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ABSTRACT
Data scientists often develop data sets for analysis by drawing upon

sources of data available to them. A major challenge is to ensure

that the data set used for analysis has an appropriate representation

of relevant (demographic) groups: it meets desired distribution re-

quirements. Whether data is collected through some experiment or

obtained from some data provider, the data from any single source

may not meet the desired distribution requirements. Therefore, a

union of data from multiple sources is often required. In this paper,

we study how to acquire such data in the most cost effective manner,

for typical cost functions observed in practice. We present an opti-

mal solution for binary groups when the underlying distributions

of data sources are known and all data sources have equal costs. For

the generic case with unequal costs, we design an approximation

algorithm that performs well in practice. When the underlying

distributions are unknown, we develop an exploration-exploitation

based strategy with a reward function that captures the cost and

approximations of group distributions in each data source. Besides

theoretical analysis, we conduct comprehensive experiments that

confirm the effectiveness of our algorithms.
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1 INTRODUCTION
The standard assumption in machine learning is that we have, at

hand, a training data set that is a representative sample of the data

that will be seen in production. This assumption is easily satisfied

if the training data can be obtained by randomly sampling from the

“full” data set in production. However, such random sampling is

frequently not possible. Often, this is because production data has

not yet been generated at the time the model is trained. At other

times, the entire point may be to repurpose and reuse data collected

for other purposes. Insufficiently representative training data has

resulted in many data science debacles [27, 50, 60, 71]. Even when

the distribution is accurately characterized, it may not be so easy to

obtain training data from the same distribution. For example, sur-

veys may be sent out to a carefully chosen random sample, but only

a fraction of surveys are returned, with the return rate not being
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completely random. Survey statistics has developed sophisticated

techniques to handle such lack of randomness [35]. Similar issues

arise when analyzing online comments or tweets to gauge popular

opinion. We wish that the opinions expressed be representative of

the target population of interest (e.g. all voters or all customers),

but we know that we only have a skewed sample with the most

vocal individuals, potentially skewing young and more tech-savvy

individuals. Beyond the need for representation to reduce model

error, it may sometimes be important to show adequate considera-

tion of minority groups. Even where representative samples can be

obtained for training data, that still may not be sufficient in some

circumstances. To ensure that minority entities are adequately con-

sidered, we may need to train with data in which small minorities

are intentionally over-represented [21, 24]. Similarly, when we are

interested in characterizing rare events, we may need training data

that has rare events over-represented. For example, to learn how

to handle emergencies, we need car-driving data with accidents

and near-accidents over-represented: representative driving data

may involve few challenging scenarios [55]. To summarize, data

scientists often have distribution requirements on data sets they

wish to use for training or analysis.

To see how to meet these requirements, we now turn to where

the data come from. Sometimes, the data may explicitly be collected

by the data scientist for the analysis at hand, using surveys, sensors,

or other data collection means. Alternatively, data scientists could

rely on secondary data instead: using data that have been collected

previously for some other purpose. The number and variety of data

sources available has been increasing rapidly, making secondary

data analysis much more attractive. In fact, the data scientist on

many occasions may be spoiled for choice. Since each data source

is collected in some manner over some population, it will have its

own distribution, which may differ from the distribution desired by

the data scientist. The question to ask then is whether data from

multiple sources can be mixed to achieve the desired distribution.

This is the central problem we study in this paper.

Example 1: A data science company has been asked to build an

ML model for a local bank in Texas who wants to offer a loan

to employees with yearly income of more than $75K. The model

should predict the likelihood that an individual will pay back the

loan. The company considers building a model on an in-house

data set. Being aware of recent incidents of racial/gender biases

in similar predictive tools [20], the company wants to make sure

different demographic groups are suitably considered. It, however,

turns out the data set is skewed: while around 40% of samples are

white male, it only 15% are non-white female. The company realizes

there are alternative external data sources (such as TexasTribune1)

1
https://salaries.texastribune.org
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they could consider for collecting the data. It establishes a target

distribution on counts from different demographic groups (e.g. 25%

from each demographic group in a data set of 1K samples). The

challenge the company faces is how to efficiently query these data

sources to collect the data. In § 5.2, we report on an experiment

using real data based on this example, to confirm the effectiveness

of our solutions. □

Obtaining data from a data source is not free. An increasingly

common situation where the costs are explicit is when data are

purchased from a commercial data provider [1–3, 5, 67]. Even for

primary data collection there is a cost per tuple, in terms of access,

storage, indexing, and so on. In all cases, we can characterize the

cost of obtaining data from any source in a pricing model. Given a

set of these data sources, each with its own distribution and pricing

model, our goal is to obtain, at least cost, an aggregate data set that

satisfies our distribution requirements. This problem is difficult

to solve in general because each source has its own distribution,

and none may have a distribution that we seek. Furthermore, no

combination of sources may provide us with the desired distribution

either. In general, we may have to over-purchase and then “throw

away” excess data items. And even so, we cannot be guaranteed

it is feasible to obtain the desired distribution. In summary, our

contributions in this paper are the following:

• We introduce the problem of Data distribution Tailoring (DT). To
our knowledge, we are the first to propose this problem. (§ 2)

• When the distributions of sources are known, we propose a dy-

namic programming algorithm with minimum expected cost. Be-

ing pseudo-polynomial, this algorithm is not practical. Therefore,

we design the optimal algorithm for binary groups and equi-

cost sources and an approximation algorithm based on coupon

collector’s problem for the generic case. (§ 3)

• When the distributions are unknown, we model the problem

as multi-armed bandit. Designing a proper reward function, we

explore three strategies based on exploration-only, exploitation-

only, and upper-confidence bound. (§ 4)

• In addition to theoretical analysis, we conduct comprehensive

experiments on real and synthetic data sources to validate and

evaluate the performance of the proposed algorithms. (§ 5)

2 PROBLEM DEFINITION
Query Model: Our goal is to enable integrating data from multiple

sources to construct a target data set. A user query describes a

target data set with a target schema, consisting of a collection of

attributes. For example, the user may be interested in collecting a

data set of movie casts with columns {movie_title, actor_name,

gender, . . . }. The query specifies a distribution over some “de-
mographic groups”, or simply groups

2
. We assume a target schema

has some “sensitive attributes” such as race and gender that iden-

tify the groups as the intersection of domain values. For example,

{white-male, white-female, black-male, black-female} can be

the groups defined as the intersection of race and gender. We use

{G1, . . . ,G𝑚} to show a set of groups. A the user’s query includes

count description Q = {Q1, . . . ,Q𝑚} on {G1, . . . ,G𝑚}. We note

2
While our motivation in this paper is tailoring distribution for sensitive attributes,

our techniques are not limited to those. In particular, the groups can be defined as the

intersection of value of any set of attributes of interest.

that when a target data set is collected, there is always a size objec-

tive – a data set comprising just a handful of tuples could satisfy

such ratio constraints but be completely useless for training. Once

we add an overall count requirement to a ratio requirement, this

becomes equivalent to the count requirement formulation. Many

variants of requirements can be posed, depending on the desired

application. We discuss several of these in § 7.

Data Model: The input of DT is a collection of sources L =

{𝐷1, . . . , 𝐷𝑛}. We assume each source has the same schema as the

user’s target schema. Table 1 lists the notation used in this paper.

Therefore, each tuple in a source can be associated with a group

by inspecting its sensitive attributes. Data sources can be external,

accessible through limited interfaces or APIs, or data views that

are the outcome of the discovery and integration over underlying

data sets. For example, a source can be defined by a project-join

query defined over a database or a data lake. Similarly, web services

such as Google Flights API [6], data markets such as Dawex [1],

Xignite [3], and WorldQuant [2], as well as data brokers [5, 67] are

examples of external sources.

Sometimes obtaining a source with the same schema as the target

schema requires data integration using a projection-join query over

data sets that contain some attributes of the query. Continuing with

the movie cast example, using the IMDB database [8], the query

Πtitle,gender, · · ·
(︁
title ⊲⊳ cast_info ⊲⊳ name) provides a data source.

Of course, since the target schema is user-specific, and given the

potentially large size of data sets, computing and materializing

the full join for all sources is not efficient. Instead of offline join,

existing work proposes ways for obtaining independent and/or

uniformly distributed random tuples from the result of join without

executing the join [45, 47, 79]. To abstract the access model, we

assume a tuple-at-a-time access to a source. This assumption is

aligned with external data sources, such as web databases, where

a limited interface is often enforced that returns a subset of top-

𝑘 results per query [16, 17, 48, 66]. While for concreteness and

simplicity, in the bulk of the paper we assume exactly one tuple is

returned per query, in § 7, we discuss how our algorithms can be

adjusted to relax this assumption.

Cost Model: Obtaining samples from different data sources is not

for free. Acquiring samples is associated with a cost either monetary

or in the form of computation, memory access, or network access

cost. Web database APIs (such as Google Flights), for example, allow

a limited number of free queries per day from each IP address or

would charge per query while enforcing a top-𝑘 interface [16, 17, 48,

66]. Similarly, relying on data brokers may incur monetary costs [1–

3, 5, 67]. For internal data sources, as explained in the data model,

we may need to apply costly pre-processing steps and online join

operations in order to discover a sample. Furthermore, such costs

may vary from a source to another, depending on factors such as

length of join-paths, their joinability, statistics of data sets, and

matching cost. To generalize across different contexts, we use 𝐶𝑖
as the cost of sampling from source 𝐷𝑖 . For the cases where each

query returns more than one sample or even the whole source, we

can amortize the cost across the number of samples.

Data distribution Tailoring (DT) Problem: Given a collection

L of data sources with query model described above, our goal is

to enable building a target data set with the group count distri-

bution specified by the user. That is, given a count description
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Table 1: Table of Notations
Symbol Description

Q𝑗 The desired number of tuples for group G𝑗
𝑁𝑖 The number of tuples in data source 𝐷𝑖

𝐶𝑖 The cost of sampling from 𝐷𝑖

𝑁
𝑗

𝑖
The number of tuples of group G𝑗 in 𝐷𝑖

𝑂 The collected target data set so far

𝑂𝑖 The number of samples taken from 𝐷𝑖

𝑂
𝑗

𝑖
The number of unique tuples of G𝑗 collected from 𝐷𝑖

𝐷∗𝑗 The data source with minimum expected cost of

collecting an item of G𝑗 at current iteration
𝑝 𝑗

The overall frequency of G𝑗 in all data sources

𝑡 Total number of samples taken so far

Q = {Q1, . . . ,Q𝑚} on {G1, . . . ,G𝑚}, we would like to query differ-

ent data sources in L, in a sequential manner, in order to collect

samples that fulfill the input count description, while the expected

total query cost is minimized.

Depending on our knowledge about the data source distributions,

two problem versions can be defined for DT. The first problem

assumes the availability of group distributions. That is, we know

the data source size and the total number of tuples belonging to each

group in each data source. Our task is to select a data source to query

each time based upon the set of tuples we have already acquired. In

many application settings, we may not know much about the data

sources. In particular, we may not know the count aggregates for

different groups. This gives rise to the second problem, with the

same objective as the first problem, but now without any starting

knowledge of data distributions in the sources being considered.

Solving this problem requires us to learn group distributions for

each data source as we go along.

3 KNOWN DISTRIBUTION MODEL
In this section, we consider the DT problem for cases where we

know the group distributions in each data source.

3.1 Dynamic Programming
Given the count descriptions Q = {Q1, · · · ,Q𝑚} our objective
is to find the optimal strategy with the minimum expected cost

𝐹 (Q). The process of collecting the target data set is a sequence of

iterative steps, where at every step, the algorithm chooses a data

source, queries it, and if the obtained tuple contributes to one of

the groups for which the count requirement is not yet fulfilled, it is

kept, otherwise discarded. Our first attempt is to develop a dynamic

programming (DP) solution.

An optimal source at each iteration minimizes the sum of its

sampling cost plus the expected cost of collecting the remaining re-

quired groups (𝐹 𝑗 (Q)), based on its sampling outcome. The dynamic

programming analysis evaluates this cost recursively by consider-

ing all future sampling outcomes and selecting the optimal source

in each iteration accordingly. Using the probabilities of discovering

a fresh tuple from each group for every data source 𝐷𝑖 , the optimal

source is defined as follows.

𝐹 (Q) = min

∀𝐷𝑖 ∈L

(︂
𝐶𝑖 +

𝑚∑︂
𝑗=1,

Q𝑗>0

P
𝑗

𝑖
𝐹 𝑗 (Q) +

(︁
1 −

𝑚∑︂
𝑗=1,

Q𝑗>0

P
𝑗

𝑖

)︁
𝐹 (Q)

)︂
(1)

Let P
𝑗
𝑖
be the ratio of tuples from group G𝑗 in source 𝐷𝑖 . To sim-

plify the notation, we have introduced 𝐹 𝑗 (Q) = 𝐹 (Q1, · · · ,Q 𝑗 −
1, · · · ,Q𝑚). If a sample of G𝑗 is added to the target (because it

is fresh and belongs to a group whose count requirement is not

fulfilled), the remaining cost for building the target is 𝐹 𝑗 (Q). There-
fore, the term

∑︁𝑚
𝑗=1,Q 𝑗>0

P
𝑗
𝑖
𝐹 𝑗 (Q) is the expected cost of target if

we add the current sample to the target. The probability of a sample

being discarded is

(︁
1 −∑︁𝑚

𝑗=1,Q 𝑗>0
P
𝑗
𝑖

)︁
and in this case we will have

to pay the cost 𝐹 (Q).
In our DP algorithm, we assume data sets are big enough, that

is the probability of discovering a fresh tuple from a 𝐷𝑖 does not

change over different iterations. We relax this assumption in subse-

quent sections for our practical algorithms. Following Equation 1,

the recursive cost formula is computed as follows.

𝐹 (Q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 Q = {0, · · · , 0}

min

∀𝐷𝑖 ∈L

(︂𝐶𝑖+
∑︁𝑚

𝑗=1,Q𝑗>0
P
𝑗

𝑖
𝐹 𝑗 (Q)∑︁𝑚

𝑗=1,Q𝑗>0
P
𝑗

𝑖

)︂
, otherwise

(2)

The DP algorithm follows a cube-filling approach, where ev-

ery cell [𝑖1, 𝑖2, · · · , 𝑖𝑚] of the (hyper-)cube 𝐹 contains the value of

𝐹 (𝑖1, 𝑖2, · · · , 𝑖𝑚) and a direction that shows which data source to

select next. Based on Equation 2, to compute a cell in cube 𝐹 , we

only need the values of cells with the same index in all dimensions

except 𝑗 ∈ [1,𝑚], for which the value is 𝑖 𝑗 − 1. This can be ac-

complished by sweeping a diagonal plane over the cube (starting

from 𝐹 [0, · · · , 0] to 𝐹 [Q]) only maintaining the values on the plane.

Following this strategy to fill the cube 𝐹 , the DP algorithm has a

pseudo-polynomial time complexity (assuming that𝑚 is a small

constant) of 𝑂
(︁
𝑛𝑚

𝑚
Π
𝑖=1

Q𝑖
)︁
. Similarly, the space complexity of the

algorithm is 𝑂
(︁𝑚−1

Π
𝑖=1

Q𝑖
)︁
.

Example 2: Consider sources 𝐷1 and 𝐷2 and groups G1 and G2.

Furthermore, consider the following statistics for the sources.

𝑁𝑖 𝐶𝑖 G1 G2

𝐷1 1000 2 0.2 0.8

𝐷2 1000 3 0.4 0.6

We would like to collect one tuple from each group, i.e. Q = {1, 1}.
Starting from 𝐹 (0, 0), the DP algorithm sweeps a diagonal line from

top-left to bottom-right, in order to compute 𝐹 (1, 1).
𝐹 (0, 0) = 0 𝐹 (0, 1)
𝐹 (1, 0) 𝐹 (1, 1) ✓

Following the matrix-filling approach, we have the following.

𝐹 (1, 0) = min

(︁ 2

0.2
,

3

0.4

)︁
= 7.5⇐ 𝐷2

𝐹 (0, 1) = min

(︁ 2

0.8
,

3

0.6

)︁
= 2.5⇐ 𝐷1

𝐹 (1, 1) =min

(︂
2 + 0.2𝐹 (0, 1) + 0.8𝐹 (1, 0),

3 + 0.4𝐹 (0, 1) + 0.6𝐹 (1, 0)
)︂
= 8.5⇐ 𝐷1

□

3.2 Equi-cost Binary DT
The dynamic programming algorithm proposed in the previous sec-

tion has a computation and memory cost that is pseudo-polynomial.

It quickly becomes intractable for cases where count requirements
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are not small. In this section, we devise a better solution for an

important special case: equi-cost binary DT.

Fairness issues often involve exactly two demographic groups

(such asmale/female, black/white, orminority/majority). As a result,

much of the existing work on fairness focuses on such cases [29, 38,

76]. Furthermore, the cost of querying every data source is roughly

the same in many scenarios. This motivates us to give a special

treatment to the design of an algorithm that guarantees minimum

expected query cost for equi-cost binary DT.

Similar to § 3.1, we view the process of collecting the target data

as a sequence of iterations where, at every iteration ℓ , we should

select a data source to query. We use the notation 𝐹 (Q1,Q2) to refer
to the optimal expected cost for collecting Q1 tuples of group G1

and Q2 tuples of G2. We suppose, at every iteration ℓ , 𝑂 is the data

collected so far, in which𝑂
𝑗
𝑖,ℓ

is the number of unique samples of G𝑗
from 𝐷𝑖 , i.e., 𝑂

𝑗
𝑖,ℓ

= |{𝑠 ∈ 𝐷𝑖 |𝑠 ∈ 𝑂 and 𝑠 ∈ G𝑗 }|. For every group

G𝑗 , let 𝐷∗𝑗,ℓ ( 𝑗 ∈ {1, 2}) be the data source with the maximum ratio

of undiscovered tuples for G𝑗 . That is,

𝐷∗𝑗,ℓ = argmax

∀𝐷𝑖 ∈L

(︂𝑁 𝑗
𝑖
−𝑂 𝑗

𝑖,ℓ

𝑁𝑖

)︂
(3)

Suppose 𝐷∗1,ℓ = 𝐷𝑖 and the maximum probability for obtaining

a tuple from G1 at iteration ℓ is P∗1,ℓ = (𝑁 1

𝑖
−𝑂1

𝑖,ℓ
)/𝑁𝑖 . Hence, the

optimal expected cost for collecting one tuple from G1 is as follows

(𝐹 (0, 1) can be similarly computed).

𝐹 (1, 0) = 1

P∗1,ℓ
=

𝑁𝑖

𝑁 1

𝑖
−𝑂1

𝑖,ℓ

Now, consider a non-marginal case where Q1 ≠ 0 and Q2 ≠ 0.

To simplify the explanation, let us assume that at iteration ℓ , G1 is

the minority and G2 is the majority, i.e. P∗1,ℓ ≤ P∗2,ℓ . The following
theorem is the key for designing the optimal solution.

Theorem 1. Consider the DT problem under the availability of
group distributions where there are two groups and the costs for query-
ing data sources are equal. Let G1 be the minority at iteration ℓ , i.e.
P∗1,ℓ ≤ P∗2,ℓ . Selecting 𝐷∗1,ℓ to query at iteration ℓ is optimal.

Proof: We provide the proof by contradiction. Let 𝐷𝑖 = 𝐷∗1,ℓ .
Suppose algorithm A1 that selects 𝐷𝑖 at iteration ℓ is not optimal.

Suppose the optimal algorithm, A2, selects 𝐷 𝑗≠𝑖 at iteration ℓ . We

show that the expected cost of A1 cannot be less than A2. This

contradicts the assumption that A1 is not optimal. Let𝑊𝑗 (Q1,Q2)
be the expected cost if 𝐷 𝑗 is queried at iteration ℓ and𝑊𝑖 (Q1,Q2)

be the expected cost if 𝐷𝑖 is queried. Also, let P
′ =

𝑁 1

𝑗 −𝑂1

𝑗,ℓ

𝑁 𝑗
. Note

that P′ ≤ P∗1,ℓ .
𝑊𝑖 (Q1,Q2) = P∗1,ℓ𝐹 (Q1 − 1,Q2) + (1 − P∗1,ℓ )𝐹 (Q1,Q2 − 1)
𝑊𝑗 (Q1,Q2) = P′𝐹 (Q1 − 1,Q2) + (1 − P′)𝐹 (Q1,Q2 − 1)

Now, subtracting the two values:

𝐵 =𝑊𝑗 (Q1,Q2) −𝑊𝑖 (Q1,Q2)
= P′𝐹 (Q1 − 1,Q2) + (1 − P′)𝐹 (Q1,Q2 − 1)

−
(︂
P∗1,ℓ𝐹 (Q1 − 1,Q2) + (1 − P∗1,ℓ )𝐹 (Q1,Q2 − 1)

)︂
=

(︂
Pℓ∗1,ℓ − P

′
)︂ (︂
𝐹 (Q1,Q2 − 1) − 𝐹 (Q1 − 1,Q2)

)︂

Algorithm 1 Known-Binary

Input: Group counts Q1 and Q2; data sources L = {𝐷1, . . . , 𝐷𝑛 }
Output: 𝑂 , target data set

1: 𝑂 ← {}
2: 𝑂

𝑗

𝑖
← 0, ∀1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 2

3: while (Q1 > 0 OR Q2 > 0) do
4: 𝐷𝑘 ← argmax

∀𝐷𝑖 ∈L

(︂
𝑁 1

𝑖
−𝑂1

𝑖
𝑁𝑖

)︂
; 𝐷𝑘′ ← argmax

∀𝐷𝑖 ∈L

(︂
𝑁 2

𝑖
−𝑂2

𝑖
𝑁𝑖

)︂
5: P1 ←

𝑁 1

𝑘
−𝑂1

𝑘
𝑁𝑘

; P2 ←
𝑁 2

𝑘′−𝑂
2

𝑘′
𝑁𝑘′

6: 𝐷𝑖 ← 𝐷𝑘 if (Q2 == 0 or P1 < P2) else 𝐷𝑖 ← 𝐷𝑘′

7: 𝑠 ← Query(𝐷𝑖 )
8: 𝑗 ← G(𝑠) // the group of 𝑠

9: if (𝑠 ∉ 𝑂 AND Q𝑗 > 0) then
10: add 𝑠 to𝑂 ; Q𝑗 ← Q𝑗 − 1, ;𝑂

𝑗

𝑖
← 𝑂

𝑗

𝑖
+ 1

11: return𝑂

𝐹 (Q1 − 1,Q2) = 𝐹 (Q1 − 1,Q2 − 1) + 𝐹 (0, 1)
𝐹 (Q1,Q2 − 1) = 𝐹 (Q1 − 1,Q2 − 1) + 𝐹 (1, 0)

Since G1 is the minority, 𝐹 (0, 1) ≤ 𝐹 (1, 0). Therefore,
𝐹 (Q1,Q2 − 1) − 𝐹 (Q1 − 1,Q2) ≥ 0⇒ 𝐵 ≥ 0

Since the expected cost of A1 cannot be less that of A2, selecting

𝐷𝑖 = 𝐷∗1,ℓ to query at iteration ℓ is an optimal solution. □
Algorithm 1 shows the pseudocode of our optimal algorithm

for the equi-cost binary groups. At each iteration, the algorithm

finds corresponding data sources for G1 and G2. Then depending

on which group is in the minority, it queries the proper data source.

The algorithm stops when the count requirements of both groups

are satisfied then returns the target data set 𝑂 .

Example 2 (Part 2): To see a concrete run for a toy example for

Algorithm 1, let us continue with Example 2, while assuming the

cost to query the two data sources are equal to one. Using the

ratios provided in Example 2, 𝑁 1

1
= 200, 𝑁 2

1
= 800, 𝑁 1

2
= 400, and

𝑁 2

2
= 600. Note that since we consider the equi-cost assumption,

the optimal solution is different from the one provided for DP.

Given that 𝑁 1

1
/𝑁1 < 𝑁 1

2
/𝑁2, 𝐷𝑘 = 𝐷2 and P1 = 0.4 (Lines 5 and 6),

i.e., 𝐷2 is the optimal data source for G1. Similarly, 𝐷 ′
𝑘
= 𝐷1 and

P2 = 0.8. Since G1 is the minority, the algorithm queries 𝐷2 in Line

11. Suppose the query returns the tuple 𝑡1 from the group G2. It is

then added to the output 𝑂 . We still need to collect one tuple from

G1. The algorithm, hence, queries 𝐷2 again. Suppose the returned

tuple 𝑡2 also belongs to G2. Since Q2 = 0, tuple 𝑡2 gets discarded

and the algorithm queries 𝐷2 again. Suppose 𝑡𝑖 belongs to G1; the

algorithm adds 𝑡3 to 𝑂 and returns the result.

□

3.3 General DT
As an alternative to the DP solution, in this section, we provide

an approximation algorithm for the general non-binary case. In

particular, we note that the optimal solution for the binary case

decides the data source to query only based on one group (the

minority group). This can be viewed as the algorithm focuses on

collecting data for one group. We extend this strategy by modeling

the problem as𝑚 instances of the coupon collector’s problem [49],

where every 𝑗-th instance aims to collect samples from the groupG𝑗 .
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We also use the union bound [49] to come up with an upper-bound

on the expected cost of this algorithm.

For every group G𝑗 , the algorithm first identifies the data source

𝐷∗𝑗 , the most cost effective data source for G𝑗 . That is,

𝐷∗𝑗 = argmax

∀𝐷𝑖 ∈L

(︂ 𝑁
𝑗
𝑖

𝑁𝑖 . 𝐶𝑖

)︂
(4)

The algorithm then starts collecting tuples of different groups

by querying the data source 𝐷∗𝑗 for each group G𝑗 . In fact, while

collecting tuples for each group the algorithm will also maintain

the tuples of other groups. The algorithm queries corresponding

data sources for different groups until the count requirements of

the target are satisfied. Theorem 2 provides an upper-bound for the

expected cost of this algorithm as an upper-bound for the expected

cost of the problem.

Theorem 2. Assuming that each data source 𝐷∗𝑗 in Equation 4
contains at least Q 𝑗 samples from G𝑗 , the expected cost of DT (un-
der the availability of group distributions) modeled by 𝑚 coupon
collector’s instances each targeting to collect one group, is at most

Ψ =

𝑚∑︂
𝑗=1

𝐶∗𝑗𝑁∗𝑗 ln

𝑁
𝑗
∗𝑗

𝑁
𝑗
∗𝑗 − Q 𝑗

(5)

where 𝑁∗𝑗 = |𝐷∗𝑗 |, 𝑁 𝑗
∗𝑗 = |{𝑠 ∈ 𝐷∗𝑗 | 𝑠 ∈ G𝑗 }|, and 𝐶∗𝑗 is the cost

of 𝐷∗𝑗 .

Proof: Let𝜓 𝑗 be the number of queries the algorithm would issue

to collect Q 𝑗 unique tuples from G𝑗 . We note the queries issued to

discover the tuples from a group G𝑗 may also discover some tuples

from other groups. As a result, the set of queries for different groups

may intersect. The union bound [49] indicates that the probability

of the union of events is no more than the sum of their probabilities.

In DT, the cost of collecting the required tuples of all groups is

bounded by the sum of the cost of the tuples of each group. This

is because while sampling sources to collect the next tuple of a

particular group, DT keeps the useful tuples of other groups. Using

this principle, the expected cost of queries issued by the algorithm,

Ψ, is bounded by

Ψ ≤
𝑚∑︂
𝑗=1

𝐶∗𝑗E
[︁
𝜓 𝑗

]︁
(6)

For the group G𝑗 , the algorithm queries the data source 𝐷∗𝑗 . Let
𝑒𝑝𝑜𝑐ℎ 𝑗 [𝑘] be the number of queries issued to collect the 𝑘-th tuple

of group G𝑗 . For example, 𝑒𝑝𝑜𝑐ℎ 𝑗 [1] is the expected number of

queries the algorithm issues until the first tuple from G𝑗 is discov-
ered. Now, if the 𝑘-th item from G𝑗 is discovered at the 𝑘 ′-th query,

we have 𝑒𝑝𝑜𝑐ℎ 𝑗 [𝑘] = (𝑘 ′ − 𝑒𝑝𝑜𝑐ℎ 𝑗 [𝑘 − 1]). The number of queries

issued at every epoch,𝜓 𝑗 , is computed as follows.

𝜓 𝑗 =

Q 𝑗∑︂
𝑘=1

𝑒𝑝𝑜𝑐ℎ 𝑗 [𝑘]

Consider a query that is issued for group G𝑗 to 𝐷∗𝑗 during the 𝑘-
th epoch. Let 𝑃∗𝑗,𝑘 be the probability that such query is successful,

i.e., it discovers a new tuple from G𝑗 . The algorithm has so far

discovered (𝑘 − 1) tuples and there are (𝑁 𝑗
∗𝑗 − 𝑘 + 1) undiscovered

tuples from G𝑗 at 𝐷∗𝑗 . Therefore,

P∗𝑗,𝑘 =
𝑁

𝑗
∗𝑗 − 𝑘 + 1

𝑁∗𝑗
(7)

The geometric distribution represents the expected number of trials

before a success in a series of Bernoulli trials. When the probability

of discovering a fresh tuple of group G𝑗 is P∗𝑗,𝑘 , following the

geometric distribution, we have

E
[︁
𝑒𝑝𝑜𝑐ℎ 𝑗 [𝑘]

]︁
=

1

P∗𝑗,𝑘
𝜎2

[︁
𝑒𝑝𝑜𝑐ℎ 𝑗 [𝑘]

]︁
=

1 − P∗𝑗,𝑘
P2

∗𝑗,𝑘
As a result,

E
[︁
𝜓 𝑗

]︁
= E

[︂ Q 𝑗∑︂
𝑘=1

𝑒𝑝𝑜𝑐ℎ 𝑗 [𝑘]
]︂
=

Q 𝑗∑︂
𝑘=1

E
[︁
𝑒𝑝𝑜𝑐ℎ 𝑗 [𝑘]

]︁
=

Q 𝑗∑︂
𝑘=1

1

P∗𝑗,𝑘

= 𝑁∗𝑗

Q 𝑗∑︂
𝑘=1

1

𝑁
𝑗
∗𝑗 − 𝑘 + 1

= 𝑁∗𝑗

𝑁
𝑗

∗𝑗∑︂
𝑘=(𝑁 𝑗

∗𝑗−Q 𝑗+1)

1

𝑘

= 𝑁∗𝑗
(︂ 𝑁 𝑗

∗𝑗∑︂
𝑘=1

1

𝑘
−

𝑁
𝑗

∗𝑗−Q 𝑗∑︂
𝑘=1

1

𝑘

)︂
= 𝑁∗𝑗

(︁
H
𝑁

𝑗

∗𝑗
− H(𝑁 𝑗

∗𝑗−Q 𝑗 )
)︁

≃ 𝑁∗𝑗 ln

𝑁
𝑗
∗𝑗

𝑁
𝑗
∗𝑗 − Q 𝑗

Now, using Equation 6, we have

Ψ =

𝑚∑︂
𝑗=1

𝐶∗𝑗 𝑁∗𝑗 ln

𝑁
𝑗
∗𝑗

𝑁
𝑗
∗𝑗 − Q 𝑗

□

Example 3: To better understand Equation 5 with an example, let

us consider a group G𝑗 , suppose Q 𝑗=100, and consider two cases

where (a) 𝑁∗𝑗=1K v.s. (b) 𝑁∗𝑗=1M. In both cases let 𝐶∗𝑗=1 and

suppose the ratio of G𝑗 is %20. Following Equation 5, for case (a)

where the data source contains 1000 tuples,𝐶∗𝑗 𝑁∗𝑗 ln

(︁
𝑁

𝑗
∗𝑗/(𝑁

𝑗
∗𝑗 −

Q 𝑗 )
)︁
≃ 693, i.e., the expected cost to collect 100 samples from G𝑗

is bounded by 693 queries. This number drops to 500.1 queries for

case (b) where the data source size is 1M. Note that, using the %20

ratio, 500 is expected number of queries without considering the

duplicates. In case (a) where the data source is small, the chance of

discovering duplicate samples is higher, which resulted in around

693-500=193 more queries to collect the 100 samples needed. In

case (b), however, the chance of finding duplicates is negligible. □

3.3.1 The Approximation Algorithm. So far, we did not consider

any ordering of which group to target first. In our analysis, the

𝑚 instances of the coupon collector’s are executed independently.

One message from the optimal solution for the binary case is to

first collect data from the minority groups. Note that the chance

of collecting data from other groups while collecting data for mi-

norities is higher than finding minorities while targeting to collect

other groups. Following this logic, for the sequential algorithm, we

apply a practical improvement over the algorithm by collecting

data for minorities first.
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Algorithm 2 CoupColl

Input: Group counts Q1, · · · , Q𝑚 ; data sources L = {𝐷1, . . . , 𝐷𝑛 }
Output: 𝑂 , target data set

1: 𝑂 ← {}
2: 𝑂

𝑗

𝑖
← 0, ∀1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤𝑚

3: while ∃Q𝑗 > 0, ∀1 ≤ 𝑗 ≤𝑚 do
4: 𝑚𝑖𝑛 ←∞
5: for 𝑗 = 1 to𝑚 do
6: if Q𝑗 == 0 then continue

7: 𝑥 ← argmax∀𝐷𝑘 ∈L

(︂
(𝑁 𝑗

𝑘
−𝑂 𝑗

𝑘
)/𝑁𝑘 .𝐶𝑖

)︂
8: if (𝑁 𝑗

𝑥 −𝑂
𝑗
𝑥 )/𝑁𝑥 .𝐶𝑥 <𝑚𝑖𝑛 then 𝑖 ← 𝑥

9: 𝑠 ← Query(𝐷𝑖 )
10: 𝑗 ← G(𝑠) // the group of 𝑠

11: if (𝑠 ∉ 𝑂 AND Q𝑗 > 0) then
12: add 𝑠 to𝑂 ; Q𝑗 ← Q𝑗 − 1;𝑂

𝑗

𝑖
← 𝑂

𝑗

𝑖
+ 1

13: return𝑂

The pseudocode of the algorithm is provided in Algorithm 2.

This algorithm first identifies the minority group, i.e. the group for

which the most cost effective data source requires the maximum

expected cost. Hence, the algorithm chooses the group that provides

maximum piggybacking opportunity per unit cost for other groups.

This strategy is reduced to the optimal strategy for equi-cost binary

DT. At iteration ℓ , the data source with minimum expected cost for

collecting a sample from group G𝑗 is

𝐷∗𝑗,ℓ = argmax

∀𝐷𝑖 ∈L

𝑁
𝑗
𝑖
−𝑂 𝑗

𝑖,ℓ

𝑁𝑖 . 𝐶𝑖
(8)

After identifying the minority group, the algorithm queries its

corresponding data source and updates the target data accordingly.

4 UNKNOWN DISTRIBUTION MODEL
In this section, we study the DT problem when we do not know

the distributions of groups in each data source. A naive solution is

to first issue “enough” random queries to each of the data sources

and estimate the distributions. Then, knowing these distributions,

we can use the techniques proposed in § 3. However, this solution

can spend too much of the limited query budget for estimating

the distributions, especially when there are many data sources or

only a small result data set is desired. Therefore, we seek to collect

data directly, without first discovering the distributions. To do so,

we model the DT problem in the unknown distribution case as a

(multi-armed) bandit problem [4, 41].

4.1 Modeling as Multi-Armed Bandit
Multi-armed bandit refers to a general class of sequential problems

with exploration and exploitation trade-off. Formally, a stochastic

bandit problem is defined as follows. Consider a set of 𝑛 resources

(arms), where each arm Γ𝑖 is associated with an unknown prob-

ability distribution 𝜈𝑖 with mean 𝜃𝑖 . In a sequential setting with

𝑇 iterations, an agent needs to take action by selecting an arm

at every iteration. Let A = 𝑎1, · · · , 𝑎𝑇 be the set of actions taken

by the agent. Upon selecting an arm Γ𝑖 by the agent as action 𝑎𝑡 ,

the agent receives a reward 𝑟𝑡 = R(𝑎𝑡 ) taken from the probability

distribution 𝜈𝑖 , therefore, E[R(𝑎𝑡 = Γ𝑖 )] = 𝜃𝑖 .

The objective of the agent is to maximize its expected cumula-

tive reward

∑︁𝑇
𝑡=1
E[𝑟𝑡 ]. Let the optimal expected reward at every

iteration 𝑡 be 𝜃∗𝑡 = max
𝑛
𝑖=1
E[R(𝑎𝑡 = Γ𝑖 )]. Then, the optimal strat-

egy A∗ = 𝑎∗
1
, · · · , 𝑎∗

𝑇
would have the expected cumulative reward∑︁𝑇

𝑡=1
𝜃∗𝑡 . Based on this, the notion of regret for not taking the opti-

mal actions is computed as follows.

L(A) = E
[︂ 𝑇∑︂
𝑡=1

(︁
𝜃∗𝑡 − R(𝑎𝑡 )

)︁ ]︂
(9)

One can see a straight-forwardmapping of unknownDT problem

to stochastic bandit problems, where every data source𝐷𝑖 is an arm

𝐷𝑖 . In a sequential manner, we would like to select arms in order to

collect Q 𝑗 tuples from every group G𝑗 . Every arm (data source) has

an unknown distribution of different groups and a query to an arm

𝐷𝑖 costs 𝐶𝑖 . We still need to design the reward function according

to the outcome of a query and the cost for issuing the query, which

we shall explain in § 4.4.

4.2 Exploration-only and Exploitation-only
We begin the section by developing the two extreme strategies:

exploration-only and exploitation-only. Exploration-only considers

zero knowledge about the distributions of groups in data sources.

Therefore, in each iteration, it randomly chooses a data source

to query. However, since the costs to query each source may be

different, it considers equal budget chance across sources. That is,

it gives every data source a chance inversely proportional to its

cost. Hence, less expensive sources are explored more and, in the

end, the expected cost spent on each source is equal.

The exploration-only strategy gives equal chance to exploring

every source, and does not use the knowledge it acquires during

the process to adjust its strategy. This strategy works well when all

sources have similar distributions. But if sources follow different

distributions on groups, exploration-only misses the opportunity

to focus on sources with higher rewards.

The other extreme is exploitation-only. This method first queries

every data source once, then keeps querying the most promising

source, without giving any chance for exploration [68]. As we shall

verify in our experiments, this strategy is suitable for cases with

a large number of data sources (in the order of the size of the

target data set), and when group distributions vary greatly across

sources. The reason is that in such cases, the source with maximum

reward value (higher than all other sources) probably has a better

expected reward than the average expected reward of other sources

(exploration-only), and significant exploration of sources is too

expensive. However, it relies on its inaccurate estimates, so it fails

to work in most general cases.

4.3 Upper Confidence Bound (UCB)
Different strategies have been proposed to balance exploration and

exploitation. Probably the most widely accepted is Upper Confi-

dence Bound (UCB) [68]
3
. UCB considers the fact that the statistics

are less accurate for less explored arms, and as the number of explo-

ration for an arm increases there is less need to explore that arm. To

3
Other bandit strategies could also be used. We are agnostic to the choice of strategy.
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increase the exploration chance for less-explored arms, UCB con-

siders an optimistic strategy for arms with high uncertainty, hence

preferring promising actions to the ones with estimations that are

not with high confidence. In other words, UCB favors exploring

the arms that have the potential of being optimal.

At every iteration, for every arm, UCB computes confidence

intervals for the expected reward, and selects the arm with the

maximum upper-bound of reward to be explored next. That is, 𝑎𝑡 =

arg max
𝑛
𝑖=1

𝑅̄(𝑖) +𝑈𝑡 (𝑖), where 𝑅̄(𝑖) is the average reward gained

from the 𝑖-th arm and 𝑈𝑡 (𝑖) is the upper confidence bound. The
goal in deriving 𝑈𝑡 (𝑖) is to make sure that with a high probability

the expected reward of the 𝑖-th arm is less than 𝑅̄(𝑖) +𝑈𝑡 (𝑖). Let𝑂𝑖

be the number of times arm 𝑖 has been explored (i.e., data source

𝐷𝑖 has been queried), and 𝑅⊥ (𝑖) and 𝑅⊤ (𝑖) be the minimum and

maximum reward values for𝐷𝑖 , respectively. Following Hoeffding’s

inequality [34], we have

P
(︁
E[𝑅(𝑖)] − 𝑅̄(𝑖) > 𝑈𝑡 (𝑖)

)︁
≤ e

−2 𝑂𝑖 𝑈𝑡 (𝑖 )2
(𝑅⊤ (𝑖 )−𝑅⊥ (𝑖 ) )2

We would like the probability of the true reward not being in

the interval to be a small value. Hence, setting the probability as

𝑡−4
,𝑈𝑡 (𝑖) is derived as:

e
−2 𝑂𝑖 𝑈𝑡 (𝑖 )2
(𝑅⊤ (𝑖 )−𝑅⊥ (𝑖 ) )2 = 𝑡−4 ⇒ 𝑈𝑡 (𝑖) = (𝑅⊤ (𝑖) − 𝑅⊥ (𝑖))

√︄
2 ln 𝑡

𝑂𝑖

4.4 Reward Function
The critical missing part of the algorithm developed so far is the

reward function. That is, if a query to a data source 𝐷𝑖 returns a

tuple from the group G𝑗 , what the reward obtained is. In order to

compute the reward of collecting a tuple from group G𝑗 , we raise
the question how “hard” it is to collect one tuple of a group. For

example, if 90% of the the tuples across different data sources belong

to G𝑗 , most queries will return a tuple from G𝑗 . On the other hand,

collecting a tuple from a group that is rare requires more effort,

and so should be worth more in reward. As a result, one can argue

that the reward of obtaining a tuple from G𝑗 is proportional to how
“rare” this group is across different data sources. In other words,

what is the expected cost one needs to pay in order to collect a

tuple from G𝑗 .
In order to compute the expected cost, we assume we know the

overall distribution of groups. Such an assumption is reasonable

since overall aggregates are often available in public forms such

as Bureau reports. Even in absence of such information, a pre-

processing that randomly selects data sources and samples them,

can be used for computing these aggregates. Note that acquiring

such general statistics would not require extensive queries and the

tuples obtained as a result will be used in the target data set. Let,

0 ≤ 𝑝 𝑗 ≤ 1 be the overall frequency of a group G𝑗 . Following the
principle of deferred decisions [49] (page 55), if we randomly select a

source to query, the expected number of queries required to collect

a tuple from G𝑗 is E[1𝑗 ] = 1/𝑝 𝑗 . Since any source can be selected

for sampling, the average cost is 𝑐 = (∑︁𝑛
𝑖=1

𝐶𝑖 )/𝑛. Therefore, the
expected cost to collect a tuple from G𝑗 is 𝑐/𝑝 𝑗 . We would like

to assign a high reward to sources that contain tuples of a rare

group G𝑗 (small 𝑝 𝑗 ). We also penalize the reward based on the

cost of sampling from the source, 𝐶𝑖 . Therefore, the reward of

Algorithm 3 UCB

Input: Group counts Q1, · · · , Q𝑚 ; data sources L = {𝐷1, . . . , 𝐷𝑛 }; un-
derlying distribution of groups 𝑝1, · · · , 𝑝𝑚

Output: 𝑂 , target data set

1: 𝑂 ← {}; 𝑡 ← 0; 𝑐𝑜𝑠𝑡 ← 0

2: 𝑂𝑖 ← 1, ∀𝑖 ∈ [1, 𝑛]
3: 𝑂

𝑗

𝑖
← 0, ∀𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1,𝑚]

4: for 𝑖 = 1 to 𝑛 do // query each data source once
5: 𝑠 ← Query(𝐷𝑖 ) ; 𝑐𝑜𝑠𝑡 ← 𝑐𝑜𝑠𝑡 +𝐶𝑖 ; 𝑡 ← 𝑡 + 1;

6: if (𝑠 ∉ 𝑂 AND Q𝑗 > 0) then
7: add 𝑡 to𝑂 ; Q𝑗 ← Q𝑗 − 1;𝑂

𝑗

𝑖
← 1

8: while ∃Q𝑗 > 0, ∀1 ≤ 𝑗 ≤𝑚 do
9: for 𝑖 = 1 to 𝑛 do
10: 𝑅̄ [𝑖 ] ← Equation 11;𝑈 [𝑖 ] ←

√︁
2 ln 𝑡/𝑂𝑖

11: 𝐷𝑖 ← arg max
𝑛
𝑘=1

𝑅̄ [𝑘 ] +𝑈𝑡 [𝑘 ]
12: 𝑠 ← Query(𝐷𝑖 ) ;
13: 𝑗 ← G(𝑠) // the group of 𝑠

14: 𝑂𝑖 ← 𝑂𝑖 + 1; 𝑡 ← 𝑡 + 1; 𝑐𝑜𝑠𝑡 ← 𝑐𝑜𝑠𝑡 +𝐶𝑖 ;

15: if (𝑠 ∉ 𝑂 AND Q𝑗 > 0) then
16: add 𝑠 to𝑂 ;𝑂

𝑗

𝑖
← 𝑂

𝑗

𝑖
+ 1; Q𝑗 ← Q𝑗 − 1

17: return𝑂

source 𝐷𝑖 with respect to G𝑗 , namely 𝑅(𝑖, 𝑗) is 𝑐/(𝑝 𝑗 .𝐶𝑖 ). Since 𝑐
is constant across all sources and groups, we remove it from the

reward function and write the reward function as following.

𝑅(𝑖, 𝑗) =
{︄

1

𝑝 𝑗𝐶𝑖
if Q 𝑗 > 0 and query result is a new tuple

0 otherwise

(10)

In order to efficiently compute the average rewards of data

sources at each iteration 𝑡 , for each data source 𝐷𝑖 , we maintain the

variable 𝑂𝑖 that shows the number of times 𝐷𝑖 has been queried;

moreover, for each group G𝑗 , we maintain 𝑂
𝑗
𝑖
as the number of

unique tuples from G𝑗 that have been discovered by querying 𝐷𝑖 .

Using these variables, the average reward of 𝐷𝑖 is following.

𝑅̄(𝑖) = 1

𝑂𝑖𝐶𝑖

𝑚∑︂
𝑗=1,Q 𝑗>0

𝑂
𝑗
𝑖

𝑝 𝑗
(11)

Using Equation 11 to compute the average rewards, Algorithm 3

follows UCB strategy for the DT problem when distributions are

unknown. Similar to Algorithms 1 and 2, Algorithm 3 also has

the space complexity 𝑂 (𝑛𝑚) and every iteration of it is in 𝑂 (𝑛𝑚).
Nevertheless, the number of iterations depends on the (unknown)

data distributions. Assuming that UCB on average requires a lower

expected number of iterations than random exploration, we can

use the expected number of iterations for exploration-only strategy

(#𝑋 ) as an expected upper-bound for the number of iterations in

UCB. Using the principle of deferred decisions [49], #𝑋 can be

computed using the overall distributions. That is, the expected

number of queries to collect a sample from G𝑗 is 1/𝑝 𝑗 . Hence #𝑋

is bounded by

∑︁𝑚
𝑗=1
Q 𝑗/𝑝 𝑗 , which bounds the time complexity as

𝑂
(︁
𝑛𝑚

∑︁𝑚
𝑗=1

1/𝑝 𝑗
)︁
, assuming Q 𝑗 as constant.

5 EXPERIMENTS
We have developed multiple algorithms in this paper: Known-

Binary and CoupColl for the case of known distributions, and
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Exploit, Explore, and UCB for the case of unknown distributions.

We study all of these, and compare them against a computed upper

bound of the expected cost which we calculate using Theorem 2

(Equation 5) and a random sampling-based algorithm, namely Base-

line. The algorithms were implemented using Python. All reported

empirical results are the average of 30 runs. A run is terminated

when 50,000 samples are collected or the target distribution is ful-

filled. Our experiments were conducted on a machine with Intel
®

Xeon
®

Gold 5218 CPU @ 2.30GHz and 512 GB DDR4 memory.

5.1 Data Sources
TexasTribune [9]: Compensation data for Texas state employees

has been published by the Texas Tribune. We got four employee

data sets, each comprising 21 attributes about employees’ salary

and compensation, employment status, and employer as well the

employees’ details. Among these are two sensitive attributes of

interest: gender and ethnicity. Considering the domain of these at-

tributes in the data sets, we have four groups: {female-nonwhite

(FNW), female-white (FW), male-nonwhite (MNW), male-white

(MW)}. These data sets consist of 5839, 5839, 5840, and 449 tu-

ples. We consider each data set to be a data source and assume the

cost of taking a random sample to be one unit for each source.

Flights [7]: Airborne Flights database, published by the Bureau

of Transportation Statistics, contains detailed flight statistics from

1987 to present. The carrier on-time performance of each flight

is represented by OP_CARRIER_AIRLINE_ID, ORIGIN_STATE_NM, and

ARR_DELAY, among other attributes. We downloaded the flight infor-

mation of carrier airlines from 2018 to 2020. We got 18 data sets

of flight data, each related to one airline. We consider the data set

of each airline to be a data source and assume the cost of taking

a random sample to be one unit for each source. The size of these

sources vary from 2,014,380 to 410,674,398 tuples.

IMDB [8]: The publicly available database of IMDB contains infor-

mation about movies and their casts. We used three data sets title,

cast_info, and name which include 30,335,424 tuples of movies,

253,660,001 tuples of themovie casts, and 37,507,374 tuples of cast in-

dividual information, respectively. Any analysis on the casts’ gender

of movies requires joining these data sets. To evaluate our query

and cost model, we obtained three data sets from title based on

the year of movies, namely title_2014, title_2015, and title_2016,

with 36924, 4812, and 384 tuples, respectively. We consider the join

of each title data set with cast_info and name as a data source and

assume the cost of taking a random sample from each data set to

be one unit.

BenchDL: We synthesized a benchmark to evaluate DT on vari-

ous cost and data distribution settings. To generate a source with

𝑚 groups, 𝑧 tuples, and group 𝑗 as a majority/minority group,

BenchDL first assigns tuple ratios to groups according to a dis-

tribution model (minority or majority), then generates 𝑧 tuples

according to the tuple ratios. In a majority source, one group has

the majority tuple ratio (higher than 1/𝑚) while other groups are

the minority. For a majority source, BenchDL first initializes all

tuple ratios to 1/𝑚. To make G𝑗 a majority, it iteratively reduces a

random 𝛼 value from a minority group and adds the reduction to

the ratio of G𝑗 . Note the first group selects 𝛼1 from (0, 1/𝑚). The
next group selects may select 𝛼2 from the updated (0, 1/𝑚 − 𝛼1)

range, and so on. This guarantees that a minority group has a ra-

tio smaller than 1/𝑚 while G𝑗 gets a ratio higher than 1/𝑚. For a

minority source, a similar process is followed where all majority

groups are initialized with 1/𝑚 ratios while the minority group G𝑗
is assigned the ratio 𝑝 from (0, 1/𝑚) and the remaining 1/𝑚 − 𝑝
ratio is distributed among all majority groups at random. Moreover,

BenchDL synthesizes collections of sources with various overall

distributions by varying the number of minority sources.

BenchDL implements three cost models: 1) equal-cost assigns one

unit cost for each sample, 2) random-cost assigns a randomly select

cost from (0,1], and 3) skewed-cost assigns costs following a Zipf

distribution with parameter𝛾 . We choose 𝛼 = 1.7 for experiments of

various𝑚 and 𝛼 = 30 for experiments of various 𝑛 and normalized

all to (0,1].

5.2 Proof of Concept
Use Case: Suppose the data scientist of Example 1 has access to

the four TexasTribune data sources and aims to build a data set of

size 200 with demographic parity. The data scientist first considers

sampling each data source independently and merging the collected

samples. Having the total count in mind, for each data source, the

data scientist chooses a sample size that is proportional to the size

of the source. Figure 1a shows the ratio of each demographic in

the final sample collected by random sampling. Note that a random

sampling technique is agnostic to the target counts as well as the

distribution of demographics in each source. This results in a data

set with on average 39.3% of white male employees and only 15.2%

non-white female employees. Assuming that obtaining a sample

from any source has unit cost, the cost of collecting this data set

is on average 201.23. Alternatively, the data scientist can apply

the DT algorithms to assure final data has demographic parity.

When the distributions of data sources are known, such a data set

is collected with the average cost of 302.26 and when distributions

are unknown, a data set with demographic parity can be generated

with average cost of 407.5, 333.7, 351.7 using Explore, Exploit,

and UCB, respectively. The observations from this experiment are

as follows: (1) traditional data collection approaches fail to equally

represent non-white and female minorities, and (2) with less than

twice extra cost, all of our algorithms could tailor the collected data

to include equal counts from all demographic groups.

Query and Cost Model: Continuing with the movie cast example

of § 2, we evaluate the expected cost of obtaining samples from

the IMDB database. Recall creating a source for the movie cast

example involves performing a project-join query such as the query

Πtitle,gender, · · ·
(︁
title ⊲⊳ cast_info ⊲⊳ name). Suppose the result of

joining title data sets title_2014, title_2015, and title_2016 with

cast_info and name generate sources 𝐷1, 𝐷2, and 𝐷3, respectively.

To evaluate our query and cost model, we implemented a simple

version of ripple join [47], an online sampling algorithm from a join

path. The algorithm starts by taking a sample from the first data set

in a join path, then iteratively scans and samples the second data

set until it finds a matching tuple with the first sample. Sampling

consecutive data sets in join paths continues until a sample with

the target schema is obtained. The algorithm then starts over with

a new sample of the first data set in the path. We remark that

this algorithm yields random but correlated samples from the join
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Figure 1: (a) Demographic Distributions in Texas Tribune (b) DT vs. Random Sampling (c) DT vs. Baseline on Flights Data (d)
Known Binary: Optimal vs. Coupon Collector.

path. Other sampling from join algorithms [79] can be used to get

independent and uniform samples. The expected cost of obtaining

a sample from a join path is the expected number of tuples the

algorithm needs to scan and verify to obtain one result tuple. Of

course, this cost depends on the distribution of tuples across data

sets as well as the number and distribution of values in overlapping

tuples. As required by ripple join, we make sure a random ordering

of tuples in a data set. A simulation of the described sampling from

join algorithm with 30 runs confirms that obtaining a tuple of 𝐷1,

𝐷2, and 𝐷3 incurs a wide range of costs 17,793.8, 1,692.5, and 136.5.

Cost-effectiveness: Having discussed two proof of concepts

for DT, we turn our attention to its cost-effectiveness. We use

BenchDL to generate repositories of 100 binary sources. In each

repository, group G1 is the majority group in 𝑋% of sources and

the minority in the rest. Figure 1b shows the cost of collecting a

binary target data set, consisting of 500 tuples of each group, using

a random sampling algorithm and Known-Binary for repositories

of various overall distributions. The random sampling algorithm

iteratively selects sources at random and obtains samples until the

target distribution is satisfied or a sample budget is exceeded. Con-

sider the case when G1 is the majority group in only one source,

𝐷1, and a minority in the remaining 99% sources. Considering the

equal cost for all sources, 𝐷1 is the most cost-effective source for

collecting samples of G1 and is selected by Known-Binary. How-

ever, the random sampling selects 𝐷1 with the probability 1% and

99% of times attempts to collect G1 from less cost-effective sources

which incurs higher overall cost. We observe that as the number

of cost-effective sources for a group increases random selection

becomes as effective as the optimal Known-Binary. They become

on par when a random selection returns a cost-effective source

with 50% chance. Since, in practice, one group is often the minority

in most sources, we argue that an intelligent strategy for source

selection, like DT, is crucial to cost-effective distribution tailoring.

5.3 Known Distributions
We now turn our attention to evaluate the performance of our pro-

posed algorithms. In plots of Figure 1d, 2, and 3, the bars (associated

with the left-y-axis) show the average cost while the dashed lines

(associated with the right-y-axis) show the average number of sam-

ples. In the following experiments, the target count distribution

comprises of 100 unique tuples of each group.

5.3.1 Equi-Cost Binary Case. For this set of experiments, we used

BenchDL to generate 1K binary data sources with average 5K unique

tuples. Figure 1d reports the cost and number of samples for the

Known-Binary and CoupColl when one group is consistently

the minority group across all data sources and the cost model is

equal-cost. CoupColl is the extension of Known-Binary to non-

binary cases and should reduce to it for equi-cost binary cases.

This is consistent with the experiment results where CoupColl

follows the same strategy as Known-Binary for binary groups

and performs on par in practice. The cost and number of samples

slightly decrease as the number of sources increases. This is because

with more sources, there is a higher chance of finding better sources

for the minorities, i.e., the sources with a greater fraction of the

minority tuples of interest.

5.3.2 General Case. We evaluate DT algorithms for source with

known distributions on data sets generated using BenchDL .

Number of Groups:We first study the behavior of DT algorithms

for different number of groups (𝑚 = 2, . . . , 10) across all cost models.

For each value of 𝑚 and data distribution, BenchDL generates a

repository of 20 data sources with average 5K unique tuples. As

shown in Figures 2a-2j, the theoretical upper bound of CoupColl is

not tight. At each iteration, CoupColl samples from the most cost

effective data source of the minority group. This strategy provides

the opportunity for piggybacking, that is the algorithm collects

the non-minority groups while sampling for the minority. The

experiments show CoupColl to be a practical algorithm for the DT

problem. It is worth noting that the number of samples and cost

increase as the number of groups increases which can be described

by the increase of target size (sum of the counts of groups).

Number of Data Sources: Next, we evaluate the behavior of DT
algorithms for different number of data sources (𝑛 = 10, . . . , 1000)

across all cost models. For a data distribution and 𝑛 of interest,

BenchDL generates a repository of 𝑛 data sources each with average

5K unique tuples that contain four groups. From Figures 2c-2l, the

cost and number of samples decreases with the increase in the num-

ber of data sources. Because, having more sources to choose from

increases the chance of finding ones that are more cost effective,

especially for the minorities. In particular, consistent across all ex-

periments, the cost and number of samples significantly drop when

there are more than 200 data sources. Notably, adding more sources

does not decrease the cost much. Still, increasing the number of

data sources from 10 to 200 helps with reducing the cost.

Cost Models: The skewed-cost model assigns costs in (0,1] to data

sources following a Zipf distribution, that is, cheap data sources

have costs closer to zero. This explains why in Figures 2k and 2l
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Figure 2: Known DT for Minority and Majority Distributions and Equal, Random, and Skewed Cost Models.

although the number of samples are close, the costs are smaller

than Figures 2c- 2h. Note that the average cost of a data source

in a random-cost model is higher than in a skewed-cost model,

which explains the overall lower costs in Figures 2k and 2l than in

Figures 2c- 2h. Since CoupColl potentially needs more samples

to fulfill the minority counts, on average, it pays more for each

sample in the random-cost model. Moreover, overall, the costs and

numbers of samples taken for the minority repositories are higher

than the majority repositories, because tuples of a minority groups

are rare in the repository and more sampling iterations, thus higher

cost, are required to achieve the target counts.

5.3.3 Comparison to Baseline. The baseline we consider is a ran-
dom sampling algorithm. At each epoch, Baseline obtains a batch

sample of size twice the largest remaining count requirement among

groups and includes the fresh tuples of the batch in the target data

set, if needed. The sample batch is collected by randomly selecting

a source and obtaining batch samples. Note that in the first epoch

Baseline takes the largest number of samples and the sample size

decreases until all count requirements are fulfilled. In the first set of

experiments, our goal is to build a target data set of 5K flights, using

the Flights data set, with equal number of flights from each state. As

Figure 1c shows, CoupColl and UCB outperform Baseline, with

the former having drastically smaller data collection cost. Explore

which selects sources at random is on par with Baseline. The Ex-

ploit never successfully terminated and is not included in the plot.

Figures 2a-2l provide more detailed analyses of baseline and DT.

CoupColl outperforms the Baseline in cost and sample counts

for all m’s and n’s, across all cost models and distributions. Particu-

larly, CoupColl achieves better performance for the minority data

distribution, because Baseline requires multiple sample batches

to eventually collect tuples of a minority group. Moreover, since

Baseline does not take costs into account, we observe more drastic

performance deterioration for skewed and random cost models.

5.4 Unknown Distributions
In following experiments, we assume the distributions of the groups

in the data sources are unknown, while the overall distribution is

known apriori. UCB and Exploit start with one round of sampling

from each data source to initialize the approximate distributions.

If the total count of a target is small, an algorithm might achieve

a target in the first round, especially when the number of data

sources is large. To allow the algorithms to proceed to distribution

updates, we consider targets with larger total group counts than

the known case. In the following experiments, target requires 500

unique tuples of each group.

Number of Groups: We first study the behavior of unknown DT

algorithms for different numbers of groups (𝑚=2, . . . , 10) across all

cost models. For each value of𝑚 and data distribution, BenchDL gen-
erates a repository of 20 data sources with average 5K unique tu-

ples. As shown in Figures 3a-3k, unlike Exploit, Explore and UCB
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Figure 3: Unknown DT for Minority and Majority Distributions and Equal, Random, and Skewed Cost Models.

achieve the target for all𝑚’s. Since Exploit commits to sampling

from a data source based on one single sample of each source (taken

during the first round), it can fail to fulfill the target if the selected

source contains a very small number of some groups. UCB performs

poorly across all cost models and data distributions as the number

of groups increases. Converging to the underlying distributions

of groups in each source requires UCB to take a large number of

samples. Moreover, there is no clear winner between Exploit and

Explore. As the number of groups increases, the total target count

becomes larger, thus, all three algorithms display higher cost and

number of samples. Even when the distributions are unknown, the

cost of collecting a target from a minority repository is on average

higher than the majority repository for the same number of groups.

Number of Data Sources: For this set of experiments, for a data

distribution and 𝑛 of interest, BenchDL generates a repository of 𝑛

data sources each with average 5K unique tuples that contain four

groups. With an equal-cost model, the cost and number of sam-

ples of Exploit decreases as the number of data sources increases,

because, with more sources, there is a higher chance for Exploit

to find a source that contains a minority group. UCB consistently

outperforms Exploit for equal-cost and random-cost models when

the number of sources are large (Figures 2a-2f). For the random-

cost model, although UCB requires a larger number of samples

than Explore, it still manages to achieve lower costs by select-

ing cheaper and more promising sources based on the distribution

approximations (Figures 2g and 2h).

Cost Models: With a skewed-cost model, UCB performs better

than Exploit by refining group distribution approximations, how-

ever, it cannot outperform Explore which may give chance to

some cheap sources even at the cost of more samples (Figure 2k

and 2l). Similar to the experiments of known distributions, the costs

and numbers of samples taken for the minority repositories are

higher than the majority repositories even when the distributions

are unknown.

6 RELATEDWORK
Responsible Data Science: The bulk of work in algorithmic fair-

ness and responsible data science has been on building fair ML

models [18]. At a high level, the interventions to achieve fairness in

ML fall in three major categories [30]: pre-process techniques [23,

29, 38, 63], algorithm modification (in-process) [40, 75, 77, 78], and

post-process techniques [33, 39, 73] that change model outcomes.

Alongside other communities, fairness has been a central topic

in the premier database research. Related work on data manage-

ment for algorithmic fairness include data repair [62, 63], rank-

ing [11, 12, 32, 43], and data/model annotation [70, 74], as well as

different keynotes [31, 69] and tutorials [13, 64, 72].

Bias and Representativeness in Data: Biases has been studied

for a long time in statistics community [52] but social data presents

different challenges [18, 19, 53]. For social data, the term bias re-

fer to demographic disparities in the sampled data that compro-

mises its representativeness and are objectionable for societal rea-

sons [18, 53]. Given that “an algorithm is only as good as the data
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it works with” [19], data collection is considered as a way to ad-

dress unfairness in predictive models [25]. Representativeness of

data collection have been widely studied in the literature [28]. A

notion of data representativeness has been proposed as data cov-
erage [10, 14, 15, 36, 46], identifying the demographic subgroups

that are not represented in data. The input target distribution to a

DT problem can be inferred from the result of coverage analysis.

Bias has also been studied in the context of approximate query

answering [54], where a database is considered as a sample and the

goal is to answer approximate queries as if the queries were issued

on the true population.

Data Discovery and Data Pricing: Existing approaches for data

set discovery [51, 80], source selection [59, 61], and schema map-

ping [44, 57, 65] can be necessary for the source generation step

of DT and their cost can be folded into the cost model. Data set

discovery is often formulated as a search problem on repositories

using keywords [22, 56] or another data set [51, 80] and the goal is

to find relevant data sets based on the relevance to the keywords or

integration-inspired measures. A complementary problem to DT is

query-based data pricing [42] which decides the price of the data

from the perspective of providers. The output of the data pricing

problem can be plugged into the cost model of DT.

Data Distillation and Cleaning: DT is an instance of the data

augmentation problem with some additional conditions on the

group counts [26]. Moreover, data distillation [58] is particularly

applicable in determining the group that a sampled tuple is asso-

ciated with if such information is absent. Moreover, data cleaning

is included in the source preparation process and its cost can be

folded into the cost model. Cleaning tasks such as entity resolution

are necessary for determining the freshness of samples.

7 EXTENSIONS
𝑘 > 1 Query Model: So far in the paper, we assumed a data source

returns one sample per query. First, if a query returns more than one

tuple, all of those samples will be used to collect the target data set.

In a setting where a query to a source returns more than one tuple

(𝑘 > 1), typically, 𝑘 is a small constant (e.g. 10). This will not require

notable changes in the designed algorithms. For Known-Binary,

except for the marginal cases, the algorithm remains near-optimal.

Recall that Known-Binary keeps querying the source that has the

highest ratio for the minorities. If the data source returns more than

one sample, the algorithm still queries the same data source but it

updates its counts using all returned tuples. This is equivalent to

the algorithm calling the data source multiple times, something the

optimal algorithm does, except in marginal cases where either the

minority group changes or it finds a better data source. It is easy to

see such marginal cases are unlikely to happen in practice. Even

if it happens, such cases will reduce the cost by a small constant.

The same argument is also valid for the CoupColl algorithm. We

leave further investigations about these cases, as well as theoretical

analyses of our algorithms under 𝑘>1 query model, as part of our

future work. The multi-armed bandit algorithms also work as-is

for 𝑘>1. The major impact of the new model on the algorithms

is that, depending on the underlying distributions and the sizes

Q 𝑗 , the UCB algorithm may not have enough “time” to effectively

identify the good data sources to query. As a result, its performance

advantage compared to the Explore algorithm may decline.

Minimum Count Requirements: In practice, it is likely that,

instead of the exact counts, the user requires a data set of cer-

tain size that satisfies minimum counts for different groups. For

example, the notion of coverage [14, 37, 46] requires to have at

least 𝑘 elements from each demographic group. To adjust DT for

this case, we first collect a target data set in a traditional man-

ner (e.g. random sampling of sources) and identify the groups for

which the minimum count requirements are not satisfied. Then, we

solve the DT problem where for group G𝑖 , count requirement is

Q𝑖 = max(0,𝑚Q𝑖 − count𝑖 ), where𝑚Q𝑖 is the minimum count re-

quirement for group G𝑖 and 𝑐𝑜𝑢𝑛𝑡𝑖 is the number of tuples from G𝑖
in the collected data set. Finally, we substitute the newly collected

tuples with random samples from the (majority) groups for which

minimum count requirements are satisfied.

Count Requirements on Multiple Groups: The count require-
ments may be on multiple groups individually, for example, we

may need 100 of gender=F and 100 of gender=M as well as 100

of race=W and 100 of race=NW. We can achieve this target by

performing a sequence of independent DTs for group requirements.

We start by a DT that collects a target data set that satisfies the

requirements of one group. In the following DT instances, tuples of

the current target data set are replaced with new tuples of required

groups while making sure that the counts of the groups of previous

runs remain unchanged.

Complex Distributions on Groups:Wemay have scenarios that

require more sophisticated distribution functions on groups rather

than count requirements. For example, a count requirement may

be a range, i.e. as soon as the count of a group becomes equal to or

greater than the lower bound of a range interval, the requirement

is satisfied and the algorithm must start discarding samples of this

group once the count becomes equal to the upper bound.

Overlapping Sources: In real-world, independent data sources

have minimal overlap and we did not consider the overlap between

sources in our optimization. For future work, we design algorithms

that further optimize the cost, using the information about overlaps.

8 CONCLUSIONS
With the plethora of data sets available today, data scientists in-

creasingly have to choose wisely among multiple sources. At the

same time, there is growing concern about unfairness and lack

of representativeness in the data for minorities and marginalized

groups. This paper studies how to tailor a representative data set

from multiple data sources at lowest cost. Specifically, we define a

data distribution tailoring problem, and solve it in two scenarios:

when we know the data distribution in each data source, our prac-

tical solution is based on the coupon collector’s problem, which is

optimal for the common case of binary groups and equi-cost data

sources; when source distributions are unknown, we map DT to a

bandit problem with a reward function that incorporates cost and

apriori knowledge of underlying distributions. Besides theoretical

analysis, we conduct comprehensive experiments that confirm the

effectiveness of our algorithms.
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