
CLUSTERED FAMILIES AND APPLICATIONS TO LANG-TYPE
CONJECTURES

IZZET COSKUN AND ERIC RIEDL

Abstract. We introduce and classify 1-clustered families of linear spaces in the Grassman-
nian G(k − 1, n) and give applications to Lang-type conjectures. Let X ⊂ Pn be a very
general hypersurface of degree d. Let ZL be the locus of points contained in a line of X. Let
Z2 be the closure of the locus of points on X that are swept out by lines that meet X in at
most 2 points. We prove that:
• If d ≥ 3n+2

2 , then X is algebraically hyperbolic modulo ZL.

• If d ≥ 3n
2 , X contains lines but no other rational curves.

• If d ≥ 3n+3
2 , then the only points on X that are rationally Chow zero equivalent to

points other than themselves are contained in Z2.
• If d ≥ 3n+2

2 and a relative Green-Griffiths-Lang Conjecture holds, then the exceptional
locus for X is contained in Z2.

These sharpen prior results of Ein, Voisin, Pacienza, Clemens and Ran.

1. Introduction

Inspired by Faltings’ proof of the Mordell Conjecture, Lang made a series of conjectures
relating rational points, hyperbolicity, abelian varieties and rational curves. For example, for
a variety X of general type, Lang conjectures [La86] that there exists a proper subvariety
Z ⊂ X such that

(1) The images of nonconstant maps from rational curves and abelian varieties into X
are contained in Z.

(2) The images of nonconstant entire curves are contained in Z.
(3) The complement of Z is Kobayashi hyperbolic.

Furthermore, Lang predicts that these geometric conditions control the arithmetic of X and
conjectures that if X is defined over a number field K and L is an algebraic extension of K,
then X \Z(L) is finite. In this paper, we prove algebraic analogues of Lang-type conjectures
with an explicit description of Z for hypersurfaces of sufficiently high degree.

A projective variety Y is algebraically hyperbolic if there exists ε > 0 such that any reduced,
connected curve C ⊂ Y of geometric genus g(C) satisfies

(1) 2g(C)− 2 ≥ ε deg(C).

Demailly conjectures that for projective varieties algebraic hyperbolicity is equivalent to
Kobayashi hyperbolicity [De18]. Let Z be a proper subvariety of Y . We say that Y is
algebraically hyperbolic modulo Z if inequality (1) holds for any curve C not contained in Z.
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Let X be a very general hypersurface of degree d in Pn, n ≥ 3. Let ZL denote the locus
of points contained in a line of X. Let Zi denote the closure of the locus in X swept out
by lines meeting X in at most i points. By results of Ein [Ei88, Ei91], Pacienza [Pa03],
Voisin [Vo96, Vo98] and the authors [CR19], a very general hypersurface of degree d ≥
2n − 2 + max(0, 4 − n) is algebraically hyperbolic. When d ≤ 2n − 3, every hypersurface
of degree d contains lines, so X cannot be algebraically hyperbolic. When the degree of the
hypersurface is at least n+2, a natural extension of the Lang conjectures (see [J20, Conjecture
12.1]) predict the existence of a proper subvariety Z such that X is algebraically hyperbolic
modulo Z. In this paper, we develop a new technique for approaching Lang-type conjectures.
The first application of this technique is finding a proper subvariety containing the exceptional
set for algebraic hyperbolicity when the degree of the hypersurface is sufficiently large.

Theorem 6.1. If d ≥ 3n+2
2

, then any curve not lying in ZL satisfies 2g(C) − 2 ≥ degC,
where g(C) is the geometric genus of C. In particular, X is algebraically hyperbolic modulo
ZL.

Pacienza [Pa04] first obtained a similar statement under the stronger assumption that d ≥
max{7n−6

4
, 3n

2
}. We give a simpler proof that improves the bound to the optimal coefficient

3n
2

, since if d ≤ 3n−2
2

, then X contains conics, which necessarily lie outside ZL by [RY20].

The geometry of ZL has been studied extensively. When d < 2n− 3, ZL is an irreducible
subvariety of X. If in addition, d ≥ n, then ZL is a proper subvariety of X, and is known
by [BR20] not to contain any curves of low gonality other than lines. Work of Pacienza,
Clemens, and Ran [Pa04, ClR04] has already highlighted this subvariety as exceptional from
the perspective of Lang-type Conjectures.

Points on X that lie on rational curves are part of Lang exceptional set. Such points are
rationally Chow-0 equivalent. Hence, the set of points that are rationally Chow-0 equivalent
to another point give another perspective in studying the Lang exceptional sets. Chen, Lewis
and Sheng [CLS17], inspired by the work of Voisin [Vo94, Vo96, Vo98] conjecture that for a
very general hypersurface X and any point p ∈ X, then the dimension of the space RP1,X,p

of points of X rationally Chow-0 equivalent to p (other than p itself) is at most 2n− d− 1.
Chen, Lewis and Sheng [CLS17] prove the conjecture when the expected dimension is negative
and Riedl and Yang [RY18] prove the rest of the conjecture. Our second application is to
characterize the locus of rationally Chow-0 equivalent points on a very general hypersurface
of sufficiently large degree.

Theorem 6.2. Let X be a very general hypersurface in Pn of degree d.

(1) Let k be a positive integer. If d ≥ 3n+1−k
2

, then the only points of X rationally
equivalent to a k-dimensional family of points other than themselves are those that lie
in Z1.

(2) If d ≥ 3n
2

, then X contains lines but no other rational curves.

(3) If d ≥ 3n+3
2

, then any point on X rationally equivalent to another point of X lies in
Z2.

Theorem 6.2 (1) is sharp. Theorem 6.2 (2) generalizes a theorem of Clemens and Ran
[ClR04] who proved that when d ≥ 3n+1

2
all rational curves on X are contained in ZL.

Theorem 6.2 (2) is sharp when n is even. When n is odd, we do not know whether a very
general hypersurface of degree 3n−1

2
can contain rational curves other than lines.
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Our final application is to the exceptional set in the Green-Griffiths-Lang Conjecture. The
conjecture predicts that if a variety Y is of general type, then the images of all nonconstant
entire curves are contained in a proper algebraic subvariety.

Theorem (see Theorem 6.3). If d ≥ 3n+2
2

and a relative version of the Green-Griffiths-Lang
Conjecture holds, then the exceptional locus for X is contained in Z2.

Our approach for solving these problems involves a careful analysis of linear sections of
very general hypersurfaces. We develop the study of `-clustered families of subspaces in the
Grassmannian. Let B ⊂ G(k − 1, n) denote an irreducible family of (k − 1)-dimensional
projective linear spaces in Pn. Assume that the codimension of B is ε > 0. Let C ⊂ G(k, n)
denote the family of k-dimensional projective linear spaces consisting of those linear spaces
that contain a member of B. We call C the containing family of B. By results of [RY18], the
codimension of C in G(k, n) is at most ε− 1. The family B is `-clustered if the codimension
of C in G(k, n) is ε− `. In this paper, we classify 1-clustered families in G(k − 1, n).

Theorem 3.7. Let B be an irreducible 1-clustered family of (k−1)-dimensional linear spaces
in Pn. Then the codimension ε of B in G(k − 1, n) is at most n− k + 1. If ε ≥ 2, then there
is some irreducible subvariety Z ⊂ Pn of dimension n − k + 1 − ε such that B is the set of
(k − 1)-dimensional linear spaces intersecting Z.

More generally, we characterize the possible cohomology classes of `-clustered families and
completely classify the extremal `-clustered families.

Theorem 3.9. Let ` < k < n be integers. Let B ⊂ G(k − 1, n) be an irreducible `-clustered
family of (k− 1)-dimensional linear spaces. Let [B] =

∑
λ aλσλ be the cohomology class of B

expressed in the Schubert basis.

(1) Then any partition λ occurring in [B] with aλ 6= 0 has λi = 0 for i > `.
(2) In particular, the codimension ε of B is at most `(n− k + 1).
(3) If ε = `(n−k+1), then B parameterizes (k−1)-dimensional linear spaces that contain

a fixed P`−1.

The classification of 1-clustered families yields the stated applications via our main tech-
nical result Theorem 4.8.

Organization of the paper. In §2, we collect facts about Grassmannians and rigidity of
Schubert cycles. In §3, we introduce and classify 1-clustered families. This forms the main
technical tool of the paper. In §4, we use the classification of 1-clustered families to prove our
main theorem on families of hypersurfaces. We then deduce applications to rationally Chow
zero equivalent points, rational curves and algebraic hyperbolicity.

Acknowledgments. We would like to thank Lawrence Ein, Joe Harris, Mihai Păun and
David Yang for fruitful conversations on the subject of this paper. We are especially grateful
to Xi Chen for bringing the problems discussed in this paper to our attention. We thank the
anonymous referees for their valuable remarks.
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2. Preliminaries

2.1. Preliminaries on the Grassmannian. In this subsection, we briefly recall preliminary
facts about the Grassmannian and its cohomology. We refer the reader to [Co09, Co11, Co18]
for more details.

Let G(k, n) denote the Grassmannian that parameterizes k-dimensional projective linear
subspaces of Pn = PV . The Grassmannian G(k, n) is a projective variety of dimension

(k + 1)(n − k) and embeds in P(
∧k+1 V ) ∼= P(n+1

k+1)−1 under the Plücker embedding. The
cohomology of G(k, n) is generated by Schubert classes. Let λ be a partition with k+ 1 parts
that satisfy

n− k ≥ λ1 ≥ · · · ≥ λk+1 ≥ 0.

Fix a complete flag F• : 0 ⊂ F1 ⊂ · · · ⊂ Fn+1 = V on V , where Fi is an i-dimensional
subspace of V . The Schubert variety Σλ•(F•) is defined by

Σλ(F•) := {PW ∈ G(k, n) | dim(W ∩ Fn−k+i−λi) ≥ i, 1 ≤ i ≤ k + 1}.
The class σλ of Σλ(F•) does not the depend on the flag. The Schubert classes σλ give
an additive Z-basis for the cohomology ring H∗(G(k, n),Z) as λ varies over all admissible
partitions. The cohomology class of any subvariety of G(k, n) is a nonnegative Z-linear
combination of Schubert classes. In particular, the product of two Schubert classes can be
expressed as a nonnegative linear combination of other Schubert classes

σλ · σµ =
∑
ν

cνλ,µσν ,

where cνλ,µ ≥ 0 are the Littlewood-Richardson coefficients.

Notation 2.1. Given a partition λ with λ1 6= n− k, let λh be the partition with λhi = λi + 1
for every 1 ≤ i ≤ k + 1. Similarly, given a partition with λk+1 = 0, let λp be the partition
with λp1 = n− k and λpi = λi−1 for 1 < i ≤ k + 1.

We will need the following basic facts.

Fact 2.2. Let σλ and σν be Schubert classes in the cohomology of G(k, n).

(1) Then σλ · σµ 6= 0 if and only if µi ≤ n− k − λk+2−i for all 1 ≤ i ≤ k + 1.
(2) Let µ be the partition with µi = 1 for 1 ≤ i ≤ k + 1. Let λ be a partition with

λ1 6= n− k. Then σλ · σµ = σλh.
(3) Let µ be the partition with µ1 = n − k and µi = 0 for 1 < i ≤ k + 1. Let λ be a

partition with λk+1 = 0. Then σλ · σµ = σλp.

A Schubert class σλ in G(k, n) is called rigid if any closed subvariety representing σλ is a
Schubert variety. A Schubert class σλ is called multi-rigid if any closed subvariety of G(k, n)
representing mσλ is a union of m Schubert varieties. A complete classification of rigid and
multi-rigid Schubert classes in G(k, n) is known thanks to the work of Hong, Robles, The and
the first author (see [Co11, Co18, CRo13, Ho05, Ho07, RT12]). Let λ be the partition with
λi = n− k for 1 ≤ i ≤ j and λi = 0 for j < i ≤ k + 1. Then σλ is multi-rigid in G(k, n).

3. Classification of `-clustered families

In this section, we classify 1-clustered families and prove results about `-clustered families
in general.
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Notation 3.1. Let B ⊂ G(k − 1, n) be an irreducible family of (k − 1)-dimensional linear
subspaces of Pn. Let ε > 0 be the codimension of B in G(k − 1, n). Let C ⊂ G(k, n) be the
family of all k-dimensional linear spaces that contain a member of B. We refer to C as the
containing family of B. Let IB,C denote the incidence correspondence

IB,C = {(b, c)|b ∈ B, c ∈ C, b ⊂ c} ⊂ B × C
and let π1 and π2 be the two projections from IB,C to B and C, respectively.

By assumption, the fiber of π1 over b ∈ B consists of all k-dimensional linear subspaces of
Pn containing b, hence is isomorphic to Pn−k. Consequently, IB,C is irreducible of dimension

dim IB,C = (k + 1)(n− k) + k − ε.
We say that the family B is `-clustered if the general fiber of π2 has dimension (k − `). In
other words, B is `-clustered if the general c ∈ C contains an (k − `)-dimensional family of
(k−1)-dimensional linear subspaces contained in B. If B is `-clustered, then C = π2(IB,C) is
an irreducible variety of dimension (k+ 1)(n− k)− ε+ `. We conclude that the codimension
of C is ε− `. For future reference, we state this in the following lemma.

Lemma 3.2. Let B ⊂ G(k − 1, n) be an irreducible family of codimension ε. The family B
is `-clustered if and only if the codimension of the containing family C is ε− `.

Note that if B 6= G(k − 1, n), then ` ≥ 1 and the codimension of C is at most ε− 1. The
purpose of this section is to classify 1-clustered families B. We will also make some remarks
about j-clustered families. We begin with a few illustrative examples.

Example 3.3. LetB ⊂ G(k−1, n) be the Schubert variety parameterizing (k−1)-dimensional
projective linear spaces that contain a fixed Pj−1. Then B has codimension j(n − k + 1).
The containing family C ⊂ G(k, n) parameterizes k-dimensional projective linear spaces that
contain the same Pj−1 and has codimension j(n − k). In particular, by Lemma 3.2, B is
j-clustered.

Example 3.4. More generally, let Γ ⊂ G(j − 1, n) be a subvariety and assume that a k-
dimensional linear space containing a member of Γ contains only finitely many elements of
Γ. Let B ⊂ G(k − 1, n) be the variety that parameterizes (k − 1)-dimensional linear spaces
that contain a member of Γ. The containing family C consists of k-dimensional linear spaces
that contain a member of Γ. Hence, the general member of C contains a (k− j)-dimensional
family of members of B. Consequently, B is a j-clustered family.

We give a final example to show that not all examples of j-clustered families arise as in
Example 3.4.

Example 3.5. Let H be a general hyperplane section of G(1, 3) ⊂ P5 which is not in the
dual variety of G(1, 3). Then H is not a Schubert variety and there is no line which intersects
every line parametrized by H. Fix a linear subspace Λ = P3 ⊂ P4 and fix a point p not
contained in Λ. Let B ⊂ G(2, 4) be the family of planes obtained by taking the span of a line
in Λ parameterized by H and the point p. Note that B has codimension 3, has cohomology
class σ2,1,0, and is not a Schubert variety. The containing family C consists of linear spaces
P3 that contain the point p. Hence, by Lemma 3.2, B is 2-clustered. However, there does not
exist a 1-parameter family Γ of lines such that B is the family of planes containing a member
of Γ. Each of the lines in Γ would have to contain the point p, hence the intersection of the
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lines in Γ with Λ would be a curve, which by degree considerations has to be a line. However,
by our choice of H, there does not exist such a line.

We now classify 1-clustered families in G(k − 1, n). The proof will be by induction on n.
The next proposition provides the base case of the induction.

Proposition 3.6. Let B ⊂ G(k − 1, k + 1) be an irreducible family of codimension ε ≥ 2.
Then B is 1-clustered if and only if ε = 2 and B is the Schubert variety of (k−1)-dimensional
linear spaces containing a fixed point.

Proof. If B is the family of (k− 1)-dimensional linear spaces in Pk+1 containing a fixed point
p, then the containing family C is the family of k-dimensional linear spaces containing p. The
codimension of B in G(k− 1, k+ 1) is 2 and the codimension of C in G(k, k+ 1) is 1. Hence,
by Lemma 3.2, B is 1-clustered.

Conversely, suppose B is 1-clustered. Fix a general point c ∈ C. Then c contains a (k−1)-
dimensional family B′ of elements of B. For each element b′ ∈ B′, every k-dimensional linear
space c′ containing b′ must be a member of C. The k-dimensional linear spaces containing
b′ is a line in G(k, k + 1) = P(k+1)∨. Hence, C contains a (k − 1)-dimensional family of
lines all containing the point c ∈ C. These lines are distinct and sweep out a k-dimensional
subvariety of C. Consequently, C has dimension at least k, or equivalently, codimension at
most 1. Since B is 1-clustered and has codimension ε ≥ 2, we conclude that ε = 2 and C has
codimension exactly 1. Since C is irreducible and k-dimensional, C must consist of all the
k-dimensional linear spaces that contain an element of B′. In particular, through every point
c′ of C, there is a line connecting c and c′. Since c was a general point, we conclude that
there is a line between any two general points of C. Hence, C is a linear space of codimension
one in P(k+1)∨. All such linear spaces consist of k-dimensional linear spaces containing a fixed
point p.

Now it follows that every member of B also contains the point p. If there were an element
b ∈ B not containing p, then there would exists a linear space c containing b and not p. The
linear space c would be a member of C contradicting our description of C. Since the locus of
(k−1)-dimensional linear spaces containing the point p has codimension 2 in G(k−1, k+ 1),
B must contain all these linear spaces. �

We now use induction to classify the 1-clustered families of (k−1)-dimensional linear spaces
in every Pn.

Theorem 3.7. Let B be an irreducible 1-clustered family of (k−1)-dimensional linear spaces
in Pn. Then the codimension ε of B in G(k − 1, n) is at most n− k + 1. If ε ≥ 2, then there
is some irreducible subvariety Z ⊂ Pn of dimension n − k + 1 − ε such that B is the set of
(k − 1)-dimensional linear spaces intersecting Z.

Proof. Let C denote the containing family of B. Given a hyperplane H, let BH be the set
of planes of B lying in H. Let CH denote the containing family of BH in H. We make the
simple observation that if B is 1-clustered and BH is nonempty, then BH is also 1-clustered.
We will prove the theorem by induction on n. The case n = k + 1 is Proposition 3.6, so we
may assume n ≥ k + 2. There are two cases depending on whether BH is empty or not.

Assume that the cohomology class of B is
∑

λ aλσλ. If ε < n−k+1, then λ1 < n−k+1 for
every partition λ occurring in the class of B with nonzero coefficient aλ. The class of the locus
of linear spaces that are contained in H is the Schubert class σµ, where µi = 1 for 1 ≤ i ≤ k.
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Consequently, by Facts 2.2 (1) and (2), the cohomology class of BH is nonzero. Hence, in
this case BH is necessarily nonempty. Similarly, by Facts 2.2 (1) and (2), if ε ≥ n − k + 1,
BH is empty if and only if every λ for which aλ 6= 0 has λ1 = n− k + 1. Now we analyze the
two cases.

Case 1: For a general hyperplane H, BH is nonempty. In this case, each component of BH

has codimension ε in G(k−1, n−1), and it follows by our induction hypothesis that ε ≤ n−k.
Moreover, by our induction hypothesis, BH is the set of (k−1)-planes meeting some (possibly
reducible) subvariety ZH of dimension n− k − ε in H. Take a general pencil of hyperplanes
Ht,u := {tH + uH ′} containing H. The same analysis applies to the general member Ht,u in
this pencil and the members of B lying in Ht,u meet a variety Zt,u. Moreover, the varieties
Zt,u vary algebraically and trace out a subvariety Z ⊂ Pn of dimension n− k + 1− ε. Let U
be a k-dimensional linear space that intersects Z at a point p ∈ Z. Then p ∈ Ht,u for some
hyperplane in the pencil and U contains an element of BHt,u , hence is in C. We conclude
that every k-dimensional linear space intersecting Z must be in C.

The locus of k-dimensional linear spaces intersecting Z has codimension ε− 1. Since C is
irreducible and has codimension ε − 1, we conclude that Z must be irreducible and C must
equal the k-dimensional linear spaces intersecting Z. It follows that every (k−1)-dimensional
linear space parameterized by B also intersects Z. The locus of (k − 1)-dimensional linear
spaces intersecting Z is irreducible of codimension ε, hence B must be the family of (k − 1)-
dimensional linear spaces intersecting Z. This concludes the induction in this case.

Case 2: For a general hyperplane H, BH is empty. In this case, we have ε ≥ n − k + 1.
Let H be a hyperplane that is general among those that contain some element of B. Then
the codimension of BH in G(k− 1, n− 1) is at most ε− 1. Furthermore, BH is 1-clustered in
G(k− 1, n− 1). By induction, the codimension of BH in G(k− 1, n− 1) is at most n− k. If
the codimension were less than n− k, then the general hyperplane would contain a member
of BH , contrary to our assumption. We conclude that the codimension is n − k. Hence,
by induction BH consists of (k − 1)-dimensional linear spaces in H that contain some fixed
points p1, . . . , pr. Then C contains the k-dimensional linear spaces that contain pi. Hence,
the codimension of C is at most n−k. Since B is 1-clustered, we conclude that ε = n−k+1.
Since C is irreducible, in fact r = 1 and C must consist of linear spaces that contain a fixed
point p. Now every element of B must also contain this point p. Since B has codimension
n − k + 1, B must consist of all the (k − 1)-dimensional linear spaces containing p. This
concludes the induction in this case.

We thus conclude that any 1-clustered family in G(k − 1, n) whose codimension ε is at
least 2 is the set of (k− 1) dimensional linear spaces that intersect a subvariety of dimension
n− k + 1− ε. �

The proof of Case 2 shows the following generalization of Proposition 3.6 holds.

Corollary 3.8. Let B be an irreducible family of (k − 1)-dimensional linear spaces in Pn of
codimension n − k + 1. Then B is 1-clustered if and only if B parameterizes linear spaces
containing a fixed point.

As Example 3.5 indicates, Theorem 3.7 does not have an easy generalization. However, we
can restrict the possible cohomology classes of j-clustered families and classify the extremal
cases.
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Theorem 3.9. Let j < k < n be integers. Let B ⊂ G(k − 1, n) be an irreducible j-clustered
family of (k−1)-dimensional linear spaces. Let [B] =

∑
λ aλσλ be the cohomology class of B.

(1) Then any partition λ occurring in [B] with aλ 6= 0 has λi = 0 for i > j.
(2) In particular, the codimension ε of B is at most j(n− k + 1).
(3) If ε = j(n−k+1), then B parameterizes (k−1)-dimensional linear spaces that contain

a fixed Pj−1.

Proof. Let λ be a partition such that σλ occurs in the class of B with nonzero coefficient aλ.
Assume that λ` 6= 0 and λ`+1 = 0. Let λ∗ be the dual partition defined by

λ∗i = n− k + 1− λk+1−i.

Then, by Kleiman’s transversality theorem, a general Schubert variety with class σλ∗ inter-
sects B in aλ points. More explicitly, fix a general partial flag

F1+λk ⊂ · · · ⊂ Fi+λk−i+1
⊂ · · · ⊂ Fk+λ1 .

Then there are aλ members of the family B that also intersects PFi+λk−i+1
in an (i − 1)-

dimensional projective linear space for 1 ≤ i ≤ k.

Now define a new partition µ for G(k, n). Let

µi =

{
n− k for 1 ≤ i ≤ k − `+ 1

λ∗i−1 for k − `+ 1 < i ≤ k + 1
.

Observe that µ is an admissible partition for G(k, n) and for i > k − `+ 1,

n− k + i− µi = i− 1− λk+2−i

A general Schubert variety with class σµ parameterizes k-dimensional projective linear spaces
that contain a fixed projective space PFk−`+1 of dimension k − ` and intersect linear spaces
PFi−1+λk−i+2

in an i-dimensional projective linear space for k − ` + 1 < i ≤ k + 1. The
key observation is that the intersection of a general Schubert variety Σµ with the containing
family C is nonempty. There are finitely many elements of B containing the fixed linear space
PFk−` and intersecting the linear spaces PFi+λk−i+1

in an (i− 1)-dimensional linear space for
k − ` < i ≤ k. These (k − 1)-dimensional linear spaces together with the fixed linear space
PFk−`+1 span a k-dimensional linear space in the containing family C.

The codimension of µ is

(n− k)(k − `+ 1) +
k∑

i=`+1

λ∗i .

Consequently, the codimension of C is at most

codim(C) ≤ (n− k)`−
k∑

i=`+1

λ∗i .

On the other hand, the codimension of B is

codim(B) = (n− k + 1)`−
k∑

i=`+1

λ∗i .
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Since B is j-clustered, we conclude that j = codim(B) − codim(C) ≥ `. This shows that if
σλ occurs in the class of a j-clustered subvariety B with nonzero coefficient, then the number
of nonzero entries ` in λ can be at most j. This concludes the proof of (1).

Since the only nonzero entries in λ can be λi with 1 ≤ i ≤ j and λi is at most n − k + 1,
we see that the codimension

|λ| =
k∑
i=1

λi ≤ j(n− k + 1).

This concludes the proof of (2).

Let λ be the partition such that λi = n− k + 1 for 1 ≤ i ≤ j and λi = 0 for j < i ≤ k. By
parts (1) and (2), the cohomology class of B has to be a multiple of σλ. This is a multi rigid
cohomology class, in other words, the only representatives of multiples of this class are unions
of Schubert varieties. Since B is irreducible, it must consist of a single Schubert variety. The
corresponding Schubert variety parameterizes (k − 1)-dimensional linear spaces that contain
a fixed Pj−1. This concludes the proof of (3). �

Remark 3.10. It is possible to give an elementary proof of Theorem 3.9 (3) without relying
on classification of multi rigid cohomology classes. We will give the argument.

Lemma 3.11. Let B ⊂ G(k− 1, n) be a j-clustered irreducible family of codimension ε = 2j.
Then B consists of all of the (k − 1)-dimensional linear spaced that contain a fixed Pj−1.

Proof. Let C be the containing family of B. The general member c ∈ C contains a (k − j)-
dimensional family of members of B. Each b ∈ B with b ⊂ c the k-dimensional linear spaces
containing b is a line contained in C. Hence, dimC ≥ k− j+ 1, or equivalently codimC ≤ j.
Since B is j-clustered of codimension 2j, we conclude that codimC = j and C must consist
of the union of lines containing c. Since c was a general point, we conclude that C is a linear
space of codimension j. Hence, C parameterizes k-dimensional linear spaces that contain a
fixed Pj−1. Every element of B must also contain this Pj−1. The locus of (k− 1)-dimensional
linear spaces containing a fixed Pj−1 is an irreducible Schubert variety of codimension 2j. We
conclude that B must equal this Schubert variety. �

Lemma 3.11 proves Theorem 3.9 (3) when n = k+ 1. Suppose that (3) holds by induction
up to n − 1. Let B ⊂ G(k, n) be an irreducible, j-clustered subvariety of codimension
j(n− k + 1). Let H be a general hyperplane among those that contain a member of B. Let
BH be the members of B that are contained in H. Observe that BH is also j-clustered. If the
codimension of BH is j(n−k), then, by induction on n, BH consists of all (k−1)-dimensional
linear spaces that contain a fixed Λ ∼= Pj−1. Then C contains all the k-dimensional linear
spaces that contain Λ. Since C has codimension j(n − k), C must equal the locus of k-
dimensional linear spaces that contain Λ. Then B must also equal the locus of (k − 1)-
dimensional linear spaces that contain Λ as desired.

There remains to show that BH has codimension j(n − k) in G(k − 1, n − 1). Let Z
be the space of hyperplanes in Pn that contain an element of B. It suffices to show that
dim(Z) ≥ n − j. By Theorem 3.9 (2) and Fact 2.2 (1), there exists elements of B that
contain a fixed Λ ∼= Pk−1−j. Given this element b of B, there is a Pn−k dimensional family of
hyperplanes containing b. Hence, the codimension k−j linear space of hyperplanes containing
Λ intersects Z in a subvariety of dimension at least n − k. Therefore, the dimension of Z
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is at least n − j, as desired. This concludes the induction and gives an elementary proof of
Theorem 3.9 (3).

4. Incidence Argument

In this section, we introduce the notion of towers of induced subvarieties and classify towers
where the codimension of linear sections increases by one each time using Theorem 3.7. This
classification stated in Theorem 4.8 and Proposition 4.10 is the main tool for our applications
to rational curves and Chow equivalence.

Notation 4.1. Let Un,d denote the universal hypersurface of degree d in Pn parameterizing
pairs (p,X), where X ⊂ Pn is a hypersurface of degree d and p ∈ X is a point. We call a
pair (p,X) ∈ Un,d a pointed hypersurface.

We will study linear sections of pointed hypersurfaces. It is convenient to view all these
linear sections in a fixed projective space. For this purpose, we introduce the notion of a
parameterized linear section. For r < n, a parametrized linear space of dimension r is a linear
map f : Pr → Pn. When r = 1, we simply say parameterized line. Let p ∈ Pn be a point. Let
Gp(k, n) denote the space of parameterized k-dimensional linear spaces in Pn through p. Let
(p,X) be a pointed hypersurface in Pn and let f be a parameterized k-plane in Pn. Assume
the image of f contains p but is not contained in X. Then the parameterized linear section
of (p,X) by f is (f−1(p), f−1(X)).

Given a PGLr+1-invariant subvariety Br,d ⊂ Ur,d, the tower of induced varieties Bn,d for
n ≥ r are the subvarieties Bn,d ⊂ Un,d consisting of pointed hypersurfaces such that some
parameterized linear section lies in Br,d.

We first construct a large dimensional pointed hypersurface (p, Y ) in PN that contains
every pointed hypersurface (p,X) in Pn as a parameterized linear section.

Lemma 4.2. For every pair of positive integers n, d, there exists an N = N(n, d) and a
pointed hypersurface (p, Y ) in PN such that every member of Un,d is a parameterized linear
section of (p, Y ). Furthermore, for every member (p,X) of Un,d, there exists a parameterized
hyperplane Λ in Gp(n,N) such that the induced map on tangent spaces

dφn : TΛGp(n,N)→ T(p,X)Un,d

is surjective.

Proof. First, we show that if N is sufficiently large, then there exists a pointed hypersurface
(p, Y ) in PN such that the parameterized linear sections of (p, Y ) dominate Un,d and the map
dφn is surjective at any given point. We will then use Noetherian induction to complete the
proof of the lemma.

Let (p, Y ) be a pointed hypersurface in PN and let f : Pn → PN be a parameterized linear
section. Let Ip ⊂ OPn be the ideal sheaf of the point p in Pn and let TPN denote the tangent
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bundle of PN . We then have the following commutative diagram

0 0

0 // f ∗(TPN (− log Y ))⊗ Ip

OO

// f ∗(TPN )⊗ Ip

OO

φ // f ∗(OY (Y ))⊗ Ip // 0

0 // E ⊗ Ip

OO

// Ip(1)N+1

OO

ψ // f ∗(OY (Y ))⊗ Ip

=

OO

// 0

Ip

OO

=
// Ip

OO

0

OO

0

OO

,

where the first row is the pullback by f of the standard exact sequence expressing the log
tangent sheaf of Y tensored by Ip and the second column is the pullback of the Euler sequence
by f tensored by Ip and E is the pullback of the kernel of the map O(1)N+1 → OY (Y ) by f .
By basic deformation theory, to show that the parameterized linear sections dominate Un,d
near f , we need to show that the map induced by φ

H0(Pn, f ∗(TPN )⊗ Ip)→ H0(Pn, f ∗(OY (Y ))⊗ Ip)
is surjective. By the diagram, it suffices to show that H1(Pn, f ∗(TPN (− log Y )) ⊗ Ip) = 0.
Since Ip has no cohomology, this is equivalent to showing that H1(Pn, E ⊗ Ip) = 0. Hence, it
suffices to show that the map induced by ψ

H0(Pn, Ip(1)N+1)→ H0(Pn, f ∗(OY (Y ))⊗ Ip)
is surjective.

Assume that Y is defined by the polynomial g. This map is given by the (N+1)×1 matrix
consisting of the pullback of the partial derivatives of g by f . It is now clear that we can pick
Y so that this map is surjective if N is sufficiently large. Suppose for a given Y the map is
not surjective. We can then pick polynomials of degree d− 1, say gN+1, . . . , gN+`, so that the
map becomes surjective. If we replace the pointed hypersurface (p, Y ) by the hypersurface

(p, Y ′) in PN+` defined by the polynomial g+
∑`

i=1 xN+igN+i, then the corresponding map is
surjective.

To complete the proof, suppose (p,X) does not occur as a parameterized linear section of
(p, Y ), then we can find a hypersurface (p, Y1) that has both (p,X) and (p, Y ) as hyperplane
sections and is locally surjective around (p,X). Consequently, by Noetherian induction, we
can find a single hypersurface that works for all pointed hypersurfaces in Un,d.

�

Remark 4.3. Using the notation from Lemma 4.2, given a subvariety Bn ⊂ Un,d, the codi-
mension of Bn in Un,d around a point where dφn is surjective is the same as the codimension
of φ−1

n (Bn) in Gp(n,N).

Definition 4.4. Fix a pointed hypersurface (p, Y ) in PN . A parameterized n-plane Λ is
(n,m)-submersive if for each r with m ≥ r ≥ n, there exists a parameterized r-plane Λr

containing Λ such that φr is a submersion near Λr.
11



Remark 4.5. A straightforward adaptation of the proof of Lemma 4.2 shows that given
integers d, n and m, there exists a pointed hypersurface (p, Y ) in PN such that for every
(p,X) in Un,d, there is a parameterized n-plane Λ in PN with φn(Λ) = (p,X) that is (n,m)-
submersive.

We next prove two easy lemmas that will be used in the proof of the main theorem of this
section.

Lemma 4.6. Let X1 ⊂ Pn1 and X2 ⊂ Pn2 be degree d hypersurfaces and let `1 and `2 be
parameterized lines in Pn1 and Pn2, respectively. Suppose that `∗1X1 = `∗2X2 . Then there
exists an integer N , a degree d hypersurface Y in PN , a parameterized line ` in PN and
parameterized n1 and n2-dimensional linear spaces Λ1 and Λ2 such that

(1) `∗Y = `∗1X1 = `∗2X2

(2) Λ∗1Y = X1 and
(3) Λ∗2Y = X2.

Proof. Choose coordinates x0, . . . , xn1 on Pn1 and y0, . . . , yn2 on Pn2 such that the lines `1 =
[s : t : 0 : · · · : 0] and `2 = [s : t : 0 : · · · : 0] are defined by the vanishing of xi for i ≥ 2 and
yi for i ≥ 2, respectively. Suppose that in these coordinates X1 is the vanishing locus of f1

and X2 is the vanishing locus of f2. Since `∗1X1 = `∗2X2, we can scale the polynomials f1 and
f2 so that f1 = g(x0, x1) + h1(x0, ..., xn1), where every monomial occurring in h1 is divisible
by x2, . . . , xn1 and f2 = g(y0, y1) +h2(y0, . . . , yn2), where every monomial in h2 is divisible by
y2, . . . , yn2 . Define f by

f = g(z0, z1) + h1(z2, ..., zn1) + h2(zn1+1, . . . , zn1+n2−2).

Then set Y = V (f), let ` be the line defined by zi = 0 for 2 ≤ i ≤ n1 + n2 − 2, let Λ1 be the
linear space defined by zi = 0 for n1 + 1 ≤ i ≤ n1 + n2 − 2 and let Λ2 be defined by zi = 0
for 2 ≤ i ≤ n1. Then Y satisfies the conclusions of the lemma. �

Lemma 4.7. Suppose B ⊂ G(k− 1, n) has codimension at least 2. Then if B is 1-clustered,
its covering set C is also 1-clustered.

Proof. Let B ⊂ G(k − 1, n) have codimension ε ≥ 2. Since B is 1-clustered, Theorem 3.7
implies that B parameterizes (k − 1)-dimensional linear spaces that intersect a subvariety
Z ⊂ Pn. Furthermore, the covering family C parameterizes the k-dimensional linear spaces
that intersect Z as well and has codimension ε − 1 in G(k, n). Let D ⊂ G(k + 1, n) be
the covering family of C. Then D parameterizes the (k + 1)-dimensional linear spaces that
intersect Z and has codimension ε− 2 in G(k + 1, n). By Lemma 3.2, we conclude that C is
1-clustered.

�

The main theorem of this section is the following.

Theorem 4.8. Let Br,d be an integral PGLr+1-invariant subvariety of Ur,d. For n ≥ r, let Bn,d
denote the tower of induced subvarieties. Assume that for some m ≥ r, Bm,d has codimension
at least 1 in Um,d. Then either

(1) for r ≤ n ≤ m, Bn,d has codimension at least 2(m− n) + 1 in Un,d; or
(2) there exists a PGL2-invariant family F ⊂ U1,d such that Bm,d is in the closure of the

tower of varieties induced by F ; or
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(3) Bm,d is the space of pairs (p,X) with p contained in a line ` lying in X.

Proof. Let (p, Y ) be a pointed hypersurface of degree d in PN constructed in Remark 4.5
such that every member of Um,d is a parameterized linear section of (p, Y ) and furthermore,
each fiber of φr contains an (r,m)-submersive point. Hence, for r ≤ n ≤ m, we have a
surjective rational map φn : Gp(n,N) 99K Un,d from the space of parameterized n-dimensional
linear spaces to degree d pointed hypersurfaces in Pn. Let Bn be the union of all components
of φ−1

n (Bn,d) containing an (n,m)-submersive parameterized n-plane. We know that Bn is
nonempty by the construction of Y . By the definition of (n,m)-submersive, it follows that
Bn+1 is a covering set for Bn and each Bn is equidimensional.

Since the map φm is surjective and Bm,d has codimension at least 1, Bm has codimension
at least 1 in Gp(m,N). Suppose for all r < k ≤ m,

codim(Bk−1 ⊂ Gp(k − 1, N)) ≥ codim(Bk ⊂ Gp(k,N)) + 2,

then for r ≤ n ≤ m we have

codim(Bn ⊂ Gp(n,N)) ≥ 2(m− n) + 1.

Since Bn is a union of components of φ−1
n (Bn,d) and dominates Bn,d, we conclude that

codim(Bn,d ⊂ Un,d) ≥ 2(m− n) + 1.

Since the Bn,d are PGLn+1-invariant, Bn is a torsor over a family Γn ⊂ G(n − 1, N − 1),
viewed as n-planes in PN passing through p. Furthermore, Γn by definition is the containing
family of Γn−1 ⊂ G(n− 2, N − 1).

By Lemma 4.7, if codim(Γm−1 ⊂ G(m− 2, N − 1)) ≥ codim(Γm ⊂ G(m− 1, N − 1)) + 2,
then codim(Γk ⊂ G(k− 1, N − 1)) ≥ codim(Γk+1 ⊂ G(k,N − 1)) + 2 for all k ≤ m− 1. Thus,
it remains to consider the case where

codim(Γm−1 ⊂ G(m− 2, N − 1)) = codim(Γm ⊂ G(m− 1, N − 1)) + 1.

By assumption, Γm−1 ⊂ G(m − 2, N − 1) is 1-clustered. By Theorem 3.7, there exists
a variety Z ⊂ PN−1 such that Γm−1 consists of the (m − 2)-dimensional linear spaces that
intersect Z. Hence, Bm−1 consists of all parameterizations of (m − 1)-dimensional linear
spaces that contain a member of the family of lines through p and a point of Z.

Suppose that none of the lines parameterized by Z lie in Y . We prove that Bm−1,d is a piece
of the tower of varieties induced by a PGL2-invariant family F ⊂ U1,d. Let ψ : Gp(1, N) →
PN−1 be the morphism that maps a parameterized line to its image, where PN−1 is viewed
as the family of lines passing through p. Let F = φ1(ψ−1(Z)) ⊂ U1,d. It is clear that F is
PGL2-invariant.

By definition, we see that for each ` ∈ F , there must be a parameterized line `1 in PN
lying in a parameterized (m − 1)-plane Λ1 ∈ Bm−1 with `∗1Y = `. If Bm−1,d is not in the
tower of varieties induced by F , then for some `, we can also find a parameterized line `2

lying in a parameterized (m − 1)-plane Λ2 /∈ Bm−1 with `∗2Y = `. By Remark 4.5, we may
assume that Λ2 is (m − 1,m)-submersive. By Lemma 4.6, we can find some Y ′ ⊂ P2N with
a parameterized line `′ and parameterized N -planes Λ′1 and Λ′2 such that Λ

′∗
1 (Y ′, `′) = (Y, `1)

and Λ
′∗
2 (Y ′, `′) = (Y, `2). Because Λ1 and Λ2 are (m− 1,m)-submersive so are Λ′1 and Λ′2.

We can run the argument at the beginning of the proof with the pointed hypersurface (p, Y )
in PN replaced by the pointed hypersurface (p′, Y ′) in P2N . We let φ′n : Gp′(n, 2N) 99K Un,d
from the space of parameterized n-dimensional linear spaces to degree d pointed hypersurfaces
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in Pn. Define B′n and Γ′n as before. We obtain a set Z ′ such that Γ′m−1 is the family of (m−1)-
dimensional linear spaces intersecting Z ′. We know `′ either intersects Z ′ or does not intersect
Z ′. Considering Λ′1 we conclude that `′ intersects Z ′. On the other hand, considering Λ′2 we
conclude that `′ does not intersect Z ′ leading to a contradiction.

This concludes the proof that Bm−1,d is part of a tower of varieties induced from F . If Z also
parameterizes some lines lying in the hypersurface Y , we may repeat the above argument to
conclude that Bm−1,d contains all pairs (p,X) ∈ Bm−1,d such that there is a line in X passing
through p. If Z parameterizes only lines contained in Y , then we are in case (3). Otherwise,
for all n ≥ m− 1, the closure of Bn,d is also induced by F . In particular, the closure of Bm,d
is induced by F .

�

We now wish to understand towers of induced varieties from families F ⊂ U1,d. We first
need an elementary lemma about polynomials on P1. Recall that a vector bundle

⊕
iO(ai)

on P1 is balanced if |ai − aj| ≤ 1 for all i and j.

Lemma 4.9. Let p be a given degree d polynomial on P1 with at least 2 distinct roots, and let
T be the vanishing scheme. For general polynomials f2, . . . , fn on P1 of degree d−1, we get a
map O(1)n+1 → O(d) given by (∂sp, ∂tp, f2, . . . , fn). Then for d = n− 1 or n− 2, the kernel
of the map O(1)n+1 → T given by the composition O(1)n+1 → O(d)→ T (d) is balanced.

Proof. Since p has at least 2 distinct roots, ∂sp and ∂tp have two distinct monomials f0, f1

with nonzero coefficients. Choose monomials f2, . . . , fn distinct from f0, f1 such that the set
{fi}ni=0 contains sd−1, td−1. Then up to a change of coordinates the map is given by all the
monomials of degree d or all but one of the monomials of degree d. In either case, it is easy
to see that the kernel is balanced. �

Proposition 4.10. Let F ⊂ U1,d be a PGL2-invariant, closed irreducible family, and let Bn,d
be the tower of varieties induced by F .

(1) If Bd−1,d 6= Ud−1,d, then F parameterizes the space of polynomials on P1 with at most
one root.

(2) If Bd−2,d 6= Ud−2,d, then F parameterizes a union of PGL2-orbits in the space of
polynomials on P1 with at most two distinct roots.

Proof. Since F is a union of PGL2-orbits, it suffices to study a single PGL2-orbit. Let a be the
dimension of the PGL2-stabilizer of a general element of F , so that dimF = 3−a. We claim
that except for the situations specified in the proposition, Bn,d = Un,d for n = d − 1, d − 2.

Let N =
(
n+d
d

)
− 1. Consider the incidence correspondence

I = {(p, `,X)|p ∈ X, p ∈ `, `∗(p,X) ∈ F} ⊂ Pn × Gp(1, n)× PN

parameterizing triples of a point p, a parameterized line ` through p and a hypersurface of
degree d in Pn such that the pullback of the pointed hypersurface (p,X) by ` is in the family
F . Then

dim I = N − d+ 2n− 2 + dimF ,
since for each element of F , there is a (2n− 2)-dimensional family of lines in Pn it could be
identified with, and for each such line, there is an (N−d)-dimensional family of hypersurfaces
intersecting the given line as prescribed. Consider the map α : I → Un,d defined by projection
to the first and third coordinates. We claim that for n = d − 1 or n = d − 2, α dominates
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Un,d unless we are in one of the two situations described in the proposition. To see that α
dominates, it suffices to consider the dimension of a general fiber. We start with the case
n = d− 1.

Consider the pullback of the standard exact sequence to the line `

0→ `∗TPn(− logX)→ `∗TPn → `∗OX(X)→ 0.

The tangent space to a fiber of α at a general point (p, `,X) of I is the space of sections of
TPn(− logX) whose image in TPn vanish at p. This is given by the global sections of the sheaf
G, where G is the kernel of the map

`∗TPn → `∗(OX(X)⊕ TPn|p).

Alternatively, G is an elementary up modification given by

0→ `∗TPn(− logX)(−p))→ G→ Op → 0.

Thus, we need to calculate the splitting type of `∗TPn(− logX). If we can show that
`∗TPn(− logX) is globally generated, then curves of that deformation class will certainly
sweep out X, and the result on α will follow.

Consider a fixed polynomial f0 on P1 with at least two distinct roots. We wish to analyze
when a general hypersurface X ⊂ Pn with V (f0) as a linear section satisfies that lines with
intersection V (f0) sweep out Pn. Consider the following diagram.

0 0

0 // TPn(− logX)

OO

// TPn

OO

φ // OX(X) // 0

0 // E

OO

// OPn(1)n+1

OO

ψ // OX(X)

=

OO

// 0

O

OO

=
// O

OO

0

OO

0

OO

,

The map ψ is given by the partial derivatives of the equation for X. Let X be general
among those having V (f0) as a linear section. Then since f0 has at least two distinct roots, by
Lemma 4.9, the kernel E restricts to the line ` as a balanced vector bundle. Since n = d− 1,
it follows that E|` and hence, TPn(− logX)|` must consist only of O factors, as required.

Now suppose that n = d− 2 and that V (f0) consists of at least three distinct points. Then
by the calculation of the n = d − 1 case, a general point of a general hypersurface X in
Pd−1 has a 1-parameter family of line sections through p that are in F . If X ′ is a general
hyperplane section of X, X has finitely many parameterized lines through a general point
whose linear section is in F . The result follows. �

15



5. Understanding Z1 and Z2

Recall that Zi is the closure of the locus of points on a hypersurface X swept out by lines
that intersect X in at most i points. In this section we study the algebraic hyperbolicity of
Z1 and Z2. We first introduce certain incidence correspondences and then study their images
in X.

Let λ be a partition of d into i parts. Consider the incidence correspondence

Iλ,d,n = {(`, p1, . . . , pi, X)|` ∩X =
i∑

j=1

λjpj}

parameterizing lines ` with i distinct marked points and hypersurfaces of degree d whose
restriction to the line ` has multiplicities λj at the point pj.

Lemma 5.1. Iλ,d,n is irreducible of dimension 2n − 3 + i +
(
n+d
d

)
− d. It follows that if

d > 2n− 2 + i, then the Zi is empty for a general hypersurface. If d > n− 1 + i, then Zi is
not equal to X for the general hypersurface.

Proof. The incidence correspondence Iλ,d,n maps to the space of lines with i marked points.
The fibers are linear spaces of codimension d in the space of polynomials of degree d in n+ 1
variables. We conclude that Iλ,d,n is irreducible of dimension 2n− 3 + i+

(
d+n
d

)
− d. �

We are particularly interested in Iλ where λ is the singleton partition (d) or the two-part
partition (r, d−r). Following Clemens and Ran [ClR04], we introduce the osculation varieties.
Let V be the space of nonzero homogeneous forms of degree d in Pn. Let

∆r := {(`, x, F )|` ∩X ≥ rx} ⊂ G(1, n)× Pn × V
be the rth osculation variety parameterizing lines that have contact of order at least r to a
pointed hypersurface at the marked point. By Lemma 5.1, ∆r is irreducible of dimension
2n−1−r+

(
n+d
d

)
. Given a hypersurface X = V (F ), let ∆r(X) be the fiber of ∆r over F ∈ V .

We would also like to study a variant of ∆r. We introduce the double osculation varieties

∆r,s := {(`, x, y, F )|` ∩X ≥ rx+ sy} ⊂ G(1, n)× Pn × Pn × V
parameterizing lines that have contact of order r and s at two points of the hypersurface.
When the points coincide, we require that the contact order be r+s. As above, for X = V (F )
let ∆r,s(X) be the fiber of ∆r,s over F ∈ V .

We now construct ∆r,s explicitly and compute its canonical bundle.

Theorem 5.2. The varieties ∆r and ∆r,s are smooth and irreducible. For a general hyper-
surface X, ∆d(X) and ∆r,d−r(X) are of general type when d ≥ 2

√
n + 1. Moreover, for

d ≥ 2
√
n+ 1 and any family of irreducible curves C that sweep out a Zariski open set in ∆d

or ∆r,d−r, we have

2g(C)− 2 ≥ (d− 2) C ·H,
where H is the hyperplane class in Pn.

Proof. Smoothness and irreducibility comes from the realization of ∆r and ∆r,s as bundles
over the space of pointed lines in Pn. To prove the desired results about the canonical bundle,
we explicitly construct the spaces as vanishing loci of sections of vector bundles and repeatedly
apply adjunction.
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Let πi denote the projection from G(1, n) × Pn × V or G(1, n) × Pn × Pn × V to the i-th
factor. Forgetting the point y, defines a projection ϕ : ∆r,s → ∆r. We write (a1, a2) for the
bundle π∗1O(a1) ⊗ π∗2O(a2) on G(1, n) × Pn × V and (a1, a2, a3) for the bundle π∗1O(a1) ⊗
π∗2O(a2)⊗ π∗3O(a3) on G(1, n)× Pn × Pn × V .

Recall the computation of the canonical bundle of ∆r from [ClR04]. There is a tautological
bundle OV (−1) that associates to each point of V given by a degree d polynomial F , the
1-dimensional subspace spanned by F . Note that this bundle is canonically trivial since it
has a nowhere vanishing section. The pullback π∗3OV (−1) maps to π∗2OPn(d) by evaluation

e : π∗3OV (−1)→ π∗2OPn(d).

Similarly, let

0→ S → On+1
G(1,n) → Q→ 0

denote the tautological sequence on G(1, n). There is a natural map

f : π∗2OPn(−1)→ π∗1Q

given by the composition of the natural map π∗2OPn(−1) → On+1 with the projection onto
Q.

We now start applying adjunction. First, ∆1 is the common zero locus of the two maps e
and f . Hence, by adjunction we see that

ω∆1 = ωG(1,n)×Pn×V ⊗ π∗1 det(Q)⊗ π∗2OPn(d+ n− 1) = O∆1(−n, d− 2)

On ∆1, the map π∗2O(−1)→ On+1 factors through S, so there is an exact sequence

0→ π∗2OPn(−1)→ π∗1S → R∨ → 0,

where R∨ has rank 1. Hence

R = OG(1,n)×Pn×V (1,−1).

There is a filtration on π∗1 Symd S∨ given by polynomials of degree d vanishing to order i
at x modulo those that vanish to order i+ 1 at x.

F i

F i+1
= π∗2OPn(d− i)⊗Ri = OG(1,n)×Pn×V (i, d− 2i).

∆r is the zero scheme of the natural map

OV (−1)→ F 1

F r
.

Hence, by adjunction

ω∆r = O∆r

(
r(r − 1)

2
− n, rd− r(r − 1)− 2

)
.

In particular, if d ≥
√

2n+ 1, then ∆d is of general type.

We can work out the class of ∆r,s similarly, using adjunction on ∆1×Pn ⊂ G(1, n)×Pn×
Pn × V . We have a map

π∗3OPn(−1)→ π∗1Q

and

OV (−1)→ π∗3OPn(d).
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The locus ∆r,1 is defined by the common vanishing of this locus on ∆r. Hence, we have

ω∆r,1 = O∆r,1

(
r(r − 1)

2
− n+ 1, rd− r(r − 1)− 2, d− 2

)
.

On ∆r there is a map OV (−1) → F r. We have a filtration on Rr ⊗ Symd−r S∨ given by
the vanishing order of the polynomials at y.

Gi

Gi+1
= O(i, 0, d− 2i)

∆r,s is the zero locus of the map to G1/Gs.

So the canonical of ∆r,s is given by

ω∆r,s =

(
r(r − 1)

2
+
s(s− 1)

2
− n, r(d− r + 1)− 2, s(d− s+ 1)− 2

)
.

In particular, if d ≥ 2
√
n+ 1, then ∆r,d−r is of general type for all 1 ≤ r ≤ d.

If deformations of C sweep out ∆d, respectively ∆r,d−r, then the normal bundle NC/∆d
,

respectively NC/∆r,d−r
, is globally generated hence has nonnegative degree. By the standard

exact sequence for the normal bundle we conclude that

2g(C)− 2 ≥ ω∆d
· C (resp. 2g(C)− 2 ≥ ω∆r,d−r

· C).

The final statement follows. �

There is a natural map α : ∆d(X) → X whose image is Z1 and natural maps βk :
∆k,d−k(X) → X for each 1 ≤ k ≤ d − 1 whose images combine to form Z2. In terms of
the incidence correspondences defining ∆d and ∆r,d−r, these maps are induced by π2, the
projection to the second factor.

Proposition 5.3. For d ≥ 3n−1
2

, α is injective away from ZL, the locus of lines on X swept

out by lines. For d ≥ 3n+1
2

, the βk are injective away from ZL.

Proof. We begin by considering α. Consider the locus in D ⊂ Un,d consisting of the points
(p,X) such that there are two lines `1 and `2 meetingX in d[p]. We claim that the codimension
of D is at least n in Un,d, which suffices to prove the claim.

Let I be the set of tuples (p,X, `1, `2) such that `1 and `2 both meet X in d[p]. Then
D is naturally the image of I, so it remains to compute the dimension of I. We see that I
naturally projects onto the space T of tuples (p, `1, `2) where p = `1 ∩ `2 and `1 6= `2. We
know that T has dimension 2n − 2 + 1 + n − 1 = 3n − 2. Then the fibers of I over T have
dimension N − 2d. It follows that I has dimension N + 3n − 2 − 2d, and so D has at most
this dimension. Since the dimension of Un,d is N + n− 1, we see that D has codimension at
least N +n− 1− (N + 3n− 2− 2d) = 2d− 2n+ 1. This is at least n provided that d ≥ 3n−1

2
.

The argument for βk is similar. Let Dk ⊂ Un,d be the locus such that there are two lines
`1 and `2 meeting X in k[p] + (d − k)[q] for some other point q. Let Ik be the set of tuples
(p,X, `1, `2, q1, q2) such that `i meets X in k[p] + (d− k)[qi]. Then a dimension count similar
to the above gives that Ik has dimension N + 3n − 2d, so that Dk has codimension at least
2d− 2n− 1. This is at least n when d ≥ 3n+1

2
. �

Theorem 5.4. For d ≥ 3n−1
2

, Z1 is algebraically hyperbolic modulo ZL. For d ≥ 3n+1
2

, Z2 is
algebraically hyperbolic modulo ZL.
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Proof. We can adapt an argument from [RY18]. Consider the universal variety U ′n,d of lines
` meeting a hypersurface X to order d at a point, and let Bn,d be the set of (`,X) such that
there is a curve in ∆d(X) passing through ` that violates 2g − 2 ≥ H · C. By Theorem 5.2,
Bd,d is a countable union of subvarieties of codimension at least 1.

We claim that each component of Bd−c,d is codimension at least c + 1. Let (`1, X1) be a
point of Ud,d \ Bd,d. Let (`0, X0) be a general point of a component of Bd−c,d. By Lemma 4.6,
there is a pair (`, Y ) ∈ UN,d such that (`0, X0) and (`1, X1) are both parameterized linear
sections of (`, Y ). Let G` be the space of parameterized (d − c)-planes in PN containing `.
This gives a map from G` → Ud−c,d given by taking linear sections. By Lemma 3.2, Bd−c,d has
codimension at least c+ 1 near (`0, X0).

The same argument applies to ∆r,d−r. Consider the universal variety U ′n,d of lines ` meeting
a hypersurface X to order r at a point and d− r at another point, and let Bn,d be the set of
(`,X) such that there is a curve in ∆r,d−r(X) passing through ` that violates 2g− 2 ≥ H ·C.
We see that Bd,d is a countable union of subvarieties of codimension at least 1. Hence, by the
same argument as above Bd−c,d has codimension at least c+ 1 near (`0, X0).

Note that ∆d(X) has dimension 2n− 1− d. If n = d− c, Bd−c,d does not intersect ∆d for
a general hypersurface if

c ≥ 2n− 1− d,
i.e.

d− n ≥ 2n− 1− d.
This is equivalent to

d ≥ 3n− 1

2
.

Similarly, ∆r,d−r(X) has dimension 2n− d. If n = d− c, then Bd−c,d does not intersect ∆r,d−r
for a general hypersurface if

c ≥ 2n− d.
In other words, if

d ≥ 3n

2
.

Combining with Proposition 5.3, the theorem follows. �

6. Applications

In this section we combine the results of Sections 4 and 5 to prove hyperbolicity-type results
on very general hypersurfaces. Recall that Zi is the locus on the hypersurface X swept out
by lines that meet X in at most i points and ZL is the locus on X swept out by lines.

Theorem 6.1. Let X be a very general hypersurface in Pn with d ≥ 3n+2
2

. Then any curve
not lying in ZL satisfies 2g − 2 ≥ H · C, where g is the geometric genus of C. In particular,
X is algebraically hyperbolic modulo ZL.

Proof. Let Bn,d be a component of the set of pairs (p,X) such that p has a geometric genus
g curve passing through it of degree greater than 2g − 2. For r > n, let Br,d be the tower
of varieties induced by Bn,d. We claim that Bd−2,d is codimension at least one in Ud−2,d.
Otherwise, we could find a family of curves that sweep out X of degree greater than 2g − 2.
Thus, the normal bundle of a general such curve f : C → X is globally generated, so

2g − 2−KX · C = degNf/X ≥ 0.
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Since KX = H, it follows that 2g − 2 ≥ H · C, a contradiction.

By Theorem 4.8, we see that either Bd−2−c,d has codimension at least 2c + 1 in Um−c,d or
there is some F as in the statement. If Bd−2−c,d has codimension at least 2c + 1, then for
d− 2− c = n, we have 2c+ 1 = 2d− 3− 2n ≥ n− 1, so a very general hypersurface of degree
d in Pn contains no such curves. Otherwise, Bd−2,d consists of the points swept out by F .
By Proposition 4.10, it follows that Bd−2,d must be the locus of points in Z2 as X varies. By
Theorem 5.4, Z2 is algebraically hyperbolic modulo ZL and the required inequality holds for
curves not contained in ZL. The result follows. �

Theorem 6.2. Let X be a very general hypersurface in Pn of degree d.

(1) Let k be a positive integer. If d ≥ 3n+1−k
2

, then the only points of X rationally
equivalent to a k-dimensional family of points other than themselves are those that lie
in Z1.

(2) If d ≥ 3n
2

, then X contains lines but no other rational curves.

(3) If d ≥ 3n+3
2

, then any point on X rationally equivalent to another point of X lies in
Z2.

Proof. Let Bn,d be a component of the space of pairs (p,X) such that p is rationally equivalent
to at least a 1-dimensional family of other points of X. For r > n, let Br,d be the tower of
varieties induced by Bn,d. By a result of Roitman [Ro72], a very general point of a Calabi-Yau
variety is rationally equivalent to only finitely many others. Thus, each component of Bd−1,d

is codimension at least 1 in Ud−1,d. By Theorem 4.8 we either have a family F inducing U1,d,
or we see that Bd−1−c,d has codimension at least 2c + 1 in Ud−1−c,d. If Bd−1,d is in the tower
of varieties induced by F , then by Proposition 4.10, we see that Bd−1,d must be equal to the
space of lines meeting the hypersurface to order d at a point or the space of lines contained in
the hypersurface. In this case, all the points rationally equivalent to a k-dimensional family
of points other than themselves lie in Z1.

Otherwise, Bd−1−c,d has codimension at least 2c+1 in Ud−1−c,d. Thus, a general hypersurface
in Pd−1−c contains no such points provided that 2c+1 ≥ d−1− c−k. If we set n = d−1− c,
this holds if

2(d− 1− n) + 1 ≥ n− k
or

d ≥ 3n+ 1− k
2

.

Since all the points on a rational curve are rationally equivalent, by setting k = 1 in (1),
we see that if d ≥ 3n

2
, the only rational curves on X are contained in Z1. By Theorem 5.4,

Z1 is algebraically hyperbolic modulo ZL, so these rational curves must be contained in ZL.
By a result of Beheshti and Riedl [BR20], if d ≥ n the locus of lines does not contain any
rational curves other than the lines. Hence, for d ≥ 3n

2
, a very general hypersurface contains

lines but no other rational curves.

To see the last claim, we let Br,d be a component of the space of pairs (p,X) such that
p is rationally equivalent to some other point of X. By Roitman’s Theorem [Ro72], a very
general point of a Calabi-Yau hypersurface X is rationally equivalent to no others. Taking a
general hyperplane section of X, we see that a very general point of the hyperplane section
is rationally equivalent to no other points. Thus, Bd−2,d has codimension at least 1 in Ud−2,d.
Using Theorem 4.8, we see that either there exists an F inducing Bd−2,d or Bd−2−c,d has
codimension at least 2c + 1 in Ud−2−c,d. If there exists an F , then we know that points
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of X rationally equivalent to another lie in Z2 by Proposition 4.10. Otherwise, a general
hypersurface in Pd−2−c contains no points of Bd−2−c,d if 2c+1 ≥ d−2−c. Setting n = d−2−c,
we see that this happens if

2(d− n− 2) + 1 ≥ n

or

d ≥ 3n+ 3

2
.

�

Our last result relies on a version of the Green-Griffiths-Lang Conjecture. Recall that
this conjecture predicts that given a smooth hypersurface X with d ≥ n + 2, there is some
exceptional locus Z ⊂ X containing the images of all entire curves. If we assume this
conjecture and we assume furthermore that these exceptional loci form an algebraic family
in the universal hypersurface, we can identify precisely what the exceptional locus should be
for d ≥ 3n+2

2
.

Theorem 6.3. Suppose for each n there is a countable union of varieties Bn,d ⊂ Un,d such that
any entire curve in a fiber of the map Un,d → PH0(Pn,OPn(d)) is contained in Bn,d. Suppose
that Bd−2,d is not equal to Ud−2,d. Then for a very general hypersurface with d ≥ 3n+2

2
, any

entire curve is contained in Z2.

Proof. By Theorem 4.8 and Proposition 4.10, we see that for d ≥ 3n+2
2

, any point of Bn,d
is either contained in the locus swept out by lines meeting the hypersurface in two distinct
points or has codimension larger than n. The result follows. �
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