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Abstract
We study pressure-driven suspensions of non-colloidal, non-Brownian, and rigid spheres in a Newtonian solvent where the pipe
surface is replaced by porous media using numerical simulations. We examine various values of the permeability of the porous
mediumK, while we keep the porosity and the thickness of the porous layer constant to clarify the effect of the permeable wall on
the suspension flows at bulk particle volume fractions 0.1 ≤ ϕb ≤ 0.5. In the limit of vanishing inertia, the rate of suspension flow
decreases as the bulk volume fraction ϕb increases and it builds up as the permeability of the porous media increases. There are
also two different regimes characterizing the dimensionless slip velocity normalized by both shear rate and penetration depth,
namely, the strong permeability regime and the weak permeability regime. In the former, the solvent penetrates deeper and the
streamwise velocity at the interface increases with the porous media permeability, while in the latter, the fluid cannot go through
the porous media deeply and the variation of the slip velocity with the permeability is small. Our results might suggest a new
passive technique to reduce drag by enhancing the rate of suspension flow in devices where the suspension transport is crucial. It
might also offer basic insights for the extension to the flow of suspensions over and through complex porous media.
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Introduction

Reducing dissipation and drag in flows enclosed by solid
boundaries and therefore, fabricating economically advanced
and efficient devices has attracted more attentions over the
past decades. Previous studies have shown that, in the case
of rigid superhydrophobic surfaces, the slip of the fluid greatly
increases the rate of Newtonian fluid flow, potentially resolv-
ing the issue of the very high hydrodynamic drag in
microfluidic devices.

Complex fluids, on the other hand, are encountered in
many industries including micro-fluidic devices, biological
systems, food-processing, pharmaceutical industries. In these
applications, being able to control the boundary conditions

plays a major role in driving and controlling the flow.
Moreover, understanding the boundary conditions of complex
fluids at solid surfaces sheds light on these flows at the inter-
faces, which is critical in fluid dynamics. Extensive works on
Newtonian liquid flows over a stationary surface where the
slip boundary condition including superhydrophobic surfaces
and polymer brushes applied at the surface have been per-
formed (Guo et al. 2000; Kruijt et al. 2000; Tachie et al.
2004; Goharzadeh et al. 2005; Ghisalberti and Nepf 2009;
Battiato et al. 2010; Deng et al. 2012; and references
therein). Here, however, we characterize the flow and the rate
of particle-laden liquids flow, where the permeable surfaces
exist, and correlate the characteristics of the suspension flow
to the geometry of the device.

One of the useful ways to understand the rheology of com-
plex fluids is bymodeling them as suspensions of particles in a
Newtonian solvent with viscosity ηf and density ρf. Two dif-
ferent continuum models have been developed to describe the
dynamics of suspension flows. The first model, the diffusive
flux model (DFM), introduced by Leighton and Acrivos
(1987) and later by Phillips et al. (1992), is phenomenological
and involves the diffusion fluxes of particles due to particle
collisions and the spatial variation in the viscosity. The second
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model, the suspension balance model (SBM) (Jenkins and
McTigue 1990; Nott and Brady 1994), is rooted in the con-
servation equations of mass, momentum, and energy for the
fluid and particle phases. These models have mostly
succeeded in predicting qualitative features of the migration
process and quantitative steady-state velocity and concentra-
tion profiles for different pressure-driven and shear flows in a
channel, pipe, and Couette geometries (Phillips et al. 1992;
Nott and Brady 1994; Subia et al. 1998; Morris and Brady
1998; Morris and Boulay 1999; Fang et al. 2002; Miller and
Morris 2006; Ahmed and Singh 2011; Dbouk et al. 2013;
Mirbod 2016; Chun et al. 2019).

In this study, while keeping small Reynolds number, we
focus on examining the flow of particulate suspensions in a
pipe with radius R where its walls are replaced with a perme-
able surface with known physical properties including perme-
ability K, porosity ε, and thickness h (Fig. 1). Specifically, we
explore non-colloidal, non-Brownian suspensions of rigid and
spherical particles of bulk concentration ϕb in a Newtonian
fluid over a wide range of particle volume fraction (i.e.,
ϕb=10% to 50%). We introduce three different dimensionless

parameters; the permeability parameter σ ¼ R=
ffiffiffiffi
K

p
, the depth

ratio δ = h/R, and the particle volume fraction ϕb. The prob-
lem of 2D steady-state non-Brownian suspension pipe flow
with impermeable walls (i.e., σ → 0) has a long history
pioneered with the work by Karnis et al. (1966) and later by
Leighton and Acrivos (1987), Altobelli et al. (1991), Sinton
and Chow (1991), and Phillips et al. (1992) who showed that
for high ϕb, the velocity profile was flattened in the center
compare to the parabolic velocity profile obtained for a pure
Newtonian fluid with the same average material properties.
Several researchers extensively have examined dilute and
concentrated non-Brownian, non-colloidal suspension flows
of channel and pipe both numerically and experimentally
(Koh et al. 1994; Hampton et al. 1997; Han et al. 1997;
Subia et al. 1998; Lyon and Leal 1998a, b; Ahmed and
Singh 2011; Chun et al. 2019).

Due to the simplicity, low computational cost, and good
accuracy of the constitutive model reported in Phillips et al.
(1992), i.e., DFM, in this work to analytically model the flow
of suspensions, we couple the DFM with Darcy’s law (Darcy
1856) in a porous medium. Numerical simulations are con-
ducted to solve conservation equations of the flow coupled
with the constitutive equation of suspensions. We aim to elu-
cidate the effect of the permeable surface on the suspension
flows. The velocity and concentration profiles are presented
for various control parameters which indicate properties of the
particle volume fraction and porous surface. The velocity pa-
rameters that characterize the penetration of the flow through
porous media are obtained for various values of control pa-
rameter. Furthermore, we evaluate the rate of suspension
flows and slip velocity at the suspension-porous interface in-
duced by the permeable surface.

Problem formulation

We conduct numerical simulations in the pressure-driven flow
of neutrally buoyant and non-colloidal particles concentrated
in an incompressible Newtonian viscous fluid in a pipe with
the radius R. The suspension flows over a porous wall with the
thickness h driving by a constant pressure gradient (dp/dz) in
the axial z direction (see Fig. 1). We assume that the porous
medium is homogeneous and isotropic and also saturated by
the same fluid, i.e., constant permeability K and porosity n.
While we vary the permeability of porous media, we keep
constant porosity n = 1.0. In fact, the porosity can be a control
parameter of the flow over a permeable surface (Kang and
Mirbod 2019). Herein, we assumed a constant porosity (n =
1.0) to simplify the problem, following previous studies
(Vafai and Kim 1990, Goyeau et al. 2003), since there are
several parameters (e.g., depth ratio, particle volume fraction,
permeability, and porosity) that all vary and are critical in this
study. It is also assumed that the size of particles is larger than
the pore size of the porous medium. Therefore, particles do
not penetrate into the porous region and they exist only in the
fluid layer. Moreover, we suppose the Reynolds number is
sufficiently small (Re ≪ 1) in suspensions where the inertia
can be neglected.

The equations of continuity and momentum for the flow of
suspensions by applying a volume averaging approach can be
given by Kang and Mirbod (2020).

∇ � u ¼ 0 ð1Þ

ρ
∂u
∂t

þ ∇ � uuð Þ
� �

¼ −∇pþ ∇ � 2η ϕð ÞSð Þ ð2Þ

Here u, p, and ρ are the volume averaged velocity vector
(ur, uz), pressure, and density of the fluid, respectively. S ¼ 1

2

Fig. 1 Schematic diagram of a circular Poiseuille flow of suspensions in a
pipe over a permeable surface with permeability K and thickness h (=
0.2R). Arrows indicate the flow direction and a sketch of the velocity
profile
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∇uþ ∇uTð Þ is the strain rate tensor. η(ϕ) is the viscosity of
concentrated suspensions which depends on the particle vol-
ume fraction ϕ and can be described by the Krieger’s empir-
ical correlation (Krieger 1972) as η(ϕ) = ηo(1 − ϕ/ϕm)

−1.82.
Here, ηo is the viscosity of the suspending fluid and ϕm = 0.68
is the maximum volume fraction (Krieger 1972; Phillips et al.
1992).

For the flow of a pure fluid in the porous layer, the
governing equations are stated as (Kang and Mirbod 2019;
Wu and Mirbod 2018; Wu and Mirbod 2019; Haffner and
Mirbod 2020)

∇ � u ¼ 0 ð3Þ

ρ
∂u
∂t

þ ∇ � uuð Þ
� �

¼ −∇pþ ∇ � 2ηoSð Þ−ηo
K
u ð4Þ

The last term in the right-hand-side of Eq. (4) indicates
Darcy’s law that represents the average of microscopic
(pore-level) flow resistance (Darcy 1856; Brinkman 1949).

Using the diffusive flux model (DFM) (Leighton and
Acrivos 1987; Phillips et al. 1992), the conservation equation
for non-colloidal particles in a Lagrangian frame can be
expressed as (Phillips et al. 1992)

∂ϕ
∂t

þ u � ∇ϕ ¼ −∇ � Nc þ Nη
� � ð5Þ

where Nc and Nη are the particle fluxes caused by spatial
variation in the collision frequency and suspension viscosity,

respectively, given by Nc ¼ −Kca2ϕ∇ γ̇ϕ
� �

and Nη ¼ −Kη

a2 γ̇ϕ2∇ ln ηð Þ (Phillips et al. 1992; Subia et al. 1998). Here, a
is the radius of particles and γ̇ is the local shear rate given by

γ̇ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2S∶S

p
. Diffusion coefficient Kc and Kη are empirical

constants determined by experiments. We use Kc = 0.41 and
Kη = 0.62 (Kc /Kη = 0.66) (Phillips et al. 1992). We have also
applied the nonlocal stress model on particle fluxes suggested

by Miller and Morris (2006) as γ̇NL ¼ as ϵð Þγ̇s (i.e., N c ¼ −

Kca2ϕ∇ γ̇ þ γ̇NL
� �

ϕ
h i

a n d Nη ¼ −Kηa2 γ̇ þ γ̇NL
� �

ϕ2∇

ln ηð Þ ) to resolve the numerical difficulties at point where
the local shear rate approaches zero at the center of pipe.
Here, as ϵð Þ ¼ ϵ has been chosen by the examination where

ϵ ¼ a=R. γ̇s ¼ Umax=R has been used for the pipe flow with
a no-slip condition on the wall, where Umax is the centerline
velocity (Miller and Morris 2006). As denoted in Miller and

Morris (2006), the finite γ˙
�

NL
values are very small compared to

the local shear rate (γ̇NL≪γ̇ ) except where γ̇→0. Therefore, it
gives the model the desired effect of influencing results only
near the centerline.

The governing equations (Eqs. (1) ~ (5)) are discretized
using a finite volume method in a cylindrical coordinate

system. A second-order central difference scheme is used for
spatial discretization of derivatives except for the convective
term (u ∙ ∇ ϕ) of the conservation equation for particles (Eq.
(5)), where we employed the QUICK (quadratic upstream
interpolation for convective kinematics) scheme for the
discretization. A hybrid scheme is utilized for time advance-
ment, nonlinear terms are explicitly advanced by a third-order
Runge-Kutta scheme, and the other terms are implicitly ad-
vanced by the Crank-Nicolson method (Kang and Yang 2011,
2012). A fractional-step method is applied for time integra-
tion. Then, the Poisson equation resulted from the second
stage of the fractional step method is solved by a fast
Fourier transform (FFT) (Kim and Moin 1985).

The no-slip condition is imposed on an impermeable wall
(r = R + h), and the flow is assumed to be periodic in the axial
direction (z). We assume that velocity and shear stress at the
interface are continuous (Vafai and Kim 1990) and particles
do not penetrate into a porous medium. Therefore, total parti-
cle flux is zero at the interface between suspending fluid and
porous layer. The number of grid points determined by a grid
test is 192(r) × 64(z) with the axial length of the domain Lz =
4R. Practically, we found the error within 1% in the concen-
tration distribution compared with those of 128(r) × 64(z) and
256(r) × 64(z). More grid points are allocated near imperme-
able wall and interface between two layers in the radial direc-
tion (r) with Δrmin = 0.005R, while the grid cell in the axial
direction (z) is uniform. The radius of particles is a = 0.0625R.
We choose the radius of the pipe R as the scale for length and
Uo = (−dp/dz)R2/8ηo as the scale for velocity. The dimension-

less permeability can then be defined as σ ¼ R=
ffiffiffiffi
K

p
that

varies from 1 to 50 in this study. Here, σ = ∞ (i.e., K =
0) represents the impermeable wall. The parameter δ =
h/R specifies the dimensionless thickness ratio. In all of
our analysis in this study, we consider δ constant equal
to 0.2 by referring to the study in Guo et al. (2000)
who characterized the pure Newtonian fluid in a pipe
replaced with a uniform thickness of δ = 0.181. Herein,
the bulk concentration ϕb varies from 10 to 50%.

To validate our code, we compared the distributions of
volume fraction (ϕ) and axial velocity component (uz) for
the flow of non-Brownian and non-colloidal suspensions with
a smooth (impermeable) wall with available experimental and
theoretical data in Fig. 2. Our profiles of ϕ and uz for ϕb= 0.2
and 0.3 show excellent agreement with the measurements ob-
tained using nuclear magnetic resonance (NMR) imaging
(Hampton et al. 1997) and those predicted by the DFM
(Hampton et al. 1997) and SBM (Fang et al. 2002). In partic-
ular, our distributions of ϕ reveal more similar behavior to
experimental observations of Hampton et al. (1997) near the
center of the pipe (r = 0). This results from the nonlocal stress

contribution (γ̇NL ). The nonlocal stress model employed in
particle fluxes causes a gentle variation of the concentration
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profile ϕ at the center where a sharp cusp appears without the
nonlocal stress correction. It should be noted that the fluctua-
tions at the center of the pipe seen in the experiments are due
to the noise and artifacts in the NMR images (Hampton et al.
1997). Nevertheless, our result still has a little bit of discrepancy
near the wall as predicted in previous theories (Hampton et al.
1997; Lyon and Leal 1998a; Fang et al. 2002; Miller and

Morris 2006). This is due to the fact that the continuum ap-
proach does not describe the physical constraint at the wall
properly; therefore, the value of concentration has to drop to
zero near the wall. In addition, the axial velocity (uz) reduces
with the presence of particles. It also decreases as the bulk
concentration (ϕb) increases. Note that the maximum value of
the velocity at the center for a pure Newtonian fluid is 2.0.

Fig. 2 Comparison of particle
volume fraction (ϕ) and axial
velocity (uz) profiles of pressure-
driven pipe flow of concentrated
suspensions with a smooth wall
for ϵ = 0.0625. ϵ (= a/R) is the
particle radius a to the radius of
the pipe R, and ϕb is the bulk
concentration. The velocity was
normalized by the bulk velocity
Ub ¼ 1

A ∫uzdA where dA = 2πrdr

Fig. 3 Profiles of particle volume
fraction ϕ and axial velocity
component uz normalized by Uo

for various σ at ϕb= 0.1 and ϕb=
0.3. Dashed lines indicate the
interface between suspending
fluid and porous layer
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Results and discussion

We first calculate the profiles of concentration ϕ and axial
velocity uz for various values of σ. Profiles of particle volume
fraction ϕ and axial velocity component uz normalized by Uo

for various σ at ϕb= 0.1 and ϕb= 0.3 are shown in Fig. 3.
Clearly, the permeable wall does not alter the distribution of
concentration in the suspension region (Fig. 3(a), (c)), while it
makes a noticeable change in the velocity profile (Fig. 3(b),
(d)) due to the impact of the slip boundary condition caused by
the permeable wall. Noted that the stress distribution at the
porous-suspension interface is specified by a force balance
which is linear at all concentrations; therefore, the particle
concentration distribution is only dependent on the bulk con-
centration and the porous layer has no impact. By in-
creasing σ (i.e., decreasing the permeability K), the ve-
locity diminishes because the lower permeability de-
creases the velocity at the suspension-porous interface
as well as in the porous layer by stronger viscous drag
originated from Darcy’s law, whereas the velocity is
larger than that of suspension flows past impermeable
walls even for very high σ (i.e., low permeability). As
reported in Mirbod et al. (2017), Wu and Mirbod
(2018), and Haffner and Mirbod (2020), the flow of
pure Newtonian fluid in the fluid layer is also enhanced
by the presence of a permeable wall.

We further calculate the local shear rate γ̇ for various σ at

ϕb= 0.3 in Fig. 4. As can be seen, the local shear rate γ̇ is
invariant in the suspension region even though the velocity
rises. As observed previously (Gadala-Maria and Acrivos
1980; Goto and Kuno 1982; Leighton and Acrivos 1987;
Phillips et al. 1992), for very low Re where the inertial effects
are neglected, the particle migration is induced by the shear
rate that migrates particles from regions of higher shear rate to
regions of lower shear rate. This also confirms no variation in
particle migration as has been observed in Fig. 3(a), (c).
Accordingly, it reveals that the permeable wall can enhance
the velocity without any change in the particle distribution.

The plots of the axial velocity profiles for various ϕb and σ
are shown in Fig. 5. For higher bulk concentrations, due to the
increase in the viscous force exerted on the fluid by the parti-
cles, the velocity in the suspension region decays. Recently,
for pressure-driven flow of a pure fluid over permeable sur-
faces, Kang andMirbod (2019) showed that the kinetic energy
is mainly produced by the velocity-pressure gradient and it is
balanced by the viscous diffusion and dissipation in the fluid
layer. In this study, higher bulk concentrations trigger higher
viscosity of concentrated suspensions (η(ϕ)); then, stronger
viscous forces are induced. As a result, the flow decays in
the suspension layer. On the other hand, the velocity inside
the porous region depends only on the permeability in the

Fig. 4 Profiles of normalized local shear rate for ϕb= 0.3 in the
suspension region

Fig. 5 Profiles of axial velocity
component uz normalized by Uo

for various ϕb; (a) σ = 5, (b) σ =
20. Dashed lines indicate the in-
terface between suspending fluid
and porous layer

Fig. 6 Variations of the rate of suspension flowQ for all values of ϕb and
σ. Dashed lines represent values of suspensions over an impermeable wall
Qs/Qo for each ϕb
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porous region and the slip velocity at the suspension-porous
interface is constant. As mentioned before, this is because we
assumed particles do not penetrate into the porous medium.
Consequently, the flow inside the porous layer is governed by
the interface shear stress as well as its properties where the
suspension has no impact.

To quantify the enhancement of suspension flows induced
by the permeable wall, we then estimate the volume flow rate

Q ¼ ∫R0uzdA in the suspension flow region and computeQ for
all ϕb and σ to plotQ(ϕb, σ) in Fig. 6. It should be noted that in
the present study, we only evaluate the flow rate inside the
suspension region because (1) our focus is on examining the
impact of the permeable surface on the suspensions, and (2) as
suggested by Guo et al. (2000), for δ = 0.2, the flow flux
passing through the porous layer can be neglected. We then
normalizeQ by the volume flow rate in the flow of a pure fluid
over an impermeable wall (i.e., Qo= Q(ϕ = 0, σ = ∞)). As
mentioned earlier, the volume flow rate decreases by increas-
ing ϕb and σ. However, it is still higher than that of suspension
flows over an impermeable wall, i.e., Qs= Q(ϕb, σ = ∞) indi-
cated by dashed lines in Fig. 6, even for a very low value of the
permeability at σ = 50.

For the fluid flow through porous media, the slip velocity
Us defined as the streamwise (or axial) velocity at the interface
is the most important parameter of the flow since it is required
to evaluate the penetration of the fluid region into the porous
medium (Agelinchaab et al. 2006; Arthur et al. 2009; Mirbod
et al. 2017; Wu and Mirbod (2018); Wu and Mirbod (2019);
Haffner and Mirbod (2020)). To characterize the variation of

the slip velocity Us normalized by Uo and shear rate γ̇ at the
suspension-porous interface, we then calculate Us for all
values of ϕb and σ; the plots of Us (ϕb,σ) are shown in Fig.
7. As can be seen from this figure,Us is independent of ϕb and
decays as the permeability decreases (i.e., σ increases). In

addition, γ̇ at the interface has almost constant values for each
ϕb regardless of σ as displayed in Fig. 4. As mentioned before,
this is because of the continuous conditions of velocity and
shear stress at the interface. We then examined the slip veloc-
ity with respect to another dimensionless parameter normal-
ized by the product of the square root of the specific Darcy

permeability of the porous medium and shear rate at the inter-

face γ̇
ffiffiffiffi
K

p
. This is a more useful dimensionless slip parameter

because of its dependence on local conditions not the velocity

in the suspension flow region Uo. Moreover, Us=γ̇
ffiffiffiffi
K

p
is

equivalent to the inverse of the slip coefficient α proposed
by Beavers and Joseph (1967) which is a dimensionless pa-
rameter depending on the material properties and specifies the
boundary condition at the free flow-permeable interface. It can
be also related to the Brinkman equation given as ηeff∇2u −
∇ p − ηoK

−1u = 0 (Brinkman 1949) where the analytical
solution of the shear rate at the interface is similar to the
solution of Beavers and Joseph (1967) considering that α

= (ηeff/ηo)
1/2. Note that

ffiffiffiffi
K

p
states the penetration distance of

the suspending fluid inside the porous media. The values of

Us=γ̇
ffiffiffiffi
K

p
for all values of ϕb and σ are plotted in Fig. 8.

These results reveal that the dimensionless slip parameter
(or slip coefficient) is also dependent on ϕb. Moreover, it
turns out that when the depth ratio δ = h/R = 0.2 and n = 1,
there are two different regimes characterizing the normal-

ized slip velocity Us=γ̇
ffiffiffiffi
K

p
, at the suspension-porous inter-

face, namely, the strong permeability regime and the weak
permeability regime. In the former, the solvent penetrates
deeper and the slip velocity increases with the permeability
of porous media, while in the latter, the fluid cannot go
through the porous media truly and the variation of slip
velocity with the permeability is small.

Fig. 7 Variations of the slip
velocity Us, normalized by Uo

and shear rate γ̇, at the
suspension-porous interface (i.e.,
r = 1) for all values of ϕb and σ

Fig. 8 Variation of Us=γ̇K1=2 for all values of ϕb and σ
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Conclusion

To conclude, our simulations show that for the pressure-
driven flow of concentrated non-colloidal suspensions
over a porous material in a pipe (where the particles are
not moving inside the porous surface), the permeable sur-
face does not have any impact on the concentration dis-
tribution of suspensions, whereas the velocity of suspen-
sions enhances by the “slip” effect at the suspension-
porous interface. We have also evaluated the volume flow
rate in the suspension region induced by a permeable
wall. We showed that the flow rate builds up by increas-
ing the permeability and enhances for all values of σ. The

slip velocity Us and shear rate γ̇ at the interface have been
obtained to assess the penetration of the suspending fluid
region into the porous layer. Us depends only on σ and
decreases by increasing σ. This effect for the slip velocity
has also been observed in Rosti et al. (2021) for suspen-
sions over porous media in a Couette flow using a differ-
ent numerical method. The local shear rate, on the other
hand, is invariant with respect to σ and it is constant for

all values of ϕb. The normalized slip velocity Us=γ̇
ffiffiffiffi
K

p
is

relative to ϕb and has the maximum value at σ = 10 for δ
= 0.2 and porosity of porous media n = 1. It is anticipated
that understanding the coupling performance of suspen-
sion flows and permeable media will open up new avenue
of research and provide valuable insights into improving
efficiencies and operating lifetime in a wide range of
microfluidic-based devices and processes related to sus-
pension transport including biomedical fields and chemi-
cal synthesis. Our study reveals that a permeable media
with a known permeability and porosity can indeed be
used as a promising way toward reducing dissipation
and drag in devices that use particle-laden liquids in ge-
ometries including pipes with very low suspension flow
resistance; therefore, a new passive technique for enhanc-
ing the flow rate in such devices. Furthermore, the model
will reveal the relation between the flow condition, per-
meable wall structure and properties with the geometry of
the device. Future studies shall focus on the development
of experimentally validated models to provide more in-
sights into capability of DFM for suspension flows in
geometries where porous media presents.
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