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Chapter 1 - Introduction 

Traditional surgical training was based on the principal of ‘learning by doing’, where the 

trainee surgeon over a period of time would encounter varied clinical scenarios that would 

gradually help them improve their skills. However, in recent years the increased accountability for 

the hospitals and the doctors over patients has necessitated rigorous methods of preparedness of 

trainee doctor (Kneebone, 2003). The need for safer ways to train and improve psychomotor skills 

has led to the advent of Simulation Based Training, which has created the opportunity to improve 

clinical and technical skills to perform simple and complex surgical procedures(Agha & Fowler, 

2015). SBT training can also be used for timely refreshing skills for procedures that are rarely 

conducted.  

1.1 Simulation-based training 

SBT involves training in a simulated environment on modalities such as cadavers, animals, 

physical manikins or a computer-based applications. Human cadavers show realistic anatomy; 

however, are hard to find and extremely expensive, additionally, not all the medical trainees get 

an opportunity for hands-on practice. Animal models usually have different anatomy as compared 

to humans and the moral and ethical responsibility that comes with it makes it challenging to use 

this on a large scale (Hammoud et al., 2008). Computer-based applications use novel technologies, 

such as haptic devices, virtual reality headsets and other interfaces to provide an immersive 

experience for simulating surgery, but they do not provide the necessary experience of working 

with real instruments and some of the interfaces like virtual headsets cause headaches and other 

symptoms after prolonged use. Physical manikins or trainers have proved to be a viable mode of 

training for surgical procedures, they provide the ability to repeatedly perform a surgical procedure 
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(Agha & Fowler, 2015). The physical manikins can be designed with details anatomy, induced 

with variation of complex clinical conditions for improving trainee experience. 

SBT has major advantages such as the opportunity to practice hands-on, immediate 

feedback of performance, experience complex surgical situations (Maran & Glavin, 2003). 

Research such as (McGaghie, 2012) have been able to show that skills learned during SBT have 

trickled down to clinical situations.   

Traditionally, SBT is usually conducted in the following sequence: 

1. Expert instructor explains the symptoms that would lead to the conduction of the 

surgical procedure. 

2. Instructor explains the details of the surgical procedure. 

3. Instructor demonstrates the surgical steps on the simulation modality such as a physical 

manikin, an animal etc. 

4. Trainee practices the procedure under the guidance of the instructor. 

5. Trainee memorizes the steps for the procedure. 

6. Finally, instructor conducts a one-on-one assessment where the trainee performs the 

procedure without any guidance. 

Looking at the steps above its clear that the training sessions are heavily instructor 

dependent. These sessions require experience instructors. The need for one-on-one assessment 

makes these sessions long and physically exhausting. The assessments are also subjective to the 

instructor conducting the session. Additionally, during the assessment the instructors regularly 

have to bend-over the surgical table to observe the trainee’s actions; this creates an undue stress 

on the instructor over the period of the training session. The need for heavy involvement of the 
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instructor makes these sessions expensive and dependent on the availability of the instructor. 

Consequently, it is hard to hold these sessions on a regular basis.  

The goal of this research was to create an autonomous simulator that could provide real-

time feedback during training and an accurate and objective assessment of trainee performance. 

As a proof of concept, we are simulating neonatal pericardiocentesis (NPC) and neonatal 

thoracentesis (NTC). 

1.2 Motivation for simulating NPC and NTC 

NPC is performed when there is a pericardial effusion causing a cardiac tamponade; 

similarly, NTC is performed when pneumothorax is diagnosed. These conditions are highly rare 

and life-threatening complications in neonates. Pneumothorax in the Neonatal Intensive Care Unit 

(NICU) has reported an incidence rate of 1-2% and over 40% in the presence of respiratory distress 

syndrome(Ogata, Gregory, Kitterman, Phibbs, & Tooley, 1976)(Nowlen, Rosenthal, Johnson, 

Tom, & Vargo, 2002). Pericardial effusion/cardiac tamponade have an incidence rate of 0.7% to 

2% (Chioukh, Ameur, Hmida, & Monastiri, 2016)(Pizzuti, Parodi, Abbondi, & Frigerio, 2010). 

Challenging diagnosis of these condition causes delayed intervention and treatment of these 

conditions require swift action and superior skills. Due to the infrequent occurrence of these 

conditions, alternate approaches to training in a safe and replicative environment is paramount. 

Especially, since these are rare conditions, accessible simulation training can help maintain skill 

levels.  

1.3 Organization of the thesis 

This dissertation is organized in 10 chapters, as follows. Chapter 2 describes the neonatal 

procedures in detail and evaluates the recent research on simulating both the surgical procedures. 
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Chapter 3 details the available surgical simulators that can automatically assess performance and 

their shortcomings. Chapter 4 demonstrates the setup of the simulator. Chapter 5 gives a detailed 

description of the fabrication process used for the physical manikin. Chapter 6 is based on the 

software developed for the simulator and its uses. Chapter 7 elaborates on the development of the 

neural networks and their training process. Chapter 8 is detailing all the testing that was conducted 

to validate the different parts of the simulator. Finally, Chapter 9 is the list of conclusions from 

our research. 
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Chapter 2 - Neonatal Surgical Procedures 

2.1 Neonatal Pericardiocentesis 

NPC is the emergency removal of air or fluid when diagnosed with cardiac tamponade 

caused by pericardial effusion or pneumopericardium. In other words, NPC is the removal of 

excess air or fluid that accumulates in the pericardial space (Fig 1). Cardiac tamponade is a rare 

and life-threatening condition, usually caused due to central venous catheters (CVC), percutaneous 

(PVC) and umbilical (UVC) that are administered to neonates. Pericardial effusions are usually 

Figure 1. Emergency pericardiocentesis (sourced from OpenPediatricsTM) 
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found in hydropic or septic neonates. Early detection and treatment are paramount, especially for 

neonates. 

Usually, a cardiac tamponade is diagnosed through imaging, specifically an 

echocardiogram or an ultrasound. Furthermore, on a most regular basis pericardiocentesis is 

conducted under the guidance of ultrasound imaging. However, in emergency situations, such as 

a cardiovascular collapse, the surgical area is sanitized with betadine and a needle is inserted into 

the pericardium without any image guidance (Angert & Rosen, 2021). This research is focused on 

training for such emergency NPC mentioned above.  

2.2 Neonatal Thoracentesis 

The incidence of pneumothorax (PTX) in preterm infants is around 6%. Around close to 

10% of infants, PTX is an incidental finding as these infants may remain asymptomatic (Liu et al., 

2020).  The Neonatal Intensive Care Unit (NICU) alone has reported an incidence  of 1-2% and 

over 40% in the presence of respiratory distress syndrome.  This condition is categorized under 

“air-leak syndromes” caused by leakage of air from a ruptured alveoli into the pleural space. The 

trapped and sometimes accumulating air could compress the lungs and mediastinum resulting in 

hemodynamic comprise (Fig 2). This is known as tension PTX. In neonates, tension PTX although 

rare is considered a life-threatening situation requiring immediate intervention to depress the 

trapped air. This procedure is called thoracentesis (TRS) and is performed using either a needle or 

trocar and chest-tube or a flexible catheter called “pig-tail” to remove the excess air from the 

pleural cavity (Wei, Lee, Cheng, Tsao, & Hsiao, 2014).  

Often PTX could present with only mild respiratory symptoms or remain occult until 

enough air accumulates in the space to cause compressive effects. With the onset of tension 

pneumothorax or compressive effects, clinical condition of infants can deteriorate rapidly 
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requiring swift action. Although, the technique of thoracentesis is well-established, suboptimal 

skill levels of providers due to inadequate exposure to the condition or training could result in 

significant complications. 

 

2.3 Existing trainers 

Currently, a large segment of institutions, use the animal models such as piglets and hens 

to simulate NPC and NTC. However, these models have a low-shelf life and have a different 

anatomy as compared to real neonates. There are several alternative options that can be used. A 

brief description of some infant trainers commercially available or constructed for simulation are 

given below: 

Figure 2. Pneumothorax. (Courtesy Fairview) 
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2.3.1 TruBaby X 

This a high-fidelity manikin made by Tru Corp, which allows for multiple surgical 

procedures that could be conducted on a 5-month infant (Fig 3). The manikin displays all the 

necessary realistic anatomical landmarks necessary to conduct needle thoracentesis. Additionally, 

the procedure can be performed on both sides and the silicone insert allows for upto 150 needle 

piercings with a 18G needle before needling replacement. However, this manikin costs upwards 

of $7500 with additional costs of replacing the silicone inlets. The manikin being a 5-month infant, 

is proportionally different from a neonate. While thoracentesis can be performed quite realistically, 

the manikin does not allow for pericardiocentesis.  

2.3.2 Low-cost pericardiocentesis model 

Proposed by Angert & Rosen (2021) is a neonatal manikin made from a repurposed 

resuscitation manikin from Laerdal™ and some household items (Fig 4). A liquid filled balloon in 

used as a heart to simulate the procedure. The internal anatomy is covered with a layer of silicone 

to simulate skin. Though this model is easy to fabricate, the balloon has to be replaced after a 

single attempt. The manikin has partial anatomical landmarks, and the internal anatomy is not 

realistic. Additionally, this manikin fabrication depends on the possessing a neonatal manikin that 

can be repurposed.  

Figure 3. Trubaby X by TruCorp 
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2.3.3 Low-cost thoracentesis model 

Gupta & Ramasethu (2014) proposes a neonatal thoracentesis model that uses electric 

wires to create a ribcage, which encases a supportive Styrofoam and inflated plastic bags to 

simulate the pleural space (Fig 5). The assembly is placed inside a toy doll and covered with 

sheaths of shelf liner to resemble skin and muscle. Similar to the low-cost pericardiocentesis 

model, this model too has partial anatomical features, and unrealistic internal anatomy. The 

anatomical landmarks are missing, and the use of inflated plastic bags means that it allows for a 

single needle insertion before needing to be replaced. 

Figure 4. Construction of low-cost thoracentesis model. 
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2.3.4 Low-cost pleural pigtail trainer 

 Zurca et al. (2020) proposes an alternative thoracentesis model, similar to Angert & Rosen 

(2021), this research also repurposes a discarded resuscitation manikin, specifically a Sani Baby 

by Simulaids (Fig 6). 250 ml bags of saline were used to simulate the fluid accumulated in the 

pleura and electric wires were used to construct the ribcage. A shelf liner was used to cover the 

anatomy. This manikin provides an opportunity to use the Sledinger technique for the placement 

of the pigtail catheter, however like the previous mentioned manikins, this needs frequent 

replacement, has partial anatomical landmarks, and has unrealistic internal anatomy.  

Figure 5. Low-cost pericardiocentesis mode (Angert & Rosen, 2021).  

1. Balloon filled with liquid, used as the heart.  

2. Pericardiocentesis being performed on the manikin.  

3. Manikin with its skin pulled down to reveal the cavity. 



11 

 

2.4 Chapter Summary 

1. NPC and NTC are vital surgical procedures performed during life-threatening 

situations.  

2. Training with animal or low-fidelity manikins does not provide a realistic experience. 

3. High-fidelity manikins offer a realistic experience but are prohibitively expensive 

especially since the silicone inserts need to be replaced after several uses. 

4. There are currently no trainers that can be used to train for both NPC and NTC. 

  

Figure 6. Low-cost fluid filled thoracentesis model 
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Chapter 3 - Hardware Setup 

3.1 Setup 

The simulator is comprised of mainly two components: the simulation software and a 

physical manikin. The user can perform the surgical procedure on the manikin with real 

instruments. Each instrument is attached to an electromagnetic (EM) sensor, the information from 

Figure 7. Simulator setup 
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the sensor is sent to the PC that hosts the simulation software. The information received is analyzed 

and displayed on a monitor attached to the PC. The comprehensive setup is illustrated in the figure 

above.  

The following is the list of components in the setup: 

1. Personal computer (PC) 

2. High resolution display 

3. EM tracking system 

a. sensors 

b. transmitter 

c. central electronic unit (EU) 

4. Physical Manikin 

5. Mounting platform 

6. Surgical Instruments 

7. Sensor mounts 

3.2 Electromagnetic Tracking System: 

There are numerous technologies to track motion such as accelerometer-gyroscope devices 

and multi-camera/optical sensor setups (Funke, Mees, Weitz, & Speidel, 2019) (Sarin, 

Bettadapura, Essa, Zia, & Sharma, 2018). However, accelerometer-gyroscopes devices only track 

changes in velocities and acceleration. Multi-camera setups require complicated algorithms to 

recreate a 3D motion in space which are computationally and memory intensive, and above all, 

require a line of sight to track objects. Electromagnetic tracking (EM) has low-latency and high 

accuracy in tracking position and orientation at high sampling rates with none of the above-

mentioned disadvantages. However, the tracking accuracy is dependent on the presence of metallic 
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objects and the distance between the EM sensor and transmitter. Since the surgical field is small 

and the instruments used do not affect the magnetic field, the NDI Ascension’s DriveBay EM 

tracking system was considered suitable. 

The setup comprises of a central electronic unit (CEU), transmitter and sensors. The CEU 

digitizes the signal from the sensor and calculates the position and orientation, per CEU at most 4 

sensors can be tracked. The transmitter emits a low-intensity magnetic field; the sensors can be 

tracked with in this field. The EM system transmits data to the PC through a standard USB port, 

at a default sampling rate of 80 Hz.  

3.3 Design of Sensor Mounts 

The EM sensors need to be securely attached to the surgical instruments for accurate 

tracking. Additionally, the sensor is required to be attached in the same place and orientation on 

the respective instrument to avoid the need for calibration and to get consistent tracking data. For 

the reasons above, a set of sensor mounts were designed in Solidworks, and 3D printed in 

polylactic acid (PLA). The mounts easily attach to the surgical instruments in a predefined location 

and orientation and secure the sensor in-place, the mounts were secured to the instruments using 

architect’s tape.  

All the instruments could accommodate the designed sensor mounts, however, attempts to 

create a mount for the trocar-catheter and the scalpel, failed. Due to the non-rigid nature of the 

catheter, the mount could not be secured without hindering the functionality of the instrument, 

similarly due to thin profile of the scalpel, the sensor mount impeded the grip. Instead, the sensor 

was taped along the length of the instruments. 
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Figure 8. Surgical instruments attached to sensor mounts 

Figure 9. Surgical instruments without sensor mounts 
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The following series of images display the design of the sensor mounts in 2D and in iso-

metric views. 

 

 

 

Figure 10. Sensor mount for ChloraPrep 
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Figure 12. Cable guiding ring 

Figure 11. Sensor mount for needle and syringe 
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3.4 Design of Manikin Platform 

The position and orientation of the manikin needed to be constant in reference to the 

transmitter because it was decided not to attach an EM sensor to the manikin. Additionally, the 

manikin needed to be placed in an orientation specific to the surgical procedure. For performing 

NTC, the infant in tilted to side at about 45° for ease of access. This was achieved using a custom 

platform that was designed in Solidworks and then 3D printed in PLA. The platform was assembly 

from multiple components that could be printed separately and assembled when needed. The 

platform has mainly two sub-platforms that hold the transmitter and manikin. However, since the 

manikin needs to be in different orientations based on the surgical procedure, the manikin base has 

different adaptors on which the manikin can be fixed. The two base platforms are held together 

using bridge connectors. The following is a list of parts that were created: 

1. Transmitter base 

2. Manikin base 

3. Flat manikin platform (adaptor for NPC) 

Figure 13. Platform assembly 
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4. Inclined manikin platform (adaptor for NTC) 

5. Bridge connector 

The simple assembly of the platform has been displayed in Fig 13. The two bridge 

connectors join the transmitter and the manikin base. The EM transmitter can be push-

fitted into the transmitter base, while one of the inclined or flat platforms can be fitted on 

the manikin base. The inclined platform is used for pericardiocentesis, while the flat is used 

for thoracentesis.  

Given below  (Fig 14-18) are a series of images detailing the dimensions of the parts: 

Figure 14. Flat manikin platform 
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Figure 15. Manikin base dimensions. 
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Figure 16. Transmitter base 
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Figure 17. Inclined manikin platform 
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3.5 Chapter Summary 

1. The simulator comprises of two main components: a physical manikin and a virtual 

reality software. 

2. The simulator uses an electromagnetic tracking system to interface between the 

physical and virtual. 

3. The sensors are mounted to the surgical instruments using sensor mounts that were 

3D printed. 

4. The manikin and the EM transmitter are held together using a custom platform that 

was 3D printed.  

  

Figure 18. Bridge connector 
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Chapter 4 - Manikin Fabrication 

Based on the hardware setup, discussed in Chapter 3, the physical manikin and the displayed 

virtual anatomy are geographically identical. This was necessary to accurately replicate the 

physical surgical actions in the virtual world. Considering the trainers discussed in Chapter 2 and 

by considering the opinions of expert neonatologist, the following features and were listed: 

1. Presence of relevant and accurate anatomical features 

2. Providing realistic tactile experience 

3. Ability to perform both the surgical procedures 

Figure 19.  Fabricated neonatal manikin 
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4. Capability of reusing or replacing for minimal cost 

The created neonatal manikin is comprised of a ribcage, heart, and a pair of pleurae, all 

encased in a soft silicone shaped in the form of a neonate torso (Fig 19). All the internal anatomy 

is 3D printed, where rigid structures are made with PLA and soft structures including operable 

organs are printed in thermoplastic polyurethane (TPU). All the organs or bones are printed 

separately with modified design elements to allow for accurate and easy assembly. Both, NPC and 

NTC can be performed on the manikin. A detailed fabrication process for the complete manikin is 

explained below:  

Figure 20. Virtual anatomy  
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4.1 Virtual Models: 

 For the purpose of this research, existing 3D virtual anatomy from a previous 

research (Susan Hayes, MS Thesis, Department of B-vis, UIC, 2017) was used. The anatomy was 

auto segmented from multiple neonatal CT images and then combined and processed manually in 

Zbrush and Autodesk 3DsMax. The anatomy included neonatal skin, ribcage, spine, pleurae, lungs, 

heart, and liver. However, the liver was discarded since it was not associated with the surgical 

procedures in interest.  

4.2 Processing virtual anatomy 

The 3D virtual anatomy created from the patient images is in the form of a 3D mesh. A 

mesh model is a set of polygons connected to each other representing the topography of the surface. 

The original 3D anatomy was in 3Ds format, which is a native format for Autodesk 3DsMax 

(3DsM). It is to be noted that the mesh objects do not have a solid volume. Hence, there is no 

thickness associated to these models; they are merely surface representations. Additionally, 

software such as 3DsM are used to create detailed 3D objects with organic structures, which is for 

a visual purpose. However, Computer-aided design (CAD) software such as Dassault System 

Solidworks (SW), modifies the mesh to a solid 3D object with an internal volume. CAD software 

are purposed to create engineered objects such as machine parts, tools and complicated assemblies. 

CAD software efficiently handles mesh files with fewer polygons and structures of mechanical 

nature, since it allows for complicated volume modifications with features such as shell, extrude, 

loft etc. CAD software also provide the advantage of modifying designs. Since the goal was to 3D 

print the virtual anatomy, it was necessary to print the organs with features that could be used to 

assemble the anatomy post printing. Additionally, due to the complexity of the organs, it was 

necessary to create support structures that could assist during 3D printing. To create precise 
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engineered supports and modifications to the anatomy, SW was found to be optimum. Hence, all 

the anatomical meshes were exported from 3DsM in OBJ format and imported into SW.  Since 

SW requires objects with small number of polygons, all of the anatomy was first decimated in 

3DsM. The decimation process reduces the number of polygons on the mesh while keeping the 

geometric structure intact, the degree of decimation determines the topographic details that are 

lost. Most of the anatomy could not be decimated without losing vital geometric information; thus, 

the mesh models were cut to smaller objects, so that each model could have sufficient detail.  

4.3 Processing operable organs: 

 Most of the available surgical trainers use internal anatomy that is cast in silicone, 

which provides a tactile experience similar to human tissue. However, silicone is damaged over 

multiple uses and is required to be replaced or recast. The other surgical trainers use items such as 

liquid filled balloons, plastic bags, gloves to replicated human tissue. Some of these provide a 

realistic tactile experience; however, most of them need to be replaced after a single use.  

Furthermore, for both NPC and NTC the pericardial space and the pleural space either need to be 

filled with air or liquid. It is challenging to create hollow silicone structures strong enough to 

maintain their form without collapsing. Hence, the decision was made to 3D print the operable 

organs. Operable here is in the context of  creating organs that would allow for realistic needle 

insertion which was common to both NPC and NTC.  

 To print hollow organs, the mesh objects needed to be modified. It is possible to 

subtract volumes in SW to create shell like structures. This was done by cloning the object of 

interest in 3DsM and reducing the scale of the object to specific value that needs to be determined 
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based on the thickness of the shell needed. The cloned object is subtracted out of the original object 

to create a thin surface. This fundamental process was used to create operable anatomy for this 

research (Fig 21).  

Figure 21. Process of designing operable anatomy 
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4.4 3D printing of anatomy 

 The basic processing explained above was used to print all of the internal anatomy. 

The step-by-step process for each individual part is given below: 

4.4.1 Ribcage and Spine: 

The ribcage and spine were created as a single mesh when segmented from the scans. The 

combined mesh was detailed with large number of polygons, due to which the file had a large 

over-head. Initially the polygons were reduced using automatic decimation tools available in 

Fusion360. However, the polygons could not be reduced drastically without causing unwanted 

deformations and loss of detail. To further reduce the mesh size, the mesh was split vertically using 

a cutting plane and saved separately. 

The separate meshes were imported in to Solidworks and additional features were added 

so that the ribcage-spine could be placed flat on a surface and the two halves could be assembled. 

The process is illustrated below. 

 

The ribcage and spine were 

created as a single mesh when 

segmented from the scans. The 

combined mesh was detailed with 

large number of polygons, due to 

which the file had a large over-head. 
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The polygons were reduced 

by 80% using automatic decimation 

tools available in Fusion360.  

 

The polygons could not be 

reduced further without introducing 

unwanted deformations and loss of 

detail. To further reduce the mesh 

size, the mesh was split vertically 

using a cutting plane. 

 

The two halves created 

required less memory while 

retaining the important features. 

 

The meshes were imported 

in to Solidworks and a base was 

designed, that could support the 

structure while printing and could 

assist in lying flat when placed on a 

surface. Additionally, grooves were 
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added so that two the two halves 

could be joined, and the pleura could 

be placed within. 

 

 

The two halves were 3D 

printed in PLA with a nozzle size of 

0.2 mm. small structures with large 

over hangs such as the left clavicle, 

broke off during the printing 

process, however the majority of the 

anatomy was printed accurately. 

Figure 22. Process for 3D printing a ribcage 

4.4.2 Heart: 

 

Similar to the ribcage the heart was 

first decimated to 3% of the original 

polygonal count. 
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A portion of the heart, resembling 

the pericardium was cut-off using cutting 

planes 

 

After modifying the scale of the 

heart, the section part was volumetrically 

removed from the heart, creating a hollow 

volume within the heart in Solidworks. 

 

Simple peg was extruded so that the 

heart could be attached between the two 

lungs when printed. Additionally, an entry 

way was created at the bottom of the heart 

so that fluid can be filled into the 

pericardium chamber. 
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The whole heart was 3D printed in 

TPU at a nozzle size of 0.1mm with a wall 

thickness of 1mm. 

Figure 23. Process for 3D printing a heart 

4.4.3 Pleura and Lungs: 

 

The pleura and lungs were decimated 

in Fusion 360. 

 

The anatomical meshes of the lungs 

were segmented of scans from a healthy 

neonate; hence the topography of the lungs 

was edited to induce collapsed lungs. This was 

achieved by cloning the lung mesh and then 

using Freeform tools in 3DsMax to edit the 

topography of the mesh. 
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The lungs are sectioned into two parts 

using a cutting place. 

 

The modified lungs and the hollow 

pleura were combined to create a single model 

in Solidworks 

 

At this point the organs could be 3D 

printed in TPU; however, our prototypes failed 

because the walls were too thin. Instead, a 

small portion, where the needle would be 

inserted, was printed in TPU, while the rest 

was printed in PLA. The TPU portion was 

printed with a nozzle size of 0.1 while the rest 

was printed with a nozzle od 0.2mm. 

Figure 24. Process for 3D printing a combined pleura and lungs 
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4.4.4 Mold: 

 

The mesh was first decimated to 

25% of its original size. 

 

The original mesh of the skin was 

cropped to keep the region of 

interest. 

 

A volume of the skin was 

subtracted from a rectangular 

block in Solidworks 
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The block was then 

bisected to obtain the two halves of 

the mold. The halves were 

processed for efficient printing, 

accommodating the internal organs 

and a robust feature for assembly 

 

The mold was printed in 

PLA at a nozzle size of 0.5 mm. 

Figure 25. Process for 3D printing the mold 

 

4.5 Casting the manikin 

4.5.1 Material used for casting 

Silicone was finalized as the material that would be used to cast the manikin because of it 

several advantages over ballistic gel, gelatin, agar and polyvinyl chloride (PVC). Silicone can be 

safely cast at room temperature, only required mixing a two-part solution, has a long shelf-life, is 
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non-reactive and safe to handle. The neonatal manikin was cast in Ecoflex 30 by SmoothOn. On 

testing however, it was found that the cast was too dense, hence a silicone thinner was used to 

reduce the viscosity of the silicone.  

4.5.2 Silicone density testing 

A small experiment was conducted, where a range of samples with different densities of 

silicone were blind tested for needle insertion by an expert neonatologist (Fig 26). The 

neonatologist selected the sample which had 15% thinner by weight, which closely resembled the 

tactile experience of a neonate.  

 

Figure 26. Silicone density test. 
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4.5.3 Calculating amount of silicone needed: 

An approximate amount of silicone required for casting was calculated to reduce wastage. 

The difference between the volume of the internal anatomy including the ribcage and the torso 

gave the approximate amount of silicone volume require for the casting. The properties of silicone 

were used to calculate the amount of silicone required by weight.  

The volume of each was obtained from SW. 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑆𝑘𝑖𝑛 (𝑉𝑠) =  877.46281 𝑚𝑙 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐻𝑒𝑎𝑟𝑡 (𝑉ℎ) = 12.368.67 𝑚𝑙 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐿𝑒𝑓𝑡 𝑅𝑖𝑏𝑐𝑎𝑔𝑒 (𝑉𝑟𝑙) = 55.16485 𝑚𝑙 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑅𝑖𝑔ℎ𝑡 𝑅𝑖𝑏𝑐𝑎𝑔𝑒 (𝑉𝑟𝑟) =  54.95105 𝑚𝑙 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑅𝑖𝑔ℎ𝑡 𝑠𝑜𝑓𝑡 𝑝𝑙𝑒𝑢𝑟𝑎 (𝑉𝑠𝑝𝑟) =  8.17152 𝑚𝑙 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐿𝑒𝑓𝑡 𝑠𝑜𝑓𝑡 𝑝𝑙𝑒𝑢𝑟𝑎 (𝑉𝑠𝑝𝑙) = 11.65085 𝑚𝑙 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑟𝑑 𝑃𝑙𝑒𝑢𝑟𝑎 (𝑉ℎ𝑝𝑟) = 76.00282 𝑚𝑙 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐿𝑒𝑓𝑡 𝐻𝑎𝑟𝑑 𝑃𝑙𝑒𝑢𝑟𝑎 (𝑉ℎ𝑝𝑙) =  80.61596 𝑚𝑙 

The volume of silicone was calculated: 

𝛥𝑣𝑜𝑙𝑢𝑚𝑒 =  𝑉𝑠 –  𝑉ℎ − 𝑉𝑟𝑙 − 𝑉𝑟𝑟 –  𝑉𝑠𝑝𝑟 –  𝑉𝑠𝑝𝑙 –  𝑉ℎ𝑝𝑟 –  𝑉ℎ𝑝𝑙 
 

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 =  578 𝑚𝑙 
 

𝑆𝑖𝑙𝑖𝑐𝑜𝑛𝑒 𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 =  1.6 % 
 

𝑀𝑖𝑛𝑜𝑟 𝑙𝑒𝑎𝑘𝑎𝑔𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑚𝑜𝑙𝑑 =  3 % 
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑖𝑙𝑖𝑐𝑜𝑛𝑒 (𝑉𝑠𝑖𝑙) =  600 𝑚𝑙 

 

Calculating silicone by weight: 

 

𝑆𝑖𝑙𝑖𝑐𝑜𝑛𝑒 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝜌 =  1.07 𝑔/ 𝑐𝑐 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑖𝑙𝑖𝑐𝑜𝑛𝑒 𝑊𝑠𝑖𝑙 =  1.07 × 600 ~ 645 

𝑆𝑖𝑙𝑖𝑐𝑜𝑛𝑒 𝑡ℎ𝑖𝑛𝑛𝑒𝑟 =  15% 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑚𝑖𝑥 
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𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑖𝑛𝑛𝑒𝑟 𝑊𝑡 =  645 × 0.15 ~ 97 𝑔𝑚𝑠 

𝑊𝑠𝑖𝑙 𝑝𝑒𝑟 𝑝𝑎𝑟𝑡 =
550

2
 ~ 275 𝑔𝑚𝑠 

 

4.5.4 Casting process 

 

Internal anatomy assembled and 

placed inside mold 

 

 

Silicone mixture prepared and 

vacuum pumped for removing air bubbles 
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Mold prepared and sealed for 

silicone pouring 

 

 

Manikin pulled out of the mold 

 

Figure 27. Process of casting manikin in silicone 

4.6 Chapter Summary 

1. The manikin is constructed from 3D virtual models of the skin, pleura, lungs, heart, 

ribcage, and spine which were segmented from real patient scans 

2. The 3D meshes of each anatomical object were sliced and then decimated to be imported 

to SW for modifications 

3. Operable organs were constructed by designing objects with hollow volumes for allowing 

needle insertion. 

4. The internal anatomy was cast in commercial grade silicone  
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Chapter 5 - Software development 

5.1 Software modalities 

The basic software functionality involves displaying, saving and analyzing surgical steps 

performed on the physical manikin. The goal of the Surgical Simulation Software (SSS) is to 

provide an easy way to simulate surgical procedures for training and assessment with minimum 

involvement of the expert surgeons. To accomplish that, the software runs 3 basic modalities which 

are discussed below: 

5.1.1 Animation and Tracing  

The function of this module is to play an interactive surgical performance like an animation 

(Fig 28). A user can play any existing performance that was saved to file. Additionally, a trainee 

can trace the surgical actions using the real-time EM tracking of instruments. The user interface 

displays control buttons that can be used to navigate the animation and start/stop the tracing of 

actions. Additionally, the user can pan, rotate and zoom to explore the virtual environment. 

Figure 28. Animation player controls in SSS 
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5.1.2 Real-time guidance 

 This module provides a simplified guidance in real-time during the surgical procedure. A 

small window of the surgical action is collected, evaluated, and displayed on the indicator (Fig 

29). Green, yellow and red colors indicate the degree of correctness of the surgical task.  The 

evaluation is conducted through a neural network.  

5.1.3 Performance Assessment 

This module provides a detailed skill assessment at the end of the surgical procedure. The 

score is displayed in a table detailing the quality of performance for each surgical task within the 

surgical procedure (Fig 30). In this module, the performance data of the user and the assessment 

scores are stored to file for future reference.   

Figure 29. Real-time feedback during training 



43 

 

5.2 Software features 

The modules described above are a combination of multiple features of SSS; which are 

given below: 

1. Display relevant virtual anatomy 

2. Display real-time motion of instruments 

3. Save user information 

4. Save surgical performance data (motion of instruments) 

5. Load a previous surgical performance 

6. Animate a loaded surgical performance 

7. Evaluate surgical data for quality of performance 

8. Display feedback information 

 

  

Figure 30. Performance assessment 
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These features are built with a variety of tools, which are listed below: 

1. Unity software 

2. SQLite database 

3. Python TensorFlow (TF) 

4. Python ZeroMQ API 

The application was developed in Unity, which is a popular game engine that has been 

used to develop industrial games for multiple operating systems, such as Windows, Mac OS, 

iOS, Android, etc. This game engine is a collection of powerful libraries and a user-friendly 

interface that provides the capability to rapidly create interactive applications. The following 

are the features of the software: 

5.2.1 Display virtual anatomy and motion tracking 

The virtual anatomy segmented from neonate images are used for NTC and NPC. 

Similarly, during manikin fabrication, the original mesh models are decimated before importing 

to the application to avoid large memory over-head. Once imported, the anatomical models are 

calibrated for position and orientation by moving the models to coincide with physical model.  

Similar to the anatomy, motion of instruments is displayed through virtual models of the 

instruments. These models are designed by replicating the dimensions of actual surgical 

instruments. Detailed drawing of the CAD models of the instruments for both the surgical 

procedures are  given at the end of this chapter. The instruments are tracked through the EM 

tracker, introduced in Chapter 3. The tracking is performed at a sampling rate of 50 Hz, matching 

the frequency of the in-built call-back function “FixedUpdate()” in Unity. The position and the 

orientation of the models is updated in “FixedUpdate()”. The sampling rate is adequate to produce 

smooth animations and simulate detailed surgical action performed.  
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The tracking data generated by the EM system is the calculated based on the 3D position 

and orientation of the sensor in reference to the EM transmitter. The point of attachment of the 

sensor to the surgical instrument can be considered as the pivot point. Similarly, for virtual models 

any spatial transformation is done through the pivot point on the model. It is important that the 

pivot point of the virtual model is in the same relative location to the physical instrument to 

accurately replicate the motion. If the pivots do not coincide, then a 3D offset value must be 

defined, so the tracker can compensate for the difference (Fig 31). Consequently, for each 

instrument, based on the place of attachment of the sensor the offset values are calculated and 

stored in the application.   

5.2.2 Saving surgical performance 

The EM tracker sends 6 values per sensor, 3 for the position and 3 Euler angles for 

orientation. A single sensor sends 300 values every second for a sampling rate of 50 Hz. This 

eventually utilizes large amount of storage memory. To reduce the memory requirement, two 

Figure 31. Calculating the offset values 
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methods are utilized; a threshold filter to store only relevant information and a compression 

algorithm to store efficiently. 

 

Figure 32. Process for storing tracking data 

Unity has the built-in Nvidia PhysX engine, which is a physics simulation library. The 

collision detection in PhysX can be used to inform when two virtual objects touch each other or 

when one object is within the other. This feature is utilized to flag storage of spatial information 

during the surgical performance. A virtual box collider is used to define the surgical space within 

which all actions are assumed to be related to the surgical task being performed (Fig 34). Box or 
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capsule colliders are attached to each virtual instrument. When the instruments enter this surgical 

space, the data storage is initialized.  

Compression algorithms are mainly divided into two parts: (1) offline, where the complete 

trajectory is required before compressing, and (2) online, where the compression can be done on a 

portion of the trajectory. Offline compression comparatively has better compression rates since all 

data can be processed at the same time. However, since the time required to complete the surgical 

task is unknow, storing all performance data in the application memory could create a large over-

head in memory that could potentially crash the application. An alternative would be to first store 

the motion data to a file and process with a compression algorithm after the procedure is 

completed; however, the time taken for compressing all data at once would be long, which is 

Figure 34. Collision detection 

Figure 33. Process flow for FastSTray 
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undesirable. As a result, the software instead uses short collection windows, where the information 

is stored, immediately compressed, and saved to a file.  

FastSTray algorithm is specifically designed for compressing 3D data of robotic surgical 

systems (Marino & Manic, 2016) (Fig 34). For each point on the trajectory, FastSTray calculates 

a coefficient that quantifies the relevance of the point, also known as an information coefficient 

(Fig 35). Further, applying non-maxima suppression on all the coefficients eliminates points with 

low coefficient values. The remaining points can be used to represent the trajectory. The two 

parameters β and γ in FastSTray determine the degree of compression and accuracy. 2β is the 

number of neighbors selected to calculate the information coefficient of a point, while 2γ is the 

number of neighbors to which non maxima suppression is applied. FastSTray can achieve up to 

65 -70% compression while maintaining errors between 0.78-2 mm. The window for collecting 

the data for compression can be independently set for each sensor, along with the possibility to set 

the rate of compression through β and γ. 

𝑟𝑎𝑡({𝑎}, {𝑡}) =  
(𝑎(𝑖) −  �̅�)(𝑡(𝑖) − 𝑡)̅

√𝛴𝑖(𝑎(𝑖) −  �̅�)2√𝛴𝑖(𝑡(𝑖) −  𝑡̅)2
 

𝜀(𝑃, 𝑡) =  
1

(𝑟𝑎𝑡(𝑃. 𝑥, 𝑡))2
+

1

(𝑟𝑎𝑡(𝑃. 𝑦, 𝑡))2
+

1

(𝑟𝑎𝑡(𝑃. 𝑧, 𝑡))2
 

Figure 35. Linear correlation between 2β neighbors. Left: High linear correlation hence this 

point will be eliminated Right: Low linear correlation, this point will be stored. 
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5.2.3 Saving user information: 

Databases are used to store information in tabular form, using standard database 

management systems (DBMS) for a secured method of storing and querying information. Between 

the range of available DBMSs, SQ-Lite is small, fast, and self-contained database engine that runs 

on SQL. Furthermore, Unity already has an in-built SDK for SQ-lite. 

A custom database was designed with tables that store user information, surgical trials by 

each user and assessment scores for each trial (Fig 36). The UserInfo table manages information 

pertaining to the user by storing a unique Id, user type (resident, fellow or surgeon) and years of 

experience. The PerformanceInfo table is responsible for storing all the trials conducted on the 

simulator, which includes the information of the surgical procedure of the trial and the name of 

the file containing the motion data. Finally, the AssessmentResults table stores the average scores 

received for each surgical task during the assessment phase of the training. 

Figure 36. Database entity-relationship diagram 
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 Tables within the database are linked to the other through one of more variables called 

foreign keys as shown in the entity-relationship diagram (ERD), for example the field userName 

from the UserInfo table is linked to the Id in the PerformanceInfo table, these relational variables 

make it possible to query specific information in short amount of time and safeguard accidental 

deletion of information. However, design of tables or selection of foreign keys can cause 

unnecessary cloning, storing spatial data particularly creates large amount of repetitive data such 

as cloning of foreign keys on every row of data. Instead, the spatial data is stored in a standard 

comma-separated values (CSV) format on a local PC. A unique naming convention is used to 

identify the CSV file, in case the performance data must be loaded into the application. 

5.2.4 Animating previous surgical procedures 

Spatial data stored in the files can be loaded into the software to playback surgical actions 

that were performed previously. First, the database is queried by the software to get the name of 

the file containing the data. The file is opened, and the data is loaded into the application memory. 

Restored data is in compressed format and is required to be decompressed before playback. 

Complete decompression is memory intensive, instead decompression and animation are 

performed simultaneously.  

The missing values between two consecutive time stamps is calculated using linear 

interpolation for positional values and using spherical interpolation for orientation values. At every 

frame the position and orientation of the virtual model is updated based on the calculated α value. 

The animation timer (𝑡) with a maximum time value (𝑇) of the last data entry in the surgical 

performance, is updated every frame based on the time elapsed (𝛥𝑡) since the last frame. For any 

two consecutive time stamps (𝑡𝑛 𝑎𝑛𝑑 𝑡𝑛+1), the α is updated and used to find the missing motion 

data based on the latest time value t, of the animation timer. The callback function FixedUpdate(), 
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us used to update the values since this call-back function runs at a known frame rate of 50 Hz. The 

linear and spherical interpolation are performed using the inbuilt Unity functions Lerp() and 

Slerp() respectively.  

5.2.5 Evaluating a surgical performance 

The evaluation of a surgical performance is performed through a neural network that has 

been trained using collected surgical performance data. Existing Unity API, called ML-agents, has 

the capability to train and load per-trained networks. However, at the time, the ML-agents API 

was in its development phase and the lack of clear documentation and unreliability in using some 

networks such as LSTMs made it an unviable option. Instead, the network is trained in Python 

using TensorFlow and is run in as Python application. Since both the Unity application and the 

Python application run independently, a communication between both was required. 

Consequently, ZeroMQ messaging library was used to manage the exchange of information 

between the Unity application and the Python application.  

Figure 37. Calculating α values  
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ZeroMQ is high level library for asynchronous messaging for distributed and concurrent 

applications. It supports the common messaging patterns and message ques without the use of a 

message broker unlike most of the middleware messaging libraries.  

A request-reply message pattern is used in SSS, where the Unity application is the client, 

and the Python application is the server. In a continuous loop, the client sends a message, and 

receives a reply from the server. Every frame the updated position and orientation value from the 

EM tracking system is sent and collected by the python application. Sending data every frame 

creates a sufficient over-head, which is avoided by using multi-threading. The thread is responsible 

for sending the data and receiving a response. Once sufficient data is collected the data is 

processed, and then the neural network evaluates the data. The evaluation results are sent back to 

the Unity application.   

5.2.6 Designing virtual instruments: 

In order to accurately display the motion of surgical instruments in the virtual environment, 

3D virtual models resembling the physical instruments in size and appearance were needed. There 

were two existing methods to create virtual models from the existing physical instruments: 

1. Scanning the instrument using a 3D scanner 

2. Manually measuring the dimensions and creating a 3D model using a computer aided 

design (CAD) software. 

The accurate visual representation of the virtual instruments depended on the degree of 

accuracy with which the physical instruments were converted to virtual ones. Additionally, 

sophisticated 3D scanners were inaccessible for regular use. Hence, manual method was deemed 

suitable. 
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Table 1. Comparing scanning to manual method of converting physical surgical instruments to 3D virtual 

model. 

 

The instruments were designed in Solidworks based on measurements taken using a vernier 

caliper and a measuring scale.  The following series of images (Fig 38-43) display the instrument 

dimensions and their 3D renders.  

Sr 

No. 
Properties Scanning Manual method 

    

1. Time required 

Short, since the scans are 

automatically converted to a 

3D object. 

Long, since each dimension must 

be measured and replicated in a 

CAD software. 

 

 

2. Availability 

Can be done on the phone 

using a specialized software, 

however if accuracy is 

important, special scanning 

equipment is required. 

 

Easily done through any CAD 

software. 

3. 
Accuracy of 

dimensions 

Low, since it’s difficult to 

stitch 2D images to a single 3D 

object. 

High, since the measurements are 

taken manually. 

Figure 38. 22G needle for pericardiocentesis 
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Figure 40. 25G needle for anesthesia 

Figure 39. 10cc syringe for pericardiocentesis 
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Figure 41. 10cc luer-lock syringe for anesthesia  

Figure 42. Scalpel used for thoracentesis 
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5.3 Chapter Summary 

1. The software has three modes namely, animation and mimicking, training under guidance 

and assessment of surgical skills. 

2. The application is built in Unity C#, where it can display virtual anatomy and the real-time 

motion of surgical instruments 

3. The virtual instruments were designed in Solidworks by measuring the dimensions of 

actual surgical instruments. 

Figure 43. 8Fr/Ch trocar catheter for thoracentesis 
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4. A SQL-lite database is used to store user information, history of surgical trials and the 

assessment results 

5. The motion data is threshold filtered and then compressed by the FastSTray algorithm and 

saved to the PC in CSV format, simultaneously the name of the file is saved to the database. 

6. The ZeroMQ library is used to communicate between the unity application and the python 

application.  
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Chapter 6 - Automatic Assessment 

There has been a rise in research of automated methods of surgical skill evaluation, due to 

the required time involvement of expert surgeons and the objectivity of traditional methods of 

assessment (Castillo-Segura, Fernández-Panadero, Alario-Hoyos, Muñoz-Merino, & Delgado 

Kloos, 2021). Deep neural networks have had a large impact on autonomizing solutions in a myriad 

of fields. However, the performance of the deep neural networks is data centric, as they are 

dependent on large amount of data to learn autonomous behavior. Hence, its particularly difficult 

to apply deep neural networks for surgical skills since the data collected is comparatively very 

small, especially for long surgical tasks. However, there has been recent research like Wang & 

Majewicz Fey (2018), Fawaz, et al. (2018), Ismail Fawaz et al. (2019) that have been successful 

in using deep neural networks with reliable accuracy to classify surgical skills.   

Most of the existing methods classify the skill levels into two to three classes based on skill 

levels, mainly novice, intermediate and expert. However, the data used for these methods is 

manually annotated through a lengthy process of assessment through standardized scoring methods 

such as OSATS (Objective Structured Assessment of Surgical Skills) (Niitsu et al., 2013), GRS 

(Global Rating Scale) (Reznick, Regehr et al. 1997), GEARS (Global Evaluation Assessment of 

Robotic Skills) (Goh, Goldfarb et al. 2012).  Additionally, in the scenario of adding another class, 

the networks would need to be retrained and it would be challenging if the data would be 

insufficient to train the network. Instead of classification, an alternative approach of using 

comparison as a method of skill evaluation is used. Siamese networks are adept at learning the 

features that are different between the input classes, instead of learning how to identify individual 

classes (Chicco D., 2021). Siamese networks compared to classification networks requires less 

data to train. Published research (Hou, Jin, & Zhao, 2019) comparing time series data using 
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Siamese Convolution Neural Networks (SCNN) obtained reliable results. They were successful at 

showing that Siamese networks are a viable option for comparing sequential data with different 

lengths as compared to the traditional methods such as Dynamic Time Warping (DTW). 

Consequently, the goal was to employ an online Siamese convolution neural network that could 

identify expert surgical skill using data collected from simulation of neonatal surgical procedures.  

6.1 Siamese Convolution Neural Network architecture 

Siamese neural networks usually have two or more identical subnetworks. These networks 

share the same architecture and parameters, including weights. Unlike traditional classification 

networks Siamese learns the similarity between the two inputs. 

The proposed SCNN has in total of 17 layers. The first 12 layers is a CNN with convolution 

layers followed by max-pooling and dropout layers (Fig 44). The convolution filter increases in 

size by a factor of 2, from 38 to 308, each layer with a constant kernel size of 2. The output from 

the convolution layers is passed through a Rectified Linear Unit (ReLu) activation before passing 

to a max-pooling layer with a pool size and a step size of 2. To avoid over-fitting to the surgical 

Figure 44. CNN architecture for Siamese  
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data each max-pooling layer is followed by a drop-out layer with a value of 0.25. Additional 

regularization is achieved through global average pooling (GAP). The GAP layer is followed by a 

dropout layer with a high dropout value of 0.5 and followed by a dense layer of 3,080 neurons.  

The two inputs passed through the layers up-until the dense layer, subsequently the dense 

layer of the one input is subtracted from the dense layer of the other input to give a single value 

representing the similarity between the pair. The network uses an Adam optimizer and the binary 

cross entropy to calculate the loss.  

Figure45. Architecture of the SCNN 
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6.2 Data Collection Trials: 

A simulator platform that can record and playback surgical kinematic data collected 

through electromagnetic (EM) tracking system was developed. It tracks the relative position and 

orientation of the sensors attached to the surgical instruments within a defined magnetic field 

created by the transmitter. It replicates the physical actions performed with surgical instruments in 

a virtual environment from the information received through the EM sensors. The data collected 

is stored in a CSV format locally on a PC. It can accurately playback the stored information as an 

animation; hence any discrepancies in annotating the performance could be corrected by revisiting 

the trials. The developed platform was used to simulate two neonatal surgical procedures, 

specifically, thoracentesis (THC) and pericardiocentesis (PCC).   

The trails were conducted in the Neonatal Intensive Care Unit (NICU) at the University of 

Illinois Hospital (UI Health) with residents, fellows, and expert neonatologists. The simulation 

platform developed was used to collect the surgical data. The compression algorithm and the 

threshold filter were switched off to avoid removing any vital data. During the trials, the VR 

display was used to demonstrate the surgical procedure by the expert but was switched off during 

the data collection to avoid any distractions.  

6.2.1 Protocol 

The sessions were conducted like traditional SBT. The protocol used is given below: 

1. Instructors gives a detailed description of the symptoms displayed by a neonate and the 

need for performing the procedure. 

2. Instructor demonstrates the correct technique to perform the procedure. 

3. The subject practices the procedure under guidance on the simulator till comfortable. 

4. The subject performs the procedure under no guidance. In this phase, the data is 

collected. 
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6.2.2 Surgical tasks 

Both surgical procedures were broken down to set number of surgical tasks, with a 

predefined sequence and technique to perform. The defined sequence and task list was as follows: 

NPC: 

1. ChloraPrep – Preparing the surgical area using a disinfecting applicator. Apply at the center 

of the surgical area and gradually move outwards in a spiral. 

2. Needle Insertion – Inserting the needle 0.5 cm below the xiphoid process, slightly left of 

the midline at an angle of 30-40 deg to the skin while pointing toward the left shoulder. 

Confirm insertion by extracting liquid. 

NTC:  

1. ChloraPrep - Same as explained above. 

2. Anesthetization- Infiltrate the skin and simulate administration of anesthesia around the 

surgical area. 

3. Incision - Create a small incision with a scalpel the layer of skin and muscle at the target 

insertion point. 

Figure 46. Surgeon preparing the surgical area during thoracentesis 



63 

 

4. Trocar Catheter Insertion - Enter 3-5 cm into the pleural space directing the tip anteriorly 

and superomedial. 

6.2.3 Manual annotation 

The data was captures at a frequency of 50 Hz. A total of 20 subjects took part in the trial. 

In total 46 samples were collected for PCC, out of which 3 samples were discarded due to high 

noise and incomplete performance. Similarly, 29 samples were collected for THC out of which 2 

samples had some surgical tasks missing. 

Traditionally, surgical skills are assessed using metrics such as OSATS, that provide an 

objective score for the performance. The score can be used to determine if the performance was 

satisfactory or not. To annotate the data, some of the categories form the OSATS scoring system 

were employed, specifically, respect for tissue, time and motion, instrument handling and flow of 

operations. From the 20 points that could be accumulated in total, we considered 15 and above as 

expert and all others as non-expert. The total number of samples for each label based on the 

surgical tasks are given in the Table 2. 

 Non-expert Expert 

Total 

samples 

Pericardiocentesis    

ChloraPrep 
14 29 43 

Needle Insertion 
28 15 43 

Thoracentesis    

ChloraPrep 
11 18 29 

Anesthetization 
13 15 28 

Scalpel Incision 
10 17 27 
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Trocar Insertion 
13 16 29 

Table 2. Samples for each label 

6.2.4 Data Processing: 

The collected data using the EM system was raw motion data, evidently the data contained 

some unwanted information such as motion unrelated to the surgical tasks. Additionally, to train 

the network effectively, the input data needs to be processed with specific methods.   

6.2.4.1 Extracting features: 

The recorded data includes position in cartesian coordinates, orientation in Euler angles 

and time stamps in seconds. The orientation information was converted to quaternions to avoid the 

complicated scaling of Euler angles using the relation below. 
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𝑤ℎ𝑒𝑟𝑒:  𝜓, 𝜃, 𝜙 𝑎𝑟𝑒 𝑎𝑛𝑔𝑙𝑒𝑠 𝑎𝑡 𝑋, 𝑌, 𝑍 𝑎𝑥𝑖𝑠 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

Figure 47. Input features for training 
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To increase the number of data features to learn, tool velocities were added to the existing 

data. Linear velocities were calculated by differentiating position values against time, using 

equation given below: 

𝑣 =
Δ𝑥

Δ𝑡
  

𝑤ℎ𝑒𝑟𝑒,   Δx = 𝑥2 − 𝑥1              Δ𝑡 =  𝑡2 − 𝑡1 

Angular or rotational velocities were calculated from quaternions and respective time 

values using the NumPy-Quaternion library in Python. The formula used by the library for 

calculating the angular velocities is given below: 

𝜔(𝑡) = 2 ∗
𝑑𝑞(𝑡)

𝑑𝑡
∗ 𝑐𝑜𝑛𝑗(𝑞(𝑡))  

The final input features are summarized in Fig 47 below: 

6.2.4.2 Threshold filtering: 

A defined space was agreed upon by the experts, outside of which all motion data was 

considered invalid or unrelated to the surgical task. Threshold values were calculated based on the 

dimension of the cube and its distance from the origin (Eq 2). Data points with locations outside 

of the threshold value were removed. 

 X Y Z 

Pericardiocentesis 200 mm 200 mm 150 mm 

Thoracentesis 200 mm 200 mm 200 mm 
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Table 3: Size of the active space 

𝑇𝜃𝑚𝑎𝑥
= 𝑑 + 

𝐿𝜃

2
  

𝑇𝜃𝑚𝑖𝑛
= 𝑑 − 

𝐿𝜃

2
 (2) 

𝑤ℎ𝑒𝑟𝑒:  𝜃 =  𝑎𝑥𝑖𝑠(𝑋, 𝑌 𝑜𝑟 𝑍) 

 𝑑 =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑏𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛 𝑎𝑙𝑜𝑛𝑔 𝑡ℎ𝑒 𝑎𝑥𝑖𝑠 𝜃 

𝐿 = 𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑏𝑒 𝑎𝑙𝑜𝑛𝑔 𝑡ℎ𝑒 𝑎𝑥𝑖𝑠  𝜃 

 

Figure 49. Active surgical space for NPC 

Figure 48.  Active surgical space for NTC 
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6.2.4.3 Normalization:  

To avoid biased learning and exploding gradients, feature scaling was done through min-

max normalization. All the features were normalized, except the quaternions, since their values 

were in the range of 0-1. Usually, the max and min values for normalization represent the 

maximum and minimum value found from all the samples.  However, outliers in the data would 

cause wrong scaling values. Alternatively, the max and min values can be set based on the 

distribution of the values per features. An example of the variation in distribution in the features 

for a single surgical task are given in the Fig 49. Using similar distribution plots ideal max and 

min values for each feature were calculated. 

 

Figure 50.  Feature distribution for ChloraPrep 
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Table 4. Max and min thresholds for normalization  

6.2.4.4 Augmenting Data: 

Similar to previous works (Drumond, Marques, Vasconcelos, & Clua, 2018) (Wang & 

Majewicz Fey, 2018), we augmented our data by employing a sliding window approach. In this 

approach, a single sample is sectioned to multiple windows of the same size while preserving the 

label. The size of the window (W) and the step size (S) determine how many samples would be 

 X Y Z Vx Vy Vz VQx VQy VQz 

 Min Min Min Min Min Min Min Min Min 

 Max Max Max Max Max Max Max Max Max 

Pericardiocentesis          

ChloraPrep 

-25 50 -250 -300 -250 -250 -75 -75 -75 

75 150 -160 300 250 250 75 75 75 

Needle Insertion 

0 30 -235 -100 -90 -70 -30 -25 -30 

50 100 200 80 50 90 30 25 30 

Thoracentesis          

ChloraPrep 

-20 80 -260 -200 -150 -200 -75 -75 -75 

70 135 -170 200 150 200 75 75 75 

Anesthetization 

35 132.5 -317 -150 -90 -100 -75 -75 -75 

110 200 -180 150 100 100 75 75 75 

Scalpel Incision 

30 70 -325 -90 -75 -90 -75 -60 -60 

115 185 -220 90 75 90 75 60 60 

Needle Insertion 

-35 80 -312 -100 -75 -100 -100 -100 -100 

100 170 -165 100 75 100 100 100 100 
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created from a single sample. The window size also determines the relevant time series data that 

would be learnt by the neural network. Effectively, the longer length of windows would represent 

the sample more accurately. The average time-to-complete per surgical task was widely varied as 

shown in Table 2, and hence the network was trained over a range of W to find one with the best 

performance.  

 

 

Figure 51. Data augmentation using windows 
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Pericardiocentesis 

Average task 

time 

(seconds) 

Thoracentesis 

Average task 

time 

(seconds) 

ChloraPrep 
282.67 ChloraPrep 413.8929 

Needle Insertion 
2760.92 Anesthetization 1698.417 

  Scalpel Incision 374.1667 

 
 Trocar Insertion 1146.05 

Table 5. Average task times for each task 

6.2.5 Pair-wise Annotation: 

The previously annotated data windows were split into two parts (P1 and P2) based on the 

labels. P1 containing expert samples while the P2 containing non-expert samples. To train the 

network to learn the features that differentiate between P1 and P2, N-way-One-shot method was 

employed. The strategy was to pair a sample only once, one with dissimilar label and one with a 

similar label. The interest was in learning the differences between experts and non-experts. Hence, 

each sample of expert in P1 was randomly paired with one sample of P2 and one sample in P1. 

The P1-P2 pairs were annotated as ‘0’ while the P1-P1 pairs were annotated as ‘1’. The resulting 

total number of pairs per surgical task are given in the Table 6. 

Pericardiocentesis 

Total no. of input 

pairs 

Thoracentesis 

Total no. of input 

pairs 

ChloraPrep 
526 ChloraPrep 684 

Needle Insertion 
3338 Anesthetization 818 

  Scalpel Incision 3494 
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 Trocar Insertion 1066 

Table 6: Total number of input pairs 

6.3  Chapter Summary 

1. Most of the deep learning models currently use classification models to evaluate 

surgical skills, instead here a Siamese network is used which is a comparative model. 

2. The subnetworks employed for the Siamese network are CNN. 

3. A total of 43 samples for NPC and 27 samples for NTC were collected to train the 

network. 

4. The collected data was manually annotated into two groups: experts and non-experts, 

using an evaluation scheme similar to OSATs. 

5. Linear and angular velocity from the position, orientation and time information were 

extracted in order to add more features for the neural network to learn from. 

6. Before training, the network the dataset was processed through a threshold filter and 

then scaled with normalization. 

7. Sliding window approach was used to augment the dataset. It was found a 𝑊 = 140 

for NPC and 𝑊 = 160 for NTC with a 𝑆 = 10 was ideal for training.  

8. A one-shot-learning approach was used for pair creation for the training data. 
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Chapter 7 - Results 

Overall, three separate validations focused on different aspects of the platform were 

conducted: 

1. Training on the platform without autonomous features 

2. Testing of the SCNN 

3. Training on the platform  

7.1 Validation of platform without assessment 

The objective of the trials was to see the effectiveness of the simulator for traditional 

simulation-based training. The protocol set for the trials was: 

1. Instructor discusses the background information regarding the surgical procedure. 

2. Instructor demonstrates the procedure on the physical manikin, the physical actions are 

also displayed on the monitor for reference.  

3. The trainee is given an opportunity to perform on the physical manikin under the 

guidance of the instructor. 

4. Once comfortable with the simulator, the trainee performs the procedure on the manikin 

without any guidance. 

5. Post training the trainee fills out a feedback form. 

It is to be noted that the instructors were also asked to perform the procedure on the manikin 

and then provide their feedback in the form. Individual training sessions were held for both NTC 

and NPC at the Neonatal Intensive Care Unit (NICU) at the University of Illinois at Chicago (UIC) 

Hospital. Doctors from the NICU participating in the trials were a mix of residents, fellows, and 

expert surgeons, with varying years of experience.  



73 

 

7.1.1 Training for NTC 

A formal training session for NTC was conducted for a group of 5 fellows and 3 residents 

by 3 expert neonatologists. The following surgical steps were conducted for NTC:  

a. Palpating the ribcage to find the target insertion point. 

b. Preparing the chest using ChloraPrep, 

c.  Infiltrating insertion area with anesthetic drug, 

d.  Perforating insertion point with a scalpel and 

e.  Inserting the chest-tube with trocar into the pleural space. 

7.1.2 Training for NPC 

Similarly, a training session for emergency pericardiocentesis was conducted for a group 

of 7 fellows and 9 residents by 4 expert neonatologists. The following surgical steps were 

performed on the manikin: 

a. Preparing the surgical area using ChloraPrep and 

b. inserting the 22G needle into the pericardium 

7.1.3 Results 

The following results summarize the feedback received from the participants: 
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Figure 52. Feedback for training on platform without assessment 
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7.2 Validation of the neural network 

7.2.1 Training SCNN 

The neural network training was conducted for 200 epochs for a batch size of 20 at a 

learning rate of 0.001, where 20% of the input pairs were randomly separated for validation during 

the training. The seed for the random function was set to 11. We used the hold-out method to test 

the robustness of our network post training; a randomly selected expert and non-expert 

performance was omitted from the training. We trained the model in Keras using TensorFlow 2.5 

on a Windows PC equipped with a dual GeForce GTX 1070 Ti graphic cards each with 8 GB 

memory.  

Upon training the network for different window sizes, it was found that the SCNN 

performed better for larger window sizes. Though in Chapter 6 it was shown that the average 

length of the surgical task times was highly varied, it was found that the SCNN generalized best 

when 𝑊 = 140 for NPC and NTC.  

 Validation accuracy for window size (%) 

 60 80 100 120 140 160 

Pericardiocentesis       

ChloraPrep 
88.46 92.3 84.61 88.46 96.15 80.76 

Needle Insertion 
62.16 68.76 70.87 79.87 83.73 68.07 

Thoracentesis       

ChloraPrep 
60.29 72.05 73.52 79.41 94.11 91.16 

Anesthetization 
68.86 57.54 72.64 73.58 73.58 83.96 

Scalpel Incision 
65.43 85.18 86.41 92.59 95.07 95 
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Trocar Insertion 
74.49 79.36 80.80 88.25 95.4 73.58 

Table 7. Validation accuracies 

7.2.2 Testing SCNN 

We used 2 anchor performances from experts to compare the hold-out data to test our 

network. Each sample x of window size W was paired with an anchor with samples K0 – Kn, the 

list of input pairs P was analyzed by the SCNN to give a list of similarity values Y. The final 

prediction of sample x was the maximum value y from the list Y. The set of predictions for all the 

samples within a trial are averaged to get the final similarity value. The held-out data was tested 

separately for each anchor. We also wanted to observe the effect of input windows on the 

prediction of the network, so we used a range of window sizes 𝑤1 =  80,  𝑤2 = 120, 𝑤3 = 160 

and for simplicity we used a constant step size 𝑠 =  40. All test results are summarized below.  

Similarity values above 0.7 were considered as an expert and anything below 0.3 as a non-

expert. Anything between 0.31-0.69 was considered a wrong prediction. The last column in Table 

8 is the average value of all similarity values given by the SCNN. On observing the test results, 

we found that performed satisfactorily over all surgical tasks except the ChloraPrep in THC. Upon 

Figure 53. Obtaining similarity value for an input sample 
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investigating we found that the training data was heavily skewed towards the expert label. We 

could potentially fix this by collecting more non-expert data. 

 

Surgical Task Trial 

Window 

size 

Actual 

Prediction 

Anchor 1 

Actual 

Prediction 

Anchor 2 

Expected Prediction 
Average 

Prediction 

P 

C 

C 

ChloraPrep 

T1 

w1 0.9583 0.9961 

1 0.9729 w2 0.9174 0.9949 

w3 0.9867 0.9845 

T2 

w1 0.049 0.4 

0 0.0325 w2 0 0.101 

w3 0 0.005 

Needle Insertion 

T1 

w1 0.7918 0.6573 

1 0.7057 w2 0.7288 0.6686 

w3 0.726 0.6617 

T2 

w1 0.3617 0.28 

0 0.2685 w2 0.29 0.2274 

w3 0.2575 0.1944 

T 

H 

C 

ChloraPrep 

T1 

w1 0.6571 0.651 

1 0.6035 w2 0.6157 0.5786 

w3 0.5698 0.5489 

T2 

w1 0.1202 0.109 

0 0.075 w2 0.02 0.1651 

w3 0.021 0.016 

Anesthetization 

T1 

w1 0.7138 0.722 

1 0.7077 w2 0.705 0.7095 

w3 0.6977 0.6982 

T2 

w1 0.2725 0.2903 

0 0.2416 w2 0.2413 0.2338 

w3 0.1993 0.2127 

Scalpel Incision 

T1 

w1 0.7114 0.8815 

1 0.7440 w2 0.72 0.7187 

w3 0.7075 0.725 

T2 

w1 0.039 0.1903 

0 0.0595 w2 0.022 0.0885 

w3 0.0175 0 

Trocar Insertion 
T1 

w1 0.7441 0.7744 

1 0.7508 w2 0.7327 0.768 

w3 0.7315 0.7542 

T2 w1 0.097 0.0864 0 0.1919 
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w2 0.0653 0.044 

w3 0.0397 0.0373 

Table 8: Results of the testing Siamese network 

7.3 Validation of simulator with assessment 

The purpose of the trial was to test the real-time feedback during the surgical training and 

an objective assessment provided after the training. The trial was held in the presence of 5 

participants which included 4 fellows and 1 expert instructor.  

The trial was conducted for training NTC. The following protocol was used to run the trial: 

1. Watch and trace the animation of the surgical procedure performed by the instructor. 

2. Perform the surgical procedure under the autonomous guidance. 

3. Perform the procedure without guidance and receive the assessment results. 

4. Fill out a feedback form of the experience. 

Below are given the surgical steps for NTC: 

5. ChloraPrep - Prepare the surgical area by the use of a disinfecting applicator. Apply at the 

center of the surgical area and gradually move outwards in a spiral. 

6. Anesthetization- Infiltrate the skin and simulate administration of anesthesia around the 

surgical area. 

7. Incision - Create a small incision with a scalpel the layer of skin and muscle at the target 

insertion point. 

8. Trocar Catheter Insertion - Enter 3-5 cm into the pleural space directing the tip anteriorly 

and superomedially. 

The aggregated results of the feedback for the trial are given below in Fig 54: 
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Figure 54: Feedback for autonomous training and assessment 
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7.4 Discussion 

7.4.1 Neonatal Manikin 

A novel physical manikin for NPC and NTC, where all of the internal anatomy, operable 

and inoperable are printed from a regular desktop printer with easily available materials, has been 

developed. Additionally, only the silicone and the small operable parts would need to be replaced 

after prolonged usage, most of the anatomy printed in PLA is reusable including the mold for 

casting. The fact that most of the manikin is made from easily available commercial materials, 

economical in cost and require no specialty equipment other than a desktop 3D printed means that 

a multiple manikins could be fabricated for training.  

7.4.1.1 NTC 

When the surgeons first performed thoracentesis on the manikin, they were able to locate 

anatomical features such as the nipple and the fourth and fifth intercostal space (ICS) mid axillary. 

The tactile feedback on inserting the needle through the silicone and the pleura into the pleural 

space was found to be slightly harder than in real neonate babies. Both the surgical approaches for 

NTC were performed on the manikin including the pigtail catheter and the trocar catheter method. 

However, due to the small space inside the pleural cavity, the guidewire insertion was insufficient. 

Additionally, the pigtail catheter was not rigid enough to pass through the pleural surface and enter 

the cavity. Consecutively, it was decided to omit the pigtail catheter approach for NTC, and the 

training was conducted with the trocar catheter.  

7.4.1.2 NPC 

 When the experts successfully performed emergent NPC on the manikin, they found the 

anatomical features were accurate and the tactile feedback was very similar to the actual procedure. 

The expert also tested if the procedure could be conducted under image guidance using ultrasound, 
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however the silicone that was used in the casting was found to be completely transparent under 

ultrasound imaging. Additionally, the needle would be invisible once it entered the pericardium 

under the imaging since the cavity was hollow and the surface of the pericardium was plastic.  In 

some trials the pericardial cavity within the heart was filled with water to allow for extraction of 

liquid during the procedure. It was found that the liquid could be extracted during most of the 

trials, and it helped confirm the accuracy of the needle insertions.  

7.4.1.3  Conclusions 

The feedback received for the first validation is concurrent with the expert testing. The 

manikin fabricated shows that most of the anatomy can be 3D printed using the detailed process 

mentioned in Chapter 4.  Most importantly, 100% of the participants found the simulator even 

without the autonomous capability, was effective for training of these neonatal procedures.  

7.4.2 Surgical Simulation Software 

The surgical simulation software can be used to train for surgical procedures through 

watching experts perform, mimicking expert actions, real-time guidance while learning, and 

finally getting an objective skill assessment of performance. Most of the participants during the 

trial found the virtual anatomy and instruments extremely accurate and helpful. However, the need 

for manually designing the surgical instruments in CAD makes it challenging to update the design 

when surgical instruments are changed. 

 The substantial sampling rate of the EM tracking system provides smooth and accurate 

replication of motion. However, the EM system is sensitive to metal and the accuracy rapidly 

declines in its presence. The software efficiently saves motion information through thresholding 

and the FastSTray compression algorithm. The algorithm saves data points with low linear 

correlation to its immediate neighbors; however, it does not consider the differentiated values 
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because of which linearly correlated points with varying velocities are not preserved. Additionally, 

since this is an open loop compression algorithm, for a given segment of data, the first and the last 

values are always preserved regardless of their correlation, which is wasteful. 

 The software uses ZeroMQ to exchange information between the Unity application and 

the Python script handling the neural network. ZeroMQ is efficient and has low latency. Also, it 

provides the flexibility to develop the network in python using powerful API like TensorFlow and 

libraries that are efficient at data processing such as Pandas and NumPy. However, since the two 

applications are separate, they need to be initialized separately and any modifications made in the 

messages must appropriately handled in the other application. Currently, the complex messaging 

system cannot handle large latencies or long message queues, any of those instances causes the 

application to crash.  

In traditional one-on-one assessment, the expert provides some amount of feedback, though 

its subjective, it has shown to be helpful in improving surgical skills. All the participants depended 

on the real-time guidance at least once during the training session. This training simulation 

platform currently has no means of interpreting the assessment scores to provide task specific 

feedback. Therefore, participants were able to correct their surgical technique, but since the 

guidance provides the degree of accuracy of the surgical task and not the feedback to correct the 

mistakes, the trainees are required to explore the technique until the correct way is found. The 

autonomous assessment provided is objective and gives an accurate comparison of performance 

to an expert through similarity scores.  

7.4.3 Siamese Neural Network 

A unique method for skill assessment using a SCNN has been proposed in this research. 

Due to the low amount of data required to train the Siamese, we were able to sufficient performance 
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accuracy for a total of 6 surgical tasks with large variations in task times. The key reason for using 

a Siamese network is that it learns the features that differentiate between the surgical skill levels 

instead of learning to identify the skill levels. The output of the network is based on the comparison 

of input sample to anchor performance of the expert. During the testing, it was found that using a 

different anchor performance did not result in substantial variation in results; hence, it can be 

assumed that the trained network is generalized enough.  However, because the result is the 

maximum value from all the similarity scores for an input sample compared to all the samples 

from the expert performance, it is assumed that the result signifies the similarity for the same phase 

of the surgical task. In other words, the network evaluates a window of input data and not the 

complete surgical task. Hence, any evaluation is purely based on the latest input and not based on 

the all the previous inputs. 

The network performs fast enough to provide a real-time result for an input sample, which 

is the reason it could be used for the guidance during training. However, Siamese networks take 

much longer to train since two subnetworks need to be trained. Additionally, as compared to 

classification networks such as CNN, the Siamese takes much longer to process an input, since the 

result needs to be compared to all the expert samples.  

The major drawback of neural networks is that its challenging to identify the features that 

are learnt during the training process. Essentially, the layers of the network are like a black box, 

where the only the input and the output are known. This raises an ethical dilemma especially when 

the application involves training surgical procedures. Since the generalization of the network 

depends on the completeness of the dataset, it is essential that the networks go through robust 

testing. The network used here is an alternative approach to the existing approaches for skill 

evaluation, however it is not robust enough to replace traditional assessment methods. Since the 
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data was limited to a small number of subjects that work in the NICU, it is understandable that the 

dataset used here is not large and varied enough to produce an accurate and generalized trained 

network. However, this network can be developed further through trials and varying population. 

The autonomous features can be used to reduce the workload and assist instructors to assess 

surgical procedures.  

 

  



88 

 

Chapter 8 - Conclusion 

This thesis provides the first end-to-end hybrid simulation platform that could be used to 

autonomously train and assess surgical procedures using virtual reality and neural networks. The 

hybrid functionality of the simulator allows for physically performing the surgical procedure with 

actual instruments with the added benefit of virtual reality and autonomous guidance and 

assessment.  

The physical manikin fabricated for NPC and NTC is viable option as compared to the 

existing trainers. The manikin provides realistic anatomical features and tactile feedback while 

allowing to perform the complete surgical procedure. The fabrication process explained is general 

enough to apply to similar surgical procedures, where the main focus is correct needle insertion. 

This novelty of the physical manikin is in the fact that both the operable and inoperable anatomy 

for the procedures have been 3D printed.  

The validation of the surgical simulation software shows that, even without the autonomous 

assessment, the simulator can enhance traditional methods of training for neonatal surgical 

procedures. The ability to save and playback a performance not only allows the opportunity for 

the trainees to repeatedly practice ideal surgical techniques, but also gives trainees and experts a 

more immersive tool to revisit surgical performances as compared to the traditional video 

capturing devices. The features to save surgical and user data, revisit surgical performances and 

communicate with python applications are generalized enough to adopt for other surgical 

procedures with ease. To the best to our knowledge, our software is the first to host a framework 

that can be used to collect surgical performance data for future applications.  
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With the increased need for patient safety and more accessible surgical training, there is a 

requirement of simulators that can be a lot less dependent on expert instructors. Deep learning is 

being employed in almost all technological applications, exploring all possibilities has led to 

valuable insight into success in autonomizing processes. We have explored a novel method of 

surgical training and assessment and found that this research can bring a new paradigm for 

simulation-based training.   

We believe our contribution can be used as a base to propel new methods of skill 

assessment, creating repositories of surgical data and creating end-to-end surgical training.  

8.1 Contributions 

The following is the summary of our findings: 

• Identified the drawbacks of surgical based simulation and the need for autonomous 

surgical simulation. 

• Recognized the problems with the available physical trainers and created a novel 

simulation platform for training of neonatal surgical procedures. 

• Developed a method to efficiently store surgical action data to file.  

• Developed a method to playback a previously performed surgical procedure.  

• Created the first surgical dataset for emergent NPC and NTC performed using the trocar 

catheter approach. 

• Created a framework to send surgical data and receive skill level feedback in real-time.  

• Explored skill assessment through comparison network instead of classification 

network using a Siamese convolution neural. 

• Validated the simulator with and without the autonomous assessment.  
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8.2 Future Research 

The physical manikin created, though reusable is difficult to disassemble, since its fully 

encased in silicone. In the future, the design could be modified where only the top surface of the 

manikin would be cast in silicone. This would require a lot less silicone and provide access to the 

internal anatomy housed inside the ribcage. 

 The current drawback with our software is that the surgical tasks involve only one 

instrument, further development of the platform would be necessary to handle surgical tasks 

involving two or more instruments. The only tracking system used is the EM system, other form 

of tracking such as optical tracking and pressure sensors could be used to get a comprehensive 

surgical data.  The quality of the motion data heavily depends on the attachment of the EM sensors 

to the instruments, which can be a hindrance while performing the procedure. 

Currently, the results of the Siamese network are satisfactory, but a larger dataset with 

more variation would be necessary to improve the generalization of trained model. The neural 

networks were trained in TensorFlow outside of the simulator platform. It would be preferable to 

modify the software to host the trained network within the same application without the need for 

a messaging library such as ZeroMQ.  
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