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SUMMARY 

 

This thesis is an investigation of the quantized normal mode of vibrations of the constituent atoms 

of semiconductors, referred to as phonons, and its effect on carrier transport and thermal 

conductivity of emerging semiconductors. Interaction of charge carriers with phonons is the 

dominant mechanism through which charge carriers exchange energy with the crystal lattice, hence 

their proper understanding becomes of prime importance while modelling carrier transport in a 

semiconductor. The phonon modes undergo significant modification as a result of dimensional 

confinement or presence of interfaces in semiconductors which must be taken into account while 

modelling their interaction with charge carriers. The carrier phonon interaction and phonon decay 

mechanisms are the main topic of study in this thesis applied to the case of emerging 

semiconductors which are wide band gap and in which electrons couple very strongly to the optical 

phonons. These emerging semiconductors are finding wide application in high power and high 

frequency applications. The main findings of this study are: 

 

(1) Surface acoustic phonon modelling by quantization of Rayleigh waves on the diamond 

surface has been done and its interaction with holes present in two dimensional hole gas 

on the surface has been performed. 

 

(2) A novel heterostructure consisting of cubic Boron Nitride and Diamond has been 

investigated to be used as a High Electron Mobility Transistor. Conditions of production 

of two dimensional electron gas and its interaction with surface acoustic phonons and 

remote polar phonon has been studied. 
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SUMMARY (Continued) 

 

(3) Modelling of acoustic phonon decay through three phonon process has been done for 

wurtzite crystals duly accounting for its anisotropy. Such study is fundamental for 

evaluation of thermal conductivity of the crystals. 

 

(4) Electric field velocity relations and other transport parameters have been evaluated for 

technologically important wurtzite and emerging cubic crystals under the purview of path 

integral mechanism (Thornber – Feynman polaron theory). The traditional relaxation time 

approach based on perturbative techniques breaks down in these materials which warrants 

use of  non-perturbative path integral techniques .Correction factors have been obtained 

for Fermi’s golden rule to properly account for mobility of charge carriers. 

 

(5) Thornber – Feynman’s polaron theory has been extended to emerging two dimensional 

Transition Metal Di-Chalcogenides. It is demonstrated that Fermi’s golden rule breaks 

down in these strongly coupled materials. Electric field – velocity relations have been 

worked out along with carrier mobility. 

 

(6) Role of confined optical phonons is investigated in exciton generation for a quantum dot 

interacting with laser modelled as a classical light. This study forms a basis for qubit state 

preparation in quantum computing applications. 
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Chapter 1 

 

Introduction 

 

1.1 Background 

The constituent atoms in any semiconductor solid don’t have static physical location, rather they 

exhibit periodic motion about their equilibrium position. Since, the atomic cores are much heavier 

relative to the electrons, therefore the Adiabatic approximation enables us to treat the motion of 

atomic cores independently of the electrons. The crystal potential energy attributed to the 

interatomic pair potential can be expanded in a Taylor series as shown below: 

 𝑈(𝑥) = 𝑈(𝑎0) + (
𝜕𝑈

𝜕𝑎
)
𝑎=𝑎0

𝑥 + 
1

2
(
𝜕2𝑈

𝜕𝑎2
)

𝑎=𝑎0

𝑥2 + ⋯ (1.1) 

where, 𝑎 and 𝑎0 represents the instantaneous interatomic separation, 𝑎0 is the equilibrium position 

and 𝑥 = 𝑎 − 𝑎0. Since, (
𝜕𝑈

𝜕𝑎
)
𝑎=𝑎0

= 0 so we can approximate the crystal potential energy 

according to harmonic approximation, such that (
𝜕2𝑈

𝜕𝑎2)
𝑎=𝑎0

 is referred to as interatomic force 

constant. This enables us to model the ion core motion by a linear chain model (which can be 

generalized to a 3-dimensional picture), as shown below: 

 

 

Fig. 1.1 1d linear chain model 

 

The normal modes of vibration representing the atomic displacements (longitudinal displacements 

along the chain) of mass 𝑚1 and 𝑚2 in Fig.1 can be written as: 

𝑚1 𝑚1 𝑚2 
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 𝑢2𝑟 = 𝐴1 exp 𝑖(2𝑟𝑞𝑎 − 𝜔𝑡) (1.2) 

and, 

 𝑢2𝑟+1 = 𝐴2 exp 𝑖((2𝑟 + 1)𝑞𝑎 − 𝜔𝑡) (1.3) 

where, 𝑞 is the wave vector and 𝐴1,2 represents the amplitude of mass 𝑚1,2. Let 𝜅 be the inter 

atomic force constant. The restoring force on each mass can be represented by Hooke’s law: 𝐹𝑟𝑒𝑠 =

 −𝜅𝑥. Using Eq. (2) and (3), we apply newton’s second law of motion on each mass and further 

eliminate 𝐴1 and 𝐴2 from the resulting equations, the final expression expressing relation between 

the wave vector 𝑞 and the frequency 𝜔 can be written as [1]: 

 
𝜔2 = 𝜅 (

1

𝑚1
+

1

𝑚2
) ± 𝜅 [(

1

𝑚1
+

1

𝑚2
)
2

−
4 sin2 𝑞𝑎

𝑚1𝑚2
]

1/2

 
(1.4) 

  

The high frequency solution of Eq. (4) is referred to as longitudinally optical (LO) mode, (as for 

many semiconductors its value lies in terahertz region which corresponds to the infra red portion 

of the electromagnetic spectrum) whereas the low frequency solution is called as longitudinally 

acoustic (LA) mode. The energies of such normal modes of vibration are quantized which is given 

as: 

 𝐸𝑛 = (𝑁𝑞 +
1

2
)ℏ𝜔𝑞 (1.5) 

where, 𝑁𝑞 is the Bose – Einstein phonon occupation number, given as below: 

 𝑁𝑞 =
1

exp (
ℏ𝜔𝑞

𝑘𝐵𝑇
) − 1

 (1.6) 

𝑁𝑞 determines the number of phonon modes of frequency 𝜔𝑞 with a wave vector 𝒒. Such 

vibrational normal modes having quantized energy are referred to as phonons. These phonons 

carry a momentum ℏ𝒒. 
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1.2 Phonons in polar semiconductors 

 

The atoms of semiconductors are bonded covalently with the neighbouring atoms, however for 

compound semiconductors in which the constituent atoms belong to different group in the periodic 

table the nature of bond has more ionic character as the atoms are further separated in periodic 

table [2], for example, II-VI semiconductor CdSe has more ionic bond as compared to III-V 

semiconductor GaAs. The discussion in the following paragraph motivates the production of 

polarization 𝑷 due to phonon modes in a compound semiconductor which forms a basis for 

modelling electron – phonon interaction mechanism to be explained in later sections. 

Let 𝑒∗ and −𝑒∗ be the charge on mass 𝑚1 and 𝑚2 in the diatomic linear chain model in the 

previous section. The force equations on both the masses can be written as [1]: 

 
𝑚1

𝑑2𝑢2𝑟

𝑑𝑡2
= −𝑚1𝜔

2𝑢2𝑟 = 𝜅(𝑢2𝑟+1 + 𝑢2𝑟−1 − 2𝑢2𝑟) + 𝑒∗𝐸 

= 𝜅(𝑒𝑖2𝑞𝑎 + 1)𝑢2𝑟+1 − 2𝜅𝑢2𝑟 + 𝑒∗𝐸 

(1.7) 

 

and, 

 
𝑚2

𝑑2𝑢2𝑟+1

𝑑𝑡2
= −𝑚2𝜔

2𝑢2𝑟+1 = 𝜅(𝑢2𝑟+2 + 𝑢2𝑟 − 2𝑢2𝑟+1) − 𝑒∗𝐸 

= 𝜅(𝑒−𝑖2𝑞𝑎 + 1)𝑢2𝑟+2 − 2𝜅𝑢2𝑟+1 − 𝑒∗𝐸 

(1.8) 

 

where, 𝐸 is the electric field associated due to coulomb effect produced by the charges ±𝑒∗. 

Now, in the long wavelength limit, 𝑞 → 0, all the particles with same mass are displaced equally 

along the chain; so, let 𝑢1 and 𝑢2 be the displacement of all particles of 𝑚1 and 𝑚2 respectively 
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in the long wavelength limit. The force equations (1.7) and (1.8) can be written in the limit 𝑞 →

0 as shown below: 

 

 −(𝜔2 − 𝜔0
2)𝑢1 =

𝑒∗𝐸

𝑚1
 (1.9) 

and, 

 −(𝜔2 − 𝜔0
2)𝑢2 =

𝑒∗𝐸

𝑚2
 (1.10) 

where, 𝜔0 = 2𝜅 (
1

𝑚1
+

1

𝑚2
) is the square of the resonant frequency in the absence of any charge 

(𝑒∗ = 0). Defining the interatomic displacement, 𝑢 = 𝑢1 − 𝑢2, Eq. (1.9) and (1.10) can be 

written as: 

 (𝜔0
2 − 𝜔2)𝑢 = 𝑒∗ (

1

𝑚1
+

1

𝑚2
) 𝐸 (1.11) 

The Eq. (1.11) clearly shows that the electric field produced is directly proportional to the 

interatomic displacement. 

Now, if 𝑁 be the total number of atomic pairs per unit volume, then the associated polarization 

𝑃, which defines the dipole moment per unit volume can be written as: 

 𝑃 =
𝑁𝑒∗𝑢

𝜖(∞)
=

1

𝜖(∞)

𝑁𝑒∗2

(𝜔0
2 − 𝜔2)

 (
1

𝑚1
+

1

𝑚2
)𝐸 (1.12) 

 

Eq. (1.12) is very significant in the sense that it gives the polarization produced due to longitudinal 

vibrational normal modes (LO phonons) modelled for a diatomic crystal modelled as a 1d linear 

chain, this forms the basis for electron – phonon interaction, so called Fröhlich interaction to be 

explained in the later section and it has been used in this thesis (under the purview of dielectric 
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continuum model) for modelling charge carrier scattering in semiconductor devices and their 

nanostructures. It should be noted that in the long wavelength limit 𝑞 → 0, we see from Eq. (1.8) 

and (1.9):  

 −𝑚1𝑢1 = 𝑚2𝑢2 (1.13) 

 

Eq. (1.12) brings forth the fact that the atoms vibrate out-of-phase for the case of optical phonons 

and it can similarly be shown that for LA phonon they vibrate in-phase.  

 

The preceding paragraphs highlight the importance of LO phonons in the production of 

macroscopic polarization in semiconductor materials, this polarization field is responsible for 

exchange of energy with the charge carriers and is the dominant scattering mechanism over wide 

ranging parameters[1]. On the other hand, Transverse Optical (TO) phonon modes have the 

particle displacement normal to the wave vector (𝒒 ⋅ 𝑷 = 0) and hence they are not significant for 

carrier energy exchange, but they are related to dielectric constant of the material through 

Lydanne-Sachs-Teller relation as shown below: 

 𝜖(𝜔) = 𝜖(∞)
𝜔2 − 𝜔𝐿𝑂

2

𝜔2 − 𝜔𝑇𝑂
2  (1.14) 

 

where, 𝜖(𝜔) is the dielectric function of the material, 𝜔𝐿𝑂 and 𝜔𝑇𝑂 are the characteristic 

LO and TO phonon frequency of the medium.  

Continuing with the motivation of production of polarization field because of vibrational 

normal modes in a material, Loudon (1964) described the optical phonons in terms of macroscopic 
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field equations (derived from Maxwell’s equation). Briefly, in Loudon’s model the general 

expression relating 𝐸 and 𝑃 are: 

 

 𝐸 =
−4𝜋[𝒒(𝒒 ⋅ 𝑷) − 𝜔2𝑷/𝑐2]

𝑞2 − 𝜔2/𝑐2
 (1.15) 

 

For LO mode, 𝒒 ⋅ 𝑷 = 𝑞𝑃, which if substituted in Eq. (15) results in: 

 

 𝑬 = −4𝜋𝑷 (1.16) 

 

Similarly, for TO mode, substituting 𝒒 ⋅ 𝑷 = 0 results in: 

 

 𝑷 =
1

4𝜋
 {

[𝜖(0) − 𝜖(∞)]𝜔𝑇𝑂
2

𝜔𝑇𝑂
2 − 𝜔2

 + [𝜖(∞) − 1]}𝑬 (1.17) 

 

1.3 Modification of phonon dispersion: 

The presence of interfaces (as in the case of transistors), or due to dimensional confinement, the 

phonon dispersion relation undergoes significant modification.[3] Classifies these modes for the 

case of single heterostructure for optical phonon modes as follows: 

 

(a) Interface modes: The modes whose amplitude of vibration shows exponential decay as we 

move farther from the interface. These modes become very significant for studying near 

surface carrier transport and also they have been shown to have fast phonon – assisted 

transitions in quantum well lasers [4]. 
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(b) Half space LO mode: These modes have the frequency same as the bulk LO mode, and 

they exist in one medium only, the polarization does not exist in the other medium and 

whose component of polarization field parallel to the interface vanishes. 

 

 

 

(c) Half space TO mode: These modes have the frequency same as the bulk TO mode, and 

they exist in one medium only, the polarization does not exist in the other medium and 

whose normal component of polarization to the interface vanishes. 

 

Single and double heterostructures of polar cubic crystals have been studied extensively under the 

purview of dielectric continuum model [1,3-5]; the dispersion relation for a single interface 

separating two semi-infinite polar mediums with dielectric constants 𝜖1(𝜔) and 𝜖2(𝜔) is given by 

the solution of the following equation: 

 

 𝜖1(𝜔) + 𝜖2(𝜔) = 0 (1.18) 

 

The solution of above equation results in two modes namely symmetric (lower frequency) and 

anti-symmetric mode (higher frequency), these are named according to the symmetry of associated 

Fröhlich potential about the interface. In ref [6], a transfer matrix method was employed to find a 

generalized solution to dispersion relation for polar cubic materials having  any arbitrary 𝑛 

interface. Such a system will have 2𝑛 optical phonon modes (two modes: symmetric/anti-

symmetric for every interface). 
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Similarly, for wurtzite heterostructures studies have been conducted in Ref [7-10]. In [10], a 

generalized expression for dispersion relation for a double heterostructure consisting of a wurtzite 

material in the middle which is sandwiched by two different materials on left and right  was derived  

along with their associated Fröhlich potential. The generalized dispersion relation for symmetric 

and anti-symmetric mode is given as: 

 

 (𝜖1𝑧𝑘1 + 𝜖2𝑧𝑘2 tanh (
𝑘2𝑑

2
)) (𝜖3𝑧𝑘3 + 𝜖2𝑧𝑘2 tanh (

𝑘2𝑑

2
)) = 0 (1.19) 

 (𝜖2𝑧𝑘2 + 𝜖1𝑧𝑘1 tanh (
𝑘2𝑑

2
)) (𝜖2𝑧𝑘2 + 𝜖3𝑧𝑘3 tanh (

𝑘2𝑑

2
)) = 0 (1.20) 

 

For proper treatment of carrier – optical phonon interaction, the modification in optical phonon 

dispersion should be properly accounted for.  

In this thesis, the interface modes for acoustic phonons (quantized Rayleigh waves) in diamond 

crystal – their description and interaction with charge carriers are treated in-depth in chapter 2,  

followed by that results of interface mode (IF) solution for optical phonon modes will be applied 

to a single heterostructure in chapter 3 for cubic Boron Nitride/ Diamond high electron mobility 

transistor (HEMT). Also, in chapter 9 the dielectric continuum model to evaluate confined optical 

mode in the context of spherical quantum dot. 

1.4 Electron – phonon interaction mechanism 

In this thesis the following two interaction mechanisms have been studied: 

1. Fröhlich interaction: As discussed in section 1.1, the longitudinal optical (LO) modes in 

polar materials create polarization field, 𝑷(𝒓) which interacts with the charge carriers 

causing them to gain/lose energy – this interaction is referred to as Fröhlich interaction. At 
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room temperature, this interaction results in the dominant scattering mechanism for polar 

semiconductors. The Fröhlich potential, 𝜙𝐹𝑟 associated with the polarization field, 𝑷(𝒓) 

are related as follows: 

 

 ∇2𝜙𝐹𝑟(𝒓) = 4𝜋∇ ⋅ 𝑷(𝒓) (1.21) 

 

For, a bulk isotropic material consisting of diatomic unit cell with atomic masses 𝑚1 and 

𝑚2 and consisting of 𝑁 atomic dipoles per unit volume, the polarization can be expressed 

in the second quantized form as follows [1]: 

 

  

 𝑃(𝒓) = 𝜁 ∑ ∫
𝑑3𝒒

(2𝜋)3
(𝑎𝒒𝑒

𝑖𝒒⋅𝒓𝒆𝒒,𝑗 + 𝑎𝒒
†𝑒−𝑖𝒒⋅𝒓𝒆𝒒,𝑗

∗ )

𝑗=1,2,3

 (1.22) 

where, 𝑎𝑞 and 𝑎𝑞
†
 are the phonon annihilation and creation operator respectively, 𝑒𝑞,𝑗 is the 

polarization vector and 𝜁 is the coupling constant defined as: 

 

 𝜁 =
𝑁𝑒∗

𝜖(∞)

1

√𝑁
 √

ℏ

2 (
𝑚1𝑚2

𝑚1 + 𝑚2
)𝜔𝐿𝑂

= √
ℏ

2𝜔𝐿𝑂
⋅
𝜔𝐿𝑂

2

4𝜋
(

1

𝜖(∞)
−

1

𝜖(0)
) (1.23) 

Now, since the Fröhlich interaction Hamiltonian is defined as: 𝐻𝐹𝑟 = −𝑒𝜙𝐹𝑟, using Eq (1.21), 

(1.22) and (1.23) with the fact that 𝒆𝒒,𝑗 ⋅ 𝒒 = 0, the final expression of 𝐻𝐹𝑟 is given below: 

 𝐻𝐹𝑟 = −𝑖√
2𝜋𝑒2ℏ𝜔𝐿𝑂

𝑉
(

1

𝜖(∞)
−

1

𝜖(0)
)∑

1

𝑞
 (𝑎𝒒𝑒

𝑖𝒒⋅𝒓 + 𝑎𝒒
†𝑒−𝑖𝒒⋅𝒓)

𝑞

 

(

(1.24) 

where, 𝑉 is the volume of the material. The 
1

𝑞
 dependence arises due to coulombic effect.  
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2. Deformation potential interaction: 

 

The acoustic phonons interact with the charge carriers with the deformation potential 

mechanism introduced by Bardeen and Shockley. The atomic displacement associated with 

the acoustic phonon mode produce strain in the material which changes the lattice constant 

locally and hence causes change in the local deformation of energy bands. Also, since the 

kinetic energy of the carrier depends on the location of energy state with respect to band 

edge, thus, a change in band structure would affect the kinetic energy of the carrier. The 

local change in energy band for a material with lattice const 𝑎 is given by: 

 𝐸𝑐,𝑣(𝑎) =  
𝑑𝐸𝑐,𝑣(𝑎)

𝑑𝑉
Δ𝑉 

(

(1.24) 

where, 𝑉 is the volume of the element and Δ𝑉 represents change in the volume. For and 

isotropic material, using 
Δ𝑉

𝑉
= ∇ ⋅ 𝒖,  where 𝑢 is the displacement of the atom, also, the 

𝑐, 𝑣 in the subscript indicates the conduction and valence band respectively. We can define 

interaction Hamiltonian as the energy associated with the local deformation defined by Eq. 

(24): 

 𝐻𝑑𝑒𝑓
𝑐,𝑣 = Δ𝐸𝑐,𝑣(𝑎) = 𝐸1

𝑐,𝑣∇ ⋅ 𝒖 

(

(1.25) 

where, 𝐸1
𝑐,𝑣

 is the deformation potential (which is different for electrons and holes). 

 

1.5 Emerging Semiconductors 

 

Historically, Silicon has been the main driver of the semiconductor revolution, however, 

its application to high power and high frequency applications such as electric aerospace, 

automotives and grid infrastructure is limited due to its narrow band gap 1.12 eV (indirect), low 
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thermal conductivity (~1.5 W/cm-K) , low break down field (~ 300 KV/cm) and limited room 

temperature mobility (~1.5 x 103 
𝑐𝑚2

𝑉−𝑠𝑒𝑐
 for electrons) [11]. On the other hand, the wide band gap 

semiconductors namely SiC (3.03 eV for 6H and 3.26 eV for 4H) and GaN (3.45 eV) have higher 

breakdown field (2500 KV/cm for 6H , 2200 KV/cm for 4H SiC and 2000 KV/cm for GaN), higher 

thermal conductivity (4.9 W/cm-K for SiC) and superior reliability which make them more suitable 

for high power and high frequency applications.  

 

The III- nitrides (typically GaN and its alloys with Al and In) have a direct bandgap which 

are tunable in the range of 6.4 eV (AlN) to 3.4 eV (GaN) to 0.7 eV (AlN)  which covers the range 

form deep ultra violet to infra red range thus finding wide application in LEDs, laser diodes, solar 

cells  and many optoelectronic applications [12,13] . Also, for RF applications the High Electron 

Mobility transistor based on two dimensional electron gas (2DEG) at AlGaN/GaN interface shows 

a mobility in the range 1200 – 2000 
𝑐𝑚2

𝑉−𝑠𝑒𝑐
 with a power capability of 40 W/mm [13]. These III-

nitrides and SiC generally crystalize in wurtzite phase at room temperature. 

 

Similarly, II -VI semiconductors such as CdS, CdSe, ZnO and ZnS are other promising 

candidates in optoelectronics, HEMT and SAW devices [14]. Finally, Diamond with a bandgap of 

~ 5.5 eV is emerging as a potential candidate for high frequency FET and high power switching 

applications [13,15]. Its high bulk room temperature electron mobility 4500  
𝑐𝑚2

𝑉−𝑠𝑒𝑐
 and hole 

mobility of 3800 
𝑐𝑚2

𝑉−𝑠𝑒𝑐
 is making it possible for high frequency applications. Also, it has a very 

high value of thermal conductivity 22 W/cm-K and breakdown field strength greater than 10MV 

cm-1 makes it very attractive for high power switches [15]. 
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In this thesis an effort is made to investigate phonon interactions with charge carriers in 

the above materials to study carrier transport and also, to understand acoustic phonon decay in 

wurtzite crystals using 2H-SiC material as an example to understand the thermal conductivity in 

general.  

 

1.6 Organization of thesis 

 

The research work presented in this thesis is organized as follows: Chapter 2, Investigation  on the 

effects of surface-acoustic phonon scattering on the charge transport behavior of diamond based 

FET devices. Motivated by the promising role of diamond in the realization of high power and 

high frequency electronic devices, this work is focus on detailed formulation of relaxation times 

due to the hole-surface-acoustic phonon scattering, which appears to have been an overlooked 

scattering mechanism important to diamond-based devices. The matrix element, scattering rates 

and relaxation times have been calculated by taking into account, for the first time Rayleigh waves 

near the surface. This is achieved by quantizing the Rayleigh waves and using the corresponding 

acoustic phonon to calculate the Fermi golden rule based scattering rate of holes in the two-

dimensional hole gas. The results show that the scattering of holes with surface acoustic Rayleigh 

waves reduced relative to scattering from bulk 3D acoustic phonons. Moreover, the mobilities are 

found to be higher than those based on the theory for 3D acoustic phonons. The results reveal 

significant insights to diamond based electronics having acoustic phonons Rayleigh waves thus 

opening new research endeavors.  

 

In Chapter 3 the investigation of phonon-dominated mobilities for carriers in a diamond 

field effect transistor with a cubic Boron Nitride (cBN) overlayer is done. This chapter investigates 

specifically, the intra-subband scattering due to interaction of electrons with acoustic phonons, 
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treated properly as quantized surface acoustic Rayleigh waves, and inclusion, for the first time, the 

interaction with remote polar phonons originating in the cBN overlayer. It is concluded that the 

surface acoustic phonon scattering is the dominant mechanism limiting the mobility of electrons 

for temperatures below 375 K. 

 

In Chapter 4 a systematic study of acoustic phonon decay mechanism is done for wurtzite 

crystals in general by taking 2H-SiC polytype as an example. Due to the presence of elastic 

anharmonicity, it is predicted that the longitudinal acoustic (LA) phonons in 2H-SiC will exhibit 

decay paths to lower-order modes through two key decay processes. Specific investigation of 

spontaneous decay of LA phonons in the quasi-isotropic 2H-SiC wurtzite crystal taking the spatial 

anisotropy into account has been done. It is shown that in the plane containing the c-axis the decay 

rate for the process LA → LA + TA (Transverse acoustic) dominates , whereas, for the plane 

normal to the c-axis (the XY plane) LA → TA+TA dominates. The overall scattering rate in XY 

plane is higher than the plane containing the c-axis. 

 

As discussed in Chapter 5, it is well known that the carrier—optical-phonon scattering rates 

dominate the carrier—acoustic-phonon scattering rates in many polar materials of interest in 

electronic and optoelectronic applications.  Furthermore, it is known that the Fröhlich coupling 

constants for carrier-optical-phonon in many materials is close to or great than unity, calling into 

question the validity of scattering rates based on the Fermi golden rule.  In a celebrated paper by 

Thornber and Feynman it was shown that that the large Fröhlich coupling constant in polar 

materials does indeed lead to substantial corrections to the Fermi golden rule scattering rates.  

These large corrections are due to the fact that for strong coupling constants, the first-order 

perturbative approach underlying the Fermi golden rule does not take into account the presence of 
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many phonons interacting simultaneous with the carrier.  In this paper, the Thornber-Feymnan 

scattering rates for carrier—optical-phonon interactions are derived for several technologically 

important wurtzite semiconductors – BN, ZnO, CdS, CdSe, ZnS, InN, and SiC – and it is shown 

that the commonly used Fermi’s golden rule scattering rates must be corrected by factors ranging 

up to an order-of-magnitude.  The corrections to the Fermi’s golden rule reported herein have 

widespread impact on carrier transport for materials with large Fröhlich coupling constants. 

 

Chapter 6 deals with III-Nitride semiconductors with cubic crystal structure have shown 

promise for enhanced efficiency in photonic and optoelectronic applications. The recent interest 

in cubic III-Nitrides has arisen due to the inability to realize enhanced efficiency in optoelectronic 

applications of the wurtzite phase due to spontaneous polarization effects, crystal defects due to 

growth on lattice mismatched substrates and also for requirement of fabricating normally off 

transistors for high mobility transistors. The cubic III-Nitride materials are characterized by strong 

coupling of carriers to optical phonons in which the standard perturbative approach – based on 

first order perturbation theory – breaks down. In this chapter, the  necessary corrections to Fermi’s-

golden-rule electron – optical phonon matrix elements for selected cubic III-Nitrides via the non-

perturbative Thornber – Feynman path-integral techniques has been determined. Specifically, the 

electron transport parameters such as the threshold electric field, threshold velocity, mobility and 

runaway length for BN, AlN, GaN and InN has been reported. 

 

Chapter 7 considers the evaluation of the electric field – velocity relation for strong electron 

– LO phonon coupled 2D materials namely 𝐻𝑓𝑆2, 𝐻𝑓𝑆𝑒2, 𝑍𝑟𝑆2 and 𝑍𝑟𝑆𝑒2 by applying Thornber 

– Feynman (TF) formalism applied to the case of the 2D Fröhlich polaron. It is further 

demonstrated that the generally-accepted Fermi’s Golden Rule based approach breaks down for 
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these strongly coupled materials. It is further predicted that 𝑍𝑟𝑆𝑒2 has highest mobility of 449.1 

𝑐𝑚2/𝑉-s at room temperature followed by 𝐻𝑓𝑆𝑒2 with 239.78 𝑐𝑚2/𝑉-s whereas other materials 

have below 100 𝑐𝑚2/𝑉-s. 

 

In Chapter 8 the role of confined longitudinal optical (LO) phonons is investigated under 

the purview of dielectric continuum model in creation of excitons in a strongly confined GaAs 

quantum dot. It is found that at low temperatures (below 10 K) the confined LO mode exciton 

creation rate is 6.87 times (~7 times) slower as compared to bulk acoustic phonons for exciton 

occupancy of 80% and above. Though acoustic phonons dominate the exciton creation, the role of 

confined LO phonons cannot be neglected, hence this work provides a basis for confined LO 

phonon assisted exciton creation in self assembled spherical quantum dots. 
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Chapter 2 

SURFACE-ACOUSTICS PHONON SCATTERING IN 2D-HOLE 

GAS OF DIAMOND BASED FET DEVICES 

Previously published: Singh, Ramji, Giorgio Bonomo, Sidra Farid, Mahesh R. Neupane, A. Glen Birdwell, 

Tony G. Ivanov, Mitra Dutta, and Michael A. Stroscio. "Surface-acoustics phonon scattering in 2D-hole gas of 

diamond based FET devices." Carbon 169 (2020): 488-500. 

 

2.1 Introduction 

Recently, the demand for devices that can operate in harsh conditions such as high 

temperature, high power or high frequency has been increased significantly. Silicon, a traditional 

industry material is not suitable for such purposes because of its narrow band gap. As an 

alternative, wide band gap semiconductor materials have been explored [16]. In particular, 

diamond has evolved as a promising material due to its exceptional physical properties such as 

intrinsically high break down field (>10 MV/cm) [17], wide bandgap (5.46 – 5.6 eV) [18] and high 

thermal conductivity [19]. One of the most outstanding diamond properties includes its high carrier 

mobility and particularly for holes in comparison with its neighboring semiconductors such as Si 

or SiC [20]. Progress in the development of diamond based electronic devices has been made on a 

number of fronts ([IEEE TED, Vol 67, No 6, June 2020, PP-2270-2275], Crawford et al.; Pernot 

et al.; Zhang et al.) [21]- [23]. So far most of the efforts that have been directed at understanding 

the factors affecting conductivity are associated with external doping such as using surface 

acceptor oxide layers or scattering in bulk materials only [24]. Another most important factor in 

the mobility of diamond is the scattering mechanisms resulting from the two dimensional hole gas 

(2DHG) instead of bulk material which is induced at the surface of hydrogen terminated (H-

terminated) diamond. There have been very few reports to date that present a detailed quantitative 
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description of scattering mechanisms responsible for mobility limitation in 2DHG of diamond 

devices. 

When diamond is terminated by hydrogen, it induces a negative electron affinity along with high 

room-temperature p-type surface conductivity [25]- [26]. Five scattering mechanisms that play a 

key role in the mobility of 2DHG in H-terminated diamond include: (1) surface impurity 

scattering; (2) non-polar optical phonon scattering; (3) surface roughness scattering; (4) acoustic 

phonon scattering and (5) interface phonon scattering [12]. In our previous study, Bonomo et al.  

presented in detail the role of remote interface polar phonon modes on the electronic transport 

properties of diamond structures [28].  Our work laid a milestone for understanding interface 

phonons that penetrate to the two-dimensional hole gas (2DHG) in confined diamond structures.  

With the exception of Bonomo et al. work, past studies of phonon-hole interactions in diamond-

based electronic devices have been modeled based by considering only bulk phonons.  There is 

now a growing understanding of carrier-phonon interactions for confined and interface phonon 

modes as well as applications of phonon engineering in electronic and optoelectronic devices 

(Stroscio et al. ; Komirenko et al. ; Park et al.,) [1, 29, 30].  In this work, we have modeled the 

interaction of acoustic phonons with the 2DHG by properly taking into account the fact that the 

acoustic phonons in the vicinity of the 2DHG are Rayleigh waves and not bulk acoustic waves. 

We find substantially smaller scattering rates for the case of the Rayleigh wave interface phonons 

than for bulk phonons. 

Considering the lattice vibrations in nanostructures, principle phenomena that alter the 

process of scattering include the following: firstly, reduction of hole momentum space 

dimensionality that originates interesting properties related to the hole-phonon interaction 

kinematics, secondly modifications of the phonon modes caused by the dielectric and acoustic 

mismatches in the nanostructure materials causes changes in properties of these materials [1]. Thus 



 

18 

 

for the design of diamond based FETs, effects from surface acoustic phonon limited mobility and 

the screening of free carriers are of high relevance. In this work, we present a model to theoretically 

understand carrier transport mechanism due to surface acoustic phonon scattering in diamond 

based devices. The acoustic phonon scattering mechanism has been investigated using 

deformation-potential theory, matrix element calculations, scattering rates and taking into account 

the Rayleigh waves near the surface for the first time.  

The paper is organized as follows: In Section II, we explain the existence of Rayleigh waves under 

consideration in diamond structures for surface acoustic wave analysis. Section III describe the 

peculiarities of the acoustic-phonon modes and its quantization. Section IV addresses the analytical 

expressions for the matrix elements of the hole-phonon interaction and deformation potential while 

Section V presents the conclusions.  

2.2 Rayleigh Surface Waves Existence  

The surface acoustic wave relevant for this system is the Rayleigh wave. Considering the 

general case for Lamb waves, if the shear velocity (Vs
’) in the plate and shear velocity (Vs) in the 

substrate differs significantly (Vs’ >>Vs), a generalized single Lamb wave solution exists that 

reduces to Rayleigh wave in the system (for which βH → 0) where β is the wave propagation 

constant and H as the thickness of the elastic plate over diamond structure. For (Vs’ << Vs), an 

infinite number of solutions exists, that are divided into M1 and M2 series families of modes. When 

H (plate thickness) tends to zero, M11 mode tends to a Rayleigh surface wave in the substrate 

whereas higher M1 and all M2 modes appear to be leaky waves [31]. When βH → ∞, all modes 

from M21 and above tend to be the shear velocity (Vs
’) of the plate while for βH → 0, only the 

Rayleigh waves exist in the substrate (M11); thus, Rayleigh waves in diamond structures are going 

to be analyzed solely. 
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2.3 Acoustic Phonon Quantization Model 

In this model, we have investigated scattering rates for holes in the 2-dimensional hole gas 

(2DHG) with surface acoustic waves for a diamond-based field effect transistor (FET). The 2DHG 

wave function is taken to be the Fang-Howard variational function. In this regard, the initial hole 

state obeys the equation as:  

 
Ψ𝑖(𝑟) = ⟨𝑟|𝑘⟩ = √

𝑏3

2
 (𝑦 − 𝑙) 𝑒−

1
2𝑏(𝑦−𝑙)  

𝑒𝑖𝑘∥𝑟∥

√𝑆
 

(2.1) 

 

While the final hole state is defined as,  

 
Ψ𝑓(𝑟) = ⟨k′|𝑟⟩  = √

𝑏3

2
  (𝑦 − 𝑙) 𝑒−

1
2𝑏(𝑦−𝑙)  

𝑒−𝑖𝑘′
∥𝑟∥

√𝑆
 

(2.2) 

 

Thus, the probability density function is given as below: 

 

|Ψ𝑖(𝑟)|
2 = ∫ ∫ ∫ 𝑑𝑥 𝑑𝑧 𝑑𝑦

𝑥=𝑋

𝑥=0

|√
𝑏3

2
 (𝑦 − 𝑙) 𝑒−

1
2𝑏(𝑦−𝑙)  

𝒆−𝒊𝒌∥𝒓∥+𝒆𝒊𝒌∥𝒓∥

√𝑆
|

2
𝑧=𝑍

𝑧=0

∞

𝑦=𝑙

 

                  = ∫ 𝑑𝑦

 ∞

𝑙

(√
𝑏3

2
)

2

(𝑦 − 𝑙)2  𝑒−𝑏(𝑦−𝑙) 

(2.3) 

 

where ∥  direction corresponds to x- z plane (we will drop the ∥ subscript in the following sections), 

𝑏 is a variational parameter such that 𝑏 = (
33𝑚∗𝑒ℎ

2𝑁ℎ

8𝜀0𝜀𝑟ℏ
2 )

1

3
 [32] and 𝑁ℎ = 1.8 x 1017 𝑚−2, [33]. S 
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represents the area of substrate in x-z plane and 𝑙 represents the depth below the surface at which 

the infinite barrier of triangular potential well is located which in our case is the diamond surface, 

hence 𝑙 =  0 in the present case. It is to be noted that the upper limit of y has been taken to infinity 

because the area under the curve evaluates to 99.99% for a depth of 𝑙 + 3 𝑛𝑚, hence for all 

practical thickness of substrates greater than 𝑙 + 3 𝑛𝑚 it does not affect if the upper limit is taken 

to infinity. The probability density function is plotted in Fig. 1; it is observed that the function 

peaks at a depth of 660 pm which can be taken as the depth at which 2DHG is located. 

 

Fig. 2.1 Fang-Howard Probability density function for hole in 2DHG in diamond showing peak at 

660 pm. 

 

 

Herein, the particle displacement expression for classical Rayleigh waves is second quantized so 

the matrix element of the Rayleigh wave with the hole wavefunctions corresponds to the emission 

or absorption of a single phonon.  The Rayleigh wave amplitude has been studied extensively and 

the basic elements are described by Graff et al. [34] for Rayleigh waves, it is possible to formulate 
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the displacement of the particles for a wave traveling to the right on an isotropic substrate along 

the z axis: 

 𝑢𝑦 = −𝐴(𝛼𝑡𝑙𝑒
−𝛼𝑡𝑙𝑦 − 2

𝛼𝑡𝑙𝛽𝑅
2

𝛽𝑅
2 + 𝛼𝑡𝑠

2 𝑒−𝛼𝑡𝑠𝑦) 𝑒𝑖(𝛽𝑅𝑧−𝜔𝑡) (2.4) 

And, 

 𝑢𝑧 = 𝑖𝐴𝛽𝑅(𝑒−𝛼𝑡𝑙𝑦 − 2
𝛼𝑡𝑠𝛼𝑡𝑙

𝛽𝑅
2 + 𝛼𝑡𝑠

2 𝑒−𝛼𝑡𝑠𝑦) 𝑒𝑖(𝛽𝑅𝑧−𝜔𝑡) (2.5) 

 

where 𝛽𝑅 𝛼𝑡𝑙 and 𝛼𝑡𝑠 represents the Rayleigh wave propagation constants respectively and the 

imaginary parts of the transverse wave vector components for the longitudinal and shear partial 

waves respectively.  

For these Raleigh waves, we can write the expressions as: 

 𝛽𝑅
2 − 𝛼𝑡𝑙

2 = (
𝜔

𝑉𝑙
)
2

  (2.6.1) 

And, 𝛽𝑅
2 − 𝛼𝑡𝑠

2 = (
𝜔

𝑉𝑠
)
2

  (2.6.2) 

And, 𝑉𝑅 =
𝜔

𝛽𝑅
 (2.6.3) 

where 𝑉𝑅 , 𝑉𝑙 and 𝑉𝑠 are the Rayleigh wave, longitudinal wave and shear wave velocities, 

respectively.  

The dispersion relation for these Rayleigh waves is given by; 

 4𝛽𝑅
2𝛼𝑡𝑠𝛼𝑡𝑙 = (𝛼𝑡𝑠

2 − 𝛽𝑅
2)2 (2.7) 

 

             which can be approximated as presented by Auld et al. [17] 
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 𝑉𝑅

𝑉𝑠
= 

0.87 + 1.12𝜎

1 +  𝜎
 (2.8) 

where σ is the material’s Poisson ratio. 

From well known standard elastic theory relations, we may recall as:  

 

 𝑉𝑠 = √
𝜇

𝜌
 (2.9.1) 

And, 𝑉𝑙 = √
𝜆 +  2𝜇

𝜌
 (2.9.2) 

And, 𝜎 =  
1 − 2 (𝑉𝑠 𝑉𝑙⁄ )2

2[1 − 2 (𝑉𝑠 𝑉𝑙⁄ )2]
 (2.9.3) 

 

where ρ is the density of diamond and λ and μ are the first and second Lame parameters for 

diamond. 

Introducing the displacement vector which is known to be of the form: 

 𝑢 (𝑥, 𝑦, 𝑧) =  ∇Φ + ∇ × 𝜓  (2.10) 

where Φ and 𝜓 satisfy, 

 ∇2Φ − 
1

𝑉𝑙
2

𝜕2Φ

𝜕𝑡2
= 0 (2.11.1) 

 ∇2𝜓 − 
1

𝑉𝑠
2

𝜕2𝜓

𝜕𝑡2
= 0 (2.11.2) 

and it follows that, 

 Φ = 𝐴𝑒−𝛼𝑡𝑙𝑦 𝑒𝑖(𝛽𝑅𝑧−𝜔𝑡) = 𝜙(𝑦) 𝑒𝑖(𝛽𝑅𝑧−𝜔𝑡) (2.11.3) 
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 𝜓 = 𝐴 (− 
2𝑖𝛼𝑡𝑙𝛽𝑅

𝛼𝑡𝑠
2 +  𝛽𝑅

2)  𝑒−𝛼𝑡𝑠𝑦 𝑒𝑖(𝛽𝑅𝑧−𝜔𝑡) =  𝜓 (𝑦) 𝑒𝑖(𝛽𝑅𝑧−𝜔𝑡) (3.11.4) 

Thus the Rayleigh wave phonon may be quantized as outlined in Stroscio and Dutta [1] using the 

condition, 

 1

𝑐𝐿
∫ 𝑑𝑧

𝑐

0

∫  𝑢(𝛽𝑅 , 𝑦, 𝑧). 𝑢∗(𝛽𝑅 , 𝑦, 𝑧)
+∞

0

𝑑𝑦 =  1 (2.12) 

 

where c and L are the normalization lengths along the horizontal and vertical axis of the diamond 

film respectively. Further 𝜔𝛽𝑅
 is considered to be the angular frequency of the mode with wave 

vector as βR.  

The quantities, 

 

𝑢𝑦. 𝑢𝑦
∗ = 𝐴2𝛼𝑡𝑙

2 (𝑒−𝛼𝑡𝑙𝑦 − 2
𝛽𝑅

2

𝛽𝑅
2 + 𝛼𝑡𝑠

2 𝑒−𝛼𝑡𝑠𝑦)

2

 

=  𝐴2𝛼𝑡𝑙
2  (𝑒−2𝛼𝑡𝑙𝑦 − 4

𝛽𝑅
2

𝛽𝑅
2+ 𝛼𝑡𝑠

2 𝑒−(𝛼𝑡𝑙 + 𝛼𝑡𝑠)𝑦 +  4
𝛽𝑅

4

(𝛽𝑅
2+ 𝛼𝑡𝑠

2 )2
𝑒−2𝛼𝑡𝑠𝑦)    

(2.13) 

and 

 

𝑢𝑧. 𝑢𝑧
∗ = 𝐴2𝛽𝑅

2 (𝑒−𝛼𝑡𝑙𝑦 − 2
𝛼𝑡𝑠𝛼𝑡𝑙

𝛽𝑅
2 + 𝛼𝑡𝑠

2 𝑒−𝛼𝑡𝑠𝑦)

2

 

=  𝐴2𝛽𝑅
2 (𝑒−2𝛼𝑡𝑙𝑦 − 4

𝛼𝑡𝑠𝛼𝑡𝑙

𝛽𝑅
2 + 𝛼𝑡𝑠

2 𝑒−(𝛼𝑡𝑠 + 𝛼𝑡𝑙)𝑦 +  4
4𝛼𝑡𝑠

2 𝛼𝑡𝑙
2

(𝛽𝑅
2 + 𝛼𝑡𝑠

2 )2
𝑒−2𝛼𝑡𝑠𝑦) 

(2.14) 

are needed to define the integrand of the normalization condition and to obtain, 
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1

𝐿
∫ 𝐴2𝛼𝑡𝑙

2  (𝑒−2𝛼𝑡𝑙𝑦 − 4
𝛽𝑅

2

𝛽𝑅
2 + 𝛼𝑡𝑠

2 𝑒−(𝛼𝑡𝑙 + 𝛼𝑡𝑠)𝑦
∞

0

+  4
𝛽𝑅

4

(𝛽𝑅
2 + 𝛼𝑡𝑠

2 )2
𝑒−2𝛼𝑡𝑠𝑦) 𝑑𝑦

+ 
1

𝐿
∫ 𝐴2𝛽𝑅

2 (𝑒−2𝛼𝑡𝑙𝑦 −  4
𝛼𝑡𝑠𝛼𝑡𝑙

𝛽𝑅
2 + 𝛼𝑡𝑠

2 𝑒−(𝛼𝑡𝑠 + 𝛼𝑡𝑙)𝑦
∞

0

+ 
4𝛼𝑡𝑠

2 𝛼𝑡𝑙
2

(𝛽𝑅
2 + 𝛼𝑡𝑠

2 )2
𝑒−2𝛼𝑡𝑠𝑦)   𝑑𝑦 = 1 

 

(2.15) 

 

Accordingly, 

𝐴2𝛼𝑡𝑙
2

𝐿
 [ 

𝑒−2𝛼𝑡𝑙𝑦

−2𝛼𝑡𝑙
|+∞

0
− 4

𝛽𝑅
2

𝛽𝑅
2 + 𝛼𝑡𝑠

2
𝑒−(𝛼𝑡𝑙 + 𝛼𝑡𝑠)𝑦

−(𝛼𝑡𝑙 + 𝛼𝑡𝑠)
| +∞

0
+  4

𝛽𝑅
4

(𝛽𝑅
2 + 𝛼𝑡𝑠

2 )2

𝑒−2𝛼𝑡𝑠𝑦

−2𝛼𝑡𝑠
| +∞

0
] + 

 

𝐴2𝛽𝑅
2  

𝐿
[ 

𝑒−2𝛼𝑡𝑙𝑦

−2𝛼𝑡𝑙
|+∞

0
− 4

𝛼𝑡𝑠𝛼𝑡𝑙

𝛽𝑅
2+ 𝛼𝑡𝑠

2

𝑒−(𝛼𝑡𝑠 + 𝛼𝑡𝑙)𝑦

−(𝛼𝑡𝑠 + 𝛼𝑡𝑙)
| +∞

0
+  4

𝛼𝑡𝑠
2 𝛼𝑡𝑙

2

(𝛽𝑅
2+ 𝛼𝑡𝑠

2 )2
𝑒−2𝛼𝑡𝑠𝑦

−2𝛼𝑡𝑠
| +∞

0
] = 1  

 which simplifies as: 

 

𝐴2𝛼𝑡𝑙
2

𝐿
 [ 

1

2𝛼𝑡𝑙
− 

4𝛽𝑅
2

𝛽𝑅
2 + 𝛼𝑡𝑠

2

1

𝛼𝑡𝑙 + 𝛼𝑡𝑠
+ 

4𝛽𝑅
4

(𝛽𝑅
2 + 𝛼𝑡𝑠

2 )2

1

2𝛼𝑡𝑠
 ]

+  
𝐴2𝛽𝑅

2

𝐿
 [ 

1

2𝛼𝑡𝑙
− 

4𝛼𝑡𝑠𝛼𝑡𝑙

𝛽𝑅
2 + 𝛼𝑡𝑠

2

1

𝛼𝑡𝑙 + 𝛼𝑡𝑠

+ 
4𝛼𝑡𝑠

2 𝛼𝑡𝑙
2

(𝛽𝑅
2 + 𝛼𝑡𝑠

2 )2

1

2𝛼𝑡𝑠
 ] = 1 

(2.16) 

 

which may be simplified to, 
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𝐴2  [ 
𝛼𝑡𝑙

2
− 

4𝛽𝑅
2𝛼𝑡𝑙

2

(𝛽𝑅
2 + 𝛼𝑡𝑠

2 )(𝛼𝑡𝑙 + 𝛼𝑡𝑠)
+ 

2𝛽𝑅
4𝛼𝑡𝑙

2

𝛼𝑡𝑙(𝛽𝑅
2 + 𝛼𝑡𝑠

2 )2
+ 

𝛽𝑅
2

2𝛼𝑡𝑙
 ]

+ [ 
𝛽𝑅

2

2𝛼𝑡𝑙
− 

4𝛼𝑡𝑠𝛼𝑡𝑙𝛽𝑅
2

(𝛽𝑅
2 + 𝛼𝑡𝑠 

2 ) (𝛼𝑡𝑙 + 𝛼𝑡𝑠)
+ 

2𝛽𝑅
2𝛼𝑡𝑠

2 𝛼𝑡𝑙
2

(𝛽𝑅
2 + 𝛼𝑡𝑠

2 )2
] = 1 

(2.17) 

Using the previously defined relations between the wave velocities and βR, this last result may be 

simplified to, 

 𝐴2  [
𝛼𝑡𝑙

2
− 

(𝛽𝑅
2 + 𝛼𝑡𝑠 

2 )𝛼𝑡𝑙

𝛼𝑡𝑠(𝛼𝑡𝑙 + 𝛼𝑡𝑠)
+ 

2𝛽𝑅
2𝛼𝑡𝑙

4𝛼𝑡𝑠
2 + 

𝛽𝑅
2

2𝛼𝑡𝑙
− 

(𝛽𝑅
2 + 𝛼𝑡𝑠

2 )

(𝛼𝑡𝑙 + 𝛼𝑡𝑠)
+

𝛼𝑡𝑙

2
] = 1 (2.18) 

 

and it follows that, 

𝐴2  [

2𝛼𝑡𝑠
2 𝛼𝑡𝑙

2 (𝛼𝑡𝑙 + 𝛼𝑡𝑠)

2𝛼𝑡𝑠
2 𝛼𝑡𝑙(𝛼𝑡𝑙 + 𝛼𝑡𝑠)

− 
2(𝛽𝑅

2+ 𝛼𝑡𝑠 
2 )𝛼𝑡𝑙

2 𝛼𝑡𝑠

2𝛼𝑡𝑠
2 𝛼𝑡𝑙(𝛼𝑡𝑙 + 𝛼𝑡𝑠)

+ 
𝛽𝑅

2𝛼𝑡𝑙
2 (𝛼𝑡𝑙 + 𝛼𝑡𝑠)

2𝛼𝑡𝑠 
2 𝛼𝑡𝑙 (𝛼𝑡𝑙 + 𝛼𝑡𝑠)

+ 
𝛽𝑅

2𝛼𝑡𝑙
2 (𝛼𝑡𝑙 + 𝛼𝑡𝑠)

2𝛼𝑡𝑠
2 𝛼𝑡𝑙(𝛼𝑡𝑙 + 𝛼𝑡𝑠)

− 

2𝛼𝑡𝑠
2 𝛼𝑡𝑙(𝛽𝑅

2+ 𝛼𝑡𝑠
2 )

2𝛼𝑡𝑠
2 𝛼𝑡𝑙(𝛼𝑡𝑙 + 𝛼𝑡𝑠)

] = 1  (2.19) 

or equivalently, 

 𝐴2  [
2𝛼𝑡𝑠

2 𝛼𝑡𝑙
2

2𝛼𝑡𝑠
2 𝛼𝑡𝑙

− 
2(𝛽𝑅

2 + 𝛼𝑡𝑠 
2 )𝛼𝑡𝑙𝛼𝑡𝑠

2𝛼𝑡𝑠
2 𝛼𝑡𝑙

+ 
𝛽𝑅

2𝛼𝑡𝑙
2

2𝛼𝑡𝑠 
2 𝛼𝑡𝑙 

+  
𝛽𝑅

2𝛼𝑡𝑙
2

2𝛼𝑡𝑠
2 𝛼𝑡𝑙

] =  1 (2.20) 

 

which implies that the phonon normalization factor is, 

 𝐴 = √
2𝛼𝑡𝑠

2 𝛼𝑡𝑙

𝛽𝑅
2(𝛼𝑡𝑙− 𝛼𝑡𝑠)

2 + 2𝛼𝑡𝑠
2 𝛼𝑡𝑙 (𝛼𝑡𝑙− 𝛼𝑡𝑠)

 
(2.21) 

 

2.4 Rayleigh wave displacement pattern 

Recalling the displacement expressions from eq. 2.4 & 2.5, and noting that the displacements are 

real quantities, only spatial component of displacement are taken into consideration thus expressed 

as below: 
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 𝑢𝑦 = 𝑅𝑒(𝑢𝑦) = −𝐴 (𝛼𝑡𝑙𝑒
−𝛼𝑡𝑙𝑦 −

2𝛼𝑡𝑙𝛽𝑅
2

𝛽𝑅
2+𝛼𝑡𝑠

2 𝑒−𝛼𝑡𝑠𝑦) 𝑐𝑜𝑠(𝛽𝑅𝑧)    (2.22) 

And, 

    𝑢𝑧 = 𝑅𝑒(𝑢𝑦) = 𝐴𝛽𝑅 (𝑒−𝛼𝑡𝑙𝑦 −
2𝛼𝑡𝑙𝛼𝑡𝑠

𝛽𝑅
2
+𝛼𝑡𝑠

2
𝑒−𝛼𝑡𝑠𝑦) 𝑠𝑖𝑛(𝛽𝑅𝑧) (2.23) 

where S is area in x-z plane that is 1 𝑛𝑚2. Now, since we know that 𝑐𝑜𝑠2(𝛽𝑅𝑧) + 𝑠𝑖𝑛2(𝛽𝑅𝑧)  =

 1, substituting for 𝑐𝑜𝑠(𝛽𝑅𝑧) 𝑎𝑛𝑑 𝑠𝑖𝑛(𝛽𝑅𝑧), from eq. 2.1 and 2.2 as: 

    

𝑢𝑧
2

𝐴2𝛽𝑅
2 (𝑒−𝛼𝑡𝑙𝑦 −

2𝛼𝑡𝑙𝛼𝑡𝑠

𝛽𝑅
2 + 𝛼𝑡𝑠

2 𝑒−𝛼𝑡𝑠𝑦)
2 +

𝑢𝑦
2

𝐴2 (𝛼𝑡𝑙𝑒
−𝛼𝑡𝑙𝑦 −

2𝛼𝑡𝑙𝛽𝑅
2

𝛽𝑅
2 + 𝛼𝑡𝑠

2 𝑒−𝛼𝑡𝑠𝑦)
2  =  1 

 

(2.24) 

The above equation represents an ellipse in y-z plane. However, for different values of y (which 

represents depth inside the surface) we get a family of ellipses with coordinates of center ≡ (𝑦, 0). 

The other properties of ellipse are shown below: 

 

Major axis: along y-axis, length of major axis: 2 𝐴 (𝛼𝑡𝑙𝑒
−𝛼𝑡𝑙𝑦 −

2𝛼𝑡𝑙𝛽𝑅
2

𝛽𝑅
2+𝛼𝑡𝑠

2 𝑒−𝛼𝑡𝑠𝑦); 

 

Coordinates of foci: (𝑦 + 𝑐, 0) 𝑎𝑛𝑑 (𝑦 − 𝑐, 0) , where expression of c is given below: 

 

    

𝑐 = 𝐴√𝛽𝑅
2 (𝑒−𝛼𝑡𝑙𝑦 −

2𝛼𝑡𝑙𝛼𝑡𝑠

𝛽𝑅
2 + 𝛼𝑡𝑠

2 𝑒−𝛼𝑡𝑠𝑦)

2

− (𝛼𝑡𝑙𝑒
−𝛼𝑡𝑙𝑦 −

2𝛼𝑡𝑙𝛽𝑅
2

𝛽𝑅
2 + 𝛼𝑡𝑠

2 𝑒−𝛼𝑡𝑠𝑦)

2

 

 

(2.25) 

In the context of diamond we observe that 𝑢𝑦 undergoes a phase shift by 𝜋 at depth of 
λR

4
; hence, 

the elliptically polarized displacement pattern undergoes change in sense of rotation from 
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anticlockwise to clockwise at depth of 
λR

4
. Further, for depth less than 

λR

4
 since the sense of rotation 

is anti-clockwise for direction of propagation along positive z-direction; thus, we say that such 

elliptical motion is retrograde in nature. Fig. 2.2 represents the normalized Y and Z component of 

Rayleigh wave displacement vectors for 𝜆𝑅 =  500 𝑝𝑚 where as displacements patters at various 

depths below the surface are presented in Fig. 2.3. 

 

 

Fig. 2.2 Normalized Y and Z component of Rayleigh wave displacement vectors for λR =
 500 pm. The dashed line represents the Z component and solid line represents y-component. The 

y-component changes sign at y = 124.6 pm ≈
λR

4
, it is at this point the sense of rotation changes. 

The elliptically polarized pattern becomes progressive from retrograde. 
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Figure 2.2 depicts the normalized Y and Z component of Rayleigh wave displacement vectors for 

λR =  500 pm. The dashed line represents the Z component and solid line represents the y-

component. The y-component changes sign at y = 124.6 pm ≈
λR

4
, it is at this point the sense of 

rotation changes. The elliptically polarized displacement pattern becomes progressive from 

retrograde.  The change of the sign of the y-component of displacement ≈
λR

4
 indicates that the 

ellipse representing the displacement transitions from anti-clockwise to clockwise as a function of 

depth.  This behavior and the depth dependence of the Fang-Howard dependence on 𝑁ℎ – see Eq. 

2.3 and the associated discussion – indicate that Rayleigh waves open a new avenue for tuning the 

mobility as a function of 𝑁ℎ due to the depth variation of the Rayleigh wave displacement pattern 

which is absent for bulk phonons. 

 

 

Fig. 2.3 Rayleigh wave displacement pattern plotted at y = 1, 100, 150 and 200 pm depth below 

surface, showing change of sense of rotation from retrograde (for depth less than 
λR

4
) to progressive 

as we progress down the surface.  

 

-0.5 0 0.5

Propagation Direction 

0.5

1

1.5

D
e

p
th

 b
e

lo
w

 S
u

rf
a

c
e
 (

p
m

)

Displacement pattern at depth = 1pm

-0.5 0 0.5

Propagation Direction 

99.5

100

100.5

D
e

p
th

 b
e

lo
w

 S
u

rf
a

c
e
 (

p
m

)
Displacement pattern at depth = 100pm

-0.5 0 0.5

Propagation Direction 

149.5

150

150.5D
e
p

th
 b

e
lo

w
 S

u
rf

a
c

e
 (

p
m

)

Displacement pattern at depth = 150pm

-0.5 0 0.5

Propagation Direction 

199.6

199.8

200

200.2

200.4

D
e
p

th
 b

e
lo

w
 S

u
rf

a
c

e
 (

p
m

)

Displacement pattern at depth = 200pm



 

29 

 

2.5 Analytical Expressions for Hole-Acoustic phonon interaction 

 In the following section, the analytic expressions for the deformation potential is introduced and 

the scattering rates are determined by computing the matrix element obtained using Fermi’s-

golden rule: 

2.5.1 Deformation Potential Interaction 

The deformation potential interaction arises from the local changes of the crystal potential that is 

caused by the displacement of the atoms due to an acoustic phonon. It follows that the divergence 

of the displacement, which is required to calculate the deformation potential, is given by: 

 𝛻 ⋅ 𝒖(𝒓) =  𝛻2Φ = −
𝜔2

𝑉𝑙
 Φ =  𝐴 𝑒−𝛼𝑡𝑙𝑦 𝑒𝑖(𝛽𝑅𝑧 − 𝜔𝑡) (2.26) 

Since: 𝑞 =  0 𝑖 ̂ + 𝛽𝑅𝑘̂  (q is effectively a 1-D vector as Rayleigh waves only propagate along z- 

direction); 𝒒 ⋅ 𝒓 = 𝛽𝑅𝑧 

Hence, 

 𝛻 ⋅ 𝒖(𝒓) =  𝐴 𝑒−𝛼𝑡𝑙𝑦 𝑒𝑖𝑞.𝑟𝑒𝑖(𝜔𝑡 ) =  𝑢(𝑦)𝑒𝑖𝑞.𝑟 (𝑑𝑟𝑜𝑝𝑝𝑖𝑛𝑔 𝑒𝑖(𝜔𝑡 )) (2.27) 

Now, 𝑈 = √
ℏ

2𝜌𝜔𝑆
 (𝑢(𝑦)𝑎𝑞  +  𝑐. 𝑐) 

Also, 

 𝐻𝑑𝑒𝑓  =  −𝐸𝑎  ∑𝛻.𝑼

𝑞

= −𝐸𝑎√
ℏ

2𝜌𝜔𝑆
  ∑𝛻. (𝑢(𝒚)𝑎𝑞  +  𝑐. 𝑐)

𝑞

 (2.28.1) 

Hence, 

 𝐻𝑑𝑒𝑓  =  −𝐸𝑎  ∑
𝜔2

𝑉𝑙
2

𝑞

√
ℏ

2𝜌𝜔𝑆
 𝑢(𝑦)(𝑎𝑞𝑒

𝑖𝒒.𝒓  +  𝑎−𝑞
† 𝑒−𝑖𝒒.𝒓) (2.28.2) 
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So that, 

 𝐻𝑑𝑒𝑓  =   −𝐶 ∑𝑢(𝑦)(𝑎𝑞𝑒
𝑖𝒒.𝒓  +  𝑎−𝑞

† 𝑒−𝑖𝒒.𝒓)

𝑞

 (2.28.3) 

where, 𝐶 = 𝐸𝑎
𝜔2

𝑉𝑙
2 √

ℏ

2𝜌𝜔𝑆
  and 𝑢(𝑦) = 𝐴𝑒−𝛼𝑡𝑙𝑦 . The absorption of a phonon corresponds to the 

transition,  |Nq⟩ →  ⟨Nq − 1|  and emission of a phonon corresponds to the transition  |Nq⟩ →

 ⟨Nq + 1|. 

Now, the scattering rate expression is given as: 

 1

𝜏
  =

𝑆

(2𝜋)2
∫𝑑2𝑞  

2𝜋

ℏ
|𝑀{𝑒,𝑎}(𝑞)|

2
𝛿(𝐸𝒌′ − 𝐸𝒌 ± ℏ𝜔) (2.29) 

 

2.5.2 Matrix Element Computation 

In order to evaluate the scattering rate expression we first compute matrix element |𝑀{𝑒,𝑎}|: 

|𝑀{𝑒,𝑎}| = ⟨𝑘′, 𝑁𝑞 +
1

2
±

1

2
|𝐻𝑑𝑒𝑓|𝑘, 𝑁𝑞 +

1

2
±

1

2
⟩ (2.30.1) 

|𝑀{𝑒,𝑎}| = 𝐴𝐶 ∫𝑑3𝑟 
𝑒−𝑘′∙𝑟+𝑘∙𝑟±𝑞∙𝑟

𝑆
(𝑦 − 𝑙)2𝑒−𝛼𝑡𝑙𝑦𝑒−𝑏(𝑦−𝑙) (𝑁𝑞 +

1

2
±

1

2
) (2.30.2) 

|𝑀{𝑒,𝑎}| = 𝐴𝐶 ∫𝑑2𝑟 
𝑒−𝑖𝑘′∙𝑟+𝑖𝑘∙𝑟±𝑖𝑞∙𝑟

𝑆
∫𝑑𝑦 (𝑦 − 𝑙)2𝑒−𝛼𝑡𝑙𝑦𝑒−𝑏(𝑦−𝑙) (𝑁𝑞 +

1

2
±

1

2
) 

 

(2.30.3) 

|𝑀{𝑒,𝑎}| = 𝐴𝐶 𝛿𝒌′−𝒌±𝒒𝐹 (𝑁𝑞 +
1

2
±

1

2
) (2.30.4) 

[Note: F is evaluated in appendix A.II as;  =
𝑏3

2
∫ (𝑦 − 𝑙)2𝑒−𝛼𝑡𝑙𝑦𝑒−𝑏(𝑦−𝑙) 𝑑𝑦

𝐿

𝑙
 ] 

Now, 
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 ∑|𝑀{𝑒,𝑎}|
2

=

𝑞

𝐴2𝐶2𝐹2 (𝑛𝑞 +
1

2
±

1

2
)

1

(2𝜋)2
∫𝑑2𝑞  𝛿𝒌′−𝒌±𝒒 (2.30.5) 

2.5.3 Scattering rate expression 

Since, Scattering rate is given by [1]: 

 
1

𝜏
=

2𝜋𝑆

ℏ
∑|𝑀{𝑒,𝑎}|

2
𝛿(𝐸𝒌′ − 𝐸𝒌 ± ℏ𝜔)

𝑞

 (2.31.1) 

Substituting the square of matrix element in above expression of scattering we get: 

1

𝜏
=

2𝜋𝑆

ℏ
𝐴2𝐶2𝐹2

1

(2𝜋)2
∫𝑑2𝑞   𝛿𝒌′−𝒌±𝒒𝛿(𝐸𝒌′ − 𝐸𝒌 ± ℏ𝜔) (𝑁𝑞 +

1

2
±

1

2
) 

So that, 

(2.31.2) 

1

𝜏
=

𝑆

2𝜋ℏ
𝐴2𝐶2𝐹2 ∫𝑑2𝑞  𝛿𝒌′−𝒌±𝒒𝛿(𝐸𝒌′ − 𝐸𝒌 ± ℏ𝜔) (𝑁𝑞 +

1

2
±

1

2
) (2.31.3) 

When above expression is simplified it becomes: 

 
1

𝜏
 =

𝐸𝑎
2𝜔3𝐴2

4𝜋𝜌𝑉𝑙
4 𝐹2 ∫𝑑2𝑞 𝛿𝒌′−𝒌±𝒒 𝛿(𝐸𝒌′ − 𝐸𝒌 ± ℏ𝜔) (𝑁𝑞 +

1

2
±

1

2
) (2.32) 

In the above integral the Kronecker delta function imposes the momentum conservation condition 

for electron-phonon interaction, whereas the Dirac delta function imposes the energy conservation. 

We proceed henceforth by simplifying the integrand for absorption and emission condition 

separately as follows: 

Case a: Condition for Absorption: The Kronecker delta in the above integrand is expressed below 

through the vector equation:   

𝛿𝑘′−𝑘−𝑞,0  =  {
1, 𝑖𝑓 𝑘′ = 𝑘 + 𝑞
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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We would like to point out that, the above vectors are contained in the x-z plane (azimuthal plane). 

Hence the incident phonon can be absorbed from any angle ranging from 0 𝑡𝑜 2𝜋 spanning the 

entire azimuthal plane 

If 𝑘′ = 𝑘 + 𝑞, we can draw the vector diagram for incident angle in ranges 0 ≤ 𝜙 ≤ 𝜋 and 𝜋 ≤

𝜙 ≤ 2𝜋 respectively (we are doing this because, the argument of Dirac-delta function in eq. (2.32) 

is in terms of magnitude of vectors 𝑘′𝑎𝑛𝑑 𝑘 so we need to find how does the vector equation 

implied by Kronecker delta holds true for the condition imposed by Dirac-delta function), we draw 

the vector diagrams as shown in Fig 2.4: 

             

        

        

 

Fig. 2.4. Momentum conservation vector diagram for phonon absorption when 0 ≤ 𝜙 ≤ 𝜋 

 

Applying Pythagoras theorem, we get: 

|𝒌′|2 = (|𝒌|  + |𝒒| 𝑐𝑜𝑠 𝜙)2 + (|𝒒| 𝑠𝑖𝑛 𝜙)2  

which is equivalent to, 𝑘′2 = 𝑘2 + 𝑞2 + 2𝑘𝑞 𝑐𝑜𝑠 𝜙       (2.33) 

Similarly, if 𝜋 ≤ 𝜙 ≤ 2𝜋, then the vector diagram becomes as shown in Fig. 2.5: 
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Fig. 2.5 Momentum conservation vector diagram for phonon absorption when 𝜋 ≤ 𝜙 ≤ 2𝜋 

 

Applying Pythagoras theorem, we get: 

|𝒌′|2 = (|𝒌|  − |𝒒| 𝑐𝑜𝑠 𝜙)2 + (|𝒒| 𝑠𝑖𝑛 𝜙)2  

which is equivalent to, 

𝑘′2 = 𝑘2 + 𝑞2 − 2𝑘𝑞 𝑐𝑜𝑠 𝜙  

Case b: Condition for Emission: 

The Kronecker delta function for case of emission is given as: 

𝛿𝒌′−𝒌+𝒒,𝟎  =  {
1, 𝑖𝑓 𝑘′ = 𝑘 − 𝑞
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Similar to the case of absorption, the electron can emit the phonon in any angle ranging from 

0 𝑡𝑜 2𝜋. We consider 0 ≤ 𝜙 ≤ 𝜋 and 𝜋 ≤ 𝜙 ≤ 2𝜋 separately as below: 

For 0 ≤ 𝜙 ≤ 𝜋 the vector diagram for phonon emission is shown in Fig.2.6. 

(2.34) 
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Fig. 2.6. Momentum conservation vector diagram for phonon emission when 0 ≤ 𝜙 ≤ 𝜋 

 |𝒌′|2 = (|𝒌|  − |𝒒| 𝑐𝑜𝑠 𝜙)2 + (|𝒒| 𝑠𝑖𝑛 𝜙)2  

which is equivalent to, 

𝑘′2 = 𝑘2 + 𝑞2 − 2𝑘𝑞 𝑐𝑜𝑠 𝜙  

whereas for, 𝜋 ≤ 𝜙 ≤ 2𝜋: the vector diagram for phonon emission is represented in Fig.7. 

 

Fig. 2.7. Momentum conservation vector diagram for phonon emission when 𝜋 ≤ 𝜙 ≤ 2𝜋 

   Applying Pythagoras theorem, we get: 

|𝒌′|2 = (|𝒌|  + |𝒒| 𝑐𝑜𝑠 𝜙)2 + (|𝒒| 𝑠𝑖𝑛 𝜙)2  

which is equivalent to, 

𝑘′2 = 𝑘2 + 𝑞2 + 2𝑘𝑞 𝑐𝑜𝑠 𝜙   

(2.35) 

(2.36) 
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Now, consider the Dirac delta function for case of parabolic band: 

𝛿(𝐸𝑘′ − 𝐸𝑘 ± ℏ𝜔𝑞) = 𝛿 (
ℏ2𝑘′2

2𝑚∗
 −

ℏ2𝑘2

2𝑚∗
± ℏ𝑉𝑅𝑞) 

In the above equation we have 𝑉𝑅 𝑞 = 𝜔. The upper “plus” sign corresponds to emission whereas 

the lower “minus” sign corresponds to absorption (we will adhere to this notation throughout this 

work)  

Now the argument of above Dirac delta function can be simplified using eqs.  2.33, 2.34, 2.35 and 

2.36 for emission and absorption for 0 ≤ 𝜙 ≤ 𝜋 and 𝜋 ≤ 𝜙 ≤ 2𝜋 respectively as below: 

For 0 ≤ 𝜙 ≤ 𝜋 

 
ℏ2𝑘′2

2𝑚∗
 −

ℏ2𝑘2

2𝑚∗
 =  

ℏ2

2𝑚∗
(𝑞2 ∓ 2𝑘𝑞 𝑐𝑜𝑠 𝜙) (2.37) 

and, for 𝜋 ≤ 𝜙 ≤ 2𝜋 

 
ℏ2𝑘′2

2𝑚∗
 −

ℏ2𝑘2

2𝑚∗
 =  

ℏ2

2𝑚∗
(𝑞2 ± 2𝑘𝑞 𝑐𝑜𝑠 𝜙) (2.38) 

Thus, the argument of Dirac delta function can be written as: 

 = 𝛿 (
ℏ2

2𝑚∗
(𝑞2 ∓ 2𝑘𝑞 𝑐𝑜𝑠 𝜙) ± ℏ𝑉𝑅𝑞) (2.39.1) 

 = 𝛿 (
ℏ2𝑞2

2𝑚∗
∓

2ℏ2𝑘𝑞 𝑐𝑜𝑠 𝜙

2𝑚∗
± ℏ𝑉𝑅𝑞) (2.39.2) 
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Similarly, for 𝜋 ≤ 𝜙 ≤ 2𝜋:  

 = 𝛿 (
ℏ2𝑞2

2𝑚∗
±

2ℏ2𝑘𝑞 𝑐𝑜𝑠 𝜙

2𝑚∗
± ℏ𝑉𝑅𝑞) (2.40) 

We know by the property of delta function that: 𝛿(𝛼𝑥) =
1

|𝛼|
𝛿(𝑥), thus applying this property 

above we obtain: 

 𝛿(𝐸𝑘′ − 𝐸𝑘 ± ℏ𝜔𝑞) =
𝑚∗

ℏ2𝑘𝑞
𝛿 ((

𝑞

2𝑘
±

𝑚∗𝑉𝑅

ℏ𝑘
) ∓ 𝑐𝑜𝑠 𝜙) (2.41) 

Similarly, for 𝜋 ≤ 𝜙 ≤ 2𝜋:  

 𝛿(𝐸𝑘′ − 𝐸𝑘 ± ℏ𝜔𝑞) =
𝑚∗

ℏ2𝑘𝑞
𝛿 ((

𝑞

2𝑘
±

𝑚∗𝑉𝑅

ℏ𝑘
) ± 𝑐𝑜𝑠 𝜙) (2.42) 

Now, defining limits of integration in Eq. 2.32 as below: 

∫𝑑2𝑞  = ∫ ∫ 𝑞 𝑑𝑞 𝑑𝜙

𝜙=2𝜋

𝜙=0

𝑞=𝑞𝑚𝑎𝑥

𝑞=𝑞𝑚𝑖𝑛

= ∫ ∫ 𝑞 𝑑𝑞 𝑑𝜙

𝜙=𝜋

𝜙=0

𝑞=𝑞𝑚𝑎𝑥

𝑞=𝑞𝑚𝑖𝑛

+ ∫ ∫ 𝑞 𝑑𝑞 𝑑𝜙

𝜙=2𝜋

𝜙=𝜋

𝑞=𝑞𝑚𝑎𝑥

𝑞=𝑞𝑚𝑖𝑛

 

Before proceeding further we need to determine 𝑞 = 𝑞𝑚𝑖𝑛 𝑎𝑛𝑑 𝑞 = 𝑞𝑚𝑎𝑥 in the above integral for 

0 ≤ 𝜙 ≤ 𝜋 𝑎𝑛𝑑 𝜋 ≤ 𝜙 ≤ 2𝜋 for emission and absorption respectively as discussed below. 

Case (i): Emission (0 ≤ 𝜙 ≤ 𝜋): Since, 𝐸𝒌′ − 𝐸𝒌 = −ℏ𝜔 

From Eq [3.37]:  
ℏ2𝑘′2

2𝑚∗  −
ℏ2𝑘2

2𝑚∗ =
ℏ2

2𝑚∗
(𝑞2 − 2𝑘𝑞 𝑐𝑜𝑠 𝜙) =  −ℏ𝑉𝑅𝑞 

 

where 

𝑐𝑜𝑠 𝜙 =  
𝑞

2𝑘
 +

𝑚∗𝑉𝑅

ℏ𝑘
 = 𝑓(𝑞) 

 

(2.43) 
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The above equation puts constraints on values that q can take for a given k (hence also on hole 

energy). Since, −1 ≤  𝑐𝑜𝑠 𝜙 ≤  1, the limits of q is decided by intersection of 𝑓(𝑞) 𝑎𝑛𝑑 𝑐𝑜𝑠 𝜙, as 

shown in graph in Fig. 2.8. 

 

Fig. 2.8. Limitations on phonon wavevector for Case (i) of emission from (0 ≤ 𝜙 ≤ 𝜋) 

As we see from graph in Fig. 2.8, there are two sub-cases (a) |
𝑚∗𝑉𝑅

ℏ𝑘
| >  1 and (b) |

𝑚∗𝑉𝑅

ℏ𝑘
| <  1. We 

would like to point that case (a) and (b) translates to those holes for carrier energy less or 

greater than 0.3242 meV (because for 𝑘 =
𝑚∗𝑉𝑅

ℏ
 the hole energy 

ℏ2𝑘2

2𝑚∗  =  
𝑚∗𝑉𝑅

2

2
 = 0.3242 meV). 

For case (a), from fig. 3.8 we observe that Eq. (2.43) has no solution whereas for case (b) 𝑞𝑚𝑖𝑛  =

0; 𝑞𝑚𝑎𝑥 is obtained for 𝑓(𝑞)  =  + 1 𝑎𝑛𝑑 we get: 𝑞𝑚𝑎𝑥  =  2𝑘 ( 1 −
𝑚∗𝑉𝑅

ℏ𝑘
). 

Case (ii): Emission (𝜋 ≤ 𝜙 ≤ 2𝜋) as shown in Fig. 2.9:  

 𝑐𝑜𝑠 𝜙 =  −
𝑞

2𝑘
 −

𝑚∗𝑉𝑅

ℏ𝑘
 = 𝑓(𝑞) (2.44) 
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Fig. 2.9 Limitations on phonon wavevector for Case (ii) of emission from (π ≤ ϕ ≤ 2π) 

For case (a) (hole energy < 0.3242 meV): No solution exists because no value of q satisfies 

equation (44). Hence, hole with energy > 0.3242 meV cannot emit a phonon for emission angle 

𝜋 ≤ 𝜙 ≤ 2𝜋. 

For case (b) (hole energy > 0.3242 meV): 𝑞𝑚𝑖𝑛  = 0 and 𝑞𝑚𝑎𝑥 is obtained for (𝑞)  =  − 1 𝑎𝑠 

𝑞𝑚𝑎𝑥  =  2𝑘 ( 1 −
𝑚∗𝑉𝑅

ℏ𝑘
). 

Case (iii): Absorption (0 ≤ 𝜙 ≤ 𝜋) is plotted in Fig 3.10 from following equation as: 

 𝑐𝑜𝑠 𝜙 =  −
𝑞

2𝑘
 +

𝑚∗𝑉𝑅

ℏ𝑘
 = 𝑓(𝑞) (2.45) 
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Fig. 2.10. Limitations on phonon wave vector for absorption – Case (iii) (0 ≤ 𝜙 ≤ 𝜋). 

For case (a) (hole energy < 0.3242 meV); 𝑞𝑚𝑖𝑛 is obtained for 𝑓(𝑞)  =  + 1, we get 𝑞𝑚𝑖𝑛  =

 2𝑘 (− 1 +
𝑚∗𝑉𝑅

ℏ𝑘
) ; 𝑞𝑚𝑎𝑥 is obtained for 𝑓(𝑞)  =  − 1, we get 𝑞𝑚𝑎𝑥  =  2𝑘 ( 1 +

𝑚∗𝑉𝑅

ℏ𝑘
). 

For case (b) (hole energy > 0.3242 meV); 𝑞𝑚𝑖𝑛 =  0 and  𝑞𝑚𝑎𝑥 is obtained for 𝑓(𝑞)  =  − 1, we 

get: 𝑞𝑚𝑎𝑥  =  2𝑘 ( 1 +
𝑚∗𝑉𝑅

ℏ𝑘
) 

Case (iv): Absorption (𝜋 ≤ 𝜙 ≤ 2𝜋): as presented in Fig. 2.11  

 𝑐𝑜𝑠 𝜙 =  
𝑞

2𝑘
 −

𝑚∗𝑉𝑅

ℏ𝑘
 = 𝑓(𝑞) (2.46) 
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Fig. 2.11.  Limitations on phonon wave vector for absorption – Case (iv) for Absorption (𝜋 ≤ 𝜙 ≤
2𝜋). 

 

For case (a) (hole energy < 0.3242 meV) 𝑞𝑚𝑖𝑛 is obtained for 𝑓(𝑞)  =  − 1, we get: 𝑞𝑚𝑖𝑛  =

 2𝑘 (− 1 +
𝑚∗𝑉𝑅

ℏ𝑘
) and 𝑞𝑚𝑎𝑥 is obtained for 𝑓(𝑞)  =  + 1, we get: 𝑞𝑚𝑎𝑥  =  2𝑘 ( 1 +

𝑚∗𝑉𝑅

ℏ𝑘
). 

For case (b) (hole energy > 0.3242 meV); 𝑞𝑚𝑖𝑛 =  0 and  𝑞𝑚𝑎𝑥 is obtained for 𝑓(𝑞)  =  + 1, we 

get: 𝑞𝑚𝑎𝑥  =  2𝑘 ( 1 +
𝑚∗𝑉𝑅

ℏ𝑘
). 

Hence substituting 𝑉𝑅 𝑞 = 𝜔  𝑎𝑛𝑑 𝑎𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝛿(−𝑥) = 𝛿(𝑥) in Eq. 32 and setting the limits for 

𝑞𝑚𝑖𝑛 and 𝑞𝑚𝑎𝑥 as evaluated above, we write the expressions for emission and absorption as 

follows: 

Emission: 

Case (a) (hole energy < 0.3242 meV): Emission cannot occur as has been pointed out above. 

Hence, we observe that the condition for emission is if the hole velocity exceeds the Rayleigh 

wave velocity. 
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Case (b) (for hole energy > 0.3242 meV) 

1

𝜏
 =

𝑚∗𝐸𝑎
2𝑉𝑅

3

4𝜋ℏ2𝑘𝜌𝑉𝑙
4 ∫ 𝐴1𝑞

3 𝑑𝑞

𝑞=2𝑘(1−
𝑚∗𝑉𝑅

ℏ𝑘
)

𝑞=0

 

× { ∫ 𝑑𝜙 𝛿 (𝑐𝑜𝑠 𝜙 − (
𝑞

2𝑘
+

𝑚∗𝑉𝑅

ℏ𝑘
))

𝜙=𝜋

𝜙=0

+ ∫ 𝑑𝜙 𝛿 (𝑐𝑜𝑠 𝜙 + (
𝑞

2𝑘
+

𝑚∗𝑉𝑅

ℏ𝑘
))

𝜙=2𝜋

𝜙=𝜋

} 

(2.47.1) 

1

𝜏
 =

𝑚∗𝐸𝑎
2𝑉𝑅

3

4𝜋ℏ2𝑘𝜌𝑉𝑙
4 ∫ 𝐴1𝑞

3 𝑑𝑞

𝑞=2𝑘(1−
𝑚∗𝑉𝑅

ℏ𝑘
)

𝑞=0

 

× {2 ∫ 𝑑𝜙 𝛿 (𝑐𝑜𝑠 𝜙 − (
𝑞

2𝑘
+

𝑚∗𝑉𝑅

ℏ𝑘
))

𝜙=𝜋 2⁄

𝜙=0

+ 2 ∫ 𝑑𝜙 𝛿 (𝑠𝑖𝑛 𝜙 − (
𝑞

2𝑘
+

𝑚∗𝑉𝑅

ℏ𝑘
))

𝜙=𝜋 2⁄

𝜙=0

} 

(2.47.2) 

Absorption: Case (a) (hole energy < 0.3242 meV)  

1

𝜏
 =

𝑚∗𝐸𝑎
2𝑉𝑅

3

4𝜋ℏ2𝑘𝜌𝑉𝑙
4 ∫ 𝐴1𝑞

3 𝑑𝑞

𝑞=2𝑘(1+
𝑚∗𝑉𝑅

ℏ𝑘
)

𝑞=2𝑘(−1+
𝑚∗𝑉𝑅

ℏ𝑘
)

 

× { ∫ 𝑑𝜙 𝛿 (𝑐𝑜𝑠 𝜙 + (
𝑞

2𝑘
−

𝑚∗𝑉𝑅

ℏ𝑘
))

𝜙=𝜋

𝜙=0

+ ∫ 𝑑𝜙 𝛿 (𝑐𝑜𝑠 𝜙 − (
𝑞

2𝑘
−

𝑚∗𝑉𝑅

ℏ𝑘
))

𝜙=2𝜋

𝜙=𝜋

} 

(2.48.1) 

1

𝜏
 =

𝑚∗𝐸𝑎
2𝑉𝑅

3

4𝜋ℏ2𝑘𝜌𝑉𝑙
4 ∫ 𝐴1𝑞

3 𝑑𝑞

𝑞=2𝑘(1+
𝑚∗𝑉𝑅

ℏ𝑘
)

𝑞=2𝑘(−1+
𝑚∗𝑉𝑅

ℏ𝑘
)

 
(2.48.2) 
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× {2 ∫ 𝑑𝜙 𝛿 (𝑐𝑜𝑠 𝜙 − (
𝑞

2𝑘
−

𝑚∗𝑉𝑅

ℏ𝑘
))

𝜙=𝜋 2⁄

𝜙=0

+ 2 ∫ 𝑑𝜙 𝛿 (𝑠𝑖𝑛 𝜙 − (
𝑞

2𝑘
−

𝑚∗𝑉𝑅

ℏ𝑘
))

𝜙=𝜋 2⁄

𝜙=0

} 

 

Case (b) (hole energy > 0.3242 meV) 

1

𝜏
 =

𝑚∗𝐸𝑎
2𝑉𝑅

3

4𝜋ℏ2𝑘𝜌𝑉𝑙
4 ∫ 𝐴1𝑞

3 𝑑𝑞

𝑞=2𝑘(1+
𝑚∗𝑉𝑅

ℏ𝑘
)

𝑞=0

 

× { ∫ 𝑑𝜙 𝛿 (𝑐𝑜𝑠 𝜙 + (
𝑞

2𝑘
−

𝑚∗𝑉𝑅

ℏ𝑘
))

𝜙=𝜋

𝜙=0

+ ∫ 𝑑𝜙 𝛿 (𝑐𝑜𝑠 𝜙 − (
𝑞

2𝑘
−

𝑚∗𝑉𝑅

ℏ𝑘
))

𝜙=2𝜋

𝜙=𝜋

} 

 

(2.49.1) 

1

𝜏
 =

𝑚∗𝐸𝑎
2𝑉𝑅

3

4𝜋ℏ2𝑘𝜌𝑉𝑙
4 ∫ 𝐴1𝑞

3 𝑑𝑞

𝑞=2𝑘(1+
𝑚∗𝑉𝑅

ℏ𝑘
)

𝑞=0

 

× {2 ∫ 𝑑𝜙 𝛿 (𝑐𝑜𝑠 𝜙 − (
𝑞

2𝑘
−

𝑚∗𝑉𝑅

ℏ𝑘
))

𝜙=𝜋 2⁄

𝜙=0

+ 2 ∫ 𝑑𝜙 𝛿 (𝑠𝑖𝑛 𝜙 − (
𝑞

2𝑘
−

𝑚∗𝑉𝑅

ℏ𝑘
))

𝜙=𝜋 2⁄

𝜙=0

} 

 

(2.49.2) 

To simplify the Dirac-delta function, we recall Eq. [8.14] from 𝑆𝑡𝑟𝑜𝑠𝑐𝑖𝑜 & 𝐷𝑢𝑡𝑡𝑎 [1] as follows: 

∫𝑔(𝜙) 𝛿(𝑓(𝜙) −  𝑎) 𝑑𝜙 =  
𝑔(𝜙)

|𝑑𝑓 𝑑𝜙⁄ |
|
𝜙=𝜙0

 

where 𝑓(𝜙0) =  𝑎 
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Evaluating the first integral, 

∫ 𝑑𝜙 𝛿 (𝑐𝑜𝑠 𝜙 − (
𝑞

2𝑘
±

𝑚∗𝑉𝑅

ℏ𝑘
))

𝜙=𝜋 2⁄

𝜙=0

 

On comparing the integral in Eq. 2.47 and 3.48 with Eq. [8.14] we observe: 

𝑔(𝜙)  = 1 

𝑓(𝜙)  =  𝑐𝑜𝑠 𝜙 

𝑎 = 𝑓(𝜙0) = 𝑐𝑜𝑠 𝜙0 = (
𝑞

2𝑘
±

𝑚∗𝑉𝑅

ℏ𝑘
) 

Hence, 

𝑑𝑓

𝑑𝜙
= −𝑠𝑖𝑛𝜙 

 |
𝑑𝑓

𝑑𝜙
|
𝜙=𝜙0

= |𝑠𝑖𝑛𝜙0| = √|1 − 𝑐𝑜𝑠2𝜙0|  

Hence, 

|
𝑑𝑓

𝑑𝜙
|
𝜙=𝜙0

= √|1 − (
𝑞

2𝑘
±

𝑚∗𝑉𝑅

ℏ𝑘
)
2

| 

𝑔(𝜙)

|𝑑𝑓 𝑑𝜙⁄ |
|
𝜙=𝜙0

= 
1

√|1 − (
𝑞
2𝑘

±
𝑚∗𝑉𝑅
ℏ𝑘

)
2

|

  

Similarly,   

∫ 𝑑𝜙 𝛿 (𝑠𝑖𝑛 𝜙 − (
𝑞

2𝑘
−

𝑚∗𝑉𝑅

ℏ𝑘
))

𝜙=𝜋 2⁄

𝜙=0

=
1

√|1 − (
𝑞
2𝑘

±
𝑚∗𝑉𝑅
ℏ𝑘

)
2

|
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Hence substituting in the above results for Dirac-delta function and as well as for                        

𝐴1 = 𝐴2𝐹2 (𝑁𝑞 +
1

2
±

1

2
) = 

𝐴2

𝑞

𝑏6

( 𝑛𝑞+𝑏 )6
𝑒−2𝑛𝑞𝑙 (𝑁𝑞 +

1

2
±

1

2
) (see appendix 2.II for simplification) 

we obtain following expressions as plotted in Fig. 2.12: 

Emission (for hole energy > 0.3242 meV):  

 
1

𝜏
 =

𝑚∗𝐸𝑎
2𝑉𝑅

3𝐴2

𝜋ℏ2𝑘𝜌𝑉𝑙
4 ∫  𝑑𝑞

𝑞=2𝑘(1−
𝑚∗𝑉𝑅

ℏ𝑘
)

𝑞=0

𝑏6𝑒−2𝛼𝑡𝑙𝑙

( 𝛼𝑡𝑙 + 𝑏 )6

𝑞2

√|1 − (
𝑞
2𝑘

+
𝑚∗𝑉𝑅
ℏ𝑘

)
2

|

(𝑁𝑞 + 1) (2.50) 

 

Absorption (for hole energy < 0.3242 meV): 

 

1

𝜏
 =

𝑚∗𝐸𝑎
2𝑉𝑅

3𝐴2

𝜋ℏ2𝑘𝜌𝑉𝑙
4 ∫  𝑑𝑞

𝑞=2𝑘(1+
𝑚∗𝑉𝑅

ℏ𝑘
)

𝑞=2𝑘(−1+
𝑚∗𝑉𝑅

ℏ𝑘
)

𝑏6𝑒−2𝛼𝑡𝑙𝑙

( 𝛼𝑡𝑙 + 𝑏 )6

𝑞2

√|1 − (
𝑞
2𝑘

−
𝑚∗𝑉𝑅

ℏ𝑘
)
2

|

(𝑁𝑞) (2.51) 

Absorption (for hole energy > 0.3242 meV):  

 

1

𝜏
 =

𝑚∗𝐸𝑎
2𝑉𝑅

3𝐴2

𝜋ℏ2𝑘𝜌𝑉𝑙
4 ∫  𝑑𝑞

𝑞=2𝑘(1+
𝑚∗𝑉𝑅

ℏ𝑘
)

𝑞=0

𝑏6𝑒−2𝛼𝑡𝑙𝑙

( 𝛼𝑡𝑙 + 𝑏 )6

𝑞2

√|1 − (
𝑞
2𝑘

−
𝑚∗𝑉𝑅

ℏ𝑘
)
2

|

(𝑁𝑞) (2.52) 
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Fig. 2.12. Emission and absorption scattering rates for 2DHG at 300 K - solid line represents 

emission and dashed line represents absorption - for 2DHG depth of 660 pm. 

 

These rates are nearly an order of magnitude smaller than the rates based on equipartition formula 

reported by Ridley et al., [35] for the case of a 3D system.  Our results are based on 2DHG 

scattering events when the acoustic phonons are those of the surface acoustic Rayleigh waves as 

opposed to earlier results that assume the acoustic phonons are bulk 3D acoustic phonons. The 2D 

mobilities calculated based on these Rayleigh waves using the following expression for the 

mobility of this 2D system is calculated as: 

𝜇 =
𝑒

𝑚

⟨𝐸𝑘𝜏𝑚⟩

〈𝐸𝑘〉
=

∫ 𝐸𝑘 𝑒𝑥𝑝(−𝐸𝑘/𝑘𝐵𝑇) 𝜏𝑚𝑑𝐸𝑘
∞

0

∫ 𝐸𝑘  𝑒𝑥𝑝(−𝐸𝑘/𝑘𝐵𝑇) 𝑑𝐸𝑘
∞

0

 = 2131.5 𝑐𝑚2 𝑉. 𝑠⁄  

whereas the mean free path of hole is given by: 

𝜏𝑚(𝐸𝑘) =
1

(
1

𝜏𝑒(𝐸𝑘)
+

1
𝜏𝑎(𝐸𝑘)

)
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Fig. 2.13 depicts the hole mobility due to hole—Rayleigh-wave scattering as a function of 

temperature with a comparison with corresponding mobility for bulk acoustic phonons as reported 

by Li et al. [27].  In calculating this mobility, the depth of the 2DHG ( 𝑦 ≈  2/𝑏 ) has been 

evaluated 

 
 

Fig. 2.13 Hole mobility due to hole—Rayleigh-wave scattering of this work (shown in solid line) 

compared with the mobility for hole-bulk acoustic phonon scattering (shown in dashed line) as 

reported in Ref. [27]. In our work the hole density dependence on temperature has been taken as 

reported in Ref [33] for the above temperature range. 

 

for the corresponding hole density as reported in Ref. 33 for the above temperature range has been 

used in these calculations. Fig. 2.13.  The mobility for the case of hole scattering from Rayleigh 

waves is seen to be approximately a factor of three larger than that based on hole scattering from 

bulk acoustic phonons.  As discussed in Li et al. [27], the mobilities due to interface roughness 

scattering and surface impurity scattering are lower than the mobility for acoustic phonon 

scattering for currently realizable roughness and impurity parameters.  Of course, for low level 

impurities and for lower levels of surface roughness, the dominant mobility-determining effect 

200 220 240 260 280 300 320 340 360 380 400

Temperature (K)

10
1

10
2

10
3

10
4

10
5

M
o

b
il

it
y

 c
m

2
 V

-1
 s

-1



 

47 

 

will be due to hole-acoustic phonon scattering and, as usual, carrier-phonon scattering sets the 

fundamental limit on mobility. 

 

2.6 CONCLUSIONS 

Herein, we have calculated the scattering rates for holes in the 2DHG that scatter from surface 

acoustic waves – Rayleigh waves – as opposed to bulk 3D acoustic phonons of previous treatments 

for hole scattering in diamond based FETs. It is found that the scattering rates for Rayleigh wave 

phonons are about an order smaller than the rates based on 3D acoustic phonons.  Moreover, the 

mobilities are found to be higher than those based on the theory for 3D acoustic phonons 

summarized by Ridley et al. [35].  These higher mobilities associated with the intrinsic acoustic 

phonon scattering process for Rayleigh waves as opposed to bulk acoustic phonons represent an 

unanticipated benefit of diamond-based devices with the 2DHG in the region where the acoustic 

phonons are Rayleigh waves instead of bulk acoustic phonons.  
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 Chapter 3 

 

PHONON-DOMINATED MOBILITIES FOR CARRIERS IN A 

DIAMOND FIELD EFFECT TRANSISTOR WITH A CBN 

OVERLAYER 

© 2021 IEEE. Reprinted, with permission, from Singh, Ramji, Michael A. Stroscio, and Mitra Dutta. 

"Phonon-Dominated Mobilities for Carriers in a Diamond Field Effect Transistor With a cBN Overlayer." IEEE 

Electron Device Letters 43, no. 1 (2021): 112-115. 
 

3.1 Introduction  

 

Diamond based field effect transistors (FETs) have attracted widespread attention due to the 

possibility of achieving high carrier mobilities of approximately 2500 cm2/V-sec for the holes in 

the two-dimensional hole gas formed near the surface of a diamond FET [36].  Recent studies of 

diamond-cBN structures [37,38] have suggested the possibility of producing a two-dimensional 

electron gas (2DEG) in nearly lattice matched diamond-cBN heterostructures.  Stimulated by the 

possibility of fabricating n-type FETs, we have modeled the dominant mobility-limiting carrier-

phonon scattering for electrons in the 2DEG formed in the diamond near the diamond-cBN 

heterojunction; in determining the dominant carrier-phonon limiting mobilities, it is essential to 

not only model the commonly considered scattering of carriers by acoustic phonons but also carrier 

scattering by remote polar phonons that originate from the polar cBN overlayer; indeed, it is well 

established that such remote polar – also referred to as interface phonons – may play an important 

role in determining the electrical and optical properties of heterojunction devices [28, 39-41]. We 

compute the effective mobility of 2DEG limited by carrier scattering with surface acoustic 
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phonons and remote polar phonons. We have used the conduction band offset Δ𝐸𝑐 =  1.7 𝑉 [38] 

at the interface.  

 

3.2 The Two Dimensional Electron Gas 

We use the 1D Schrödinger Poisson simulator [42,43] to simulate the heterostructure consisting 

of undoped cubic Boron Nitride (cBN) as the top overlayer over the undoped diamond substrate 

as shown in Fig. 1 below: 

 

 

 

 

 

 

 

 

 

Fig. 3.1 The model cBN/Diamond FET. The cBN/Diamond interface is contained in the xy plane. 

The gate metal layer (orange) with an area 𝑆 = 𝐿2 forms a Schottky contact with the cBN layer. 

The diamond substrate thickness is taken to be 100 nm for calculations. © 2021 IEEE. 

 

We find that for cBN thickness, 1.1 ≤ d ≤ 1.8 nm the ground state energy of the electron below 

Fermi level. For our analysis we take d = 1.2 nm. The Fig. 2 below shows the equilibrium band 

diagram of the cBN-diamond heterostructure.  
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Fig. 3.2 Band diagram for cBN slab on diamond. 

 

The electrons at the cBN/Diamond interface are confined by triangular potential well 

whose slope is modulated by the applied gate bias, 𝑉𝑔 (Fig. 3(a)). Presently, there is no 

experimental data available on the surface density of states and Fermi level pinning for cBN. For 

simplicity we have assumed a 0 eV Schottky barrier (Φ𝐵) at the gate metal/cBN interface, we 

would like to point out that the inclusion of Schottky barrier height will only change the threshold 

voltage (the minimum applied gate voltage required to produce 2DEG). 

 

For a total p bound states in the triangular well the volume density of electrons is given as: 

 𝑛(𝑧)  =  𝑘𝐵𝑇
𝑚∗

𝜋ℏ2
∑|𝜓𝑖(𝑧)|

2𝑙𝑜𝑔 (1 + 𝑒
𝐸𝐹−𝐸𝑖
𝑘𝐵𝑇 )

𝑝

𝑖 =1

 (3.1) 

where, 𝑚∗is the effective mass of electron, 𝐸𝑖 is the 𝑖𝑡ℎ energy eigen value of electron, T is the 

absolute temperature, 𝑘𝐵 is the Boltzmann’s constant and 𝐸𝐹 is Fermi level. The Fig. 3 shows the 

volume density as a function of position z.  
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Fig. 3.3 The volume charge distribution (in red) and the conduction band profile showing the 

confining potential in black at 0 V gate bias and room temperature. The dashed line shows the 

Fermi level. (The right hand side of y-axis shows the concentration and left hand side shows the 

potential.) © 2021 IEEE. 

 

 

For the present case we find 9 bound states out of which the ground state is 14.7 meV 

below the Fermi level. The first excited state is approximately 5.3 𝑘𝐵𝑇 above the Fermi level for 

which the probability of occupancy less than 0.5% and hence all the states except the ground states 

are empty. The electrons confined by the triangular well are thus confined to the ground state but 

behave as plane waves in the plane which contains the cBN/Diamond interface. The electrons in 

the ground state subband interact with phonons to scatter from a momentum eigenstate |𝒌⟩ to |𝒌′⟩ 

where, k is the wavevector in the plane containing the cBN/Diamond interface. The Fig. 3.4 below 

shows the plot of first 3 subbands. 
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Fig. 3.4. The three lowest subbands (𝐸 =  𝐸𝑛 +
ℏ2𝑘2

2𝑚∗ ) are shown depicting the 1st excited state 

to be approx. 5.3𝑘𝐵𝑇 above the fermi level. The sheet density at the interface is the result of 

contribution from ground state electrons only at room temperature.  

 

The 2DEG sheet density (𝑛𝑠) results from the contribution of ground state electrons only. The 

applied gate voltage (𝑉𝑔) modulates the slope of the triangular well causing the ground eigenstate 

to move further down below the Fermi level and the higher excited states move further upwards if 

the voltage is increased from 0V, accordingly the sheet density increases. The contribution of 

higher states to sheet density negligible. 

 We determine the thickness of 2DEG at a given gate bias as: 

 ∆𝑑 =  
𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑐ℎ𝑎𝑟𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑝𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑣𝑜𝑙𝑢𝑚𝑒 𝑐ℎ𝑎𝑟𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑛𝑝𝑒𝑎𝑘)
 (3.2) 
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3.3 Electron-Phonon interaction 

 

3.3.1 Description of remote polar phonon 

 

The presence of cBN/Diamond heterointerface causes localization of longitudinal optical (LO) 

phonons in cBN layer (medium 1) which appear as evanescent modes leaking into the underlying 

diamond layer (medium 2). These modes can be expressed as linear combination of symmetric and 

anti-symmetric components with the Fröhlich Hamiltonian as [1,5]: 

 𝐻𝐴 𝑆⁄  = ∑𝑔(𝜔, 𝑞)
1

√2𝑞
𝑒𝑖𝒒∙𝝆(𝑎𝑞 + 𝑎−𝑞

† )

𝑞

𝑒−𝑞(𝑧−
𝑑
2
)
 (3.3) 

 

where, 

𝑔(𝜔, 𝑞) =

       

[
4𝜋ℏ𝑒2𝑆−1

𝜀𝑑
2(𝜕 𝜕𝜔⁄ )(𝜀1(𝜔) 𝑓(𝑞𝑑 2⁄ ) + 𝜀2(𝜔))

]

1 2⁄

 

(

(3.4) 

 

and, 𝑓(𝑞𝑑 2⁄ ) ≡  𝑡𝑎𝑛ℎ (
𝑞𝑑

2
) or 𝑐𝑜𝑡ℎ (

𝑞𝑑

2
) for symmetric and anti-symmetric modes, respectively. 

Fig. 3.5 and 3.6 show the Fröhlich potential for symmetric and anti-symmetric case evaluated for 

vacuum/cBN/vacuum heterostructure. The highlighted orange curve specifically indicates the 

perturbing Fröhlich potential attributed to the evanescent mode leaking into the underlying 

diamond slab. 



 

54 

 

 

Fig. 3.5. Fröhlich potential for symmetric mode versus distance in cBN slab for qd = 3 is shown 

in blue line. The orange line shows the screened potential (for qd = 3) when diamond is placed in 

the region 𝑧 ≥  𝑑 2⁄ , this potential is responsible for interaction with 2D electron gas at cBN-

diamond interface. 

 

 
Fig. 3.6. Fröhlich potential for Anti-symmetric mode versus distance in cBN slab for qd = 3 is 

shown in blue line. The orange line shows the screened potential (for qd = 3) when diamond is 

placed in the region 𝑧 ≥  𝑑 2⁄ , this potential is responsible for interaction with 2D electron gas 

at cBN-diamond interface. 
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In (3.4), 𝑞 is the phonon wavevector, d is the cBN thickness, S = L2 is the area of 

heterointerface,𝜀𝑑is the static dielectric constant of diamond (𝜀𝑑= 5.7 [46]), ω is the phonon 

frequency obtained by the solution of the following secular equation for each mode: 

 𝜀1(𝜔) 𝑓(𝑞𝑑 2⁄ ) + 𝜀2(𝜔)  =  0 (3.5) 

The frequencies obtained from the solution of above equation (9) is plotted below in Fig. 7 as a 

function of the phonon wave vector (q), also known as dispersion relation: 

 

Fig. 3.7. Dispersion relation for cBN slab in vacuum for d = 1.2 nm. 

 

3.3.2 Remote polar phonon scattering 

To obtain the analytical expression of scattering rate of electrons in the ground state subband, 

we model the ground state wavefunction by Fang-Howard approximation [45,46]: 

 
𝜓(𝑟)  =  √

𝑏3

2
 (𝑧 − 𝑙) 𝑒−𝑏

2
(𝑧 − 𝑙) 𝑒−𝑖𝒌∙𝒓∥

√𝑆
 

(3.6) 
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where, ‘b’ is a variational parameter, 𝑏 =  √
48𝜋𝑚𝑒2𝑛𝑠

𝜀𝑑 𝜀0ℏ2

3
 [45], (𝑛𝑠 is numerically estimated as shown 

in Fig 3.8), m = 0.57𝑚0[20] the electron effective mass for diamond, 𝜀0 is the vacuum permittivity 

and  𝒓∥ is the position vector in the x-y plane and 𝑙 is the depth of 2DEG from the interface. 

 

 

Fig. 3.8 The red curve shows the sheet charge density predicted by gauss law 𝑛𝑠 =

 
𝜀0𝜀𝑐−𝐵𝑁(0)

𝑞(𝑑+Δ𝑑)
(𝑉𝑔 − 𝑉𝑡ℎ) for average 2DEG thickness of 0.80 nm (𝜀𝑐−𝐵𝑁(0)=7.1 [47]). ∆𝑑 attains a 

maximum value of 1.2 nm at -0.4 V and decreases to 0.36 nm at 1.4 V. The black curve shows the 

actual sheet density obtained by integrating volume charge density in (1) w.r.t z from z = 1.2nm 

to z = 6 nm. The threshold voltage 𝑉𝑡ℎ  =  Φ𝐵 − Δ𝐸𝑐  =  −1.7 𝑉. © 2021 IEEE. 

 

The scattering rate given by the Fermi’s golden rule [1]: 

 1

𝜏{𝑒,𝑎}
 =  

𝑆

(2𝜋)2
 ∫ 𝑑2𝒒 (

2𝜋

ℏ
) |𝑀(𝑞)|2𝛿(𝐸𝒌′ − 𝐸𝒌 ± ℏ𝜔) (3.7) 

In (3.7) the upper (plus) sign corresponds to emission and the lower (minus) sign 

corresponds to absorption (also the superscripts 𝑒 and 𝑎 corresponds to emission and absorption), 

we will adhere to this convention throughout the paper.  
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Here, |𝑀(𝑞)|is the electron-phonon coupling matrix element given as: 

 |𝑀(𝑞)|  =  ⟨𝒌′, 𝑁𝑞 ±
1

2
±

1

2
|𝐻𝐴 𝑆⁄ | 𝒌, 𝑁𝑞 ±

1

2
∓

1

2
⟩ (3.8) 

𝑤ℎ𝑒𝑟𝑒, Nq  =  1 (𝑒𝑥𝑝 (
ℏ𝜔

𝑘𝐵𝑇
) − 1)⁄  is the phonon occupation number. Accordingly, (3.7) 

becomes: 

 
1

𝜏𝑆,𝐴
{𝑒,𝑎}

 =  
𝑏6𝑆

2𝜋

𝑚

ℏ3𝑘
∫ 𝑑𝑞

𝑞 =𝑞2 

𝑞 =𝑞1

𝑔2(𝜔, 𝑞)

𝑞

1

√|1 − (
𝑞
2𝑘

±
𝑚𝜔
ℏ𝑘𝑞

)
2
|

 (3.9) 

where, the limits of integration are determined by: 

 −1 ≤ (
𝑞

2𝑘
±

𝑚𝜔

ℏ𝑘𝑞
) ≤  1 (3.10) 

In (3.10), 𝜔 is substituted from (3.5) to obtain the limits on 𝑞. 

Now, we express the scattering rate due to emission/absorption by symmetric and anti-

symmetric mode as below: 

 
1

𝜏{𝑒,𝑎}
 =  

1

𝜏𝑠𝑦𝑚
{𝑒,𝑎}

 +
1

𝜏𝐴𝑛𝑡𝑖−𝑠𝑦𝑚
{𝑒,𝑎}

 (3.11) 

and the total scattering rate is given by: 

 1

𝜏𝑡𝑜𝑡
 =  

1

𝜏𝑒
 +

1

𝜏𝑎
 (3.12) 

 

The emission/absorption rates are plotted in Fig. 3.3(a). The mobility of electron is expressed as:  

 𝜇𝑜𝑝 = 
𝑒 < 𝜏𝑇𝑜𝑡 >

𝑚∗
 (3.13) 
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3.3.3 Scattering by surface acoustic phonon 

 

The presence of interface modifies the bulk acoustic waves as Rayleigh waves, which are 

elliptically polarized waves localized near the interface with a velocity 𝑉𝑅 = 𝜔 𝑞⁄  along the 

interface, interacts with the carrier through deformation potential resulting from distortion of the 

lattice causing local changes in the crystal energy bands. The particle displacement in the second 

quantized form is given as [46]: 

 

 Û(𝐫) = √
ℏ

2ρωS
u(𝑟)(𝑎𝒒 + 𝑎−𝒒

† ) (3.14) 

 

The deformation- potential interaction Hamiltonian is given as:  

 

𝐻𝑑𝑒𝑓 = 𝐸𝑎 ∑𝛻 ⋅ 𝑈̂(𝒓)

𝑞

 

= −𝐸𝑎

𝜔2

𝑉𝑙
2 √

ℏ

2𝜌𝜔𝑆
∑𝑢(𝑧)(𝑎𝒒𝑒

𝑖𝒒∙𝒓∥ + 𝑎−𝒒
† 𝑒−𝑖𝒒∙𝒓∥)

𝑞

 

(3.15) 

 

where,  ∇. 𝑢(𝑟) = −(
𝜔2

𝑉𝑙
2) 𝑢(𝑧)𝑒𝑖𝒒∙𝒓∥; 𝑢(𝑧)  = 𝐴𝑒−𝛼𝑡𝑙𝑧; 𝒓∥ is the position vector in xy plane;  𝐴2 =

𝐴2

𝑞
= 

2𝑠2𝑛 (𝑛−𝑠)2⁄

𝑞(1+𝑠2𝑛 (𝑛−𝑠)⁄ )
, 𝑛 = √1 −

𝑉𝑅
2

𝑉𝑙
2 and 𝑠 = √1 −

𝑉𝑅
2

𝑉𝑠
2, 𝐸𝑎 is the electron deformation potential 

(8.7eV [20]), αtl is the imaginary part of the transverse wavevector of longitudinal acoustic wave, 

ρ is the density of diamond (3.51 gm/cm3[15]), 𝑉𝑙/𝑉𝑠 is the longitudinal/shear acoustic velocity 

(18.21x105/12.3x105 cm/sec [20]) and 𝑉𝑅= 11.21x105 cm/sec [20]. 
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The scattering rate is obtained from (3.7), (3.8) and (3.15) as below [46]:  

 

1

𝜏{𝑒,𝑎}
 =

𝑚∗𝐸𝑎
2𝑉𝑅

3𝐴2

𝜋ℏ2𝑘𝜌𝑉𝑙
4 ∫  𝑑𝑞

𝑞=𝑞2

𝑞=𝑞1

𝑏6𝑒−2𝛼𝑡𝑙𝑙

( 𝛼𝑡𝑙 + 𝑏 )6
 

×
𝑞2

√|1 − (
𝑞
2𝑘

±
𝑚∗𝑉𝑅

ℏ𝑘
)
2

|

(𝑁𝑞 +
1

2
±

1

2
) 

(3.16) 

 

 

where, 𝑙  is the depth of 2DEG from the interface. The limits of integration depends on threshold 

energy of electron [46], 𝐸𝑡ℎ =
𝑚∗𝑉𝑅

2

2
 = 0.2038 meV. The limits for emission (upper sign) and 

absorption (lower sign) respectively for electron energy 𝐸 ≥ 𝐸𝑡ℎ is: 

 𝑞1 =  0 and 𝑞2 = 2𝑘 (1 ∓
𝑚∗𝑉𝑅

ℏ𝑘
) (3.17) 

No emission occurs for electron energy, 𝐸 ≤ 𝐸𝑡ℎ, whereas the limits for absorption for is: 

 𝑞1 =  2𝑘 (−1 +
𝑚∗𝑉𝑅

ℏ𝑘
) and 𝑞2 = 2𝑘 (1 +

𝑚∗𝑉𝑅

ℏ𝑘
) (3.18) 

The effective mobility due to combined effect of remote polar phonon (𝜇𝑜𝑝) and surface acoustic 

phonon (𝜇𝑎𝑐)  can be represented as: 

 
1

𝜇0
=

1

𝜇𝑎𝑐
+

1

𝜇𝑜𝑝
 (3.19) 
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3.4 Discussion 

The absorption rate of surface acoustic phonon is about an order of magnitude higher than the 

remote polar phonon at low energies which gradually decreases and become comparable for 

energies greater than 0.4 eV (Fig 3.9(a)). 

 

The emission threshold for remote polar phonons is 0.154 eV, whereas, for surface acoustic 

phonons it is 0.2038 meV. The emission rate is on average 60 times higher for remote polar phonon 

than surface acoustic at 1.4V gate bias which increases to 80 times at 0 V showing higher 

sensitivity of acoustic phonon to electron sheet density. 

 

From (3.9) and (3.16), it is evident that for a given energy of electron the maximum contribution 

to scattering is obtained from long wavelength phonons, with this approximation we can estimate 

that, the scattering rate expression shows a quadratic ~ 𝑛𝑠
2 variation with the 2DEG sheet density. 

Hence, the mobility varies as ~ 𝑛𝑠
−2 as is evident form Fig 9(b) (inset).  
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Fig. 3.9(a) Phonon scattering rate: Emission rate for remote polar phonon (black) and surface 

acoustic phonon (red); Absorption rate for remote polar phonon (blue) and surface acoustic phonon 

(green) (b) Mobility versus temperature for remote polar phonon (blue) and surface acoustic 

phonon (green) [Inset fig: effective mobility 𝜇0 (in cm2/v-s) at various gate voltage at room 

temperature]. (The solid lines indicate gate voltage +1.4 V and dashed line indicates 0V). © 2021 

IEEE. 

 

 

3.5 Conclusion 

 

In this paper we investigated the conditions for the formation of a 2DEG at cBN-diamond interface 

and found that the surface density obtained is on the order of 1013 cm-2. At room temperature for 

the gate voltage increasing from 0 to +1.4V, the mean free time of electron due to remote polar 

phonon varies from 5.57 ps to 4.36 ps whereas for Rayleigh phonon it varies from 2.23 ps to 

1.61ps, consequently the mobility limited by remote polar phonon is approximately ~2.5 times 

higher than Rayleigh wave (Fig. 9(b)). This result is significant because it implies that the surface 

acoustic phonon (Rayleigh waves) is the dominant scattering mechanism and the existence of the 

remote polar phonon effect does not have a major detrimental effect of the mobility.  In particular, 

the surface acoustic phonon scattering dominates over remote polar phonon scattering for 

temperatures below 375 K. 
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Chapter 4 

ACOUSTIC PHONON DECAY THROUGH THREE-PHONON 

PROCESSES IN 2H-SIC 

 
[Submitted to the Journal of Electronic Materials, Springer] 

4.1 Introduction 

Silicon carbide (SiC) compound semiconductors have wide applications in high-

performance electronic and optoelectronic devices due to their excellent electronic properties 

including high in-plane thermal conductivity at 300K, and high breakdown electric field [48], [49]. 

Modern SiC high-power and high-frequency electronics operate at densities of 3.1 – 3.22 gm/cm3 

[50]. Quantities such as the spontaneous and piezoelectric polarization fields allow the SiC layer 

to form a high-density electron channel through which electrons can flow with a saturation velocity 

as high as 2 × 107 cm/s; this allows SiC-based devices to operate at high frequencies reaching RF 

and microwave ranges [51]. 

 

The wurtzite phase of SiC is considered both a complication and a potential feature to be 

utilized. Despite well-regarded efforts, many fundamental electronic and optoelectronic properties 

of wurtzite III–V compound semiconductors are not yet fully evaluated. The wurtzite structure of 

III–V semiconductors are closely related to those of the III–V zinc-blendes and can essentially 

coexist into crystal form during their phase transformation [52]. Similarly, as in the diamond and 

zinc-blende nanostructures, the wurtzite phase can be formed by considering two interpenetrating 

lattices. In this case, they are described as “hexagonal close packed lattices.” The nearest neighbors 

and next nearest neighbors are the same in the ideal wurtzite and zinc-blende structures. Figure 4.1 

depicts a sample primitive unit cell of wurtzite 2H-SiC. Si atoms are represented by large blue 

spheres, and C atoms by smaller brown spheres. 
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Several studies have been proposed to improve the thermal management of semiconductor devices 

by realizing SiC-based substrates, as well as diamond, with high thermal conductivity. Yet, thermal 

conductivity is found to decrease with the rise of temperature due to optical phonon scattering 

caused by free carriers from dopants [53]. As the thermal properties of the materials are sensitive 

to the growth conditions, many in the research community have investigated growth technologies 

for SiC such as Hiroki et al. (2014) where they modified the ID versus VDS behavior due to self-

heating effect in HEMT grown on SiC by substrate-transfer technique using hexagonal boron 

nitride [54]. 

An understanding of the electron–phonon and the phonon–phonon interaction must be 

incorporated to fully exploit the excellent properties of SiC materials. The propagation of acoustic 

phonons, particularly longitudinal acoustic phonons, is purported to be the prime mechanism for 

heat transport, so it is useful to understand the anharmonic decay of a given acoustic phonon mode 

into a final phonon mode that in general have varying velocities. 

 

4.2 Numerical calculation of the LA phonon decay rates 

Currently, thermal properties of SiC as well as their substrate interfaces are not well 

understood. Earlier in the semiconductor revolution, compared for silicon, the use of the 2H-SiC 

compound semiconductors in extensive commercial applications and high production volumes was 

limited; their structures were more difficult to grow than silicon and other SiC polytypes such as 

4H- and 6H-SiC since their crystals have many crystal defects [55]. 2H-SiC semiconductors also 

tend to be more fragile which limits their growth abilities [56]. 
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There are many theoretical studies that deal with the properties of 2H-SiC. Davydov (2004) [57] 

and Sarasamak et al. (2010) [58] have obtained the values of the second-order elastic constants for 

2H-SiC using first principles calculations. The third-order elastic constants for 2H-SiC were 

calculated by Jones et al. (2014) [59] which indicates that most of the work being done to study 

the properties of 2H-SiC is fairly recent. No experimental data are available for the 2H-SiC 

polytype. We consider here the anharmonic decay of LA phonons at T = 300K in an isotopically-

pure SiC crystal to facilitate observing the anharmonic decay. Thus, we will neglect any scattering 

mechanisms and just consider the spontaneous decay process. The dispersion relations (velocity 

polar plots) for the modes participating in these relevant LA decay channels are depicted in Figures 

4.2 and 4.3, these angular dependence of velocities are obtained as solutions of well-known 

Christoffel’s equation. Note that these are energy and momentum conserving decay channels [60]. 

For the decay rates of LA modes, we will make use of the formulas from our published work 

provided in Ref. [60]. 

 

To examine the anisotropy of the 2H-SiC wurtzite crystal, we provide here the elastic 

moduli that are the elements of the compliance tensor [57]: 

𝑆𝑖𝑗
2𝐻−𝑆𝑖𝐶 =

[
 
 
 
 
 

0.0024 −0.0006 −0.0004 0 0 0
−0.0006 0.0024 −0.0004 0 0 0
−0.0004 −0.0004 0.0022 0 0 0

0 0 0 0.0070 0 0
0 0 0 0 0.0070 0
0 0 0 0 0 0.0061]

 
 
 
 
 

 

 

We use 𝑆𝑖𝑗
2𝐻−𝑆𝑖𝐶 to obtain a graphical representation of the elastic properties drawn in different 

propagation directions as in Figure 4. It is possible from Figure 4 to classify the 2H-SiC crystal as 

quasi-isotropic with an anisotropy factor of 0.77 for the plane containing [001] direction. The 
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shape of the elastic modulus in the plane containing [100] and [010] direction is a circle (the XY 

plane - formed by 𝒂⃗⃗  and 𝒃⃗⃗  crystallographic axes), while it is slightly far from a circle in the plane 

containing [001] direction; thus, the elastic modulus of 2H-SiC exhibits isotropic or quasi-isotropic 

characteristics in the XY plane while it shows more apparent anisotropy in the plane containing 

[001] direction. 

 

We consider two classes of anharmonic decay channels in the XY plane and the plane 

normal to the XY plane which contains the c-axis. Since the Christoffel’s equation is symmetric 

with respect to arbitrary rotation about the z-axis, the phonon dispersion relation is identical in any 

arbitrary plane normal to XY plane [17], so we consider XZ plane as the plane normal to XY plane. 

We would like to point out that for the plane normal to XY plane, the Christoffel’s equation for a 

plane wave solution, 𝒖 = 𝐴 𝒆(𝒒) 𝑒𝑥𝑝[𝑖(𝜔𝑡 − 𝒒. 𝒙)] can be written as [61]: 

(𝑐𝑖𝑗𝑘𝑙𝑞̂𝑗𝑞̂𝑘 − 𝜌𝑣2𝛿𝑖,𝑙)𝑒𝑙 = 0 (4.1) 

where, 

𝑐𝑖𝑗𝑘𝑙 is the element of stiffness matrix, 𝜌 is the density of the material, 𝑞̂𝑗 and 𝑞̂𝑘 are the direction 

cosines, 𝑣 is the velocity of the phonon mode, 𝒖 is the particle displacement vector, 𝒆 is the 

polarization vector, 𝐴 is the amplitude of particle and 𝒙 is the position vector. The above equation 

is solved for all three modes shown in Fig. 4.3 one at a time to obtain the  correspondng polarization 

vector, 𝒆. We observe that, the in-plane polarized modes are quasi-longitudinal (shown in red) and 

quasi-shear (shown in blue) whereas the out-of-plane polarized mode (shown in green) is a pure 

shear mode. For the in-plane polarized modes we have computed the angle, 𝛼𝑝 between the wave 

propagation direction unit wave vector 𝒒 ̂ =  𝑞𝑥𝑖̂ + 𝑞𝑧𝑘̂ and the polarization vector, 𝒆 (as shown 

in Fig. 4.5): 
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𝛼𝑝(𝜃) =  𝑐𝑜𝑠−1(𝒒̂ ∙ 𝒆) (4.2) 

 

where, 𝜃 is the propagation direction. 

The polar plots of  𝛼𝑝(𝜃) vs. 𝜃 is shown in Figs. 4.6 (a) and (b) for the in-plane quasi-longitudinal 

and in-plane shear mode, respectively. It is seen that for in-plane quasi-longitudinal mode: 

 0° ≤  𝛼𝑝(𝜃) ≤ 5° with an average value of ≈2.7° and for the in-plane shear mode: 86.62° ≤

 𝛼𝑝(𝜃) ≤ 95° with an average value of ≈ 90.7°, so it is reasonable to assume: 𝒒̂ ∥ 𝒆 for the in-

plane quasi-longitudinal mode and 𝒒̂ ⊥ 𝒆 for the in-plane quasi-shear mode. Thus, we treat the 

modes as pure modes in the plane normal to XY plane.  

 

(1) Process 1: LA → LA + TA: 

This is a spontaneous decay process in which the original LA phonon splits into a lower-energy 

LA phonon and a TA phonon, such that all three phonons are polarized in the same plane. We 

consider the XY plane and the Normal plane separately as follows. 

 

(a)  XY plane: 

As shown in Fig. 4.5 , consider an LA phonon with wavevector 𝑞 which decays into an LA phonon 

with a wavevector 𝑞′ and a TA phonon with a wavevector 𝑞′′.  The phonon velocity is obtained 

by the solution of Christoffel’s equation [17], as plotted in Fig. 4.2, The phonon velocities are the 

same in all direction in the XY plane. For an LA (TA) phonon the wavevector is parallel (normal) 

to the velocity, 𝑣𝑙(𝑣𝑡). We define 𝑥 =  
𝑞′

𝑞
 , 𝜃 as the angle made by outgoing phonon 𝑞′ and 𝑞 and 

𝑟 =  
𝑣𝑙

𝑣𝑡
. 
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The momentum conservation relation: 𝒒 =  𝒒′ + 𝒒′′  yields: 

 𝑞′′ = 𝑞√(1 + 𝑥2) − 2𝑥 𝑐𝑜𝑠 𝜃 (4.3) 

Whereas, the energy conservation relation gives: 𝜔 = 𝜔′ + 𝜔′′ (4.4) 

 

After substituting 𝜔 = 𝑞𝑣𝑙;  𝜔
′ = 𝑞′𝑣𝑙 𝑎𝑛𝑑 𝜔′′ = 𝑞′′𝑣𝑡 in (3) and using (4), we get: 

𝑟(1 − 𝑥) − √(1 + 𝑥2) − 2𝑥 𝑐𝑜𝑠 𝜃 = 0 

 

𝑐𝑜𝑠𝜃 =
(1 + 𝑥2) − 𝑟2(1 − 𝑥)2

2𝑥
 

Since, −1 ≤ 𝑐𝑜𝑠𝜃 ≤ 1 

 

𝑟 − 1

𝑟 + 1
≤ 𝑥 ≤ 1 

 

The angle 𝜃 as obtained in (6) is plotted vs x in Fig. 4.8 (green). 

The decay rate Γ1 which describes the anharmonic interaction of process 1 is adapted from our 

work in Ref. 60 as follows: 

Γ1 =
ℏ𝜔5(𝑍)2

32𝜋𝜌3
∫ ∫𝑑𝑥

1

−1

1

𝑥0

 
𝑥3(1 − 𝑥2)2

 𝑣𝑙
7𝑣𝑡

2((1 + 𝑥2) − 2𝑥 𝑐𝑜𝑠 𝜃)
3 2⁄

  𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠2𝜃  

× 𝜹(𝑟(1 − 𝑥) − √(1 + 𝑥2) − 2𝑥 𝑐𝑜𝑠 𝜃)  𝑑(𝑐𝑜𝑠 𝜃) 

 

 

(4.5) 

(4.6) 

(4.7) 

(4.8) 
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Γ1 =
ℏ𝜔5

256𝜋𝜌3

(𝑟2 − 1)

𝑣𝑙
9

(𝑍)2 ∫
𝑑𝑥

2𝑥2

1

𝑥0

 (1 − 𝑥2)2   

× [(𝑥 + 1)2 − 𝑟2(1 − 𝑥)2] [(1 + 𝑥2) − 𝑟2(1 − 𝑥)2]2 

 

where, 𝑍 = 2𝛽 + 4𝛾 + 𝜆 + 3𝜇 , ℏ is the reduced Planck’s constant, 𝜌 is the density and 𝛽, 𝛾, 𝜆, 

and 𝜇 are called the Lame’s constants and are given by the expressions [62] 

 𝛽 = 1/35(𝐶111 + 4𝐶112 − 5𝐶123 + 19𝐶144 + 2𝐶166 − 12𝐶456) 

𝛾 = 1/35(𝐶111 − 3𝐶112 + 2𝐶123 − 9𝐶144 + 9𝐶166 + 9𝐶456) 

𝜆 = 1/5(𝐶11 + 4𝐶12 − 2𝐶44) 

𝜇 = 1/5(𝐶11 − 𝐶12 + 3𝐶44)  

 

(b) Plane normal to XY plane: 

We consider the parent phonon with wavevector 𝑞 incident along the Z-axis (which is coincident 

with the c-axis). The phonon velocities as a function of angle with the  z axis  are plotted in Fig.3. 

For this plane [17]: 

𝑟 (𝜃) =
𝑣𝑙

𝑣𝑡
   

 

= √
𝑐11𝑠𝑖𝑛

2𝜃 + 𝑐33𝑐𝑜𝑠2𝜃 + 𝑐44 + √[(𝑐11 − 𝑐44)𝑠𝑖𝑛
2𝜃 + (𝑐44 − 𝑐33)𝑐𝑜𝑠2𝜃]2 + [(𝑐13 + 𝑐44)𝑠𝑖𝑛2𝜃]2

c11sin
2θ + c33cos2θ + c44 − √[(c11 − c44)sin

2θ + (c44 − c33)cos2θ]2 + [(c13 + c44)sin2θ]2
 

 

Substituting 𝑟 (𝜃) in (4.5) and enforcing −1 ≤ 𝑐𝑜𝑠𝜃 ≤ 1 and 0 ≤ 𝑥 ≤ 1, we get a relation 

between 𝜃 and 𝑥 (say 𝜃 =  𝜃0(𝑥)), which is plotted in Fig. 4.9 (green), we use this relation to 

numerically solve (4.8) , which simplifies as:  

(4.9

) 

(4.10) 

(4.11) 
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 Γ1 =
ℏ𝜔5(𝑍)2

32𝜋𝜌3
{ ∫𝑑𝑥

1

𝑥0

 
𝐺𝑝1(𝑥, 𝜃0(𝑥))

𝑣𝑙
7(𝜃0(𝑥))𝑣𝑡

2(𝜃0(𝑥))|𝑓𝑝1
′ (𝜃0(𝑥))|

} (4.12) 

where, 

 𝐺𝑝1(𝑥, 𝜃) =  
𝑥3(1 − 𝑥2)2

 𝑣𝑙
7(𝜃)𝑣𝑡

2(𝜃)((1 + 𝑥2) − 2𝑥 𝑐𝑜𝑠 𝜃)
3 2⁄

  𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠2𝜃  (4.13) 

and, 

 𝑓𝑝1
′ (𝜽) =  

𝑑

𝑑𝑐𝑜𝑠 𝜃
(𝑟(𝜃)(1 − 𝑥) − √(1 + 𝑥2) − 2𝑥 𝑐𝑜𝑠 𝜃) (14.14) 

 

(2) Process 2: LA → TA + TA: 

The parent LA phonon in process 2 decays in two TA phonons, such that (i) Polarization of all 

three phonons are in the same plane (𝛤2
𝑎) or (ii) one of the TA phonon is polarized perpendicular 

(𝛤2
𝑏) to the plane formed by parent LA phonon and the other daughter TA phonon. 

 

(a) (i) 𝛤2
𝑎 in XY plane: 

For this case, both 𝑞′ and 𝑞′′ are in-plane TA phonons, such that: 𝜔′ = 𝑞′ 𝑣𝑡 and 𝜔′′ = 𝑞′′𝑣𝑡 , 

where 𝑣𝑡 is the in-plane TA phonon velocity as shown in Fig. 4.3. For this case, the energy 

conservation relation as in (4.4), now yield: 

 (𝑟 − 𝑥) − √(1 + 𝑥2) − 2𝑥 𝑐𝑜𝑠 𝜃 = 0 (4.15) 

 

Thus, 
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 𝑐𝑜𝑠 𝜃  =  
2𝑥𝑟 + (1 − 𝑟2)

2𝑥
 (4.16) 

From above, we obtain: 

 

𝑟 − 1

2
≤ 𝑥 ≤

𝑟 + 1

2
 

(In the present case, since 
𝑟+1

2
 > 1 , so we set the upper limit to 1) 

(4.17) 

Now, the scattering rate expression is given by [60]: 

 Γa
(2)

 =
𝜋ℏ

8𝜌3𝑉𝜔

𝑉𝑞3

4𝜋2
∫ ∫𝑑𝑥

1

−1

𝑥2

𝑥1

 𝑥2 𝑑(𝑐𝑜𝑠 𝜃) [
𝑀(𝑎)

2

𝜔′𝜔′′
] 𝛿(𝜔 − 𝜔′ − 𝜔′′) (4.18) 

Where, 

 𝑀(𝑎)  =  
𝑞𝑞′

𝑞′′
{[𝛽 + 𝜆 + 2(𝛾 + 𝜇)](𝑞′ − 𝑞𝑐𝑜𝑠 𝜃)2 − (𝛽 + 2𝛾 + 𝜇) 𝑞2 𝑠𝑖𝑛2𝜃} (4.19) 

Hence, 

 𝑀(𝑎)
2 =

𝑞6𝑥2

(1 + 𝑥2 − 2𝑥 𝑐𝑜𝑠 𝜃)
(𝐶1(𝑥 − 𝑐𝑜𝑠 𝜃)2 − 𝐶2 𝑠𝑖𝑛

2𝜃)2 (4.20) 

where,   

 𝐶1 = [𝛽 + 𝜆 + 2(𝛾 + 𝜇)] and 𝐶2 = (𝛽 + 2𝛾 + 𝜇) (4.21) 

Thus, 

 

 

Γa
(2)

 =
ℏ𝜔5

32𝜋𝜌3(𝑣𝑙
2𝑣𝑡)

3
∫ ∫𝑑𝑥

1

−1

𝑥2

𝑥1

 
𝑥3(𝐶1(𝑥 − 𝑐𝑜𝑠 𝜃)2 − 𝐶2 𝑠𝑖𝑛

2𝜃)2

(1 + 𝑥2 − 2𝑥 𝑐𝑜𝑠 𝜃)3 2⁄
 

×  𝜹 ((𝑟 − 𝑥) − √(1 + 𝑥2) − 2𝑥 𝑐𝑜𝑠 𝜃) 𝑑(𝑐𝑜𝑠 𝜃) 

(4.22) 
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The above equation simplifies as below: 

 

𝛤𝑎
(2)

 =
ℏ𝜔5

32𝜋𝜌3(𝑣𝑙
2𝑣𝑡)

3
∫ ∫𝑑𝑥

1

−1

𝑥2

𝑥1

 
1

16𝑥2(𝑟 − 𝑥)2
 

× {𝐶1(2𝑥2 − 2𝑥𝛿 + (𝑟2 − 1))
2
+ 𝐶2(𝑟

2 − 1)((2𝑥 − 𝑟)2 − 1)}
2

 

 

 

(a) (ii) 𝛤2
𝑎 in plane normal to XY plane (plane containing c-axis): 

Using the angular variation of velocity in this plane is shown in Fig. 4.3, the numerical solution of 

the energy conservation relation (4.4) yields the relation between angle 𝜃 and 𝑥 (say 𝜃 =  𝜃1(𝑥)), 

which is plotted in Fig. 4.9 (in black), using this relation we simplify the scattering rate expression 

in (4.22) as follows: 

 𝛤𝑎
(2)

=
ℏ𝜔5(𝑍)2

32𝜋𝜌3
{ ∫𝑑𝑥

1

𝑥0

 
𝐺𝑝2(𝑥, 𝜃1(𝑥))

𝑣𝑙
6(𝜃1(𝑥))𝑣𝑡

3(𝜃1(𝑥))|𝑓𝑝2
′ (𝜃1(𝑥))|

} (4.24) 

where, 

 𝐺𝑝2(𝑥, 𝜃) =  
𝑥3(𝐶1(𝑥 − 𝑐𝑜𝑠 𝜃)2 − 𝐶2 𝑠𝑖𝑛

2𝜃)2

(1 + 𝑥2 − 2𝑥 𝑐𝑜𝑠 𝜃)3 2⁄
 (4.25) 

and, 

 𝑓𝑝2
′ (𝜽) =  

𝑑

𝑑𝑐𝑜𝑠 𝜃
((𝑟(𝜃) − 𝑥) − √(1 + 𝑥2) − 2𝑥 𝑐𝑜𝑠 𝜃) (4.26) 

 

(b) (i) 𝛤2
𝑏 in XY plane: 

(4.23) 
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It can be seen from Fig. 3, the in-plane TA phonon velocity 𝑣𝑡1 = 
𝜔′

𝑞′  is different from the out-of-

plane velocity 𝑣𝑡2 = 
𝜔′′

𝑞′′  .   We have labelled in-plane TA phonon velocity as 𝑣𝑡1 ,it is same as 

𝑣𝑡used in previous paragraphs.  We define the ratio of out-of-plane TA phonon velocity and in-

plane TA phonon velocity as 𝑟1, which is given as: 

 𝑟1 =
𝑣𝑡2

𝑣𝑡1

 (4.27) 

 

Hence, from the energy conservation relation (4.4), we get: 

 (𝑟 − 𝑥) − 𝑟1√(1 + 𝑥2) − 2𝑥 𝑐𝑜𝑠 𝜃 = 0 (4.28) 

 

Thus, 

 cos 𝜃 =  
1

2𝑥
{1 + 𝑥2 −

(𝑟 − 𝑥)2

𝑟1
} (4.29) 

 

Now, enforcing the condition : −1 ≤ 𝑐𝑜𝑠𝜃 ≤ 1, we find the limits on x as follows: 

 𝑥0 ≤ 𝑥 ≤ 1 (4.30) 

where, 

 𝑥0 = 
−(1 + 𝑟2𝑟3) + √(1 + 𝑟2𝑟3)

2 − (1 − 𝑟2
2)(1 − 𝑟3

2)

(1 − 𝑟3
2)

 
(4.31) 

 𝑟2 = 
𝑣𝑙

𝑣𝑡2
 𝑎𝑛𝑑 𝑟3 =

𝑣𝑡1

𝑣𝑡2

 

(

(4.32) 

 

The general expression of scattering rate through process 2(b) channel is given by [60]: 
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 Γb
(2)

 =
𝜋ℏ

8𝜌3𝑉𝜔

𝑉𝑞3

4𝜋2
∫ ∫𝑑𝑥

1

−1

𝑥2

𝑥1

 𝑥2 𝑑(𝑐𝑜𝑠 𝜃) [
𝑀(𝑏)

2

𝜔′𝜔′′
] 𝛿(𝜔 − 𝜔′ − 𝜔′′) (4.33) 

where, 

 𝑀(𝑏)  =  𝑞𝑞′[(𝛽 + 𝜆)(𝑞 𝑐𝑜𝑠 𝜃 − 𝑞′) + 2(𝛾 + 𝜇)(𝑞 − 𝑞′ 𝑐𝑜𝑠 𝜃) 𝑐𝑜𝑠 𝜃] (4.34) 

So that, 

 𝑀(𝑏)
2 = 𝑞6𝑥2[𝐶3(𝑐𝑜𝑠 𝜃 −  𝑥) + 𝐶4(1 −  𝑥 𝑐𝑜𝑠 𝜃) 𝑐𝑜𝑠 𝜃]2 (4.35) 

where, 

 𝐶3  =  (𝛽 + 𝜆) and 𝐶4  =  2(𝛾 + 𝜇) (4.36) 

 

Thus, 

𝛤𝑏
(2)

 =
ℏ𝜔5

32𝜋𝜌3𝑣𝑙
6𝑣𝑡2

2 𝑣𝑡1

∫ ∫𝑑𝑥

1

−1

𝑥2

𝑥1

 
𝑥3[𝐶3(𝑐𝑜𝑠 𝜃 −  𝑥) + 𝐶4(1 −  𝑥 𝑐𝑜𝑠 𝜃) 𝑐𝑜𝑠 𝜃]2

(1 + 𝑥2 − 2𝑥 𝑐𝑜𝑠 𝜃)1 2⁄
 

× 𝛅(√(1 + 𝑥2) − 2𝑥 𝑐𝑜𝑠 𝜃 − (𝑟2 − 𝑟3𝑥)) d(cos θ) 

 

which simplifies as: 

𝛤𝑏
(2)

 =
ℏ𝜔5

32𝜋𝜌3𝑣𝑙
6𝑣𝑡2

2 𝑣𝑡1

∫ 𝑑𝑥

𝑥2

𝑥1

𝑥2  
|(𝑟2 − 𝑟3𝑥)|

(𝑟2 − 𝑟3𝑥)
 

× [𝐶3 (
(1 − 𝑥2) − (𝑟2 − 𝑟3𝑥)2

2𝑥
) + 𝐶4 (

(1 − 𝑥2) + (𝑟2 − 𝑟3𝑥)2

2
)(

(1 + 𝑥2) − (𝑟2 − 𝑟3𝑥)2

2𝑥
)]

2

 

 

 

(𝑏)(𝑖𝑖) 𝛤2
𝑏 in plane normal to XY plane: 

(4.37) 

(4.38) 
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The scattering rate expression in (4.33) can also be alternately simplified as follows: 

Γb
(2)

 =
ℏω5

32πρ3
∫ ∫dx

1

−1

x2

x1

 
x3[C3(cos θ −  x) + C4(1 −  x cos θ) cos θ]2

𝑣𝑙
6𝑣𝑡1

2 𝑣𝑡2
(1 + x2 − 2x cos θ)1 2⁄

                           (4.39) 

× 𝛅(𝑟(𝜃) − 𝑥 − 𝑟1(𝜃)√(1 + 𝑥2) − 2𝑥 𝑐𝑜𝑠 𝜃) d(cos θ) 

In (4.39) the ratio of out-of-plane TA phonon and in-plane TA phonon velocity [61]:  

𝑟1(𝜃) =
𝑣𝑡2

𝑣𝑡1

                                                                                                                                     (4.40) 

= √
2(C66sin

2θ + C44cos2θ)

c11sin
2θ + c33cos2θ + c44 − √[(c11 − c44)sin

2θ + (c44 − c33)cos2θ]2 + [(c13 + c44)sin2θ]2
 

To solve (4.39), we find the numerical solution to the energy conservation relation as in (4.4) 

which yields the relation between angle 𝜃 and 𝑥 (say 𝜃 =  𝜃2(𝑥)), which is plotted in Fig 4.9 (in 

red), using this relation we simplify (4.39) as: 

 𝛤 =
ℏ𝜔5(𝑍)2

32𝜋𝜌3
{ ∫𝑑𝑥

1

𝑥0

 
𝐺𝑝3(𝑥, 𝜃2(𝑥))

𝑣𝑙
6(𝜃2(𝑥))𝑣𝑡1

2(𝜃2(𝑥))𝑣𝑡2
(𝜃2(𝑥))|𝑓𝑝3

′ (𝜃2(𝑥))|
} (4.41) 

where, 

 𝐺𝑝3(𝑥, 𝜃) =  
x3[C3(cos θ −  x) + C4(1 −  x cos θ) cos θ]2

(1 + x2 − 2x cos θ)1 2⁄
 (4.42) 

and, 

 𝑓𝑝3
′ (𝜽) =  

𝑑

𝑑𝑐𝑜𝑠 𝜃
(𝑟(𝜃) − 𝑥 − 𝑟1(𝜃)√(1 + 𝑥2) − 2𝑥 𝑐𝑜𝑠 𝜃) (4.43) 

The total decay rate for process 2 is: Γ2 = 𝛤2
𝑎 + 𝛤2

𝑏, we discuss the results in the following section. 
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Table 4.I  Second- and third-order elastic constants of 2H-SiC in GPa. 

𝑪𝒊𝒋/𝑪𝒊𝒋𝒌 Jones et al. [59] 

𝑪𝟏𝟏 493 

𝑪𝟏𝟐 187 

𝑪𝟒𝟒 137 

𝑪𝟏𝟏𝟏 −2676 

𝑪𝟏𝟏𝟐 −1040 

𝑪𝟏𝟐𝟑 −1199 

𝑪𝟏𝟒𝟒 −97 

𝑪𝟏𝟓𝟓 −16 

𝑪𝟒𝟓𝟔 40.5 

𝑪𝟐𝟐𝟐 −2086 

𝑪𝟏𝟐𝟐 −1630 

𝑪𝟏𝟔𝟔 33.5 

 

We have used the third-order elastic constants of Ref. 59 to calculate the phonon decay rates. 𝐶122, 

𝐶166 and 𝐶456 are obtained using the expressions in Ref. 63: 

𝐶122 = 𝐶111 + 𝐶112 − 𝐶222, 

𝐶166 = 1/4(3𝐶222 − 2𝐶111 − 𝐶112) and  

𝐶456 = 1/2(𝐶155 − 𝐶144), respectively. 
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Table 4.II Parameters used in the present decay rates calculations. 

 
2H-SiC 

𝝀 (𝟏𝟎𝟏𝟏𝑵/𝒎𝟐) 1.934 

𝝁 (𝟏𝟎𝟏𝟏𝑵/𝒎𝟐) 1.434 

𝜷 (𝟏𝟎𝟏𝟏𝑵/𝒎𝟐) −0.886 

𝜸 (𝟏𝟎𝟏𝟏𝑵/𝒎𝟐) −0.1185 

𝝆 (𝟏𝟎𝟑𝒌𝒈/𝒎𝟑) 3.21 

 

4.3 Discussion 

We built this work upon the important fundamentals of electron-phonon and phonon-phonon 

interactions which were conveyed by Stroscio and Dutta (2001) [1]. With the SiC advanced 

technology that allows us to build state-of-the-art systems, by exploring our decay analysis, we 

now have the power through quantum confinement to build and engineer low-dimensional systems 

that can exhibit regulated heat conduction in FETs [64] and improved performances of phonon–

phonon interactions [65].  

Figure 8 and Figure 9 shows the calculated decay rates in XY plane and plane normal to 

XY plane respectively, for process 1 (red) and process 2 (blue) by virtue of the presence of elastic 

anisotropy. For XY plane, it is seen that the decay rate for process 2 increases from 1.6 × 103 s-1 

at 1 THz to 5.1 × 106 s-1 at 5 THz encompassing 68% of the total decay rate. The rate for process 

1 varies from 0.8 × 103 s-1 at 1 THz to 2.4 × 106 s-1 at 5 THz making 32% of the total decay rate. 
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The branching ratios essentially remain similar throughout the frequency regions. It is observed 

that, process 2 is shown to dominate over process 1 by a factor of ~2.13, which also reflects the 

difference in magnitudes of the density of states of processes 1 and 2. These aspects of our results 

are in agreement with previous estimations notably Klemens’ [66] and our work in Ref. 60. 

However, for the plane normal to XY plane as shown in Fig. 9 , it is seen that the decay rate for 

process 1 increases from 0.8 × 103 s-1 at 1 THz to 2.4 × 106 s-1 at 5 THz encompassing 56% of the 

total decay rate, whereas, the rate for process 2 varies from 0.6 × 103 s-1 at 1 THz to 1.9 × 106 s-1 

at 5 THz making 44% of the total decay rate. It is hence, observed that process 1 dominates over 

process 2 by a factor of ~ 1.28, this is in clear contrast to XY plane. This indicates that 2H-SiC has 

higher thermal conductivity along the c-axis. It is seen that the decay rate for process 1 is the same 

in XY plane and the plane normal to the XY plane, but, process 2 decay rate in the XY plane is  ~ 

2.7 times higher than in the plane normal to XY plane. Fig 10 and Fig 11 show the process 2 , 

process 2(a) and (b) decay rates for the XY plane and normal to the XY plane, respectively. We 

observe that, for the XY plane the decay rate for process 2(b) dominates 2(a) by a factor of ~ 1.92; 

also, for the plane normal to XY plane the decay rate for process 2(b) dominates 2(a) by a factor 

of ~ 1.29. It is the higher process 2 decay rate in XY plane than the plane normal to XY plane 

which increases the overall decay rate in the XY plane.    
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Table 4.III. Lifetimes of LA modes in 2H-SiC at 1, 3, and 5 THz. 

Frequency (THz) 𝝉𝑻(𝝁𝒔) 

(XY plane) 

𝝉𝑻(𝝁𝒔) 

(normal to XY plane) 

1 419.88 731.58 

3 1.72 3.01 

5 0.134 0.23 

 

4.4 Conclusion 

The decay of longitudinal acoustic phonons into two lower-energy phonons is modeled based on 

the anharmonic terms in the nonlinear elasticity theory for SiC. In this paper, we have presented 

an estimation of spontaneous splitting of the longitudinal acoustic (LA) modes and the rates of the 

decay duly incorporating the variation in velocity in different propagation direction and the 

mechanisms by which it occurs as they are of primal importance to the development of next 

generation SiC devices. Evidently, the lifetime of the acoustic phonons is over an order of 

magnitude longer than the characteristic emission time. 
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Figures 

 

Fig. 4.1. Schematic visualization of a 2H-SiC primitive cell.   
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Fig. 4.2. Velocity (ms-1) polar plots (dispersion relation) of bulk acoustic phonons in 2H-SiC in 

XY plane 

 

Fig. 4.3. Velocity (ms-1)  polar plots (dispersion relation) of bulk acoustic phonons in 2H-SiC in 

plane normal to XY plane (plane containing c-axis) 

 



 

81 

 

 

Fig. 4.4. Young’s modulus of 2H-SiC wurtzite crystal in GPa. The illustration shows the predicted 

change in Young’s modulus in the directions [100], [010], and [001]. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5 Orientation of the polarization vector with respect to propagation direction in the plane 

normal to XY plane (figure not drawn to scale) 
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Fig. 4.6 Variation of angle 𝛼𝑝 between the polarization vector and the propagation direction wave 

vector  for the in-plane quasi-longitudinal and in-plane quasi-shear mode respectively in the XZ 

plane.    

 

          

           

          

    

 

Fig. 4.7 The parent LA phonon with wavevector 𝒒 decays into two daughter phonons with 

wavevector 𝒒′ and 𝒒′′.  For Process 1:  (𝒒)LA → (𝒒′)LA + (𝒒′′)TA, whereas for Process 

2: (𝒒)LA → (𝒒′)𝑇A + (𝒒′′)TA.         
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𝒒′ 
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Fig. 4.8. 𝜃 (angle between 𝑞′ and 𝑞) vs ratio of daughter phonon 𝑞′ and parent phonon wavevector 

𝑞 in XY plane. 
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Fig. 4.9. 𝜃 (angle between 𝑞′ and 𝑞) vs ratio of daughter phonon 𝑞′ and parent phonon wavevector 

𝑞 in plane normal to XY plane   

 

 

Fig 4.10. Process 1 and 2: LA phonon decay rate in XY plane for various frequencies 
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Fig 4.11. Process 1 and 2: LA phonon decay rate in plane normal to XY plane (plane containg the 

c-axis) for various frequencies 

 

Fig 4.12. Process 2(a) and 2(b) alongwith total process 2 rate: LA phonon decay rate in XY plane 

for various frequencies  
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Fig 4.13. Process 2(a) and 2(b) alongwith total process 2 rate: LA phonon decay rate in plane 

normal to XY plane for various frequencies  
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Chapter 5 
 

THORNBER-FEYNMAN CARRIER—OPTICAL-PHONON 

SCATTERING RATES 

IN WURTZITE CRYSTALS 

 
This is the Accepted Manuscript version of an article accepted for publication in Journal of Physics: condensed 

matter, IOP.  IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript 

or any version derived from it.  The Version of Record is available online at  https://doi.org/10.1088/1361-

648X/abb518. 

 

5.1 Introduction 

Recent advantages in semiconductor optoelectronics [67] and electronics [68] based upon 

wide bandgap materials have spurred substantial interest in the basic properties of wurtzite 

crystals.  In addition to AlN- and GaN-based wurtzite semiconductors, BN, ZnO, CdS, CdSe, ZnS, 

InN, and SiC are of great interest in the electronics and optoelectronics communities.   For 

example, the wide bandgap wurtzite crystals are attractive for high-power devices that function at 

elevated temperatures.  Moreover, in the case of ZnO, sharp and strong excitation emission is 

observed even at room temperature; accordingly, ZnO portends applications in many devices, such 

as semiconductor lasers with wavelengths in the blue and ultraviolet as well as various electronic 

devices designed to work at elevated operating temperatures.  As is well known, ZnO/GaN 

heterostructures have been studied extensively for device applications such as photodetectors and 

intersubband lasers using these structures have been successfully developed [68-72]. In addition, 

CdSe quantum dots capped with ZnS [73] and CdS quantum dots themselves may be 

functionalized with biomolecules and may be used as biological tags [74].      

At room temperature, a principal mechanism influencing carrier interactions and transport 

is scattering by polar optical phonons [75]. Phonon interactions play very important roles in 

intersubband laser devices, especially in optical-phonon-assisted intersubband transitions [1,4,76]; 

thus, accurate models for carrier-phonon interactions are essential for further progress in these 

https://doi.org/10.1088/1361-648X/abb518
https://doi.org/10.1088/1361-648X/abb518
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fields.  The macroscopic dielectric continuum model and the uniaxial model of Loudon [77] have 

been formulated [7,8,78,79] into models that are used widely to derive the Fröhlich interaction 

Hamiltonian for bulk würtzite structures, and to perform the subsequent calculation of the 

associated scattering rates.  A shortcoming of these previous results has been addressed in the 

celebrated path-integral approach in the paper of Thornber and Feynman [80] which takes into 

account the inadequacy of the Fermi golden rule but, unfortunately, the Thornber-Feynman (TF) 

model has been applied to determine corrections to the Fermi golden rule for only a few 

technologically important materials including AlN-based materials, GaN-based materials, and 

Al2O3 [80-81].  Herein, the TF path-integral approach is used to determine correction factors for 

BN, ZnO, CdS, CdSe, ZnS, InN, and SiC.  It is found that these corrections to the commonly used 

Fermi golden rule scattering rates range in value up to an order-of-magnitude. These large 

corrections are due to the fact that for strong coupling constants, the mean time between carrier-

phonon interactions becomes comparable with the collision time, whereas, the first-order 

perturbative approach underlying the Fermi golden rule assumes each instance of carrier – phonon 

interactions to be independent events. In the case of large Fröhlich coupling constants, the quantum 

interference between the phonons cannot be neglected. 

 

5.2 Carrier—Optical-Phonon Interactions in Wurtzite Structures 

 

In this paper, the carrier—optical phonon scattering rates for selected wurtzite semiconductors are 

computed using the Fermi’s golden rule [1] and then compared with the path-integral-based 

scattering rates [80] using the Thornber-Feynman (TF) formalism.   
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The phonons produce macroscopic polarization fields that couple with carriers causing them to 

scatter as described by the Fröhlich interaction.  Here, we give a brief background on the 

description of phonons in wurtzite crystals. Loudon (1964) proposed a model for uniaxial crystals 

describing phonons in wurtzite crystals. In Loudon’s model, the angle between c-axis (optical axis) 

and the phonon wave vector q is denoted by 𝜃. There are two types of phonon wave in wurtzites: 

(a) ordinary phonon wave – in which both electric (E) and polarization (P) fields are perpendicular 

to the c-axis and q, respectively, for all values of  𝜃, and (b) extraordinary waves – in which the 

orientation of  E and P with respect to q and c-axis is more complicated as described below. These 

extraordinary phonons are of two types: (1) with A1 symmetry and associated with the 

perpendicular polarized vibrations with respect to c-axis and (2) E1 symmetry associated with 

parallel polarized vibrations with respect to c-axis.  The frequency of the LO phonon wave is given 

by the solution to the following equation: 

 

                                   𝜔𝐿𝑂
2 = 𝜔𝑧𝐿

2 𝑐𝑜𝑠2𝜃 + 𝜔⊥,𝐿
2 𝑠𝑖𝑛2𝜃                                                    (5.1) 

 

For a wurtzite crystal of volume V, the Fröhlich Hamiltonian (perturbation due to macroscopic 

polarization introduced by phonon) is given as [1, 7-8,78-79]: 

 

 

𝐻𝐹𝑅
𝑈𝐴 = 𝑖 ∑{

4𝜋𝑒2ℏ𝑉−1

(𝜕 𝜕𝜔⁄ )[𝜖(𝜔)⊥ sin2 𝜃 + 𝜖(𝜔)∥ cos2 𝜃]
}

1/2

𝑞

1

𝑞
 𝑒𝑖𝑞⋅𝑟(𝑎𝑞 + 𝑎−𝑞

† ) 

           = ∑
𝐶

𝑞
𝑒𝑖𝒒.𝒓(𝑎𝒒 + 𝑎𝒒

†)

𝑞

 

 

(5.2) 
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where, 

 𝐶 = −𝑖√
4𝜋𝑒2ℏ𝑉−1

(𝜕 𝜕𝜔⁄ )[𝜖(𝜔)⊥𝑠𝑖𝑛2𝜃 +  𝜖(𝜔)∥𝑐𝑜𝑠2𝜃 ]
 (5.3) 

                                                                                                                                                                   

𝑎𝒒 𝑎𝑛𝑑 𝑎𝒒
†
 represents phonon annihilation and creation operators respectively 

where, 

 𝜖(𝜔)⊥ = 𝜖(∞)
𝜔2 − 𝜔⊥𝐿

2

𝜔2 − 𝜔⊥
2  (5.4) 

The above expression represents dielectric constant along direction perpendicular to c-axis. 

and, 

 𝜖(𝜔)∥ = 𝜖(∞)
𝜔2 − 𝜔𝑧𝐿

2

𝜔2 − 𝜔𝑧
2

 (5.5) 

The above expression represents the dielectric constant along the direction parallel to the c-axis. 

Using these last results, it is straightforward to show that, 

 𝜕𝜖(𝜔)⊥

𝜕𝜔
 =  𝜖(∞) (2𝜔) [

𝜔⊥,𝐿𝑂
2 − 𝜔⊥,𝑇𝑂

2

𝜔2 − 𝜔⊥,𝑇𝑂
2 ] (5.6) 

and,  

 𝜕𝜖(𝜔)∥

𝜕𝜔
 =  𝜖(∞) (2𝜔) [

𝜔𝑧𝐿
2 − 𝜔𝑧

2

(𝜔2 − 𝜔𝑧
2)2

] (5.7) 

 

Recalling Equation 8.24 of Ref. [1], the relation between C as in Eq (5.3) and 𝛼 (Fröhlich coupling 

constant) is expressed as: 

 𝑉|𝐶|2

2𝜋

𝑚∗

ℏ3𝑘
 =  𝛼𝜔

1

𝑘
√

2𝑚∗𝜔

ℏ
 

(5.8) 

where 𝑚∗ denotes the effective mass of carrier in the crystal; thus,  
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𝛼 =  

|𝐶|2

2𝜋

𝑉

𝜔

1

ℏ3
√

𝑚∗ℏ

2𝜔
 

(5.9) 

and it follows that, 

 
𝛼 =  

4𝜋𝑒2ℏ𝑉−1

(𝜕 𝜕𝜔⁄ )[𝜖(𝜔)⊥𝑠𝑖𝑛2𝜃 +  𝜖(𝜔)∥𝑐𝑜𝑠2𝜃 ]
 
1

2𝜋

𝑉

𝜔

1

ℏ3
√

𝑚∗ℏ

2𝜔
 

(5.10) 

so that, 

 𝛼 =  
2𝑒2

(𝜕 𝜕𝜔⁄ )[𝜖(𝜔)⊥𝑠𝑖𝑛2𝜃 +  𝜖(𝜔)∥𝑐𝑜𝑠2𝜃 ]
 √

𝑚∗

2(ℏ𝜔)3
 (5.11) 

and 

 

𝛼 =  
2𝑒2

𝜖(∞)(2𝜔) [(
𝜔⊥,𝐿𝑂

2 − 𝜔⊥,𝑇𝑂
2

(𝜔2 − 𝜔⊥,𝑇𝑂
2 )

2) 𝑠𝑖𝑛2𝜃 + (
𝜔𝑧𝐿

2 − 𝜔𝑧
2

(𝜔2 − 𝜔𝑧
2)2) 𝑐𝑜𝑠2𝜃 ]

 √
𝑚∗

2(ℏ𝜔)3
 

 

(5.12) 

This last result may be written as, 

𝛼 =  (
𝑒2

𝜖(∞)𝜔
)√

𝑚∗

2(ℏ𝜔)3
 [(

𝜔⊥,𝐿𝑂
2 − 𝜔⊥,𝑇𝑂

2

(𝜔2 − 𝜔⊥,𝑇𝑂
2 )

2) 𝑠𝑖𝑛2𝜃 + (
𝜔𝑧𝐿

2 − 𝜔𝑧
2

(𝜔2 − 𝜔𝑧
2)2

) 𝑐𝑜𝑠2𝜃 ]

−1

 (5.13) 

 

As is evident from the above equation, for wurtzite crystals 𝛼 has an angular dependence, and for 

𝜃 =  0 𝑜𝑟 𝜋 2⁄  the above equation reduces to isotropic case as shown below (for the isotropic case 

𝜔𝑧𝐿 = 𝜔⊥𝐿 = 𝜔𝐿𝑂;  𝜔𝑧 = 𝜔⊥ = 𝜔𝑇𝑂 𝑎𝑛𝑑 𝜖(0)⊥ = 𝜖(0)∥ = 𝜖(0)): 

 

 
𝛼𝑐𝑢𝑏𝑖𝑐  =  

𝑒2

2ℏ𝜔𝐿𝑂

√
2𝑚∗𝜔𝐿𝑂

ℏ
[

1

𝜖(∞)
−

1

𝜖(0)
] 

 

(5.14) 
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Fig. 5.1 Angular dependence of Fröhlich coupling constant on angle 𝜃 (angle between c-axis and 

phonon wave vector q) for all materials under investigation. 

 

 

This angular dependence is shown in Figure 5.1 which depicts the values of the Fröhlich coupling 

constant, α, as a function of the angle, θ, measured relative to the c-axis (which is perpendicular to 

the hexagonal planes) for the wurtzite crystals BN, ZnO, CdS, CdSe, ZnS, InN, and SiC, 

respectively.  These results indicate that the anisotropy of these wurtzite crystals are only about 

11% for BN, 8% for ZnO, 7% for CdS, 6% for CdSe, 3% for ZnS, 14% for InN, and 2% for SiC.  

As will be shown, the TF corrections to the Fermi golden rule carrier—optical-phonon scattering 

range from a factor of approximately 3 to 30, and it follows that the magnitude of TF correction is 

large compared to the anisotropy of the interaction.  Accordingly, in the work the isotropic path-

integral formulation of TF is compared with the Fermi golden rule interaction for phonons oriented 

along the c-axis.  It is clear that the nearly order-of-magnitude corrections derived in this paper 

will be in error by only a few percent – see percentage above – due to anisotropic effects. 
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We provide a brief description of the Fermi golden rule model that we have used for comparison 

with the TF model for wurtzite crystals before proceeding further. Moving under the influence of 

electric field E, the electron accelerates as it gains energy from the electric field until the energy 

of an electron (𝐸𝑘) becomes comparable to the energy of optical phonon (ℏ𝜔𝐿𝑂), after which the 

electron loses energy by  emitting optical phonons every 𝜏𝑒 seconds moving with a steady state 

velocity 𝑣. The energy gained from the electric field is balanced by the energy loss to lattice by 

the emission of phonons; hence, ℏ𝜔𝐿𝑂 =  𝑒𝐸  in steady state.  The mean time between “collisions” 

is thus, 𝑣𝜏𝑒. We must point out that, this model assumes any consecutive carrier – phonon 

interactions (or collisions) to be independent event separated in time and space and does not take 

into account the interference between the emitted phonons.  

 

The expression for scattering rate (1 𝜏𝑒⁄ ) for wurtzite crystals is given as in [79]: 

1

𝜏𝑒
 =  

1

𝜋𝑎𝐵

√
𝑚∗ℏ

2𝑚0
∫

(𝑁𝑞 + 1)𝑠𝑖𝑛𝜃

√𝜔 [
𝜕𝜖⊥

𝜕𝜔
𝑠𝑖𝑛2𝜃 +

𝜕𝜖𝑧

𝜕𝜔
𝑐𝑜𝑠2𝜃]

∫
𝜎

√𝐸𝑘

ℏ𝜔
𝑐𝑜𝑠2𝒌𝒒̂ − 1

𝑑𝜙𝑑𝜃

2𝜋

0

𝜋

0

 (5.15) 

 

where, 𝑁𝑞  =  
1

𝑒ℏ𝜔 𝑘𝐵𝑇⁄ − 1
 represents the phonon occupation number, 𝑎𝐵 is the Bohr radius, 𝜙 is the 

azimuthal angle and 𝑐𝑜𝑠𝒌𝒒̂  =  𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜃𝒌𝑠𝑖𝑛𝜙 +  𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜃𝒌, where 𝜃𝒌 is the initial electron 

incident angle with c-axis. We would like to point out that there is a negligible dependence of 
1

𝜏𝑒 

on 𝜃𝒌 [79], hence, we have used 𝜃𝒌  =  0 in the current paper. Also,  

𝜎 =  { 0   𝑓𝑜𝑟  𝑐𝑜𝑠𝒌𝒒̂  <  √ℏ𝜔 𝐸𝑘⁄  

2    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       
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From discussion above, the energy lost by electron per unit distance can be given as: 

 ℏ𝜔𝐿𝑂

𝑣𝜏𝑒
 (5.16) 

 

Here, we have determined 𝜔𝐿𝑂 as below: 

 𝜔𝐿𝑂
2 = 𝜔𝑧𝐿

2 𝑐𝑜𝑠2𝜃𝑎𝑣𝑔  +  𝜔⊥,𝐿
2 𝑠𝑖𝑛2𝜃𝑎𝑣𝑔 (5.17) 

 

where, 𝜃𝑎𝑣𝑔 is the angle corresponding to the average value of Fröhlich coupling constant 

(
2

𝜋
∫ 𝛼(𝜃) 𝑑𝜃

𝜋 2⁄

0
) derived from Fig.5.1. These values have been tabulated in Table. 5.I for all 

materials under investigation. 

 

Finally, for an electron initially in the state |𝝓𝒎⟩ 𝑚𝑎𝑘𝑒𝑠 𝑎 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑜 |𝝓𝒏⟩,  due to 

perturbation 𝐻𝑒𝑙−𝑝ℎ introduced by carrier – phonon interaction the Fermi golden rule predicts the 

transition probability per unit time as ( Stroscio and Dutta [Ref 1]): 

 = (
2𝜋

ℏ
) |⟨𝝓𝒎|𝐻𝑒𝑙−𝑝ℎ|𝝓𝒏⟩|

2
𝛿(𝐸𝑚 − 𝐸𝑛 ± ℏ𝜔𝐿𝑂) (5.18) 

 

The above equation leads to Eq. (15) when 𝐻𝑒𝑙−𝑝ℎ  =  𝐻𝐹𝑟
𝑈𝐴 and |𝝓𝒎⟩ ≡ |𝒌, 𝑵𝒒⟩ and 

|𝝓𝒏⟩  ≡ |𝒌′, 𝑵𝒒 − 𝟏⟩ (𝑤ℎ𝑒𝑟𝑒, 𝒌 and 𝒌′ is the initial and final electron wave vector). As discussed 

in Ref. 1, Eq. 5.18 is valid only for time scale, 𝑡 ≫  
2ℏ

𝐸𝑚−𝐸𝑛
 (=

2

𝜔𝑚𝑛
); for the present case, the 

phonon energy lies in the range from 0.03 – 0.15 eV for the materials under investigation as is 

evident from Table I.  Hence, the mean free time would be of the order of 10−15 𝑠𝑒𝑐 [Ref 80]; 

thus, in the present case quantum interference between emitted phonon can neither be neglected 

nor the phonon emission can be regarded as independent events.  
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In order to obtain non-perturbative scattering rate corrections to the Fermi golden rule 

scattering rates, the path-integral formulation of TF [80] is used to determine the non-perturbative 

scattering rates for that for BN, ZnO, CdS, CdSe, ZnS, InN, and SiC.  As we have discussed above, 

these corrections to the commonly used Fermi golden rule scattering rates range in value up to an 

order-of-magnitude. In materials with high Fröhlich coupling constant, the collision time becomes 

comparable to the mean time between collision and it is inadequate to apply the Fermi golden rule 

which treats phonon collisions as independent events.  

 

Thornber and Feynman [80] address the specific problem of determining the expectation value of 

the velocity of a carrier interacting with an electric field inside a semiconductor. In this case, the 

charge carrier gains kinetic energy from the applied electric field and the electron loses energy to 

the lattice by interacting with polar optical phonons. Using Fröhlich’s polaron model and the 

Feynman path-integral method, the expression for the electric field, E, needed to balance the net 

loss of energy per unit distance to the polar crystal to maintain the steady-state velocity v of carrier 

is given by [80]: 

𝐸 =  
4𝛼

𝑣2𝛽𝜋1 2⁄ 𝑠𝑖𝑛ℎ (
1
2

𝛽)
 ∫ 𝑥2

𝑣(√𝛽)
𝑣0

𝑤0
⁄

0

𝑑𝑥 ∫ 𝑑𝑠

∞

0

𝑐𝑜𝑠 (
1
2

𝛽𝑠)

[𝐴(𝑠)]3 2⁄
 𝑒𝑥𝑝 (−𝑥2

𝑠2 − 1

2𝐴(𝑠)
) 

                                                                                     ×  [𝑐𝑜𝑠 (
𝑥2𝑠

𝐴(𝑠)
) − 𝑠 𝑠𝑖𝑛 (

𝑥2𝑠

𝐴(𝑠)
)] 

where: 

 

𝐴(𝑠)  =  𝑠2  +  1 + 
4

𝛽
 
𝑣0

2 − 𝑤0
2

𝑤0
2𝑣0

 
𝑐𝑜𝑠ℎ (

1
2

𝛽𝑣0) −  𝑐𝑜𝑠 (
1
2

𝑠𝑣0𝛽)

𝑠𝑖𝑛ℎ (
1
2

𝛽𝑣0)
 

(5.19) 
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In above expression, α is the Fröhlich coupling constant,  𝛽 =
ℏ𝜔𝐿𝑂

𝑘𝑇
 (ratio of optical phonon energy 

to thermal energy), 𝑥 and 𝑠 are dummy variables representing carrier coordinate variables as used 

in evaluating the path integral, 𝑣0 𝑎𝑛𝑑 𝑤0 are variational parameters defined in [81] which are 

obtained after minimizing the ground state energy of polaron.   

 

The E (v) function of the above equation represents a monotonically increasing function starting 

from E = 0 at v = 0 and increasing to E = 𝐸𝑡ℎ to v =𝑣𝑡ℎ after which the function monotonically 

decreases with v such that E tends to zero as v approaches infinity. 𝐸𝑡ℎ represents the maximum 

loss of energy to the crystal. As described by TF [80] the regime with v < 𝑣𝑡ℎ represents a stable 

region, since any increase in velocity of the carrier from its steady state value causes energy losses 

to the crystal to increase over what is gained from the applied field, whereas, a decrease in velocity 

from its steady state velocity causes energy losses to decrease from what is gained from the applied 

field; hence, the carrier’s velocity is restored to its original steady state value following any 

deviation. In contrast,  𝑣 > 𝑣𝑡ℎ represents an unstable region, since in this region, any increase in 

the velocity of the carrier from its steady state velocity causes the energy lost to the crystal to 

decrease; consequently, the carrier continues to gain energy from applied field. 

 

For 𝛽 ≥  1 the above equation exhibits very large oscillations beyond the threshold velocity; this 

fact has also emphasized by TF in [80] especially for 𝛽 ≥  10; to ensure integration of Eq. 5.19 

beyond threshold velocity , an approximation of Eq. 5.19 has been given in [80] as: 

 

𝐸 =  
𝛼

2𝑣2
(
𝛽

𝜋
)
1 2⁄

1

𝑠𝑖𝑛ℎ (
1
2

𝛽)
∫ 𝑥

𝑣
√𝐴⁄

0

 𝑑𝑥 ∫ 𝑑𝑘

+ ∞

−∞

𝑘

|𝑘|
 𝑒𝑥𝑝 [−

𝛽𝑘2

8𝐴
(
4𝐵

𝛽2
− 𝐴)] 
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                                                                × ((𝑒
𝛽
2) 𝑒

−(
𝛽
2
)(𝑥 − 

𝑘
2
 − 

1
𝑘2)

2

+ (𝑒− 
𝛽
2) 𝑒

𝛽 2(𝑥 − 
𝑘
2
 − 

1
𝑘2)

2
⁄

) 

 

 

where, 

 

𝐴 =  1 + (1 − 𝑣0
2 𝑤0

2⁄ ) {𝑣0𝛽 [2𝑠𝑖𝑛ℎ (
1

2
𝑣0𝛽)] − 1⁄ } 

 

 𝐵 =  𝛽
𝑤0

2

𝑣0
2 (

𝑣0
2

𝑤0
2⁄  − 1

𝑣0
 𝑡𝑎𝑛ℎ (

1

4
𝛽𝑣0) +

1

4
𝛽) 

 

The above equation is equivalent to Eq. 19 which allows integration beyond threshold velocity. 

We observed that the above equation approximates the original equation accurately for all values 

of 𝛽 ≥  1.  

 

The above equations are expressed in units where ℏ =  𝜔𝐿𝑂  =  𝑚 =  1 (𝜔𝐿𝑂 =

 𝐿𝑂 𝑝ℎ𝑜𝑛𝑜𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑎𝑛𝑑 𝑚 =  𝑚𝑎𝑠𝑠 𝑜𝑓 𝑝𝑜𝑙𝑎𝑟𝑜𝑛 ) 

 

Thornber and Feynman [80] have expressed the above equation in appropriate units as shown 

below: 

 𝐹 =  (𝑚/𝑚𝑒)
1 2⁄ (ℏ𝜔𝐿)

3 2⁄ 𝐸/2.75                        [𝑒𝑉/Å] (5.21) 

(5.20) 
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 𝑣𝑟  =  (𝑚/𝑚𝑒)
1 2⁄ (ℏ𝜔𝐿)

1 2⁄ (𝑣 x 0.418 x 1016)     [Å/𝑠𝑒𝑐] 

(

(5.22) 

Feynman et al. [82] have computed the value of 𝑣0 𝑎𝑛𝑑 𝑤0 for only 3 cases, namely:  

 𝛼 = 3, 5 and 7 

 

To plot the above curves for any arbitrary value of coupling constant , we apply the method of 

Ref. 83. In this paper, Feynman has defined 𝑣0 𝑎𝑛𝑑 𝑤0 as a variational parameters in order to 

evaluate the ground state energy of polaron and its effective mass(𝑚∗ 𝑣0
2

𝑤0
2).  

 

For determination of 𝑣0 𝑎𝑛𝑑 𝑤0, we need to minimize the polaron free energy expression of 

polaron at zero temperature defined in Ref. 82 which is recalled to be the following: 

 𝐸 =  
3

4𝑣
(𝑣 −  𝑤)2 − 

𝛼𝑣

√𝜋
 ∫ [𝑤2𝜏 +  

𝑣2 − 𝑤2

𝑣
(1 − 𝑒−𝑣𝜏)]

− 
1
2

 𝑒−𝜏 𝑑𝜏

∞

0

 (23) 

 

To find the minima of E and the corresponding values of v0 and w0, we performed a numerical 

evaluation which yields the values tabulated in Table 5.I. The minima of E is denoted by G and its 

value represents ground state energy of polaron. Table. 5.II shows all the parameters of all the 

materials used in this paper. 
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Table 5. I Material parameters for wurtzite crystals determined in this chapter. 

  BN ZnO CdS CdSe ZnS InN SiC 

LO phonon 

Frequency 

𝜔𝐿𝑂 1267.8 583.75 304.32 209.93 350 589.14 966.85 

Average 

Fröhlich 

coupling 

const  

𝛼 0.3769 0.9328 0.6070 0.4838 0.6909 0.2067 0.3992 

Angle at 

average 

value of 

coupling 

const 

𝜃𝑎𝑣𝑔 0.225𝜋 0.231𝜋 0.231𝜋 0.238𝜋 0.249𝜋 0.233𝜋 0.242𝜋 

Variational 

parameter 

𝑣0 3.0389 3.1015 3.0639 3.0504 3.0734 3.0209 3.0412 

Variational 

parameter 

𝑤0 2.9529 2.8798 2.9231 2.9392 2.9122 2.9743 2.9500 

Ground 

state energy 

of polaron 

       G -0.3787 -0.9441 -0.6117 -0.4868 -0.697 -0.2072 -0.4012 

Ratio of 

polaron 

mass to 

effective 

mass 

𝑚 𝑚∗⁄  1.0591 1.1599 1.0987 1.0771 1.1138 1.0316 1.0628 

Mobility 
𝜇 (

𝑐𝑚2

𝑉 − 𝑠
) 

2530.1 246.43 380.49 888.85 241.68 2560.6 502.58 

 

Based on these TF predictions as well as the Fermi golden rule formulation described above, the 

results presented in Figure 2-3 give a comparison of the TF and the Fermi golden rule rates for 

BN, ZnO, CdS, CdSe, ZnS, InN, and SiC, respectively.  These results show that the ratio of the 

TF rates to the Fermi golden rule scattering rates ranges from approximately 3 to 30 as shown in 

Figure 4 for BN, ZnO, CdS, CdSe, ZnS, InN, and SiC, respectively.  These results show that for 

the strong carrier—optical-phonon interactions in these wurtzites leads to substantial corrections 

to the Fermi golden rule which is used widely in the study of carrier—optical-phonon interactions 

as well as in the design of electronic and optoelectronic devices based on these results.  The 

correction curves of Fig. 4 provide the factors needed to correct the Fermi golden rule scattering 

rates for structures and devices based on these polar wurtzite materials. 
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Table 5. II Material properties of all semiconductors investigated in the current paper. 

 𝐵𝑁𝑎 𝑍𝑛𝑂𝑏 𝐶𝑑𝑆𝑐 𝐶𝑑𝑆𝑒𝑐 𝑍𝑛𝑆𝑑 𝐼𝑛𝑁𝑒 SiCg 

𝜔𝑧𝐿(𝑐𝑚
−1) 1258 577.1 302.2 209 350 586 964 

𝜔𝑧(𝑐𝑚
−1) 1006 380 234 165 270 447 788 

𝜔⊥𝐿(𝑐𝑚
−1) 1281 592.1 307 211 350 593 970 

𝜔⊥(𝑐𝑚−1) 1053 408.2 243 169 273 476 797 

𝜀∞ 4.35 3.74 5.52 6.25 5.4 8.4 66 

𝑚∗/𝑚𝑒 0.27 0.22 0.21 0.13 0.28 0.11f 0.57h 

 

a Reference 84   e Reference 88 
b Reference 85   f Reference 89 
c Reference 86   g Reference 90 
d Reference 87   h Reference 91 

 

 

Fig. 5.2 Graphs showing Energy loss per unit distance versus electron velocity in TF (blue) and 

FGR (Red) regime for BN, ZnO, CdS and CdSe at temperature T = 300K. 
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Fig. 5.3 Graphs showing Energy loss per unit distance versus electron velocity in TF (blue) and 

FGR (Red) regime for ZnS, InN and SiC at temperature T = 300K. 

 

Fig. 5.4 Graph showing ratio of energy loss per unit distance in TF regime to FGR versus velocity 

at temperature T = 300K. 
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5.3 Conclusion 

Optical phonon interactions play very important roles in a variety of electronic and 

optoelectronic devices based on polar wurtzite materials.  Herein, it is shown that such wurtzite 

materials with Fröhlich coupling constants close to or greater than unity have carrier-optical-

phonon rates that differ substantially from the common-used Fermi golden rule scattering rates.   

Using the non-perturbative path-integral approach of Thornber and Feynman it is shown that the 

commonly used perturbative approach of the Fermi golden rule does not give accurate scattering 

rates.  As discussed herein, these corrections to the Fermi golden rule rates are due to the fact that 

for strong coupling constants, the first-order perturbative approach underlying the Fermi golden 

rule does not take into account the presence of many phonons interacting simultaneous with the 

carrier.  These results show that the ratio of the TF rates to the Fermi golden rule scattering rates 

ranges from approximately 3 to 30 for the technologically important wurtzite materials of BN, 

ZnO, CdS, CdSe, ZnS, InN, and SiC. 
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Chapter 6 

 

 
ELECTRON — OPTICAL-PHONON SCATTERING RATES 

IN CUBIC GROUP III-NITRIDE CRYSTALS : 

PATH-INTEGRAL CORRECTIONS TO FERMI  GOLDEN 

RULE MATRIX ELEMENTS 

 
This is the Accepted Manuscript version of an article accepted for publication in Semiconductor Science and 

Technology, IOP.  IOP Publishing Ltd is not responsible for any errors or omissions in this version of the 

manuscript or any version derived from it.  The Version of Record is available online at 

https://doi.org/10.1088/1361-6641/abd045. 
 

 

6.1 Introduction 

The wurtzite phase of III-Nitride semiconductors have revolutionized the Light Emitting 

Diode (LED) industry in recent years because of direct bandgap ranging from 6.2 eV (AlN) to 1.95 

eV (InN) at room temperature which covers the visible light spectrum and UV range. These LEDs 

are characterized by high brightness and high efficiency; for example, brightness of more than 10 

cd has been achieved for blue, green and yellow InGaN LED [92].  A great variety of cubic and 

wurtzite structures have high technological interest [93-96]. 

 

III-Nitride semiconductors normally crystallize in wurtzite as well as cubic (zinc blende) 

structure, but for III-Nitrides the wurtzite phase is thermodynamically more  stable structure at 

room temperature [97].  Phonon interactions have been modeled previously for wurtzite III-nitrides 

using the Fermi golden rule [7-8,79]. At present there are two major challenges for achieving 

higher efficiency with wurtzite III-Nitride semiconductors. First, the presence of spontaneous 

polarization causing a built in potential up to a few MV/cm [98]; this potential alters the potential 

inside the QW of active region of LEDs causing reduced efficiency of emission due to reduction 

https://doi.org/10.1088/1361-6641/abd045
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in overlap of electron and hole wavefunction (this phenomenon is better known as Quantum Stark 

Effect) [99].  Second, the crystal defects arising due to growth on lattice mismatched substrates 

like SiC, GaAs or sapphire which have been explored due to the high cost of GaN substrates [100]. 

The polarization field arises due to the growth of wurtzites as uniaxial crystals [101]. To mitigate 

the effects of the polarization field, growth along m-plane and a-plane have been considered but 

they have resulted in no significant improvement as compared with c-plane wurtzite. Recently, 

strong interests have been created in cubic (zinc blende) structures of III-Nitrides which offer the 

following advantages: a) absence of polarization fields,  b) cleaving (0001) oriented  zinc blende 

GaN along the vertical {110} plane [99], c) theoretically the optical gain of cubic GaN might be 

higher than wurtzite phase [92], and d) normally off transistors [spontaneous polarization creates 

a 2DEG channel in AlGaN/GaN transistors]. Liu and Bayram [102] have successfully produced 

high quality c-GaN through phase transition of MOVPE deposited GaN from hexagonal crystal to 

cubic via Si (100) nanopatterning. Also, motivated by the above advantages of cubic III-Nitrides, 

Novikov et al. [100] have shown great success in growing free standing cubic AlGaN and GaN 

wafers using Plasma Assisted Molecular Beam Epitaxy (PA-MBE).  

 

Over a wide range of temperature and crystal quality, the electron—polar-optical-phonon 

interaction is the dominant scattering mechanism affecting electron transport in polar 

semiconductors. In this paper we apply two different approaches to model the electron – polar 

optical phonon interaction, namely: (a) non-perturbative (path integral based) Thornber-Feynman 

model, and (b) Fermi’s golden rule - based on time dependent perturbative theory. We find that 

the generally-accepted Fermi-golden-rule rates are in error by nearly an order of magnitude.   
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6.2 Theory 

First we consider the Thornber – Feynman model.  This is a landmark model which uses the 

Fröhlich’s polaron model to describe the electron -optical phonon interaction using the path 

integral approach. The strength of electron – phonon coupling for a cubic crystal, which is an 

isotropic medium, is determined by the Fröhlich coupling constant as below: 

 
𝛼 =  

𝑒2

ℏ
(

1

𝜀∞
−

1

𝜀0
) (

𝑚∗

2ℏ𝜔𝐿𝑂
)

1
2

 
(6.1) 

 

where, e is the elementary charge, 𝜀∞ and 𝜀0 are the high frequency and static dielectric constants, 

𝑚∗ is the electron effective mass and 𝜔𝐿𝑂 is longitudinal optical phonon (LO phonon) frequency. 

 

This model starts by describing the polaron model of an electron inside the polar semiconductor 

crystal which is based on the polarization of the lattice atoms in the vicinity of the electron which 

leads to modification in its energy and effective mass due to this interaction. The motion of an 

electron is thus accompanied with the associated distortion in the lattice [83]. Using variational 

method in [83], the expression of polaron energy is given as: 

 
𝐸 =

3

4𝑣
(𝑣 − 𝑤)2 −

𝛼𝑣

√𝜋
∫ [𝑤2𝜏 +

𝑣2 − 𝑤2

𝑣
(1 − 𝑒−𝑣𝜏)]

−
1
2∞

0

𝑒−𝜏 𝑑𝜏 
(6.2) 

 

𝑣 𝑎𝑛𝑑 𝑤 in the above equation are the variational parameters. The minimization of polaron energy 

as represented by the above equation yields the ground state energy, G, for a specific value of 

variational parameters 𝑣0 𝑎𝑛𝑑 𝑤0.  This approach has been shown to yield moderate corrections 

to the Fermi golden rule for GaAs and AlAs and significant corrections for wurtzite III-nitrides 
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[81,103-104] but to our knowledge these techniques have not been applied previously to model 

corrections to the Fermi golden rule for the technologically important cubic III-nitrides, the subject 

of this paper. 

In Ref. 80, Thornber and Feynman have explained that, in the materials with moderate to 

strong electron -phonon coupling - as determined by 𝛼 in Eq (1) - the Fermi golden rule (which is 

based on perturbation theory) breaks down, as it considers subsequent LO phonon emission  events 

as independent whereas in the case moderate to strong coupling the mean time between collisions 

is of the order of 10−15 𝑠𝑒𝑐 [Ref. 80] and quantum interference between emitted phonons cannot 

be neglected and phonon emission events cannot be regarded as independent events.  

Consequently, the specific problem of finding the expectation value of steady state velocity 

(𝑣) of an electron is found for a given applied electric field, E. The kinetic energy gained by an 

electron (due to accelerating in the potential in the applied electric field) is exactly balanced by 

energy loss due to emission of LO phonon; hence, the rate of loss of energy per unit distance is 

equivalent to eE. Thornber and Feynman have thus expressed the result as: 

 

𝐸 =  
𝛼

2𝑣2
(
𝛽

𝜋
)
1 2⁄

1

𝑠𝑖𝑛ℎ (
1
2

𝛽)
∫ 𝑥

𝑣
√𝐴⁄

0

 𝑑𝑥 ∫ 𝑑𝑘

+ ∞

−∞

𝑘

|𝑘|
 𝑒𝑥𝑝 [−

𝛽𝑘2

8𝐴
(
4𝐵

𝛽2
− 𝐴)] 

× ((𝑒
𝛽
2) 𝑒

−(
𝛽
2)(𝑥 − 

𝑘
2 − 

1
𝑘2)

2

+ (𝑒− 
𝛽
2) 𝑒

𝛽 2(𝑥 − 
𝑘
2 − 

1
𝑘2)

2
⁄

) 

(6.3) 

 

where, 

𝐴 =  1 + (1 − 𝑣0
2 𝑤0

2⁄ ) {𝑣0𝛽 [2𝑠𝑖𝑛ℎ (
1

2
𝑣0𝛽)] − 1⁄ } 
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 𝐵 =  𝛽
𝑤0

2

𝑣0
2 (

𝑣0
2

𝑤0
2⁄  − 1

𝑣0
 𝑡𝑎𝑛ℎ (

1

4
𝛽𝑣0) +

1

4
𝛽) 

 

 

The above represents the relation between the electric field E required to balance the net loss of 

energy due to emission of phonons. In other words, it can be said that the above equation represents 

the electric field E required to maintain a steady state velocity (𝑣) when the only way an electron 

can lose energy is by emission of phonons. In the above equation, 𝛼 is the Fröhlich coupling 

constant, 𝛽  =
ℏ𝜔𝐿𝑂

𝐾𝑇
 is the inverse temperature parameter, 𝑣0 𝑎𝑛𝑑 𝑤0 are the variational parameters 

obtained by minimizing polaron energy as in Eq (2). E is a monotonically increasing function of v 

from E = 0 (at v = 0) to E = 𝐸𝑇ℎ (at v = 𝑣𝑇ℎ). The region 0 < v <  𝑣𝑇ℎ is the stable region in which 

E increases with v, as any deviation causing increase in electron velocity from its steady state value 

causes increase in energy loss to the lattice above which it gains energy from the applied electric 

field, whereas if the electron velocity decreases from its steady state value then the energy loss to 

lattice decreases causing it to gain energy from the applied field, hence, in both cases it returns to 

its steady state value.  The region v >  𝑣𝑇ℎ, is unstable region because E decreases with increase 

in v. In this region any increase in electron velocity above its steady state value causes the energy 

loss to the lattice to decrease, consequently it continues to gain energy from the applied field and 

hence if its kinetic energy becomes equal to the closest upper valley in the conduction band it can 

cause “runaway” – a well known high field transport condition in which the energy gained from 

the external field cannot be relaxed by the lattice. Furthermore, for v >  𝑣𝑇ℎ if the velocity of 

electron decreases then it causes an increase in the energy loss to lattice which leads to further 

decrease in velocity until it lands in the stable regime. 
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The Thornber – Feynman model allows us to determine the following parameters for the 

cubic III-Nitrides, which we are investigating in this paper: 

 

 𝑣𝑇ℎ: Threshold Velocity – the maximum velocity attainable under steady state regime. 

 

 𝐸𝑇ℎ: Maximum value of applied electric field beyond which electron pulls out of  

        ‘polaron’ state and hence accelerates indefinitely (unless some other relaxation 

         mechanisms like impurity scattering are present with higher threshold) 

 

Runaway parameters: Here we investigate if a low field runaway is possible in cubic III-Nitrides, 

and  compute the runaway length in appropriate cases. 

 

Mobility: We will deduce mobility from the E (v) curves by averaging 𝜇 =
𝑣

𝐸(𝑣)
 over the stable 

region of the curve. 

 

Equation (6.3) is expressed in units where ℏ =  𝜔𝐿𝑂  =  𝑚∗   =  1 (𝜔𝐿𝑂 =

LO phonon frequency 𝑎𝑛𝑑 𝑚∗  = effective mass of electron in the lattice). TF in [81] have 

expressed the above equation in appropriate units as below:  

 
𝐹 = (𝑚∗/𝑚𝑒)

1
2(ℏ𝜔𝐿𝑂)

3
2𝐸/2.75                         [𝑒𝑉/Å] 

(6.4) 

 
𝑣𝑟 = (𝑚∗/𝑚𝑒)

1
2(ℏ𝜔𝐿𝑂)

1
2(𝑣 x 0.418 x 1016)   [Å/𝑠𝑒𝑐] 

(

(6.5) 

 

where, E and 𝑣 are substituted in above equation from equation (6.3) 
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In the above equation 𝑚∗ is the electron effective mass and me is the electron rest mass. The 

polaron effective mass is given as m = 𝑚∗ 𝑣0
2

𝑤0
2 

Fermi’s golden rule model: 

In this model the energy relaxation time (for emission of LO phonon) for an isotropic medium can 

be expressed as below [1]: 

 1

𝜏𝑒
= 𝛼𝜔𝐿𝑂

1

𝑘
 √

2𝑚∗𝜔𝐿𝑂

ℏ
 (𝑁𝑞 + 1) 𝑙𝑛 

[
 
 
 𝑘 + √𝑘2 −

2𝑚∗𝜔𝐿𝑂

ℏ

𝑘 − √𝑘2 −
2𝑚∗𝜔𝐿𝑂

ℏ ]
 
 
 

 (6.6) 

 

In the above equation, k represents electron wave vector, 𝑁𝑞  =
1

(𝑒
ℏ𝜔𝐿𝑂

𝐾𝑇 −1)

 is the phonon 

occupation number, 𝑚∗ is the effective electron mass in the lattice. 

 

Since, in the Fermi golden rule approach independent collisions are considered, we thus 

can say  that electron emits a phonon of energy ℏ𝜔𝐿𝑂 after every 𝜏𝑒 seconds and hence travels a 

distance of 𝑣𝜏𝑒, where 𝑣 = √2𝑚∗𝐸𝑒𝑙 is the velocity of electron and 𝐸𝑒𝑙 is the electron energy; 

this model is reported earlier in [81]. So, to allow comparison with Thornber – Feynman model, 

we can express energy loss per unit distance in the Fermi golden rule approach as:  

 𝑒𝐸 =  
ℏ𝜔𝐿𝑂

𝑣𝜏𝑒
 (6.7) 

 

Now, we can simplify Equation (6) as below: 

 1

𝜏𝑒
= √

2𝑚∗

𝐸𝑒𝑙

𝑒2𝜔𝐿𝑂(𝑁𝑞 + 1)

ℏ
(

1

𝜀∞
−

1

𝜀0
) 𝑙𝑛 [√

𝐸𝑒𝑙

ℏ𝜔𝐿𝑂
−  1  + √

𝐸𝑒𝑙

ℏ𝜔𝐿𝑂
] (6.8) 
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The above simplification is performed in Appendix B. 

It is to be noted that for all materials BN, AlN, GaN and InN 𝛽  =
ℏ𝜔𝐿𝑂

𝐾𝑇
 >  1 (see Table 6.II), 

hence, the physically realistic assumption that phonon emission dominates over phone absorption 

has been made, and phonon absorption has not been taken into account in the above model. Phonon 

absorption becomes significant for temperatures above phonon energy.  

 

6.3 Results and Discussion 

For plotting the Thornber – Feynman curves we have used the polaron parameters for cubic 

BN, AlN, GaN and InN as reported in Table 6.I. The material parameters used for the cubic nitrides 

is tabulated in Table 6. II.  

Fig. 6.1 presents plots showing energy lost per unit distance versus the electron velocity 

under both the Thornber – Feynman and the Fermi golden rule regimes. It is very conspicuous that 

the Fermi Golden rule underestimates the energy loss throughout the entire range of electron 

velocity under consideration. Fig .2 depicts the ratio of energy loss as predicted by the Thornber – 

Feynman model to the Fermi golden rule prediction values. These ratios range from 2 – 10 (for the 

velocity range under consideration) for BN, AlN and GaN whereas for InN it ranges from 2 – 14. 

We report the threshold value of velocity, 𝑣𝑇ℎ (which is the maximum attainable velocity 

in the stable regime on Thornber – Feynman curves) and 𝐸𝑇ℎ (maximum value of electric field to 

ensure steady state velocity of electron) which corresponds to 𝐸𝑚𝑎𝑥 on traditional experimentally 

obtained velocity – field curves used for determining mobility and other transport parameters) in 

Table 6. III. Zinc blende BN nitride though being an indirect band gap semiconductor is of limited 

importance in optoelectronics, but as seen from Table 6. III it exhibits highest threshold electric 

field of 1588 KV/cm as the phonon energy in BN nitride is 161.8 meV which is the highest of all 
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materials under consideration. Of all the materials, InN has the highest threshold velocity of 1.4 x 

108 cm/sec (since, the Fröhlich coupling constant is least in InN). 

Applying the approach in Ref. [81], we determine the possibility of low field runaway in 

cubic III-Nitrides. Fig. 6.3 shows the energy lost by electron per unit distance versus electron 

energy as determined under the Thornber – Feynman model. The vertical arrows represent the 

energy of the closest upper valley in the conduction band. Before proceeding further with this 

discussion on runaway we like to point out (for Fig. 6.3) that the Fröhlich coupling constant of BN 

is second highest (AlN has the highest = 0.7076, it is quite close to BN). The phonon energy in 

AlN is 111.2 meV but as shown in Table 6. II the polaron effective mass of BN is lower than AlN, 

and, therefore, we see that threshold is reached earlier in AlN as compared to BN. For all electron 

energies below the threshold for AlN the energy loss per unit distance is lower in BN as compared 

to AlN. As we have explained earlier, if for a given applied electric field the steady state solution 

of velocity falls in the “unstable” region then a slight increase in electron energy due to fluctuation 

would cause the energy loss to the lattice to decrease over the energy gained from the field. Under 

this condition the electron would continue to accelerate along the downward branch of the unstable 

region, and the magnitude of acceleration would continue to increase as the electron falls along 

the branch as the difference between applied field and the instantaneous field corresponding to 

electron energy increases. Finally, the electron appears in the next higher upper valley in the 

conduction band. Let us first consider the case of AlN, let the applied field be 626 KeV/cm, this 

field corresponds  to electron energy ≈  1𝑒𝑉 (unstable region) and ≈  0.2 𝑒𝑉 (for stable region). 

If the injected electron energy in the AlN sample is more than 1 eV (say 2.1 eV) then it will be 

acted upon by a force equal to difference between applied field and the field corresponding to its 

instantaneous energy along the way downward in the unstable branch. If we assume maximum 

force acting on the electron (equal to difference between applied field and field corresponding to 
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closest upper valley = 270 KeV/cm) we achieve a “runway” in a distance of 𝐿𝑟
𝐴𝑙𝑁  >  30 𝑛𝑚. We 

also observe that for InN - which has smallest Fröhlich coupling constant - there is a very broad 

region near the peak, if we carry out similar analysis we find the runaway length to be  𝐿𝑟
𝐼𝑛𝑁  >

 909 𝑛𝑚 which is significantly large and practically precludes runaway as other scattering 

mechanisms would come into play along the journey of the electron. Also, for BN we find 𝐿𝑟
𝐵𝑁  >

 18 𝜇𝑚 making runaway unlikely. But in AlN the runaway is highly likely.  

 

The mobility values as deduced from the Thornber – Feynman model are reported in Table 

6. IV. As expected, InN with lowest Fröhlich coupling constant has a mobility of 6541 
𝑐𝑚2

𝑉−𝑠𝑒𝑐
 

whereas AlN with highest coupling constant has a low mobility of 438 
𝑐𝑚2

𝑉−𝑠𝑒𝑐
.  

 

6.4 Conclusion 

In this paper we have established that Fermi’s Golden rule in cubic III-Nitrides - which have high 

Fröhlich coupling constant (close to 1) -  underestimates the energy lost by an electron to the lattice 

under an applied electric field. We have estimated threshold values of velocity, electric field and 

mobility under the Thornber – Feynman regime and most importantly we have determined the 

corrections to E-v relationship when Fermi’s Golden rule is applied to it. 
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Table 6.I Polaron parameters for cubic III-Nitrides in units where ℏ =  𝜔𝐿𝑂  =  𝑚∗  =  1 (These 

parameters are used to integrate Eq (6.3) and finally we plot the curves using equation (6.4) and 

(6.5) respectively) 

   

 
Fröhlich 

coupling 

constant 

𝑣0 𝑤0 
Ground state 

energy (G) 

Ratio of polaron mass 

to lattice effective mass 
𝑚

𝑚∗
 

BN 0.5648 3.0592 2.9286 - 0.5689 1.0912 

AlN 0.7076 3.0753 2.9100 -0.7140 1.1169 

GaN 0.3527 3.0362 2.9559 -0.3543 1.0551 

InN 0.1703 3.0172 2.9789 -0.1707 1.0259 

 

Table 6.II. Material parameters for cubic III-Nitrides 

 BN AlN GaN InN 

𝜔𝐿𝑂(𝑐𝑚−1) 1305a 897d 735.5g 588.7g 

𝜀∞ 4.5b 4.25e 5.35g 8.4g 

𝑚∗ 0.64c 0.33f 0.15g 0.054g 

𝛽 6.26 4.30 3.53 2.82 
 

a Reference 105  d Reference 108  g Reference 111 

b Reference 106  e Reference 109 

c Reference 107  f Reference 110 

                 

Table 6. III Threshold values of electron velocity and applied electric field. (These values  are 

analogous to Vmax and Emax on velocity -  field curves for scattering limited to LO phonons ) 

 

 BN AlN GaN InN 

 TF FGR TF FGR TF FGR TF FGR 

𝑣𝑇ℎ(x 107 cm/s) 5.14 4 5.9 4.4 8.7 6.2 14 8.8 

𝐸𝑇ℎ(KV/cm) 1588 674 780 345.3 204.8 86.17 43.84 17.88 
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Table 6. IV Mobility of cubic III-Nitride at T = 300 K obtained in non-perturbative TF model and 

compared with FGR first order results. 

 

 Mobility (
𝑐𝑚2

𝑉−𝑠𝑒𝑐
)  (in TF) Mobility (

𝑐𝑚2

𝑉−𝑠𝑒𝑐
) (in FGR) 

BN 838          830 

AlN 438         1660 

GaN 1412       16,937 

InN 6541     408,990 

 

 

Fig. 6.1 Graph showing energy loss per unit distance versus electron velocity at T =300K for cubic-

BN, AlN, GaN and InN respectively. Blue line represents Thornber -Feynman curve and Red line 

shows Fermi’s golden rule model. 
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Fig. 6.2 Plots showing the ratio of energy loss predicted by Thornber -Feynman model to those 

predicted by the Fermi golden rule model for cubic-BN, AlN, GaN and InN respectively. 

 

 

Fig. 6.3  Plot showing energy loss per unit distance versus polaron energy at T = 300 K (Thornber 

- Feynman model). The energy of the closest upper valley is indicated by vertical arrows. 
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Chapter 7 

ELECTRIC FIELD – VELOCITY RELATION FOR STRONGLY 

COUPLED FRÖHLICH POLARON IN EMERGING 2D 

MATERIALS 
 

[Submitted for publication] 

 

7.1 Introduction 

Graphene’s zero band gap is a major limitation in its application to electronic devices 

despite its zero effective mass and high mobility (~104𝑐𝑚2/𝑉 − 𝑠𝑒𝑐 ) [112-113].  Accordingly, 

there has been extensive research on potential two dimensional alternatives, including, TMDc 

(Transition Metal Dichalcogenides). These TMDc are of the form 𝑀𝑋2 where M is a transition 

metal and X is a chalcogen, namely, S, Se or Te. Previous studies on carrier transport have been 

done on monolayer group IV chalcogenides for M = Mo, W and have concluded that carrier – 

longitudinal acoustic (LA) phonon scattering is the dominant mechanism limiting mobility at room 

temperature between the range 180 – 800 𝑐𝑚2/𝑉 − 𝑠𝑒𝑐  [114-116].  

On the other hand, group IV chalcogenides with M = Hf and Zr have been predicted to have high 

carrier mobility at room temperature [117-118]. It should be noted that, the carrier – longitudinal 

optical (LO) phonon coupling will become the dominant scattering mechanism at room 

temperature and above if the carrier – LO phonon coupling increases, which is defined by the 

dimensionless Fröhlich coupling constant 𝛼 [1,119]: 

 𝛼 =
𝑒2

ℏ
 (

1

𝜀∞
−

1

𝜀0
) (

𝑚𝑏

2ℏ𝜔𝐿𝑂
)
1/2

 (7.1) 
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where, 𝑚𝑏 is the effective electron mass in the conduction band, 𝜀∞ and 𝜀0 are the (in-plane) high 

frequency and static dielectric constant and ℏ𝜔𝐿𝑂 is the zone-center LO phonon energy, and 𝑒 is 

the electronic charge.  Previous studies [114,116,120] on 𝑀𝑜𝑋2 (𝑋 ≡ 𝑆, 𝑆𝑒 𝑎𝑛𝑑 𝑇𝑒) and 

𝑊𝑋2(𝑋 ≡ 𝑆, 𝑆𝑒 𝑎𝑛𝑑 𝑇𝑒) have studied the electron – LO phonon interaction within the purview of 

Fermi’s Golden Rule (FGR) which is based on first order perturbation theory. The electron 

coupling to LO phonons in 𝑀𝑜𝑋2 and 𝑊𝑋2 may be modeled using the Fermi Golden Rule since 

the Fröhlich coupling constant 𝛼 is small compared to unity: for 𝑀𝑜𝑋2 (𝑋 ≡ 𝑆, 𝑆𝑒 𝑎𝑛𝑑 𝑇𝑒), 

0.0048, 0.03 and 0.07, respectively, and for 𝑊𝑆𝑒2, 0.0157. On the other hand, the values of 𝛼 for 

𝐻𝑓𝑋2 (𝑋 ≡ 𝑆 𝑎𝑛𝑑 𝑆𝑒) are 0.7875 and 0.5879, and for 𝑍𝑟𝑋2(𝑋 ≡ 𝑆 𝑎𝑛𝑑 𝑆𝑒), 0.8495 and 0.6471 

which indicate that the electrons couple more strongly to LO phonons in the these materials. For 

such materials with strong coupling as indicated by high 𝛼, the FGR model breaks down which 

assumes that collisions of electrons with LO phonons are independent; that is, they are sufficiently 

separated in time so that there is no quantum interference between the collisions and a further 

assumption is that the electron interacts with only one phonon at a time. As an example, it was 

first noted in the context of 3D materials [80] that, for the materials with LO phonon energy in the 

range 50 – 100 meV the mean free time between collisions (based on perturbative treatment) 

becomes as small as 2 x 10−15sec which is further reduced  at high temperatures where phonon 

absorption becomes significant.  Consequently, in our previous work on 3D wurtzite [104] and 

cubic materials [121] we investigated the energy loss per unit distance (electric field ) versus 

electron velocity in high alpha materials in the purview of non-perturbative path integral formalism 

by Thornber and Feynman (TF) [80] and the FGR model and found that the FGR model 

underestimates the energy lost by the electron as a result of the Fröhlich interaction, as it neglects 

the situation of many phonons interacting with the electron simultaneously and the quantum 

interferences between the emitted phonons in successive collisions; in such situations the 
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scattering events cannot be separated in time. The correction factors for the energy loss for the 

FGR was about an order of magnitude and higher for materials with 𝛼 in the range 0.21 – 0.93 for 

wurtzite and 0.1 – 0.7 for cubic materials.  In this paper we apply Thornber – Feynman path integral 

formalism for   𝐻𝑓𝑋2 (𝑋 ≡ 𝑆, 𝑆𝑒) and 𝑍𝑟𝑋2(𝑋 ≡ 𝑆, 𝑆𝑒) and determine the electric field vs velocity 

relation and also determine other transport parameters such as peak velocity, peak electric field, 

mobility and effective polaron mass.   

 

7.2 Theory 

An  electron in any polar material interacts strongly with the neighboring lattice  causing 

it to distort, as a result the electron is surrounded with a cloud of phonons, a state referred to as 

“polaron”.  This distorted lattice state moves along with the electron in the lattice [82,83]. The 

electron in the lattice experiences increased apparent effective mass and undergoes change in its 

eigen energy states. Further, if the local distortion in the lattice due to the LO phonon interaction 

is assumed to be absent or weak the electron moves like a free particle with energy, 𝐸𝑘 =
ℏ2𝑘2

2𝑚𝑏
 

(assuming parabolic conduction band). 3D bulk polarons have been studied in detail in the past 

[83]. In [83] Feynman modelled the electron interaction with LO phonon in the purview of Fröhlich 

model where the LO phonon perturbation Hamiltonian is given as: 

  

 𝐻 = ∑(𝐶𝑞𝑎𝑞 𝑒
𝑖𝒒⋅𝒓 + 𝐶𝑞

∗ 𝑎𝑞
†𝑒−𝑖𝒒⋅𝒓)

𝑞

 (7.2) 

where, 

𝐶𝑞 = (−𝑖
ℏ𝜔𝐿𝑂

𝑞
) (

ℏ

2𝑚𝑏𝜔𝐿𝑂
)

1
4
(
4𝜋𝛼

𝑉
)
1/2
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In the above equation, 𝑞 is the LO phonon wave vector and 𝑉 is the volume of the material. 

The LO phonon frequency 𝜔𝐿𝑂 is assumed to be dispersion less and taken as the zone center 

frequency.  Feynman applied the path integral method to eliminate the lattice coordinates to find 

the upper bound on the ground state eigen energy of the polaron (see Eqs. 31 &33 in [83]). For the 

present 2D case we use the 2D scaled Hamiltonian of Eq (7.2) [122], such that: 

 𝐶𝑞 =
𝐶

√𝑞
=  − 𝑖ℏ𝜔 (

√2𝜋𝛼

𝐴𝑞
)

1/2

(
ℏ

𝑚𝑏𝜔
)
1/4

 (7.3) 

 

where, 𝒒 and 𝒓 are 2D vectors and 𝐴 is the area of the material. The ground state energy of this 

2D Fröhlich polaron is obtained by minimizing the following expression with respect to the 

variational parameters 𝑣 and 𝑤 [122,123]: 

 

 

𝐺 =  
(𝑣 − 𝑤)2

2𝑣
−

𝛼

2
(
𝜋

2
)

1
2
∫ 𝑑𝑡

∞

0

 
𝑒−𝑡

√ 𝑤2

2𝑣2 𝑡 +  
𝑣2 − 𝑤2

2𝑣3 (1 − 𝑒−𝑣𝑡)

 

 

(7.4) 

Further, the mass of polaron becomes: 

 𝑚∗ = 𝑚𝑏

𝑣0
2

𝑤0
2 (7.5) 

 

where, 𝑣0 and 𝑤0 are obtained after minimizing 𝐺 in Eq. (7.4). We plot variation of 𝑣0 and 𝑤0 as 

a function of 𝛼 in Fig. 7.1(a) and variation of ratio of polaron mass to effective mass of electron, 

𝑚∗

𝑚𝑏
 in Fig. 7.1(b). 
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Fig. 7.1 (a) Variational parameters 𝑣0 and 𝑤0 obtained after minimizing Eq. 7.4 shown for different 

Fröhlich coupling constant 𝛼 ,  (b) Ratio of polaron mass to effective mass of electron in 

conduction band for various 𝛼 for 2D and 3D respectively. 

 

From Fig 7.1(a) and (b), it is evident that in weak coupling limit 𝑣0 → 𝑤0 and 𝑚∗ → 𝑚𝑏. It is to 

be noted that there exists a definite scaling relation between 3D and 2D polaron properties which 

has been derived in [124] and is reproduced below: 

 

𝑚2𝐷
∗ (𝛼)

(𝑚𝑏)2𝐷
= 

𝑚3𝐷
∗ (

3𝜋
4

𝛼)

(𝑚𝑏)3𝐷
   

 

𝑍2𝐷(𝛼;𝜔) = 𝑍3𝐷 (
3𝜋

4
𝛼;𝜔) 

 

𝜇2𝐷(𝛼) =  𝜇3𝐷 (
3𝜋

4
𝛼) 

(7.5.1) 

 

(7.5.2) 

 

(7.5.3) 

 

(a

) 

(b

) 
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It can be seen from Eq. 7.5.1 and in Fig. 7.1(b) dotted line that for the same value of 𝛼 the 2D 

polaron is heavier as compared to a 3D polaron. Further, Eq. 7.5.2 and 7.5.3 suggest that the 

apparent impedance experienced by the polaron  and its mobility in 2D can be computed from the 

3D expression as in Refs. 80 and 82 with the substitution 𝛼 →  
3𝜋

4
𝛼. 

7.3 Electric Field – Velocity relation 

In [80], motivated by finding the peak energy loss of the electron to the lattice due to 

interaction with LO phonon, Thornber – Feynman approached the entire problem by finding the 

expectation value of the steady – state velocity obtained by the electron when subjected to a one -

dimensional electric field E. The general expression (expressed in Feynman units ℏ = 𝑚𝑏 =

 𝜔𝑞 = 1) which preserves the physics of the problem is given below: 

 𝑬 =  ∫ 𝑑𝜉

∞

−∞

 ∑|𝐶𝑞|
2
𝒒

cos(𝜔𝑞𝜉)

sin (
1
2

𝛽𝜔𝑞)
 𝑒−𝒒⋅𝒗 (𝜉+𝑖𝛽/2)𝑒

−𝑘2 𝐾̅
𝛽′(𝜉)

𝑞

 (7.6) 

where, 𝛽 = 1/𝑘𝐵𝑇 in Feynman units (𝛽 = ℏ𝜔𝐿𝑂/𝑘𝐵𝑇 in SI units), 𝒗 is the steady state velocity 

of electron and 𝐾𝛽′(𝜉) is a an expression which depends on impedance of the electron and 

oscillator distribution,  𝐾𝛽′(𝜉) = D(𝜉 + 𝑖𝛽/2)/2 [80,82] is given as below: 

𝐾̅𝛽′(𝜉) =
1

2

𝑤0
2

𝑣0
2 [(

𝑣0
2 − 𝑤0

2

𝑤0
2𝑣0

) ×
𝑐𝑜𝑠ℎ (

1
2

𝛽𝑣0) − 𝑐𝑜𝑠(𝑣0𝜉)

𝑠𝑖𝑛ℎ (
1
2

𝛽𝑣0)
+

𝜉2

𝛽
+

𝛽

4
] 

In the above expression of 𝐾𝛽′(𝜉), the 𝑣0 and 𝑤0 are as given in Fig. 7.1(a). In the Feynman 

model it is assumed that the phonon model of the lattice consists of a single frequency.  It should 

be noted that 𝑬 in Eq. (6) represents 𝑒𝑬, and the Eq. (7.6) should be interpreted as electric field 

necessary to balance the loss of energy by the electron to the lattice as a result of LO phonon 

interaction while maintaining a steady state velocity 𝒗. 
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  We need to scale Eq. (7.6) for the 2D case, we start by expanding cos(𝑣0𝜉) to the second 

power in the expression of 𝐾̅𝛽′(𝜉), such that cos(𝑣0𝜉) =  1 −
𝑣0

2𝜉2

2
, consequently we can write (the 

simplification is shown in Appendix C.I) : 

 

𝐾̅𝛽′(𝜉) =
𝐵0

2𝛽
+

𝐴0𝜉
2

2𝛽
 

where, 

 

𝐴0 = [(
𝑣0

2 − 𝑤0
2

𝑣0
2 ) × {

𝑣0𝛽

2𝑠𝑖𝑛ℎ (
1
2

𝛽𝑣0)
− 1} + 1] 

 

𝐵0 = 
𝛽𝑤0

2

𝑣0
2 [(

𝑣0
2 − 𝑤0

2

𝑤0
2𝑣0

) × 𝑡𝑎𝑛ℎ (
1

4
𝛽𝑣0) +

𝛽

4
] 

(7.7) 

 

Now, substituting for 𝐾̅𝛽′(𝜉) from Eq. (7.7) in Eq. (7.6), we get (the simplification is shown in 

Appendix C.II): 

 

𝐸 =  
𝛼

4 𝑠𝑖𝑛ℎ (
1
2

𝛽)
 ∙ √

𝛽

𝜋
∙

1

𝐴0
∫ 𝑑𝜙

2𝜋

0

𝑐𝑜𝑠(𝜙)  ∫ 𝑑𝑘 
𝑞

|𝑞|

∞

0

 𝑒𝑥𝑝 (−
𝛽𝑞2

8𝐴0
[
4𝐵0

𝛽2
− 𝐴0]) 

× (𝑒
−𝛽
2  𝑒𝑥𝑝 (

−𝛽

2
(
𝑐𝑜𝑠(𝜙)𝑣

√𝐴0

−
𝑞

2
+

1

𝑞
)

2

) + 𝑒
𝛽
2𝑒𝑥𝑝 (

−𝛽

2
(
𝑐𝑜𝑠(𝜙)𝑣

√𝐴0

−
𝑞

2
−

1

𝑞
)

2

)) 

 

(7.8) 

 

The expression in Eq. (7.8) is the final expression for the energy lost per unit distance (eE), 

in Feynman units, for an electron interacting with LO phonons in a 2D polar medium with a steady 

state velocity 𝒗.  
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Now, we derive the Fermi’s golden rule based model to compare it with the above expression 

obtained in the purview of non-perturbative treatment. The scattering rate of phonons for an 

electron for a transition from a state |𝒌⟩ to |𝒌′⟩ is given as: 

 

 

1

𝜏𝑒,𝑎
=

2𝜋

ℏ
 |𝑀𝑞|

2
𝛿(𝐸(𝒌′) − 𝐸(𝒌) ± ℏ𝜔𝐿𝑂) 

 

(7.9a) 

where, the upper ‘+’ sign in the parenthesis indicates emission and the lower ‘−’ for absorption 

respectively.  𝑀𝑞 is the electron – phonon coupling matrix element defined by [1]: 

 𝑀𝑞 =  ⟨𝒌′,  𝑁𝒒 +
𝟏

𝟐
±

1

2
|𝐻𝐹𝑟|𝒌, 𝑁𝒒 +

𝟏

𝟐
±

1

2
⟩ (7.9b) 

 

In Eq. 7.9(b), 𝑁𝑞 = 1/(exp (
ℏ𝜔𝐿𝑂

𝑘𝐵𝑇
) − 1 ) is the phonon occupation number. It is to be noted 

that during emission of phonons the electron – phonon state changes from |𝒌, 𝑁𝑞⟩ to |𝒌′, 𝑁𝑞 + 1⟩ 

and during absorption it changes from  |𝒌, 𝑁𝑞⟩ to |𝒌′, 𝑁𝑞 − 1⟩. We consider the electrons to be 

strictly two dimensional, so the wavefunction can be written as: 

 |𝒌⟩ =  
𝑒𝑖𝒌⋅𝒓

√𝐴
 (7.10) 

 

Evaluating the equation 7.9(a), we get: 

 

 

1

𝜏𝑒,𝑎
= 𝛼𝜔𝐿𝑂√

ℏ𝜔𝐿𝑂

ℰ
(𝑁𝑞 +

1

2
±

1

2
) ∫

𝑑𝑞

𝑞

1

√1 −
ℏ2

2𝑚𝑏ℰ
(
𝑞
2

±
𝑚𝑏𝜔𝐿𝑂

𝑞ℏ
)
2

𝒒𝒎𝒂𝒙

𝑞𝑚𝑖𝑛

 
(7.11) 
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where, ℰ =
ℏ2𝑘2

2𝑚𝑏
 is the kinetic energy of the electron in the conduction band and 𝑞𝑚𝑖𝑛 and 

𝑞𝑚𝑎𝑥 are the limits determined for emission and absorption as follows: 

Emission: 

 

𝑞𝑚𝑖𝑛 =
√2𝑚𝑏

ℏ
 (√ℰ − √ℰ − ℏ𝜔𝐿𝑂 ) 

 

𝑞𝑚𝑎𝑥 =
√2𝑚𝑏

ℏ
 (√ℰ + √ℰ − ℏ𝜔𝐿𝑂 ) 

 

(7.12) 

 

Absorption: 

 

𝑞𝑚𝑖𝑛 =
√2𝑚𝑏

ℏ
 (−√ℰ + √ℰ + ℏ𝜔𝐿𝑂 ) 

 

𝑞𝑚𝑎𝑥 =
√2𝑚𝑏

ℏ
 (√ℰ + √ℰ + ℏ𝜔LO ) 

(7.13) 

 

From Eq. (7.11) it follows that an electron looses an energy ℏ𝜔𝐿𝑂 when it travels a distance 𝑣𝜏𝑒 

and similarly it gains ℏ𝜔𝐿𝑂 when it travels 𝑣𝜏𝑎 so the net loss in energy per unit distance in the 

FGR regime is given by [81]: 

  

 𝐸 =
ℏ𝜔𝐿𝑂

𝑣
(
1

𝜏𝑒
−

1

𝜏𝑎
) (7.14) 
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Also, from Eq. (7.12) it is clear that the condition for emission is ℰ ≥ ℏ𝜔𝐿𝑂 because the limits 

must be a real positive number which represents the phonon wave vector. So, the FGR predicts 

that no loss of energy takes place unless the electron energy is greater than or equal to the LO 

phonon energy. 

 

7.4 Results and Discussion 

We first plot in Fig. 7.2 the phonon emission and absorption rates in FGR regime as 

obtained in Eq. (7.11), we observe that for all the four materials the phonon emission rate is ~ 2.1 

– 3.7 times higher than the phonon absorption rate at room temperature (actual values tabulated in 

Table. 7.I), unlike 3D materials where the emission rate is about an order of magnitude or higher 

[1]. Thus, the phonon absorption rate cannot be neglected here at room temperature and have been 

duly accounted for in Eq. (14) to model energy loss per unit distance. From Fig. 2 and Table I, we 

see that the mean time between the emission ranges from ~ 0.9 x 10-14 – 1.7 x 10-14 sec whereas, 

the FGR is valid only when the electron phonon interaction time scale 𝑡 ≫
2

𝜔𝐿𝑂
 [1,104] which lies 

in the range ~ 3.9 x 10-14 – 6.9 x 10-14 sec. It is evident that the mean time between phonon 

emissions is even smaller than the minimum interaction time required for the validity of the FGR.  

 

Now we plot Thornber – Feynman curves as obtained in Eq. (7.8) after converting from 

Feynman units and compare them with FGR curves as obtained in Eq. (7.11). We see that the TF 

curves exhibit a monotonically increasing relation between eE and velocity until a threshold 

velocity 𝑣𝑡ℎ which corresponds to peak energy loss, say e𝐸𝑡ℎ. This region with increasing slope is 

the stable region as any increase in the velocity (due to fluctuation) causes energy loss to the lattice 

to increase and hence the velocity decreases until the total loss is balanced by the energy gained 

from the electric field, alternatively, if the velocity decreases then the loss to the lattice is reduced 
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below what the electron gains energy from the external field due to this net gain of energy the 

velocity increases until the loss to lattice is balanced by the gain from the field. Similarly, the 

region with negative slope in the TF curve is the unstable region as any increase in the velocity is 

accompanied by a decrease in the energy loss to the lattice consequently the electron gains a net 

energy and continues to accelerate indefinitely unless there are some other scattering mechanisms 

with higher thresholds.  

 

We have tabulated the peak energy loss and the threshold velocity for all the materials in 

Table . II. We can see that 𝑍𝑟𝑆2 with Fröhlich coupling constant 𝛼 = 0.85 has maximum energy 

loss and 𝐻𝑓𝑆𝑒2 with 𝛼 = 0.59 has minimum peak energy loss, the peak energy loss should increase 

with 𝛼 as it indicates strong interaction with LO phonons. However, we also expect that a higher 

𝛼 will increase the apparent mass as in Fig . 7.1(b) this increase causes reduction in the threshold 

velocity because near  the threshold region 
1

2
 𝑚𝑏 (

𝑣0

𝑤0
)
2
𝑣𝑡ℎ

2 ≈ ℏ𝜔𝐿𝑂 [80] and hence as depicted in 

Table 7.II we observe that with increasing 𝛼 the threshold velocity is reduced . However, the ratio 

of peak energy loss as predicted by TF to FGR peak increases with decrease in 𝛽.  We see that for 

𝐻𝑓𝑆2 with 𝛽 = 1.28 has the ratio 2.4 whereas for  𝑍𝑟𝑆𝑒2 which has lowest 𝛽 = 0.74 at room 

temperature of all the four materials has a ratio of 3.5, this is because a lower 𝛽 implies higher 

phonon occupation number 𝑁𝑞 and since the energy loss to lattice in TF formalism duly takes care 

of interferences between emitted phonons predicts a higher energy loss as compared to TF which 

treats phonon emissions independent of each other. Finally, we deduce the mobility, 𝜇𝑇𝐹 using the 

𝐸(𝑣) curves in Fig. 7.3 by finding averaging 
𝑑𝑣

𝑑𝐸(𝑣)
 in the stable region [121], we have depicted 
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them in Table 7.III. It is seen that 𝑍𝑟𝑆𝑒2 has the highest mobility 449.1 
𝑐𝑚2

𝑉−𝑠
 of all the materials 

followed by 𝐻𝑓𝑆𝑒2 whose mobility is 239.78 
𝑐𝑚2

𝑉−𝑠
. 

 

 

Table 7.I. Comparison of min interaction limit with actual phonon mean free time 

 𝑡𝑚𝑖𝑛 =
2

𝜔𝐿𝑂
 (x 10−14sec) 

Average mean time 

between phonon 

emission (x 10-14 sec) 

𝐻𝑓𝑆2 3.97 0.97 

𝐻𝑓𝑆𝑒2 5.2 1.6 

𝑍𝑟𝑆2 4.1 0.92 

𝑍𝑟𝑆𝑒2 6.9 1.7 

  

 

Table 7.II Comparison of computed TF and FGR parameters 

 TF FGR 
𝐸𝑡ℎ

𝑇𝐹

𝐸𝑡ℎ
𝐹𝐺𝑅 

𝛽

=
ℏ𝜔𝐿𝑂

𝑘𝐵𝑇
 

𝛼 

𝜇𝑇𝐹 

(
𝑐𝑚2

𝑉 − 𝑠
)  

𝐸𝑡ℎ 

(KV/cm) 

𝑣𝑡ℎ     

(x 

107cm) 

𝐸𝑡ℎ 

(KV/cm) 

𝑣𝑡ℎ 

(x 

107cm) 

𝐻𝑓𝑆2 476 3.0 196.7 2.2 2.42 1.28 0.7875 90.76 

𝐻𝑓𝑆𝑒2 246.6 4.0 87.7 2.3 2.81 0.98 0.5879 239.78 

𝑍𝑟𝑆2 576.7 2.5 231.8 1.93 2.49 1.24 0.8495 58.32 

𝑍𝑟𝑆𝑒2 252 3.8 72 1.77 3.5 0.74 0.7371 449.1 
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Fig. 7.2 Phonon emission and absorption rates obtained under Fermi’s Golden Rule formalism. 

The dashed line indicates the emission threshold ℏ𝜔𝐿𝑂 for different materials whose values are 

given in Table 7.III.  
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Fig. 7.3 Comparison of Thornber – Feynman vs. FGR based electric field versus velocity curves 

for electron. 

 

Table 7.III Material parameters used in calculation for3D materials 

 𝜔𝐿𝑂(𝑐𝑚−1) 𝑚𝑏 𝜀∞ 𝜀0 

𝐻𝑓𝑆2 267.6a 0.24a 10.2b 53.6b 

𝐻𝑓𝑆𝑒2 205a 0.18a 13.9b 83b 

𝑍𝑟𝑆2 260.2a 0.31a 11.2b 66.7b 

𝑍𝑟𝑆𝑒2 153.7a 0.22a 15.76c 84.59c 

 

aReference [125] 

bReference [126] 

cReference [127] 
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7.5 Conclusions 

In this paper we have evaluated energy lost per unit distance (electric field) versus velocity of 

electrons for 2D materials with strong carrier - LO phonon interactions within the purview of 

Thornber – Feynman formalism applied to 2D Fröhlich polaron. We demonstrated that Fermi’s 

Golden Rule based scattering rate cannot be applied to these materials and it underestimates the 

energy loss by the electron to the lattice.  We find the energy loss rates are underestimated by the 

FGR by about an order of magnitude for the materials considered with the largest carrier – LO 

phonon coupling constants. Finally, out of all four materials 𝑍𝑟𝑆𝑒2 has the highest mobility 449.1 

𝑐𝑚2

𝑉−𝑠
 at room temperature. 
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Chapter 8 

ROLE OF CONFINED OPTICAL PHONONS IN EXCITON 

GENERATION IN SPHERICAL QUANTUM DOTS 

 
[Submitted to MDPI, Materials] 

 

8.1 Introduction 

The discrete energy levels in quantum dots (QDs) due to confinement of carriers in three 

dimensions makes them attractive in quantum information processing for applications such as 

single photon source [128] and entangled photon source [129]. The excitonic excitations in a single 

QD form a basis for a two level system to be implemented as a qubit in quantum computing 

applications [130]. The qubit states can be manipulated by optical excitations using laser sources 

[131]. In the recent past, numerous studies have been done with III-V-based self-assembled QDs 

for qubit state preparation [132-136]. These self-assembled quantum dots are nanoscale islands of 

a smaller bandgap material embedded in the matrix of larger bandgap material with a smaller 

mismatch in their elastic properties [137]. The discrete energy states in the QD are subjected to 

interactions with phonon modes leading to dephasing [136-138]. However, the phonon modes also 

lead to the creation of excitons and such schemes have been studied extensively taking into account 

bulk acoustic phonon modes [132-136]. However in the past, experimental observation was made 

on the role of longitudinal optical (LO) phonon assisted exciton generation in InGaAs/GaAs based 

QD [139]; it was observed that the exciton generation was caused due to emission of LO phonon 

of frequencies which is equal to near-zone center (in GaAs) value . In III-V based QDs the polar 

optical modes are significantly modified as a result of confinement [1,13-15]. The modified polar 

optical modes are (a) confined LO modes, and (b) surface optical (SO) modes. In this paper we 
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investigate the role of confined LO phonon modes using the dielectric continuum model [1,3,142] 

in the creation of excitons when subjected to a continuous optical energy from an incident laser. 

 

8.2 Description of confined phonon modes 

Let the quantum dot of radius R with a dielectric constant 𝜀1(𝜔) be embedded in the barrier 

material with dielectric constant 𝜀2(𝜔). The polar optical phonon modes inside and outside the 

quantum dot produce macroscopic polarization P, due to which the associated electric 

displacement vector D, the electric field E, and the Fröhlich potential, Φ, in each medium are 

related as follows [1,3,142]: 

 

 𝑫 = 𝜀𝑬 = 𝑬 + 4𝜋𝑷 ((8.1) 

 𝑬 = −∇Φ ((8.2) 

 ∇ ⋅ 𝑫 = 0 ((8.3) 

In equation (8.1), 𝜀(𝜔) is obeys the Lyddane-Sach-Teller relation as below:  

 𝜀1,2(𝜔) = 𝜀∞

𝜔2 − 𝜔𝐿𝑂1,2

2

𝜔2 − 𝜔𝑇𝑂1,2

2  ((4) 

 

where, 𝜔𝐿𝑂 and 𝜔𝑇𝑂 are the zone center LO and TO phonon frequency and 𝜀∞ is the high 

frequency dielectric constant. The divergence of the displacement vector D vanishes in Eq. (8.3) 

because it is assumed that no free charge exists inside the material. Now, from Eq. (8.1) – (8.3), 

we get the following relation in each medium: 

 

 𝜀(𝜔)∇2Φ(𝒓) = 0 ((8.5) 
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There are two possible solutions which satisfy Eq. (8.4): (a) confined LO phonon modes, which 

corresponds to 𝜀(𝜔) = 0 (b) surface optical modes, which corresponds to ∇2Φ(𝒓) = 0. For the 

confined LO modes, the phonon frequency satisfies 𝜀(𝜔) = 0, which results in 𝜔 = 𝜔𝐿𝑂 and the 

eigenfunction corresponding to potential Φ(𝒓) can be expressed in spherical coordinates (with 

origin at the center of the quantum dot) after expanding in terms of complete set of orthogonal 

functions 𝑗𝑙(𝑞𝑟)𝑌𝑙
𝑚(𝜃, 𝜑) as follows: 

 Φ(𝑟) =  ∑∑𝐵𝑞𝑗𝑙(𝑞𝑟)𝑌𝑙
𝑚(𝜃, 𝜑)

𝑞𝑙,𝑚

 (8.6) 

 

In Eq. (8.6), 𝑗𝑙(𝑞𝑟) with 𝑙 = 0, 1, 2, 3… represents the spherical Bessel functions of order 𝑙 , 

𝑌𝑙
𝑚(𝜃, 𝜑) represents the spherical harmonics such that −𝑙 ≤ 𝑚 ≤ 𝑙 and 𝐵𝑞 = √

2

𝑅3 ⋅
1

𝑗𝑙+1(𝑞𝑅)
 is the 

normalization constant. Using Eq. (8.6), after imposing the electrostatic boundary conditions: (a) 

continuity of the potential Φ at the interface (b) continuity of normal component of the 

displacement vector D, we see that the potential Φ must vanish at the interface 𝑟 = 𝑅; hence, 

equating Eq. (8.6) to zero we get: 

 𝑗𝑙(𝑞𝑅) = 0. (8.7) 

 

Eq. (8.7) leads to the following solution: 

 𝑞𝑛 =
𝑥𝑛,𝑙

𝑅
 ((8.8) 

 

where, 𝑥𝑛,𝑙 is the 𝑛𝑡ℎ zero of the 𝑙𝑡ℎ order spherical Bessel function. Eq. (8.8) is very significant 

as it describes the effect of dimensional confinement on  phonon wave vector which becomes 

discrete as opposed to being  continuous in the case of bulk material. Finally, the Fröhlich potential 
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as given in Eq. (8.6) can be represented in second quantized form after duly considering 

quantization of amplitudes of the ionic pair of the material as below [140]: 

 Φ(𝑟) =  ∑∑𝑓𝑙𝑚(𝑞𝑛)[𝑎̂𝑙,𝑚(𝑞𝑛)𝑗𝑙(𝑞𝑛𝑟)𝑌𝑙
𝑚(𝜃, 𝜑) + 𝐻. 𝐶. ]

𝑛𝑙,𝑚

 (8.9) 

where, 

𝑓𝑙𝑚(𝑞𝑛) = (
2𝜋ℏ𝜔𝐿𝑂𝐵𝑞

2

𝑞𝑛
2

)

1/2

(
1

𝜖∞
−

1

𝜖0
 )

1 2⁄

 

 

In Eq. (8.9), H.C. represents Hermitian conjugate and 𝑎̂𝑙,𝑚 is the phonon annihilation operator. 

8.3 Confined LO phonon – exciton interaction  

We assume a parabolic confinement potential for the exciton in the ground state [136], so that the 

net charge density can be written as: 

 
𝜌(𝒓) =  −𝑒 (

𝑒−𝑟2 𝑎𝑒
2⁄

𝜋3 2⁄ 𝑎𝑒
3 −

𝑒−𝑟2 𝑎ℎ
2⁄

𝜋3 2⁄ 𝑎ℎ
3 ) (8.10) 

 

where, 𝑎𝑒 and 𝑎ℎ are the electron and hole confinement length such that 𝑎ℎ = 𝑎𝑒/1.15 in GaAs 

taking into account the heavier hole effective mass than that for the electron [136]. The charge 

density in Eq. (8.10) represents a hole in the heavy hole valence band and electron in the 

conduction band both with anti-parallel spins. Now, the confined LO phonon mode interacts with 

the exciton due to the Fröhlich potential Φ, so the interaction Hamiltonian can be expressed as: 

  

 𝐻𝐹𝑟 = ∫𝑑3𝑟  𝜌(𝒓) Φ(𝒓)|2⟩⟨2| (8.11) 

Substituting, for Φ(𝒓) from Eq. (8.9) in Eq. (8.11) we get: 

 𝐻𝐹𝑟 = ∑∑{𝑎̂𝑙,𝑚(𝑞𝑛)𝑓𝑙𝑚(𝑞𝑛)∫𝑑3𝑟  𝑗𝑙(𝑞𝑛𝑟) 𝑌𝑙
𝑚(𝜃, 𝜑) 𝜌(𝒓) + 𝐻. 𝐶} |2⟩⟨2|

𝑛𝑙,𝑚

 (8.12) 
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Now since, 

  ∫ ∫  𝑌𝑙
𝑚(𝜃, 𝜑)

𝜃=𝜋

𝜃=0

𝜑=2𝜋

𝜑=0

sin 𝜃 𝑑𝜃 𝑑𝜑 =  √4𝜋 𝛿𝑙,0𝛿𝑚,0  (8.13) 
 

 

 

Hence, only confined LO phonon modes corresponding to 𝑙 = 0,𝑚 = 0 mode contribute to the 

exciton – phonon interaction as represented by the interaction Hamiltonian in Eq. (8.12). 

Substituting the results of Eq. (8.13) in Eq. (8.12), we get: 

 𝐻𝐹𝑟 = ∑{𝑎̂0,0(𝑞)𝑣(𝑞) + 𝐻. 𝐶}|2⟩⟨2|

𝑞

 (8.14) 

where, 

 𝑣(𝑞) = 𝑓00(𝑞)𝑀(𝑞) (8.15) 

 

and where, 𝑓00 ≡ 𝑓𝑙=0,𝑚=0 and 𝑀(𝑞) =  −
2𝑒

𝜋
∫ 𝑟2𝑑𝑟

𝑟=𝑅

𝑟=0 
 
sin(𝑞𝑟)

𝑞𝑟
(

𝑒−𝑟2 𝑎𝑒
2⁄

𝑎𝑒
3 −

𝑒−𝑟2 𝑎ℎ
2⁄

𝑎ℎ
3 ) 

Recalling that for 𝑙 = 0, 𝑗𝑙=0(𝑞𝑛𝑅) =
sin(𝑞𝑛𝑅)

𝑞𝑛𝑅
 so from Eq. (8.8) we get: 

 𝑞𝑛 =
𝑥𝑛,0

𝑅
=

𝑛𝜋

𝑅
 (8.16) 

 

The discrete phonon dispersion relation obtained for the 𝑙 = 0 mode is plotted below in Fig . 8.1, 

note that the curve in the dashed line corresponds to the bulk GaAs dispersion relation.  
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Fig. 8.1 Dispersion relation in GaAs, the dashed lines show for bulk case and the square dots 

represents the 10 modes obtained for GaAs QD of radius 3 nm. In the above figure, 𝑎 = 5.65 Å 

lattice constant for GaAs. 

 

 

 

8.4 Confined LO-phonon-assisted exciton creation for QD interacting with classical light 

For implementation of a QD as a qubit, the QD is subjected to a coherent laser for excitation of 

the excitonic state. In this section we investigate the confine LO-phonon-assisted creation of 

excitons in the presence of laser light which can be modelled a classical light. Here, we consider 

the QD as the two level system (TLS) consisting of a ground state |1⟩ with a zero reference energy 

and the excitonic state represented by |2⟩, let the separation of energy ℏ𝜔0. The theory of a TLS 

interacting with classical light is well known [143]; however, we provide a brief summary. Later 

in the section, we will introduce the Fröhlich Hamiltonian as a perturbation which triggers the 

phonon-assisted process. The interacting electric field with the QD can be expressed as: 

 

 𝑬(𝑡) = 𝐸0 𝜺̂ cos(𝜔𝑡) (8.17) 
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It is assumed that the interacting electric field has a wavelength much greater than the dimensions 

of QD so the spatial dependence in Eq. (8.17) has been dropped. Let the difference between the 

laser frequency 𝜔 and the excitonic resonance frequency 𝜔0 be defined as: detuning, Δ = 𝜔 − 𝜔0 

. The interaction of this classical field with the TLS can be expressed as a dipole in the dipole 

approximation as follows: 

 𝐻𝑑𝑜𝑡−𝑓𝑖𝑒𝑙𝑑 = −𝒅 ⋅ 𝑬 (8.18) 

 

where, 𝒅 is the dipole operator associated with the TLS. The total Hamiltonian which is the 

summation of TLS bare Hamiltonian ℏ𝜔0|2⟩⟨2| and 𝐻𝑑𝑜𝑡−𝑓𝑖𝑒𝑙𝑑 can be expressed in the Rotating 

Wave Approximation (RWA) as follows:  

 𝐻𝑅𝑊𝐴 = ℏ [
0 Ω/2

Ω/2 −Δ
] (8.19) 

where, Ω is the Rabi frequency defined as: 

 Ω = −
2⟨1|𝜺̂ ⋅ 𝒅|2⟩𝐸0

ℏ
 (8.20) 

 

The Hamiltonian 𝐻𝑅𝑊𝐴 as in Eq. (8.19) is expressed in the uncoupled bare TLS basis comprising 

|1⟩ and |2⟩. The eigen states 𝐻𝑅𝑊𝐴 are referred to as Dressed basis (which is light + TLS coupled 

basis) are given as below: 

 |𝜓⟩+ = sin 𝜃 |1⟩ + cos 𝜃 |2⟩ (8.21) 

 |𝜓⟩− = cos 𝜃 |1⟩ − sin 𝜃 |2⟩ (8.22) 

 

where, 𝜃 is the Stückelberg angle defined as: 

 tan 2𝜃 = −
Ω

Δ
   (8.23) 

 

The eigen value of energy of states in Eq. (8.21) and (8.22) is given as: 

 𝐸± = −
ℏΔ

2
±

ℏ√Δ2 + Ω2

2
=  −

ℏΔ

2
±

ℏΩΔ

2
  (8.24) 
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where, ΩΔ is the generalized Rabi frequency. It is clear from Eq. (8.24) that the separation of levels 

in TLS has now become ℏΩΔ which was originally  ℏ𝜔0 in the absence of light. From Eqs. (8.21), 

(8.22) and (8.23) it is seen that if the detuning is positive such that Δ ≫ Ω then 𝜃 ≈ 𝜋/2, so that 

|𝜓−⟩ ≈ |2⟩ and |𝜓+⟩ ≈ |1⟩ in such condition phonon-assisted transitions can happen if the exciton 

decays with an emission of confined LO phonon with energy ℏ𝜔𝑛 = ℏΩΔ. And since, 𝜔𝑛 is of 

discrete nature            (frequency of confined mode corresponding to wave vector 𝑞𝑛 as depicted 

in Fig. 8.1) we can have such phonon-assisted transitions for specific values of detuning at which 

the energy gap between the dressed state becomes equal to the individual discrete phonon mode 

of energy ℏ𝜔𝑛(see Fig. 8.2). We proceed to find such probability per unit time using Fermi’s 

Golden Rule in the next paragraph.  

 

Fig. 8.2 The dressed state energy variation with Δ/Ω is shown. The slant dashed line represents 

the energy of |2⟩ state with value −ℏΔ and the horizontal dashed line represents the energy of state 

|1⟩, when there is no coupling between the bare QD states and the classical light. The solid vertical 

arrow represents transition from the upper dressed state to lower dressed state when detuning is 

sufficiently high so that |𝜓⟩− ≈ |2⟩ and |𝜓⟩+ ≈ |1⟩ and the emitted phonon has the energy ℏΩΔ =
ℏ𝜔𝑛 (where 𝜔𝑛 is the frequency of confined LO mode of mode 𝑛). 

 

|𝟏⟩ 

|𝟐⟩ 

|𝟏⟩ 

|𝟐⟩ 

ℏ𝝎𝒏 
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Using Eqs. (8.14), (8.21) and (8.22) we can express the exciton – phonon interaction (perturbation) 

Hamiltonian in the dressed basis as follows: 

 

𝐻𝐹𝑟 = ∑(𝑣(𝑞)𝑎̂00(𝑞) + 𝐻. 𝐶)

𝑞,𝑣

 (𝑠𝑖𝑛2𝜃 |𝜓−⟩⟨𝜓−| +  𝑐𝑜𝑠2𝜃|𝜓+⟩⟨𝜓+| 

+
1

2
sin 2𝜃 |𝜓−⟩⟨𝜓+| +

1

2
sin 2𝜃 |𝜓+⟩⟨𝜓−| ) 

 

(8.23) 

The transition involves change of state from |𝜓+, 𝑁𝑞⟩ to |𝜓−, 𝑁𝑞 + 1⟩, where 𝑁𝑞 =
1

exp(ℏ𝜔𝑛/𝑘𝐵𝑇)−1
 

is the phonon occupation number of phonon mode with energy ℏ𝜔𝑛. The transition probability per 

unit time (or the exciton creation rate) given by: 

 

1

𝜏
=  

2𝜋

ℏ
∑|𝑀𝑞|

2

𝑞

𝛿(𝐸− − 𝐸+ + ℏ𝜔𝑛) 

where, 

𝑀𝒒 = ⟨𝑁𝒒 + 1,𝜓−|𝐻𝐹𝑟|𝜓+, 𝑁𝒒⟩ 

so, 

𝑀𝒒 = 
1

2
sin 2𝜃 𝑣(𝑞)∗ (𝑁𝒒 + 1)

𝟏 𝟐⁄
 

 

(8.24) 

Substituting, 𝐸− − 𝐸+ = −ℏΩΔ in Eq. (8.24), we get: 

 
1

𝜏
=

𝜋

2
sin2 2𝜃 𝐽𝑝ℎ(Ω𝑛

Δ) (8.25) 

 

where, 𝐽𝑝ℎ(ΩΔ) is the phonon spectral density as shown below: 

 𝐽𝑝ℎ(Ω𝑛
Δ) =

1

ℏ2
∑|𝑣(𝑞)|2

𝑛

𝛿(ΩΔ − 𝜔𝑛)(𝑁𝑞 + 1) (8.26) 

 

To evaluate the phonon spectral density (which is now discrete, hence the generalized Rabi 

frequency is labelled by subscript 𝑛), we substitute 𝑞𝑛 = 𝑛𝜋/𝑅 in Eq. (8.15) and obtain the now 

discrete version of 𝑀(𝑞) as 𝑀𝑛 by performing a numerical integration over 𝑟, we write the phonon 

spectral density as below in Eq. (8.27): 



 

140 

 

 

 𝐽𝑝ℎ(Ω𝑛
Δ) =

4𝜋𝑒2𝜔𝐿𝑂

ℏ𝑅
(

1

𝜀∞
−

1

𝜀0
) (𝑁𝑞 + 1)∑

𝑀𝑛𝛿𝜔𝑛,Ω𝑛
Δ

𝜔𝑛
𝑛

 (8.27) 

 

 

 

Fig. 8.3 Confined LO mode phonon spectral density for a GaAs quantum dot of radius, R = 3 nm 

at T = 1 K. The discrete spectrum depicts the strength corresponding to each phonon mode 

contained in the 1st Brillouin zone (total 10 modes), with 𝑛 = 1 having the highest magnitude and 

is located near the zone center. 

 

In Fig. 8.3, we plot the discrete phonon spectral density corresponding to all 10 modes (whose 

discrete dispersion is shown in Fig. 8.1). As we can see that corresponding to 𝑛 = 1 mode which 

is near the zone center of the Brillouin zone has the highest magnitude of 0.035 𝑝𝑠−1 of all the 

modes.  
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8.5 Results and discussion 

 

Eq. (8.25) represents transition rate from the lower dressed state to upper dressed state, the energy 

gap between the two dressed state is ℏΩΔ = ℏ√Ω2 + Δ2 (the energy gap depends on applied field 

strength and detuning). When this gap is equal to one of the confined LO phonon mode then 

phonon-assisted transitions can result in transitions. And as pointed out in the previous section, 

that the final state will have more excitonic character if 
Δ

Ω
≫ 1 when Δ > 0 (see Fig. 2). Such 

exciton occupancy in the final state (lower dressed state) is given by: 

 

 |⟨2|𝜓⟩−|2 = sin2 𝜃 =
1

2
{1 +

Δ2

Δ2 + Ω2
} (8.28) 

 

However, In Ref. 144, it was demonstrated that the final exciton occupation taking into account 

temperature is given by Eq. (8.29) and is plotted in Fig. 3(b): 

 

 𝐶𝑒𝑥𝑐 =
1

2
{1 +

Δ

ΩΔ
tanh(

ℏΩΔ

2𝑘𝐵𝑇
)} (8.29) 

 

Now, as we can see from Eq. (8.25) that the transition rate is directly proportional to the strength 

of phonon spectral density, but, from Fig. 3 we see that except for 𝑛 = 1 mode the contribution to 

such transition is negligible. So, for the 𝑛 = 1 mode, Eq. (8.25) can be written as in Eq. (8.30) for 

which we plot in Fig. 4 the transition rate as a function of Δ/Ω: 

 

 
1

𝜏
=

𝜋

2

1

√(Δ/ Ω )2 + 1
 𝐽𝑝ℎ(𝜔1) (8.30) 
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Fig. 8.4(a) Confined LO Phonon (𝑛 = 1) mode assisted transition rate between the dressed state 

for GaAs QD of radius 3nm at T = 1K. (b) Exciton occupancy (using Eq. (29)) in the final state at 

T = 1K. 

 

          We would like to point out that, because the phonon frequency 𝜔1 = √Δ2 + Ω2 , for any 

given detuning we can only have a specific value of Ω, hence we choose Δ/Ω to investigate all 

such possible combinations of allowed  Δ and Ω affecting the transition rate. 

 

           It is clear from Fig. 8.4(a) that transition rate associated with confined LO phonon emission 

decreases (at all temperatures) with increase in Δ/Ω, however, from Fig. 8.4(b) it is observed that 

exciton occupancy increases with Δ/Ω, thus there exists a similar trade-off with confined LO 

modes as with bulk acoustic phonon modes [145]. At T =1K, the maximum transition rate occurs 

at 
Δ

Ω
= 0 which is of value 0.0545 𝑝𝑠−1 which corresponds to a relaxation time of 18.35 𝑝𝑠 but the 

exciton occupancy is still 50%. We see that for exciton occupancy corresponding to 80% the 

corresponding relaxation time is 30.21 𝑝𝑠. Also, we compare our results with transition rate 

triggered by acoustic phonon. As is well known, there exists very little mismatch between the 

acoustic properties of the QD material and the barrier material (𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠)  in which the QD is 

(𝒂) (𝒃) 
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embedded so the acoustic confinement is negligible and the bulk acoustic phonon model can be 

used to evaluate the transition rates leading to the production of excitons. The bulk acoustic phonon 

density at low temperature is given as: 

 

 𝐽𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐(𝜔) =  
𝜔3

4𝜋2ℏ𝜌𝑑𝑐𝐿𝐴
5 |(𝐷𝑒𝑒

−𝜔2𝑎𝑒
2

4𝑐𝐿𝐴
2

− 𝐷ℎ𝑒

−𝜔2𝑎ℎ
2

4𝑐𝐿𝐴
2

)|

2

 (8.31) 

 

            where, 𝐷𝑒/ℎ is the electron/hole deformation potential, 𝜌𝑑 is the material density, 𝑐𝐿𝐴 is the 

acoustic speed corresponding to longitudinal acoustic (LA) mode. We find that the acoustic 

spectral density peaks at 𝜔 = 16.46 𝑐𝑚−1 with a peak value of 0.238 𝑝𝑠−1. Using this value in 

Eq. (8.30) we find the maximum transition rate for acoustic phonon as a function of Δ/Ω in Fig. 

8.5: 

 

Fig. 8.5 Bulk acoustic phonon assisted transition rate in GaAs quantum dot of radius 3 nm at T = 

1K. 

 

Corresponding to exciton occupancy of 80%, the relaxation time for acoustic phonon at T = 1K is 

4.39 𝑝𝑠 hence it is 6.87 times (~7 times) less than the confined LO mode at the same temperature. 
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However, the average transition rate for confined LO mode for exciton occupancy above 80% for 

temperature 𝑇 ≤ 10𝐾 is 0.0458 𝑝𝑠−1 (that corresponds to relaxation time of 22.38 𝑝𝑠) whereas 

for acoustic phonon mode, the average transition rate for 𝑇 ≤ 10𝐾 is 0.3144 𝑝𝑠−1(that 

corresponds to relaxation time of 3.26 𝑝𝑠). Hence, the exciton creation rate attributed to  confined 

LO phonon is 6.87 times (~7 times)  slower than acoustic phonon. 

 

8.6 Conclusion 

           We investigated the role of confined LO phonons in GaAs QD taking a radius of 3 nm as 

representative of strong confinement limit. We find that phonon relaxation time corresponding to 

confined LO mode is approximately 7 times higher than acoustic phonon at low temperatures, 𝑇 ≤

10K. It is clear that acoustic modes are the dominant phonon relaxation mechanism however at 

low temperatures (≤ 10𝐾) the confined LO phonon cannot be neglected at all, hence it must be 

taken into account. Moreover, our results provide the theoretical basis for exciton preparation 

based of the use of optical-phonon-assisted processes rather than acoustic-phonon processes. 
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Chapter 9 

Concluding Remarks 

 

In this thesis theoretical framework necessary for modelling optical and acoustic phonons for 

studying their interaction with charge carriers in semiconductors and their nanostructures. We have 

studied wideband gap emerging semiconductors who are finding applications in high frequency 

and high power applications.  

 

For Diamond, the hydrogenated surface (due to exposure to atmosphere) results in production of 

two dimensional hole gas. Since diamond is a non polar material, thus for proper accounting of 

phonon scattering we have quantized the Rayleigh wave, which are elliptically polarized surface 

waves localized on the surface, to properly model acoustic phonon in this structure. We have 

shown that surface acoustic phonon scattering limited mobility is about three times higher than the 

bulk acoustic modes. Also, we further examined a novel heterostructure consisting of two wide 

band gap semiconductors namely cubic boron nitride (cBN) and diamond. We have evaluated 

necessary conditions required to produce two dimensional electron gas at the interface, such 

structure is a well suited candidate for High Electron Mobility. We have shown that at room 

temperature the surface acoustic scattering is dominant as compared to the remote polar phonon 

leaking as evanescent mode in diamond from the  cBN overlayer. The formalism developed in 

here can be applied to any such heterostructure which involves a polar and a non-polar material 

combination. 
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Further, we discussed the phonon decay rate in wurtzite crystals by taking 2H-SiC as an example, 

we took into account the directional variation in phonon velocity and their polarization into 

account. However, we find that the phonon lifetime is higher in the plane which contains the c-

axis. This formalism can be used to find phonon decay rate in any wurtzite crystals. Of course, 

these calculation would encourage further experimental verification. 

 

We did an in depth study to model phonon scattering in emerging wurtzite materials which depict 

strong electron – phonon coupling by applying the Thornber – Feynman path integral formalism 

duly considering the directional dependence of Fröhlich coupling. We demonstrated that the 

traditional phonon scattering modelled on the basis of Fermi’s golden rule (FGR) underestimates 

the energy loss by electron. This concept was further applied to cubic III – Nitrides and further 

extended to two dimensional Transition Metal Di-Chalcogenides. This work is very significant as 

it shows that we can find correction factors for FGR using the above approach, so we can still 

apply the FGR model and apply those correction factors to properly account for the strong 

coupling.  

 

Lastly, we conclude that confined optical phonons can be deployed in qubit state preparation in 

quantum dot based qubit implementation, however acoustic phonons dominate the exciton 

generation but the role of confined LO phonons cannot be neglected and it must be taken into 

account while evaluating exciton generation rate. This work would definitely generate curiosity 

for further experimental validation.  
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Appendix A 

Appendix A. I 

 

𝐹 =
𝑏3

2
∫(𝑦 − 𝑙)2 𝑒−𝛼𝑡𝑙𝑦 𝑒−𝑏(𝑦−𝑙) 𝑑𝑦

𝐿

𝑙

 

 

𝐹 =
𝑏3

2
𝑒−𝛼𝑡𝑙𝑙 ∫(𝑦 − 𝑙)2  𝑒−(𝛼𝑡𝑙+𝑏)(𝑦−𝑙) 𝑑𝑦

𝐿

𝑙

 

 

Let, 𝛼𝑡𝑙 + 𝑏 =  𝑚 𝑎𝑛𝑑 𝑦 − 𝑙 = 𝑥  𝑎𝑛𝑑 𝑙𝑒𝑡 𝑙0 = 𝐿 − 𝑙 

𝐹 =
𝑏3

2
𝑒−𝛼𝑡𝑙𝑙 ∫(𝑥)2  𝑒−𝑚𝑥 𝑑𝑦

𝑙0

0

 

 

 

𝐹 =
𝑏3

2
[−

𝑙0
2 𝑒−𝑚𝑙0

𝑚
−

2𝑙0 𝑒
−𝑚𝑙0

𝑚2
−

2 (𝑒−𝑚𝑙0 − 1)

𝑚3
] 

 

Substituting for m and 𝑙0 , we get: 

 

𝐹 =
𝑏3

2
[−

(𝐿 − 𝑙)2 𝑒−𝛼𝑡𝑙𝐿 𝑒−𝑏𝑙0

(𝛼𝑡𝑙 + 𝑏)
−

2(𝐿 − 𝑙) 𝑒−𝛼𝑡𝑙𝐿 𝑒−𝑏𝑙0

(𝛼𝑡𝑙 + 𝑏)2
−

2 𝑒−𝛼𝑡𝑙𝑙(𝑒−𝛼𝑡𝑙𝐿 𝑒−𝑏𝑙0 − 1)

(𝛼𝑡𝑙 + 𝑏)3
] 
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Appendix A (Continued) 
 

Hence, Now squaring the above expression we get: 

 

 

𝐹2 =  
𝑏6

4
[
(𝐿 − 𝑙)4 𝑒−2𝛼𝑡𝑙𝐿 𝑒−2𝑏(𝐿−𝑙)

(𝛼𝑡𝑙 + 𝑏)2
 

+
4(𝐿 − 𝑙)2 𝑒−2𝛼𝑡𝑙𝐿 𝑒−𝑏(𝐿−𝑙)

(𝛼𝑡𝑙 + 𝑏)4
( 𝑒−𝑏𝑙0 + (𝑒−𝛼𝑡𝑙𝐿 𝑒−𝑏(𝐿−𝑙) − 1))

+
8(𝐿 − 𝑙) 𝑒−2𝛼𝑡𝑙𝐿 𝑒−𝑏(𝐿−𝑙)

(𝛼𝑡𝑙 + 𝑏)5
(𝑒−𝛼𝑡𝑙𝐿 𝑒−𝑏(𝐿−𝑙) − 1) +

4(𝐿 − 𝑙)3 𝑒−2𝛼𝑡𝑙𝐿 𝑒−2𝑏(𝐿−𝑙)

(𝛼𝑡𝑙 + 𝑏)3

+
4𝑒−2𝛼𝑡𝑙𝑙

(𝛼𝑡𝑙 + 𝑏)6
(𝑒−𝛼𝑡𝑙𝐿 𝑒−𝑏(𝐿−𝑙) − 1)

2

] 

 

Also, 

 

lim
𝐿→∞

(𝐹)2 =
𝑏6

4
(

4𝑒−2𝛼𝑡𝑙𝑙

(𝛼𝑡𝑙 + 𝑏)6
)  =  

𝑏6𝑒−2𝛼𝑡𝑙𝑙

(𝛼𝑡𝑙 + 𝑏)6
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Appendix A (Continued) 

 

Appendix A. II 

𝐴2 =
2𝛼𝑡𝑠

2 𝛼𝑡𝑙 (𝛼𝑡𝑙 − 𝛼𝑡𝑠)
2⁄

𝛽𝑅
2 + 𝛼𝑡𝑠

2 𝛼𝑡𝑙 (𝛼𝑡𝑙 − 𝛼𝑡𝑠)⁄
 

Since, 𝛽𝑅 = 𝑞 

𝐴2 =
2𝛼𝑡𝑠

2 𝛼𝑡𝑙 (𝛼𝑡𝑙 − 𝛼𝑡𝑠)
2⁄

𝑞2 + 𝛼𝑡𝑠
2 𝛼𝑡𝑙 (𝛼𝑡𝑙 − 𝛼𝑡𝑠)⁄

 

Moreover, αtl and αts are not constants they are dependent on βRas follows: 

𝛼𝑡𝑠
2 = 𝛽𝑅

2 − (
𝜔

𝑉𝑠
)
2

 

And, 

𝛼𝑡𝑙
2 = 𝛽𝑅

2 − (
𝜔

𝑉𝑙
)
2

 

 

But, we already know the relation between 𝑉𝑅 and 𝑉𝑠 as follows: 

Hence, to simplify the expressions of F and A we can express 𝛼𝑡𝑙 and 𝛼𝑡𝑠 as below: 

𝛼𝑡𝑠
2 = 𝛽𝑅

2 − (
𝜔

𝑉𝑠
)
2

 

𝛼𝑡𝑠
2 = (1 − (

𝑉𝑅

𝑉𝑠
)
2

)𝛽𝑅
2 

𝛼𝑡𝑠 = 𝛽𝑅√(1 − (
𝑉𝑅

𝑉𝑠
)
2

) 
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Appendix A (Continued) 
 

 

So, let  

𝛼𝑡𝑠 = 𝑠𝛽𝑅 = 𝑠𝑞 

and,  

𝛼𝑡𝑙 = 𝑛𝛽𝑅 = 𝑛𝑞 

 

where, 𝑠 = √(1 − (
𝑉𝑅

𝑉𝑠
)
2

)  𝑎𝑛𝑑 𝑛 = √(1 − (
𝑉𝑅

𝑉𝑙
)
2

) 

Now, A can be simplified as follows: 

𝐴2 =
2𝛼𝑡𝑠

2 𝛼𝑡𝑙 (𝛼𝑡𝑙 − 𝛼𝑡𝑠)
2⁄

𝑞2 + 𝛼𝑡𝑠
2 𝛼𝑡𝑙 (𝛼𝑡𝑙 − 𝛼𝑡𝑠)⁄

 

 

𝐴2 =
2 𝑠2𝑛 (𝑛 − 𝑠)2⁄

𝑞(1 + 𝑠2𝑛 (𝑛 − 𝑠)⁄ )
=

𝐴2

𝑞
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Appendix B 

1

𝜏𝑒
= 𝛼𝜔𝐿𝑂

1

𝑘
 √

2𝑚∗𝜔𝐿𝑂

ℏ
 (𝑁𝑞 + 1) 𝑙𝑛 

[
 
 
 𝑘 + √𝑘2 −

2𝑚∗𝜔𝐿𝑂

ℏ

𝑘 − √𝑘2 −
2𝑚∗𝜔𝐿𝑂

ℏ ]
 
 
 

 

Multiplying and dividing by 𝑘 + √𝑘2 −
2𝑚∗𝜔𝐿𝑂

ℏ
 inside the parenthesis, we get: 

1

𝜏𝑒
= 2𝛼𝜔𝐿𝑂

1

𝑘
 √

2𝑚∗𝜔𝐿𝑂

ℏ
 (𝑁𝑞 + 1) 𝑙𝑛 

[
 
 
 
 (𝑘 + √𝑘2 −

2𝑚∗𝜔𝐿𝑂

ℏ
)

√2𝑚∗𝜔𝐿𝑂

ℏ ]
 
 
 
 

 

 

1

𝜏𝑒
= 2𝛼𝜔𝐿𝑂

1

𝑘
 √

2𝑚∗𝜔𝐿𝑂

ℏ
 (𝑁𝑞 + 1) 𝑙𝑛 

[
 
 
 
 
√

ℏ2𝑘2

2𝑚∗

ℏ𝜔𝐿𝑂
+ √

ℏ2𝑘2

2𝑚∗

ℏ𝜔𝐿𝑂
− 1

]
 
 
 
 

 

Now, substituting for 𝛼 from Eq (1) and Electron energy 𝐸𝑒𝑙 =
ℏ2𝑘2

2𝑚∗ , we get: 

1

𝜏𝑒
= √

2𝑚∗

𝐸𝑒𝑙

𝑒2𝜔𝐿𝑂(𝑁𝑞 + 1)

ℏ
(

1

𝜀∞
−

1

𝜀0
) 𝑙𝑛 [√

𝐸𝑒𝑙

ℏ𝜔𝐿𝑂
−  1  + √

𝐸𝑒𝑙

ℏ𝜔𝐿𝑂
] 
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Appendix C 

Appendix C. I 

Herein, we analyze and evaluate 𝐾̅𝛽′(𝜉) by expanding it to the second power in 𝜉. 

Beginning with the discussion following Eq. 5 and using, 𝑐𝑜𝑠(𝑥) ≈  1 −
𝑥2

2
  we obtain the 

following sequence of simplifications: 

𝐾̅𝛽′(𝜉) =
1

2

𝑤0
2

𝑣0
2 [(

𝑣0
2 − 𝑤0

2

𝑤0
2𝑣0

) × (
𝑐𝑜𝑠ℎ (

1
2

𝛽𝑣0) − 1 +
𝑣0

2𝜉2

2

𝑠𝑖𝑛ℎ (
1
2

𝛽𝑣0)
) +

𝜉2

𝛽
+

𝛽

4
] 

 

𝐾̅𝛽′(𝜉) =
1

2

𝑤0
2

𝑣0
2 [(

𝑣0
2 − 𝑤0

2

𝑤0
2𝑣0

) × (
2𝑠𝑖𝑛ℎ2 (

1
4

𝛽𝑣0)

2𝑠𝑖𝑛ℎ (
1
4

𝛽𝑣0) 𝑐𝑜𝑠ℎ (
1
4

𝛽𝑣0)
+

(𝑣0
2𝜉2 2⁄ )

𝑠𝑖𝑛ℎ (
1
2

𝛽𝑣0)
) +

𝜉2

𝛽
+

𝛽

4
] 

 

𝐾̅𝛽′(𝜉) =
1

2

𝑤0
2

𝑣0
2 [(

𝑣0
2 − 𝑤0

2

𝑤0
2𝑣0

) × (𝑡𝑎𝑛ℎ (
1

4
𝛽𝑣0) +

𝑣0
2𝜉2 2⁄

𝑠𝑖𝑛ℎ (
1
2

𝛽𝑣0)
) +

𝜉2

𝛽
+

𝛽

4
] 

 

𝐾̅𝛽′(𝜉) =
1

2𝛽

𝛽𝑤
0
2

𝑣0
2 [(

𝑣0
2 − 𝑤0

2

𝑤0
2𝑣0

) × 𝑡𝑎𝑛ℎ (
1

4
𝛽𝑣0) +

𝛽

4
] +

𝜉2

2𝛽

𝑤0
2

𝑣0
2 [(

𝑣0
2 − 𝑤0

2

𝑤0
2𝑣0

) ×
𝑣0

2𝛽

2𝑠𝑖𝑛ℎ (
1
2

𝛽𝑣0)
+ 1] 

𝐿𝑒𝑡𝑡𝑖𝑛𝑔 𝐵0  =
𝛽𝑤0

2

𝑣0
2 [(

𝑣0
2 − 𝑤0

2

𝑤0
2𝑣0

) × 𝑡𝑎𝑛ℎ (
1

4
𝛽𝑣0) +

𝛽

4
] 

 

we obtain, 

𝐾̅𝛽′(𝜉) =
𝐵0

2𝛽
+

𝜉2

2𝛽
[
𝑤0

2

𝑣0
2 (

𝑣0
2 − 𝑤0

2

𝑤0
2𝑣0

) ×
𝑣0

2𝛽

2𝑠𝑖𝑛ℎ (
1
2

𝛽𝑣0)
+

𝑤0
2

𝑣0
2 ] 
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Appendix C (Continued) 

 

𝑁𝑜𝑤,𝑤𝑟𝑖𝑡𝑖𝑛𝑔 
𝑤0

2

𝑣0
2 = −(

𝑣0
2−𝑤0

2

𝑣0
2 ) + 1  

 

we find, 

𝐾̅𝛽′(𝜉) =
𝐵0

2𝛽
+

𝜉2

2𝛽
[(

𝑣0
2 − 𝑤0

2

𝑣0
) ×

𝛽

2𝑠𝑖𝑛ℎ (
1
2

𝛽𝑣0)
− (

𝑣0
2 − 𝑤0

2

𝑣0
2 ) + 1] 

 

or, 

𝐾̅𝛽′(𝜉) =
𝐵0

2𝛽
+

𝜉2

2𝛽
[(

𝑣0
2 − 𝑤0

2

𝑣0
2 ) × {

𝑣0𝛽

2𝑠𝑖𝑛ℎ (
1
2

𝛽𝑣0)
− 1} + 1] 

 

𝐿𝑒𝑡𝑡𝑖𝑛𝑔 𝐴0  = [(
𝑣0

2 − 𝑤0
2

𝑣0
2 ) × {

𝑣0𝛽

2𝑠𝑖𝑛ℎ (
1
2

𝛽𝑣0)
− 1} + 1] 

 

We finally obtain, 

𝐾̅𝛽′(𝜉) =
𝐵0

2𝛽
+

𝐴0𝜉
2

2𝛽
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Appendix C (Continued) 

Appendix C. II 

To obtain Eq. 7.8, we begin with Eq. 7.6, 

 

𝑬 =  ∫ 𝑑𝜉

∞

−∞

 ∑|𝐶𝑞|
2

𝑞

𝒒 
𝑐𝑜𝑠(𝜔𝑘𝜉)

𝑠𝑖𝑛ℎ (
1
2

𝛽𝜔𝑞)
𝑒−𝑖𝒒∙𝒗(𝜉+𝑖𝛽 2⁄ )𝑒

−𝑞2𝐾̅
𝛽′(𝜉)

 

 

It is assumed that the applied electric field is in x-direction: 

 

𝐸 =  ∫ 𝑑𝜉

∞

−∞

 ∑|𝐶𝑞|
2

𝑞

𝑞𝑥  
𝑐𝑜𝑠(𝜔𝑞𝜉)

𝑠𝑖𝑛ℎ (
1
2

𝛽𝜔𝑞)
𝑒−𝑖𝑞𝑥𝑣(𝜉+𝑖𝛽 2⁄ )𝑒

−𝑞2𝐾̅
𝛽′(𝜉)

 

 

Taking the real part of above equation and substituting 𝜔𝑞 = 1 (since phonons are assumed to be 

dispersion less and we work in Feynman units ℏ = 𝑚𝑏 = 𝜔𝐿𝑜 = 1) and 𝑞𝑥 = 𝑞𝑐𝑜𝑠(𝜙) 

 

∑|𝐶𝑞|
2

𝑞

→
1

(2𝜋)2
∫𝑑2𝑞|𝐶𝑞|

2
 =  

1

(2𝜋)2
 ∫√2𝜋

𝛼

𝑞
 𝑞 𝑑𝜙 𝑑𝑞 =  

𝛼

23 2⁄ 𝜋
∫𝑑𝜙 𝑑𝑞 

Substituting, 𝐾̅𝛽′(𝜉) =
𝐵0

2𝛽
+

𝐴0𝜉2

2𝛽
 and integrating w.r.t 𝜉 first: 

𝐸 =  
𝛼

23 2⁄ 𝜋 𝑠𝑖𝑛ℎ (
1
2

𝛽)
 ∬𝑑𝜙 𝑑𝑞 𝑞𝑐𝑜𝑠(𝜙) 𝑒𝑞𝑣𝑐𝑜𝑠(𝜙)𝛽 2⁄ 𝑒

−𝑞2𝐵0
2𝛽   

× ∫ 𝑑𝜉

∞

−∞

(𝑐𝑜𝑠(𝜉)𝑐𝑜𝑠(𝑞𝑣𝑐𝑜𝑠(𝜙)𝜉) 𝑒
−𝑞2𝐴0𝜉2

2𝛽 ) 
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Appendix C (Continued) 

 

Simplifying above expression with the terms involving 𝜉: 

Let, 𝑦 ≡ cos𝜙 

𝑐𝑜𝑠(𝜉)𝑐𝑜𝑠(𝑞𝑣𝑦𝜉) 𝑒
−𝑞2𝐴𝜉2

2𝛽

= ∫ 𝑑𝜉

∞

−∞

1

2
[𝑐𝑜𝑠{𝜉(𝑞𝑣𝑦 + 1)}]𝑒

−𝑞2𝐴𝜉2

2𝛽  +  ∫ 𝑑𝜉

∞

−∞

1

2
[𝑐𝑜𝑠{𝜉(𝑞𝑣𝑦 − 1)}]𝑒

−𝑞2𝐴𝜉2

2𝛽  

Since, 

∫ 𝑒−𝑥2𝑎

∞

−∞

𝑐𝑜𝑠(𝑥𝑏)  =  
√𝜋

√𝑎
 𝑒−𝑏2 4𝑎⁄  

So, after integrating over 𝜉 we get: 

𝐸 =  
𝛼

4 √𝜋 𝑠𝑖𝑛ℎ (
1
2

𝛽)
 ∙ √

𝛽

𝐴0
 

× ∬𝑑𝜙 𝑑𝑘 
𝑞

|𝑞|
𝑐𝑜𝑠(𝜙) 𝑒𝑞𝑣𝑦𝛽 2⁄   𝑒

−𝑞2𝐵0
2𝛽 (𝑒

−(𝛽 2⁄ )(𝑞𝑣𝑦+1)2

𝑞2𝐴0 + 𝑒
−(𝛽 2⁄ )(𝑞𝑣𝑦−1)2

𝑞2𝐴0 ) 

 

Simplifying the exponent of  𝑒𝑞𝑣𝑦𝛽 2⁄   𝑒
−(𝛽 2⁄ )(𝑞𝑣𝑦+1)2

𝑞2𝐴0 , we get: =
−𝛽

2
[(

𝑦𝑣

√𝐴0
−

𝑞

2
+

1

𝑞
)
2

−
𝑞2

4
 + 1] 

Similarly, the exponent of 𝑒𝑞𝑣𝑦𝛽 2⁄   𝑒
−(𝛽 2⁄ )(𝑞𝑣𝑦−1)2

𝑞2𝐴0  , we get: =
−𝛽

2
[(

𝑦𝑣

√𝐴0
−

𝑞

2
−

1

𝑞
)
2
−

𝑞2

4
 − 1] 

We have used 𝑞√𝐴0 ≡ 𝑞, so that ∫𝑑𝑞 →
1

√𝐴0
 ∫ 𝑑𝑞 
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Appendix C (Continued) 

 

Using the above simplifications in the expression of 𝐸  and substituting back 𝑦 ≡ cos𝜙 with 

further algebraic simplifications we get: 

𝐸 =  
𝛼

4 𝑠𝑖𝑛ℎ (
1
2

𝛽)
 ∙ √

𝛽

𝜋
∙

1

𝐴0
∫ 𝑑𝜙

2𝜋

0

𝑐𝑜𝑠(𝜙)  ∫ 𝑑𝑘 
𝑞

|𝑞|

∞

0

 𝑒𝑥𝑝 (−
𝛽𝑘2

8𝐴
[
4𝐵0

𝛽2
− 𝐴0]) 

× (𝑒
−𝛽
2  𝑒𝑥𝑝 (

−𝛽

2
(
𝑐𝑜𝑠(𝜙)𝑣

√𝐴
−

𝑞

2
+

1

𝑞
)

2

) + 𝑒
𝛽
2𝑒𝑥𝑝 (

−𝛽

2
(
𝑐𝑜𝑠(𝜙)𝑣

√𝐴
−

𝑞

2
−

1

𝑞
)

2

)) 

 

which is the form used in the analysis. 
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Appendix D 
MATLAB codes used for calculations in chapter 2 and 3 

 

Surface acoustic phonon scattering rate 
 

  

clear  

clc 

%====================================== 

  

hbar0 = 1.05457180e-34; % [J-s] 

h0=2*pi*hbar0;          % Planck's constant 

q0 = 1.60217662e-19;    % [Coulombs] 

m0 = 9.10938356e-31;    % [kg] 

kB = 1.38064852e-23;    % [J/K] 

T = 200:50:450; 

%T = 300; 

kBT = kB*T;             % [J] 

eps0 = 8.854187817e-12; % [F/m] 

c0 = 299792458;         % [m/s] 

m_eff = 0.57;          % DOS effective mass 

%m_eff = 0.444;         % conductivity effective mass 

m = m_eff*m0; 

wLO=1.1;                % LO phonon frequency in cm-1 

%w=2*pi*wLO*100*c0;      % Phonon frequency in s-1 

Vl=18210;               % [m/sec] 

Vs=12300;               % [m/sec] 

epsr=5.7;               % dielectric constant of damond 

%Cd=5.5*q0;  

Cd=8.7*q0;              % Deformation potential [J] 

rho=3515;               % density 

  

s=0.2; 

  

l=0e-9; 

depth=l/1e-09; 

  

Nh1 = 1e15; 

  

%Ratio=(0.87+1.12*s)/(1+s); 

b1=@(Nh)nthroot(((33*m*q0^2*Nh)/(8*eps0*epsr*hbar0^2)),3); 

%b=arrayfun(b1,Nh);% old 

b = b1(Nh1) 

Vr=0.9117*Vs; 

  

mu=sqrt(1-(Vr/Vs)^2); 

nu=sqrt(1-(Vr/Vl)^2); 
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Appendix D (Continued) 
 

  

A=(2*mu^2*nu/(nu-mu)^2)/(1+(2*mu^2*nu/(nu-mu))); 

  

Eth = 1e3*m*(Vr^2)/(2*q0); 

  

  

Elow = (0:0.01:Eth); 

Eup= (Eth:0.01:300); 

  

Ex= [Elow Eup]; 

  

    

  for i = 1:length(T) 

     C = b.^6*m*Cd^2*Vr^3/(pi*hbar0^2*rho*Vl^4); 

     XE2=@(E)(A*C./(sqrt(2*m*E*1e-

3*q0/hbar0^2))).*integral(@(qe)((exp(-

2*nu*qe*l).*(qe.^2).*(1+1./(exp(hbar0*Vr*qe./(kB*T(i)))-

1)))./((nu*qe+b).^6))... 

       .*((1./(sqrt(abs(1-(hbar0^2./(2*m*(E*1e-

3*q0))).*(qe./2+m*Vr./hbar0).^2))))),0,(2*sqrt(2*m*E*1e-3*q0) - 

2*m*Vr)/hbar0,'ArrayValued',true ); 

    

    

   XE2R=arrayfun(XE2,Eup); 

    

    

   XA1=@(E)(A*C./(sqrt(2*m*E*1e-

3*q0/hbar0^2))).*integral(@(qe)((exp(-

2*nu*qe*l).*(qe.^2).*(1./(exp(hbar0*Vr*qe./(kB*T(i)))-

1)))./((nu*qe+b).^6))... 

       .*((1./(sqrt(abs(1-(hbar0^2./(2*m*(E*1e-3*q0))).*(qe./2-

m*Vr./hbar0).^2))))),(-2*sqrt(2*m*E*1e-3*q0) + 

2*m*Vr)/hbar0,(2*sqrt(2*m*E*1e-3*q0) + 

2*m*Vr)/hbar0,'ArrayValued',true ); 

    

   XA2=@(E)(A*C./(sqrt(2*m*E*1e-

3*q0/hbar0^2))).*integral(@(qe)((exp(-

2*nu*qe*l).*(qe.^2).*(1./(exp(hbar0*Vr*qe./(kB*T(i)))-

1)))./((nu*qe+b).^6))... 

       .*((1./(sqrt(abs(1-(hbar0^2./(2*m*(E*1e-3*q0))).*(qe./2-

m*Vr./hbar0).^2))))),0,(2*sqrt(2*m*E*1e-3*q0) + 

2*m*Vr)/hbar0,'ArrayValued',true ); 

    

   XA1R=arrayfun(XA1,Elow); % absorption rate array until Eth 

   XA2R=arrayfun(XA2,Eup); % absorption rate array after Eth 

   XAR=[XA1R XA2R]; % Full absorption rate array 



 

175 

 

Appendix D (Continued) 
 

    

   TE1R = zeros(1,length(XA1R)); % Emission rate is zero until 

the threshold energy, length is equal to absorption array 

   TE2R = XE2R; 

   TER = [TE1R TE2R]; 

   iTAU = TER + XAR; 

   TAU = 1./iTAU; 

   idx = find(isnan(TAU)); 

   TAU(idx)=[]; 

    

   % ---------------------------------------------------------% 

This snippet computes mobility by doing energy average integral 

   % 

    

   Xtot1 = @(E)1./(XA1(E)); 

   Xtot2 = @(E)1./(XE2(E)+XA2(E)); 

    

   XEN1=integral(@(E)((E*1e-3*q0)).*exp(-((E*1e-

3*q0))/(kB*T(i))).*(Xtot1(E)),0,Eth,'ArrayValued',true); 

   XEN2=integral(@(E)((E*1e-3*q0)).*exp(-((E*1e-

3*q0))/(kB*T(i))).*(Xtot2(E)),Eth,inf,'ArrayValued',true); 

     

   XEN= XEN1+XEN2; 

   XED=integral(@(E)((E*1e-3*q0)).*exp(-((E*1e-

3*q0))/(kB*T(i))),0,inf,'ArrayValued',true); 

    

   Mobility_continuous(i)=(q0/(m)).*(XEN/XED)*1e4 

   % 

    

  end 

   

% 

semilogy(T,Mobility_continuous,'LineWidth',4.0) 

hold on 

set(gca,'FontSize',24,'FontWeight','bold') 

grid minor 
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Appendix E 
 

This program computes the scattering due to remote polar phonons leaking as evanescent mode 

from cBN over layer in chapter 3 
 

% REMOTE POLAR PHONON SCATTERING in c-BN/DIAMOND 

hbar0=1.0545887e-27;    % [erg-s] 

c0=2.99792458e10;       % [cm/s] 

fx=6.242e11;             % conversion factor [erg] to [eV] 

q0=4.80320420e-10;      % elementary charge [ESU] 

  

m0 = 9.10938356e-28;    % [gram] 

kB = 1.38064852e-16;    % [erg/K] 

T = 300;                % [K] 

kBT = kB*T;             % [erg] 

  

pic2 = 2*pi*c0; 

m_eff=0.57;% Effective Mass of Electron in Diamond 

m=m_eff*m0; 

epsr=5.7; % Dielectric Constant Diamond 

wLO = 1285*pic2; 

wTO = 1040*pic2; 

einf = 4.54; % c-BN dielectric Constant at w = infinity 

Nh = 1e12; % Sheet Density 

B = (48*pi*m*q0^2*Nh)/(epsr*hbar0^2); 

b = nthroot(B,3); 

d = 1e-7; 

  

wS = 

@(q)sqrt((wTO^2+einf*wLO^2*tanh(0.5*d*q))/(1+einf*tanh(0.5*d*q))

); 

wA = 

@(q)sqrt((wTO^2+einf*wLO^2*coth(0.5*d*q))/(1+einf*coth(0.5*d*q))

); 

  

%E = (0:0.001:0.5)/fx; 

E = linspace(0,0.5,500)/fx; 

k = sqrt(2*m*E/hbar0^2); 

% 

%--------------------------------------------------------------- 

% Emission Symmetric 0 <phi<pi 

%--------------------------------------------------------------- 

for i =1:length(E) 

    [Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8] = QlimE(k(i),d); 

    if Q1==0 && Q2 ==0 

        Emission1S(i) = 0; 
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Appendix E (Continued) 
 

    else         

        F1 = @(q)sqrt(abs(1-

((m*wS(q)/(hbar0*k(i)*q))+q/(2*k(i))).^2)); 

        NqS = @(q)1./(exp(hbar0*wS(q)./kBT)-1); 

        D1DwS = @(q)(einf)*(2*wS(q)*(wLO^2-wTO^2)./((wS(q)).^2-

wTO^2).^2); % derivative of dielectric function 

        DenS = @(q)D1DwS(q)*tanh(0.5*d*q); 

        %X = @(q)(b./(b+q).^6); 

        C = (2*m*q0^2)/(hbar0^2*epsr^2); 

        D = @(q)(b./(b+q)).^6*(1/DenS(q))*(NqS(q)+1); 

        I1S = @(q)C*(D(q)/q)*(1/F1(q))*(1/k(i)); 

        E1 = integral(@(q)I1S(q),Q1,Q2,'ArrayValued',true); 

     

        Emission1S(i) = E1; 

    end 

  

  

   

end 

   

%--------------------------------------------------------------- 

% Emission Symmetric pi < phi <2*pi 

%--------------------------------------------------------------- 

for i =1:length(E) 

    [Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8] = QlimE(k(i),d); 

    if Q3==0 && Q4 ==0 

        Emission2S(i) = 0; 

    else         

        F1 = @(q)sqrt(abs(1-

((m*wS(q)/(hbar0*k(i)*q))+q/(2*k(i))).^2)); 

        NqS = @(q)1./(exp(hbar0*wS(q)./kBT)-1); 

        D1DwS = @(q)(einf)*(2*wS(q)*(wLO^2-wTO^2)./((wS(q)).^2-

wTO^2).^2); % derivative of dielectric function 

        DenS = @(q)D1DwS(q)*tanh(0.5*d*q); 

        %X = @(q)(b./(b+q).^6); 

        C = (2*m*q0^2)/(hbar0^2*epsr^2); 

        D = @(q)(b./(b+q)).^6*(1/DenS(q))*(NqS(q)+1); 

        I2S = @(q)C*(D(q)/q)*(1/F1(q))*(1/k(i)); 

        E2 = integral(@(q)I2S(q),Q3,Q4,'ArrayValued',true); 

     

        Emission2S(i) = E2; 

    end 

  

  

   

end 
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Appendix E (Continued) 

 
 

EmissionS = Emission1S + Emission2S; 

 

% 

%--------------------------------------------------------------- 

% Emission Anti - Symmetric Mode 0 < phi < pi 

% -------------------------------------------------------------- 

for i =1:length(E) 

    [Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8] = QlimE(k(i),d); 

    if Q5==0 && Q6 ==0 

        Emission1A(i) = 0; 

    else     

        F1A = @(q)sqrt(abs(1-

((m*wA(q)/(hbar0*k(i)*q))+q/(2*k(i))).^2)); 

        NqA = @(q)1./(exp(hbar0*wA(q)./kBT)-1); 

        D1DwA = @(q)(einf)*(2*wA(q)*(wLO^2-wTO^2)./((wA(q)).^2-

wTO^2).^2); % derivative of dielectric function 

        DenA = @(q)D1DwA(q)*tanh(0.5*d*q); 

        %X = @(q)(b./(b+q).^6); 

        C = (2*m*q0^2)/(hbar0^2*epsr^2); 

        D = @(q)(b./(b+q)).^6*(1/DenA(q))*(NqA(q)+1); 

        I1A = @(q)C*(D(q)/q)*(1/F1A(q))*(1/k(i)); 

        E1A = integral(@(q)I1A(q),Q5,Q6,'ArrayValued',true); 

     

        Emission1A(i) = E1A; 

    end 

  

  

   

end 

%--------------------------------------------------------------- 

% Emission Anti-Symmetric pi < phi <2*pi 

%--------------------------------------------------------------- 

for i =1:length(E) 

    [Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8] = QlimE(k(i),d); 

    if Q7==0 && Q8 ==0 

        Emission2A(i) = 0; 

    else 

        F1 = @(q)sqrt(abs(1-

((m*wA(q)/(hbar0*k(i)*q))+q/(2*k(i))).^2)); 

        NqA = @(q)1./(exp(hbar0*wA(q)./kBT)-1); 

        D1DwA = @(q)(einf)*(2*wA(q)*(wLO^2-wTO^2)./((wA(q)).^2-

wTO^2).^2); % derivative of dielectric function 
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Appendix E (Continued) 
 

        DenA = @(q)D1DwA(q)*tanh(0.5*d*q); 

        %X = @(q)(b./(b+q).^6); 

        C = (2*m*q0^2)/(hbar0^2*epsr^2); 

        D = @(q)(b./(b+q)).^6*(1/DenA(q))*(NqA(q)+1); 

        I2A = @(q)C*(D(q)/q)*(1/F1(q))*(1/k(i)); 

        E2A = integral(@(q)I2A(q),Q7,Q8,'ArrayValued',true); 

        Emission2A(i) = E2A; 

    end 

       

end 

  

set(gca,'FontSize',24,'FontWeight','bold') 

EmissionA = Emission1A + Emission2A; 

EmissionT = EmissionA +EmissionS; 

% 

figure(5) 

semilogy(E*fx,EmissionS,'k','LineWidth',3) 

hold on 

semilogy(E*fx,EmissionA,'r','LineWidth',3) 

grid minor 

set(gca,'FontSize',24,'FontWeight','bold') 

ylabel('1/\tau ','FontSize',22,'FontWeight', 'bold') 

xlabel('Energy (eV)','FontSize',22,'FontWeight', 'bold') 

legend('Symmetric Mode','Anti-Symmetric Mode') 

title('Emssion Rates ') 

hold on 

xlim([0 0.5]) 

%} 

% 

figure(6) 

semilogy(E*fx,EmissionT,'LineWidth',3) 

grid minor 

set(gca,'FontSize',24,'FontWeight','bold') 

ylabel('1/\tau ','FontSize',22,'FontWeight', 'bold') 

xlabel('Energy (eV)','FontSize',22,'FontWeight', 'bold') 

title('Total Emssion Rate ') 
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Appendix E (Continued) 
  

%--------------------------------------------------------------- 

% Absorption Symmetric 0 < phi < pi 

% -------------------------------------------------------------- 

  

 

for i =1:length(k) 

    [Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8] = limSymA(k(i),d); 

    qminAbS = Q1; 

    qmaxAbS = Q2; 

     

    F1 = @(q)sqrt(abs(1-(q/(2*k(i))-

(m*wS(q)/(hbar0*k(i)*q))).^2)); 

    NqS = @(q)1./(exp(hbar0*wS(q)./kBT)-1); 

    D1DwS = @(q)(einf)*(2*wS(q)*(wLO^2-wTO^2)./((wS(q)).^2-

wTO^2).^2); % derivative of dielectric function 

    DenS = @(q)D1DwS(q)*tanh(0.5*d*q); 

    %X = @(q)(b./(b+q).^6); 

    C = (2*m*q0^2)/(hbar0^2*epsr^2); 

    D = @(q)(b./(b+q)).^6*(1/DenS(q))*(NqS(q)); 

    I1S = @(q)C*(D(q)/q)*(1/F1(q))*(1/k(i)); 

    A1S = 2*integral(@(q)I1S(q),Q1,Q2,'ArrayValued',true); 

    Absorption1S(i) = A1S; 

end 

  

  

%} 

  

% 

%--------------------------------------------------------------- 

% Absorption Symmetric pi < phi < 2*pi 

% -------------------------------------------------------------- 

  

% 

for i =1:length(E) 

    [Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8] = limSymA(k(i),d); 

     

     

    F1 = @(q)sqrt(abs(1-(q/(2*k(i))-

(m*wS(q)/(hbar0*k(i)*q))).^2)); 

    NqS = @(q)1./(exp(hbar0*wS(q)./kBT)-1); 

    D1DwS = @(q)(einf)*(2*wS(q)*(wLO^2-wTO^2)./((wS(q)).^2-

wTO^2).^2); % derivative of dielectric function 

    DenS = @(q)D1DwS(q)*tanh(0.5*d*q); 

    %X = @(q)(b./(b+q).^6); 

    C = (2*m*q0^2)/(hbar0^2*epsr^2); 

    D = @(q)(b./(b+q)).^6*(1/DenS(q))*(NqS(q)); 
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    Appendix E (Continued) 
 

 

    I1S = @(q)C*(D(q)/q)*(1/F1(q))*(1/k(i)); 

    A2S = 2*integral(@(q)I1S(q),Q3,Q4,'ArrayValued',true); 

    Absorption2S(i) = A2S; 

end 

  

AbsorptionS = Absorption1S +Absorption2S; 

 %-------------------------------------------------------------- 

% Absorption Anti-Symmetric 0 < phi < pi 

% -------------------------------------------------------------- 

  

for i =1:length(E) 

    [Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8] = limSymA(k(i),d); 

     

    F1 = @(q)sqrt(abs(1-(q/(2*k(i))-

(m*wA(q)/(hbar0*k(i)*q))).^2)); 

    NqA = @(q)1./(exp(hbar0*wA(q)./kBT)-1); 

    D1DwA = @(q)(einf)*(2*wA(q)*(wLO^2-wTO^2)./((wA(q)).^2-

wTO^2).^2); % derivative of dielectric function 

    DenA = @(q)D1DwA(q)*tanh(0.5*d*q); 

    %X = @(q)(b./(b+q).^6); 

    C = (2*m*q0^2)/(hbar0^2*epsr^2); 

    D = @(q)(b./(b+q)).^6*(1/DenA(q))*(NqA(q)); 

    I1A = @(q)C*(D(q)/q)*(1/F1(q))*(1/k(i)); 

    A1A = 2*integral(@(q)I1A(q),Q5,Q6,'ArrayValued',true); 

    Absorption1A(i) = A1A; 

end 

 %-------------------------------------------------------------- 

% Absorption Anti-Symmetric pi < phi < 2*pi 

% -------------------------------------------------------------- 

for i =1:length(E) 

    [Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8] = limSymA(k(i),d); 

     

    F1 = @(q)sqrt(abs(1-(q/(2*k(i))-

(m*wA(q)/(hbar0*k(i)*q))).^2)); 

    NqA = @(q)1./(exp(hbar0*wA(q)./kBT)-1); 

    D1DwA = @(q)(einf)*(2*wA(q)*(wLO^2-wTO^2)./((wA(q)).^2-

wTO^2).^2); % derivative of dielectric function 

    DenA = @(q)D1DwA(q)*tanh(0.5*d*q); 

    %X = @(q)(b./(b+q).^6); 

    C = (2*m*q0^2)/(hbar0^2*epsr^2); 

    D = @(q)(b./(b+q)).^6*(1/DenA(q))*(NqA(q)); 

    I1A = @(q)C*(D(q)/q)*(1/F1(q))*(1/k(i)); 

    A2A = 2*integral(@(q)I1A(q),Q7,Q8,'ArrayValued',true); 

    Absorption2A(i) = A2A; 

end 
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Appendix E (Continued) 
 

AbsorptionA = Absorption1A+Absorption2A; 

  

AbsorptionT = AbsorptionS+AbsorptionA; 

% 

figure(7) 

semilogy(E*fx,AbsorptionS,'k','LineWidth',3) 

hold on 

semilogy(E*fx,AbsorptionA,'r','LineWidth',3) 

set(gca,'FontSize',24,'FontWeight','bold') 

ylabel('1/\tau ','FontSize',22,'FontWeight', 'bold') 

xlabel('Energy (eV)','FontSize',22,'FontWeight', 'bold') 

legend('Symmetric Mode','Anti-Symmetric Mode') 

title('Absorption Rates') 

grid minor 

%ylim([1e11 1e13]) 

xlim([0 0.5]) 

%} 

% 

figure(8) 

semilogy(E*fx,AbsorptionT,'LineWidth',3) 

set(gca,'FontSize',24,'FontWeight','bold') 

ylabel('1/\tau ','FontSize',22,'FontWeight', 'bold') 

xlabel('Energy (eV)','FontSize',22,'FontWeight', 'bold') 

title('Total Absorption Rate') 

grid minor 

%} 

% 

figure(9) 

semilogy(E*fx,AbsorptionT+EmissionT,'LineWidth',3) 

set(gca,'FontSize',24,'FontWeight','bold') 

ylabel('1/\tau (sec^-^1) ','FontSize',22,'FontWeight', 'bold') 

xlabel('Energy (eV)','FontSize',22,'FontWeight', 'bold') 

title('Total Scattering Rate') 

grid minor 

%} 

  

%--------------------------------------------------------------- 
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Appendix F 
 

MATLAB codes used for calculations in chapter 4 

 

Computation of phonon decay rate in XY plane 

 

 
hbar0 = 1.05457180e-34; % [J-s] 

q0 = 1.60217662e-19;    % [Coulombs] 

f =(5:0.5:10)*1e12; 

w=2*pi*f;          

A1 = [0.0024 -0.0006 -0.0004 0 0 0]; 

A2 = [-0.0006 0.0024 -0.0004 0 0 0]; 

A3 = [-0.0004 -0.0004 0.0022 0 0 0]; 

A4 = [0 0 0 0.007 0 0 ]; 

A5 = [0 0 0 0 0.007 0]; 

A6 = [0 0 0 0 0 0.0061]; 

A = [A1;A2;A3;A4;A5;A6]; 

C = 1e9*inv(A); 

rho=6.154e3;            % density 

C11= C(1,1); 

C12= C(1,2); 

C44 = C(4,4); 

C33 = C(4,4); 

C66 = C(6,6); 

vl =sqrt(C11/rho); 

vt =sqrt(C66/rho); 

vt1=vt; 

vt2=sqrt((C44)/(2*rho)); 

d=1.75;                % delta 

d2 = vl/vt2; 

d3 = vt1/vt2; 

%vl=7.906e3;             % longitudinal velocity 

%vt=4.109e3;             % transverse velocity 

L=1.934e11;                % lambda 

m=1.434e11;                % mu 

b=-0.886e11;               % beta 

g=-0.1185e11;              % little gamma 

%x0=(d-1)/(d+1);         % x0 lower limit of integration 

C1 = (b+L+2*(g+m)); 

C2 = (b+2*g+m); 

C3 = (b+L); 

C4 = 2*(g+m); 

x1a = (d-1)/2; 

x2a=(d+1)/2; 

Ca = (hbar0*w.^5)/(32*pi*rho^3*vl^6*vt^3); 

  

f1a = @(x)(2*x.^2-2*x*d+(d^2-1))^2; 



 

184 

 

Appendix F (Continued) 

 
 

f2a = @(x)(d^2-1)*((2*x-d).^2-1); 

  

Fa = @(x)(1./(16*x.^2.*(d-x).^2)).*(C1*f1a(x)+C2*f2a(x)).^2; 

  

gamma2a = Ca*integral(@(x)Fa(x),x1a,x2a,'ArrayValued',true); 

  

Cb = (hbar0*w.^5)/(32*pi*rho^3*vl^6*vt1*vt2^2); 

  

f1b= @(x)((1-x.^2)-(d2-d3*x).^2)./(2*x); 

f2b=@(x)(0.5*((1-x.^2)+(d2-d3*x).^2))*(((1+x.^2)-(d2-

d3*x).^2)./(2*x)); 

  

Fb = @(x)(x.^2./(d2-d3*x).^2)*(C3*f1b(x)+C4*f2b(x)).^2; 

  

a1 = ((1-d2*d3)-sqrt((1-d2*d3)^2-(1-d3^2)*(1-d2^2)))/(1-d3^2); 

b1 = ((1-d2*d3)+sqrt((1-d2*d3)^2-(1-d3^2)*(1-d2^2)))/(1-d3^2); 

b2 = (-(1+d2*d3)+sqrt((1+d2*d3)^2-(1-d3^2)*(1-d2^2)))/(1-d3^2); 

  

gamma2b = Cb*integral(@(x)Fb(x),b2,1,'ArrayValued',true); 

  

  

  

figure (1) 

semilogy(f/1e12,gamma2a,'k','LineWidth',3) 

hold on 

semilogy(f/1e12,gamma2b,'r','LineWidth',3) 

hold on 

semilogy(f/1e12,gamma2b+gamma2a,'g','LineWidth',3) 

set(gca,'FontSize',24,'FontWeight','bold') 

xlabel('THz','FontSize',24,'FontWeight', 'bold') 

ylabel('\Gamma_2[s^{-1}]','FontSize',24,'FontWeight', 'bold') 

legend('\Gamma^a_2','\Gamma^b_2','\Gamma_2') 

title('\Gamma Process 2 in XY plane ', 

'FontSize',24,'FontWeight','bold') 

grid minor 

  

Z= (2*b+4*g+L+3*m);  

  

CP1= ((hbar0*w.^5)/(256*pi*rho^3))*((d^2-1)/vl^9)*Z^2; 

  

FP1 = @(x)(0.5./x.^2).*(1-x.^2).^2.*((1+x).^2-d^2*(1-

x).^2).*((1+x.^2)-d^2*(1-x).^2).^2; 
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gamma1 = CP1*integral(@(x)FP1(x),(d-

1)/(d+1),1,'ArrayValued',true); 

  

figure (2) 

semilogy(f/1e12,gamma1,'k','LineWidth',3) 

  

set(gca,'FontSize',24,'FontWeight','bold') 

xlabel('THz','FontSize',24,'FontWeight', 'bold') 

ylabel('\Gamma_1[s^{-1}]','FontSize',24,'FontWeight', 'bold') 

title('\Gamma Process 1 XY plane ', 

'FontSize',24,'FontWeight','bold') 

grid minor 

  

figure (3) 

semilogy(f/1e12,gamma1,'k','LineWidth',3) 

hold on 

semilogy(f/1e12,gamma2b+gamma2a,'r','LineWidth',3) 

  

set(gca,'FontSize',24,'FontWeight','bold') 

xlabel('THz','FontSize',24,'FontWeight', 'bold') 

ylabel('\Gamma[s^{-1}]','FontSize',24,'FontWeight', 'bold') 

legend('\Gamma_1','\Gamma_2') 

title('\Gamma Process 1 and 2 in XY plane ', 

'FontSize',24,'FontWeight','bold') 

grid minor 

  

For the plane normal to XY plane 

SiC_NormalThetaVx.m 

 
% This program finds the root of Energy conervation equation 

contained ... 

% in the argument of dirac-delta function. 

% This program is dedicated for plane NORMAL to XY plane 

  

%close all; clear; clc; 

A1 = [0.0024 -0.0006 -0.0004 0 0 0]; 

A2 = [-0.0006 0.0024 -0.0004 0 0 0]; 

A3 = [-0.0004 -0.0004 0.0022 0 0 0]; 

A4 = [0 0 0 0.007 0 0 ]; 

A5 = [0 0 0 0 0.007 0]; 

A6 = [0 0 0 0 0 0.0061]; 

A = [A1;A2;A3;A4;A5;A6]; 

C = 1e9*inv(A); 

rho=3.21e3;             % density 

  



 

186 

 

Appendix F (Continued) 
  

 

 

% plane containing c-axis 

  

  

% pure shear mode polarized normal to the plane 

Stn = @(t)sqrt(rho./(C(6,6)*(sin(t)).^2+C(4,4)*(cos(t)).^2)); 

Vtn = @(t)1./Stn(t); 

  

  

% quasi shear wave in-plane 

  

Y1 = @(t)((C(1,1)-C(4,4))*(sin(t)).^2+(C(4,4)-

C(3,3))*(cos(t)).^2).^2+((C(1,3)+C(4,4))*sin(2*t)).^2; 

Xp = @(t)C(1,1)*(sin(t)).^2+C(3,3)*(cos(t)).^2+C(4,4)-

sqrt(Y1(t)); 

Stp = @(t)sqrt(2*rho)./sqrt(Xp(t)); 

Vtp = @(t)1./Stp(t); 

  

% quasi longitudinal mode in-plane 

  

Xn = 

@(t)C(1,1)*(sin(t)).^2+C(3,3)*(cos(t)).^2+C(4,4)+sqrt(Y1(t)); 

Slp = @(t)sqrt(2*rho)./sqrt(Xn(t)); 

Vlp = @(t)1./Slp(t); 

  

r = @(t)Vlp(t)./Vtp(t); 

r1 = @(t)Vtn(t)./Vtp(t); 

  

% Process-I x limit 

x1 = 0.301:0.001:0.999; 

  

% Process-II x limit 

% (IIa and b have same x limit) 

x2= 0.431:0.001:0.999; 

n=1; 

j=1; 

  

% Process-I x vs theta calculation 

% This loop computes the root of dirac delta argument 

% T1 matrix stores x vs theta. y1 are the theta roots 

for i =1:length(x1) 

    f1 = @(t)r(t)-sqrt(1+x1(i)^2-2*x1(i).*cos(t))./(1-x1(i)); 

     

    y1 = fzero(f1,[0 pi]); 
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    T1(n,:)= [x1(i) y1]; 

     

    n = n+1; 

     

end 

% Process-IIa&b x vs theta calculation 

% This loop computes the root of dirac delta argument 

% T2a matrix stores x vs theta for Process IIa.  

% T2b matrix stores x vs theta for Process IIb. 

% y2a and y2b are theta roots for IIa & b repectively 

for i = 1:length(x2) 

     

     

    f2a =@(t)r(t)-x2(i)-sqrt(1+x2(i)^2-2*x2(i).*cos(t)); 

    f2b = @(t)r(t)-x2(i)-r1(t).*sqrt(1+x2(i)^2-2*x2(i).*cos(t)); 

  

     

    y2a = fzero(f2a,[0 pi]); 

    y2b = fzero(f2b,[0 pi]); 

     

    T2a(j,:)= [x2(i) y2a]; 

    T2b(j,:)= [x2(i) y2b]; 

    j = j+1; 

     

end 

  

plot(T1(:,1),(180/pi)*T1(:,2),'g','LineWidth',3) 

hold on 

plot(T2a(:,1),(180/pi)*T2a(:,2),'k','LineWidth',3) 

hold on 

plot(T2b(:,1),(180/pi)*T2b(:,2),'r','LineWidth',3) 

  

xlabel("x = q'/q") 

ylabel('\theta [in deg]') 

title ('ProcessI & II: Variation of \theta vs x in XZ plane') 

legend('\Gamma_1','\Gamma^a_2','\Gamma^b_2') 

xlim([0.2 1]) 

ylim([0 120]) 

  

set(gca,'FontSize',24,'LineWidth',3) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

% This is Final code for Normal plane  

% This code evaluates and plots phonon decay rate in 2H-SiC 

% This code is for plane NORMAL to XY plane i.e plane containing 

c-axis. 

  

  

hbar0 = 1.05457180e-34; % [J-s] 

q0 = 1.60217662e-19;    % [Coulombs] 

fr =(5:0.5:10)*1e12; 

w=2*pi*fr;     

rho=3.21e3;            % density 

L=1.934e11;                % lambda 

m=1.434e11;                % mu 

b=-0.886e11;               % beta 

g=-0.1185e11;              % little gamma 

Z = 2*b+4*g+L+3*m; 

C1 = (b+L+2*(g+m)); 

C2 = (b+2*g+m); 

C3 = (b+L); 

C4 = 2*(g+m); 

SiC_NormalThetaVx 

  

t1 = T1(:,2)'; 

t2a = T2a(:,2)'; 

t2b = T2b(:,2)'; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

% roots of dirac-delta function: cos(theta) = F(x) 

Fun1 = cos(t1); 

Fun2a = cos(t2a); 

Fun2b = cos(t2b);  

  

%%%%%%%%%%%%% Process-2%%%%%%%%%%%%%%%%%%%%%%%% 

% Derivatives of argument of dirac-delta function 

% 

%f1 = @(t)r(t)-sqrt(1+x1.^2-2*x1.*cos(t))./(1-x1); 

f2a =@(t)r(t)-x2-sqrt(1+x2.^2-2*x2.*cos(t)); 

f2b = @(t)r(t)-x2-r1(t).*sqrt(1+x2.^2-2*x2.*cos(t)); 

  

% Velocity 

V1 = Velocity(cos(t2a)); 

V2 = Velocity(cos(t2b)); 



 

189 

 

Appendix F (Continued) 
 

 

Vl_a  = V1(1,:); 

Vtp_a = V1(2,:); 

Vl_b  = V2(1,:); 

Vtp_b = V2(2,:); 

Vtn_b = V2(3,:); 

  

  

% ratio of longitudinal to shear velocity 

Rsa = Vl_a./Vtp_a; 

Rsb = Vl_b./Vtp_b; 

R1s = Vtn_b./Vtp_b; 

  

% differentiation of ratios 

Rdiff_a = dydx(Rsa,cos(t2a));  

Rdiff_b = dydx(Rsb,cos(t2b)); 

R1diff  = dydx(R1s,cos(t2b)); 

  

  

  

  

%square root term in the diracdelta argument 

ha = sqrt(1+x2.^2-2*x2.*cos(t2a)); 

hb = R1s.*sqrt(1+x2.^2-2*x2.*cos(t2b)); 

  

% derivative of square root term 

Fa = Rdiff_a +x2./ha; 

Fb = Rdiff_b +R1s.*x2./hb-R1diff.*(hb./R1s); 

  

  

% absolute value of derivative of argument of dirac-delta 

function 

F2a_der = abs(Fa); 

F2b_der = abs(Fb); 

  

  

  

Vl1a = Vl_a; 

Vl1b = Vl_b; 

Vt1a = Vtp_a; 

Vt1b = Vtp_b; 

Vt2b = Vtn_b; 

  

G2a = ((((x2.^3).*(C1*(x2-cos(t2a)).^2-C2*(1-

cos(t2a).^2)).^2))./((Vl1a.^6.*Vt1a.^3).*(1+x2.^2-

2*x2.*cos(t2a)).^(3/2))); 
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% Integrand process 2b 

G2b = ((x2.^3).* (C3*(cos(t2b)-x2) + C4*(1-

x2.*cos(t2b)).*cos(t2b)).^2)./(Vl1b.^6.*Vt1b.^2.*Vt2b.*sqrt(1+x2

.^2-2*x2.*cos(t2b))); 

  

I2a = G2a./F2a_der; 

I2b = G2b./F2b_der; 

  

% 

% Integrating  

x22 =x2; 

x22(19)=[]; 

I2a(19)=[]; 

rate2a = trapz(x22,I2a); 

rate2b = trapz(x2,I2b); 

  

  

rate_P2a = ((hbar0*w.^5)./(32*pi*rho^3)).*(rate2a); 

rate_P2b = ((hbar0*w.^5)./(32*pi*rho^3)).*(rate2b); 

rate_2 = rate_P2a+rate_P2b; 

figure(3) 

semilogy(fr/1e12, rate_P2a,'k','LineWidth',3) 

hold on 

semilogy(fr/1e12, rate_P2b,'r','LineWidth',3) 

hold on 

semilogy(fr/1e12, rate_2,'g','LineWidth',3) 

grid minor 

xlabel('f (THz)'); 

ylabel('\Gamma^a_2'); 

legend('\Gamma^a_2','\Gamma^b_2','\Gamma_2') 

title('Process IIa: Plane normal to XY plane') 

set(gca,'FontSize',24,'FontWeight','bold') 

  

%} 

  

%%%%%%%%%%%%%%% Process-1%%%%%%%%%%%%%%%%%%%% 

 

  

% Velocity 

VA = Velocity(cos(t1)); 

Vl = VA(1,:); 

Vt = VA(2,:); 

Rs = Vl./Vt; 

  

Rsdiff = dydx(Rs,cos(t1)); 
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G1_N = ((x1.^3).*(1-x1.^2).^2).*sin(t1).^2.*cos(t1).^2; 

  

G1_D = Vl.^7.*Vt.^2.*((1+x1.^2)-2*x1.*cos(t1)).^(3/2); 

G1 = G1_N./G1_D; 

  

F1_der = Rsdiff.*(1-x1) + x1./sqrt((1+x1.^2)-2*x1.*cos(t1)); 

I1 = G1./abs(F1_der); 

rate1 = trapz(x1,I1); 

  

  

rate_P1 = ((hbar0*w.^5*Z.^2)./(32*pi*rho^3)).*(rate1); 

figure(4) 

semilogy(fr/1e12, rate_P1,'k','LineWidth',3) 

hold on 

semilogy(fr/1e12, rate_2,'r','LineWidth',3) 

grid minor 

xlabel('f (THz)'); 

ylabel('\Gamma_1 ,\Gamma_2'); 

legend('\Gamma_1','\Gamma_2') 

title('Process I & II: Plane normal to XY plane') 

set(gca,'FontSize',24,'FontWeight','bold') 

 

%  function Description 

% INPUT: Cosine (t) array [from x vs cos(t) table] 

% OUTPUT: XZ plane(plane containing c-axis) velocities 

  

function velocity_matrix = Velocity(cost) 

  

rho=6.154e3;            % density 

A1 = [0.0024 -0.0006 -0.0004 0 0 0]; 

A2 = [-0.0006 0.0024 -0.0004 0 0 0]; 

A3 = [-0.0004 -0.0004 0.0022 0 0 0]; 

A4 = [0 0 0 0.007 0 0 ]; 

A5 = [0 0 0 0 0.007 0]; 

A6 = [0 0 0 0 0 0.0061]; 

A = [A1;A2;A3;A4;A5;A6]; 

C = 1e9*inv(A); % Stiffness matrix 

  

% angles  

sint = sqrt(1-cost.^2); 

sin2t = 2*sint.*cost; 

    

% quasi shear wave in-plane 

  

Y1 = ((C(1,1)-C(4,4))*(sint).^2+(C(4,4)-

C(3,3))*(cost).^2).^2+((C(1,3)+C(4,4))*sin2t).^2; 
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Xp = C(1,1)*(sint).^2+C(3,3)*(cost).^2+C(4,4)-sqrt(Y1); 

Stp = sqrt(2*rho)./sqrt(Xp); 

Vtp = 1./Stp; 

  

% quasi longitudinal mode in-plane 

  

Xn = C(1,1)*(sint).^2+C(3,3)*(cost).^2+C(4,4)+sqrt(Y1); 

Slp = sqrt(2*rho)./sqrt(Xn); 

Vlp = 1./Slp; 

  

% pure shear mode polaized normal to the plane 

Stn = sqrt(rho./(C(6,6)*(sint).^2+C(4,4)*(cost).^2)); 

Vtn = 1./Stn; 

  

velocity_matrix = [Vlp;Vtp;Vtn]; 

  

  

  

end 
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MATLAB codes used for calculations in chapter 5 &6 

 

Electric field – velocity relation for two dimensional material under Thornber – Feynman 

formalism for 3D material: 

 
hbar0=1.0545887e-27; % [erg-s] 

c0=2.99792458e10; % [cm/s] 

f=6.242e11; % conversion factor [erg] to [eV] 

q0=4.80320420e-10; % elementary charge [ESU] 

me = 9.10938356e-28;    % Free Electron rest mass [gram] 

kB = 1.38064852e-16;    % [erg/K] 

T = 300;                % [K] 

kBT = kB*T;             % [erg] 

wLO=591.0832;           % LO phonon frequency in cm-1 

w=2*pi*wLO*c0;          % Phonon frequency in s-1 

b= (hbar0*w)/kBT;       % beta 

%Eph=0.0699;             % Phonon Energy [eV] 

%b= (Eph)/kBT;           % use this form for beta if Phonon 

Energy is given 

%--------------------------------------------------------------- 

%Polaron Parameters 

  

a=1.0224;v0=3.1123;w0=2.8676;x0=0.5*b*v0; 

f=6.242e11; % conversion factor [erg] to [eV] 

m0 = (v0/w0)^2; % ratio of polaron mass to electron  effective 

mass in lattice 

m_eff=0.27; 

m=m_eff*me; % me is the rest mass of electron 

mp=m_eff*m0;% ratio of polaron mass to free electron rest mass 

%-------------------------------------------------------------- 

E0 = (0.5*a)*sqrt(b/pi)*(1/sinh(0.5*b)); 

A =1+(1-w0^2/v0^2)*((v0*b)/(2*sinh(0.5*v0*b))-1); 

B=b*(w0^2/v0^2)*((((v0/w0)^2-1)/v0)*tanh(0.25*b*v0)+0.25*b); 

  

q = @(x) integral(@(k)(sign(k).*exp(-

((b*k.^2)/(8*A))*(((4*B)/b^2)-A)).*(exp(0.5*b)*exp((-0.5*b)*(x-

0.5*k-1./k).^2)+exp(-0.5*b)*exp(-b./(2*(x-0.5*k+1./k)).^2))),-

inf,inf); 

fun =@(x) x.*q(x); 

 

v = logspace(-2, 2,100); 

n=length(v); 

for i=1:n 

    x=0:0.01*v(i):v(i); 

    y=arrayfun(fun,x); 
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E(i)= simpsons(y,0,v(i)/sqrt(A),3).*(E0./v(i).^2); 

     

     

end 

  

  

E1= E/2.75; 

v1= v*0.418e16; 

  

Fb=sqrt(mp)*(hbar0*w*f)^1.5*1e8*1e-3*E1; 

Vr=sqrt(1/mp)*1e-8*(hbar0*w*f)^0.5*v1; 

Eel= 0.5*m*m0*Vr.^2*f;  

  

% 

% PLotting Velocity-Field 

  

loglog(Vr,Fb,'LineWidth',2.0) 

set(gca,'FontSize',26,'FontWeight','bold') 

xlabel('V (cm/sec)','FontSize',26,'FontWeight', 'bold') 

ylabel('eE (keV/cm)','FontSize',26,'FontWeight', 'bold') 

title('CdSe', 'FontSize',26,'FontWeight','bold') 

xlim([1e5 2.5e9]) 

ylim([1e0 1e3]) 

grid on 

hold on   

%} 

  

Program for evaluation of variational parameters 𝑣0 and 𝑤0  
%------------------------------------------------------------- 

% This program evaluates variational parameters: V0 and W0 for 

plotting Thornber_Feynman Curves  

%------------------------------------------------------------- 

a=0.2;%Frohlich Coupling Constant 

  

% Expression of Ground state energy of polaron to be minimised 

f = @(v,w) ((3*(v-w).^2./(4*v))-(integral(@(t)(pi)^-

0.5*a*v*((w.^2.*t+((v.^2-w.^2)/v).*(1-exp(-v.*t)))).^-0.5.*exp(-

t),0,inf)));  

x0 = [rand,rand];  

[xmin, fval] = fminsearch(@(x)f(x(1),x(2)), x0); 

% The above statement evaluates V0 and W0 and minimum value of 

polaron ground stae energy  

v0=xmin(1) 

w0=xmin(2) 

Emin=fval 

mass_polaron=v0^2/w0^2 
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MATLAB codes used for calculations in chapter 7 

 

Electric field – velocity relation for two dimensional material under Thornber – Feynman 

formalism: 
  

% PLotting Velocity-Field in SI Units 

  

wLO = 1387.2;           % LO phonon frequency in cm-1 

m_eff = 0.54; 

einf = 4.97;             % Dielectric Const (High Freq) 

e0 = 6.82; 

T = 300;  

% 

[E_TF,V_TF] = TF_2Dloss(wLO,m_eff,einf,e0,T); 

[idx] = find(E_TF == max(E_TF)); 

Vth = V_TF(idx); 

Eth = max(E_TF); 

  

subplot(1,2,1) 

loglog(V_TF,E_TF,'LineWidth',3.0) 

set(gca,'FontSize',15,'FontWeight','bold') 

xlabel('V [cm/sec]','FontSize',15,'FontWeight', 

'bold','Interpreter','latex') 

ylabel('eE (KeV/cm)','FontSize',15,'FontWeight', 

'bold','Interpreter','latex') 

hold on 

  

grid on 

 

% 

%% FGR 

% 

[E_FGR,Vel] = FGR_2Dloss_alt(wLO,m_eff,einf,e0,T); 

[jj] = find(E_FGR == max(E_FGR)); 

VthF = Vel(jj); 

EthF = max(E_FGR); 

  

loglog(Vel,E_FGR,'LineWidth',2) 

  

set(gca,'LineWidth',1) 

set(gca,'FontSize',15,'FontWeight','bold') 

xlabel('V [cm/sec]','FontSize',15,'FontWeight', 

'bold','Interpreter','latex') 
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ylabel('eE (KeV/cm)','FontSize',15,'FontWeight', 

'bold','Interpreter','latex') 

title('HfSe_2') 

%legend('TF','FGR','location','best') 

%} 

  

%% Finding mobility in TF 

  

E_field = E_TF(1:idx); 

velocity = V_TF(1:idx); 

mobility = mean(dydx(velocity,E_field*1e3)); 

  

Description of function TF_2D loss which computes energy loss in TF formalism 
function [E_TF,V_TF] = TF_2Dloss(wLO,m_eff,einf,e0,T) 

  

  

hbar0=1.0545887e-27; % [erg-s] 

c0=2.99792458e10; % [cm/s] 

f=6.242e11; % conversion factor [erg] to [eV] 

q0=4.80320420e-10; % elementary charge [ESU] 

me = 9.10938356e-28;    % Free Electron rest mass [gram] 

kB = 1.38064852e-16;    % [erg/K] 

               % [K] 

kBT = kB*T;             % [erg] 

w=2*pi*wLO*c0;          % Phonon frequency in s-1 

b= (hbar0*w)/kBT;       % beta 

  

%------------------------------------------------------------- 

%Polaron Parameters 

  

  

a=alpha(wLO,m_eff,einf,e0); 

[v0,w0]=VarParam_2D(a);x0=0.5*b*v0; 

m=m_eff*me; % me is the rest mass of electron 

m0 = (v0/w0)^2; % ratio of polaron mass to electron  effective 

mass in lattice 

mp=m0*m_eff;% ratio of polaron mass to free electron rest mass 

  

  

  

%------------------------------------------------------------- 

  

A =1+(1-w0^2/v0^2)*((v0*b)/(2*sinh(0.5*v0*b))-1); 

B=b*(w0^2/v0^2)*((((v0/w0)^2-1)/v0)*tanh(0.25*b*v0)+0.25*b); 

E02D = (0.25*a)*sqrt(b/pi)*(1/sinh(0.5*b))*(1/A); 
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q2D = @(x,v) integral(@(k)(sign(k).*exp(-

((b*k.^2)/(8*A))*(((4*B)/b^2)-A)).*(exp(0.5*b)*exp((-

0.5*b).*(((v/A).*cos(x))-0.5*k-1./k).^2)+exp(-0.5*b)*exp(-

(0.5*b)*(((v/A).*cos(x))-

0.5*k+1./k).^2))),0,inf,'ArrayValued',true); 

fun2D =@(x,v) cos(x).*q2D(x,v); 

f2D =  @(v)integral(@(x)fun2D(x,v),0,2*pi); 

  

 

v = logspace(-2, 1.6,5000); 

  

E2D=arrayfun(f2D,v); 

    

  

% 

  

E1_2D= E02D*E2D/2.75; 

v1_2D= v*0.418e16; 

%{ 

 

Fb2D=sqrt(mp)*(hbar0*w*f)^1.5*1e8*1e-3*E1_2D; %KeV/cm 

Vr2D=sqrt(1/mp)*1e-8*(hbar0*w*f)^0.5*v1_2D;   %cm/sec 

  

F_um = Fb2D*1e-1; %V/um 

  

E_TF = Fb2D; 

V_TF = Vr2D; 

  

 

  

 End 

 

Description of function FGR_2Dloss_alt which computes energy loss by the electron in the 

purview of Fermi’s golden rule: 

 
function [E_loss,Vel] = FGR_2Dloss_alt(w_LO,m_eff,einf,e0,T) 

hbar0=1.0545887e-27;    % [erg-s] 

c0=2.99792458e10;       % [cm/s] 

fx=6.242e11;             % conversion factor [erg] to [eV] 

q0=4.80320420e-10;      % elementary charge [ESU] 

m0 = 9.10938356e-28;    % [gram] 

kB = 1.38064852e-16;    % [erg/K] 

  

kBT = kB*T;             % [erg] 

  

pic2 = 2*pi*c0;  



 

198 

 

Appendix H (Continued) 
 

m = m0*m_eff; 

wLO= w_LO*pic2; 

a = alpha(w_LO,m_eff,einf,e0);  

b = hbar0*wLO/kBT; 

Nq = 1./(exp(b)-1); 

A1 = sqrt(2*m)/hbar0; 

Emin = hbar0*wLO; 

Emax = 5/fx; 

  

CE = a*wLO*sqrt(hbar0*wLO)*(Nq+1); 

CA = a*wLO*sqrt(hbar0*wLO)*(Nq); 

  

f1e = @(E,q)1./sqrt(1- (hbar0^2/(2*m*E)).*(0.5*q + 

m*wLO./(q*hbar0)).^2); 

  

f1a = @(E,q)1./sqrt(1- (hbar0^2/(2*m*E)).*(0.5*q - 

m*wLO./(q*hbar0)).^2); 

  

  

itaue = @(E)CE*sqrt(1./E)*integral(@(q)f1e(E,q)./q,A1*(sqrt(E)-

sqrt(E-hbar0*wLO)),A1*(sqrt(E)+sqrt(E-

hbar0*wLO)),'ArrayValued',true); 

  

itaua = @(E)CA*sqrt(1./E)*integral(@(q)f1a(E,q)./q,A1*(-

sqrt(E)+sqrt(E+hbar0*wLO)),A1*(sqrt(E)+sqrt(E+hbar0*wLO)),'Array

Valued',true); 

  

  

En = linspace(Emin, Emax,8000); 

%EnA1 = linspace(0, 0.99*Emin,8000); 

%Emain = [EnA1,En]; 

  

ItauE = arrayfun(itaue,En); 

%ItauA1 = arrayfun(itaua,EnA1); 

ItauA2 = arrayfun(itaua,En); 

  

Vel = sqrt(2*En/m); 

  

E_loss = (ItauE-ItauA2)*(hbar0*wLO*fx*1e-3)./Vel; 

  

  

End 
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This function evaluates the variational parameters 𝑣0 and 𝑤0 for the two dimensional material 

 

 
% INPUT: a = Frohlich Coupling constant 

% OUTPUT: V0 and W0  

  

function [V0,W0] = VarParam_2D(a) 

  

%(w.^2*t./(2*v.^2))+(v.^2-w.^2)*(1-exp(-v*t))./(2*v.^3); 

  

f = @(v,w) (0.5*(v-w).^2./v-

0.5*a*sqrt(0.5*pi)*integral(@(t)exp(-

t)./sqrt((w.^2.*t./(2*v.^2))+(v.^2-w.^2)*(1-exp(-

v.*t))./(2*v.^3)),0,inf)); 

  

x0 = [rand,rand];  

[xmin, fval] = fminsearch(@(x)f(x(1),x(2)), x0); 

% The above statement evaluates V0 and W0 and minimum value of 

polaron ground stae energy  

V0=xmin(1); 

W0=xmin(2); 

  

End 
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Appendix I 

 
MATLAB codes used for calculations in chapter 9 

 

This program evaluates confined LO phonon discrete wave vectors, discrete phonon spectral 

density and confined LO phonon – assisted exciton creation rate corresponding to 𝑛 = 1 mode. 
  

clear 

  

  

% GaAs Constants 

hbar0=1.0545887e-27;    % [erg-s] 

c0=2.99792458e10;       % [cm/s] 

eps0 = 1; 

[einf, e0, w0_LO, wTO] = MatParam(0); 

einf = 10.9; 

e0 = 12.9; 

q0=4.80320420e-10;      % elementary charge [ESU] 

eV=6.242e11;             % conversion factor [erg] to [eV] 

a = 5.65e-8; 

R = 3e-7; % Radius of QD 

ae = R; 

ah = ae/1.15; %[hole confinement length] 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Reading the excel file which stores the data points of 

dispersion relation 

A = csvread('GaAs2.csv'); 

pic2 = 2*pi*c0; 

  

k =  A(:,1); % wave vector 

w0 = A(:,2); % phonon frequency 

% 

  

% plotting data points obtained from neutron scattering   

experiments 

subplot(1,2,1) 

plot(k,w0,'or','LineWidth',3) 

grid minor 

%} 

hold on 

% fitting 9th order polynomial 

p = polyfit(k,w0,9); 

x1 = linspace(0,1); 

y1 = polyval(p,x1); 

wLO = (2*pi*c0)*y1(1); 

% 

% Plotting the fitted curve 
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plot(x1,y1,'LineWidth',1) 

xlabel('Wave vector (2\pi/a)') 

ylabel('Frequency (cm^{-1})') 

title('Fitted') 

legend('data points','curve fit') 

set(gca,'FontSize',22,'FontWeight','bold') 

%} 

% 

% Plotting fitted curve on second panel Fig. 1 

subplot(1,2,2) 

plot(x1,y1,'LineWidth',1) 

hold on 

xlabel('Wave vector (2\pi/a)') 

ylabel('Frequency (cm^{-1})') 

title('Confined modes') 

set(gca,'FontSize',22,'FontWeight','bold') 

%} 

%%%%%Determining confined mode wavevectors%%%%%%%%%%%%%%%%%%% 

a9 = p(1); 

a8 = p(2); 

a7 = p(3); 

a6 = p(4); 

a5 = p(5); 

a4 = p(6); 

a3 = p(7); 

a2 = p(8); 

a1 = p(9); 

a0 = p(10); 

B = a/(2*R); 

  

n = 1:10; 

%wq = y1; 

wq = 

(a9*(B*n).^9+a8*(B*n).^8+a7*(B*n).^7+a6*(B*n).^6+a5*(B*n).^5+a4*

(B*n).^4+a3*(B*n).^3+a2*(B*n).^2+a1*(B*n)+a0); 

  

% Confined mode wave vector 

% P.S: below is scaled wave vector 

% The actual wave vector in cm^-1 is obtained by multiplying 

(2*pi/a) 

  

qn = B*n; % confined scaled wave vector = (n*pi/R) / (2*pi/a) 

%qnc = qn*(2*pi/a); % actual confined wave vectors 

qnc = n*pi/R; 

%figure(2) 

plot(qn,wq,'s','MarkerFaceColor','r') 
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ylim([230 300]) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%%% Spectral density 

%%% flm(k) 

flm = sqrt(2*pi*hbar0*wLO*2/R).*sqrt(1/einf-1/e0); 

  

r = linspace(0,R,1000); 

  

Vq1 = -flm.*(2*q0/(pi*ae^3))*r.*(sin(qnc'.*r)./qnc').*exp(-

r.^2/ae^2); 

  

Vq2 = flm.*(2*q0/(pi*ah^3))*r.*(sin(qnc'.*r)./qnc').*exp(-

r.^2/ah^2); 

Vq = Vq1+Vq2; 

  

for i = 1:10 

    Mq(i,:) = trapz(r,Vq(i,:)); 

end 

  

Jc = (1/hbar0^2)*abs(Mq).^2; 

  

Jps = Jc*1e-12; %spectral density in ps^-1 

   

figure(2) 

stem(wq, Jps/pic2,'LineWidth',3) 

xlabel('confined mode: Phonon frequency (cm^{-1})') 

ylabel('Phonon Spectral Density (ps^{-1})') 

%title('Confined modes: Phonon spectral density for GaAS QD 

(radius = 3nm) ') 

set(gca,'yscal','log','FontSize', 20) 

  

 

%figure (3) 

theta = linspace(0,pi/2); 

ratio = tan(theta); 

itau = (pi/2)*sin(theta).^2*Jps(1); 

tau_ps = 1./itau; 

plot(ratio, tau_ps,'--' ,'LineWidth',1) 

ylabel('Phonon relaxation time (ps)','Interpreter','latex') 

xlabel('$\hbar f/\Delta$','Interpreter','latex') 

xlim([0 6]) 
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