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SUMMARY

Electromagnetic inverse scattering problems arise in many engineering applications. The

electromagnetic scattering phenomenon is characterized by the electric field integral equation.

In inverse problems, this integral equation describes the nonlinear relationship between the

unknown complex permittivity distribution in an investigation domain and the observable

scattered fields. Nonlinear inverse scattering problems can be approximated to be linear by

the Born approximation and iteratively solved by Newton’s method with regularizations. Or

they can be approached by minimizing a cost function that consists of norms with optimization

techniques.

First, we attempt the joint exploitation of the deterministic linear inversion and global

optimization strategies. The first step is based on the Born iterative method (BIM) enhanced by

regularization techniques, Algebraic Reconstruction Technique (ART) and Conjugate Gradient

(CG). In the second step of the overall strategy, a stochastic global optimization approach,

the genetic algorithm (GA), is carried out. In this way, we will benefit from the results from

previous regularization schemes as the initial population. Numerical results are presented with

reference to the permittivity reconstructions in the case of a homogeneous cylinder and an

inhomogeneous layered cylinder.

Second, we propose a new application of Monte Carlo Markov Chain (MCMC) methods to

infer permittivity values. Instead of using regularizations to uncover the best fit of permittivity,

we estimate the conditional mean of the unknown permittivity given scattered field data. The

xiii



SUMMARY (Continued)

conditional mean estimates not only incorporate prior knowledge from results obtained by BIM,

but also avoid the nonlinearity by computing the linear forward model. For a homogeneous

cylinder with the relative permittivity of 11, numerical results of BIM are slightly improved by

this Bayesian inference approach.

Last, we consider the inverse scattering problem from a convex optimization perspect-

ive. The first step approximates the inverse scattering as a convex optimization problem and

provides an estimation of the internal electric field inside the domain under investigation without

a priori knowledge or tuning parameters. In the second step, the previously estimated total

field is used to reconstruct the unknown contrast permittivity, which is represented by a super-

position of level-1 Haar wavelet transform basis functions. Subject to `1-norm constraints of

the wavelet coefficients, a LASSO problem that searches for the global minimum of the `2-norm

residual is exploited by accounting for the sparsity of the wavelet-based permittivity represent-

ation. Numerical results are presented to assess the effectiveness of the proposed formulation

against objects with relatively small electric size. Finally, the approach is validated against

experimental data.

xiv



CHAPTER 1

INTRODUCTION

“We may find illustrations of the highest

doctrines of science in games and

gymnastics, in travelling by land and by

water, in storms of the air and of the sea,

and wherever there is matter in motion.”

James Clerk Maxwell

Consider a black box. While pondering what is inside, one might excite this system with

known stimuli, observe responses, and characterize its properties. This process describes an

inverse problem, which starts from results and looks for causes.

In electromagnetic inverse scattering problems, we aim to characterize electromagnetic prop-

erties of the interior of the black box. As the stimulus, the incident electromagnetic field illu-

minates the black box, i.e. the object under investigation, which then scatters the incident field

back as the response. Not only does such a stimulus/response pair can be observed, but it also

belongs in the realm of electromagnetics governed by the Maxwell equations. Derived from the

Maxwell equations, in a physical sense, an electric field integral equation (EFIE) formulates the

stimulus/response of a black box; it describes a scattering problem in unbounded media. In a

mathematical sense, the EFIE is in the form of Fredholm equations. Therefore, to solve inverse

scattering problem, EFIEs are the key element.

1
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In this chapter, we will walk through the history, review applications of inverse problems,

and introduce previous techniques solving inverse scattering problems.

1.1 Applications: from the Moon to the Earth

Let us visit diverse fields where inverse problems emerge before diving into more mathe-

matical details.

Before Neil Armstrong’s “one giant leap for mankind” in 1969, radio engineers had sent

electromagnetic waves over a wide range of frequencies to detect the Moon: the reflected wave

from the Moon was received on the Earth for the first time in 1946 [4]; relative dielectric

constant and roughness of the center of the lunar disk were predicted in 1963 [5] and confirmed

by Surveyor and Apollo data [6]. The inverse problem scheme here is to infer the Moon’s

landscape (cause) from observed echoes (result). The frequency, power level, polarization, time

delay, and other information of the echo led us to the Moon’s property.

Why human deploy electromagnetic waves for space mission? 1. an electromagnetic wave is

not a mechanical wave, therefore it can travel in vacuum; 2. we cannot find anything traveling

faster than light, and light is an electromagnetic radiation from 430 THz to 750 THz. As

Maxwell wrote in 1865 [7], “This velocity is so nearly that of light, that it seems we have strong

reason to conclude that light itself (including radiant heat, and other radiations if any) is an

electromagnetic disturbance in the form of waves propagated through the electromagnetic field

according to electromagnetic laws.”

An electromagnetic echo might run into many accidents during its trip in space; a line of

sight model with speed of light is too simplified, just like a solution to a low milk production
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problem works only with spherical cows in a vacuum. First, as William Gilbert pointed out

in 1600, the Earth has a magnetic field; so the echo path in the magnetosphere, which is

dominated by the Earth’s magnetic field, is impacted. Especially, the Earth’s magnetic field

can be temporarily disturbed in a geomagnetic storm, which brings a surge in the flux of

charged particles from the Sun. Besides, the electromagnetic radiation and emission of energetic

particles (solar wind) from the Sun [8] ionize the Earth’s upper atmosphere, and the ionized

molecules of hydrogen, helium, and oxygen releasing free electrons turn into plasma. Since

cold plasmas vary the refractive index for electromagnetic wave propagation as described as

the Appleton–Lassen dispersion relationship [9], they bend the echo path in addition to the

Faraday rotation in the Earth’s ionosphere. Some of the bended electromagnetic waves can

be totally reflected in the ionosphere before reaching to the Moon. Last but not least, even if

the wave traveled back to the Earth atmosphere, common energy bust by lightning generates

a wide frequency range of electromagnetic waves. These radiations produced by the lightning

electrostatic discharge can propagate in the atmosphere, bounce back and forth between the

Earth and the atmosphere/ionosphere boundary (both are good conductors), and therefore

might travel across hemispheres [10].

Scientists had made tremendous amount of effort obtaining routine electron density informa-

tion in space plasmas over large geographic regions at altitudes above the topside ionosphere. In

the past, ground-based ionosondes sent High Frequency (HF) pulses and recorded the echo travel

time with respect to frequency. Space-borne relaxation can excite local space plasma resonance

to determine electron density and newer magnetospheric incorporates digital signal processing
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techniques over long propagation distances. Again, characteristics of the space plasma at those

remote reflection points as well as electron and ion density profiles along the echo path can “be

derived from measurements of the echo amplitude, phase, delay time, frequency, polarization,

Doppler shift, and echo direction” [11].

There are many other factors that determine the electromagnetic propagation, such as the

atmospheric attenuation and refraction. However, we can generalize applications of electromag-

netic waves mentioned as remote sensing in space with RADAR techniques [12]. As a detection

system, RADAR uses electromagnetic waves to determine target’s location, velocity, or physical

properties.

A RADAR consists of antennas, transmitters, receivers, exciters, and signal processors

subsystems. Other than the hardware that physically transmits and receives electromagnetic

waves, the signal processor is responsible for extracting detection and measurement results by

implementing digital signal processing algorithms. If antennas, switch duplexers, low noise

amplifiers, local oscillators, ADCs are the body of a RADAR, digital signal processing is the

brain. In the next section, we will review some fundamental concepts in digital signal processing

for inverse problems.

1.2 Projection-Slice Theorem and Tomography

In digital signal processing, inverse problems can be generally sketched as determining the

input from corresponding known output; common examples include noise removal, deconvo-

lution, signal extrapolation, and reconstruction of signals from their projections [13]. In this

context, a projection is a mapping of an N dimensional set to an N − 1 dimensional one by in-
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tegrating the N dimensional set along a particular direction. Therefore, a 2D object scanned by

X-rays has 1D projections, or geologic objects illuminated by acoustic beams from one borehole

has projections measured along another borehole.

Now when we look at an N dimensional signal f(x) projected onto the N − 1 dimensional

space, (x1, . . . , xi−1, xi+1, . . . , xN ), the projection along the i-th dimension is

pxi =

∫ ∞
−∞

f(x) dxi, (1.1)

and its Fourier transform is

Pωi =

∫ ∞
−∞
· · ·
∫ ∞
−∞

pxi exp(−j(ω1x1 + · · ·+ ωi−1xi−1 + ωi+1xi+1

+ · · ·+ ωNxN )) dx1 · · · dxi−1dxi+1 · · · dxN ,
(1.2)

which is exactly a slice of the Fourier transform of f(x), F (ω), at ωi = 0. This is the remarkable

projection-slice theorem firstly applied to signal reconstruction in [14].

Based on the projection-slice theorem, an N dimensional problem can be reduced to a sum

of slices in N − 1 dimension, which can also be reduced iteratively down to 2D problems.

Therefore, any N dimensional problem can be solved by a set of 2D problems, and projections

along all N −1 dimensions are not necessary. Let us restate the projection-slice theorem in 2D:

the slice of the Fourier transform of a 2D function through the spectrum origin is the Fourier

transform of this 2D function’s 1D projection.
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Even though we are dealing with 2D problems, in reality we cannot obtain infinite number of

1D projections. To estimate number of projections M , we assume that x(u1, u2) has a diameter

d and resolution of reconstruction needed is r. From the sampling theorem, samples’ space in

the frequency domain Ω is 2π/d. If the sampling number M of the frequecy domain in the

projection-slice method has to satisfy M > πd/r. It’s obvious that increasing the number of

projections M would result in better resolution; the more the merrier!

The projection can be represented as the Radon transform [15], which is widely used in

tomographic reconstruction [16] such as computed tomography (CT) scan and MRI. Tomo-

graphy, from ancient Greek meaning “view by the slice”, images the internal structure of an

object by sections with penetrating waves. Such an image revealing the internal structure of

the object under investigation is a tomograph. Especially, when multi-illuminations are along

a circular orbit, this is a tomographic configuration. For our inverse scattering problem, this

is the exact setup we use numerically and experimentally. And we will start our journey in

Chapter 2.

1.3 Summary of Chapters

We focus on the two-dimensional electromagnetic inverse scattering problem for reconstruct-

ing the permittivity of the domain under investigation. Chapter 2 details fundamental theories

for the problem statement and reviews some previous research endeavors. Chapter 3 introduces

the mathematical background and present numerical results of stochastic methods: 1. a hy-

brid of a classic method with deterministic regularizations and genetic algorithms; 2. Bayesian

inference with Monte Carlo Markov chains. Chapter 4 develops an approximation based on
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convex optimization, and verifies the method with numerical and measured data. Chapter 5

concludes this work and proposes future directions.



CHAPTER 2

FUNDAMENTALS OF ELECTROMAGNETIC INVERSE SCATTERING

“Once a Vector, always a Vector.”

Oliver Heaviside

Besides the remote sensing and radar applications in Chapter 1, inverse problems explore

causes from observations and arise in many practical areas; the electromagnetic and morpho-

logical properties of targets are estimated from the scattered field [17,18]. There are many ap-

plications of inverse problems: for concrete specimens, from determining physical thickness [19]

to nondestructive testing of concrete [20] to monitoring of dielectric permittivity in chemical

alkali-silica reaction [21]; for below ground, from probing buried targets with ground penet-

rating radar (GPR) [22, 23] to tunnel detection [24, 25] to below ground close-in sensing [26]

to irregular terrain investigation using RF tomograghy [27, 28], to oilfield exploration [29]; for

medical purposes, from medical imaging with neural networks [30] to MRI [31].

This chapter reviews the theoretical background for forward and inverse electromagnetic

scattering problems, introduces previous approaches and optimization techniques, and lays the

foundation for Chapter 3 and Chapter 4.

2.1 Problem Statement

Inverse scattering problems are the reverse of the forward scattering problems. One shoots

known incident waves to a box, then the game is between the box and the field scattered by it:

8
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if you know the box, it is a forward problem; if you know the scattered field, an inverse one.

What is the box in the context of electromagnetic scattering? Permittivity.

Another way to look at this is to think the incident field as the input, the box as the system

function, and the scattered field as the output. With the known incident field, the inverse

scattering problem wonders about what is inside a black box (system) from scattered field

(output), while the forward problem looks for the output while knowing the system.

Even if our focus lies on the inverse scattering problem, introducing the forward one in the

realm of inverse problems is more than a gesture of courtesy: the forward scattering problem

strongly interacts with the solutions to the inverse problem. We will reveal that connection in

this section, starting from general electromagnetic scattering phenomena.

2.1.1 Two-Dimensional Electromagnetic Scattering

Before any equations kicking in, let us demonstrate the geometric setup of our problem in

Figure 1. It is a tomographic configuration: the investigation domain in gray is surrounded by a

red transmitter (TX) and blue receivers (RX) along a circle. While the investigation domain S

is illuminated by only one transmitter each time, the scattered field is observed at all receivers;

this is a multistatic measurement because there are multiple receivers. Once the transmitter

is set at various locations (not at the same time), this is multi-illumination measurements.

Therefore, multi-illumination and multistatic implementations are attained.

To construct a two-dimensional problem, we assume the investigation domain has an in-

finitely long cylindrical geometry and a homogeneous permittivity along ẑ; this means the

permittivity can only vary on the xy-plane, and thus it is not a function of z. Similarly, the
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x

y

RX

TX

S

r

E(r)

r′
E(r′)

ǫ(r′), µ0

ǫ0, µ0

Figure 1: A tomographic configuration

incident field for a two-dimensional problem should be invariant along ẑ; this can be achieved by

an infinitely long electric line source aligned in the direction of ẑ with the transverse magnetic

polarization, i.e. TMz-mode. In free space (vacuum), such a source transmits the invariant

incident field along ẑ expressed as

Ei
z = − k

2
0Ie

4ωε0
H

(2)
0 (k0|r− rTX|) dS′, (2.1)

where Ei
z is the incident field in the direction of ẑ, k0 is the wavenumber in free space, Ie is

the constant current amplitude in the infinite line source, ε0 is the permittivity in free space,
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H
(2)
0 is the Hankel function of the second kind of order zero, r is the receiver location on the

xy-plane, and rTX is the location of the transmitter (the line source).

From Equation 2.1, we can see that the electric line source is indeed constant over z: Ei
z

is a function of r but not z. Moreover, the incident field on ẑ is the total incident field, i.e.

Ei
z = Ei, because the incident field’s radial and angular components on the xy-plane are both

zero [32].

With the duality theorem, one can deduce the field generated by a magnetic line source

from the solution of an electric line source. Similarly, there will be a magnetic field H i
z that is

constant along ẑ. However, magnetic sources have not been known to be physically realizable;

they can be used as equivalent sources for aperture antennas [33]. So we will stick with the

electric line source and use the electric field for forthcoming mathematical representations and

narratives.

In free space, the incident wave propagation in Equation 2.1 is the total field. What if any

scatters are present? Then an additional component is introduced to the total field: scattered

field. By the superposition, the total field is a summation of the incident field and the scattered

field,

E(r) = Ei(r) + Es(r). (2.2)

With the volume equivalence principle, the derivation of the exact scattered field in the form of

an integral equation from Maxwell’s equations is listed in Appendix A. More explicitly, with an
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electric line source, the scattering phenomenon is governed by the electric field integral equation

(EFIE) as Equation A.14,

E(r) = Ei(r) + Es(r)

= Ei(r)− jk20
4

∫
S

(ε(r′)− 1)E(r)H
(2)
0 (k0|r− r′|) dS′, (2.3)

where E, Ei, and Es are the total, the incident, and the scattered fields, k0 is the wave number

in free space, ε is the complex relative permittivity, and S is the investigation domain. The

complex relative permittivity is a dimensionless number,

ε = ε′ − j σ

ωε0
, (2.4)

which consists of the real dielectric permittivity ε′ and the imaginary part that is due to the

conductivity σ. We assume a free space permeability throughout this work.

The EFIE, i.e. Equation 2.3, describes electromagnetic scattering. This very equation is the

mathematical representation for the forward and the inverse scattering both; the only difference

is which variables are known and which are not.

2.1.2 Scattering Problem

Electromagnetic scattering is a classic topic among many in electromagnetics [34, 35]. It

asks for electromagnetic fields reflected by a scatterer with known properties, such as its shape,

landscape, permittivity, and permeability.
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Here, with a full knowledge of permittivity ε(r′), the forward scattering problem solves for

the electric field E(r). Depending on the location of the unknown electric field, the forward

scattering problem can be broken into two cases,

E(r)− Ei(r) = −jk
2
0

4

∫
S

(ε(r′)− 1)E(r)H
(2)
0 (k0|r− r′|) dS′, r ∈ S, (2.5a)

E(r)− Ei(r) = −jk
2
0

4

∫
S

(ε(r′)− 1)E(r)H
(2)
0 (k0|r− r′|) dS′, r /∈ S. (2.5b)

These two equations look similar but E(r) in both equations are quite different because of the

domain of r. Equation 2.5a calculates the internal field inside the scatterer (r ∈ S), while

Equation 2.5b calculates the electric field outside the scatterer (r /∈ S).

In Equation 2.5a, with r ∈ S, the unknown internal field inside the scatterer appears

both outside and inside the integrand; this is a Fredholm equation of the second kind in Ap-

pendix A.4. After solving Equation 2.5a for the internal field, one can plug that information into

the integrand of Equation 2.5b and solve for the total field outside the scatterer, E(r), r /∈ S.

2.1.3 Inverse Scattering Problem

For inverse scattering problems, the electromagnetic properties of targets are inquired by the

knowledge of the scattered field. The sensing process starts from a known source transmitting

the electric field, which illuminates the target under investigation; by observing corresponding

scattered field outside the investigation domain, one aims to map the dielectric permittivity

and the conductivity inside the investigation domain.
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In contrast to forward scattering problems, the inverse ones solve for the relative permittivity

distribution instead of the scattered field. In a two-dimensional inverse scattering problem with

a tomographic configuration in Figure 1, there are

- known input: incident field in free space, Ei(r), r ∈ S ∪ r /∈ S;

- observable output: total field outside the investigation domain, E(r), r /∈ S;

- unknown system: permittivity of the investigation domain, ε(r′), r′ ∈ S.

Therefore, to represent inverse problems, one confines r /∈ S in the EFIE Equation 2.3,

E(r) = Ei(r)− jk20
4

∫
S

(ε(r′)− 1)E(r)H
(2)
0 (k0|r− r′|) dS′, r /∈ S. (2.6)

The unknown ε(r′) only appears within the integrand. If we also know the internal field E(r′),

Equation 2.6 would be a Fredholm integral equation of the first kind as deconvolution with the

kernel function is the Hankel function.

However, within the integrand of Equation 2.6, the internal fields in the scatterer E(r′) is

also a function of the unknown permittivity ε(r′), where the forward scattering Equation 2.5a

kicks in. The inverse and the forward problems intertwine as solving Fredholm integral equa-

tions of the first kind requiring the second: Fredholm integral equations of both kinds emerge

subsequently throughout the electromagnetic inverse scattering problems. This determines the

nonlinearity in inverse scattering problems.
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2.2 Previous Solutions

Despite of the relative simplicity of the sensing phenomenon, inverse electromagnetic scat-

tering problems are characterized by challenging mathematical difficulties such as non-linearity

and ill-posedness [36,37]. Many researchers have approached this nonlinear and ill-posed inverse

problem and attempts have been made from several perspectives.

1. Continuous to discrete: Liouville-Neumann infinite series are used to solve Fredholm in-

tegral equations. The continuous electric field integral equation can be numerically implemented

with finite series, such as the Method of Moment [38] and the Finite Element Method [39]. Dis-

cretization usually involves a summation of series, and with the discrete equation, one can

numerically calculate the solution with matrices.

2. Non-linear to linear: linearity can be approximated by the first-ordered Born/Rytov ap-

proximation, but this sacrifices the exact electromagnetic model [40]. If we use the Born/Rytov

approximation to turn the EFIE of inverse problems into linear first-kind Fredholm integral

equation; once solving the first kind integral equation for permittivity, one plugs that recent

permittivity distribution in the forward scattering of the second kind Fredholm integral equa-

tion and calculates the inner fields. These two kinds of equations take turns during an iterative

search for the permittivity solution.

3. Deterministic to stochastic: for an ill-posed inverse problem, regularization schemes are

often applied to achieve a stable solution [36]. Stochastic global optimizations consume more

computational loads but provide a different perspective. However, there is no free lunch [41]

for stochastic algorithms in machine learning.
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4. Space domain to other domains: instead of directly solving the permittivity at each

pixel, the unknown vector is projected to the Fourier domain or the wavelet domain to reduce

the number of unknowns. Reconstructable Fourier harmonics of the unknown permittivity

are applied with linear and quadratic approaches [42]. Wavelet-based reconstruction has been

widely in sensing, such as the total-variation compressive sensing [43] and oil detection.

5. Isotropic to dyadic contrast function: most inverse scattering approaches consider the

use of an isotropic contrast function, which is mathematically represented with a complex

valued function of the position. An improvement was presented in [44], where a dyadic contrast

function was introduced to account for depolarization effects in the case of an incident field

that illuminates structures consisting of thin cylinders.

In the following sections, we will talk about some of these solutions with more details.

2.2.1 Approximations

With proper assumption upon the unknown scatterer, we can apply approximations to the

electric field inside the scatterer. Some of these approximations can linearize the nonlinear

inverse problem.

The first-order Born approximation [45, 46] substitutes the unknown fields in the scatterer

with the free space incident fields. Therefore it describes weak scatterer better [47]. Linearizing

the nonlinear inverse scattering problem, the Born approximation starts initial iteration for the

iterative Newton’s method. The second-order Born approximation substitutes the unknown

fields in the scatterer with calculated fields in the scatterer by the first-order Born approxima-

tion. This quadratic equation does not linearize our problem, yet provides better reconstructions
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than the linear Born model [48]. A high-order generalized extended Born approximation can

efficiently approximate electromagnetic scattering problems [49].

The Rytov approximation is a first-order approximation for the complex phase of the field

in the scatterer [50]; it neglects the phase variation of the scattered field inside of the scatterer.

And this approximation can also make the electric field integral equation linear.

The Kirchhoff approximation is for perfectly electric conductor (PEC) scatterers. By means

of the Kirchhoff approximation, nonlinear unknown to data mapping is then linearized and re-

duced it into a Fourier transform [51]. At a large wavelength, the scattered field is approximated

at a point, where the the boundary is replaced by its tangent, as recalled in the Huygens’ prin-

ciple.

2.2.2 From Nonlinear to Linear: Born Related Methods

The inverse problem can be described as Fredholm integral equation of the first kind, if the

internal field E(r′) is known. However, the unknown parameter, ε(r′), is needed to calculate

the electric fields within the object, E(r′). Therefore, both of them become unknown and the

EFIE is nonlinear.

To tackle its nonlinear property, one can approximate inverse scattering problems with the

Born approximation, which assumes that the total field in the scatterer E(r′) is approximated

with the incident field as

E(r) = Ei(r)− jk20
4

∫
S

(ε(r′)− 1)Ei(r′)H
(2)
0 (k0|r− r′|) dS′, r /∈ S, (2.7)
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where the incident field Ei(r′) replaces the total field E(r′) in Equation 2.6. Now every compon-

ent in the integrand is known except the unknown ε(r′) so the inverse problem of Equation 2.7

is linear.

For a weak scatterer that has a low permittivity contrast to free space, its internal field could

be close to the field in free space as the Born approximation stands, so efficient reconstruction

results could be obtained. However, when strong scatterers are present, the Born approximation

is no longer valid. Fortunately, for strong scatterers, we can still apply the results from the Born

approximation to develop iterative methods like the Newton’s methods. In general, with the

Born approximation, one can solve the linear Equation 2.7 for permittivity; this permittivity

result would update the field information, which in turns would update previous permittivity

results; the permittivity and internal field will be iteratively updated until they converge. The

following text is to describe these iterative procedures.

There are two major iterative methods developed to iteratively approach ε(r′) based on the

Born approximation, the Born iterative method (BIM) [52] and the distorted Born iterative

method (DBIM) [53]. For both iterative methods, the Born approximation is assumed to start

the initial step: the unknown internal field E(r′) is approximated with the fields in free space

Ei(r′) similar to Equation 2.7 as

E(r) = Ei(r)− jk20
4

∫
S

(ε(0)(r′)− 1)Ei(r′)H
(2)
0 (k0|r− r′|) dS′, r /∈ S. (2.8)
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Once solving the forward scattering problem Equation 2.8 to obtain permittivity distribution

ε(0)(r′) as the initial step, one updates the internal field within the scatterer as E(1)(r′) by

enforcing r ∈ S. Generally, at n-th iteration, BIM solves E(n)(r′) with

E(n)(r) = Ei(r)− k20
∫
S

(ε(n−1)(r′)− 1)E(n)(r′)H
(2)
0 (k0|r− r′|) dS′, r ∈ S (2.9)

and insert solved E(n)(r′) into the inverse problem for ε(n)(r′),

E(r) = Ei(r)− jk20
4

∫
S

(ε(n)(r′)− 1)E(n)(r′)H
(2)
0 (k0|r− r′|) dS′, r /∈ S. (2.10)

Repeat these procedures until the solution of ε(n)(r′) converges or the termination criterion is

met.

In BIM, by assumption, the kernel Green’s function remains the homogeneous free space

Green’s function shown as the Hankel function of the second kind of order zero. While in

DBIM, besides all the procedures following BIM, the kernel Green’s function G(n)(|r − r′|) is

inhomogeneous and updated with respect to solved ε(n−1)(r′) at each iteration. Due to these

updated Green’s functions DBIM converges faster, while BIM appears to be more robust to

noise. The DBIM has been proved as equivalent to the Newton-Kantorovich’s method [54],

and the Newton-Kantorovitch algorithm has been applied to shape detection for PEC [55].

Both BIM and DBIM were developed for dielectric permittivity and not for highly conductive

objects, because the Method of Moment assumes a constant electric field in a pixel, which is

not representative for conductive surfaces.
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Overall, with the Born approximation, the nonlinear inverse scattering integral equation

becomes a linear functional equation. This very functional equation can be numerically calcu-

lated using the Finite Element Method, the Method of Moment (MoM), etc. Thus this linear

inverse problem can be represented as an algebraic system of linear equations, hence it can be

accelerated by parallel computing [56]. We will review the discretization of the functional with

MoM next.

2.2.3 Method of Moment - Discretization of EFIE

To numerically calculate fields and permittivity, one needs to discretize the EFIEs into mat-

rix forms and then solve a system of linear algebraic equations. For the tomographic configur-

ation shown in Figure 2a, we discretize the domain S into N pixels, and assume homogeneous

permittivity and internal field distribution at n-th pixel Sn as illustrated in Figure 2b.

Around the investigation domain S, let there be NTX transmitters and NRX receivers, which

lead to NTXNRX observations of the scattered field. And we consider the TM-mode line source

as the transmitter for this 2D problem. For the m-th transmitter-receiver combination, the

total field E observed at the corresponding receiver is

Em = Ei
m −

jk20
4

N∑
n=1

(εn − 1)En

∫
Sn

H
(2)
0 (k0|rm − r′n|) dS′, rm /∈ S, (2.11)

where εn is the relative permittivity within the n-th pixel, rm is the location of m-th TX/RX

combination, and r′n is the center of the n-th pixel.
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Figure 2: The tomographic configuration for inferring permittivity in: (a) a continuous form; (b) a

discrete form.

Whereas Equation 2.11 relates the scattered field data outside the scatterer (Es
m = Em −

Ei
m, rm /∈ S) with the pixel permittivity εn for the inverse problem, we also need the relation

between the internal field En in the n-th pixel and the permittivity εn for the forward problem.

By enforcing r ∈ S while discretizing Equation 2.5a, the total field at the p-th pixel, Ep, is

represented as

Ep = Ei
p −

jk20
4

N∑
n=1

(εn − 1)En

∫
Sn

H
(2)
0 (k0|rp − r′n|) dS′, rp ∈ S, (2.12)
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where Ei
p is the incident field at p-th pixel. Equation 2.12 can be written in a matrix form so

that one can solve for internal electric field at each pixel with given permittivity.

For both Equation 2.11 and Equation 2.12, the integral of zero-order Hankel function over

the circular region Sn can be approximated,

− jk20
4

∫
Sn

H
(2)
0 (k0|rp − r′n|) dS′ =


−jπk0req

2
H

(2)
1 (k0req)− 1, if p = n

−jπk0req
2

J1(k0req)H
(2)
0 (k0|rp − r′n|), otherwise

(2.13)

where req is the equivalent radius of the discretized pixel, H
(2)
1 is the Hankel function of the

second kind of first order, and J1 is the Bessel function of the first kind.

With the discrete representation of the electric field and the permittivity in the inverse

Equation 2.11 and the forward Equation 2.12, one can write these integral equations in a

matrix form; the system of linear equations of inverse problem, Equation 2.11, can be seen as

d(NTXNRX,1) = L(NTXNRX,N)χ(N,1). (2.14)

Here the scattered field data, d ∈ C, is the vector of the observable total field minus the incident

field and its m-th element is

dm = Em − Ei
m, (2.15)
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where Em is the total field and Ei
m is the incident field at the m-th TX/RX combination. The

linear operator matrix, L ∈ C, in Equation 2.14 has its element

Lm,n = −jk
2
0

4
En

∫
Sn

H
(2)
0 (k0|rm − r′n|) dS′, (2.16)

where En is the electric field at n-th pixel, and the integral of the Hankel function can be

numerically calculated as suggested in Equation 2.13. Finally, the unknown model parameter

χ is the relative permittivity contrast with the element

χn = εn − 1, (2.17)

which is the relative permittivity contrast at n-th pixel.

With the matrix form shown as Equation 2.14, not only could we numerically compute the

EFIEs, but also optimization can be formulated and solved as we will see in the next section.

2.2.4 Optimization and Parameter Estimation

The nonlinear inverse scattering problem can be linearized with the Born or the Rytov ap-

proximation and discretized with numerical methods, then it takes the matrix form of a dense

system of linear equations as Equation 2.14. The reconstructed permittivity is obtained in an

iterative method or not, we need to solve the ill-conditioned linear equations [57] regardless.

Also, the number of data d is fewer than number of unknown permittivity; the system equa-

tions are underdetermined. For such an underdetermined system, there are infinite solutions.
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Naturally, picking a good solution with optimization becomes crucial and this section reviews

some common approaches.

2.2.4.1 Deterministic Regularizations

Optimization problems can be in the form of discrete least-squared problems. Besides

optimizing an `2 like Equation 2.18 or an `1 norm, a joint `1 − `2 norm-based regularization

was applied in BIM [58]. Also, the contrast source inversion method [59] uses a deterministic

minimization.

Regularizations are widely applied in solving discrete least-squared problems. In the original

BIM and DBIM, the classic Tikhonov regularization was used. The traditional zero-order Tik-

honov regularization [60] picks the solution not only minimizing the residual but also controlling

the solution as

min(‖d− Lχ‖2 + γ‖Iχ‖2), (2.18)

where γ is the regularization parameter compromising between the residual and the solution,

and I is the identity matrix. Even if no general procedures can determine the optimal γ, it is

possible to tune the regularization parameter based on the reconstruction results. Therefore,

the subjectivity of the Tikhonov regularization is introduced.

There are two categories, direct and iterative regularization methods. Direct regularization

methods include the Tikhonov regularization, Singular Value Decomposition (SVD) [61], and

Truncated Singular Value Decomposition (TSVD). Iterative regularization methods include

Conjugate Gradient (CG) [62], complex conjugate gradient methods, and Algebraic Recon-

struction Technique (ART). When the operator L is a large matrix and dense, regularizations
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solved by iterative methods can be handy since they do not store large matrices (no need of

huge memory as direct methods do), even though their convergence rate cannot be always

guaranteed with theoretical results [63].

2.2.4.2 Stochastic Evolutionary Optimization Algorithms

The difference between the calculated electric field with predicted permittivity and the

observed electric field naturally forms the loss function of a global optimization problem, which

allows researchers to tackle the traditional nonlinear inverse problem from an optimization

perspective without approximations. Consequently, the goal becomes to minimize the residual,

which are also called the fitness function or the cost function.

Among many optimization approaches, algorithms in natural computing are inspired from

nature [64]. During the last two decades, such a family of algorithms for global optimiza-

tion inspired by biological evolution have emerged; basically, they are a population-based trial

and error by introducing randomness and stochastically eliminating less favorable solutions.

Stochastic approaches [17], such as genetic algorithms, particle swarm optimizations, and ant

colony optimizations, have been applied to crack such a minimization problem.

Genetic algorithms are commonly applied in electromagnetics [65], antenna design [66], [67],

and crack identification for nondestructive testing [68]. It is an iterative algorithm mimicking

the biological mechanism in evolution. The set of trial solution, called the population, evolves

over successive generations based on procedures such as selections, crossover, and mutation

until the population converges. The algorithm starts from an initial population of proposed
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solutions; these solutions can be randomly generated or based on some priori knowledge of the

solution.

In electromagnetic scattering problems, the priori knowledge about permittivity is that the

real part of the relative permittivity is larger than one and the imaginary part is less than

zero. More specifically, the prior knowledge can be obtained from the earlier reconstruction

results. Once the fitness function of each element in the initial population is evaluated, the

elements that offer less residual would be selected: this is the selection procedure. This selec-

tion provides candidates for crossover and mutation procedures for the next generation. The

crossover procedure generated a new population by combining these selected elements. Then

the mutation adds some randomness to this new population as the new generation. The new

generation will be through the same procedures of selection, crossover, and mutation until the

stopping criterion is met.

More evolutionary algorithms include memetic algorithms [69] and the Ant Colony Optim-

ization (ACO) as a part of Swarm Intelligence [70], which has been compared with stochastic

Gradient Descent [71]. Researchers have also combined natural computing algorithm: hybrid

of particle swarm optimization for distribution state estimation [72] and hybrid of evolutionary

and particle swarms [73].

Besides the hybrid between nature-inspired stochastic methods, another type of hybrid is

to combine the regularization in direct solving nonlinear equations and the metaheuristic in

global optimization to benefit from specific features of each. For example, the classic Born

iterative approaches with regularization converge to solutions faster; the population-based al-
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gorithms might avoid solutions trapped in local minima. In [74], nonlinear problem is directly

solved with GA, which was cascaded with the conjugate gradient method to map homogeneous

cylinders; they explore the global solution first then seek for fast convergence from CG. The

residual is minimized by genetic algorithms and compared with first and second order Born

approximations. Inspired by this hybrid idea, we will share our efforts into combinations of

BIM and stochastic methods in Chapter 3.

2.3 Roadmap

The road map for this work is shown as Figure 3. This chapter reviews necessary theoretical

background in blue for Chapter 3 and Chapter 4. Chapter 3 contains the work in green on the

top and right. Chapter 4 contains work in green at the bottom.

Inverse Scattering Problem
electric field integral equations
continuous
nonlinear

Discretize
Method of Moment
Finite Element Method
Finite Difference Time Domain

Green: Our contribution
Blue: Previous work used

Approximation
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Rytov
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CHAPTER 3

STOCHASTIC METHODS AND BAYESIAN INFERENCE

Part of this chapter was published in conference proceedings, 2020 43rd International Confer-
ence on Telecommunications and Signal Processing (TSP) [1] and 2021 XXXIVth General As-
sembly and Scientific Symposium of the International Union of Radio Science (URSI GASS) [2].
Copyright © 2020, IEEE. Copyright © 2021, IEEE.

“The actual science of logic is conversant

at present only with things either

certain, impossible, or entirely doubtful,

none of which (fortunately) we have to

reason on. Therefore the true logic for

this world is the calculus of Probabilities,

which takes account of the magnitude of

the probability which is, or ought to be,

in a reasonable man’s mind.”

James Clerk Maxwell

This chapter presents results of stochastic methods applied in inverse scattering. We use the

BIM results and feed them into: 1. genetic algorithms (GA) as the initial population; 2. Monte

Carlo Markov Chain as priori knowledge for Bayesian inference. Statistical inversions using

Bayesian approaches can produce various estimates over a probability distribution and further

evaluate their credibility [75]. Moreover, the Bayesian approach exploits our prior beliefs in the

28
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unknown and copes with randomness such as noise or uncertainty brought by discretizations in

a systematic way.

3.1 A Hybrid of BIM and GA

In Equation 2.14, the electric field data d are related to the permittivity contrast χ via

the operator L. To estimate the model parameter χ, we are trying to find a set of parameters

that minimize the difference between the measurements and the predictions from the forward

scattering problem, i.e. the residual. The residual can be evaluated by finding the Euclidean

norm,

‖d− Lχ‖2 =

√√√√NTXNRX∑
m=1

(dm − (Lχ)m)2, (3.1)

and the optimized solution minimizing this `2-norm is a least square’s solution. Recall that

NTXNRX is the number of data points.

In linearized inverse problems, the apparent task is to solve for χ, but the solution is not

unique due to the underdetermined system, which results from overnumbered measurements by

discretization of the scatterer. Also, any small disturbance in d might result in huge variations

of the estimated solution χ, due to the ill-conditioned property of the linear operator L.

There are two options to deal with this ill-conditioned property. First, if proper techniques

to stabilize the inversions, called regularizations to find the solution, are needed, biased con-

strains would be introduced. Second, to explore the global search space, population-based

stochastic optimization approaches would add randomness to proposed trial solutions. The

inherent difference lies between the deterministic and the stochastic methods is whether the
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solution completely relies on the initial condition and the approach parameters. Consequently,

deterministic regularizations are mostly much faster than stochastic optimizations.

Moreover, in stochastic optimization approaches, the goal is to minimize the residual, which

are also called the fitness function or the cost function and we can embed some priori knowledge

in the stochastic approaches. For example, in electromagnetic scattering problems, the real part

of the relative permittivity is larger than one, and the imaginary part is less than zero.

To combine the advantages of both regularizations and stochastic approaches, we apply a

hybrid technique of existing methods to two-dimensional nonlinear inverse scattering problem,

iterative regularizations and GA. Also, we exploit the advantages of setting up boundaries for

the unknown permittivity. Overall, we apply regularizations to BIM for fast reconstruction

results first, which then become good prior knowledge to feed into GA. In GA, boundaries for

the solution were set up for homogeneous area as two standard deviation within the mean value

of the deterministic results.

The first step of our method is the classic BIM. Due to the ill-conditioning of the linear

matrix L, regularization techniques are widely applied to stabilize the inversions. To minimize

Equation 3.1, we use iterative regularization techniques, ART and CG. ART approaches the

solution by sweeping the i-th the rows of L at the j + 1-th iteration as

χj+1 = χj + λj
di − 〈Li,χj〉
||Li||2

LTi , (3.2)
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where χj is the solution at the j-th iteration, λj is a tuning parameter controlling the speed of

convergence, i = j modM + 1. CG is known for solving linear equations with a positive-definite

matrix; therefore, we apply it to solve LTLχ = LTd.

The second step is that the solution space is investigated by the means of a global optimiza-

tion method. The population-based stochastic GA would add randomness to the regularization

results as proposed trial solutions. The set of trial solutions, called the population, evolves over

successive generations based on procedures such as selections, crossover, and mutation until

the population converges. In GA, upper and lower bounds for a homogeneous area were set up

as two standard deviation within the mean value of the deterministic results. In this way, the

information resulting from the BIM method is exploited.

3.1.1 Numerical Results

In this section, we present numerical results using BIM with 1) deterministic regularizations,

ART and CG; 2) the proposed hybrid approach, where the BIM inversions are followed by the

application of the GA algorithm. The solver for scattered fields and total fields is obtained

by the Method of Moment [76] developed in MATLAB. Case studies include a homogeneous

circular cylinder with ε = 1.6 and an inhomogeneous circular layered cylinder with outer ε = 4

and inner ε = 2.

Scatterers are illuminated by TM-mode line sources at 1 GHz. There are 8 transmitters and

32 receivers located on the circumference of 1.5 times of the radius of the scatterer. Therefore, a

multiview/multistatic configuration at single frequency is considered. The investigation domain



32

in the forward model is discretized into 144×144 pixels, whereas 36×36 pixels are considered

for the inverse problem.

We initialize the BIM by assuming the permittivity equal to the one of the free space at the

first iteration, and apply ART and CG to BIM until the solution converges. In our cases, BIM

converges within 20 iterations. The deterministic methods used in this step cost less than 1 s.

Next, we use the BIM solution as the starting point of the GA approach; the mean and

the standard deviation of the BIM retrieved permittivity are calculated so that the bounds for

GA populations are twice of the standard deviation. At each generation of GA, the population

size is 100, the elite count is 5, and the crossover fraction is 0.8. The cost function that GA

is minimizing is the relative error with respect to a `2 norm between the scattered field data

vector and the computed scattered field based on the proposed solution. For the homogeneous

scatterer, GA terminates within 100 generations in 328 s with the error 0.24%. For the inhomo-

geneous case, the boundary between the two homogeneous areas is estimated by the maximum

derivative of BIM results, and GA terminates at 200 generations in 795 s with the error of

2.36%.

In order to evaluate reconstructed permittivity, we use the root-mean-square deviation σ̂

as,

σ̂ =

√
1

n

∑
(ε̂− ε)2, (3.3)

where n is the length of the discretized permittivity vector, ε̂ is the estimated permittivity

vector, and ε is the true one. Here we have 2 cases, a homogeneous scatterer with little contrast



33

permittivity (ε = 1.6), and an inhomogeneous layered scatterer (outer layer ε = 4, inner layer

ε = 2). All reconstructed results for the homogeneous area are compared in Table I.

TABLE I: MEAN AND RMS DEVIATION FOR FOUR METHODS

Object ε ART CG ART-GA CG-GA

Circular 1.6
mean 1.6004 1.6007 1.6011 1.6008

σ̂ 0.0178 0.0248 0.0204 0.0284

Outer layer 4
mean 3.7111 3.4443 3.8592 3.5391

σ̂ 0.277 0.2523 0.2917 0.2811

Inner layer 2
mean 2.2832 2.0502 2.159 1.8546

σ̂ 0.4283 0.4491 0.4859 0.5179

3.1.1.1 A Homogeneous Scatterer: Permittivity of 1.6

The scatterer is a lossless homogeneous circular cylinder with relative permittivity ε = 1.6

and radius of 0.5 λ. The reconstruction images are shown in Figure 4. To compare images,

the reconstruction results along the horizontal slice are shown in Figure 5. Overall, BIM

performs well for a relatively weak scatterer, where the Born approximation stands. ART offers
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a smoother and more accurate reconstruction than CG. Based on the results of ART and CG,

GA provides a more random reconstruction with a higher deviation.

3.1.1.2 A Layered Circular Cylinder

In this inhomogeneous case, the cylinder of radius 0.3 λ has the inner part with ε = 2 and

radius 0.225 λ, and its outer shell has ε = 4. The reconstructed images using four methods

are shown in Figure 6. All the reconstruction results along Y = 0 are compared in Figure 7.

ART outperforms not only the values but also identifying the edge, while CG seems lack of

providing the homogeneous property of the inner layer. For GA, it is interesting to notice

that, when hybrid with ART, it still shows the randomness and reconstructs relatively accurate

range of values. However, when the hybrid with CG is applied, the reconstruction is not reliable,

since it is not possible to achieve a quantitative reconstruction of the outer shell and also the

reconstruction of the inner circle is not accurate.

3.1.2 Discussion

A new hybrid combination of deterministic regularizations and stochastic GA are explored

in BIM. The population-based genetic algorithm is meant to explore solutions that might not be

trapped in local minima. The mean permittivity in the homogeneous area provided by GA are

similar compared to the results from regularizations; however, GA also brings higher deviation

due to its random nature. The limitation of GA is that information of trial solutions at each

generation takes a single path to the final solution, and this path to solution is highly random.

If the evolution of populations takes the “right” direction, the final results can be guaranteed; if

the first a few generations evolves along a different direction, its offspring would be unlikely to
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Figure 4: BIM reconstructed results for the permittivity within a cylinder, ε = 1.6: (a) ART; (b) CG;

(c) ART-GA hybrid; (d) CG-GA hybrid.



36

-0.1 -0.05 0 0.05 0.1

X in m

1.5

1.52

1.54

1.56

1.58

1.6

1.62

1.64

1.66

R
e

a
l 
p

a
rt

 o
f 

th
e

 r
e

la
ti
v
e

 p
e

rm
it
ti
v
it
y

Actual

ART

CG

ART-GA

CG-GA

Figure 5: Cross sectional view of reconstructed relative permittivity along Y = 0 for the homogeneous

cylinder of ε = 1.6.
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Figure 6: BIM reconstructed results for the permittivity within a layered cylinder, outer ε = 4, inner

ε = 2: (a) ART; (b) CG; (c) ART-GA hybrid; (d) CG-GA hybrid.
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Figure 7: Cross sectional view of reconstructed relative permittivity along Y = 0 for the layered cylinder

with the outer layer of ε = 4 and the inner layer of ε = 2.
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take the “right” path back. Therefore this method is lack of the basic theorem of the Metropolis

algorithm “(if you do this and this, then you generate samples of the distribution, in the precise,

technical sense of sample)” [75]. We will introduce Bayesian inference with Metropolis algorithm

next section.

3.2 Bayesian Inference

Remember that the least square problem might have multiple solutions and multiple minima

due to the underdetermined ill-conditioned property of the linear operator. Instead of using

regularizations to uncover the “best” fit for the unknown model parameters, now we consider

measurements and parameters of a statistical model as random variables. Bayesian inference has

been widely used in parameter estimation, for example, in electrical impedance tomography [77].

The Bayes theorem states that the distribution of unknown permittivity parameters X

conditioned on scattered field data D is

P (X|D) =
P (X)P (D|X)

P (D)
. (3.4)

In Bayesian inverse models, the solution of an inverse problem takes the form of a posterior

probability distribution, P (X|D), which is proportional to the prior multiplied by the likeli-

hood. The likelihood of measured data D given model parameters X, P (D|X), is strongly

associated with the linear forward scattering model. The prior of X depends on one’s prior

information upon the unknown parameters. Particularly, the real part of the relative permit-

tivity should be more than or equal to 1 and the conductivity should be positive. In addition,
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reconstruction results from deterministic regularizations could be plausible priors; for example,

previous reconstruction results from deterministic conjugate gradient regularizations offering

upper and lower bounds. In that sense, Bayesian inference incorporates prior information to

produce solutions for the model parameters.

On the one hand, to estimate the model parameters, one can choose the maximum a pos-

teriori estimate (MAP), which maximizes the posterior density as

XMAP = arg maxπ(X|D). (3.5)

Given the discrete forward scattering model d = Lχ + N, where N is the noise vector with a

Gaussian distribution to mimic the small variance in measured data and the prior is also Gaus-

sian, one can find that the MAP solution is equivalent to the one by Tikhonov regularization.

The MAP estimate provides a solution to an optimization problem.

On the other hand, the conditional mean (CM) of the unknown model parameter X is

another estimate

XCM = E{X|D} =

∫
Rn

Xπ(X|D) dX, (3.6)

where π(X|D) is the posterior density. This conditional mean is the center of the posterior

probability distribution. The CM estimate provides a solution to an integration problem, so

usually it is more robust towards noise in the data than MAP. When the likelihood and the

prior are both Gaussian, the posterior is also Gaussian and the MAP overlaps with CM.
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Since the high dimension of the unknown discrete parameters requires a large sample space,

it is challenging to numerically evaluate the integration for a conditional mean estimate. Here,

the conditional mean is sampled in a statistical sense using the Monte Carlo Markov Chain

(MCMC) methods, which can be applied favorably for our nonlinear inverse problem as they

only depend on the linear forward model. The Monte Carlo integration draws samples from

the posterior probability density and takes the average of these samples. Thus, we approximate

the integral in Equation 3.6 with the population mean,

E{X|D} ≈ 1

N

T∑
t=1

Xtπ(Xt|D), (3.7)

where the population mean is estimated by a sampled mean. Based on the laws of large number,

the approximation becomes more accurate if T is increased, i.e. more samples are drawn from

the distribution, when samples Xt are independent. The question is how to sufficiently draw

samples from the posterior distribution, especially in the case that drawing samples independ-

ently is not feasible. One option is to consider this distribution as the stationary distribution

for a Markov chain.

A Markov chain is a sequence of random variables such that the next state only depends

on the current state. In another words, the chain will gradually ”forget” the initial state

and eventually converges to the chain’s stationary distribution. And this period of time for

the chain to converge to its stationary distribution is called burn-in. So how to pick the

stationary distribution for the chain as the posterior distribution we are trying to sample? To
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construct a Markov chain, whose stationary distribution is our distribution of interest, we use

the Metropolis-Hastings (MH) algorithm.

The MH algorithm is proved that the chain will eventually converges to its stationary

distribution, and also the stationary distribution is the posterior distribution of interest. In

other words, with the MH algorithm, a Markov chain converges to its stationary distribution,

which is also the posterior distribution/inverse problem we are trying to sample. At each time

t, one samples Y from the proposal distribution. According to the acceptance ratio, the sample

Y is either accepted as the next state Xt+1 or not. In this work, we use the simplest MH

algorithm, the random walk with a multivariate Gaussian proposal function, which has the

proposal distribution,

q(Y|X) = q(|Y −X|). (3.8)

This is a trial-and-error strategy; at each state t, we add some randomness to Xt so that the

proposed sample Y explores the solution space: one samples Y from a proposal distribution, for

example, a multivariate Gaussian distribution. According to the acceptance ratio, the sample

Y is either accepted as the next state Xt+1 or not. The algorithm flow is shown in Algorithm 1.

3.2.1 Numerical Results

For a simple test case, we choose an infinitely long circular cylinder with the radius of

λ/20 and the relative permittivity of 11. This object with such a strong permittivity contrast

is borrowed from [52]. A square that contains the circle with the side length of 0.03 m is

the investigation domain. To avoid the inverse crime, the investigation domain, S, is divided

into finer pixels (144 × 144) in the forward model than the inverse one (36 × 36). There are
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Algorithm 1 Metropolis-Hastings algorithm

procedure MH(X0)

for t = 0 ... T-1 do

sample Y from proposal distribution q(·|Xt)

calculate acceptance ratio α(Xt,Y) = min(1, π(Y)q(Xt|Y)
π(Xt)q(Y|Xt)

)

if Y is accepted, i.e. sample a random varible that is larger than α(Xt,Y) then

Xt+1 = Y

else Y is rejected

Xt+1 = Xt

end if

end for

end procedure
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8 transmitters and 36 receivers that offer 288 measurements. TM-mode incident fields are

radiated by a line source at 1 GHz and scattered fields are numerically calculated by MoM

codes.

First, given the contour of the scatterer, we perform the traditional BIM with the conjugate

gradient; Figure 8 shows the BIM results after 11 iterations: a rough range for the real part of

the permittivity and quite accurate reconstructions of the conductivity.
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Figure 8: BIM reconstructed results for the permittivity within a cylinder, ε = 11: (a) real part; (b)

conductivity.
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Then, for the real part of permittivity, we set the max/min values acquired in BIM as the

upper/lower bounds for the permittivity random variable; for the imaginary part, we assume

it is 0. The starting point of the Markov chain is the mean of the real permittivity at all pixels

in the scatterer. As previous BIM results offer a good starting point, we don’t throw away any

iterations at the beginning of the chain; therefore no burn-in phase is need. At each iteration,

a random variable of the normal distribution with a standard deviation of 0.02 is added to

the current state of permittivity values; this procedure generates a sample permittivity, which

would be sent to the forward model to obtain the sample data. The difference between these

sample data and scattered field data determines if this sample permittivity would be accepted

as the next state of the chain. The longer the chain is, the closer the estimate is to the true

posterior.

Figure 9 shows the reconstructed results of MCMC after 10000 iterations. The acceptance

rate is 0.233. Due to the random nature of MCMC, the reconstructed permittivity profile in

Figure 9(a) is not as smooth as the conjugate gradient results in Figure 8(a). However, even

if the lower/upper bounds are set as [9.5, 13], the conditional mean estimate by MCMC offers

narrower bounds as [9.766,12.815]. Moreover, the mean of the permittivity at all pixels by BIM

is 11.180, which is improved by MCMC as 11.022; the standard deviation by BIM is 1.043,

which is also improved by MCMC as 0.669. Figure 9(b) directly compares the permittivity

reconstructions along 36 horizontal pixels at y = 0 by BIM with the conjugate gradient and

MCMC.
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Figure 9: Reconstructed results for real part of the permittivity: (a) MCMC results within the cylinder;

(b) slice comparisons along the horizontal axis.
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Furthermore, we insert those reconstructed permittivity values into the forward model to

compute scattered fields, which are compared with the analytical scattered field shown as in

Figure 10. Not surprisingly, for forward model results, MCMC improves both of the amplitude

and the phase of scattered fields. Since scattered fields are complex, we compare the amplitude

by calculating the error as

error =
∣∣∣Es

CG,MCMC − Es
data

Es
data

∣∣∣. (3.9)

3.2.2 Discussion

Stochastic Bayesian inference is applied with priors from the BIM with the conjugate gradi-

ent technique. MCMC is computationally expensive compared to deterministic regularizations;

however, MCMC does slightly improve the reconstructed permittivity profile for a scatterer with

ε = 11, where the Born approximation might fail. Like all previous methods mentioned, this

method also needs some priori knowledge and outputs various solution with tuning parameters.

In the next chapter, we will make efforts to reduce tuning parameters and priori knowledge.
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CHAPTER 4

CONVEX OPTIMIZATION

Part of this chapter was published in IEEE Geoscience and Remote Sensing Letters [3].
Copyright © CC BY.

“It is not knowledge, but the act of

learning, not possession but the act of

getting there, which grants the greatest

enjoyment.”

Carl Friedrich Gauss

This chapter explores the hidden convexity in inverse scattering problems and solves for un-

known permittvity in the wavelet domain. Neither convex optimization [78] nor a wavelet [79]

is a stranger in engineering applications. Many techniques target pixel-based inversions, so the

number of unknown depends on the pixel number of reconstructed images. To decrease the

number of unknowns, the unknowns in the spatial domain can be projected into the sparse

wavelet domain but details of non-smooth edges can still be reserved. Wavelet-domain recon-

structions was improved in inverse scattering [80], where the unknowns are searched within the

wavelet domain and the optimization problem consists of the minimization of the misfit about

the data with the sparsity constraints on the wavelet coefficients. To exploit sparsity [81], wave-

let transforms, such as Haar and the Daubechies wavelets, have been applied to a wide range

49
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of problems in nonlinear electromagnetic inversions [82]. Also wavelet-based regularizations in

DBIM has been applied for MRI [31].

While optimization has been recognized as a useful tool for solving the inverse scattering

problem, previous works have not consider nonlinear inverse problems from a convex optimiza-

tion perspective. Optimization plays a significant role in numerous applications, and convexity

is the key to take advantage of reliable and efficient algorithms similar to solving linear equa-

tions.

Convex optimization problems exhibit a number of computational benefits because they are

a special class of nonlinear optimizations problems. First, every local optimum of a convex

optimization problem is also globally optimal; this implies that convex problems can be solved

by using efficient local search methods (e.g., Newton’s method) as opposed to expensive global

methods (e.g., genetic algorithms). With modern solvers specifically designed for convex op-

timization, a commodity desktop computer can easily handle convex optimization problems up

to 103 to 106 variables [83], depending on the problem type. Second, in many modern software

packages (e.g., CVX [84, 85]) for convex optimization, users can specify convex optimization

problems in high-level domain-specific languages. Finally, it is known that convex optimization

problems can be solved by solving a sequence of linear systems of equations [86]. This opens

the possibility to solve convex problems of very large size by leveraging existing techniques from

large-scale numerical linear algebra.

In this chapter, we approximate the nonlinear inverse scattering problem as a convex op-

timization one by proposing a new inversion strategy consisting of two steps. First, we estimate
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the total field inside the domain of investigation by solving a convex optimization problem,

which is obtained by discretizing continuous electric field integral equations by the Method of

Moment [76]. The solution of the convex optimization problem can be efficiently computed us-

ing CVX [84,85], a software package for solving generic convex optimization problems. Second,

the estimated total field is exploited to formulate an inverse problem that reconstructs the

dielectric permittivity and conductivity of the target from the scattered field data. To mitigate

the ill-posedness of the inverse problem at the second step, we assume that the permittivity

profile has a sparse representation in the wavelet domain. This regularizes the inverse problem

by introducing an `1-norm penalty, which is known to promote sparsity in the Haar wavelet

coefficients [80]. The resulting problem is known as the LASSO [87] problem and can be solved

by the Templates for First-Order Conic Solvers (TFOCS) [88] software package.

The advantage of the first step convex optimization approach is that it does not require the

regularization parameter, which is needed by the Born method, and the quality of our results

is similar to BIM results. However, the limitation of the first step convex optimization is the

effectiveness on electrically large objects. However, the sole second step of using wavelets does

not restrict the inversion domain to electrically small regions.

4.1 Theory

Recall that the electromagnetic scattering is governed by a pair of integral equations, Equa-

tion 2.11 and Equation 2.12 in Chapter 2. Allow us to review these equations here.
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Let S be the domain under investigation, and r′ ∈ S. We denote by ε = ε′−j σ
ωε0

the relative

complex dielectric permittivity in S, where ε′ and σ are the relative dielectric permittivity and

electrical conductivity.

The state equation accounts for the total field Ep inside the investigation domain Sn as

Equation 2.12,

Ep +
jk20
4

N∑
n=1

(εn − 1)En

∫
Sn

H
(2)
0 (k0|rp − r′n|) dS′ = Ei

p, rp ∈ S, (4.1)

where Ei
p is the incident field at pixel p, rp ∈ S, H

(2)
0 (·) is the Hankel function of the second kind

and order zero, k0 is the wavenumber in free space. The investigation domain S is discretized

into N pixels, and εn is the homogeneous relative complex dielectric permittivity within the

pixel n. The integral of H
(2)
0 (·) over a circular region Sn was evaluated in [76] as Equation 2.13,

jk20
4

∫
Sn

H
(2)
0 (k0|rp − r′n|) dS′

=


jπk0req

2
H

(2)
1 (k0req) + 1, if p = n

jπk0req
2

J1(k0req) H
(2)
0 (k0|rp − r′n|), otherwise

(4.2)

where req is the equivalent radius of the discretized pixel, and J1(·) is the Bessel function of the

first kind and first order.
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The data equation describes scattered field Es at the m-th transmitter-receiver combination

by Equation 2.11,

Es
m = −jk

2
0

4

N∑
n=1

(εn − 1)En

∫
Sn

H
(2)
0 (k0|rm − r′n|) dS′, rm /∈ S. (4.3)

4.1.1 Approximation with Convex Optimization

A multi-view/multi-static/single-frequency configuration is considered for the problem, same

as the configuration in Chapter 2 and Chapter 3. We assume NTX transmitters and NRX re-

ceivers encircling the investigation domain, i.e., NTXNRX observations of the scattered field.

In inverse scattering problems, both of the permittivity and the electric field in the invest-

igation domain are unknown. Let the vector, εδ = ε − 1, εδ ∈ CN , be the complex contrast

function for N pixels, and the matrix variable Y ∈ CN×NTX be the total field at N pixels due

to NTX transmitters. These two variables allow as to write Equation 4.3 and Equation 4.1 as

A diag(εδ) Y = D, (4.4)

Y + B diag(εδ) Y = C, (4.5)

where D ∈ CNRX×NTX consists of the scattered field data Es
m in Equation 4.3. The matrices,

A ∈ CNRX×N , B ∈ CN×N , and C ∈ CN×NTX , are known once the measurement configuration
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and the number of pixels are fixed. Elements of A relate the scattered field collected at the

nRX receiver to pixel p as

AnRX, p = −jπk0req
2

J1(k0req) H
(2)
0 (k0|rnRX − r′p|). (4.6)

Elements of the symmetric matrix B, given in Equation 4.2, rely on the relationship between

pixels p and n. The matrix C accounts for the incident field radiated by a filamentary current

in free space, which is expressed at pixel p for transmitter nTX as

CnTX, p = − k20
4ωε0

H
(2)
0 (k0|rnTX − r′p|). (4.7)

DnRX, nTX is the scattered field data at receiver nRX due to transmitter nTX.

Before jumping into further steps, assuredly, it is essential to avoid committing any inverse

crime. Equation 4.3 and Equation 4.1 can not only produce scattered field data in the forward

model but also reveal unknowns in the inverse problem. In the forward model, Afwd, Bfwd,

and εδ fwd produce Yfwd and data D. In the inverse problem, Ainv, Binv, and data D are used

to find εδ and Y. Both of A and B depend on the equivalent radius of a pixel, req. If the

pixel size kept the same for forward and inverse cases, linear operators in both cases would

be identical as Afwd = Ainv and Bfwd = Binv, which result in a “perfectly correct” solution of

εδ and Y. Accordingly, we must discretize the investigation domain into different meshes for

forward simulations and inverse problems.
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As Equation 4.4 contains the data of the problem, i.e., the observable scattered field, min-

imizing the difference between the known scattered field data and the computed scattered

fields based on proposed permittivity can serve as an objective function. Rather than choose

Equation 4.4 as an equality constraints, we minimize the misfit between data and predictions

to tolerate potential noise in data. Equation 4.5 relates the field within the scatterer to the

permittivity exactly and thus it can serve as an equality constraint. Therefore, a nonconvex

optimization problem can be stated from Equation 4.4 and Equation 4.5 as

min
Y, εδ

‖A diag(εδ) Y−D‖2

s.t. Y + B diag(εδ) Y = C.

(4.8)

From the exact nonlinear problem as described as Equation 4.8, we start imposing a convex

optimization problem. To approximate the nonconvex Equation 4.8, we substitute diag(εδ) Y

with a new optimization variable, Z ∈ CN×NTX , which removes the nonlinearity in the equality

constraint by Z = diag(εδ) Y. Now, we have a linear optimization formulation

min
Y,Z

‖A Z−D‖2

s.t. Y + B Z = C.

(4.9)

The objective function is a Euclidean norm of an affine function, and the constraint is also

affine; therefore, this optimization problem is convex [78]. This convex optimization problem

does not require picking appropriate regularization parameters. With CVX, optimal solutions,

Ŷ and Ẑ, of our stated convex optimization problem are easily obtained.
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To construct convexity, Equation 4.9 relaxes the nonlinear inverse problem and considers the

equivalent currents and the total field inside the investigation domain as separate optimization

variables. In other words, despite Z = diag(εδ) Y, Y and Z are still treated as independent

variables to construct the linearity in Equation 4.9.

Due to the nonuniqueness of optimal solutions, CVX would arbitrarily retrieves one solution

from the set of optimal solutions and varying constraints do not affect the set of optimal

solutions. For any Z, there exists Y such that the constraint is satisfied. The inverse source

problem, the estimation of Z, is affected by the inherent non-uniqueness issue as discussed

in [89] and [90] that we are trying to estimate a function of spatial variables (defined over a

two-dimensional investigation domain) by exploiting the knowledge of the scattered field on a

line (one-dimensional domain).

The weakness of approximating the original problem as a convex optimization problem is

the absence of the nonconvex constraint of Z = diag(εδ) Y. Consequently, solution Ẑ returned

by CVX cannot be expressed as the multiplication of a diagonal matrix and the solution Ŷ.

The right matrix division, Ẑ/Ŷ, returns a sparse matrix with a few non-zero columns instead

of a diagonal matrix. Therefore, we only employ the results of the fields in the scatterer, Ŷ,

and then solve for the unknown permittivity contrast, εδ by adopting a LASSO problem in the

next step.

4.1.2 Linear Inversions in the Wavelet Domain

Indeed, coupled with internal field solution Ŷ, Equation 4.4 can be reformulated to highlight

the only unknown permittivity contrast εδ. Although all representations so far are in the
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complex domain, we start separating real and imaginary parts of matrices in Equation 4.4 so

that everything is in the real domain,

<O =O

=O −<O


 <εδ
−=εδ

 =



<D∗, 1

...

<D∗, NTX

=D∗, 1

...

=D∗, NTX



, (4.10)

where the linear complex operator O is

O =



A1, ∗ ◦ Ŷ∗, 1

...

ANRX , ∗ ◦ Ŷ∗, 1

A1, ∗ ◦ Ŷ∗, 2

...

ANRX , ∗ ◦ Ŷ∗, NTX



, (4.11)

with element-wise multiplication symbol ◦, and all elements in a specific row or column omitted

by ∗. As we transform the complex linear relationship to a real one, the real part of known

scattered field vector is cascaded with the imaginary part; similarly, the real part of dielectric

permittivity contrast is cascaded with the imaginary one.
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Apparently, Equation 4.10 shows a linear form,

Lm = d, (4.12)

through a linear operator, L ∈ R2NTXNRX×2N , between the data, d ∈ R2NTXNRX , and the

unknown model, m ∈ R2N
≥0 .

To tackle the ill-posedness of the inversion of the underdetermined linear operator L, we

apply an `1-norm based regularization method. Because the permittivity profile is either smooth

or contains limited sharp features, we assume that once the unknown permittivity parameter is

projected in the wavelet domain, numbers of wavelet coefficients is fewer than ones of unknown

parameter yet smooth and detail features are reserved. Therefore, the model m can be unraveled

by a linear inverse wavelet transform operatorW−1 and the wavelet coefficients w as m =W−1w.

To improve the sparsity, we penalize the misfit between the data and the proposed model with

sparse constraints in the wavelet domain, as the LASSO problem was proposed in [87]:

min
w

1

2
‖LW−1w− d‖22

s.t. ‖w‖1 ≤ γ.
(4.13)

The parameter γ controls the sparsity of the solution for w, where the value of γ increases when

we consider contrast functions with higher frequency content. The feasible initial point of w is

set as w0 = 0. And mathematical symbols in this section can be found in Table II.
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TABLE II: KEY SYMBOLS

εδ unknown vector, discretized complex permittivity contrast

Y matrix variable in CVX, electric field in a discetized domain

Ŷ solved optimal matrix by CVX, electric field in a discetized domain

Z matrix variable in CVX, diag(εδ) Y

A calculated matrix, proportional to integrals of Green’s function

B calculated matrix, proportional to integrals of Green’s function

C analytically calculated matrix, incident field by transmitters

D data matrix, scattered field at NRX receivers by NTX transmitters

d data vector, cascading < and = of all columns of D

O solved complex matrix based on A and Ŷ

L solved real matrix formed by <O and =O

m unknown vector cascading <εδ and −=εδ

w vector variable in the LASSO problem, wavelet coefficients of m

γ parameter in the LASSO problem, controling the sparisity of w

ŵ solved vector by TFOCS, optimal solution of wavelet coefficients

ε̂ solved permittivity, recovered from ŵ
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4.2 Numerical Results

In this section, we assess the proposed approach by considering both simulated and exper-

imental data. For the synthetic cases, the investigation domain S is divided into finer pixels

(144×144) in the forward model compared to the ones used in the inverse model (50×50). The

fine grid in the forward model ensures more accurate numerical computations of the scattered

field and avoids committing the inverse crime. 8 transmitters and 36 receivers give rise to 288

scattered field data. Transmitters and receivers are located evenly along the circle at 1.5 times

the radius of the circular investigation domain S.

The SDPT3 solver implementing a particular variant of interior-point methods, and called

by CVX, costs less than 2 minutes with an Intel Core i7-8700 CPU and 16 GB of RAM for

this moderate size problem. In TFOCS, the computation time is within seconds. Overall, it is

slower than BIM.

To fully test the effectiveness of our method, we diversify the selection of objects: 1. starting

from simplest homogeneous permittivity distribution of a circular cylinder with the known

contour; 2. inhomogeneous permittivity distribution with of a circular cylinder with the known

contour; 3. homogeneous permittivity distribution with unknown contour.

4.2.1 A Homogeneous Circular Cylinder: Lossless and Lossy

4.2.1.1 A Lossless Homogeneous Cylinder: ε = 11

In this case, we test our method along with the BIM method. The domain of investigation

has a homogeneous permittivity distribution of ε = 11. First, we follow the case of Figure

6 in [52] of a circular cylinder with a radius of λ/20. In BIM, the total field within the
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cylinder EBIM
n is achieved after 14 iterations with relative residual error less than 10−4. The

regularization method for the inversion is the algebraic reconstruction technique [91], instead of

the Tikhonov regularization in [52]. The total field estimated by proposed convex optimization

method is ECVX
n . Figure 11 shows the relative complex error for the total field,

δBIM,CVX =
EAnalytical
n − EBIM,CVX

n

|EAnalytical
n |

, (4.14)

at each pixel of the investigation domain, when the transmitter is located at (0, 1.5λ/20).

Neither approximations nor a priori knowledge are used, but CVX attains a better reconstruc-

tion of the total field, especially for the real part of En.

Then we examine the premittivity distribution by BIM and the proposed CVX-TFOCS

method. By BIM as shown in Figure 12a, the mean of reconstructed permittivity 10.8889,

and the variance is 0.8746; by CVX-TFOCS, the mean of reconstructed permittivity 10.9956,

and the variance is 0.014 in Figure 12b. Both Figure 12a and Figure 12b share the same

colorbar to the right. Due to more accurate estimates of En by CVX and the sparse nature of

a homogeneous permittivity distribution, the LASSO solution enables a clean reconstruction.

Also, it has been observed that a good performance of the proposed approach also for even

larger value of relative dielectric permittivity with radius λ/20: ‖E
CVX
n −EAnalytical

n ‖2
‖ESIM

n ‖2 = 1.08% for

ε = 15, 0.74% for ε = 20, and 9.8% for ε = 40.

After, we assess the performance of CVX with larger objects, such as radius of λ/8, λ/4,

and λ/2. The permittivity estimated along the slice of y = 0 by BIM and CVX-TFOCS is
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(a) (b)

(c) (d)

Figure 11: Electric field relative error within the cylinder with ε = 11: (a) <δBIM; (b) <δCVX; (c) =δBIM;

(d) =δCVX. The red dot at (0, 0.075λ) shows the location of the transmitter. Results on the same row

share the colorbar on the right.
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(a) (b)

Figure 12: Permittivity reconstruction of the cylinder with ε = 11 by: (a) BIM; (b) CVX-TFOCS.

Results share the colorbar on the right.
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shown in Figure 13. Based on the discretization rule in [76], with 50 × 50 pixels, the edge

dimension of each cell for an object with the radius λ/2 is λ/50, which does not exceed the

criterion 0.2/
√

11λ. Figure 13 shows, in this case, the larger extent of the targets entails a worse

quality of approximation of the total field, which leads to worse permittivity reconstruction.

Figure 13: Real part of permittivity reconstructed along y = 0 by BIM and CVX-TFOCS for a circular

cylinder with permittivity 11 with varying radius, λ/20, λ/8, λ/4, and λ/2.
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4.2.1.2 A Lossy Homogeneous Cylinder: ε = 2− 1j

The domain of investigation is a lossy homogeneous cylinder with ε = 2−1j, i.e. σ = 0.0556,

and the radius is λ/4. Figure 14 shows reconstructed results of the complex permittivity.

The mean of reconstructed permittivity is 1.9201 − 1.1489j, and the variance is 0.0046. The

reconstructed permittivity shows more variance for this lossy case than the lossless Figure 12b.

(a) (b)

Figure 14: Permittivity reconstruction of the cylinder ε = 2 − 1j, i.e. σ = 0.0556: (a) real part; (b)

conductivity.
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4.2.2 An Inhomogeneous Circular Cylinder

4.2.2.1 A Sine Shape Distribution

The sine-shaped permittivity distribution reaches to the maximum of 3 at (0, 0) and the

minimum of 1 at the edge with the radius of λ/4. To test the robustness of our method, we

add the white Gaussian noise, Ñ ∼ N (0, σ2/2) (here σ is the variance instead of the symbol of

conductivity), to the real and imaginary part of scattered field data S̃. With the signal-to-noise

ratio (SNR),

SNR = 10 log
Power(S̃)

σ2
, (4.15)

the scattered field for the sine-shaped object altered with a 30 dB SNR.

First, the reconstructed electric field obtained in CVX is compared between the noiseless and

the noisy case. Figure 15 shows the relative error of the reconstructed field at each pixel when

the transmitter locates at (0, 1.5λ/4). The maximum imaginary error is boosted up with noise,

because the real part of the data contributes more to the power, and we use the same power

level when adding the noise to the real and the imaginary part; in another words, relatively

more noise is added to the imaginary part of the data. The noise from a 30 dB SNR is not very

strong, however, the result by CVX is disturbed with less than 50% error. This might suggest

a lack of robustness in our method.

Figure 16 shows the pixel-based reconstructed permittivity. With the added noise, the

maximum values of reconstructed permittivity go further than the noiseless case. However, for

both cases, the reconstructions of the imaginary part are quite accurate.
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(a) (b)

(c) (d)

Figure 15: Relative error of electric field for the sine-shaped distribution: (a) <δNoiseless; (b) <δ30 dB;

(c) =δNoiseless; (d) =δ30 dB. The red dot at (0, 0.375λ) shows the location of the transmitter. Results on

the same row share the colorbar on the right.
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(a) (b)

Figure 16: Reconstructed real part of permittivity within a sine-shaped permittivity distribution with

maximum ε = 3 at (0, 0) and the minimum of 1 at the edge: (a) noiseless; (b) 30 dB SNR.

Then, we decrease the SNR of the scattered field to 20 dB. Figure 17b shows the recon-

structed permittivity compared to the actual object in Figure 17a.

4.2.2.2 A Layered Cylinder

For a lossless layered cylinder, the outer layer has the permititivty of ε = 4 and the inner

layer has the permititivty of ε = 2. the radius of the outer layer is 0.25λ, and the radius of the

inner layer is 0.15λ. Figure 18a shows reconstructed permittivity with noiseless electric field

and Figure 18b with the SNR of 20dB. The homogeneous spatial behavior and the permittivity

value for the outer layer are well estimated, whereas there is a smoothly varying distribution

for the inner layer.
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(a) (b)

Figure 17: Real part of permittivity within a sine-shaped permittivity distribution with maximum ε = 3

at (0, 0) and the minimum of 1 at the edge: (a) actual; (b) reconstructed with a 20 dB SNR. Results

share the colorbar on the right.
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(a) (b)

Figure 18: Reconstructed permittivity of a layered cylinder, the red line indicates the actual boundary

between the outer layer with ε = 4 and the inner layer with ε = 2: (a) noiseless; (b) 20dB SNR.

4.2.3 Detection of Shape and Dielectric Properties

4.2.3.1 L-shaped Plexiglass

The L-shaped plexiglass with ε = 2.6 is placed in the investigation domain of λ/2. For

noiseless electric field data, Figure 19a shows a good identification of the L-shape and a clean

ε = 1 for the rest of the investigation domain. The reconstructed permittivity within the

plexiglass also lies within acceptable range. Figure 19b shows that the L-shape is clearly

identified and that the remaining area of the investigation domain also has a clean ε = 1 almost

everywhere.
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(a) (b)

Figure 19: Reconstructed permittivity of an L-shaped plexiglass with ε = 2.6: (a) noiseless; (b) 20dB

SNR.

4.2.3.2 Two High Density Polyethylene Cylinders from Measurement

We apply the proposed method to the experimental data presented in [48]. 15 transmitter

locations were uniformly assigned along an arc of 280◦ with a radius of 0.432 m; 80 receiver

locations were along a full circular orbit of radius 0.328 m. The transmitter and the receiver

were log-periodic antennas (Ramsey Model No. LPY26) at 5 GHz. An automatic antenna

positioning system programmed in LabView was connected with a vector network analyzer

(HP 8753ES), and measured S21 data were interpreted into scattered field data.
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Two high-density polyethylene (HDPE) cylinders with a relative permittivity ε = 2.26 are

located in the domain of investigation with radius λ. The cylinders have a radius of 0.0127 m

(0.21 λ) and the minimal distance between them is 0.02 m (0.33 λ). First, reconstructed per-

mittivity is shown in Figure 20a when a quadratic inverse model in [48] is used. The boundaries

are smooth and the maximum permittivity is 1.7823. Figure 20b presents the reconstructed

permittivity by CVX-TFOCS. Two detected targets have a more accurate permittivity and

most of the background area has a correctly estimated value of permittivity ε = 1.

(a) (b)

Figure 20: Reconstructed permittivity of two HDPE cylinders with ε = 2.26: (a) quadratic model; (b)

CVX-TFOCS. The red circles indicate the contour of the original cylinders. Results share the colorbar

on the right.
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4.3 Discussion

We proposed a two-step strategy based on a convex optimization scheme and a LASSO

scheme in the wavelet domain for solving an inverse scattering problem. After, we present

a validation of the method with both simulated and experimental data. Without a priori

knowledge or tuning regularization parameters, CVX estimates total field information well for

objects with relatively small electric size and shows robustness when noise is present. Future

developments should analyze theoretically the performance in the case of larger investigation

domains [92] and propose more tractable constraints on this optimization problem.



CHAPTER 5

CONCLUDING REMARKS

5.1 Summary

In the past, nonlinear inverse scattering problems could be linearized with the Born approx-

imation and solved iteratively by minimizing a cost function that consists of norms.

In Chapter 3, we combined the Born iterative method (BIM) and stochastic optimization

strategies. The first step deterministic approach is based on the BIM stabilized by regularization

techniques, Algebraic Reconstruction Technique (ART) and Conjugate Gradient (CG). In the

second step, either genetic algorithm (GA) or Bayesian inference solved by Monte Carlo Markov

chain is carried out. The whole idea depends on the hope of BIM results acting as the priori

knowledge of the second step stochastic method, which shows limited improvements with high

computational cost compared with the first step BIM results. The test cases are weak and

homogenous, strong and homogeneous, and layered permittivity.

In Chapter 4, our attempt aims to approximate the nonlinear inverse scattering problem

without the Born approximation and reduce the effects of choosing tuning parameters in reg-

ularizations of BIM. Under the convex optimization regime, we proposed a simple convex ap-

proximation of discrete inverse scattering problems for the unknown internal field inside the

investigation domain. This reformulation abandons approximations and priori knowledge, yet

enables direct and efficient estimates of unknown electric field and saves computational resources

74
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compared with metaheuristic optimizations and stochastic methods. Then, these internal field

results linearize the inverse problem for permittivity, and the reconstruction of wavelet coeffi-

cients for the unknown permittivity exploits the sparsity of the solution, and reconstructions

from simple level 1 Haar wavelet domain preserve fair details on sharp edges. The combination

of convex optimization and wavelets coefficients offer satisfying results on our limited test cases.

We tested our method with strong and lossless homogeneous, lossy homogeneous, inhomogen-

eous but smooth, or not smooth permittivity distribution, from both simulated data (noiseless

and noisy) and real experimental measurements. The limitation of the convex optimization per-

spective is the lack of robustness when dealing with noise. In the future, improving robustness

of this method or investigation on optimal solutions could be explored.

Overall, the convex optimization approximation and wavelet-based optimization outper-

forms the combination of the BIM and the stochastic method due to higher accuracy and lower

computational cost.

5.2 Future Directions

The weakness of approximating the original problem as a convex optimization problem is

the absence of the nonconvex constraint of Z = diag(εδ) Y. Consequently, solution Ẑ returned

by CVX cannot be expressed as the multiplication of a diagonal matrix and the solution Ŷ. To

estimate the permittivity contrast εδ, we used the estimated total field, Ŷ, and adopt a LASSO

problem at the second step.
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One direction could be to get εδ directly from Ŷ and Ẑ: either minimizing the unconstrained

`2 norm

min
εδ

‖Ẑ− diag(εδ) Ŷ‖2, (5.1)

or in the wavelet domain

min
w

‖Ẑ− diag(W−1w) Ŷ‖2

s.t. ‖w‖1 ≤ γ.
(5.2)

Another direction is to solve nonlinear least-squares with proximal Newton’s method [93,94].
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Appendix A

ELECTRIC FIELD INTEGRAL EQUATION

An electric field integral equation (EFIE) is the core mathematical representation of scat-

tering problems. In this appendix, we show key components of EFIEs. First, we derive the

kernel function of the electric field integral equation, i.e. the Green’s function, which is the

solution to vector wave equations. Then, with the volume equivalence theorem, we describe

the 3D and the 2D electromagnetic scattering phenomena and then introduce the electric field

integral equation. The IEEE time convention ejωt is assumed.

A.1 Green’s Function as the Solution to the Vector Wave Equations

Maxwell’s equations outline the foundation of electromagnetics by relating the electric field

and the magnetic field with any source and medium. No matter looking for the electric field or

the permittivity, we need to start from procedures of solving these partial differential equations.

The time harmonics form or the phasor representation of Maxwell’s equations are

∇×E(r) = −jωµ(r)µ0H(r)−M(r), (A.1a)

∇×H(r) = jωε(r)ε0E(r) + J(r), (A.1b)

∇ ·E(r) =
ρ

ε(r)ε0
, (A.1c)

∇ ·H(r) = 0, (A.1d)
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Appendix A (Continued)

where E is the electric field, H is the magnetic field, ε0 is the permittivity in free space, ε is

the relative permittivity of the medium, µ0 is the permeability in free space, µ is the relative

permeability of the medium M is the magnetic current density, J is the electric current density,

ρ is the total electric charge density, ω is the wave radial frequency. These are the also the

Fourier transform of the time-domain Maxwell’s equations.

In digital signal processing or control theory, the impulse response can characterize a system

since it is equivalent to the inverse Laplace transform of the system’s transfer function. Similarly,

Green’s function can characterize the potential generated by a unit amplitude point source.

Considering the vector wave equation,

∇×∇×E(r)− k2E(r) = −jωµ0J(r), (A.2)

the electric field due to the current density source is the superposition of all point sources in

space as

E(r) = jωµ0

∫
V
G(r, r′) · J(r′) dV ′, (A.3)

where G(r, r′) is the Dyadic Green’s function. This Green’s function acts as the point source

response of the vector wave equation Equation A.2,

∇×∇×G(r, r′)− k2G(r, r′) = −Iδ(r, r′), (A.4)
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and the solution is given by Tai [95],

G(r, r′) = −(I +
1

k2
∇∇)

e−jk|r−r
′|

4π|r− r′| . (A.5)

A.2 Volume Equivalence Principle and Scattering

An electric current density J(r) in free space generates the incident electric field Ei(r) and

the magnetic field Hi(r) as

∇×Ei(r) = −jωµ0Hi(r), (A.6a)

∇×Hi(r) = jωε0E
i(r) + J(r). (A.6b)

In the presence of an obstacle, V , these radiating current density densities J(r) and M(r)

satisfy

∇×E(r) = −jωµ(r)µ0H(r)−M(r), (A.7a)

∇×H(r) = jωε(r)ε0E(r) + J(r), (A.7b)

where µ(r) and ε(r) are the relative inhomogeneous permeability and permittivity. Substrating

Equation A.6 from Equation A.7, one obtains the scattered fields

∇×Es(r) = −jωµ0Hs(r)−Meq(r), (A.8a)

∇×Hs(r) = jωε0E
s(r) + Jeq(r), (A.8b)
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where the equivalent sources Meq(r) and Jeq(r) are a funtion of the contrast between the

obstacle and the background medium,

Meq(r) = jωµ0(µ(r)− 1)H(r), (A.9a)

Jeq(r) = jωε0(ε(r)− 1)E(r). (A.9b)

When Meq(r) = 0, the equivalent current source Jeq(r) is linked with the scattered electric field

by the dyadic Greens function that

Es(r) = jωµ0

∫
V
G(r, r′) · Jeq(r′) dV ′, (A.10)

and the total field is the summation of the incident and the scattered field

E(r) = Ei(r)− k20
∫
V

(ε(r′)− 1)G(r, r′) ·E(r′) dV ′. (A.11)

A.3 Two Dimensional Electric Field Integral Equation

Consider the two dimensional electromagnetic scattering problem shown in Figure 1. An

infinitely long cylinder with arbitrary cross section is illuminated by a TMz-mode line electric

source. Such a source transmits the electric field that is uniform along ẑ, and the scattered
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field and the total field are also invariant of z because of symmetry, i.e. E(r) = E(r2D)ẑ with

r = r2D + ẑ. And Equation A.11 can be rewritten as

E(r2D) = Ei(r2D)− k20
∫
S

∫ ∞
−∞

(ε(r′2D)− 1)G(r, r′)E(r′2D) dz dS′

= Ei(r2D)− k20
∫
S

(ε(r′2D)− 1)E(r′2D)

∫ ∞
−∞

G(r, r′) dz dS′.

(A.12)

Then two dimensional Green’s function is the integral over z in Equation A.12 and based on [32],

one plugs Equation A.5 of the Green’s function and has

G2D(r2D, r
′
2D) =

∫ ∞
−∞

G(r, r′) dz

=

∫ ∞
−∞
−(I +

1

k2
∇∇)

e−jk|r−r
′|

4π|r− r′| dz

= −(I +
1

k2
∇∇)

∫ ∞
−∞

e−jk|r−r
′|

4π|r− r′| dz

= (I +
1

k2
∇∇)

j

4
H

(2)
0 (k0|r− r′|)

=
j

4
H

(2)
0 (k0|r2D − r′2D|).

(A.13)

Therefore, the 2D electric field integral equation can be obtained as

E(r2D) = Ei(r2D)− jk20
4

∫
S

(ε(r′2D)− 1)E(r′2D)H
(2)
0 (k0|r2D − r′2D|) dS′, (A.14)

where H
(2)
0 is the Hankel function of the second kind of order zero.
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A.4 Fredholm Equations

The Fredholm equation was originally studied by Erik Ivar Fredholm; in the Fredholm

theory, the infinite Liouville–Neumann series are one technique of solving the Fredholm integral

equations. The difference between the first kind and the second kind is the location of the

unknown function that one needs to solve.

A Fredholm equation of the first kind is written as

φ(t) =

∫
K(t, s)f(s) ds, (A.15)

where the kernel function K(t, s) and the function φ(t) are given, while the function that needs

to be find, f(t), is in the integrand. This can be related to the inverse scattering problem stated

as Equation A.14 when r /∈ S: the total field and incident field are known, while the unknown

permittivity only appears within the integrand.

A Fredholm equation of the second kind is given as

f(t) = φ(t) + λ

∫
K(t, s)f(s) ds. (A.16)

On the contrary, f(t), the unknown of the second kind appears not only in the integrand but

also outside the integrand. This describes the forward problem for the internal electric field of

the investigation domain as in Equation A.14 when r ∈ S: in the integrand, unknown is the

internal field since the permittivity profile ε is given; however, the unknown internal field also
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lies outside the integrand. Thus, this Fredholm integral equation of the second kind is strongly

connected with the forward scattering problem.
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FORWARD PROBLEM SOLVER - MOTHOD OF MOMENT

Both forward and inverse scattering problems can be discretized with the Method of Moment

(MoM). We coded the MoM solver described as [76] in MATLAB, and we believe that any

acclaimed achievements could be the hanging gardens in Babylon unless the solver is properly

validated. Therefore, this appendix compares the numerical results from the MoM solver with

results in [76].

B.1 An Elevation Pitch for Method of Moment

Here we focus on the descriptive introduction of MoM; therefore, the detailed mathematical

representation can be found in [76] or Chapter 2.2.3.

The problem setup is as follows: there is an infinitely long cylinder, let us say the cylinder is

aligned along the ẑ and has the same cross section, which means its dimension on the xy-plane

is not a function of ẑ. So the shape of the cross section and its dielectric property are known.

Now this object is illuminated by either a TM-mode line source that is parallel with it, or a

plane wave that propagates vertical to ẑ.

Given the cross section and the dielectric properties of any infintely long object that is

illuminated by either TM-mode line source or a plane wave, the goal is to calculate the internal

total field in the object and the scattered field outside the object.
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It is assumed that, in each pixel, the permittivity is considered as homogeneous. Therefore,

the discretized pixel size should be sufficiently small: the edge of the pixel should not exceed

0.2λ/
√
ε as suggested in [76]. However, the assumption of constant dielectric property and

electric field within in a pixel also causes some limitation to application to high conductive

objects. For example, for perfectly conducting objects, we know that the electric field inside is

zero.

Figure 21 shows the geometry of a ring cylinder with a lossless permittivity of 4, the outer

radius is 0.3 λ, and the inner radius is 0.25 λ. The ring is illuminated by either a plane wave

or a line source. The results from MATLAB MoM codes as shown in Figure 22 and also match

with original results from [76]; therefore, these MoM codes are verified and used for forward

models throughout this work.
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(a) (b)

Figure 21: Relative permittivity distribution: (a) a circular shell: the outer radius is 0.3 λ and the inner

radius is 0.25 λ; (b) a semi-circular shell.
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(a) (b)

(c) (d)

Figure 22: MoM solver results for Figure 21a: (a) electric field in the shell along the radius of 0.275λ; (b)

echo width with a plane wave incident; (c) echo width with a line source incident. MoM solver results

for Figure 21b: (d) echo width with a plane wave incident.
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