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Supplementary Figure 1: Selection of ARPES data from the Bi2212 single
crystal below and near Tc. (a) EDCs located at coordinates k = (0.93,−0.64 →
0.65)π/a with T = 60 K (slice indicated by rightmost triangle in (k)). EDCs in (b)
- (e) correspond to successively lower values of kx (indicated by triangles in (k)).
(f) - (j) show the same EDCs but at T = 90 K. (k) and (l) are the Fermi surface
maps measured at T = 60 K and T = 90 K, respectively, laid over a tight binding
fit to the dispersion [1].
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Supplementary Figure 2: Additional calculations for the OP91 Bi2212
single crystal. (a) ARPES-derived spin susceptibility at the commensurate wave-
vector (π,π) for temperatures between 60 K (below Tc) and 140 K (∼ T ∗). (b)
Energy-momentum dispersion of the spin susceptibility along the (π/2,π/2) −
(3π/2, 3π/2) direction. Pink symbols represent INS measurements (only above the
resonance energy) from optimally doped Bi2212 at 100 K [2]. (c) Generalized or-
der parameter for 90 K data along (π, 0)− (0,π) direction (dashed line is the pure
d-wave function 1/2(cos kx − cos ky)). (d) Matsubara energy dependence of order
parameter at (π, 0) at 90 K.

3



Supplementary Figure 3: Roadmap of calculations presented in this
work. The red, blue, and pink steps are discussed in the main text, whereas the
green steps are discussed in Supplementary Note 5.

Supplementary Figure 4: Comparison of ARPES spectra from the main
and superlattice bands near the node. (a) Raw Fermi surface map for
Bi2212 for the OP90 sample at 90 K. (b) EDCs from the main (blue) and
superlattice (orange) bands from points connected by the arrow in (a).
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Supplementary Figure 5: Comparison of ARPES near-nodal and
antinodal spectra from the main band in the X and Y quadrants of the
Brillouin zone. (a) Energy Distribution Curves (EDCs) from the X (blue) and Y
(orange) quadrants near the antinode. (b) EDCs from the X (blue) and Y
(orange) quadrants near the node.

Supplementary Figure 6: Absence of doping or contamination in the
superconducting Bi2212 OP91 single crystal. ARPES data in (a) - (c) were
collected along the (π,−π) → (π,π) direction on days 1, 25, and 42 after cleaving.
(d) - (f) show selected EDCs (labeled 1, 2, 3) indicated in (a) - (c). All data were
collected at 60 K, below Tc.
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Supplementary Figure 7: Real part of the bare susceptibility at ω = 0 for
an optimally doped Bi2212 sample at 140K (normal state). The color bar
is in units of states/eV/formula unit.

Supplementary Figure 8: Effects of symmetrization on the bare suscep-
tibility χ0. (a) Fermi surface of the true spectral function. (b) Dispersion along
direction indicated by white vertical line in (a). (c) Calculated χ0(q,Ω = 0). (d)-
(f) Same as (a)-(c) but the spectral function has been symmetrized “by hand” and
some patches of the Brillouin zone have been removed. Color bars in (c) and (f)
are in units of states/eV/formula unit.

.
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Supplementary Figure 9: Symmetrization artifacts in the interacting spin
susceptibility of near-optimally doped Bi2212. (a) ARPES-derived magnetic
excitation spectrum along diagonal direction from (0.5π, 0.5π) to (1.5π, 1.5π) (b).
Same as (a), but in a momentum range (0, 0) − (2π, 2π). Note the difference in
color bar scales (states/eV/formula unit).

Supplementary Figure 10: Spectrum of magnetic excitations for the OP80
film at 20 K. The white curve is the lower boundary of the “particle-hole contin-
uum”. Pink symbols represent inelastic neutron scattering (INS) measurements only
above the resonance energy from optimally doped Bi2212 at 10 K [2]. The color bar
is in units of states/eV/formula unit.
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Supplementary Figure 11: Dependence of the leading eigenvalue on the
coupling energy U0 above (but close to) Tc. Results are shown for the thin
films UD67 at 80 K in (a) and OP80 at 90 K in (b). Shaded rectangles indicate
uncertainties in U0 and λ.

Supplementary Table 1: Comparison between the coupling energies (U0 and U) and
between the corresponding eigenvalues (λ0 and λ respectively) near Tc

Sample T (K) U0

(meV)
U
(meV)

λ0 λ

UD67 80 720 775 0.89 1.02

62 741 820 0.87 1.1

OP80 90 655 635 0.9 0.86

70 660 635 1.01 0.93

OP91 90 585 525 1.05 0.84
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Supplementary Note 1. Additional data and re-

sults for the OP91 single crystal

In the main text we showed a small sample of the data sets employed in this work

for the calculation of the pairing interaction and the solution of the Bethe-Salpeter

Equation (BSE). Supplementary Figure 1 shows a more detailed example of the

kind of data used in said calculations, collected from the OP91 single crystal at 60

K and 90 K. Panel (k) shows the momentum dependence of electronic excitations at

the Fermi energy below Tc for half the Brillouin Zone (BZ). As in the UD67 sample

data (shown in the main text), the main and superlattice bands are visible, but the

latter are more intense due to the long-range superstructure typical of single crystals.

The dashed triangle indicates the portion of momentum space selected for reflection

about the symmetry axes of the zone to obtain the spectra throughout the BZ.

Panels (a) − (e) show stacked Energy Distribution Curves (EDCs) along selected

vertical slices of momentum space, starting near the (π, ky) line and ending in a

slice containing the node (see yellow triangles in panel (k)). For both temperatures,

the dispersion of the main band is evident from the EDCs, as is the closing of the

superconducting gap near the node. Even though the EDCs are shown for binding

energies up to 450 meV, in the calculations in the main text we used the entire

EDCs, sampled up to 510 meV for the OP91 sample.

Using these data, we followed the same procedure as in the main text to calculate

the spin susceptibility and solve the BSE. Supplementary Figure 2 summarizes the

results for the OP91 crystal, emphasizing those obtained at 90 K (∼ Tc). In real

frequencies, Imχ again broadens and loses intensity as the temperature is increased

(Supplementary Figure 2a), while the upward dispersion branch is still visible in

Supplementary Figure 2b. Pink symbols in this panel represent INS data from

optimally doped Bi2212 at 100 K [2]. The pairing eigenfunction Φ also changes sign

upon crossing the BZ diagonal and decays with a similar energy scale as in the thin

films (∼ 250 meV), as shown in Supplementary Figure 2c,d.
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Supplementary Note 2. Further details on data

analysis

Supplementary Figure 3 summarizes the steps required to solve the BSE starting

from the spectral function measured in ARPES. While the procedure for the extrac-

tion of the spectral function from the data was already discussed in the main text

and the Methods section therein, in this note we address a few additional details

that were omitted for brevity.

Effect of the assumption of particle-hole symmetry

STM data on Bi2212 cuprate superconductors show signatures of particle-hole (p-h)

asymmetry in the single-particle density of states (DOS) of optimally doped sam-

ples, which becomes more prominent in the lightly doped samples. We, however,

argue that the assumption of of p-h symmetry (in a small energy interval around

the chemical potential) in the current work has no significant bearing on the end

results. To this end, we explored a different symmetrization procedure of the data

as follows: ImG(k,−ω) = ImG(k, ω). In other words, the spectral function was

extended to all energies at all momenta. This approximation is certainly worse than

that employed in this work. Even this procedure resulted in eigenvalues increasing

with decreasing temperature and approaching unity for T ∼ Tc, which is indica-

tive of the lack of sensitivity of the end results of our analysis to the issue of p-h

symmetry or its absence in ARPES data. Moreover, in our earlier work [3], we in-

corporated p-h asymmetry by hand in the calculation of the spin response function

and found the results were not significantly different from the analysis invoking p-h

symmetry. The lack of a significant impact of the issue of p-h symmetry in our anal-

ysis can be ascribed to the following fact: it is the coherent part of the electronic

excitations which underlie the magnetic excitations. In this context, as shown in

the past works of Randeria et al. [4] and Anderson et al. [5], the p-h asymmetry in

single-particle DOS can predominantly be attributed to the p-h asymmetry of the

incoherent electronic excitations—while the coherent part of the spectrum remains

mostly p-h symmetric.
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Superlattice contributions

In this work, the ARPES data from Bi2212 single crystals were collected in the

Y-quadrant, which guarantees the absence of any intermixing between main bands

(MBs) and superlattice bands (SLBs). In the thin films (UD67 and OP81 samples

considered in this work), this does not constitute a significant issue because the SLB

signal is much weaker compared to that in single crystals, due to lack of long-range

superstructure order in thin films. Even though the SLB signal in single crystals is

stronger than in thin films, the ratio of the intensity of SLB to that of the MB is

weak in both cases. This is illustrated in Supplementary Figure 4, where, despite

the fact that the SLB looks comparable to the MB in the Fermi surface map (panel

(a)), the EDCs show that the main band has substantially more spectral weight

(panel (b)). Consequently, the background subtraction effectively eliminates most

of the SLBs during the extraction of the spectral function from the raw data.

One may, in principle, pursue the analysis presented in this work using data from

the X quadrant instead. However, the MB intersects two SLBs in this quadrant near

the node, which is why the main band appears to be more intense in this region (as

in Supplementary Figure 1k,l). Looking at the EDCs from “equivalent” momenta

in the X and Y quadrants, we see that they are qualitatively different (see Supple-

mentary Figure 5). Unfortunately, this is not a matrix element effect —rather, it is

due to the unavoidable mixing of two bands due to structural distortion. Therefore,

a simple re-scaling cannot make EDCs from symmetry-equivalent momenta in these

two quadrants coincide. In short, the excitations from the X quadrant should not

be taken as a representative of the electronic structure of the CuO2 planes.

Bilayer Splitting

We do not observe well-defined antibonding bands in our data from optimally doped

and underdoped Bi2212 samples. In other words, the intensity of the signal from

the antibonding MB is much weaker than that from the bonding MB. As is the case

for the weak SLB signal, the weak antibonding MB intensity also gets effectively

eliminated because of background subtraction. In this context, even though bilayer

splitting may be present in optimally doped samples, it is prominent in strongly

overdoped Bi2212 samples [6, 7], which were not considered in the current work. In

passing, we would like recall the work of Dahm et al. [8]. They performed a similar

calculation to ours, but starting with INS data from a different cuprate superconduc-
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tor, YBa2Cu3O6.6. Because bilayer splitting is more pronounced in this compound,

the authors had to take this effect into account explicitly. Yet, their conclusions are

similar to ours; namely, that the Bethe Salpeter eigenvalue is ∼ 1 and, thus, that

spin fluctuations are sufficiently strong to mediate high-Tc superconductivity.

Sample “aging”

After prolonged ARPES experiments, Bi2212 samples are known to “age” because

of surface doping in ultra-high vacuum conditions. Therefore, we repeatedly mea-

sured antinodal spectra and compared them with those collected at the beginning

of the experiment. These measurements showed no signs of surface contamination

or doping. Supplementary Figure 6 shows the absence of aging in our OP91 crystal

after 42 days of measurements. Both the dispersion (along the zone boundary) and

selected EDCs are nearly identical for data collected on days 1, 25 and 42 after a

single cleave.

Supplementary Note 3. The anomalous Green’s

function

In the superconducting state, the particle-hole bubble χ0 should include a term

quadratic in the anomalous Green’s function, which we call FF . We ignored this

term in this work for three reasons:

� As pointed out by Chatterjee et al. [3], in the superconducting state, the

calculated dynamic susceptibilities vary only slightly when one includes the

anomalous Green’s function. Inclusion of the FF term will certainly influence

the bare susceptibility, but an appropriate readjustment of the coupling con-

stant U0 will keep the resonance in the interacting susceptibility at the correct

energy.

� While we considered several data sets below Tc to illustrate the performance of

the RPA in constructing the spin fluctuation propagator, for the calculation

of the Bethe-Salpeter eigenvalue we restricted our analysis to temperatures

slightly below and above Tc, where the FF term is not important.
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� Similar results for the eigenvalues were obtained from an independent method

of obtaining the prefactor U2 in the pairing interaction V , as shown in Sup-

plementary Note 5.

However, it is instructive to examine the effect of this term on the RPA energies

U0 in the superconducting state. To this end, we first expressed the real part of

the bare susceptibility as Re(χ0) = Re(χG
0 ) +Re(χF

0 ) (where the second term is the

anomalous contribution coming from the FF term) and defined the ratio α =
Re(χF

0 )

Re(χG
0 )

[3]. Since χF
0 is unknown, so is α. However, in a d-wave superconductor, Re(χF

0 ) and

Re(χG
0 ) add constructively at the commensurate wave-vector, so we expect this ratio

to be positive at (π,π). From the pole condition for the resonance, 1−U0Re(χ0) = 0,

we see that an enhancement of the real part of the bare susceptibility reduces U0.

To estimate this reduction, we computed Re(χG
0 ) as in the main text (using ARPES

data below Tc) and expressed the real part of the total bare susceptibility as

Re(χ0) = Re(χG
0 )(1 + αBCS), (1)

where the ratio α was calculated using BCS normal and anomalous spectral functions

[9] and a tight-binding fit for the Bi2212 dispersion [1]. We considered superconduct-

ing state spectral functions with a Lorentzian lineshape, sampled over a momentum

grid of 128× 128 points and energies ranging from −1.5 to 1.5 eV. We also allowed

for a finite width (Γ) of the spectral function and studied the effect of varying this

width. The convergence factor δ was set to 10 meV, and superconductivity was

included through the d-wave gap

∆(k) =
∆0

2
(cos kx − cos ky), (2)

with ∆0 = 35 meV. Since we were only interested in the effect on the coupling

constant U0, we compared results only at the commensurate wave-vector (π,π). For

Γ = 40 meV, α = 0.05, leading to a 5% decrease in U0. For Γ = 20 meV, α = 0.10,

leading to a 10% decrease in U0. Finally, for Γ = 0 meV, α = 0.2, leading to a

20% decrease in U0. The values of U0 reported in the main text do not take this

reduction (∼ 10% for the more physically relevant case) into account because the

data employed were collected near Tc.
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Supplementary Note 4. Obtaining the spin suscep-

tibility from ARPES data

The choice of RPA coupling Uq

Supplementary Figure 7 shows the ARPES-derived bare susceptibility χ0(q,Ω = 0)

for an optimally doped Bi2212 sample in the normal state1. The results agree quali-

tatively with those in ref. [1]. There is a pronounced, square-like signal enclosing the

q = 0 point, as well as an incommensurate response around Q = (π,π). However,

there is also significant response at q = 0, which is not seen in model calculations

(Figure 1 of ref. [1]). This response was found to be an artifact of the Fermi cutoff

on the spectral function.

To demonstrate the fictitious origin of the q = 0 peak, we calculated χ0 using

Lorentzian spectral functions with tight binding fits for the dispersion of Bi2212.

The procedure was essentially the same as in Supplementary Note 3, but setting

∆0 = 0 (for the normal state) and Γ = 20 meV. Supplementary Figures 8a,b

show the Fermi Surface and the dispersion for the true spectral function (without

symmetrization). The main band disperses (along the dashed line in panel (a)) all

the way to the BZ boundary. The bare susceptibility (at Ω = 0) for this spectral

function (Supplementary Figure 8c) closely resembles similar calculations presented

in ref. [1]. Note the absence of spectral weight at q = (0, 0). The second row

shows similar calculations but now the spectral function has been multiplied by the

Fermi function and symmetrized, to simulate the analysis we did with experimental

data. The dispersion does not cover the entire BZ because particle-hole symmetry

is only assumed to hold for small binding energies (in this case, we took 80 meV

about the Fermi energy). We see that the resulting bare susceptibility (panel (f))

has significant spectral weight at the zone center (note also the difference in color

bar scales). The artifact is thus a direct consequence of not having access to the

complete spectral function (including the unoccupied states), a shortcoming which

can only partially be mitigated through symmetrization.

This artifact is also apparent in the interacting susceptibility, approximated via

1The results in this section were derived from ARPES data (from a near-optimally doped Bi2212
single crystal) presented in earlier publications, e.g. refs. [10, 11], not the data used in the main
text. We use these data here only for illustration purposes.
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RPA as [12]:

χ(q,Ω) =
χ0(q,Ω)

1− Uqχ0(q,Ω)
. (3)

If Uq is momentum-independent, χ(q,Ω) possesses an anomalously strong peak

near q = 0, which is not seen in INS measurements. In Supplementary Figure 9 we

compare the magnetic dispersion for Imχ calculated with a momentum-independent

coupling Uq = U0 from q = (π/2,π/2) to q = (3π/2, 3π/2) (as is frequently reported

in the literature) with the same quantity plotted from q = (0, 0) to q = (2π, 2π).

The ARPES data employed correspond to an optimally doped Bi2212 sample in the

superconducting state2. In the restricted momentum view, U0 yields a spin response

with rich momentum structure, resembling the famous “hourglass” shape reported

in the literature on other cuprates. However, the wider momentum view reveals

two peaks at low energy near q = (0, 0) and q = (2π, 2π) three times larger than

the rest of the signal (indicated by white arrows in Supplementary Figure 9b). The

spin response thus constructed displays an inordinate amount of spectral weight

at momenta where experiments do not detect it. This artifact was removed by

the choice of coupling function Uq defined in the main text, which suppresses the

response around q = n(2π, 2π).

We emphasize that such a choice of Uq was not made to favor spin-fluctuation-

induced superconductivity models, but was rather motivated by the fact that it

rectifies the small-q intensity problem and yields a spin susceptibility in better

agreement with experimental observations. The form of Uq is also supported by

Renormalization Group approaches [13] that include the effect of vertex corrections

and show a strong enhancement of the spin-susceptibility at (π,π). While the exact

form of Uq is indeed not known, the t-J model [14] provides the analytical form

which we have used in Eq. (7) in the main text. As was shown in [14], within the

t-J model, the constraint of no-double-occupancy simply leads a renormalized band

parameters, which are determined from a fit to experimental data.

2These data were collected from the same sample as those in Supplementary Figure 7, but in
the superconducting state.
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Validity of the RPA approach

Strictly speaking, RPA-based approaches should be used in weakly correlated sys-

tems, which may cast some doubt on the validity of our approach as applied to

the cuprates at low doping, where correlations are believed to be strong [15, 16].

However, this notion of extremely strong electronic correlations in the cuprates has

recently been challenged by several works [17, 18]. In short, the strength of elec-

tronic correlation in cuprates is a debated topic. As to the magnetic excitations in

cuprates, there are a large number of RPA-based calculations successfully reproduc-

ing experimental observations in the cuprates, even at low doping. For instance, the

RPA was successfully employed by Schrieffer et al. in the calculation the exchange

energy J and the spin wave spectrum representative of the undoped cuprates, where

correlations are believed to be strong [19]. Morr and Pines employed a method which

is similar in spirit to the RPA-based calculation in our work, and were able to repro-

duce the doping dependence of the resonance peak [20]. Their results were similar

to those obtained by Brinckmann and Lee [14], who used a slave-boson approach

to the t-J model and a RPA with ladder diagram corrections (interestingly, they

also found that the renormalization factor coming from these corrections was neg-

ligible). Other works in which the RPA has been successfully applied to describe

the INS spectra in the cuprates (at different doping levels) can be found in refs.

[21–27]. Additionally, earlier work by us [3] and another group [28] shows that the

experimentally derived A(k, ω) can successfully reproduce the spin-resonance peak

and its dispersion in Bi2212 within an RPA-based analysis. Collectively, all these

references suggest that RPA-based approaches can successfully describe the cuprate

spin response.

Non-resonant excitations in the calculated spin response

Supplementary Figure 10 is the same as Fig. 2d of the main text but in the reduced

energy range [0, 100] meV. The white curve is the locus of minima of the quantity

Ek + Ek+q, where q runs along 1/2(π,π) → 3/2(π,π), Ek is the gapped dispersion

Ek =
√
ϵ2k +∆2

k, and ∆k is the d-wave gap. We have taken ∆0 = 35 meV as the

antinodal gap and a parametrization of the dispersion which gives the Fermi surface

in closest agreement with our data for the OP80 sample. This curve marks the

threshold of particle-hole excitations allowed in χ0 by kinematics. The complicated

shape of this “particle-hole threshold” is controlled by the d-wave gap and the shape
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of the quasiparticle Fermi surface. Non-resonant excitations (due to χ0 only) are

allowed to the right of this line, whereas resonant excitations (due to the RPA

denominator) can exist below the p-h continuum. Note the two regions of allowed

excitations indicated by the arrows. These regions are located near vectors q1 =

0.68(π,π) and q2 = 1.33(π,π), which correspond to the two possible node-node

scattering vectors in the Fermi surface. The almost linear behavior is a consequence

of the steep, almost linear slope of the electronic dispersion in the Γ− Y direction.

These features lie above the particle-hole continuum, so they are non-resonant and

therefore weak. Thus, these features can be understood as non-resonant excitations

allowed by the structure of the particle-hole bubble χ0.

Supplementary Note 5. Alternative estimate of the

spin-fermion coupling energy

Mishra et al. [11] pointed out that the the effective electron-electron interaction

should be written as

V (q,Ω) =
3

2
U2 χ0(q,Ω)

1− Uqχ0(q,Ω)
, (4)

where the coupling energy U is in general distinct from U0. This can be best

seen when approaching the antiferromagnetic transition at low doping. While the

momentum structure of Uq remains largely unchanged, U0 is renormalized by vertex

corrections, in order to satisfy the Adler principle [29]. Following Mishra et al., here

we show how U can be obtained from the electron self-energy. In this section, we

only report results in the important region near Tc.

Assuming the single-particle renormalizations are due to V , we can estimate the

self-energy via

ImΣ (k, ω) =
1

N

∑
q

∫
dΩ [n(Ω) + f(Ω − ω)]ImV (q,Ω)A(k− q, ω − Ω), (5)
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where n(ω) and f(ω) are the Bose and Fermi distributions, respectively, and the

integral is cut off at Ω = 0.4 eV. By Kramers-Kronig relations, we can then obtain

the real part of the self-energy and the nodal Fermi velocity renormalization,

Z =
v0F
vF

= 1− d

dω
ReΣ (kn, ω)

∣∣∣∣
ω=0

, (6)

where kn is the nodal Fermi momentum and v0F and vF are the bare and interacting

nodal Fermi velocities, respectively. Based on the T -linear behavior of vF inferred

from laser ARPES data from optimally doped Bi2212 [30], we estimate that, for

the OP80 sample, Z(70K) ∼ 2.1 and Z(90K) ∼ 2, with similar values for the single

crystal OP91. For the UD67 sample we have Z(62K) ∼ 2.4 and Z(80K) ∼ 2.3

[31]. Using the measured spectral functions and the spin susceptibilities calculated

in the main text, we computed Z while adjusting U until we obtained the values

above. For all samples, U and U0 differ by at most 11%, which is somewhat lower

than the deviation reported in [11]. Using these coupling energies, the eigenvalues

are still essentially equal to unity near Tc, as shown in Supplementary Table 1. For

comparison, we also included the eigenvalues obtained by assuming U = U0, as in

the main text (labeled λ0).

Supplementary Note 6. Uncertainties in the eigen-

values

The leading eigenvalue in the BSE depends on the spin-fermion coupling through

the factor U2
0 and the denominator of the RPA expression for the spin susceptibility.

This coupling, in turn, was fixed from the empirical relation

ER = 5.4kBTc. (7)

Therefore, we estimate the uncertainty in the eigenvalue by relaxing the above re-

lation and introducing the uncertainty ∆ER = 10 meV. This rather large variation

was chosen to account not only for the INS energy resolution (< 5 meV), but also for

the fact that the energy of the (π,π) peak may vary somewhat with temperature (as
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seen, for example, in ref. [32]). Supplementary Figure 11 shows plots of the leading

eigenvalue as a function of the coupling U0 for both thin films above (but close to)

Tc. The dashed vertical lines represent the values of U0 used in the main text and for

which the (π,π) peak energy was exactly given by Supplementary Equation 7. The

horizontal dashed lines are the resulting eigenvalues (reported in the main text).

The horizontal dimension of the shaded rectangles represents the range of U0 values

for which the peak energy moves from ER + ∆ER meV (lowest U0) to ER − ∆ER

meV (highest U0). The vertical dimension represents the resulting uncertainty in

the eigenvalue. Thus, we estimate a 15%− 20% variation in the leading eigenvalues

reported in the main text.
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