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ABSTRACT 
 

This report provides the justifications for introducing and using the finite elements (FE) of the 
absolute nodal coordinate formulation (ANCF). These elements have specific features that 
distinguish them from conventional finite elements and make them more suited for the large 
displacement analysis of multibody system (MBS) applications. Furthermore, the continuum 
kinematic description of fully parameterized ANCF elements cannot be ignored when interpreting 
the ANCF numerical results and comparing these results with results obtained using semi-discrete 
models often used with conventional beams and analytical solutions that are based on more 
simplifying assumptions. For example, torsion is associated with space-curve geometry and is not 
one of the basic continuum-mechanics shear-strain modes. ANCF displacement fields allow 
increasing the order of interpolation without increasing the number of nodes or using the 
noncommutative finite rotations. Such displacement fields also allow developing lower-dimension 
infinitesimal rotation ANCF/CRBF finite elements without lowering the order of the interpolation.  
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1. INTRODUCTION 

ANCF finite elements were introduced to alleviate known limitations of conventional finite 

elements and limitations of using the noncommutative finite rotations as nodal coordinates [1 – 

57]. Furthermore, the concerns regarding the use of isogeometric analysis (IGA) in multibody 

system (MBS) applications have been discussed in the literature. For this reason, the use and 

development of ANCF finite elements are expected to continue since such elements represent the 

only available option for accurate geometric representation of a wide range of large displacement 

applications. The implementation of both ANCF and floating frame of reference (FFR) 

formulations [58] in computational MBS algorithms is necessary for the systematic and efficient 

solution of large and small deformation problems. 

 This report provides justifications for introducing and using ANCF finite elements which have 

specific features that distinguish them from conventional finite elements and make them more 

suited for the large displacement analysis in MBS applications. Nonetheless, the continuum 

kinematic description of fully parameterized ANCF elements cannot be ignored when interpreting 

the ANCF numerical results and comparing these results with results obtained using semi-discrete 

models often used with conventional beams. For example, torsion is associated with space-curve 

geometry and is not one of the basic continuum-mechanics shear-strain modes. The torsion mode 

of the chassis of a vehicle represents the twist of a chassis nominal space curve and it is not one of 

the continuum-mechanics shear-strain modes defined by the dot products of position-gradient 

vectors. When using a fully continuum model, cross sections defined in a reference configuration 

cannot be defined in a current configuration because gradient vectors do not maintain constant 

relative orientations, and consequently, the semi-discrete beam models in which cross sections of 

a beam rotate with respect to each other are not applicable to fully continuum ANCF models. 
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 Higher-order elements do not always imply FE mesh with higher dimensions or larger number 

of coordinates. Convergence to correct and smoother solutions may require the use of large number 

of low-order elements as compared to higher-order elements. For example, large number of linear 

or bilinear elements is required to describe bending deformations and such large number of 

elements does not achieve the desired rotation and stress continuity at the nodal points. On the 

other hand, higher-order elements based on cubic interpolations can describe bending 

deformations with much smaller number of elements.  The use of higher-order elements is common 

in the FE literature as evident by using the 20-node solid element in commercial FE software. If 

the 4-node solid element were sufficient and performed well in all applications, there is no 

justification for developing the 20-node element and implementing it in commercial FE software. 

ANCF displacement fields allow increasing the order of interpolation without increasing the 

number of nodes or using the noncommutative finite rotations. Such displacement fields also allow 

developing lower-dimension infinitesimal rotation ANCF/CRBF finite elements without lowering 

the order of the interpolation. 

 

2. ANCF DISPLACEMENT FIELD 

For ANCF finite elements, the global position of an arbitrary point on an element can be written 

as ( ) ( ) ( ), t t=r x S x e , where ( )S x  is the FE shape-function matrix that depends on the FE spatial 

coordinates [ ]1 2 3
Tx x x=x , and ( )te  is the vector of element nodal coordinates that depend on 

time t . At a given node k , absolute position and position-vector gradients define the vector of 

nodal coordinates as 
1 2 3

[ ]
T T T Tik ik ik ik ik T

x x x=e r r r r , where 1 2 3
kx kx , k , ,= ∂ ∂ =r r  [35]. For an arbitrary 

point, the position vector ( ) ( ) ( ), t t=r x S x e , the velocity vector ( ) ( ) ( ), t t=r x S x e  , and the 
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acceleration vector ( ) ( ) ( ), t t=r x S x e   can be defined and used to formulate the dynamic equations 

of motion. The use of twelve coordinates per node in the case of three-dimensional fully 

parameterized ANCF elements have clear geometric and computational advantages that allow for 

conveniently describing the reference-configuration geometry, capturing deformation modes that 

cannot be captured by lower-order elements, and obtaining lower-dimension FE mesh in many 

applications as has been demonstrated in the literature. Therefore, use of higher-order elements, as 

previously mentioned, does not always imply an FE mesh with larger number of degrees of 

freedom. 

 

3. JUSTIFICATION FOR USING ANCF ELEMENTS 

ANCF elements are fundamentally different from other finite elements. Some important 

differences which can provide clear explanation for developing and using ANCF finite elements 

are the following: 

1. The coordinates used for ANCF elements are consistent with the kinematic description used in 

the general continuum-mechanics theory. ANCF elements employ position gradients as nodal 

coordinates. Position gradients, which are different from displacement gradients, have clear 

geometric meaning as tangents to coordinate lines. This geometric meaning can be exploited 

to solve fundamental problems that have not been solved before including motion and shape 

control of soft robots [59]. ANCF displacement fields allow increasing the order of 

interpolation without increasing the number of nodes or using the noncommutative finite 

rotations. 

2. Use of position gradients as nodal coordinates ensures the continuity of the rotations, strain, 

and stress fields at the nodal points of the ANCF elements. Such degree of continuity cannot 
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be achieved using conventional elements since continuity of the rotations does not imply strain 

and stress continuity at the nodal points. Higher degree of continuity is important in many 

problems including bending problems. 

3. Because ANCF elements do not employ infinitesimal or finite rotations as nodal coordinates, 

such elements do not require the use of incremental rotation procedures commonly used in the 

FE literature and commercial FE software. The resulting ANCF equations can be solved non-

incrementally, and therefore, linearization of the kinematic equations is avoided. 

4. Three-dimensional ANCF structural elements such as beams and plates lead to a constant mass 

matrix. Such a constant mass matrix cannot be obtained when using conventional beam, plate, 

and shell elements that employ infinitesimal or finite rotations as nodal coordinates.  

5. Planar and spatial ANCF structural finite elements, such as beams and plates, capture 

deformation modes that cannot be captured by conventional beam and plate elements. For 

example, ANCF structural elements captures the deformation of the beam cross section and do 

not require the use of ad hoc approaches to describe cross section deformations.  

6. Geometrically accurate infinitesimal-rotation finite elements can be developed using the 

ANCF displacement field leading to ANCF/CRBF finite elements that preserve the reference-

configuration geometry [60, 61]. Such ANCF/CRBF elements, which can be used with the 

FFR formulation for the efficient small-deformation analysis, cannot be developed using the 

displacement fields of conventional finite elements. ANCF displacement fields also allow 

developing the lower-dimension infinitesimal rotation ANCF/CRBF finite elements without 

lowering the order of the interpolation. 

7. ANCF structural finite elements allows for using both general continuum-mechanics approach 

and classical beam and plate theories. They can also be used to define more general and more 
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accurate shear-deformable elements based on the general definition of shear strains used in 

continuum-mechanics. Therefore, they are more general than elements that are limited to 

simplified beam and plate theories such as Timoshenko beam and Mindlin plate theories [62]. 

8. The fact that the displacement field can be written as ( ) ( ) ( ) ( ) ( )( ), o dt t t= = +r x S x e S x e e , 

where oe  and de  are, respectively, the nodal coordinates in the reference configuration and 

vector of nodal displacements, allows describing complex curved geometry by proper choice 

of oe . Having the position gradients as nodal coordinates allows accomplishing this geometry 

description. Conventional rotation-based elements often assume rigid cross sections and 

cannot accurately describe complex reference configuration geometry, requiring use of large 

number of elements without achieving the desired smoothness.  

9. In bending problems, cubic polynomials are required to achieve consistency with the partial 

differential equation of bending vibration and consistency with the fact that the curvature 

vector is defined by the second-order derivative. Full conformity of cubic surfaces of solid 

elements requires the use of forty eight nodal coordinates of the ANCF surface four nodes. 

This important property is automatically achieved by the ANCF solid elements and is not 

achieved by conventional brick elements including the 20-node brick element. 

10. The fact that the ANCF position and gradients coordinates are independent nodal coordinates 

allows defining more general boundary conditions. For example, in conventional brick 

elements, one can fix the position coordinates, but this does not imply zero strain at this point. 

In the case of ANCF elements different boundary conditions can be conveniently applied 

including fixing the position and achieving zero strains by using the nodal coordinates directly. 
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11. In the control of soft robots, the use of the position gradients allows developing a more general 

inverse dynamics problem using MBS algorithms to simultaneously control the motion and 

shape, and this can be very difficult to achieve using conventional elements [59]. 

 

4. SUMMARY 

The development and use of ANCF finite elements is expected to continue due to the lack of a 

viable alternative for the analysis of large deformation in MBS applications. Large rotation vector 

formulations (wrongly referred to as geometrically exact beam formulations) and isogeometric 

analysis (IGA) have serious limitations when used in general MBS algorithms as discussed in the 

literature. When using fully continuum elements such as ANCF elements, definition of torsion 

should be associated with space curves or fiber deformation since torsion is not one of the main 

shear-strain modes used in continuum mechanics. Torsional modes used in the vibration analysis 

of complex structures are associated with nominal curves whose geometry can accurately be 

described using higher-order interpolation as offered by ANCF elements. Therefore, it is not clear 

how torsion can in general be defined as a shear mode for ANCF finite elements since cross 

sections do not preserve their reference-configuration geometry in a fully continuum model. 

 Higher-order elements are also commonly used in the FE literature. If the 4-node solid element 

were adequate for all applications, there is no need for introducing and using the 20-node solid 

element implemented in commercial FE software. The 20-node solid element implemented in the 

commercial FE software does not offer the degree of continuity and conformity at the interface 

surfaces offered by the ANCF solid element. ANCF displacement fields allow increasing the order 

of interpolation without increasing the number of nodes or using the noncommutative finite 
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rotations [63]. Such displacement fields also allow developing lower-dimension infinitesimal 

rotation ANCF/CRBF finite elements without lowering the order of the interpolation.  
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