 
Lachnospiraceae.11 
Shuttleworthia 
Porphyromonas 
Faecalibacterium 
Gallicola 
Varibaculum 
Clostridiales.6 

Peptoniphilus 
Lactobacillales.2 
Peptococcus 
Ruminococcaceae.2 
Helcococcus 
Bacteroidetes.1 
Propionimicrobium 
Segniliparus 

Streptococcus 
Gemella 
Fusobacterium 
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Figure 57. Module based interaction network with external factor effects for vaginal dataset. Circles represent microbial 

modules and squares represent external actors. Green edges represent a positive interaction and red edges represent a negative 

interaction. 
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TABLE XXI. MICROBIAL MODULE MEMBERSHIP FOR INFANT GUT DATASET. 

Module 0 Module 1 Module 2 Module 3 Module 4 Module 5 

Actinobacteria 
Bacilli 
Clostridia 

 

Alphaproteobacteria 
Cyanobacteria 
Flavobacteria 

 

Bacteroidia 

 

Betaproteobacteria 
Epsilonproteobacteria 
Fusobacteria 

 

Gammaproteobacteria 

 

Unclassified 
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Figure 58. Module based interaction network with external factor effects for infant gut dataset. Circles represent microbial 

modules and squares represent external actors. Green edges represent a positive interaction and red edges represent a negative 

interaction. 
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5.4 Conclusion 

In this work, we developed a novel model ‘DiRLaM’, a combination of an AE and a DNN in order 

to predict the dynamic changes of longitudinal microbiome datasets to capture microbial interactions and 

the effects of external factors and stimuli. By representing the microbiome community as a reduced latent 

space using an AE, we can capture the essential intrinsic community structure while making the model 

more robust to noise. In addition, we showed with synthetic data that interpolating within the latent space 

of the autoencoder provides more accurate and stable interpolations of the microbiome community 

compared to current splining approaches to each microbial feature. Furthermore, we showed that adding a 

regularization on the beta diversities of the reconstructed communities further improved the interpolation. 

We then used the DNN to combine the latent microbiome community with additional information about 

the host and external stimuli to predict what the new microbiome community will become. We 

demonstrated that the DNN outperformed the state-of-the-art DBN models, and the use of the latent space 

further improved dynamic prediction over the raw values. 

Our approach not only outperforms the DBN models, but also overcomes the limitations of DBN 

models, which often require a large amount of filtering to reduce the number of network nodes and a set 

limit for the number of parents that a network node can have. On the other hand, the use of the DNN model 

allows is scalable to input space and sample size and can allow for as many microbe-microbe and diet-

microbe interactions as needed during model training. DiRLaM provides both an accurate modeling of 

microbiome dynamics under multiple external factors and the identification of significant patient 

characteristics and external stimuli driving microbial dynamics, further empowering researchers to identify 

the key factors best suited for treatment through microbiome engineering.
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APPENDIX A 
 

PopPhy-CNN on GitHub 
 

 

PopPhy-CNN 

PopPhy-CNN,a novel convolutional neural networks (CNN) learning architecture that effectively exploits 
phylogentic structure in microbial taxa. PopPhy-CNN provides an input format of 2D matrix created by 
embedding the phylogenetic tree that is populated with the relative abundance of microbial taxa in a 
metagenomic sample. This conversion empowers CNNs to explore the spatial relationship of the 
taxonomic annotations on the tree and their quantitative characteristics in metagenomic data. 

Publication: 

• Reiman D, Metwally AA, Sun J, Dai Y. PopPhy-CNN: A Phylogenetic Tree Embedded 
Architecture for Convolutional Neural Networks to Predict Host Phenotype From Metagenomic 
Data. IEEE J Biomed Health Inform. 2020 Oct;24(10):2993-3001. doi: 
10.1109/JBHI.2020.2993761. Epub 2020 May 11. PMID: 32396115. [paper] 

Execution: 

We provide a python environment which can be imported using the Conda python package manager. 

Deep learning models are built using Tensorflow. PopPhy-CNN has been updated to use Tensorflow 
v1.14.0. 

To fully utilize GPUs for faster training of the deep learning models, users will need to be sure that 
both CUDAand cuDNN are properly installed. 

Other dependencies should be downloaded upon importing the provided environment. 

Clone Repository 

git clone https://github.com/YDaiLab/PopPhy-CNN.git 
cd PopPhy-CNN 

Import Conda Environment 

conda env create -f PopPhy.yml 
source activate PopPhy 
cd src 
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APPENDIX A (CONTINUED) 
 

Set Configuration Parameters: 

Edit config.py to customize your PopPhy-CNN execution. Datasets need to be placed in their own folder 
within the data/ directory. There needs to be an abundance file in which each column is a sample and each 
row is a taxon structured following the example below: 

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Actinomycetales|f__Actinomycetaceae|g__Actinom
yces|s__Actinomyces_graevenitzii 
In this example, the taxa is Actinomyces graevenitzii and comes from the Bacteria kingdom, 
Actinobacteria phylum, Actinobacteria class, Actinomycetales order, Actinoycetaceae 
family, Actinomyces genus, and graevenitzii species. Note that the 's__' identifier should include the genus 
and species. 

Run PopPhy-CNN: 

Once the configuration file is set, PopPhy-CNN is executed with 

python train.py 
 
Results are saved in the results directory under a subdirectory with the same name as the dataset's folder. 

Visualizing the Results 

Cytoscape can be used to visualize the results from PopPhy-CNN's analysis. To do so, install and 
run Cytoscape. In the results timestamped folder, load the file 'network.json' into cytoscape. Then import 
the Cytoscape style found 'style.xml' found in the 'cytoscape_style' directory. It may also be useful to 
install the yFiles layouts and visualize the tree using the yFile radial layout. 
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APPENDIX B 
 

Meta-Signer on GitHub 

Meta-Signer 

Meta-Signer is a machine learning aggregated approach for feature evaluation of metagenomic datasets. 
Random forest, support vector machines, logistic regression, and multi-layer neural networks. Features 
are then aggregated across models and partitions into a single ranked list of the top k features. 

Execution: 

We provide a python environment which can be imported using the Conda python package manager. 

Deep learning models are built using Tensorflow. Meta-Signer was designed using Tensorflow v1.14.0. 

To fully utilize GPUs for faster training of the deep learning models, users will need to be sure that 
both CUDAand cuDNN are properly installed. 

Other dependencies should be downloaded upon importing the provided environment. 

Clone Repository 

git clone https://github.com/YDaiLab/Meta-Signer.git 
cd Meta-Signer 

Import Conda Environment 

conda env create -f meta-signer.yml 
source activate meta-signer 

Meta-Signer's Required Input 

To use Meta-Signer on a dataset, first create a directory in the data folder. This directory requires two 
files: 

File Description 

abundance.tsv 
A tab separated file where each row is a feature and each column is a sample. 
The first column should be the feature ID. There should be no header of sample 
IDs 

labels.txt A text file where each row is the sample class value. Rows should be in the same 
order as columns found in abundance.tsv 

Examples can be found in the PRISM and PRISM_3 datasets provided. 
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APPENDIX B (CONTINUED) 
 

Set configuration settings 

Meta-Signer offers a flexible framework which can be customized in the configuration file. The 
configuration file offers the following parameters: 

 

Evaluation  

NumberTestSplits Number of partitions for cross-validation 

NumberRuns Number of indepenendant iterations of cross-validation to run 

Normalization Normalization method applied to data (Standard or MinMax) 

DataSet Directory in data directory to load data from 

FilterThreshCount Remove features who are present in fewer than the specified fraction of 
samples 

FilterThreshMean Remove features with a mean value less than the specified value 

MaxK The maximum number of features to generate in the rank aggregation 

AggregateMethod The method used for rank aggregation (GA or CE) 

RF  

Train Use Random Forest for feature ranking and aggregation 

NumberTrees Number of decision trees per forest 

ValidationModels Number of partitions for internal cross-validation for tuning 

APPENDIX B (CONTINUED) 
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SVM  

Train Use SVM for feature ranking and aggregation 

MaxIterations Maximum number of iterations to train 

GridCV Number of partitions for internal cross-validation for tuning 

Logistic Regression  

Train Use logistic regression for feature ranking and aggregation 

MaxIterations Maximum number of iterations to train 

GridCV Number of partitions for internal cross-validation for tuning 

MLPNN  

Train Use MLPNN for feature ranking and aggregation 

LearningRate Learning rate for neural network models 

BatchSize Size of each batch during neural network training 

Patience Number of epochs to stop training after no improvement 

Run the Meta-Signer pipeline: 

Once the configuration is set to desired values, generate the aggregated feature list using: 

cd src 
python generate_feature_ranking.py 
 
Upon completion, Meta-Signer will generate a directory in the results folder with the same name as set to 
the DataSet flag in the configuration file. This directory will contain important files of interest including: 
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File Description 

training_performance.html A portable HTML file showing cross-validated 
evaluation of ML methods 

feature_evaluation/ensemble_rank_table.csv ranked lists of features for each method and each 
cross-validated run 

feature_evaluation/aggregated_rank_table.csv Aggregated ranked list of features 

prediction_evaluation/results.tsv Results table for cross-validated evaluation of ML 
methods 

 

Once the features have been aggregated into a single ranked list, the user can decide on how many 
features to use for the final training of ML models. Meta-Signer can generate these final trained ML 
models using a user specified number of features using: 

cd src 
python generate_models.py <DataSet> <k> 
 
Where DataSet is the directory in the results folder to use and k is the final number of features to use 
during training. Additionally, the models can be trained on an external datset using: 

cd src 
python generate_models.py <DataSet> <k> -e <ExternalDataSet> 
 
Where ExternalDataSet is a directory in the data folder with abundance.tsv and labels.txt files. 

Upon completion, Meta-Signer will create a directory within the dataset's results directory that 
will contain: 

File Description 

feature_ranking.html A portable HTML file the ranked features up to the specified value 
of k 

rf_model.pkl The trained random forest model in pickle format 

logistic_regression_model.pkl The trained logistic regression model in pickle format 

svm_model.pkl The trained SVM model in pickle format 

mlpnn.h5 The trained neural network model in H5 format 

training_results.tsv The performance of trained models on the training set 

external_results.tsv The performance of trained models on the external test set 



   

 

212 

APPENDIX C 
 

MiMeNet on GitHub 
 
 

MiMeNet: Exploring Microbiome-Metabolome Relationships using Neural Networks 

MiMeNet predicts the metabolomic profile from microbiome data and learns undelrying relationships 
between the two. 

Prerequisites 

• MiMeNet is tested to work on Python 3.7+ 
• MiMeNet requires the following Python libraries: 

o Tensorflow 1.14 
o Numpy 1.17.2 
o Pandas 0.25.1 
o Scipy 1.3.1 
o Scikit-learn 0.21.3 
o Scikit-bio 0.5.2 
o Matplotlib 3.0.3 
o Seaborn 0.9.0 

 

Usage 

usage: MiMeNet_train.py [-h] -micro MICRO -metab METAB 
                        [-external_micro EXTERNAL_MICRO] 
                        [-external_metab EXTERNAL_METAB] 
                        [-annotation ANNOTATION] [-labels LABELS] -output 
                        OUTPUT [-net_params NET_PARAMS] 
                        [-background BACKGROUND] 
                        [-num_background NUM_BACKGROUND] 
                        [-micro_norm MICRO_NORM] [-metab_norm METAB_NORM] 
                        [-threshold THRESHOLD] [-num_run_cv NUM_RUN_CV] 
                        [-num_cv NUM_CV] [-num_run NUM_RUN] 
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APPENDIX C (CONTINUED) 
 

 
 

-h, --help                         Show this help message and exit 

-micro MICRO                       Comma delimited file representing matrix of samples by 
microbial features 

-metab METAB                       Comma delimited file representing matrix of samples by 
metabolomic features 

 

-external_micro EXTERNAL_MICRO     Comma delimited file representing matrix of samples by 
microbial features 

 

-external_metab EXTERNAL_METAB     Comma delimited file representing matrix of samples by 
metabolomic features 

-annotation ANNOTATI Comma delimited file annotating subset of metabolite 
features 

-labels LABELS omma delimited file for sample labels to associate clusters 
with 

-output OUTPUT Output directory 

-net_params NET_PARAMS             JSON file of network hyperparameter 

-background BACKGROUND             Directory with previously generated background 

-num_background NUM_BACKGROUND     Number of background CV Iterations 

-micro_norm MICRO_NORM             Microbiome normalization (RA, CLR, or None) 

-metab_norm METAB_NORM             Metabolome normalization (RA, CLR, or None) 

-threshold THRESHOLD               Define significant correlation threshold 

-num_run_cv NUM_RUN_CV             Number of iterations for cross-validation 

-num_cv NUM_CV                     Number of cross-validated folds 
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Parameter Description 

micro CSV file of microbial count values 

metab CSV file of metabolite count values 

external_micro CSV file of microbial count values for external test set 

external_metab CSV file of metabolite count values for external test set 

annotation CSV file of metabolite annotations 

lables CSV file of sample labels used for module enrichment 

output Directory to store output of MiMeNet run 

net_params JSON file containing neural network number of layers, layer size, !! 
penalty, and dropout rate 

background Directory with previously run background results 

num_background Integer for number of iterations of 10-fold cross-validation to run on shuffled 
data in order to generate empirical background (Recommend at least 10) 

micro_norm 
Transform the microbial features into relative abundance (RA) or center log-
ratio (CLR). If the data is already transformed, apply 'None' to skip 
transformation. 

micro_norm 
Transform the metabolomic features into relative abundance (RA) or center 
log-ratio (CLR). If the data is already transformed, apply 'None' to skip 
transformation. 

threshold Set predefined correlation cutoff for determining well-predicted metabolites. 

num_run_cv Parameter to specify how many iterations of cross-validated evaluation to 
perform. 

num_cv Number of partitions to divide the data into during cross-validation 
(Recommend at least 5). 
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Example for provided dataset 

python MiMeNet_train.py -micro data/IBD/microbiome_PRISM.csv -metab data/IBD/metabolome_PRISM.csv \ 
            -external_micro data/IBD/microbiome_external.csv -external_metab data/IBD/metabolome_external.csv \ 
            -micro_norm None -metab_norm CLR -net_params results/IBD/network_parameters.txt \ 
            -annotation data/IBD/metabolome_annotation.csv -labels data/IBD/diagnosis_PRISM.csv \ 
            -num_run_cv 10 -output IBD 
 
The provided command will run MiMeNet on the IBD dataset and store results in the 
directory results/output_dir. 

Version 

1.0.0 (2020/07/28) 

Publication 

Reiman, Derek, Brian T. Layden, and Yang Dai. "MiMeNet: Exploring microbiome-metabolome 
relationships using neural networks." PLoS Computational Biology 17, no. 5 (2021): e1009021. 

MiMeNet Workflow 

Data Preprocessing 

MiMeNet will perform a compositional transformation to relative abundance or centered log-ratio and 
filter low abundant microbial and metabolite features. 

Cross-Validated Evaluation 

MiMeNet uses microbial features to predict metabolite output features. To do so, neural network hyper-
parameters are first tuned. Then models are evaluated in a cross-validated fashion resulting in Spearman 
correlation coefficients (SCC) for each metabolite representing how well they could be predicted. 

Identifying Well-Predicted Metabolties 

MiMeNet generates a background of SCC values using a similar approach as in Cross-Validated 
Evaluation. However, to generate the background distribution of SCCs, the samples are randomly 
shuffled for each cross-validated iteration. MiMeNet will then take any metabolite with a SCC evaluation 
value above the 95th percentile to be well-predicted. 
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Constructing Microbe and Metabolite Modules 

Using the set of models trained during the Cross-Validated Evaluation, MiMeNet constructs a microbe-
metabolite interaction-score matrix. This interaction score matrix is biclustered into microbe and 
metabolite modules, grouping sets of microbes and metabolites with similar interaction patterns. These 
groupings may help illuminate the functions and structure of unannotated metabolites based on annotated 
members of the module. 

Contact 

• Please contact Derek Reiman dreima2@uic.edu or Yand Dai yangdai@uic.edu for any questions 
or comments. 

License 

Software provided to academic users under MIT License 
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