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Abstract

The focus here is upon the generalized Korteweg-de Vries equation,

ut + ux +
1

p
(up)x + uxxx = 0,

where p = 2, 3, · · · . When p ≥ 5, it is thought that the
equation is not globally well posed in time for L2-based Sobolev class
data. Various numerical simulations carried out by multiple research
groups indicate that solutions can blowup in finite time for large,
smooth initial data. This is known to be the case in the critical
case p = 5, but remains a conjecture for supercritical values of p.
Studied here are methods for controlling this potential blow up. Sev-
eral candidates are put forward; the addition of dissipation or of higher
order dispersion are two obvious candidates. However, these appar-
ently can only work for a limited range of nonlinearities. However, the
introduction of high frequency temporal oscillations appear to be more
effective. Both temporal oscillation of the nonlinearity and of the bound-
ary condition in an initial-boundary-value configuration are considered.
The bulk of the discussion will turn around this prospect in fact.
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2 Numerical study of gKdV equations

Keywords: generalized Korteweg-de Vries equations, blow up phenomena,
Fouier-spectral method, Legendre-Galerkin method, time-oscillating
nonlinearity, time-oscillating boundary condition.

1 Background and motivation

The Korteweg-de Vries equation,

ut + ux + uux + uxxx = 0,

written here in scaled, dimensionless variables, was originally derived by
Boussinesq in 1877 [27]. It was put forward by him as a model for unidirec-
tional long wavelength surface water waves of small amplitude. Rederived by
Korteweg and his student de Vries in 1895 [54], it went unremarked by the
European schools of hydrodynamics for decades.

This changed in the 1950’s when this equation also appeared as the con-
tinuum limit of a mass and string model studied by Fermi, Pasta and Ulam
with help from Tsingou [35, 41]. It also arose a little later in a plasma physics
model derived by Gardner and Morikawa [43]. The advent of the inverse scat-
tering method for solving the Korteweg-de Vries equation in the middle 1960’s
by Gardner, Greene, Kruskal and Miura, and with later help from Su, (see
the review article of Miura [55]) brought this equation and its relatives into
a central position in the mathematical firmament. Subsequent laboratory and
field studies as well as theoretical work have shown the efficacy of Korteweg-
de Vries type models in describing surface water waves (see, for example [18],
[45], [46], [78]). Since the time of its ascendancy in the scientific world, the
Korteweg-de Vries equation has appeared as a model for a considerable variety
of other real world phenomena.

One of these is in internal wave theory. In the idealized format of a two-
fluid system with a lighter layer resting upon a denser lower layer, the so called
extended Korteweg-de Vries equation (also known as the Gardner equation)

ut + ux + auux + u2ux + uxxx = 0

arises at a low level of approximation (see [64]). Here, a is a constant depen-
dent upon various details of the physical situation. In particular, at a certain
critical ratio of depths and densities, the dominant nonlinear term is no longer
quadratic, but is instead cubic. One can view this as an invitation to the study
of what is known as the generalized Korteweg-de Vries equation, namely

ut + ux +
1

p
(up)x + uxxx = 0, (1)
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where p = 2, 3, · · · . (It must be confessed that for larger values of p, this
equation arose first in mathematical investigations of the interaction between
nonlinearity and dispersion and not as a model of a physical situation (see for
example [3])).

In the critical case when p = 5, the pure initial-value problem for (1) on
the whole line is known to have solutions that blow up in finite time (see the
sustained and detailed work of Merle and his several collaborators, starting
with [59]). It is an open question whether or not the Cauchy problem for the
generalized Korteweg-de Vries equation (gKdV equation henceforth) with a
supercritical nonlinearity p ≥ 6 has global solutions for large, smooth initial
data. Numerical simulations (e.g [10, 12]) indicate probably not, but rigorous
results attesting to this have not yet been forthcoming.

There are several possible ways of controlling the singularity formation that
seems to occur when p > 5. One of these might be to append dissipation, so
leading to an equation of the form

ut + ux +
1

p
(up)x + uxxx − δuxx = 0,

where δ > 0. In fact, as seen in [13], this does not appear to stop the blow
up occurring for large initial data. More precisely, for given initial data that
blows up in the absence of dissipation, there is a critical positive value δc of δ
such that for δ > δc, the solution is global and uniformly bounded. However,
for δ < δc, the solution continues to blow up in finite time. One might suppose
that the failure of the −uxx term to control the singularity formation is because
it is a lower-order term in the equation. Appending a term of the form νuxxxx
instead might do the trick. However, this also appears not to work as the
remarks in [15] indicate.

Another way the blow up might be controlled is to add higher-order
dispersion, e.g. something like

ut + ux +
1

p
(up)x + uxxx + δuxxxxx = 0,

where δ 6= 0. This, does indeed manage the blow up as long as p < 8. However,
numerical experiments show that for p > 9, blow up reasserts itself.

A third possibility is based on recent theoretical studies that have shown
that a time-dependent oscillation added to the nonlinearity can avert blow-up.
Indeed, the solution converges in the limit of large-frequency oscillation to a
global solution of a certain limiting problem. It is our purpose here to study
this latter phenomenon numerically in the situation where the problem is posed
as a periodic initial-value problem. We also study a related problem, namely a
boundary-value problem for the supercritical gKdV equation with oscillating
boundary conditions. It is found here also that large frequency oscillation can
kill potential blow-up phenomena.
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For the intial-value problem, (1) is modified by the addition of temporal
modulation of its nonlinearity, viz.

ut + g1(ωt)
1

p
(up)x + uxxx = 0, p > 5, (2)

where ω � 1 and g1 is a mean-zero periodic function used to manage the
nonlinearity. In this situation, posed as an initial-value problem on the entire
real line R, the solution is known to be global for large values of ω (see [28],
[31], [63] and [61] for the case p = 2). In particular, Panthee and Scialom
showed in [63] that solutions to the initial-value problem (IVP in what follows)
associated to (2) converges to a limit problem as ω → ∞ (see (5) in Section
2). (Note that for the pure initial-value problem, the convective term ux can
be dispensed with by moving to traveling coordinates. This is not the case for
the boundary-value problem to be discussed presently.)

For the pure initial-value problem, a Fourier spectral method is put for-
ward, tested for accuracy and convergence and used in our study. Approximate
solutions to the boundary-value problem are obtained via a spectral element
method.

The present, quantitative appraisal of the initial-value problem for (2) is
placed in a periodic context rather than on the whole real line R. The practice
of approximating KdV-type equations on R by associated periodic problems is
commonplace and goes back to the work of Zabusky and others in the 1960’s.
However, it is worth noting that rigorous theory asserting the validity of this
procedure on finite, but long time intervals may be found in [32] (and see also
[8]).

A related issue arises for the gKdV equation posed as a non-homogeneous
problem, viz. 

ut +
1

p
(up)x + ux + uxxx = 0, 0 < x < L,

u(0, t) = g2(ωt),

u(L, t) = ux(L, t) = 0,

u(x, 0) = 0,

(3)

where the solution is forced from the left-hand boundary. Here, g2 is again a
periodic function. While there is no theory showing this problem to be globally
well posed in time, the approximate solutions computed here indicate that
there is again no blow up for large values of ω whereas the addition of dissipaton
or higher order dispersion has only limited success in this aspect.

The overall conclusion derived from this study is that high frequency oscil-
lation can mitigate the effects of supercritical nonlinearity, thereby resulting
in a problem that is globally well posed.

Theory for the initial-value problem for real-valued solutions of the gKdV
equations has a long history, starting with the case p = 2 in the 1970’s (see
[19], [48]). In the ensuing years, the theory for these equations has become
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quite subtle (see for example the monograph [72] of Tao or the nice review
lectures of Erdogan and Tzirakis [39], but the reader is cautioned that there
are many, many references). However, in the present essay, we will only need
the relatively elementary results derived already by Kato in [49] (and see also
[3]). These state that the IVP for the gKdV equation (1) is globally well posed
in the L2-based Sobolev space Hk if k ≥ 1 and p = 2, 3, 4. If p = 5, the problem
is globally well posed provided the L2-norm of the initial data is not too large.
The same is true for p > 5, but now under the assumption that the H1-norm
of the initial data is not too large. These results apply equally to the problem
posed on the whole real line and to the periodic initial-value problem.

For initial-boundary-value problems (IBVP) such as (3), much less is avail-
able in the literature. Problems such as these for the KdV equation (p = 2)
itself have been studied, but for higher power nonlinearities, not much is
known. The articles [22, 23] provide a guide to the available literature.

Considerable effort has also been made to develop numerical methods for
studying solutions of the KdV and gKdV equations. The extensive literature
in this area includes finite difference, finite element, finite volume and spec-
tral methods for the KdV equation itself (see e.g. [2, 4, 5, 38, 71] and the
references therein). More recently, discontinuous Galerkin methods have been
adapted to the gKdV equations and related models [9, 60, 75, 76]. These have
the great advantage that local spatial refinement is very easily implemented,
which helps especially with solutions that appear to be blowing up. For the
gKdV equations, a fully discrete scheme for the (periodic) initial-value problem
using the finite element method for the spatial approximation and a diago-
nally implicit Runge-Kutta method for the time stepping was introduced in
[10–12]. These works provided numerical evidence of the existence of solutions
that blow up in finite time. More recent numerical contributions to the study
of gKdV equations may be found in the works of C. Klein and his collaborators
(see [37], [52]) and [53]).

In the present paper, a Fourier spectral method is implemented to solve
the periodic initial-value problem (2), whereas a spectral element and a collo-
cation method are used to investigate the initial-boundary-value problem (3).
For dispersive equations posed as periodic initial-value problems, the spectral
method has the advantage of achieving high accuracy with a relatively coarse
spatial discretization. Such methods have been studied in [44], [56] and [69],
for example. In the presence of non-periodic and non-homogeneous boundary
conditions, Chebyshev collocation methods for KdV-type equations were pro-
posed in [62, 67], and Legendre-Gelerkin methods were developed in [57, 66].
Both of these methods have been implemented for the spatial discretization
of the gKdV equation (3) in the presence of a time-oscillating boundary con-
dition. However, details of this work are only reported here for the spectral
element method. The convergence of the two methods has been tested and
both are found to achieve spectral accuracy in space and the appropriate alge-
braic convergence rate in time. As they produced very similar results, only the
details of the spectral element method are presented.
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The plan of the paper is to first investigate the time-oscillating nonlinear-
ity in Section 2. This will include details of our numerical scheme as well as
convergence and accuracy tests. Once the computer code is deemed satisfac-
tory, it is used in an exploratory mode to understand in more detail the route
to global well posedness despite the presence of a supercritical nonlinearity.
A similar pattern is followed in Section 3, which deals with the oscillating
non-homogeneous boundary-value problem. A short conclusion follows Section
3.

A final comment concerns investigations of other equations in the setting
of time-oscillating nonlinearities. We point to the works of Abdullaev et al.,
Konotop and Pacciani, and Zharnitsky et al. [1, 51, 77], respectively, in the
context of Bose-Einstein condensates as well as investigations of the influence
of time-oscillation on nonlinear Schrödinger equations by Goubet and collab-
orators in [34, 36], Gabitov and Lushnikov in [42], and that of Cazenave and
Scialom [28].

2 Oscillating nonlinearities

The focus in this section is the periodic initial-boundary-value problem,ut + g(ωt)
1

p
(up)x + uxxx = 0, −M ≤ x ≤M,

u(x, 0) = u0(x),
(4)

which is (2), repeated here for convenience. The function u0 is a smooth,
periodic function with period 2M > 0, g = g(τ) is a periodic function of τ
while the parameter ω is positive and will eventually be taken large. Attention
is given to the supercritical cases p = 6 and 7. (The reason for choosing both
an even and an odd value of p will appear presently. As mentioned earlier, the
initial-value problem for (4) has a satisfactory local existence theory.)

In [63], the authors showed that as ω −→∞, the solution u of (4) converges
to the solution U of

Ut + Uxxx +
m(g)

p
(Up)x = 0, (5)

with the same initial value, uniformly on bounded time intervals. Here, if Ω is
the period of g, then

m(g) :=
1

Ω

∫ Ω

0

g(t)dt (6)

is its temporal average. The concern here is not with issues of how rough u0

or g can be taken and still have a satisfactory theory of this sort. Indeed,
to justify rigorously the convergence of our numerical schemes in reasonably
strong spaces, a fair amount of smoothness is required.
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Notice that regardless of the choice of g, the L2-norm of solutions is
conserved, which is to say

1

2

d

dt
‖u(·, t)‖2L2 = 0. (7)

It is straightforward to deduce that as long as the L∞-norm of a solution
remains bounded on bounded time intervals, then the solution is global, as
the L∞-bound allows the local existence theory to be successfully iterated,
achieving a solution which is bounded on bounded time intervals in whatever
space the initial data allows. Hence, singularity formation can be tested by
monitoring the L∞-norm of a solution.

It is at this point that the difference between even and odd values of p
presents itself. For even values, the sign in front of the nonlinear term does
not matter and solutions blow up with either sign. This is no longer true for
odd values of p. Indeed, if p is odd and there is a minus sign in front of the
nonlinear term, the solution are global no matter how large the initial data and
despite the supercriticality of the nonlinearity. This is the so-called defocusing
case. The global well posedness subsists on the conservation law,

d

dt

∫ ∞
−∞

u2
x +

2

p(p+ 1)
up+1dx = 0.

Together with the invariance of the L2-norm, this implies the H1-norm to
be uniformly bounded and hence that the solution is uniformly bounded. As
remarked, this implies the solution is global in time.

The next subsection describes and tests a Fourier-spectral method for
approximating solutions of (4). A sequence of numerical experiments is then
presented which casts more light on the results in [63].

2.1 Fourier-spectral scheme

A change of the spatial variable puts (4) on the interval [0, 2π] and the problem
becomes

ut +
g(ωt)π

Mp
(up)x +

π3

M3
uxxx = 0, 0 ≤ x ≤ 2π. (8)

Taking the discrete Fourier transform of this equation yields

ût + g(ωt)
ikπ

Mp
(̂up)− ik3π3

M3
û = 0, (9)

where û is the Fourier transform in space of u. A standard problem now arises,
namely that the linear dispersion relation features high frequencies (large wave
numbers k corresponding to very short wavelengths), thereby leading to a
very stiff system of ordinary differential equations when a time-stepping is
implemented. Indeed, the CFL stability condition would mandate very small
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time steps indeed. To ameliorate this issue, introduce an integrating factor as
in [30, 74]. Setting

Û = exp

(
− ik

3π3

M3
t

)
û,

there obtains

Ût + g(ωt)
ikπ

Mp
exp

(
− ik

3π3

M3
t

)
(̂up) = 0, (10)

while the initial data remains unchanged. The stiff term is thereby removed.
In numerical computations, Equation (10) is discretized in the form

Ût + g(ωt)
ikπ

Mp
e−βtF

((
F−1(eβtÛ)

)p)
= 0, (11)

where F is the discrete Fourier transform operator (see e.g. [68, 74]) and
β = ik3π/M3. The standard fourth-order Runge-Kutta method is employed
for the temporal discretization.

Since exact solutions of (4) are not available, non-homogeneous equations
of the form ut + g(ωt)

1

p
(up)x + uxxx = f, −M ≤ x ≤M,

u(x, 0) = a sech2(x).
(12)

with a source term f are considered. Choosing

u(x, t) = a sech2(x− 4t), (13)

the corresponding forcing function f is easily computed. Of course, the solution
(13) is not periodic in space. However, since u converges to 0 exponentially
rapidly as x→∞, the initial-value problem on the whole line can be considered
as a periodic initial-value problem for x ∈ (−M,M). As long as the solution
does not have significant amplitude at the boundaries (see again [32]), these
two problems yield essentially the same answer on the spatial interval [−M,M ].

To test the numerical convergence, define the relative L2-error

‖uex − unum‖L2

‖uex‖L2

, (14)

where uex is the exact solution (13) and unum is the numerical approximation
of (12). Since the L2-norm is preserved up to roundoff error in the code, it
seems wise to also calculate the relative error

‖∂x(uex − unum)‖L2

‖∂xuex‖L2

, (15)
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in the H1-seminorm. For the tests whose resulting errors are recorded below,
the following oscillation function and parameters are used:

a = 2, g = sin(100πt), M = 30, ∆t = 10−4, (16)

and the simulations were carried out up to a final time t = 1. Tables 2.1 and
2.2 display the performance of the numerical method when p = 6 and 7. Notice
the spectral convergence in space and the fourth-order convergence in time.

∆t N p Relative L2-error
10−4 200 6 2.5561 × 10−7

10−4 300 6 1.3523 × 10−10

10−4 400 6 2.3967 × 10−13

10−4 500 6 6.2168 × 10−16

∆t N p Relative L2-error
10−4 200 7 3.2924 × 10−6

10−4 300 7 2.4056 × 10−9

10−4 400 7 1.6526 × 10−12

10−4 500 7 3.7814 × 10−15

Table 1: Relative L2-error as a function of the spatial discrietization of the
Fourier-spectral approximation of the forced problem (12), with exact solution
(13) and parameter values (16). Here, N is the number of Fourier modes being
kept in the simulation and the errors are reported at t = 1. Notice the spectral
accuracy.

∆t N p Relative L2-error Order Relative H1-error Order
1.2 × 10−4 500 6 1.7154 × 10−11 N.A. 1.2998 × 10−10 N.A.
1.0 × 10−4 500 6 8.2729 × 10−12 3.9998 6.2735 × 10−11 3.9955
0.8 × 10−4 500 6 3.3935 × 10−12 3.9935 2.6192 × 10−11 3.9144
0.6 × 10−4 500 6 1.0817 × 10−12 3.9743 8.9588 × 10−12 3.7292

1.2 × 10−4 500 7 2.2062 × 10−10 N.A. 3.6241 × 10−9 N.A.
1.0 × 10−4 500 7 1.0657 × 10−10 3.9912 1.7509 × 10−9 3.9901
0.8 × 10−4 500 7 4.4679 × 10−11 3.8957 7.3520 × 10−10 3.8887
0.6 × 10−4 500 7 1.4887 × 10−11 3.8202 2.4702 × 10−10 3.7912

Table 2: The relative L2- and H1-seminorm errors at t = 1 obtained by
approximating (2.9) with exact solution (2.10) and the parameter choices in
(2.12).

2.2 The supercritical case p = 6

Reported first is a sequence of numerical simulations of the gKdV equation
with time-oscillating nonlinearity as in (4) for the supercritical case p = 6.
The auxiliary specifications used in these simulations are

u0 = 2.5 sech2(x), ∆t = 0.5× 10−6,

N = number of Fourier modes = 2500, M = 50.
(17)
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As mentioned in (7), the L2-norm of solutions is invariant in time. Setting
g(t) = sin(200πt), the change in the L2-norm of the numerical solution is
around 6× 10−11 from t = 0 to t = 5, another check on the computer code.
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Fig. 1: Numerical solution to the gKdV equation (4) where p = 6 and g =
sin(πt) with the parameters shown in (17). (A) t = 0.0; (B) t = 0.1; (C)
t = 0.17; (D) t = 0.2045.

Figures 1 to 3 each display spatial traces of the numerical approximations
at increasing times of various simulations of (4) with the specifications in
(17). The different figures correspond to different choices of time-oscillating
functions g and choices of the oscillation frequency ω. As anticipated, with a
low frequency parameter (e.g. ω = π), the numerical approximations appear
to blow-up for both supercritical values p = 6, 7. The oscillation is slow enough
that it does not have time to effect the solution before it has already gone into
blowup mode. Moreover, the structure of the blowing-up peak is very much
like what is observed without the oscillation (see our Figure 1 and compare to
Figures 6 and 7 in [12]). (N.B. the value of p in [12] corresponds to p − 1 in
our notation.)
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However, numerical approximations associated with larger values of ω show
a different behavior. For instance, when the associated oscillation is g(ωt) =
sin(ωt) and ω is large, there is no indication of singularity formation, though
of course one does see the effect of the oscillation – see Figures 2 and 3 below.
In fact, the L∞-norm of the approximate solution appears to decrease more or
less monotonically as a function of t in both of these simulations. This result
is explained by the theory in [63]. From (6) with g(τ) = sin(ωτ), it is clear
that m(g) = 0. Thus, for large frequencies, it is expected that the solution will
resemble a purely dispersive solution of the linearized KdV equation. In fact,
Figure 4 shows just how similar the oscillating solution is to the solution of
the linear KdV equation with the same initial data.
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Fig. 2: Numerical solution to the gKdV equation (4) with ω = 100π where
p = 6 and g = sin(ωt) with the parameters as displayed in (17). (A) t = 0.02;
(B) t = 0.1; (C) t = 1.0; (D) a plot of the L∞-norm of the numerical solution
as a function of time.

On the other hand, if the oscillation takes the form g(ωt) = cos2(ωt), the
numerical results tell another story. From (6) with this latter specification of
g, one calculates that m(g) = 1/2. Thus, blowup is to be expected, at least
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Fig. 3: Numerical solution to the gKdV equations (4) with high frequency
ω = 105 where p = 6, again with g = sin(ωt) and the specifications in (17).
(A) t = 0.05; (B) t = 0.5; (C) t = 1.0; (D) t = 2.0.

for large values of ω. When ω = π and the auxiliary data shown in (17)
is used, Figure 5 displays the same sort of blowup seen with the oscillation
sin(πt). However, for quite a large middle range, roughly ω in the interval
[19.5π, 4292π], the solutions no longer appear to blow up. In these cases, the
time-oscillation parameter ω is apparently not large enough that the solution
is modeled well by the solution of

ut +
1

2
(u6)x + uxxx = 0. (18)

But, it does appear that it is large enough to control the blowup. An example
is shown in Figure 6 where ω = 100π. As theory assures, for truly large values
of ω, say ω = 105, the numerical solution again blows up in finite time and the
blowup structure is that observed for (18) in Figure 7. At present, we do not
have an explanation for this somewhat counterintuitive behavior in the middle
range of frequency of oscillation.
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Fig. 4: Numerical solution of (4) where p = 6 and g = sin(ωt) with the
parameters as displayed in (17). The red solid line displays the solution of the
linear KdV equation, i.e. ω = 0, and the dotted black line superimposes the
solution of (4) with ω = 105π; (A) t = 0.1; (B) t = 2.0.

2.3 The supercritical case p = 7

In this section, numerical experiments are reported for p = 7 in (4). Even and
odd powers of the nonlinearity are different. Even powers do not depend on
the sign in front of the nonlinearity, whereas odd ones do. More precisely, if p
is odd and the gKdV equation

ut − (up)x + uxxx = 0

features a minus sign in front of the nonlinear term, the so-called defocusing
case, then solutions of the initial-value problem are global and remain uni-
formly bounded, no matter how large is p. If p is even, the change of variables
u 7→ −u effectively changes the sign in front of the nonlinearity, leading to
the conclusion that the sign is not important as far as singularity formation
is concerned. This point is investigated in some of the simulations discussed
now. The specifications

u0 = 2.5 sech2(x), ∆t = 0.5× 10−6,

N = number of Fourier modes = 2500, M = 50,
(19)

are used in what follows in this subsection.
Simulations were made with g(t) = sin2(ωt) where ω = π, 200π, and 105.

Just as for the case p = 6, two different regimes were detected. When the value
of ω was small, the solutions blew up quickly, though not so quickly as did the
case p = 6 with g(t) = cos2(ωt) because this time the oscillation starts at 0
instead of 1. The blow up occurred at t ∼ 0.343. It also blew up in a very similar
way to the case p = 6 when ω = 105. The other regime was for intermediate
values such as ω = 200π, where a bounded, slowly dispersing solution was
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Fig. 5: Numerical solution to the gKdV equations (4) where p = 6 and g(t) =
cos2(πt) with (17). (A) t = 0.01; (B) t = 0.02; (C) t = 0.025; (D) t = 0.0251.

observed. Figure 8 presents the outcome of three simulations, shown in pairs on
single graphs. The inputs are identical except for the frequencies, which took
the values ω = 18.75π, 19π and 19.25π. As the oscillation is sin(ωt) again, we
know already that for small values of ω, blowup is expected whereas for large
values the solution should be global. Here, a transition is exhibited. Blowup
appears for ω = 18.75 which transitions to a solution at ω = 19.25 where
blowup seems about to manifest itself, but can’t quite beat the dispersive effect
of the oscillation.

If p is even and the time oscillation is non-positive so that g(t) ≤ 0, the
defocusing gKdV-type equations are presented. The defocusing nature of the
equation guarantees the global well-posedness corresponding to quite reason-
able classes of initial data u0; for more theoretical details, see e.g. [70, 73].
In Figure 9, the outcome of a numerical simulation using g(t) = − sin2(πt) is
displayed. The numerical results show slowly decreasing solutions correspond-
ing to the order one value ω = π, on account of the defocusing nature of the
forcing.
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Fig. 6: Numerical solution to the oscillating gKdV equation (4) with ω =
100π, p = 6 and g(t) = cos2(ωt) with auxiliary specifications (17). (A) t = 0.1;
(B) t = 1.0; (C) t = 10.0; (D) L∞-norms of the numerical solution against
time.

3 Boundary oscillation

A new aspect of control of singularity formation is dealt with in this section.
The context is the initial-boudary-value problem (3) with p = 6 and 7. The
original mathematical problem that arose when trying to check the accuracy
of the KdV approximation is the half-line problem,

ut +
1

p
(up)x + ux + uxxx = 0, x ≥ 0,

u(0, t) = g1(ωt),

u bounded as x→ +∞,
u(x, 0) = 0.

(20)

Boundary-value problems of this sort have arisen when modeling long-crested
waves generated by a wavemaker. In such a situation, the function g(t) is
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Fig. 7: Numerical solution to the oscillating gKdV equations (4) with high
frequency ω = 105, p = 6 and g(t) = cos2(ωt) with the specifications (17).
(A) t = 0.05; (B) t = 0.075; (C) t = 0.0785; (D) L∞-norms of the numerical
solution against time.

determined from a measurement taken at a single spatial point as a function
of time at one end of the medium of propagation (see [18, 46, 78]). Just as
for the pure initial-value problem (2), the solution of the two-point boundary-
value problem (3) is known to approximate well the solution of (20), when the
latter is restricted to the spatial interval [0, L], on a time interval of order L
(see [32]). As remarked earlier, the convective term ux cannot be eliminated
by a traveling change of variables as the left-hand boundary is then deformed.
In this problem, the time-oscillating parameter ω appears in the left-hand
boundary condition, u(0, t) = g1(ωt) where g1 is a periodic function.

The theory for either of the problems (3) and (20) is somewhat more com-
plicated than for the initial-value problem. For p = 2, the Korteweg-de Vries
equation itself, there is a global theory in [24, 25] of smooth solutions for (20)
provided the initial- and boundary-data satisfy certain obvious compatibility
conditions at (x, t) = (0, 0) (the number of compatibility conditions depends
upon the smoothness class in which one is seeking a solution). Such smooth
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Fig. 8: Numerical solution to the gKdV equations (4) where p = 6 and g(t) =
sin(ωt) with the specifications in (19). In (A) and (B), we compare ω = 18.75π
(red solid line) with ω = 19π (black dotted line) at two times. For (C) and
(D), we compare ω = 19π (red solid line) with ω = 19.25π (black dotted line)
at the same two times. For (E), the L∞-norm of the numerical solution as a
function of t with ω = 18.75π is displayed, while (F) shows the L∞-norms of
the solutions for ω = 19π and ω = 19.25π.
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Fig. 9: Numerical solution to the oscillating gKdV equations (4) with a
negative time oscillating nonlinearity g(t) = − sin2(πt) with the auxiliary spec-
ifications (19) and p = 7. (A) t = 0.0001; (B) t = 0.5; (C) t = 2; (D) L∞-norms
of the numerical solution against time. (Compare with Figure 8 where signs of
blowup are evident.)

solutions can be approximated by the numerical techniques to be introduced
presently. Rigorous theory to this effect for the numerical approximations can
be set in order, but this is not pursued here. The theory does depend upon the
smoothness of the solutions of course. No smoothness means no approximation
in continuous function spaces, for example. Later works slightly generalized
these results (see for example [17] and [40] and especially the references to
the Russian literature in the paper of Faminski). Using a clever reduction to
a forced problem, Colliander and Kenig [33] dealt with general positive inte-
ger values of p, but obtained only very weak solutions. So far as we are aware,
there is not even a local theory of strong solutions in the literature for non-
homogeneous boundary-value problems for the generalized KdV equation (1),
let alone for the oscillatory problems under consideration here. In what follows,
we shall assume that strong solutions obtain for smooth, compatible initial
data, at least locally in time.
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Two spectral methods were implemented for the spatial discretization of
the gKdV equation in the presence of lateral boundaries; the Chebyshev-
collocation method and the Legendre-Galerkin method. Using exact solutions,
the convergence of these two methods was tested and both achieve spectral
accuracy in space and fourth-order accuracy in time. Only the Legendre-
Galerkin results are reported here, as those for the Chebyshev method
produced very similar outcomes. A large number of experiments were then
initiated, some of which will be described after preliminary discussion of the
accuracy of the scheme.

A simple change of the spatial variable puts the problem in the form
ut +

1

p
(up)x + ux + uxxx = 0, −1 < x < 1,

u(−1, t) = g(ωt), t ≥ 0,

u(1, t) = ux(1, t) = 0,

u(x, 0) = u0(x),

(21)

where p is a positive integer, g(τ) is a periodic function and ω > 0. This
problem has different characteristics from those of the initial-value problem.
For a start, energy is not preserved here, as the wavemaker (represented by the
left-hand boundary condition) may be introducing or extracting energy from
the system.

3.1 Description of spectral approximations

The spectral element method to approximate solutions of (21) is intro-
duced now. Before describing the method, it is convenient to homogenize the
boundary conditions. Define

v := u− g(t)r(x), where r(x) = (1− x)2/4. (22)

In the new variable v, the initial-boundary-value problem (21) becomes
vt +

1

p
[(v + gr)p]x + vx + vxxx = f := −gtr − grx, −1 < x < 1,

v(−1, t) = 0, 0 ≤ t,
v(1, t) = vx(1, t) = 0,

v(x, 0) = u0(x)− g(0)r(x).

(23)

Notice that we are implicitly presuming that u0(−1) = g(0), otherwise there
is a mismatch at (0, 0). This is in fact the lowest level compatibility condi-
tion that was mentioned earlier. Since homogeneous boundary conditions are
imposed in (23), the standard framework of spectral methods is available for
this problem.
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The Legendre Galerkin spectral element method

The numerical scheme proposed here is based on the ideas in [44, 57, 66].
The scheme actually approximates the solution of the homogenized equation
(23) and the solution to the oscillating boundary gKdV equation (21) is
retrieved by reversing the change of variables (22).

For the temporal discretization, a Crank-Nicolson/leapfrog scheme scheme
is employed, viz.

vn+1 − vn−1

2∆t
+

1

p
[(vn + rgn)p]x +

vn+1
x + vn−1

x

2
+
vn+1
xxx + vn−1

xxx

2
= fn, (24)

where vn(·) is the approximation of v(·, tn) with tn = n∆t. The scheme is
initiated by using an implicit Euler method with Picard iteration for the first
time step. This comprises an unconditionally stable scheme.

Let PN denote the linear space spanned by the Legendre polynomials of
degree at most N . The subspaces

VN = {v ∈ PN : v(±1) = vx(1) = 0},
V∗N = {v ∈ PN : v(±1) = vx(−1) = 0},

(25)

are natural for the spatial situation of interest here. Let T be the final time to
which the simulation is aimed. The problem then devolves to finding vkN ∈ VN ,
k = 0, 1, · · ·K = T/∆t such that for any w ∈ V∗N ,

(vn+1
N , w) + ∆t(∂xv

n+1
N , w) + ∆t(∂xv

n+1
N , ∂xxw)

= (vn−1
N −∆t∂xv

n−1
N −∆t∂xxxv

n−1
N + 2∆tfnN , w)− 2∆t

p
(∂xICH(Nn

k ), w).

(26)

Here, vnN is the approximation of v(·, n∆t), IC is the interpolation operator at
the Chebyshev-Gauss-Lobatto points, and the operator H(vnN ) := (vnN + rgn)p

has the nonlinearity.
A convenient set of basis functions in this situation is

φn(x) = Ln(x)− 2n+ 3

2n+ 5
Ln+1(x)− Ln+2(x) +

2n+ 3

2n+ 5
Ln+3(x),

ψn(x) = Ln(x) +
2n+ 3

2n+ 5
Ln+1(x)− Ln+2(x)− 2n+ 3

2n+ 5
Ln+3(x),

(27)

which satisfy the boundary conditions

φn(±1) = ψn(±1) = φ′n(1) = ψ′n(−1) = 0. (28)
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The function Ln(x) is the standard Legendre polynomial satisfying

(1− x2)L
′′

n(x)− 2xL′n(x) + n(n+ 1)Ln(x) = 0 (29)

with the usual normalization Ln(1) = 1. For N ≥ 3, we have

VN = span{φ0, φ1, ..., φN−3},
V∗N = span{ψ0, ψ1, ..., ψN−3}.

(30)

Taking w = ψm, m = 1, · · ·N − 3 and writing vN in terms of this basis, viz
vN =

∑N−3
k=0 ṽkφk, the scheme just outlined can be written in matrix form in

the usual way.
The convergence of this numerical scheme is tested by creating an exact

solution of (23). We use

v(x, t) = sin(πx)(1− x) cos(πt), with g(t) = cos(πt). (31)

The function v satisfies the three homogeneous boundary conditions, and while
it does not satisfy the equation, a relevant forcing term is easily calculated.

Table 3 displays the relative L2- and H1-errors of the Legendre-Galerkin
spectral method just outlined for solving (23) versus the time discretization ∆t
with p = 2 and p = 6. The relative L2- and H1-errors are defined just as in (14)
and (15). Seen clearly is the second-order convergence rate one associates to
Crank-Nicholson time stepping. Table 4 shows the relative L2- and H1-errors
of the Legendre-Galerkin spectral method for solving (23) versus the number
N of modes being kept in the simulation, again for p = 2 and p = 6. Note the
spectral accuracy that obtains.

∆t N p L2-error H1-error
10−1 64 2 6.2672 × 10−2 1.9344 × 10−1

10−2 64 2 5.9216 × 10−4 1.8935 × 10−3

10−3 64 2 5.9342 × 10−6 1.8973 × 10−5

10−4 64 2 5.9354 × 10−8 1.8976 × 10−7

∆t N p L2-error H1-error
10−1 64 6 6.1074 × 10−2 1.9062 × 10−1

10−2 64 6 5.7470 × 10−4 1.8576 × 10−3

10−3 64 6 5.7583 × 10−6 1.8611 × 10−5

10−4 64 6 5.7594 × 10−8 1.8615 × 10−7

Table 3: Relative L2- and H1-error (14) of our Legendre-Galerkin approxi-
mation of (23) versus the time discretization ∆t with p = 2 and p = 6 at final
time T = 1.
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∆t N p L2-error H1-error
10−4 10 2 8.5206 × 10−4 9.7093 × 10−3

10−4 12 2 6.9948 × 10−6 9.9190 × 10−5

10−4 14 2 1.3594 × 10−7 2.1230 × 10−6

10−4 16 2 5.9424 × 10−8 1.9874 × 10−7

∆t N p L2-error H1-error
10−4 10 6 1.4316 × 10−3 6.5726 × 10−3

10−4 14 6 6.5849 × 10−5 3.4664 × 10−4

10−4 18 6 4.3757 × 10−6 1.7848 × 10−5

10−4 22 6 4.5503 × 10−8 5.7194 × 10−7

Table 4: Relative L2- and H1-error, (14), of our Legendre-Galerkin approxi-
mation of (23) versus the number of modes N with p = 2 and p = 6 at final
time T = 1.

3.2 The supercritical case p = 6

In this section, numerical results for the gKdV equations in a finite domain
(21) with oscillating boundary conditions are presented. To begin, take p = 6
and

N = 100, ∆t = 10−4. (32)

Numerical approximations of (21) with p = 6 and the specifications (32) and
several choices of boundary conditions and frequencies ω at the left-hand side
of the interval were run. Figure 10 shows a typical outcome when ω = π and
g(t) = 3 sin(ωt). With this low temporal frequency, the numerical solution
appears to blow up. The singularity formation starts to show itself near the
left-hand boundary which is not surprising. For example, the amplitude of the
solution shown in Figure 10 goes from about 4.5 to almost 300 in the last
time interval of length 0.005. A very similar result obtained when ω = π and
g(t) = 3 sin2(ωt). The display is redundant and so is omitted. Notice the blow-
up structure for this boundary forced problem is different from that of the
pure initial-value problem for p = 6 (see the case p = 5 in [12]).

However, when the frequency ω of the boundary data is increased, the
numerical approximations no longer show indications of blowing up. Instead
their L2-norm appears to stabilize around something like a limit cycle. This
is true for both the mean-zero boundary data 3 sin(20πt) (see Figure 11))
and the positive-mean boundary oscillation 3 sin2(60πt) (see Figure 13). This
stabilization of the L2-norm continued far beyond t = 1. Indeed, as seen in
Figure 12, the solution itself gives way to a structure that is periodic in t.
This is perhaps not surprising in hindsight, as it is known experimentally [18]
that real water waves in a channel forced periodically by a wavemaker become
periodic in time at each point down the channel. It is also known rigorously
that the KdV and the BBM equation on the half line, forced periodically from
the left, yields a solution that is asymptotically periodic in time at each spatial
point (see [18, 21, 26]).

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Springer Nature 2021 LATEX template

Numerical study of gKdV equations 23

x-axis

-1 -0.5 0 0.5 1

y
-a

x
is

0

0.5

1

1.5

2

2.5

3
Numerical solutions at time t=0.3

(A)

x-axis

-1 -0.5 0 0.5 1

y
-a

x
is

0

0.5

1

1.5

2

2.5

3
Numerical solutions at time t=0.3060

(B)

x-axis

-1 -0.5 0 0.5 1

y
-a

x
is

0

0.5

1

1.5

2

2.5

3

3.5
Numerical solutions at time t=0.3080

(C)

x-axis

-1 -0.5 0 0.5 1

y
-a

x
is

0

0.5

1

1.5

2

2.5

3

3.5

4
Numerical solutions at time t=0.3100

(D)

x-axis

-1 -0.5 0 0.5 1

y
-a

x
is

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Numerical solutions at time t=0.3115

(E)

x-axis

-1 -0.5 0 0.5 1

y
-a

x
is

-300

-200

-100

0

100

200

300
Numerical solutions at time t=0.3120

(F)

Fig. 10: Blow-up pattern of the numerical solution to the gKdV equations
(21) with (32) where p = 6 and g = 3 sin(πt). (A) t = 0.3; (B) t = 0.3060; (C)
t = 0.3080; (D) t = 0.31; (E) t = 0.3115; (F) t = 0.312.

Figure 13 displays the stable numerical solution of the gKdV equation with
higher time frequency parameter ω = 60π. Since the boundary condition is
non-negative, it requires higher time-oscillatory frequencies than the previous
case in Figure 11 to obtain bounded numerical solutions. In Figure 13 (A), the
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Fig. 11: Numerical solutions to the gKdV equations (21) with specifications
(32) where p = 6 and g(t) = 3 sin(20πt). (A) L2-norm of the numerical solution
as a function of t; (B)-(F) graphs of the numerical solution at increasing times.

stabilization of the L2-energy of the numerical solution is shown from t = 0
to t = 1. This stabilization of the L2-norm appears to continue indefinitely.
Figure 13 (B) displays the numerical approximation at t = 5.
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Fig. 12: Manifestation of periodic solutions of Figure 11. (A) comparison at
t=0.5 and 0.6; (B) comparison at t=0.5125 and 0.6125.
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Fig. 13: Numerical solutions to the gKdV equations (21) where p = 6 and g =
3 sin2(60πt) with (32). (A) L2-norm of the numerical solution; (B) Numerical
solution at t = 5.

3.3 The supercritical case p = 7

The numerical experiments are repeated with an odd power p = 7 of the
nonlinearity. The Legendre-Galerkin approximation continues to be used in
the investigation, though one finds the same results using the Chebyshev-
collocation method. The following specifications were used:

N = 100, ∆t = 10−4, p = 7, g(t) = 2.5 sin(ωt). (33)

In Figure 14, the numerical solution appears to be forming a singularity when
ω = π. The blow-up pattern is the same as in the case p = 6. However, when
ω is increased to 20π, the numerical solution of the gKdV equation shows
no signs of unbounded behavior. Figure 15 (A) displays the L2-energy of the
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numerical solutions from t = 0 to t = 1; for t > 1, the same pattern is observed.
Figure 15 (B) shows the numerical solution at t = 5. When considering positive
boundary conditions (e.g. sin2(ωt)) the same results as in p = 6 are observed.
The display of the solution in this example is again redundant and so is also
omitted.
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Fig. 14: Blow-up pattern of the numerical solution to the gKdV equations
(21) where p = 7 and g = 2.5 sin(πt) with (33). (A) t = 0.3250; (B) t = 0.3330;
(C) t = 0.3360; (D) t = 0.3364.

4 Conclusion

Numerical studies of the supercritical gKdV equations adorned with high fre-
quency oscillations are presented. In Section 2, the IVP associated to the
supercritical gKdV equation (4) with a temporal oscillation attached to the
nonlinearity was considered. As the frequency of the time-oscillation increases,
the numerical solution resembles more and more the solution of the limit prob-
lems (5) in which the oscillation is replaced by its mean value. This is consistent
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Fig. 15: Numerical solutions to the gKdV equations (21) where p = 7 and
g = 2.5 sin(20πt) with (33). (A) L2-norm of the numerical solution; (B)
Manifestation of periodic solutions: numerical solutions at t = 0.6 and t = 0.7.

with the theoretical results [63]. When p is odd, the defocusing case can appear
with the correct sign of the forcing. When this is simulated, there are no signs
of singularities. This provides evidence that the blow-up solutions observed in
other circumstances are not caused by instabilities connected with the oscilla-
tions. In Section 3, the supercritical gKdV equations (21) have been studied
in a finite domain with zero boundary conditions at the right and an oscil-
lating boundary condition at the left. Due to the non-homogeneous boundary
conditions, mathematical studies of the gKdV equations (21) are technically
more difficult and relatively little progress has been made in this direction. For
numerical experiments, an accurate spectral collocation method and spectral
element method were implemented and tested. Applying the numerical scheme,
a blow-up structure, which started to appear near the oscillating boundary, was
found. As the temporal frequency of the boundary oscillation was increased,
non-explosive numerical solutions of (21) are observed. In the case of boundary
oscillation, the mean-zero aspect does not appear to play a role.

Several interesting avenues of investigation present themselves as a conse-
quence of what has been observed. The question of what other equations can be
managed by way of oscillations in their nonlinearity is an obvious line of devel-
opment. As far as boundary-value problem are concerned, this is largely virgin
territory, both analytically and numerically. This also seems worth further
investigation.
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