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Abstract—A longstanding problem in statistics pertains to the
estimation of probability density functions of continuous random
variables from a finite set of their samples. In this paper, we
propose a new parametric probability density function estimator
based on convex programming. Our formulation decomposes the
unknown distribution as a Gaussian penalty function plus an
error function, which is then expanded by multi-scale wavelet
functions (specifically frames) such as B-Spline and Mexican
Hat wavelets. To recover the wavelet coefficients in the error
function, a convex quadratic program is formulated which takes
into account the positivity of the probability density function-
through a linear constraint. The proposed decomposition model
is shown to facilitate an accurate estimation of the probability
density functions of interest.

I. INTRODUCTION

PROBABILITY density function (PDF) estimation has a
long history [1]–[8]. Distribution estimation with a finite

sample set plays a central role in theoretical and applied
statistics, information theory and communication application
areas such as data compression, information capacity [9],
source coding, time-series prediction [10], mutual information
estimation [11], and statistical image processing [12], [13].

Conventional PDF models such as the Gaussian mixture
model and K-distribution usually have a limited number of
parameters that are calculated based on the first few moments,
and thus provide a poor fit for some distributions, including
heavy-tailed processes [12]. To address this shortcoming, we
propose a new model to estimate the PDF of sample data that
also takes advantage of higher moments and the characteristic
function, which incorporates more statistical information.

PDFs may be categorized as either (i) sub-Gaussian or
(ii) super-Gaussian [14]. Roughly speaking, the tails of a
sub-Gaussian distribution are dominated by the tails of its
Gaussian counterpart (signifying a decay at least as fast as)
[15], [16]. On the other hand, a super-Gaussian distribution
has a more spiky peak and a longer tail than a Gaussian
distribution permits [17], [18].

We present a generalized model that covers both the
sub- and super- Gaussian distributions (including the mixture
models, heavy-tailed distributions, and sparse PDFs), while
guaranteeing the positivity of the recovered PDF, which is in
contrast to some earlier efforts [19]–[21]. The unknown PDF
of the input sample data fX(x) should satisfy two properties:
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∫∞
−∞ fX(x) dx = 1 and fX(x) ≥ 0. In our model, the PDF

is decomposed into a Gaussian penalty function and an error
function which is the difference between the unknown PDF
and the penalty function. The penalty function is essentially
the PDF of a zero-mean Gaussian distribution whose variance
will be estimated using data. The error function, however,
is formulated based on wavelet expansion. The choice of
wavelet functions for this purpose is grounded in the fact that
they are well-localized in both time and frequency, and hence,
provide good local estimates of the error function [5], [20],
[22]. Moreover, the deployment of wavelet functions provides
our model with the additional advantage of being able to
capture spikes of distributions with high magnitudes (e.g.,
sparse PDFs). In particular, we will use the frame wavelets
which have closed-form formulas [23]. This in turn facilitates
the formulation of the PDF estimation task as an optimization
problem with a positivity constraint as a linear inequality
constraint. Such a linear constraint provides an approach to
ensure the positivity of the PDF in a much more straightfor-
ward manner than the previous efforts [21]. Last but not least,
owing to the closed-form formulation of the frame wavelets,
we can achieve a closed-form formula for our PDF model
that will be key to its application in widely used estimation
frameworks such as maximum likelihood (ML) estimation
or maximum a posteriori probability (MAP) estimation. The
resulting problem is a simple convex quadratic program –
whose global minimum is immediately in reach.

Outline: In Section II, our PDF model is presented and
the error function expansion using wavelet functions is dis-
cussed. Sections III and IV are dedicated to finding the
coefficients of the proposed model from the moments and
characteristic functions of the input sample data. To this end,
a convex optimization problem is formulated which ensures
the positivity of the PDF. To showcase the advantages of the
proposed model, we utilize B-Spline wavelets and Mexican
Hat wavelet functions as two examples of frame wavelets.
Several numerical examples are presented to illustrate the
effectiveness of the proposed model in Section V. Section VI
concludes the paper.

Notation: We use bold lowercase letters for vectors, bold
uppercase letters for block matrices, and uppercase let-
ters for matrices. (·)⊤ denotes the vector/matrix transpose.
[aij ]

N1×N2 is an N1 × N2 matrix with aij as its ij-th
element. 1n is a n-dimensional all-one vector. E {.} denotes
the expected value operator. The r-th moment of a distri-
bution p(x) is defined as µr

p = E {xr}. Also, a charac-
teristic function (CF) of a random variable X is stated as



PX(ω) = E
{
eiωx

}
. Finally, the Gamma function is given by

Γ(x) =
∫∞
0
zx−1e−zdz.

II. PROBLEM FORMULATION

Suppose x = [xi]
Nx×1 is a vector of zero-mean random

samples generated from an unknown probability distribu-
tion fX , which is to be estimated. Inspired by the PDF
representation in [19], we propose to decompose the unknown
PDF into a core penalty term G(x) and an error function e(x).
Since we want the model to cover both sub-Gaussian and
super-Gaussian distributions, the penalty function is assumed
to be the PDF of the Gaussian distribution, while the error
function e(x) is tasked to represent the discrepancy between
these distributions and the underlying Gaussian core PDF.
The proposed decomposition takes the form,

fX(x) ≜ G(x) + e(x), (1)

where G(x) = 1√
2πσf

e
− x2

2σ2
f . The variance σ2

f can be es-
timated from the observation x based on the maximum-
likelihood estimation (MLE). Note that since every distribu-
tion consists of a tail and a center, the Gaussian penalty PDF
with a variance estimated directly from the data can take the
center, and the wavelet expanded error function can cover
spikes and the tail of the desired distribution. Interestingly, a
special case of (1) is the model previously proposed in [19]
which considers e(x) to be

e(x) ≜
N∑

n=1

βngn

(
x

σf

)
G(x), (2)

where gn(x) denotes the Hermite polynomial of order n and
{βn} are given via the orthogonality principle. However, as
shown in [12], it appears that the approach in [19] cannot
guarantee the positivity of the PDF, which is critical for PDF
formation. In contrast to [19], we will form the error function
e(x) using multi-scale wavelet functions, or more specifically,
by a frame decomposition with non-orthogonal functions. Let
ψ(x) denote a mother wavelet function [23]. Then, a multi-
scale representation of ψ(x) is obtained as [22], [23]:

ψjk(x) = ψ
(
2jx− k

)
, (3)

where j and k are the scaling and shifting factors, respec-
tively. Therefore, our decomposition model in (1) can be
rewritten as

fX(x) = G(x) +

jm+NJ−1∑
j=jm

Kj
u∑

Kj
l

cjkψjk(x), (4)

where NJ denotes the number of scalings, and {jm}, {Kj
l },

and {Kj
u} maybe chosen based on the input data x as follows.

• Choosing {jm}: Assuming that 2be denotes the effective
bandwidth of ψ at j = 0, the effective bandwidth of ψ
at a generic scale j will be 2−j+1be. Therefore, to find
an appropriate scale to start with, one can set jm to the
minimum integer j such that 2−j+1be ≤ b, where b is
the dynamic range of a zero-mean version of the input
data x.

• Choosing {Kj
l } and {Kj

u}: At a scale j, {Kj
l } and

{Kj
u} are the minimum and maximum integer values

of k such that the smallest number of shifting factors
can be achieved considering the dynamic range (i.e., b)
of the zero-mean version of the input data x.

As a result, estimating the unknown PDF fX boils down to
estimating the coefficients {cjk}. However, since the func-
tions {ψjk(x)} in (4) are non-orthogonal, the orthogonality
principle cannot be employed. In the following sections,
two distinct approaches are proposed to tackle this estima-
tion problem. Namely, in Section III, a moment matching
technique is used, whereas a characteristic function-based
approach is considered in Section IV.

III. MOMENT MATCHING TECHNIQUE

We begin our efforts by using a moment matching tech-
nique to obtain {cjk} in (4) while preserving the positivity of
the estimated PDF f̂X ; i.e. f̂X ≥ 0. A considerable advantage
of a moments-based technique is that, in some applications,
the moments of the arbitrary distribution might be the only
information available for PDF estimation. One such instance
is the problem of estimating the probability of false alarm in
detection theory [24].

A. PDF Estimation via Moment Matching

Multiplying (4) by xr (with r ∈ R+) and integrating with
respect to x yields:∫ ∞

−∞
xrfX(x) dx =

∫ ∞

−∞
xrG(x) dx

+

jm+NJ−1∑
j=jm

Kj
u∑

k=Kj
l

cjk

∫ ∞

−∞
xrψjk(x) dx.

(5)
Let µr

G and µr
fX

be t he r-th moment of the Gaussian process
associated with G(x) and the r-th moment of the desired PDF
fX(x), respectively. We can rewrite (5) as

µr
fX = µr

G +

jm+NJ−1∑
j=jm

Kj
u∑

k=Kj
l

cjk

∫ ∞

−∞
xrψjk(x) dx,

= µr
G +

jm+NJ−1∑
j=jm

Kj
u∑

k=Kj
l

cjkα
r
jk,

(6)

where
αr
jk =

∫ ∞

−∞
xrψjk(x) dx. (7)

Since r ∈ R+, to avoid complex coefficients αr
jk, one can use

the absolute moment (|x|r) instead of the ordinary moment
(xr). The moment µr

G in (6) is obtained as

µr
G =

∫ ∞

−∞
xrG(x) dx =

σr
f2

r
2Γ

(
r+1
2

)
√
π

(
1 + (−1)r

2

)
,

(8)
whereas for the absolute moment one obtains

µr
G =

∫ ∞

−∞
|x|rG(x) dx =

σr
f2

r
2Γ

(
r+1
2

)
√
π

. (9)



Since fX is unknown, the value of µr
fX

in (6) can be estimated
as below [14]:

µ̂r
fX =

1

Nx

Nx∑
i=1

xri . (10)

On the other hand, for the absolute moment counterpart, we
have that

µ̂r
fX =

1

Nx

Nx∑
i=1

|x|ri =
∥x∥rr
Nx

. (11)

Moreover, αr
jk in (7) can be evaluated either by analytical or

numerical integration approaches, depending on the choice
of the mother wavelet function ψ(x). Suppose J and R are
the sets containing the scaling and moment numbers utilized
in (6), respectively. Also, suppose K is the set containing the
number of shifts in each scaling, with ki ∈ K denoting the
number of shifts in the ith scaling. To recast (6) as a linear
vector equation, we define a matrix A of the form

A =

[
Aj1

...Aj2

... · · ·
...AjNJ

]lr×lk

, ji ∈ J , (12)

where

Aji =
[
αr
jik

]lr×ki
, ji ∈ J , r ∈ R, Kji

l ≤ k ≤ Kji
u ,
(13)

with lr denoting the cardinality of the set R and lk =
∑

i ki.
Furthermore, we define the vector of coefficients c (to be
recovered) as

c =

[
c⊤j1

...c⊤j2
... · · ·

...c⊤jNJ

]⊤
, ji ∈ J , (14)

where cji = [cjik]
ki×1. Using these definitions, one may

immediately rewrite (6) as

Ac = µ, with µ = [µ̂r
fX − µr

G]
lr×1, r ∈ R. (15)

We now include a constraint to guarantee the positivity of the
estimated PDF (f̂X ≥ 0). Note that, based on (4), we must
have

G(x) +

jm+NJ−1∑
j=jm

Kj
u∑

Kj
l

cjkψjk(x) ≥ 0. (16)

Suppose B is a set containing l uniformly chosen samples in
the interval [xinf, xsup], where xinf and xsup denote the infimum
and the supremum of the input signal x, respectively. To
recast (16) as a linear inequality in matrix form, we define
the matrix Ψ as follows:

Ψ =

[
Ψj1

...Ψj2

... · · ·
...ΨjNJ

]l×lk

, ji ∈ J , (17)

where

Ψji = [ψjik(b)]
l×ki , ji ∈ J , b ∈ B, Kji

l ≤ k ≤ Kji
u .

(18)
Consequently, the positivity constraint on the estimated PDF
may be formulated as

Ψc ⪰ −g, with g = [G(b)]l×1, b ∈ B. (19)

We must also ensure that the PDF estimate integrates to one.
Based on our model,∫ ∞

−∞
fX(x) dx = 1 +

jm+NJ−1∑
j=jm

Kj
u∑

Kj
l

cjk

∫ ∞

−∞
ψjk(x) dx.

(20)
As a result, we must have

jm+NJ−1∑
j=jm

Kj
u∑

Kj
l

cjk

∫ ∞

−∞
ψjk(x) dx = 0. (21)

Note that for compact support wavelets we usually have∫∞
−∞ ψjk(x) dx = 0, which means that the property in (21)

holds. However, in cases with
∫∞
−∞ ψjk(x) dx ̸= 0, we should

have∫ ∞

−∞
ψs(x) dx = ϵ⇒

∫ ∞

−∞
ψs(2

jx− k) dx = 2−jϵ,

(22)
where ϵ is an arbitrary constant. Based on (21) and (22), the
following relation is obtained:

jm+NJ−1∑
j=jm

Kj
u∑

Kj
l

cjk2
−j = 0. (23)

To formulate the linear equality (23) in matrix form, the
following definition may be considered:

d =

· · · 2−ji · · · 2−ji︸ ︷︷ ︸
ki times

· · ·

⊤

, ji ∈ J , ki ∈ K.

(24)
Using this definition, (23) can be simply written as d⊤c = 0.
Based on (15), (19) and (23), to find the unknown vector of
coefficients c, one should consider the following optimization
problem:

min
c

∥Ac− µ∥22
s.t. −Ψc ⪯ g,

d⊤c = 0,

(25)

which is a linearly constrained quadratic program [25]. Since
A⊤A is positive semi-definite for all A, the quadratic pro-
gram in (25) is always convex [26].

To show the effectiveness of our wavelet-focused formula-
tion, in Section V, we will consider applying (25) in the case
of B-spline wavelets as an example mother wavelet function.
We only consider the cubic (ψc) B-spline wavelet [27]–[30].
Once the coefficients {αr

jk} are obtained, one can formulate
the optimization problem in (25) and obtain the estimated
PDF using (4).

IV. CHARACTERISTIC FUNCTION APPROACH

Some distributions lack the theoretical moments (µr) as
µr → ∞. Therefore, for such distributions, the natural
estimation of moments may diverge which in turn makes our
problem ill-posed [14]. In order to avoid this issue, the idea of
employing the characteristic function is introduced to obtain
the coefficients {cjk} in (4) instead of moment matching.



A. Characteristic Function-Aided PDF Estimation

Applying the Fourier transform to (4) yields∫ ∞

−∞
eiωxfX(x) dx =

∫ ∞

−∞
eiωxG(x) dx+

∫ ∞

−∞
eiωxe(x) dx,

FX(ω) = Gf (ω) +

jm+NJ−1∑
j=jm

Kj
u∑

Kj
l

cjkτjk(ω),

(26)

where Gf (ω) = e−
ω2σ2

f
2 , and τjk(ω) =

∫∞
−∞ eiωxψjk(x) dx

is the Fourier transform of ψjk(x). Note that FX(ω) and
Gf (ω) in (26) denote the characteristic functions of the
input random variable x and the Gaussian random variable
with distribution N (0, σf ). Since the desired PDF fX(x) is
unknown, FX(ω) can be estimated from the input sample
data via the empirical characteristic function (ECF) as [31]:

F̂X(ω) =
1

Nx

Nx∑
n=1

eiωxn . (27)

One advantage of using the characteristic function is that
it exists for all real-valued random variables, even for dis-
tributions that do not have bounded moments, such as the
Cauchy distribution, and heavy-tailed processes in general
[14]. Similar to Section III, we will take advantage of (26)
along with the positivity constraint to estimate the input
PDF. Suppose W contains lω frequency values. Define the
matrix B as

B =

[
Bj1

...Bj2

... · · ·
...BjNJ

]2lω×lk

, ji ∈ J , (28)

where

Bji = [τjik(ω)]
2lω×ki , ji ∈ J , ω ∈ W, Kji

l ≤k ≤ Kji
u .

(29)
For each ω ∈ W , we have two equations in (26) emerging
from its real and imaginary parts. Therefore, the total number
of equations will be 2lω , as can be seen in our definition of
the matrix B in (28). For a generic frequency value ω0, and
E(ω) =

∫∞
−∞ eiωxe(x) dx, denoting the Fourier transform of

e(x), the real part of (26) can be written as:

Re
{
F̂X(ω0)

}
= Re {Gf (ω0) + E(ω0)} , (30)

or equivalently,

1

Nx

Nx∑
n=1

cos(ω0xn) = e−
ω2σ2

f
2

+

jm+NJ−1∑
j=jm

Kj
u∑

Kj
l

cjk Re {τjk(ω0)} ,
(31)

while for its imaginary counterpart, we have

Im
{
F̂X(ω0)

}
= Im {Gf (ω0) + E(ω0)} ,

1

Nx

Nx∑
n=1

sin(ω0xn) =

jm+NJ−1∑
j=jm

Kj
u∑

Kj
l

cjk Im {τjk(ω0)} .
(32)

Therefore, (26) can be represented as a linear equation in
matrix form as follows:

Bc = γ,

γ⊤ =

[
Re{γ⋆}

... Im{γ⋆}
]1×2lω

, ω ∈ W,

γ⋆ = F̂X(ω)− e−
ω2σ2

f
2 .

(33)

Based on (33), (19) and (23), we consider the following
optimization problem to recover the coefficient vector c:

min
c

∥Bc− γ∥22
s.t. −Ψc ⪯ g,

d⊤c = 0.

(34)

As in (25), this is a convex quadratic program.
In the following, the Mexican Hat wavelet function will be

utilized as an illustrative example for the significant potential
of the proposed approach. The Mexican Hat wavelet, also
known as the Ricker wavelet, is defined as [32]–[34],

ψh(x) =
2√

3σπ
1
4

(
1−

(x
σ

)2
)
e−

x2

2σ2 . (35)

The Fourier transform of the Mexican Hat wavelet function
is given by

τ(ω) =
2
√
2√
3
π

1
4σ

5
2ω2e−

σ2ω2

2 . (36)

The Fourier transform of the multi-scale Mexican Hat wavelet
can be obtained as

τjk(ω) = 2−jei
ω

2j
kτ

( ω
2j

)
,

=
2
√
2π

1
4σ

5
2

√
3

2−3jei
ω

2j
kω2e−

σ2ω2

22j+1 .
(37)

These closed-form expressions can be used to form and solve
(34), which will lead to an estimate of the input PDF.

V. NUMERICAL ILLUSTRATIONS

In this section, the efficacy of the proposed PDF estimator
is evaluated using the moment matching technique with the
B-spline wavelet (cubic) introduced in Section III and the
proposed characteristic function-aided method deploying the
Mexican Hat wavelet introduced in Section IV. To examine
our approach, we define the mixture model for the PDF of
interest as below:

fX (x; θ) =

NM∑
i=1

sifi (x; θi) , (38)

where {θi} are the parameters of the sub-PDFs {fi}. For the
B-spline wavelet example, we utilize the Gaussian Mixture
Model (GMM) for which all sub-PDFs in (38) are Gaus-
sian. For the Mexican Hat wavelet example, we use the
(i) Gaussian mixture, the (ii) Cauchy-Exponential-Gaussian
mixture: f1 is a Cauchy distribution with the parameters x0
as the location parameter and γ as the scale parameter, f2
is the exponential distribution with the parameter λ as the
rate parameter, f3 is a Gaussian distribution N (µ, σ), and
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Figure 1: PDF estimation of the input data following the model (38) using the proposed model with the B-spline wavelet:
(a) presents the Gaussian mixture model with parameters µ = [0,−0.1, 0.2], σ = [0.2, 0.4, 0.8] and s = 1/3 × 13 and
the Mexican Hat wavelet; (b), (c) and (e) show the Gaussian mixture models with the parameters µ = [−2,−1, 0, 0, 1, 2],
σ = [0.18, 0.2, 0.3, 1, 0.2, 0.18], s = 1/6×16, µ = [0,−0.1, 0.2], σ = [0.2, 0.4, 0.8], s = 1/3×13, as well as µ = [0,−5, 5],
σ = [0.3, 1, 1], s = 1/3× 13, respectively; (d) illustrates the Cauchy-Exponential-Gaussian mixture with parameters µ = 0,
σ = 0.1, λ = 0.5, x0 = 0, γ = 0.01, s1 = 2/3, s2 = 1/5 and s3 = 2/15; (f) shows the Exponential-Gaussian mixture with
the parameters λ = 0.5, µ = 0, σ = 0.15, s1 = 0.5 and s2 = 0.5.

the (iii) Exponential-Gaussian mixture: f1 is the exponential
distribution with the parameter λ as the rate parameter and
f2 is a Gaussian distribution.

The performance of PDF estimators are visually evaluated
in Fig. 1, suggesting the satisfactory performance of the
proposed approach in estimating the input PDFs in (38).
In these examples, we cover both sub- and super- Gaussian
distributions; namely, (b) and (e) are sub-Gaussian, whereas
(a), (c), (d) and (f) are super-Gaussian.

To numerically scrutinize the proposed method, we
utilize the mean integrated squared error (MISE) met-

ric defined as E

{∫∞
−∞

(
fX(x)− f̂X(x)

)2

dx

}
and the

Hellinger distance which is given as d2H

(
fX , f̂X

)
=∫∞

−∞

(√
fX(x)−

√
f̂X(x)

)2

dx where fX and f̂X are the

true PDF and the estimated PDF, respectively.
As can be seen in Table I, our model applied with the

moment matching technique and characteristic function-based
method is able to estimate the unknown PDF. We compare
the proposed model with GMM (EM algorithm [35], [36]) for
input data generated from the Gaussian mixture models (in
Fig. 1 (a), (b), (c) and (e)) and with Generalized Gaussian Dis-
tribution (GG), which is a widely used parametric PDF model

Table I: Performance Comparison for the Proposed PDF
Estimator Based on the Results in Fig. 1

Proposed Model Compared Model
Figure MISE d2H Model MISE d2H

a 1.84e-03 2.01e-03 GMM (EM) 1.12e-01 2.02e-02
b 1.31e-04 6.21e-04 GMM (EM) 7.61e-02 4.96e-02
c 2.27e-04 3.96e-04 GMM (EM) 1.25e-01 2.32e-02
d 2.62e-02 2.00e-02 GG 2.81e-01 5.17e-02
e 3.09e-05 7.14e-04 GMM (EM) 7.16e-03 9.21e-03
f 1.02e-02 6.56e-03 GG 9.85e-02 2.59e-02

in the literature and a strong tool to estimate centralized PDFs
with high magnitudes [12], [37], for input data generated from
Cauchy-Exponential-Gaussian mixture and the Exponential-
Gaussian mixture (in Fig. 1 (d) and (f)). As can be observed,
our approach appears to have a better performance based on
these metrics.

VI. CONCLUSION

We proposed a parametric PDF estimation method with a
Gaussian penalty and wavelet expanded error function. The
coefficients of our expansion model are determined via a
convex program ensuring the positivity of density functions.
Numerical results showcase the effectiveness of the proposed
approach in obtaining the unknown PDF of the input data.
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