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Abstract: Quercus species (oaks) have been an integral part of the landscape in the northern hemi-
sphere for millions of years. Their ability to adapt and spread across different environments and their
contributions to many ecosystem services is well documented. Human activity has placed many oak
species in peril by eliminating or adversely modifying habitats through exploitative land usage and
by practices that have exacerbated climate change. The goal of this review is to compile a list of oak
species of conservation concern, evaluate the genetic data that is available for these species, and to
highlight the gaps that exist. We compiled a list of 124 Oaks of Concern based on the Red List of
Oaks 2020 and the Conservation Gap Analysis for Native U.S. Oaks and their evaluations of each
species. Of these, 57% have been the subject of some genetic analysis, but for most threatened species
(72%), the only genetic analysis was done as part of a phylogenetic study. While nearly half (49%) of
published genetic studies involved population genetic analysis, only 16 species of concern (13%) have
been the subject of these studies. This is a critical gap considering that analysis of intraspecific genetic
variability and genetic structure are essential for designing conservation management strategies.
We review the published population genetic studies to highlight their application to conservation.
Finally, we discuss future directions in Quercus conservation genetics and genomics.
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1. Introduction

Oaks have evolved and adapted over the past 56 million years [1]. Their success has
been attributed to high genetic diversity, rapid migration and adaptability, and their propen-
sity for hybridization and introgression [2]. While the ecosystem services oaks provide
support a multitude of species, humans in particular have interacted and benefited directly
from oaks over many millennia. Acorns of Quercus ithaburensis and Q. caliprinos, identified
by charcoal analysis, have been associated with early humans from 65,000–48,000 years
ago and were likely included in their diet [3]. Oak wood, bark, leaves, and roots, as well
as acorns, are part of traditional medicine in many parts of the world, and continue to be
used as medicinal remedies [4–7]. Oaks figure in human folklore and culture [8] and have
been perceived as sacred in numerous human societies [9]. Because of their abundance and
high biomass they sequester carbon and so contribute to climate regulation [10]. Genomic
studies are now illuminating the genetic basis behind humans’ representation of oaks as
symbolic of ‘longevity, cohesiveness, and robustness’ [11]. While this paper focuses on the
species that have been adversely impacted by humans, the long relationship between hu-
mans and oaks has also had a positive effect on many species [2]. For example, fire regimes
that have been used over human history to control undergrowth and enhance hunting
areas have benefited oaks through reduced competition with understory vegetation and
more shade-tolerant trees in the open areas maintained by such fires [12–14]. However, we
are currently living in a time when many oak species are in danger.

The exact number of species in the genus Quercus is still open to clarification, as new
species continue to be discovered in oak hot-spots such as Mexico/Central America and
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China/Southeast Asia. Recent estimates are that approximately 430–435 differentiated
species exist [2,15,16]. Oaks occur across the Northern Hemisphere from the equator to
boreal regions and thrive in elevations from sea level to 4000 m on various soil types from
alkaline to acidic. Species richness is especially high in North America and Asia, where
oaks have adapted (and speciated) in response to varying ecological niches [2]. Some oaks,
such as Q. hinckleyi, are as small as one meter at maturity and grow as clumps of long-lived
clones. More familiar to most are large trees that dominate the landscape and live for
hundreds of years, such as Quercus macrocarpa, Q. petraea and Q. robur. They can also be
extremely rare and critically threatened (Q. hinckleyi [17,18]) or abundant with wide-spread
distributions, like the other species just mentioned.

Effective conservation management benefits from genetic data to clarify species’ iden-
tity and adaptations and to provide information on intraspecific diversity and population
structure. Unfortunately, missing or incomplete genetic information limits comprehensive
planning for many threatened oak species. A survey of conservation actions conducted as
part of the Conservation Gap Analysis of Native U.S. Oaks [19] (hereafter Gap Analysis)
found that genetic research was one of the least reported efforts, highlighting the need for
genetic investigations for many oak species. Specific genetic gaps are seen for phylogenet-
ics/taxonomy to clarify evolutionary significant units (ESU) and for population genetics to
address diversity, gene flow, and hybridization/introgression. These findings motivated
our effort here to evaluate the state of Quercus conservation genetics.

2. Developing a List of Oaks of Concern

For our review of the status of oak conservation genetics, we combine findings from
The Red List of Oaks 2020 [16] (hereafter Red List) and the Gap Analysis to create a list
of global species of concern. The Red List assessed 430 Quercus species. Species were
evaluated based on current and projected population sizes, geographic range/endemism,
population decline, and fragmentation. While the majority of oak species are not threatened,
the study found that 41% are ‘species of conservation concern’ with 112 falling into the
IUCN Threatened Categories: Critically Endangered (CR), Endangered (EN), or Vulnerable
(VU) (see p. 9 and Appendix A in [16]) for descriptions and criteria of the IUCN categories.
We use this list of species in our review. An additional 105 species are categorized as
Near Threatened (NT) or Data Deficient (DD). If DD species are included in the analysis’
calculations, the report estimates that globally 31% of oaks are in danger of extinction [16];
we did not include these additional 105 species in our literature review since few have been
the subject of genetic studies.

The Red List identifies the U.S. as one of the areas with the highest number of threat-
ened oaks, so we incorporated additional information from a detailed report on U.S. oaks,
the Gap Analysis [19]. The Gap Analysis found that 31% of native U.S. oak species are
‘species of concern’ based on an assessment of data reported in The Red List of Oaks
2017 [20], the NatureServe conservation rankings [21], the USDA Forest Service risk assess-
ment of vulnerability to climate change [22], and a survey of ex situ collections conducted
as part of the gap report itself. Evaluation focused on risks of extinction, susceptibility to
the effects of climate change, and presence of species in ex situ collections and considered
both current and near-term threats. In addition to the criteria used in the Red List, the Gap
Analysis looked at regeneration/recruitment and genetic variation/species integrity. Based
on these criteria, it scored each species’ level of vulnerability. Results show 28 U.S. oak
species are ‘species of concern’, including 12 species not included in the Red List that we
added to our list of ‘Oaks of Concern’. Our combined list of threatened species is shown in
Table 1 and contains 124 species.
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Table 1. Species of Concern and genetic research focus.

Species of Concern
[Cited Research]

Conservation
Classification

Country
Distribution

Number of
Ex Situ

Collections
Quercus Section Citation

Focus

Quercus acerifolia [1] EN US 44 Lobatae PT

Quercus acutifolia [1,23] VU BZ, GT, HN, MX 34 Lobatae PT

Quercus afares [1,24–27] VU DZ, TN 18 Cerris PT, PG

Quercus ajoensis [1,28] VU MX, US 5 Quercus PT

Quercus albicaulis CR CN 0 Cyclobalanopsis

Quercus arbutifolia [1,29,30] EN CN, VN 0 Cyclobalanopsis PT, PG

Quercus argyrotricha CR N 4 Cyclobalanopsis

Quercus arkansana [1] VU US 48 Lobatae PT

Quercus asymmetrica EN CN, VN 0 Cyclobalanopsis

Quercus austrina [1,28] VU US 25 Quercus PT

Quercus austrocochinchinensis [1,30–34] VU CN, LA, TH, VN 0 Cyclobalanopsis PT, PG, G

Quercus bambusifolia [35,36] EN CN, HK, VN 4 Cyclobalanopsis PG

Quercus baniensis [33,34] CR VN 0 Cyclobalanopsis PT

Quercus baolamensis [34] CR VN 0 Cyclobalanopsis PT

Quercus bawanglingensis [37] CR CN 0 Ilex PT, G

Quercus bidoupensis [34] CR VN 0 Cyclobalanopsis PT

Quercus blaoensis [33,34] CR VN 0 Cyclobalanopsis PT

Quercus boyntonii [1,28,38,39] CR US 21 Quercus PT, PG, CON

Quercus braianensis [33,34] VU LA, VN 0 Cyclobalanopsis PT

Quercus brandegeei [28,40] EN MX 9 Virentes PT

Quercus cambodiensis [34] CR KH 0 Cyclobalanopsis PT

Quercus camusiae [33,34] CR VN 0 Cyclobalanopsis PT

Quercus carmenensis EN MX, US 3 Quercus

Quercus cedrosensis [25,41] VU MX, US 2 Protobalanus PT

Quercus chapmanii [1,28] * LC US 8 Quercus PT

Quercus chrysotricha EN MY 0 Cyclobalanopsis

Quercus costaricensis [1] VU CR, HN, PA 2 Lobatae PT

Quercus cualensis EN MX 1 Lobatae

Quercus cupreata EN MX 4 Lobatae

Quercus daimingshanensis
(damingshanensis) [1,30] EN CN 0 Cyclobalanopsis PT

Quercus dankiaensis CR VN 0 Cyclobalanopsis

Quercus delgadoana [1] EN MX 9 Lobatae PT

Quercus delicatula EN CN 0 Cyclobalanopsis

Quercus devia EN MX 0 Lobatae

Quercus dilacerata [34] CR VN 0 Cyclobalanopsis PT

Quercus dinghuensis CR CN 1 Cyclobalanopsis

Quercus disciformis [33] EN CN 2 Cyclobalanopsis PT

Quercus diversifolia [1] EN MX 3 Quercus PT

Quercus donnaiensis [33,34] CR VN 0 Cyclobalanopsis PT

Quercus dumosa [1,28,42–46] EN MX, US 30 Quercus PT, PG

Quercus edithiae [33,47,48] EN CN, HK, VN 0 Cyclobalanopsis PT

Quercus engelmannii [1,28,41,44,49–51] EN MX, US 36 Quercus PT, PG

Quercus fimbriata CR CN 0 Ilex
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Table 1. Cont.

Species of Concern
[Cited Research]

Conservation
Classification

Country
Distribution

Number of
Ex Situ

Collections
Quercus Section Citation

Focus

Quercus flocculenta EN MX 3 Lobatae

Quercus furfuracea VU MX 5 Lobatae

Quercus gaharuensis VU ID, MY 0 Cyclobalanopsis

Quercus galeanensis EN MX 8 Lobatae

Quercus georgiana [1,39,52] EN US 55 Lobatae PT, PG

Quercus graciliformis CR MX, US 21 Lobatae

Quercus gulielmi-treleasei [23] VU CR, PA 2 Lobatae PT

Quercus havardii [1,28,53] EN US 19 Quercus PT, PG

Quercus hinckleyi [1,18,54,55] CR MX, US 12 Quercus PT, PG, CON

Quercus hintonii [23] EN MX 3 Lobatae PT

Quercus hintoniorum [23] VU MX 6 Lobatae PT

Quercus hirtifolia EN MX 7 Lobatae

Quercus honbaensis [34] CR VN 0 Cyclobalanopsis PT

Quercus hondae [56] VU JP 2 Cyclobalanopsis PT

Quercus inopina [1] * LC US 5 Lobatae PT

Quercus insignis [1,28,57] EN BZ, CR, GT, HN, MX,
NI, PA 27 Quercus PT

Quercus kerangasensis VU BN, ID, MY 0 Cyclobalanopsis

Quercus kinabaluensis EN MY 0 Cyclobalanopsis

Quercus kingiana [58] EN CN, LA, MM, TH 0 Ilex PT

Quercus kiukiangensis [30] EN CN 4 Cyclobalanopsis PT

Quercus kotschyana [1,59] EN LB 0 Quercus PT

Quercus kouangsiensis [1] EN CN 0 Cyclobalanopsis PT

Quercus laceyi [1,28] * LC MX, US 16 Quercus PT

Quercus lenticellata EN TH 0 Cyclobalanopsis

Quercus liboensis EN CN 2 Cyclobalanopsis

Quercus litseoides VU CN, HK 1 Cyclobalanopsis

Quercus lobata [1,28,41,44,49,60–86] * NT US 41 Quercus PT, PG, G,
CON, GENOM

Quercus lobbii EN BD, CN, IN 0 Cyclobalanopsis

Quercus lodicosa EN CN, IN, MM 0 Ilex

Quercus look [1,59] EN LB, SY 16 Cerris PT

Quercus lungmaiensis CR CN 1 Cyclobalanopsis

Quercus macdougallii EN MX 0 Quercus

Quercus marlipoensis CR CN 1 Ilex

Quercus meavei VU MX 1 Lobatae

Quercus merrillii VU ID, MY, PH 0 Cyclobalanopsis

Quercus miquihuanensis [23] EN MX 12 Lobatae PT

Quercus monnula CR CN 0 Quercus

Quercus motuoensis CR CN 0 Cyclobalanopsis

Quercus mulleri [87] CR MX 0 Lobatae PG

Quercus nivea EN MY 0 Cyclobalanopsis

Quercus nixoniana EN MX 0 Lobatae

Quercus obconicus EN CN 0 Cyclobalanopsis
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Table 1. Cont.

Species of Concern
[Cited Research]

Conservation
Classification

Country
Distribution

Number of
Ex Situ

Collections
Quercus Section Citation

Focus

Quercus oglethorpensis [1,28,39] EN US 47 Quercus PT, PG

Quercus pacifica [1,28,43–46] EN US 22 Quercus PT, PG

Quercus palmeri [1,28,41] * NT MX, US 18 Protobalanus PT

Quercus parvula [1,88–90] * NT US 15 Lobatae PT, PG

Quercus percoriacea EN MY 0 Cyclobalanopsis

Quercus petelotii EN VN 0 Cyclobalanopsis

Quercus phanera [1] EN CN 1 Cyclobalanopsis PT

Quercus pinbianensis CR CN 0 Cyclobalanopsis

Quercus pontica [1,25,28,61] EN GE, TR 91 Ponticae PT

Quercus pseudosetulosa [58] CR CN 0 Ilex PT

Quercus pseudoverticillata CR MY 0 Cyclobalanopsis

Quercus pumila [23] * LC US 15 Lobatae PT

Quercus quangtriensis [33] VU CN, LA, MM,
TH, VN 0 Cyclobalanopsis PT

Quercus radiata [1,91] EN MX 0 Lobatae PT

Quercus ramsbottomii EN MM, TH 0 Cyclobalanopsis

Quercus robusta * DD US 2 Lobatae

Quercus rubramenta VU MX 0 Lobatae

Quercus runcinatifolia EN MX 1 Lobatae

Quercus rupestris EN VN 0 Cyclobalanopsis

Quercus sadleriana [1,28,61] * NT US 14 Ponticae PT

Quercus sagrana (sagraeana) [28] EN CU 1 Virentes PT

Quercus semiserratoides CR CN 2 Cyclobalanopsis

Quercus sichourensis [30,48,92] CR CN 1 Cyclobalanopsis PT, G

Quercus similis [1,28] * LC US 2 Quercus PT

Quercus steenisii EN ID 0 Cyclobalanopsis

Quercus tardifolia * DD MX, US 0 Lobatae

Quercus thomsoniana CR BD, BT, IN 0 Cyclobalanopsis

Quercus tiaoloshanica [93] EN CN 0 Cyclobalanopsis CON

Quercus tomentella [1,28,41,61,94–97] EN MX, US 33 Protobalanus PT, PG

Quercus tomentosinervis CR CN 0 Cyclobalanopsis

Quercus toumeyi [1,28] * DD MX, US 3 Quercus PT

Quercus treubiana VU ID, MY 0 Cyclobalanopsis

Quercus trungkhanhensis [33] CR VN 0 Ilex PT

Quercus tuitensis VU MX 0 Lobatae

Quercus tungmaiensis [58,98] EN CN, IN 3 Ilex PT, G

Quercus utilis [1,48,58] EN CN 2 Ilex PT

Quercus vicentensis VU MX, SV 1 Quercus

Quercus xanthotricha EN CN, LA 0 Cyclobalanopsis

Quercus xuanlienensis [33] CR VN 0 Cyclobalanopsis PT

Conservation classification: CR—Critically Endangered, EN—Endangered, VU—Vulnerable, * NT—Near Threatened, * LC—Least Concern,
* DD—Data Deficient (* Gap Analysis). (see [16] for descriptions and criteria of IUCN categories). Country distribution: BD—Bangladesh,
BT—Bhutan, BZ—Belize, CN—China, CR—Costa Rica, CU—Cuba, DZ—Algeria, GE—Georgia, GT—Guatemala, HK—Hong Kong,
HN—Honduras, ID—Indonesia, IN—India, JP—Japan, KH—Cambodia, LA—Lao People’s Dem. Republic, LB—Lebanon, MM—Myanmar,
MX—Mexico, MY—Malaysia, NI—Nicaragua, PA—Panama, PH—Philippines, SV—El Salvador, SY—Syrian Arab Republic, TH—Thailand,
TN—Tunisia, TR—Turkey, US—United States, VN—Viet Nam. Citation focus: PT—phylogeny/taxonomy, PG—population genetics,
CON—conservation, G—genome assembly, GENOM—genomic methods.
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The countries with the highest numbers of threatened oak species are China with
36, Mexico with 32, and the United States with 28. Not surprisingly these are the three
countries with the highest oak species richness. Other regions of concern are Viet Nam
with 20 threatened oak species and Malaysia with nine. Chinese, Mexican, and Vietnamese
oaks are mainly threatened by loss of habitat due to logging, agriculture, and urbanization,
while in the United States, climate change and invasive species are the major concerns [16].

3. Genetic Research on Oaks of Concern

We used citations in the Red List, the Gap Analysis, Google Scholar Searches (filtering
on species name and the word ‘genetics’ for a date range of 2000 to present), and citations
contained within these studies, to identify genetic studies that have been conducted on
the species on our list, with the caveat that the results represent a ‘point in time’ and that
new research is constantly being added, may not yet be published, or was not found by
this search protocol. Citations to genetic studies are included in Table 1.

We found a total of 78 references that included analysis of one or more species on
the list. We classified each of the cited papers by the main focus of the research: phy-
logeny/taxonomy (PT), population genetics (PG), conservation (CON), genome assembly
(G), and genomic methods (GENOM). Of the 124 species, 71 (57%) had one or more pub-
lished research papers involving a genetic study. Quercus sections with the highest numbers
of listed species are Cyclobalanopsis, Lobatae, and Quercus. Of the Oaks of Concern in each of
these sections, 24 of 55 (44%) of Cyclobalanopsis, 15 of 30 (50%) of Lobatae, and 16 of 21 (76%)
of Quercus taxa have cited genetic research.

Of the published genetic papers, 24 of 78 (31%) are phylogeny/taxonomy related (PT)
with a number dealing with macroevolution of the Quercus genus (such as [1,28]), while
others focus on phylogenies within Quercus sections (such as [23,40,41,61]), and still others
look at regional phylogenies (such as [30,33,34,46–48,56,58,59,88,91]). It is notable that for 51
of the 71 (72%) species with cited works, the only genetic research was phylogeny/taxonomy
related (see Table 1). The rise of genomic analysis in phylogenetics over the last few years
(phylogenomics [99]) has provided better tools for clarifying enigmatic relationships within
Quercus. In particular, with the application of RAD-seq methods, it has been possible to use
tens of thousands of genetic markers to get good phylogenetic signal and provide insights
into the evolutionary diversification of the Quercus genus [1,2]. Phylogenetic research is
important in delineating conservation units (ESUs), a critical component in establishing
a starting point for conservation planning. Phylogenetics/phylogenomics has been used
to answer many questions about Oaks of Concern, such as confirming species’ identity
and addressing introgression. Additionally, many of these papers include other pertinent
data relating to conservation, for example, to hybridization and biogeography. While
elucidating the evolutionary history of oaks is certainly an important endeavor, direct
implications of phylogenetic reconstruction for conservation management are limited.
Most phylogenetic studies include only one or a very few representatives of each species,
so provide little insight into many issues most pertinent to conservation management.

4. Population Genetics for Oaks of Concern

We found that a critical area of conservation research, population genetics studies
(PG), are missing for the vast majority of Oaks of Concern. Population genetics studies
assess intraspecific genetic diversity and population structure and form the foundation
of the field of conservation genetics. While we found 39 of 78 (50%) papers focused on
population genetic (PG) questions, only 16 different species were investigated in these
papers (Table 2), leaving 87% of the species with no information on intraspecific diversity.
Five papers examined specific conservation (CON) questions, such as ex situ conserva-
tion [100], habitat destruction [93], and genetics as input to conservation planning in
response to climate change [73,76,85]. Five dealt with genomic methods (GENOM) such as
epigenetics [79,80,86], ecological niche modeling [84], and landscape genomics [81].
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Table 2. Population genetics studies involving Oaks of Concern.

Species of Concern Citation Focus of Study Method Used

Q. afares Mir et al. [24] hybridization nuclear allozymes,
chloroplast markers

Q. arbutifolia Xu et al. [29] genetic diversity chloroplast (cpDNA), nuclear
(ITS) DNA sequences

Q. austrocochinchinensis An et al. [31] introgression AFLP markers, nu-SSRs

Q. bambusifolia Zeng et al. [35,36] inbreeding, genetic diversity,
population structure nu-SSRs

Q. boyntonii Spence et al. [39] fragmentation, ex situ collections,
inbreeding, heterozygosity nu-SSRs and EST-SRRs

Q. dumosa Backs et al. [43] introgression nu-SSR

Burge et al. [42] gene flow/environmental gradients RAD-seq

Ortego et al. [45] genetic differentiation, population
structure nu-SSR

Q. engelmannii Oney-Birol et al. [51] hybridization/introgression RNA-seq

Ortego et al. [50] ecological niche modeling nu-SSR

Riordan et al. [49] responses to geography and climate nu-SSR

Q. georgiana Kadav [52] genetic diversity, population structure EST-SSRs

Spence et al. [39] fragmentation, ex situ collections,
inbreeding, heterozygosity nu-SSRs and EST-SRRs

Q. havardii Zumwalde et al. [53] genetic diversity, population structure nu-SSRs

Q. hinckleyi Backs et al. [18] genetic diversity, population structure nu-SSRs

Backs et al. [55] hybridization nu-SSRs

Backs et al. [54] genetic diversity, in situ/ex situ nu-SSRs

Q. lobata Abraham et al. [68] hybridization nu-SSRs

Ashley et al. [65] landscape genetics, population
structure nu-SSRs

Browne at al. [66] adaptational lag/temperature genome-wide sequencing

Craft et al. [69] hybridization nu-SSRs

Dutech et al. [67] gene flow, genetic diversity,
population structure nu-SSRs

Gharehaghaji et al. [70] gene flow nu-SSRs

Grivet et al. [73] gene flow nu-SSRs

Gugger et al. [60] sequence variation/climate gradients whole-transcriptome sequencing
(mRNA-Seq)

Mead et al. [64] ecophysiological
traits/gene expression RNA-seq

Pluess et al. [74] gene flow nu-SSRs

Scofield et al. [75] gene flow nu-SSRs

Sork et al. [77] gene flow, pollen movement allozymes, nu-SSRs

Sork et al. [78] gene flow, population structure nu-SSRs

Sork et al. [63] gene flow, environmental gradients chloroplast and
nuclear microsatellite

Sork et al. [46] hybridization, introgression nu-SSRs,
RADseq-based sequences
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Table 2. Cont.

Species of Concern Citation Focus of Study Method Used

Q. mulleri Pingarroni et al. [87] genetic diversity nu-SSRs

Q. oglethorpensis Spence et al. [39] fragmentation, ex situ collections,
inbreeding, heterozygosity nu-SSRs and EST-SRRs

Q. pacifica Backs et al. [43] gene flow, population
structure, introgression nu-SSRs

Ortego et al. [45] evolutionary history, demographics nu-SSRs, cpSSRs

Q. parvula Dodd et al. [90] species differentiation AFLP genetic markers

Kashani et al. [89] genetic differentiation, introgression AFLP genetic markers

Q. tomentella Ashley et al. [94,95] genetic variation, structure nu-SSRs

Ashley et al. [95] landscape and conservation genetics nu-SSRs

Ashley et al. [96] genetic variation,
population structure nu-SSRs

While it is discouraging that only 16 Oaks of Concern have population genetics (PG)
related citations (Table 2), these studies provide important examples of the work that
has been done, as well as highlighting the somewhat limited breadth of the population
genetics research for endangered oaks to date. Of those species that have been studied
using population genetic approaches, twelve are in Mexico or the U.S., three in China or
Southeast Asia, and one in North Africa. China has the largest number of threatened species
on our Oaks of Concern list (36), but only a handful of species have been studied (Table 1)
and only three have been the subject of population genetic research (Table 2). These three
species are members of the Cyclobalanopsis section occurring in Southeast Asia. Quercus
arbutifolia is an Endangered species found in the mountain cloud forests of southern China
and Viet Nam. Xu et al. [29], used chloroplast (cpDNA) and nuclear (ITS) DNA sequences
to examine Q. arbutifolia’s genetic diversity, phylogeographic structure, and evolutionary
history. The authors acknowledge the highly threatened status of this species, but highlight
how their findings on genetic diversity, which they found to be unexpectedly high, and
population dynamics are critical to developing effective conservation plans. Quercus
austrocochinchinensis is a Vulnerable species found in China, The Lao People’s Democratic
Republic, Thailand, and Viet Nam. It is referenced in six genetic research papers, but only
one population genetics paper. Possible hybridization between Q. austrocochinchinensis and
a sympatric species, Q. kerrii, was investigated using AFLP markers and nu-SSRs, providing
information for long-term conservation and restoration of the tropical ravine rainforest
environment in the Indo-China area [31]. Quercus bambusifolia is an Endangered species
found in China, Hong Kong, and Viet Nam. Using population genetics analyses of nu-SSR
data, Zeng et al. [35,36] examined inbreeding, genetic diversity, and population structure,
and provide data applicable to restoration of severely fragmented tropical landscapes.

The only North African species on our list of Oaks of Concern is Q. afares, the African
Oak, a Vulnerable species with a limited distribution in the coastal mountains of Algeria
and Tunisia. With genetic analysis using nuclear allozymes and chloroplast markers, Mir
et al. [24] confirmed its identity as a stable hybrid of two sympatric but phylogenetically
distant species, Q. suber and Q. canariensis. Q. afarensis combines traits of these two species,
suggesting one or more hybridization events.

Quercus mulleri (section Lobatae) is a microendemic oak found in the Sierra Sur de
Oaxaca of Mexico. In the first report on this species since it was identified 60 years ago, a
population genetics study (PG) examined genetic diversity and population structure using
nu-SSRs with the goal of providing information to enhance conservation strategies [87].

The western United Sates, particularly California, has been the focus of numerous
studies of oak population genetics, including several studies of Oaks of Concern. Quer-
cus dumosa is an endangered oak (section Quercus) found in Baja California, Mexico, and
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California. Three population genetics studies (PG) examined genetic exchange between
this species and its close relatives. One study focused on the influence of environmen-
tal gradients using RAD-seq [42], another examined introgression and species’ integrity
related to neighboring species using nu-SSR [43], and a third examined genetic differen-
tiation and population structure to examine evolutionary history of sympatric species
using nu-SSR [45]. Quercus engelmanii is also an endangered species distributed in Baja
California, Mexico and southern California, US. Population genetic studies have examined
responses to geography and climate [49], ecological niche modeling [50], and hybridiza-
tion/introgression using RNA-seq [51].

Valley oak, Q. lobata, a California endemic listed as Near Threatened, is by far the
most thoroughly investigated species on our list. Seven papers report on phylogeny/taxon-
omy [1,28,44,61,62,71,83], one paper reports on genome assembly [62], and five (including
one in this special edition [86]) investigate new genomic methods 79–81,84,86]. A number of
population genetic papers have also focused on Q. lobata. Several studies have investigated
gene flow, hybridization, and population structure [46,65,67–70,72,74,75,77,78]. One study
used whole-transcriptome sequencing (mRNA-Seq) to investigate sequence variation with
climate gradients [60] and another looked at geographic patterns of genetic variation in
relation to climate change using chloroplast and nu-SSRs [63]. Drought response was
measured using ecophysiological traits and gene expression (RNA-seq) [64]. A common
garden experiment and genome-wide sequencing were used to examine adaptational
lag to temperature, with potential application to identifying genotypes preadapted to
future climate change conditions [66]. Valley oak provides a model of how different
genetic approaches can be used to investigate the ecological and evolutionary genetics of a
threatened tree species, predict future trends, and assist in developing strategies to manage
the risks a species is facing.

Two species of oaks on our list are endemic to the California Channel Islands, Q. paci-
fica and Q. tomentella. Quercus pacifica is an Endangered species, and researchers have
investigated gene flow, population structure, and relationships to two mainland oaks using
nu-SSRs [43] and evolutionary history and demographics using nu-SSRs and cpSSRs [45].
Quercus tomentella, also listed as Endangered, is a member of the small section Protobalanus.
Population genetics papers cover genetic variation and population structure [94], landscape
and conservation genetics [95] and genetic variation and population structure [96] all using
nu-SSRs. Another species, Quercus parvula is found on Santa Cruz Island and in the Califor-
nia Coast Ranges and is classified as Near Threatened. Two population genetics papers
report on genetic differentiation and introgression [89] and species differentiation [90], both
using AFLP genetic markers.

Quercus hinckleyi is a Critically Endangered species with an extremely limited distri-
bution in Texas, USA. Population genetic studies have examined clonality, diversity and
population structure [18], hybridization [55], and genetic diversity assessment of in situ
and ex situ populations [54]. Important for conservation, Backs et al. [18] reported a high
level of clonality at some sites, with the number of genetically unique individuals being
substantially lower than previously assumed from population counts.

The other Oaks of Concern that have had population genetic studies are primarily in
the Eastern United States. One paper in this Special Issue examines genetic diversity and
population structure in the Endangered Q. havardii [53]. Another paper in this Special Issue
conducted population assessments of three Oaks of Concern, Q. georgiana, Q. oglethorpensis,
and Q. boyntonii, and reports that these species have lower genetic diversity than more
abundant oaks [39]. Another paper covers genetic diversity and population structure of
Q. georgiana using EST-SSRs [52].

One question recently explored for several North America species is how well the
genetic diversity of the species is captured in ex situ collections. Oak seeds (acorns) are
not candidates for seed banks; they lose viability when desiccated. Desiccation is part
of the standard protocol of conventional seed-banking [101–104]. Conservation of living
oaks in ex situ collections can be constrained by space limitations, long generation times,
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and their proclivity to hybridize [54]. A recent paper by Backs et al. [54] reported that ex
situ collections of Q. hinckleyi were likely sampled from only one of the remaining in situ
genetic clusters and missed much of the in situ diversity. The study of Quercus georgiana,
Q. oglethorpensis, and Q. boyntonii mentioned above reports that while common alleles are
well preserved in ex situ collection, low frequency and rare alleles are not [39].

For many other species on our Oaks of Concern list, there are immediate questions
that can be addressed through genetic and/or genomic analysis, such as confirming taxa,
identifying clones, examining levels of diversity, and measuring gene flow [105]. Quercus
tardifolia, is a good example. It is described as Data Deficient, requiring both field research
and taxonomic clarification and lacking demographic data and diversity information [19].
Other species of concern are not so lacking in information, but still have genetic gaps in
their conservation portfolios. Quercus robusta needs research to distinguish spontaneous
hybrids from historic hybrids that have evolved into true species [106]. For Q. acerifolia,
there is a need to identify genetic structure of populations [107] and for Q. carmenensis there
is a need to verify species integrity and/or levels of introgression [108].

To summarize, our survey of genetic studies shows that while some Oaks of Concern
have benefited from population genetic research, most are lacking basic conservation-
focused data. This need can be addressed through population genetic analysis looking
at species integrity, intraspecific diversity, population structure, gene flow, hybridiza-
tion levels, and diversity capture in ex situ collections. Only with this information can
comprehensive conservation strategies be developed.

5. Future Directions

Some exciting new genetic methods that have application to conservation questions
can be characterized as ‘genomic research’. The ability to look across an entire oak genome
or use ‘reduced representation’ genome sampling has been made possible in recent years
by advances in DNA sequencing as well as through better ‘big data’ manipulation due
to increased computing power, storage capabilities, and robust analytic applications. A
sampling of genomic research that has been directed toward oak conservation includes
phylogenomics [83], epigenetics [80], QTL (quantitative trait loci) [109], and landscape
genomics [110]. While phylogenomics provides a broad evolutionary picture of oaks
and helps define ESU’s, epigenetics, QTL, and landscape genomics have the potential to
investigate the genomic basis of adaptive traits and apply this knowledge to developing
conservation strategies for Oaks of Concern. These new genomic research methods will
provide information on plant and species adaptive responses, data needed for flexible
conservation efforts that may include plant migration and/or reintroduction.

Epigenetics is the study of heritable phenotypic changes in an organism that do not
involve alterations in the DNA code itself. It is emerging as an important field of research
for understanding plant adaptability and plasticity and for identifying the ‘ecological
background’ of individuals [111]. The shortfall in oak-related research in these areas is
exemplified by a survey of epigenetic research which found of approximately 20,000 epige-
netic studies published in 2019, only 3% of the papers were plant-related, and of those only
5% focused on forest species [112]. Of tree-related papers, only a handful reference Quercus
species, for example, [80,113,114].

Epigenetic modification can be created by biotic or abiotic environmental stresses,
stochastic “epigenetic mutations” [111,115] or natural processes such as hybridization [116].
They can be reset when a stress is relieved or may result in heritable epigenetic marks that
can be passed on as ‘molecular memory’ persisting through several subsequent generations
and potentially becoming evolutionarily viable [116–118]. Oaks as long lived organisms
have the time to enhance their epigenetic responses through a number of stressful events
before passing along these responses through their germlines [119]. Some work has been
done with oaks and epigenetics [114,120] including a paper in this Special Issue that
examines experimental DNA methylation using the Near Threatened Q. lobata [86]. This is



Forests 2021, 12, 882 11 of 16

an area of conservation interest that should be explored both for planning conservation
strategies and basic research into underlying adaptive mechanisms.

Current data processing capabilities have also made it possible to search genome-wide
for QTL (quantitative trait loci) [109]. QTL mapping seeks to identify the relationship be-
tween various genomic locations and a set of quantitative traits, leading to a chromosomal
location and ultimately to identification of gene(s) with the final goal of looking at gene
expression. Among other things, this will lead to a better understanding of genetic mecha-
nisms of variation and adaptation [121]. Results can then be applied to adjust conservation
measures in response to rapid change, for example, by identifying the genetic adaptability
potential of individuals to be used in assisted migration or reintroduction [122,123].

Landscape genomics examines the relationship and interaction between adaptive ge-
netic loci on genomes and landscape variations across which natural populations exist [110].
It seeks to identify the aspects of the environment that affect genetic variation and how
that variation in turn affects adaptation [124,125]. It is a valuable tool in understanding
oaks’ responses to environmental stresses and evaluating alleles that occur under certain
climate and habitat conditions. These correlations will aid in conservation planning for
plant migration or restoration by identifying populations or individuals that are currently
responding favorably to conditions that are anticipated in the climatic future [81,126,127].

These emerging genomic tools as well as more traditional population genetic analyses
can and should provide vital input to developing effective oak conservation strategies.
Our review highlighted important gaps in our knowledge of many species that are or may
soon be facing extinction. For geneticists, there is much work and many opportunities to
address conservation needs of the Oaks of Concern.
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