
Phys. Fluids 32, 083608 (2020); https://doi.org/10.1063/5.0015207 32, 083608

© 2020 Author(s).

Velocity measurements of dilute particulate
suspension over and through a porous
medium model
Cite as: Phys. Fluids 32, 083608 (2020); https://doi.org/10.1063/5.0015207
Submitted: 25 May 2020 . Accepted: 30 July 2020 . Published Online: 20 August 2020

Eileen A. Haffner, and Parisa Mirbod 

ARTICLES YOU MAY BE INTERESTED IN

Sneezing and asymptomatic virus transmission
Physics of Fluids 32, 073309 (2020); https://doi.org/10.1063/5.0019090

Particle modeling of the spreading of coronavirus disease (COVID-19)
Physics of Fluids 32, 087113 (2020); https://doi.org/10.1063/5.0020565

Experimental investigation of wave tip variability of impacting waves
Physics of Fluids 32, 082110 (2020); https://doi.org/10.1063/5.0016467

https://images.scitation.org/redirect.spark?MID=176720&plid=1167512&setID=405127&channelID=0&CID=390544&banID=519902572&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=1f3035dd9c646c4b12aea2366796557c421312ce&location=
https://doi.org/10.1063/5.0015207
https://doi.org/10.1063/5.0015207
https://aip.scitation.org/author/Haffner%2C+Eileen+A
https://aip.scitation.org/author/Mirbod%2C+Parisa
http://orcid.org/0000-0002-2627-1971
https://doi.org/10.1063/5.0015207
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0015207
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0015207&domain=aip.scitation.org&date_stamp=2020-08-20
https://aip.scitation.org/doi/10.1063/5.0019090
https://doi.org/10.1063/5.0019090
https://aip.scitation.org/doi/10.1063/5.0020565
https://doi.org/10.1063/5.0020565
https://aip.scitation.org/doi/10.1063/5.0016467
https://doi.org/10.1063/5.0016467


Physics of Fluids ARTICLE scitation.org/journal/phf

Velocity measurements of dilute particulate
suspension over and through a porous
medium model

Cite as: Phys. Fluids 32, 083608 (2020); doi: 10.1063/5.0015207
Submitted: 25 May 2020 • Accepted: 30 July 2020 •
Published Online: 20 August 2020

Eileen A. Haffner and Parisa Mirboda)

AFFILIATIONS
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, Chicago,
Illinois 60607, USA

a)Author to whom correspondence should be addressed: pmirbod@uic.edu

ABSTRACT
We experimentally examine pressure-driven flows of 1%, 3%, and 5% dilute suspensions over and through a porous media model. The flow of
non-colloidal, non-Brownian suspensions of rigid and spherical particles suspended in a Newtonian fluid is considered at very low Reynolds
numbers. The model of porous media consists of square arrays of rods oriented across the flow in a rectangular channel. Systematic experi-
ments using high-spatial-resolution planar particle image velocimetry and index-matching techniques are conducted to accurately measure
the velocity measurements of both very dilute and solvent flows inside and on top of the porous media model. We found that for 1%, 3%,
and 5% dilute suspensions, the fully developed velocity profile inside the free-flow region is well predicted by the exact solution derived from
coupling the Navier–Stokes equation within the free flow-region and the volume-averaged Navier Stokes equation for the porous media.
We further analyze the velocity and shear rate at the suspension–porous interface and compare these data with those of pure suspending
fluid and the related analytical solutions. The exact solution is used to define parameters necessary to calculate key values to analyze the
porous media/fluid interaction, such as Darcy velocity, penetration depth, and fractional ratios of the mass flow rate. These parameters are
comparable between the solvent, dilute suspensions, and exact solution. However, we found clear effects between the solvent and the suspen-
sions, which shows different physical phenomenon occurring when particles are introduced into a flow moving over and through a porous
media.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0015207., s

I. INTRODUCTION

Suspension flows and their interaction over a porous surface
are coupled between the properties of the suspension and the struc-
ture of the porous media. However, research into their behavior has
bifurcated into two directions: suspension flows in geometries with
smooth walls and flows of pure fluid over porous media. In this
study, we examine the coupled flow of suspensions over and through
a porous media model in a channel and analyze, in detail, the slip
velocity, shear rate, and slip-coefficient at the interface between a
porous media and a free flow region containing a dilute suspension
flow.

Porous media has become prevalent in many fields spanning
from biological findings to microfluidics and even environmental
engineering systems. For example, flow over and through porous

media has been examined in environmental phenomena such as
flows over sediment beds,1 coral reefs and submerged vegetation
canopies,2 and crop canopies and forests.3 Flow over various biolog-
ical porous media has been studied for different applications.4 Also,
porous media in microfluidics, such as flow over carbon nanotube
(CNT) forests,5 and flow past polymer brushes,6,7 have been thor-
oughly researched. Some studies were reported using laser Doppler
anemometry (LDA) to closely examine the flow behavior at the
boundary of the pure fluid region and the porous media.8,9 Using
LDA and manipulating the Darcy–Brinkman equation, it was found
that the shear rate can be expressed as

du
dy
∣
y=0
= α√

K( μeμ )
(us − uD), (1)
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where α is the slip coefficient, uD is the Darcy or the superficial veloc-
ity, and us is the slip velocity. They also compared Eq. (1) with the
shear rate proposed by Beavers and Joseph,10 using Darcy equation,
and showed that the value of slip coefficient α can be defined as
α = (μ/μe)1/2. It has also been observed that α depends on parame-
ters including the interface location, surface microstructure, porous
media porosity ε, Reynolds number based on the Darcy velocity
uD = −K∇p/μ, channel gap, and the bulk flow direction. James and
Davis11 later introduced a dimensionless interfacial slip velocity,
us/(γ̇

√
K), where γ̇ = du/dy∣y=0 is the shear rate at the fluid–porous

interface. This dimensionless quantity has been examined in several
literature studies relating to Newtonian fluid over porous media.11,12

Recently, using both theoretical methods and direct numerical sim-
ulations (DNSs), the impact of porosity on the pure fluid flow over
porous media has been studied.12

From a theoretical point of view, the mathematical model is
broken into two different regions: (1) the free-flow and (2) the
porous media regions. The equation for the first region is the
two-dimensional (2D) Navier–Stoke equation for fully developed
incompressible flow. There are two models used to describe the
flow through the second region. The first is using Darcy’s law,
Q = −K∇p/μ, where Q is the volume flow rate through the porous
media, K is the permeability of the porous media, ∇p is the pres-
sure drop through the media, and μ is the viscosity of the fluid. The
other model combines Darcy’s law and the Stokes equation.13 For
both approaches, the difficulty then lies in prescribing the bound-
ary conditions at the interface between the two regions. To maintain
continuity, the velocity and the shear stress have to be the same at the
interface.12 Equations (1) shows the microscopic description where
properties must be calculated at each point, whereas in a mesoscopic
approach, one uses the local volume-averaged equations to describe
the flow over an entire region.14 More details regarding various the-
oretical models used to examine the flow over and through porous
media and their comparison can be found in the work of Bottaro.14

The limitation of these models is that they only describe pure fluid
and its interaction with porous media.

In addition to theoretical simulations and the experimental
technique applied by Beavers and Joseph,10 LDA, laser Doppler
velocimetry (LDV) has also been used to study the flow dynamics
through porous media. These known optical techniques are typically
used in concurrence with refraction index matching (RIM) where
the working fluid has the same index of refraction of the porous
media, so the study of the flow within the porous media would
be visible. LDV and LDA both have been employed to study flow
through packed beads at low porous Reynolds numbers to mea-
sure the porous velocity and study the development of inertial and
drag within the pores.15,16 LDV has also been used to study higher
Reynolds number flows as they exit a porous foam.17 Their results
provide velocity information in a small region that is ideal for exam-
ining the flow within the pores but does not allow the measurements
across the entire porous media.

More recently, another optical experimental method, parti-
cle image velocimetry (PIV) in conjunction with RIM techniques,
has been used extensively to define the velocity distribution on
top of and within porous media. This technique has been found
to be more useful in the application of studying porous media
since it has the capability of measuring two components of veloc-
ity, which allows for more detailed data, while LDV is a point

measurement that only provides local measurements in one direc-
tion.17 For LDA experiments, knowledge of the porous media struc-
ture must be known, which makes it obsolete for random porous
media.18 However, since PIV has the ability to measure far field
as well as local velocity profiles, it has become the more domi-
nate experimental technique to study flow over and through porous
media.

PIV has been used in many applications to analyze various
properties of the flow within the pores of the media, as well as
porous media bounded by different free flow regions. PIV exper-
iments, similar to the LDV and LDA studies, have examined vis-
cous flow through packed beads19–23 as well as in between porous
media consisting of rectangular pillars.24 Some efforts have been
made to validate the volume averaging method within the pores of
the beads.19,20 Furthermore, it was found that the velocity within
these pores was dependent on the geometry and configuration of the
packed beads.22 Along with packed beads, PIV has also been used
to study the properties of the interface between a free flow region
and porous media. The slip velocity, which is defined as the veloc-
ity at the fluid–porous interface, was determined for both Couette
flows6,25 and pressure-driven flows.26,27 Tachie et al.25 compared the
slip velocity obtained through PIV experiments to a model devel-
oped by Brinkman13 and found that the permeability along with the
transverse velocity needed to be considered in the model to better
simulate the flow. Other studies confirm this concept that the slip
velocity is dependent on the permeability.27 It has also been found
that both the slip velocity and the free-flow velocity are dependent
on the thickness of the porous media.26 The orientation and shape
of the porous media for low Reynolds number flows are given by
the works of Arthur28 and Terzis et al.,29 respectively. The structure
of the porous media determined by both of these studies had pro-
found effects on the interface properties. All of these studies are for
pure Newtonian fluid over porous media; to the best of the author’s
knowledge, there are no studies on examining very dilute suspension
flows over and through a porous media model. The aim of this study
is to characterize the impact of adding a small number of particles
in the flow and examine this impact on the velocity of flow over and
through a porous structure.

Suspension flows are encountered in phenomena such as oil,
blood flow, and pharmaceutical industries.30–32 There consist many
applications in other fields of engineering, for example, studies in
civil engineering involving a “dam break experiment” utilized sus-
pension fluid experimental techniques since many fluid bodies con-
sist of some particulate matter.33 Several experimental techniques
have been developed for the flow of rigid, spherical particles in con-
fined, smooth geometries. For example, laser-Doppler anemome-
try (LDA)34,35 and laser-Doppler velocimetry (LDV)36–38 were used
to study suspension flows. Nuclear magnetic resonance imaging
(NMR) has also been employed to study the suspension flows in
various geometries.39–43 Moreover, PIV has been utilized as a tech-
nique to analyze suspension flows within a rectangular channel con-
taining smooth boundaries.44–47 One of the main observations for
higher concentrated suspensions (>20%) is that the particles move
to the path of least resistance, meaning that they migrate to the
center of the flow field. This creates a local increase in concen-
tration and viscosity of the flow in that region, which has been
observed in both pressure-driven and shear flows. This increase
causes a reduction in velocity, which results in a blunted velocity
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profile in these flows. PIV has been extended to study more com-
plex flow fields involving suspension fluid. For instance, Snook
et al.49 studied particle migration within oscillatory pipe flow. How-
ever, to the author’s knowledge, there is a lack of in-depth exper-
imental analysis on flow of very dilute suspensions over a porous
structure.

From a theoretical/modeling perspective, there are two differ-
ent continuum models to describe the dynamics of suspension flows.
The first model, the diffusive flux model (DFM), introduced by
Leighton and Acrivos50 and Phillips et al.,51 is phenomenological
and involves the diffusion fluxes of particles due to particle colli-
sions and the spatial variation in the viscosity. The second model,
the suspension balance model (SBM), is rooted in the conserva-
tion equations of mass, momentum, and energy for the fluid and
particle phases.52–54 The normal stress differences to handle curvi-
linear flows were considered in a research paper by Morris and
Boulay.55 This model has since been revisited by Nott et al.56 These
models have mostly succeeded in predicting qualitative features of
the migration process and quantitative steady-state ffdas velocity
and concentration profiles in different geometries. For instance, the
velocity and concentration profiles for the 2D steady-state of both
Brownian and non-Brownian suspension flows in a channel with
smooth walls have been examined both theoretically and experi-
mentally.52,55,57–59 Migration of rigid, spherical particles has been
investigated using different methods, including Stokesian dynam-
ics (SD), force coupling method (FCM), and immersed boundary
method (IBM).60 A comprehensive review of various methods has
been reported recently in an annual review by Maxey.61

In this work, we specifically examine dilute suspension flows
and their behavior over and through a porous media model. In
particular, very dilute suspensions with the bulk volume fraction
ϕb ≈ 1%, 3%, and 5% are examined by high-spatial-resolution planar
PIV measurements. The 2D velocity in a plane is measured, which
allows for the calculation of the slip velocity, shear rate, and slip
coefficients. The experimental data then allowed us to provide useful
data on the phenomenological constants used in the existing models
for pure fluid over porous media and explore their validity for very
dilute suspensions. We also compared the experimental results of
both pure fluid and dilute suspensions with the exact solution for
flow over porous media determined in our previous work.62 The
experimental setup is described in Sec. II, the results are presented
and discussed in Sec. III, and concluding remarks are presented in
Sec. IV.

II. EXPERIMENTAL PROCEDURE
A. Neutrally buoyant suspension

The particles used for the suspension fluid are polymethyl
methacrylate (PMMA), monodispersed particles with a mean dime-
ter of 82 μm (75 μm ≤ dp ≤ 90 μm) and a density of 1200 kg/m3

(Cospheric, LLC). This yields a gap to particle ratio of L/dp = 13.4
in the free flow region. A density- and refractive-index-matched
solvent was prepared by slightly modifying a recipe proposed by
Lyon and Leal.37,38 The solvent consists of 55 wt. % Triton X-100
(Sigma-Aldrich), 25 wt. % 1,6-dibromohexane (Sigma-Aldrich), 10
wt. % UCON oil 75-H-450 (Dow Chemical Company), and 10 wt. %
UCON oil 75-H-90000 (Dow Chemical Company). The Lyon and

Leal37,38 solution had to be modified because the PMMA particles
used in the current study is higher than those used in the study of
Lyon and Leal, and the ambient temperature in the lab where the
experiments were conducted was T = 23.4 ± 0.2 ○C for this study
was also higher. To determine the new mixture, the density was
measured for each fluid using a hydrometer and the index of refrac-
tion was measured using a refractometer (Cole–Parmer), which were
both measured at ambient lab temperature. The final solution’s den-
sity and refractive index were measured to get the necessary con-
centration that would work for the PMMA particles we had and
the ambient temperature we had for these experiments. The result-
ing index of refraction of the solvent is n = 1.4897, and its density
is 1190 kg/m3. The solvent viscosity μf = 0.288 Pa s at T = 22 ○C
that was measured with a concentric cylinder rheometer [Discovery
Hybrid Rheometer-2 (DHR-2), TA Instruments]. The suspension is
prepared at various values of the particle volume fraction obtained
as

ϕb =
πd3

pN
6Vtotal

, (2)

where N is the total number of particles and V total is the volume of
the flow channel.

There is a slight mismatch between the density of the PMMA
particles and the solvent. To ensure that the particles remain sus-
pended during testing, the hindered settling was calculated. This
settling would mathematically consider the mismatch of the fluid
densities along with the interaction of the suspension particles as
higher particles would travel down to the bottom wall.63 It was found
that the settling velocity of the PMMA particles was less than 0.04%
of the average velocity within the channel, allowing this solution to
be stable long enough for the tests performed.

In this study, we were particularly interested in flows with
very low Reynolds numbers, allowing the suspension to be in the
creeping flow regime. Due to the complexity of the flow, there are
three different Reynolds numbers used to characterize this flow.
The first Reynolds number is based on the PMMA particle size,

Rep = 4ρf a3

3μL2 ∣Umax∣, where ρf is the density of the fluid, μ is the viscosity
of the Newtonian fluid, L is half the height of the free flow region, a
is the average radius of the PMMA particles, and Umax is the stream-
wise maximum velocity within the flow channel.37 For this study,Rep
∼O(10−6), and therefore, the inertia of the particles can be neglected.
The second Reynolds number to consider is the Reynolds number
based on the porous media. The equation for this is ReL = ρf dUb

μ(ϕ) ,
where d is the diameter of the rods making up the porous media,
Ub is the streamwise bulk velocity (Ub = 1

HT ∫
2L
−H u(y)dy), and μ(ϕ)

is the Krieger viscosity. Krieger proposed a concentration-based vis-
cosity derived from parameter fitting of rheological experiments.35

The resulting relationship for this viscosity is

μ(ϕ) = μ(1 − ϕb
ϕm
)
−β

, (3)

where μ is the viscosity of the pure fluid, ϕb is the bulk particle vol-
ume fraction of the initial suspension, ϕm is the maximum packing
particle volume fraction, and β is a rheological fitting parameter.64

For our case, we consider ϕm = 0.68 and β = 2 reported by Miller
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and Morris,59 which results in porous Reynolds number of ReL
∼ O(10−1). The final Reynolds number uses half the free flow region
as the characteristic length, and the resulting equation for the sus-
pension Reynolds number is ReS = ρf LUb

μ(ϕ) . This Reynolds number
ranged from 0.029 to 0.035. It should be noted that the Stokes num-
ber is defined as St = mpγ̇/3πμdp, where mp is the mass of the par-
ticles and γ̇ = Umax/L is the shear rate.48,59 For the current study, it
was calculated that St ∼O(10−5), meaning that the motion of the sus-
pension particles is solely governed by the velocity of the fluid flow.
The final dimensionless parameter to consider is the Péclet number,
Pe = 3πμd3γ̇/4kBT. For our experiments, it is O(109) for the range
of shear rate used in this work. These represent that the particles are
non-Brownian (Pe≫ 1), the inertia of particles is negligible Rep≪ 1,
and the particle responses quickly to the change in the flow and
behaves as a tracer (i.e., St≪ 1).

Table I reports the typical parameters used in this study: the
average magnitude of the bulk velocity, Ub, of each experiment,
the height of the porous media model, H, the length of the porous
media model, l, the diameter of the rods, d, and all of the various
Reynolds number required for this study—ReP, ReS, and ReL. The

magnitude of the velocity was expressed as U(y) =
√

u(y)2 + v(y)2.
The resulting velocity profiles are computed by linearly averaging
the velocity magnitude along the x direction in between the surfaces
of the rods. This technique of obtaining velocity profiles has been
used in previous studies analyzing the Newtonian fluid over vari-
ous porous media models.26–28 Because of this, it is discerned that
this approach provides accurate profiles, which can be compared
directly to theoretical or computational models. The velocity pro-
files are only functions of y; therefore, the average bulk velocity is
defined across the y direction by Ub = 1

HT ∫
2L
−H U(y)dy.

B. Experimental setup, PIV system,
and measurements procedure

The flow channel for this test was constructed from high
quality, clear, cast acrylic, as can be seen in Figs. 1(a) and 1(b)
(ACME Plastics, Inc). The porous media model used was con-
structed via a 3D printer (ProJet, Laser Concepts) using VisiJet
Crystal. The porous media model consists of rods in a square array
aligned perpendicular to the flow direction. The rods have a diam-
eter of 0.15 cm, and the space between the sides of the rods is
0.27 cm. The porosity of this model is 90% in which a porosity of
100% would be equivalent to an empty (smooth) channel. The per-
meability was calculated using a series of equations proposed by
Tamayol and Bahrami65 for fibers in a square array. The result-
ing permeability, K, based on the rod diameter and the porosity is

7.93 × 10−7 m2.65 The flow loop uses a peristaltic pump (Master-
Flex L/S, Cole-Parmer) with two pump heads (Easy Load II, Cole-
Parmer). The pump heads feed into a Y fitting, which connects to
a dampener (Masterflex Pulse dampener, Cole-Parmer). The com-
bination of the Y fitting and the dampener helps reduce any pul-
sating from the pump, so the resulting flow is smooth and at a
constant speed when it enters the flow channel. A flowmeter (mini
CORI-FLOW, Bronkhorst USA) is placed in between the end of the
dampener and the start of the flow channel. This allows for a real
time measurement of the fluid flow rate, density, and temperature.
Measuring the flow rate during experiments can act as a validation
method to ensure that the velocity vectors from the PIV correspond
to the same flow rate that was measured. A reservoir fitted with two
outlets and one inlet was set between the outlet of the flow chan-
nel and before the peristaltic pump, which closes the flow loop. For
each experiment, the suspension fluid was mixed for 2 h on a mag-
netic mixer within the reservoir. Then, the fluid is put into a vacuum
chamber and subjected to a pressure of −30 inHg and left for an
addition hour to remove any ambient air bubbles from the sus-
pension. Once the pump was started, the flow was left to stabilize
through the flow loop for 30 min to reach a steady-state condition
before any data were collected.

Flow-field measurements were developed using a LaVision
Flow Master particle image velocimetry (PIV) system. This consisted
of a 527 nm Nd-YLF (Photonics Industries, DM20-527) to illumi-
nate the tracer particles that are seeded within the flow, as well as
a high-speed complementary metal-oxide semiconductor (CMOS)
camera with a pixel field of view (FOV) and a full-scale resolution.
A bandpass filter (BP532 10) was placed over a 60-mm focal length
lens attached to the camera in order to minimize spurious reflections
and enhance the particle signal-to-noise ratio. To be able to better
resolve the velocity vectors between the rods of the porous media, a
36 mm extension tube was placed between the CMOS camera and
the 60 mm lens. All hardware timing and software were handled
using the DaVis10.0.5 software package on the Intel (R) Xeon (R)
CPU with 32.0 GB RAM and 64-bit operating system. Figure 1(b)
reveals the experimental setup.

C. Velocity measurements using PIV protocol
Fluorescent seeding particles with an average diameter of 2

μm and a density of 1300 kg/m3 were used as tracer particles for
PIV measurements (Cospheric, LLC). The particles peak excitation
wavelength was 537 nm and their peak emission wavelength was
594 nm. To minimize error associated with the PIV, the tracer
particles remain small enough to ensure they stay along the nat-
ural streamlines of the fluid, but not so small that their motion

TABLE I. Experimental parameters for the various suspension fluids through and above a porous media model.

ϕ Ub ReP (×10−6) ReS ReL ϵ h (cm) l (cm) d (cm) HT (cm) LT (cm) W (cm)

0 0.789 4.48 0.035 0.024

0.9 0.5 28.4 0.15 0.7 100 2.50.01 0.786 4.22 0.034 0.023
0.03 0.722 4.00 0.030 0.020
0.05 0.740 3.93 0.029 0.020
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FIG. 1. [(a) and (b)] A schematic of the flow channel and the PIV experimental setup and (c) schematic of the top view of the porous media. P1 corresponds to the laser plane
within the porous media, and P2 shows the laser plane on top of the porous media.

subjected to Brownian effects. These tracer particles are at a very
low concentration (lower than that of the suspension particles) so
that they will not be interacting with one another. The Stokes’ drag
law was employed to find the settling velocity of a single tracer
particle that was determined to be less than 0.0008% of the aver-
age velocity. Therefore, the tracer particles are stable within the
fluid. The Péclet number for seeding particles was calculated to be
Peseed = 3πμd3

seedγ̇/4kBT = O(105). Therefore, the Brownian motion
of seeding particles can also be neglected.66

Following this section, we discuss the necessary sample size to
take the PIV data, the location to place the porous media model,
and full development of both solvent and dilute suspensions in the
channel over the porous model. In the current study, the data were
collected in two different planes, which are illustrated in Fig. 1(c).
The porous media consist of cylindrical rods places in a square array
oriented perpendicular to the bottom wall of the channel. The use
of two data collection planes averaged together would be enough
to fully resolve the flow through and over the porous media, which
was discussed by Arthur et al.,27 which used porous media in the
same orientation of the current study. Based on these findings, two
planes oriented in the xy directions were defined. The plane within
the porous media, which does not interact with any rods, is labeled

P1. The plane on top of the porous media, which is a plane located
in the center of a row of rods, is labeled P2. Velocity data were pro-
cessed for each of these planes and then averaged together to get the
final velocity profile that described the flow throughout the porous
media (see the work of Arthur et al.27 for more details).

Before conducting experiments with a porous media model, we
examined the suspension flow in a smooth channel to characterize
the exact location where the porous slides should be placed so that
the flow is fully developed before encountering the porous media. To
determine the location of the porous media from the inlet of the flow
channel, we performed a test using a suspension with a bulk concen-
tration of ϕb = 0.03 in a smooth channel (no porous media present)
to ensure that the flow was fully developed before meeting the start
of the porous media. This test was performed at a flow rate of 69.1
ml/min. Figure 2(a) shows velocity profiles gathered using PIV mea-
surements at various axial locations downstream from the inlet. As
can be seen in Fig. 2(a), these velocity profiles from the data agree
well with the velocity profile obtained using the exact solution for
flow within parallel plates as derived from the steady, incompress-
ible continuity and Navier–Stokes equations. This indicates that the
flow at all axial locations was fully developed. Therefore, we located
the porous media 8 cm downstream from the inlet, which allowed

Phys. Fluids 32, 083608 (2020); doi: 10.1063/5.0015207 32, 083608-5

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 2. (a) Velocity profiles obtained through PIV experiments at different axial locations downstream of the flow channel inlet. The black solid line shows the exact solution
for flow between parallel plates. Statistical convergence test using 3% suspension for (b) smooth channel and (c) over the porous medial model. (d) Raw PIV image for a
suspension with ϕb = 0.01 for the P1 plane.

for fully developed flow while it started to interact with the porous
media.

Moreover, to evaluate the necessary sample size required for
the statistical convergence of the PIV data, for both the smooth
channel and the channel containing the porous media, a test with
varying number of image pairs for a 3% suspension was performed.
For the smooth channel, a test with 100 image pairs was taken
at the inlet. The inlet was considered to be the “worst case sce-
nario” for the PIV data because that location has more mixing
than further downstream. The data were then processed and aver-
aged for varying amounts of image pairs up to the maximum 100
image pairs taken. The averaging of the full dataset was consid-
ered the most accurate velocity vectors; therefore, the other aver-
aged velocities for fewer image pairs were then subtracted from the
averaged full dataset. Figure 2(b) shows the resulting root mean
square (RMS) for the remaining velocity values from the difference
between the averages using fewer image pairs to that of the full
dataset. This RMS shows how much the averaged smaller datasets
vary from the full averaged dataset. This graph trails off around
80 image pairs, meaning that if more image pairs were processed
and averaged together, they would result with similar velocity vec-
tors. This represents the required sample size necessary to obtain
statistical convergence of the PIV data. A similar approach was
conducted for the 3% suspension flow over the porous media. For
this sample test, 500 image pairs were collected at the beginning
of the porous media for the P1 plane. Again, this is to simulate a

“worst case scenario” so that data taken at any other place along the
porous media would result in more clear data. Similarly, as shown in
Fig. 2(c), we found that 300 image pairs are sufficient to get statisti-
cal convergence when the porous media model is located inside the
channel.

The raw PIV data were taken at a frequency of 250 Hz with
a laser input current of 20 A, which resulted in an image with the
highest signal to noise ratio. A typical raw PIV image can be seen in
Fig. 2(d). The physical field of view (FOV) was ∼22 mm by 14 mm.
The PIV data are post-processed using a multi-pass approach. This
started with a one-pass of a square interrogation window size of
64 × 64 pixels2 with 50% overlap and concluded with four passes
of a circular interrogation window size of 24 × 24 pixels2 with 75%
overlap. This resulted in a velocity vector every 0.07 mm.

To ensure that the flow over and through the porous media
model is fully developed, meaning the flow is periodic, we character-
ized our measured velocity data slightly below the interface between
the porous media and the free flow region for both data collection
planes. To visualize this, the velocity magnitude is plotted in a x–y
plane at a location of Y/L = −0.63. This location was selected because
it is one row of velocity vectors below the interface location. Fig-
ure 3(a) shows the specific FOV windows where the data have been
taken along the channel over the porous media. Figures 3(b)–3(d)
shows the velocity data in the x–y plane inside the channel for both
the P1 and P2 data collection planes from x = 8 cm to x = 36.5 cm
from the inlet of the flow channel. For the solvent [Fig. 3(b)], 1%
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FIG. 3. (a) Side view of channel containing porous media; the boxes indicate the location of windows where data were collected. To check the periodicity of the flow, (b)
shows the streamwise velocity over the entire porous media for both data collections planes, P1 and P2, or the solvent, (c) 1% suspension, and (d) 3% suspension.

suspension [Fig. 3(c)], and 3% suspension [Fig. 3(d)], the flow
becomes periodic at 26 cm < x < 34 cm from the inlet of the chan-
nel for both data planes. Accordingly, we analyzed all of our data at
0.63 ≤ x/l ≤ 0.94 to ensure that all flows are fully developed and there
is no change in the velocity magnitude along the x direction in that
region. The data obtained in these FOVs are then averaged together
to create all 1D velocity profiles discussed in Sec. III.

The previous literature has shown that the normalized veloc-
ity profile for a Newtonian fluid over porous media at different
Reynolds numbers will collapse to the same normalized velocity pro-
file trend, indicating that inertial effects are negligible.27 To ensure
that this phenomenon occurred in our experiments, the solvent case
and the three dilute suspensions (1%, 3%, and 5%) were examined at
three Reynolds numbers. Since fundamental physical parameters of
the setup, including the channel size and the porous media struc-
ture, remained constant between experiments, we had to change
the flow rate from ∼60 ml/min to 80 ml/min to achieve these dif-
ferent Reynolds numbers. It should be noted that, for the dilute
suspensions, the suspension Reynolds numbers, ReS, was consid-
ered. Figure 4 shows the resulting normalized velocity profiles for
these experiments. For all cases, there was a good agreement between
the Reynolds numbers. For the solvent case [Fig. 4(a)] and the
1% suspension [Fig. 4(b)], the profiles are almost perfect overlays
of one another. In the higher concentrated suspensions, 3% and
5%, there are more discrepancies between the profiles for the three

suspension Reynolds numbers, especially in the porous media. We
believe that this effect was due to variation in the velocity profiles
because of particle interaction in the porous media. In the rest of
our analyses, we considered Re = 0.035 for the suspending fluid,
ReS = 0.034 for the 1%, ReS = 0.030 for the 3%, and ReS = 0.029 for
5% suspensions.

III. RESULTS AND DISCUSSION
In this study, we were interested in characterizing not only the

very dilute suspensions’ averaged velocity profiles describing the full
flow field but also their impact on each data collection plane (i.e., P1
and P2). Due to the 3D impact of the porous media, it was observed
that there was a clear difference in velocity distribution between the
data plane within the rods, P1, and on top of the rods, P2. This led to
different properties at the fluid–porous interface that we examined
in this article.

A. Velocity contours
Figure 5(a) shows the resulting streamwise velocity (u) con-

tours for the solvent in the plane within the rods (i.e., P1), and
Fig. 5(b) shows the data collection in the plane on top of the rods
(i.e., P2). As can be seen in Fig. 5(a), the maximum average velocity
occurs in the free-flow region, which is also observed in Fig. 5(b) for
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FIG. 4. Effect of Reynolds numbers on flow through channel with the existence of the porous model for (a) solvent and for suspensions with (b) 1%, (c) 3%, and (d) 5%
suspension. The Reynolds numbers are 0.02–0.035; since they are low, the flow is independent of inertia effects.

the P2 plane. For both data collection planes, the maximum veloc-
ity appears on the top of the rods, which decays as the flow moves
through the rods. The velocity contours for 5% concentration sus-
pension are shown in Fig. 5(c) for P1 and Fig. 5(d) for P2. The
contours resemble that of the solvent test; however, for both data
collection planes, the velocity distribution within the porous media
is slightly different, showing jagged transitions between velocity con-
tours. This could be due to visibility issues at the higher concentra-
tion of suspensions. It should be noted that the relative uncertainty
of the velocity obtained from the PIV technique was determined to
be at most 0.53% of the maximum velocity for both data on the plane
within the porous media and for the data taken on top of the rods.
These uncertainties were calculated based on the spacing between
the velocity vectors and the standard deviation of the velocity data
reported.67,68

The transverse velocity contours (v) in the plane within and
on top of the rods for both solvent and 5% suspension can be
seen in Figs. 5(e)–5(h). As can be expected, there is little to no
transverse velocity within the rods for both cases [see Figs. 5(e)
and 5(g)]. In the plane on top of the rods for the solvent fluid
[Fig. 5(e)], and 5% suspension [Fig. 5(g)], the velocity has a peak
at the corner of the rods that face the oncoming flow at the inter-
face. Conversely, the peak velocity is negatively mirrored on the

downstream corner. This effect is more prominent for the 5%
suspension case.

B. Velocity component for each data collection plane
We have compared both components of the velocity profile for

the suspending fluid and different initial bulk volume fractions of
ϕb = 0.01, 0.03, and 0.05 flowing over and through the porous model.
Figures 6(a)–6(d) show the streamwise, u, and transverse, v, com-
ponents of the velocity profiles for both the (a) P1 and the (b) P2
planes. For all cases, it can be observed that the transverse velocity
values (v component of velocity) are much less than the streamwise
velocity values (u component of velocity). The transverse velocity
is practically zero in all locations except for a small area around
the interface between the porous media and the free flow region.
We found that for all data collected in the P1 plane, the maximum
transverse velocity value was less than 10% of the maximum stream-
wise velocity value. However, in the P2 plane, the transverse velocity
values were higher than those in the P1 plane, which led to the v
component of velocities that were 12.5%–14.5% of the u compo-
nent. This effect could be due to multiple properties of either the
porous media or the suspension fluid. The previous literature has
reported that when the v component of velocity is 10% less than the u

Phys. Fluids 32, 083608 (2020); doi: 10.1063/5.0015207 32, 083608-8

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 5. Streamwise velocity contours for the solvent for the (a) plane within the rods, P1, and (b) the velocity contours for the plane on top of the rods, P2. The velocity
contours for the same data collections planes (c) P1 and (d) P2 for ϕb = 0.05. The velocity contours for the transverse velocity for the pure suspending fluid for the (e) P1 and
(f) P2 planes as well as for the 5% suspension for the (g) P1 and (h) P2 planes.

component, then it can be neglected. For our case, in the P2 plane,
this is not true; therefore, we must consider a velocity magnitude,
U(y), for the rest of the analyses.

Figure 6(e) shows the velocity profile obtained by averaging
of the P1 and P2 planes for the solvent fluid and the different
diluted suspensions. As can be expected, the profile is parabolic in
the free-flow region that then decays to the slip velocity, Us, at the
free flow–porous interface. All experimental cases show good agree-
ment with one another within this free flow region. The maximum
magnitude of velocity, Umax, occurs close to the interface. This is
because of the resistance in the flow caused by the existence of the
porous media.12 As reported in our previous studies for pure New-
tonian fluid, this effect depends on the thickness and the proper-
ties of the porous media.12,69 In general, we found that for dilute

suspensions (i.e., 0.01 ≤ ϕb ≤ 0.05) passing over and through the
porous media model, the flow has very similar flow physics to that of
pure Newtonian fluid,70,71 while it is slightly different for flow within
the porous media. We also found that inside the porous media,
as the concentration increases, the velocity is reduced. The excep-
tion to this is the 3% suspension test. This could be due a slight
mismatch between the index matching of the solution and that of
the particles. Thus, our experimental data reveal that, even for very
dilute suspensions, the interactions of the rods with particles, the
behavior of the particles within the rods, particle size, thickness,
properties, and the 3D structure of the porous media model are all
critical.

In addition, we found that in all of our velocity analyses, the
flow within the rods is not uniform. This effect is more evident when
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FIG. 6. The transverse, v, and streamwise, u, velocity profiles showing the velocity magnitudes for (a) the plane within the rods and the plane on top of the rods for pure
suspending fluid and suspensions with different initial bulk volume fractions of ϕbulk = (b) 0.01, (c) 0.03, and (d) 0.05. (e) The normalized profiles for pure suspending fluid
and various suspension of 1%, 3%, and 5%.

more particles are added to the flow. For the solvent, this is due to
the wall effects that are similar to the data taken for pure Newtonian
fluid moving over and through porous models.26,27,72 Moreover, as
reported in these literature studies for the thickness and the porosity
of the porous media model considered in this work, the small bound-
ary layers produced at the interface and on the lower surfaces of
the channel might extend to result in non-uniform velocity profiles.
These impacts have been proven to be vanished for pure Newtonian

fluid motion over the porous model by decreasing the porosity of the
porous media.12,27

C. Data comparison to mathematical results
Furthermore, we examine the analytical results obtained from

our previous theoretical/numerical work where an exact solution
for pure Newtonian fluid through a channel where the bottom
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boundary had been replaced with porous media was derived.62 The
governing equation for the free-flow region is the unsteady, incom-
pressible continuity, and Navier–Stokes equations. These equa-
tions can be simplified through the assumptions that the flow is
steady and one-dimensional. The volume-averaged Navier–Stokes
(VANS) equations are then used to model the flow over and
through the porous media.73,74 The resulting equations are nondi-
mensionalized using the free-flow region half height, L, and q
=−(L2/μ)dp/dx as the characteristic length scale and velocity, respec-
tively. The following equations are derived from two mathematical
models describing the flow through the two geometries. Since this
is an analytical solution, we have considered these equations to be
the exact solution for the Newtonian fluid over a porous media
boundary,

ũ(ỹ) = 1
σ2 + C1eσ

√
εỹ + C2e−σ

√
εỹ, ỹ ∈ [−δ, 0], (4)

ũ(ỹ) = − ỹ
2

2
+ (1 − ũs

2
)ỹ + ũs, ỹ ∈ [0, 2], (5)

where

C1,2 = ±
1
σ2

(σ2ũs − 1)e±σ
√

εδ + 1

eσ
√

εδ − e−σ
√

εδ
,

ũs =
σ
√
ε − σ√ε sech σ

√
εδ + σ2 tanh σ

√
εδ

(1 + tanh σ
√

εδ
2σ
√

ε )σ3√ε
.

(6)

Here, ũ = u/q is the dimensionless velocity, ỹ = y/L is the dimen-
sionless y coordinate, ũs = us/q is the dimensionless slip velocity,
σ = L/

√
K is the dimensionless permeability parameter, and δ = H/L

is the dimensionless porous media thickness ratio.62

Figure 7 shows the normalized velocity profiles for pure fluid
and the various concentrations along with the analytical profile from
Eqs. (5) and (6). For the solvent, seen in Fig. 7(a), there is good
alignment within the free-flow region and the top of the porous
media. Within the porous media, the experimental profile begins
to deviate slightly from the theoretical profile. We believe that this
minor departure for the exact solution could be due to the fact that
our porous media is not index matched to the suspending fluid,

FIG. 7. The area-averaged, normalized velocity profiles for (a) pure suspending fluid and suspensions of (b) ϕb = 0.01, (c) ϕb = 0.03, and (d) ϕb = 0.05. The red line indicates
the velocity profile obtained from the exact solution of pure Newtonian fluid moving over porous surfaces. The black dashed line is the interface between the porous media
and the free-flow region.
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not allowing us to view velocity behind the rods. The experimen-
tal velocity for the 1% suspension, shown in Fig. 7(b), appears to
be very similar to that of the solvent, but the velocity within the
porous media is even further reduced, causing a larger discrepancy
from the exact solution. At the higher concentrations, 3% suspen-
sion shown in Fig. 7(c) and 5% suspension shown in Fig. 7(d), the
variation of velocity within the porous media is much slower than
the predicted profile from the exact solution. As mentioned before,
we believe that this is due to the fact that the suspension parti-
cles are moving through the porous media, leading to interactions
between the particles and the rods that would reduce the velocity
magnitudes in the region. The discrepancy between the model pre-
diction and the experimental data is also because there were three-
dimensional velocity effects in experiments that are not captured
within the numerical analysis.

Different parameters were extracted from the magnitude veloc-
ity profiles plotted in the P1 and P2 planes as well as the averaged
profile shown in Fig. 7. The maximum velocity was obtained from
all these profiles and was then normalized using the bulk velocity,
Umax/Ub. As observed in Fig. 8(a), the normalized maximum veloc-
ity was relatively constant across for each concentration case tested.
This was true for the P1 and P2 planes, as well as the full averaged

velocity profile. We found that, on average, this normalized maxi-
mum velocity for the plane within the porous media, P1, was 42.7%
higher than the plane on top of the porous media, P2. It should be
noted that this might be solely true for the porous media model used
in this study; however, previous studies showed that the values of
Umax/Ub strongly depend on the thickness, porosity, and permeabil-
ity of the porous media.12,26 Herein, we found that for very dilute
suspensions, the normalized maximum velocity does not depend on
the suspension concentration. However, the impact of the porous
thickness and properties needs to be further investigated.

D. Numerical results
The velocity at the interface averaged in time and space gives

the apparent slip velocity over the rods, Us = Uave|y/L=0.75 The slip
velocity was normalized using two techniques, one of which com-
pares the slip velocity to global parameters such as the maximum
velocity, Umax. Figure 8(b) shows these values derived from the
velocity profiles in the P1 plane, P2 plane, and the full averaged plane
for a solvent and dilute suspensions. As can be seen, by increasing
particle concentrations, the normalized slip velocity increases for the
plane within the porous media and it decays for the plane on top of

FIG. 8. (a) The maximum velocity normalized by the bulk velocity. The slip velocity normalized by (b) the maximum area-averaged velocity (with a maximum error of 1%) and
(c) the shear rate and

√
K for the planes P1 and P2 as well as the averaged profile (with a maximum error of 7%). (d) The slip length for the two data collection planes and

the averaged profile for various flow suspensions, with a maximum error of 7.1%. The black line in (b)–(d) indicates the results obtained using the exact solution for the pure
fluid over porous media. The error bars show the uncertainty derived based on the studies of Coleman and Steel67 and Sciacchitano and Wieneke.68
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the porous media. The pure fluid is the outlier in this dataset for the
two data collection planes by having a 7.2% decrease in the P1 plane
and a 12.3% increase in the P2 plane. However, by averaging the data
taken on P1 and P2 planes, the variation of the dimensionless slip
velocity for increasing the concentration of particles is trivial. The
black line shows the value from the exact solutions of the Newto-
nian fluid. This shows a close agreement to the values obtained from
the experimental averaged profile.

The second method to normalize the slip velocity is to use local
parameters such as the shear rate, γ̇, and the square root of the per-
meability,

√
K. This expression is known as the dimensionless slip

parameter, Us/γ̇
√
K, and is considered to be more useful in describ-

ing the flow physics inside the porous media due to the fact that it
depends on the local conditions as opposed to the far-field velocity
profile.11,26 This dimensionless slip parameter is shown in Fig. 8(c)
for the values from the velocity profile in the P1 plane, P2 plane, and
the full averaged profile. The dimensionless slip parameter shows
opposite trends to that of the dimensionless slip velocity in the P1
and P2 planes. As the concentration increases, the dimensionless slip
parameter decreases in the P1 planes, and it increases in the P2 plane.
The full averaged profile shows similar results for the solvent and
the dilute suspensions. The value obtained from the exact solution
is close to the experimental values; however, it is interesting to note
that, for this parameter, the exact solution is closer to the values for
the 3% and 5% suspensions.

For Newtonian fluid over porous media models with height
ratios of δ = 0.78 and δ = 2.55, Agelinchaab et al.26 found the dimen-
sionless slip velocity of ∼1 and 2, respectively. They also reported
that these dimensionless values were not dependent on the poros-
ity or the space between the rods. The maximum values of the
dimensionless slip velocity for pure fluid flow in an open channel
over a glass fiber porous material have been found to be Us/γ̇

√
K

= 2.3 − 14.3.9 The height ratio in our experiments is δ = 4.63, which
then reflects the higher dimensionless slip velocity (i.e., 3.84 for the
solvent). This data revealed that very dilute suspensions passing over
and through a porous media model still have similar behavior to that
of pure Newtonian fluid. Moreover, as can be seen in Fig. 8(c), the
plane within the rods shows a large deviation in the dimensionless
slip velocity, but it has a more linear trend for the plane on top of the
rods. This could be due to the fact that the shear rate varies within
the rods as has been observed previously for laminar flow of pure
fluid over the riblets.76

We have already shown that the presence of porous media in
lieu of a solid boundary has produced a nonzero velocity (slip veloc-
ity) at the interface between the free flow region and the porous
media. This phenomenon also produces a distance from where the
velocity would be zero when extrapolating the interfacial veloc-
ity gradient of the overlying fluid, known as the slip length, lslip.
Mathematically, this can be defined as

lslip =
Us

dUave∣y/L=0
. (7)

These values for the solvent and the dilute suspensions are shown in
Fig. 8(d) for the P1, P2, and full averaged profiles. The trends for the
P1 and P2 planes are similar to those seen in the dimensionless slip
parameter due to the increase in concentration. The slip length for
the solvent and very dilute suspensions shows close agreement with

the value derived from the analytic solution, shown by the black line
in the figure.

The parameters obtained by the analysis of a very dilute sus-
pension over and through a porous media model are of great inter-
est both theoretically and practically. Practical examples of these
applications include oil recovery and manufacturing processes of
advanced composites. In these examples, the focus of examination
needs to be on the flow near the permeable surface and the extent
of the impacts of the boundary perturbations inside the porous
media. Therefore, the obtained experimental data allow us to also
provide useful data on the phenomenological constants used in the
existing models for slow steady-state pure fluid over and within a
porous medium (i.e., Brinkman’s equation) and explore their valid-
ity for very dilute suspensions. To continue examining the behavior
of dilute suspensions over and inside a porous media model, we
defined the parameters including the average Darcy velocity, UD, the
slip coefficient, α, and the penetration depth, δ.

To model the boundary condition at the interface between the
porous media and a pure fluid region, Beavers and Joseph10 pro-
posed Eq. (1). In order to calculate the slip coefficient, α, using this
equation, one needs to first determine the Darcy velocity, UD. This
is challenging because the experimental profiles do not show a clear
plug flow inside the porous media that is typically used to determine
the average Darcy velocity.8 To solve this conundrum, we employed
two different methods to determine UD.

The first technique was to find UD through the use of Darcy’s
law that is dependent on the pressure drop, dp/dx,10,77,78

UD =
−K
μ

dp
dx

. (8)

To evaluate UD using this equation, we first needed to define the
pressure drop above the porous media. We derived a relationship
for the pressure drop for the solvent using the simplified 1D Navier–
Stokes equation for pure Newtonian fluid within parallel plates given
by62

μ
d2u
dy2 −

dp
dx
= 0. (9)

Here, u is the streamwise component of velocity that depends only
on the y coordinate, μ is the viscosity for the solvent fluid, and
dp/dx indicates the pressure drop. By integrating Eq. (9), the velocity
profile can be given by

u(y) = 1
μ
dp
dx
( y

2

2
− Ly) + Us(1 − y

2L
). (10)

To incorporate the presence of the porous media, the lower bound-
ary condition required to solve the integrate is u(y = 0) = US. To
isolate the pressure drop term, Eq. (10) was integrated across the
free flow region to obtain the flow rate, Q. Rearranging this relation-
ship provided pressure drop as a function of the flow rate, Q, the
slip velocity, Us, the half gap of the free flow region, L, and the fluid
viscosity, μ,

dp
dx
= 3μ(Q −UsL)

2L3 . (11)

We were able to use experimental values for Q and Us to cal-
culate the pressure gradient using Eq. (11) and subsequently solving
for the Darcy velocity using Eq. (8). We define the phrase “solvent
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exact equations” to describe obtaining of the Darcy velocity using
Eqs. (8) and (11). These equations are only valid for pure Newtonian
fluid; however, we have used the solvent exact equations to calculate
the Darcy velocity for the dilute suspensions, but we replaced the
solvent viscosity with the Krieger viscosity.64

Another method to obtain the Darcy velocity for 2D porous
media is by using the velocity profile. The previous literature has
used an average of the velocity within the porous media to define
the Darcy velocity.28 It was determined that this region of the veloc-
ity profile that is averaged together depends on the porosity of the
porous media. We were able to compare the averaged velocity within
the porous media across varying Y/L locations to the Darcy velocity
obtained through the solvent exact equations for the pure fluid case.
From this, we could define a set region within the porous media
(i.e., −2.82 < Y/L < −1.67) that we could average across to get the
Darcy velocity, which would match the result from the solvent exact
solution. Since this region is dependent on porosity, the region was
constant for the other dilute suspensions.

The values forUD from both techniques can be seen in Fig. 9(a).
The results from the two methods are similar for the solvent and for
the 1% suspension; in fact, for 1% suspension, the values between
the velocity profiles and the exact solvent solutions are the same.

However, they deviate as the concentration of suspension increases
(i.e., for 3% and 5% suspensions). Examining the suspensions, the
experiments show a decrease in UD where the solvent exact equa-
tions show a slight increase in this velocity. This might be due to
the impact of particle–rod interaction, thus reducing the velocity
within the porous media model that is not reflected in the pure fluid
calculations.

Using the UD from the two methods and the shear rate
(dU/dy∣y=0+) calculated at the interface, the slip coefficient α can
be calculated from Eq. (1) for all test cases. The slip coefficients
calculated using the Darcy velocity obtained through averaging of
the velocity profile and the solvent exact solutions can be seen in
Fig. 9(b). The results from the solvent exact equations show a simi-
lar trend to that of the results from the experimental profile. For the
pure fluid and the 1% suspension experiments, the slip coefficients
derived from the two methods are almost identical; however, at the
higher concentration, these two values differ. It is clear from this fig-
ure that at the higher concentrations, the calculated values using the
solvent exact equations cannot capture the proper flow physics of a
suspension within a porous media and more detailed modeling will
need to be developed for this.

FIG. 9. (a) The Darcy velocity, (b) slip coefficient, and (c) penetration depth for the solvent and 1%, 3%, and 5% concentrated suspensions. The red lines on the Darcy velocity
(a) and slip coefficient (b) figures symbolize the results from the solvent exact equations [i.e., Eqs. (8) and (11)]. Average error for the Darcy velocity is 4% as calculated
through the methods of Coleman and Steel.67 The error for the penetration depth is half the interrogation resulting in 1.5% error. These resulting errors were too small to view
on the figures.
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Finally, we examined the penetration depth δ defined as the
transitional region between the free-flow and the Darcy velocity
region within the porous media.8 We considered δ as the distance
from the interface to the point on the velocity profile where the
velocity decays to 1.01UD.21,79 The penetration depth of the Darcy
velocity obtained by the averaging of part of the velocity profile for
all test cases can be seen in Fig. 9(c). These values are found to be very
similar for the solvent and the dilute suspensions, with an average
value for all cases of 2.33 ± 0.043 mm. This led to the conclusion that
the penetration depth is more dependent on the properties of the
porous media than the concentration of the suspension. The error
for these data, since it is a location-based variable, is 0.035, i.e., the
half of the interrogation size.28

It should be noted that the slip coefficient, α, introduced by
Beavers and Joseph,10 has been the subject of investigation in mul-
tiple literature studies.8,10,80,81 For instance, α was shown to yield
an identical value of the slip velocity at the fluid–porous interface
where for an open flow, it can be defined as α =

√
μ/μe, where

μ and μe are the fluid and the effective viscosity, respectively.79,82

The effective viscosity was characterized as the viscosity of the fluid
moving through the porous media. The shear flow was studied
over square and hexagonal porous media at different orientations
to the flow direction. It was observed that μ > μe and μ < μe when
the flow is perpendicular and parallel to the flow, respectively.83,84

Later on, a relationship between the viscosity and effective viscosity
based on the porosity of the porous media has been defined as μe/μ
= 1/ε.85 Using PIV techniques for Newtonian fluid over a porous
model (e.g., brush-like structures) inside a Couette device, it was
found that μ = μe.6 In some cases where the porosity is sufficiently
low, the flow within the porous media (the Darcy velocity) is very
low and can be neglected in Eq. (1); this yields a relationship of
α = (Us/γ̇

√
K)−1

.11,27 Statistical approaches were derived for
the case where the porous media consists of packed spheres.77,86

Saffman77 determined that for densely packed spheres/suspensions,
the effective viscosity is μe/μ = 1/(1 −2.5ϕ). In the current study, we
used our experimental data to obtain slip coefficients for suspending
fluid and various suspensions.

E. Porous media impact on flow rate
Previous research involving porous media has studied the

impact of the porous media on the flow rate within the chan-
nel.10,62,85,87 This analysis attempted to quantify how various porous
media models would affect the flow structure. Beavers and Joseph10

proposed an increased ratio of the flow rates due to the presence
of porous media. The so-called fractional increase ratio of the mass
flow rates used the Darcy’s equation and can be defined as

Φ = Qp −Qi

Qi
= 3(σ + α)
σ(1 + 2ασ) , (12)

where α is the slip coefficient and σ is the dimensionless permeability
parameter.62 This fractional increase in mass flow rate was stud-
ied extensively for pure Newtonian fluid over porous media using
the exact solution and direct numerical simulations (DNSs).62 They
compared the results for Φ obtained using the exact solution, DNS
results, Beavers and Joseph (BJ)10 experiments, BJ analytical analysis,
and Brinkman equation for cases with comparable α and ε values. It
was shown that all of these approaches provide similar results for a
various range of σ.62

Using α values presented in Fig. 9(b) and the dimensionless
permeability parameter σ = L/

√
K, we were able to characterize the

fractional increase in mass flow rate for the solvent and the dilute
suspensions, as shown in Fig. 10(a). In this graph, the black line
shows the fractional increase in the mass flow rate using the solvent
exact solution [i.e., Eqs. (8) and (11)]. Although this equation was
developed for pure Newtonian fluid, it presents a good agreement
to the results obtained from very dilute suspensions. It should be
noted that the error bars are quite large for these data points, which
is due to the differentiation and multiple manipulations of the error
derived from the velocity measurements.

To gain further insight into how the presence of the particles
affects the flow within the channel containing the porous media, the
flow rate in the free-flow region, Q, was calculated for all experi-
ments. The ratio of the flow rate in the suspension-flow region to
the solvent-flow region is plotted in Fig. 10(b). One might conclude
that by adding more particles to the flow and in the existence of a

FIG. 10. (a) The fractional increase in the mass flow rate due to the presence of a porous media compared to the increase in concentration.10 The error bars are calculated
through error propagation analysis of the equations.67 (b) The ratio of the free flow region flow rate of the dilute suspensions over the pure fluid.
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porous model, the flow rate inside the channel decays. Further analy-
sis of the impact of particles over and through the rods in the porous
media model is the subject of our further investigations.

IV. CONCLUSIONS
We have presented the first detailed analysis of pressure-driven

flow of very dilute suspensions of rigid, spherical, non-Brownian,
and non-colloidal suspensions over a three-dimensional porous
structure using the PIV and refractive index matching techniques.
We have considered the suspending fluid, 1%, 3%, and 5% concen-
trated suspensions, and porous medium consisting of regular solid
structures of a general shape in our analysis. The porous model
consists of rods with a height of 5 mm, a porosity of 0.9, and a per-
meability of 7.93 × 10−7 m2. The main contribution of the current
paper is to provide the foundation and the tools to understand sus-
pensions over a 3D porous media model. In particular, we neglected
the impact of inertia and considered only creeping flow in our exper-
iments, which allowed us to compare them with extensive works
that have been conducted on pure Newtonian fluid flowing over
porous media as well as suspension flows over smooth surfaces in
creeping flows. These experiments were compared to the exact solu-
tion velocity profile obtained analytically using the coupling of the
continuity and Navier–Stokes equation in the free flow region and
VANS equations inside the porous media. The obtained exact solu-
tion velocity profile showed good agreement with the experimental
results, especially in the free-flow region. Within the porous media,
however, as the concentration increased, the velocity profiles began
to depart from the exact solutions. We believe that this is due to
the impact of the rods–particles and particle–particle interactions
inside the porous media. Nonetheless, the present experimental data
could be used as a benchmark to refine the modeling of suspen-
sions flowing over porous structures and the related boundary con-
ditions at the suspension–porous interface. This study explores in
detail the velocity variations of dilute suspensions over and within
a porous media. Analysis of the concentration profiles and the par-
ticle migration over the porous media is the subject of our current
investigation.

Based on the presented results, the research outcomes are as
follows:

1. For the suspensions considered in this study, the velocity pro-
files within the rods are not uniform. This effect can be seen
more in the higher concentrations. This is because of the
particle–rod effects that are similar to the data taken for pure
fluid motion over porous models reported in the previous liter-
ature.26,27,72 Moreover, the effect of the interface may penetrate
within the porous media along with the boundary layer pro-
duced on the lower surfaces of the channel and might extend
to results in non-uniform velocity profiles. These impacts have
been proven to vanish for pure fluid motion over porous media
by decreasing porosity of the porous media.12,27 It is likely
that the interface effects and the lower wall boundary layer
effect would considerably vary in the flow of concentrated
suspensions.

2. The ratio of slip velocity to the maximum area-averaged veloc-
ity is relatively constant for the solvent and 1%, 3%, and 5%
concentrated suspensions. This shows that the velocity above

the porous media is similar for pure fluid and various suspen-
sions. The dimensionless slip parameter, Us/γ̇

√
K, and the slip

length, lslip, for the experimental results are relatively invariant
to the change in concentration. This was because the velocity
profiles for the solvent and dilute suspensions are all still sim-
ilar at the interface; therefore, the properties at this interface
should be comparable across all cases tested.

3. Although the comparison of the velocity profiles obtained
experimentally and from the exact solutions provides rather
good agreement, specifically in the free-flow region, there is
still a discrepancy between the experiments and the exact solu-
tions within the porous media. In fact, the particles in the
experiments migrating through the porous media model play a
critical role, which results in varying the velocity profiles. The
experimental results show that the velocity profiles are strongly
dependent on the suspension concentration flowing through
the porous media, but it is relatively independent of the con-
centration in the free-flow region. Nonetheless, this analysis
is a proof of concept that one might characterize the veloc-
ity profile of 1% suspensions flowing over and inside a porous
medium model containing of rods using the exact solutions of
the pure Newtonian flow over and through the porous layer
when the porous medium property, the thickness of the layer,
the particle size, shape, and concentration, and the geometry of
the channel are known.

4. The slip coefficient and dimensionless slip parameter remain
relatively unchanged by the increase in concentrations. How-
ever, the slip coefficient is lower in the dilute suspensions than
in the solvent. Since these values are still comparable, it further
supports the idea that for very dilute suspensions, they have
similar behavior to that of the pure Newtonian fluid.

5. Further examination of the experimental data provided use-
ful information on the phenomenological constants used in
the existing models for pure Newtonian fluid and explored
their validity for very dilute suspensions. Our analysis shows
that the penetration depth δ and the fractional increase
in the mass flow rate due to the presence of a porous
media Φ are almost the same for pure solvent fluid and the
suspensions.
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