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NOTATIONS

Bold lowercase letters are used to denote the vectors and bold uppercase letters for matrices.

The following mathematical notations are used throughout this thesis:

|x| the absolute value of a scalar x

[x] the integral part of a real scalar x, i.e., the greatest integer ≤ x

{x} the fractional part of a real scalar x, i.e., {x} = x− [x]

xm(k) the kth element of vector xm

[X]i,j the (i, j)th element of matrix X

∥x∥p the lp-norm of x, defined as (
∑

k |x(k)|p)
1
p

∥x∥ the l2-norm of x

x⊛ y denotes convolution of x and y

∥X∥F the Frobenius norm of matrix X defined as
√∑m

i=1

∑n
j=1 |[X]i,j |2

X∗ the complex conjugate of the matrix X

XT the transpose of the matrix X

XH the complex conjugate transpose of the matrix X

X† the Moore-Penrose pseudoinverse of the matrix X

Tr (X) the trace of matrix X

vec (X) the vector obtained by column-wise stacking of matrix X
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NOTATIONS (Continued)

diag (X) denotes a vector formed by diagonal entries of the matrix X

Diag (x) denotes a diagonal matrix formed by the entries of the vector x

arg (X) the phase angle (in radians) of X

cov (X) the covariance matrix of X

ℜ(X) the real part of X

ℑ(X) the imaginary part of X

σn(X) the nth maximal eigenvalue of X

λn(X) the nth maximal singular value of X

X ⊗ Y the Kronecker product of two matrices X and Y

X ⊙ Y the Hadamard product of two matrices X and Y

X ≻ Y X − Y is positive definite

X ⪰ Y X − Y is positive semidefinite

In the identity matrix of dimension n

1n the all-one vector of size n× 1

0n the all-zero vector of size n× 1

O the matrix with all elements as zero

en the nth standard basis of Cn or nth column of an identity matrix

R the set of real numbers
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NOTATIONS (Continued)

R+ the sets of real non-negative numbers

C the set of complex numbers

N the set of natural numbers

Z the set of integers

BM
N the set of binary vectors with size M and N non-zero elements, N ≤M

SM the set of all real symmetric matrices of size M ×M

Fn the n dimensional discrete Fourier transform matrix

E {·} the mathematical expectation of a random variable

Pr {·} denotes the probability of a random event

sign (·) the element-wise signum operator

csign (·) the element-wise complex signum operator as sign (ℜ{·}) + jsign (ℑ{·})

N (·, ·) the normal distribution with mean, and covariance as first and second

arguments, respectively

ln a natural logarithm of a, equivalent to loge a

j the imaginary unit i.e., j =
√
−1

xviii



SUMMARY

The first part of this thesis presents the foundations of model-based deep learning with

applications in various signal processing fields such as communication systems, compressive

sensing, phase retrieval, radar signal processing, and image processing. The remaining part of

the thesis is devoted to theoretical analysis of the proposed ideas, and specifically, presenting

performance guarantees for the obtained model-based deep architectures.
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CHAPTER 1

INTRODUCTION

Signal processing paradigm is dominated by techniques that heavily rely on the underlying

statistical and mathematical model of signals and systems. Accordingly, these parametrized

mathematical models play a central role in understanding and design of complex information

systems that are becoming common in our age. However, they often cannot take into account

the intricate interactions innate to such systems. In particular, to obtain an optimal operation

regime for such model-based signal processing techniques, one usually requires the exact knowl-

edge of the system parameters and the analytical mathematical model under which the system

is operating. However, the majority of model-based algorithms usually fail in scenarios where

the assumed mathematical model does not truly reflect the underlying physical model of the

system. Furthermore, the parameters of the underlying model might not be fully known at the

time of processing, which in turn results in a severe degradation in the performance. On the

contrary, purely data-driven approaches do not need explicit mathematical models for data gen-

eration and have a wider applicability at the cost of interpretability. Although the data-driven

approaches can handle large and complex datasets, they are ignorant of the underlying mathe-

matical model of the systems generating them. Thus, it is vital to develop hybrid data-driven

and model-based frameworks to enhance the accuracy, computational complexity, and efficiency

of the data acquisition model in complex, large-scale scenarios. In this thesis, we aim to take the

well-established iterative approaches, specifically developed for signal processing and inference,

1
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and use them as a baseline to design deep architectures where each layer is specifically tailored

to resemble an iteration of a well-thought traditional signal processing, inference, or optimiza-

tion algorithm. Data-driven machine learning methods (particularly deep learning) will be used

to boost the performance of the underlying inference optimization algorithm in terms of speed

of convergence and effectiveness. Such hybrid models differ from the existing deep learning

based methods in that they lead to novel model-based deep architectures specifically designed to

resemble the iterations of a well-established optimization algorithm, and that they incorporate

both parameterized and non-parameterized mathematical models for complex systems. Note

that since the emerging deep architectures are sparser due to incorporation of problem-level rea-

soning, the training of such architectures will be less data hungry and much faster than general

“bulky" networks—thus, paving the way for real-time or scalable machine learning.

This thesis builds upon a new paradigm based on optimization theory that allows for the

incorporation of domain knowledge into the existing deep learning models.

1.0.1 Preliminaries

In this thesis, we take advantage of the following concepts:

1. Statistical and machine learning models [4–6].

2. Deep learning and automated differentiation techniques [7–10].

3. Optimization theory and variational analysis and their applications in signal processing

[11–15].

4. Control theory, dynamical systems analysis via integral quadratic constraints, and reverse

optimization modeling [16–18].
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We assume the reader has some familiarity with the above topics.

1.0.2 Background

The field of signal processing is traditionally dominated by classical statistical inference

methodologies. In particular, classical methodologies are model-based algorithms which heavily

depend on having an exact knowledge of the underlying mathematical model that describes

the interaction between various variables existing in the underlying physical system. Accord-

ingly, classical model-based signal processing techniques usually depend on simplified statistical

modeling of the actual physical system to make the mathematical model more tractable and

interpretable. Nevertheless, inaccurate modeling and knowledge of the true underlying system

usually leads to a severe degradation of the performance of these model-based techniques. In

addition, as the underlying system becomes more complex, obtaining an accurate dynamical

representation becomes intractable, which in turn, may result in a total failure of these models.

On the other hand, due to the incorporation of domain knowledge in the classical statistical

inference techniques, these models benefit from interpretability (i.e., they are trustable), having

a low number of parameters, and efficiency in computation.

In parallel to the model-based signal processing methods, data-driven approaches are becom-

ing increasingly popular among practitioners. Over the past several years, data-driven methods,

and specifically deep learning techniques, have attracted unprecedented attention from research

communities, across the board. The advent of low-cost specialized powerful computing resources

(e.g., GPUs, and more recently TPUs) and the continually increasing amount of massive data

generated by the human population and machines, in conjunction with the new optimization
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and learning methods, have paved the way for DNNs and machine learning-based models to

prove their effectiveness in many engineering areas. In particular, convolutional neural networks

(CNNs) as a specific architecture for DNNs have proven to be a powerful tool for signal pro-

cessing due to their favorable properties (e.g., being highly parallelizable algorithms). Generic

DNNs are constructed in a fashion that inference is straightforward where the output of the

network is obtained via consecutive matrix multiplication resulting in a fixed computational

complexity inference model. The main advantage of the deep learning-based approach is that it

employs several non-linear transformations to obtain an abstract representation of the underly-

ing data. Data-driven approaches, on the other hand, lack the interpretability and trustability

that comes with model-based signal processing. They are particularly prone to be questioned

further, or at least not fully trusted by the users, especially in critical applications. Further-

more, the deterministic deep architectures are generic and it is unclear how to incorporate the

existing knowledge on the problem in the processing stage. The advantages associated with both

model-based and data-driven methods show the need for developing frameworks that bridge the

gap between the two approaches.

In short, the significant success of deep learning models in areas such as natural language pro-

cessing (NLP) [19], life sciences [20], computer vision (CV) [21], and collaborative learning [22],

among many others, have surged a significant interest in employing deep learning models for

radar signal processing applications. To account for difficulties in the underlying signal process-

ing tasks, most existing deep learning approaches however resort to very large networks whose

number of parameters are in the order of millions and billions [23]—making such models data
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and computing power hungry. Furthermore, these bulky deep learning models further introduce

non-ignorable latency during inference which hinders in-time decision making by autonomous

agents. More importantly, with all their repertoire of success, the existing data-driven tools

typically lack the interpretability and trustability that comes with model-based signal process-

ing. They are particularly prone to be questioned further, or at least not fully trusted by the

users, especially in critical applications such as autonomous vehicles. Last but not least, the

deterministic deep architectures are generic and it is unclear how to incorporate the existing

domain knowledge on the problem in the processing stage. In contrast, many signal processing

algorithms (e.g., in the fields of information theory, wireless communications, and radar signal

processing) are backed by decades of theoretical development and research resulting in accurate,

meaningful and reliable models. Owing to their theoretical foundations, the model-based signal

processing algorithms thus usually come with performance guarantees and bounds allowing for

interpreting the output of the model and certifying the achievable performance required for the

underlying task.

In light of the above, it has been long apparent that a mere adoption or modification of

generic deep neural networks designed for applications such as NLP and CV, and ignoring years

of theoretical developments mentioned earlier will result in inefficient networks. This is even

more pronounced in the long-standing radar problems with a rich literature. Hence, it is to

our belief that one needs to re-think the architectural design of deep neural models than re-

purposing them for adoption in critical fields such as radar signal processing for autonomous

vehicles.
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This thesis provides a novel methodology for bridging the gap between data-driven and

model-based approaches and move toward a more mature and specialized deep learning model

for signal processing. In particular, we elaborate on a framework that aims to take the well-

established iterative approaches, specifically developed for signal processing and inference, and

use them as a baseline to design deep architectures where each layer is specifically tailored to

resemble an iteration of a well-thought traditional signal processing/inference (optimization)

algorithm. Data-driven machine learning methods (particularly deep learning) will be used to

boost the performance of the underlying inference optimization algorithm in terms of speed of

convergence and effectiveness. Such hybrid models differ from the existing deep learning-based

methods in that they lead to novel model-based deep architectures with novel activation func-

tions specifically designed to resemble the iterations of a well-established optimization algorithm,

and that they incorporate both parameterized and non-parameterized mathematical models for

complex systems. Note that since the emerging deep architectures are sparser due to incorpo-

ration of problem-level reasoning, the training of such architectures will be less data hungry and

much faster than general “bulky" networks—thus, paving the way for real-time machine learning

and non-convex optimization.

In the following chapters, we lay the groundwork for our vision in developing interpretable,

trustable, and model-driven neural networks, starting from its theoretical foundations, to ad-

vance the state-of-the-art in statistical signal processing, with applications in communication

systems, compressive sensing, phase retrieval, radar signal processing, optimization theory, and

autonomous vehicles; among many others. In contrast to generic deep neural networks, which
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cannot provide performance guarantees due to their black-box nature, our proposed network al-

lows for performing a mathematical analysis of the worst-case performance bound of the model

not only during the training of the network but also once the network is trained and is to be

used for inference purposes. Last but not least, due to the incorporation of domain-knowledge in

the design of the network, the total number of parameters of the network are in the order of the

signal dimension and the training can be performed very quickly (allowing for on-the-fly train-

ing) with far less data samples—making the proposed approach highly favorable for real-time

applications.

1.1 Model-Based versus Data-Driven Inference Methodologies

In this part, we give a high-level comparison between model-based and data-driven inference

strategies upon which we introduce and motivate the concept of model-based deep learning.

An inference method can be interpreted as a framework to establish reasoning based on the

available information (i.e., evidence). Although this is a generic definition, in the rest of this

thesis we mainly focus on signal processing modules (systems) that are able to make prediction

based on a set of measured variables. In particular, an inference task is concerned with mapping

an input x ∈ X to the corresponding output variable y ∈ Y, where X and Y represents the

input and output space, respectively. More concretely, an inference module can be viewed as

the function:

f : X 7→ Y, (1.1)
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where the accuracy of such inference rule f is usually quantified by defining a proper energy

function E(f).

For a given inference problem, the main difference between model-based and data-driven

approaches lies in the definition of the inference rule, i.e., the mathematical characterization

of f(·), while both approaches share the common goal of characterizing the inference rule such

that the resulting model minimizes the energy function E(f).

Model-based algorithms are usually hand-crafted models that incorporate the domain knowl-

edge into the design of the inference function f as well as the energy function. Domain knowledge

usually encompasses the knowledge of the underlying analytical expression of the system, the

statistical relationship between input x and output y, and in general, it broadly refers to any

existing knowledge on the interaction of the variables in play. Accordingly, a model-based infer-

ence technique utilizes these existing domain knowledge to characterize the inference rule f in

accordance with the existing information. Most signal processing, inference, and signal design

problems can be formulated and viewed as optimization problems, which then, allows for ob-

taining inference rules f that minimizes the underlying energy function, in an iterative manner

via domain-specific mathematical manipulation (computation). As discussed above, domain-

knowledge is the main ingredient in devising model-based inference algorithms and tuning such

modules is usually concerned with solving an optimization problem. As a case in point, let us

consider the design of an inference module in a statistical learning framework. Let x ∈ X and

y ∈ Y represent the input and output random variable, where our goal is to learn an inference

module that maps the input to the corresponding output. In such a case, suppose that the
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statistical relationship between any input-output pair is known a priori and can be modeled

as a log-concave density function p(y|x; θ), where the parameter θ denotes a particular char-

acterization of the density function. In this case, the domain knowledge is referred to the case

where both the mathematical expression of the density function p(y|x; θ) and its parameter θ

is known. Furthermore, let

ŷ = f(x; θ), (1.2)

represent the inference rule for a given parameter θ. Accordingly, a model-based inference

strategy can be defined as:

f(x; θ) = argmin
y∈Y

E(x,y; θ), (1.3)

where E(x,y; θ) is a domain-knowledge driven energy function. In particular, let

E(x,y; θ) ≜ −log p(y|x; θ). (1.4)

Then, the inference rule

f(x; θ) = argmin
y∈Y

− log p(y|x; θ) (1.5)

coincides with that of a maximum a posteriori (MAP) inference strategy.
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The above example clearly demonstrates the rationale behind the term model-based. In

particular, the following assumptions can be drawn for model-based algorithms:

1. They do not require data to learn the inference rule.

2. They are fully interpretable and are in accordance with the underlying statistical and

physical model of the underlying parameters.

3. They require the exact knowledge of the statistical model, system parameters, and the

analytical relationship of the variables in play.

Nonetheless, model-based inference strategies often experience a severe degradation in perfor-

mance if an accurate knowledge of the system parameters (e.g., the parameter θ) and statistical

model (e.g., p(y|x; θ)) is not available. In such cases, the available data is typically utilized to

estimate the system parameters to improve the accuracy performance. In fact, in many practical

applications one can rarely assume that an accurate knowledge of the statistical model of the

variables is available, and furthermore, we are required to impose simplified assumptions on the

model which do not truly capture the true statistical model relating the input-output variables.

Hence, although model-based inference algorithms are extremely valuable in theory, they have

limited applicability in scenarios where the model is either too complex to be mathematically

characterized, or the system parameters are difficult to be estimated.

In contrast to model-based signal processing methodologies, data-driven approaches are

model-agnostic and are able to learn the intricate statistical relationship between the input

and output spaces by exploiting the data. In these models, the data is typically defined by a
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set D = {(xi,yi)}Bi=1 which is comprised of B input-output pairs. Then, the main idea behind

data-driven approaches is to consider a highly expressive and parameterized class of inference

functions fγ to characterize the inference rule. Note that this is contrast to the model-based

inference methodology described previously, where the mathematical characterization of the

inference function is usually guided by the domain knowledge.

Deep learning-based methodologies are a particular class of data-driven approaches that

charachterizes the inference rule fγ as deep neural network architecture where the set of pa-

rameters γ defines the weights of each layer of the DNN. It can be proven that DNNs are

universal approximators and a proper optimization of the weights γ allows for approximating

any Borel measurable mapping. A conventional strategy for learning a DNN-based inference

rule ŷ = fγ⋆(x) in a data-driven manner can thus be expressed as:

fγ⋆(x) = argmin
γ

E(x,y; γ) ≡ 1

B

B∑
i=1

∥fγ(xi)− yi∥22. (1.6)

We note that a data-driven methodology is drastically different than that of a model-based

technique in that data-driven techniques are highly generic and are applicable to a wide range of

applications. This is in contrast to model-based approaches in which an inference rule is learning

through a highly-tailored and structured manner specific to the problem at hand. Nonetheless,

despite the highly expressive power of data-driven approaches, there exist several drawback

associated with these models as enumerated below:
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1. Due to the highly parameterization of deep learning models, one usually requires a massive

amount of data to tune the inference rule.

2. Data-driven models, and specifically, deep learning based strategies are highly generic and

black-box models, and their applicability is only justifiable in scenarios where an analytical

model does not exist for the system

3. Due to the black-box nature of data-driven models, there exist no possible strategy to

incorporate the existing domain knowledge into the model.

4. The black-box and generic nature of deep learning and data-driven models renders the

overall inference rule to lack interpretability which makes it difficult to analyze the be-

haviour of the model and provide performance guarantees of the optimality of the model.

Evidently, there exist an untapped potential in bridging the gap between the model-based

and data-driven approaches to obtain a hybrid model-based and data-driven framework that

allows us to benefit from best of the both worlds. This thesis aims to address the drawbacks of

both models by establishing the foundations of model-based deep learning for signal processing.

1.2 Foundations of Model-Based Deep Learning: A High-Level Overview

In this part, we provide the main ideas behind developing model-based deep learning method-

ologies for the field of signal processing. We commence by drawing the connection between deep

neural networks and optimization theory, and proceed by introducing the main idea behind

model-based deep learning.
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We denote a deep neural network with l layers as the composition of l differentiable functions,

given by:

ŷ = fθ(x) = gθl ◦ · · · ◦ gθ1(x), (1.7)

where θ = ∪li=1θi denotes the overall set of parameters of the DNN, gθi represents a differentiable

function whose parameters is given by the set θi, and the overall architecture can be viewed as

a mapping belonging to the class of functions Fθ, mapping the input x ∈ X to an output y ∈ Y

for a given characterization of parameters θ.

Given a set of input-output pairs D = {(xi,yi)}, the training of a generic DNN is usually

carried out in a supervised manner where the set of learned parameters θ⋆ is given by:

θ⋆ = argmin
θ

1

|D|
∑
i

∥yi − fθ(xi)∥22. (1.8)

Once θ⋆ is obtained, the DNN can be utilized to perform an inference task, viz. ŷ = f⋆
θ (x).

Observing Eq. (Equation 5.15), one can deduce that a DNN architecture is indeed per-

forming an iterative procedure in l stages during its forward pass, where at each stage (layer),

the particular mathematical manipulation of the input is dictated by the parameterized generic

functions gθi .
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Recall that an inference task is concerned with finding a strategy fθ that minimizes an energy

function E(x,y; Θ), i.e.,

fΘ(x) = argminy E(x,y; Θ) (1.9)

In a model-based setting and in the presence of domain knowledge, both the inference strategy

fΘ and the energy function are dictated by the domain knowledge, where in a data-driven

approach, the inference strategy is learned according to the data and an energy function which

is defined based on a metric on the data rather than domain-knowledge.

In light of the above, one can view both model-based and data-driven methodologies in

a unified manner by considering an energy-based inference model. For instance, in a model-

based setting the energy function can be defined as the negative conditional distribution of the

input-output variables. The same school of thought can be applied to deep neural network

architectures. In particular, for a DNN architecture ŷ = fθ(x), define

E(x,y) = ∥y − fθ(x)∥22. (1.10)

Then, the inference strategy is similarly given by

argminy E(x,y) = argminy ∥y − fθ(x)∥22, (1.11)
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where the inferred value is exactly given by the forward pass of the learned DNN ŷ = fθ(x).

Hence, an energy-based modeling of an inference task not only encompasses the model-based

inference models but also consumes the feed-forward deep neural networks.

1.2.1 Model-Based Deep Learning

As it was previously discussed, most of the model-based inference problems can be viewed

as an optimization problem of the form:

f(x; θ) = argmin
y∈Ω

E(x,y; θ), (1.12)

where f(x; θ) denotes the inference strategy, θ denotes the parameters of the system (required for

model-based inference) drived from domain-knowledge, E represent an energy function dictated

by domain-knowledge, and Ω denotes the feasible set of the optimization variable. Two funda-

mental drawbacks of model-based signal processing techniques can be viewed as the difficulty

in obtaining an accurate knowledge of the system parameters θ, as well as the computational

complexity of the underlying optimization problem in (Equation 1.12). In particular, it is rarely

the case that the inference rule f(x; θ) admits a closed-form solution. Hence, one usually needs

to resort to advanced iterative optimization techniques to find the inference rule. Although

iterative optimization techniques are powerful, they usually suffer from slow convergence prop-

erties. To address these issues, it is intriguing to consider combining data-driven approaches

and model-based inference techniques to improve upon the performance of both models. To

this end, let us first consider the scenario in which the system parameters θ are unknown, how-
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ever, the analytical model of the energy function is available from the domain-knowledge (e.g.,

the conditional distribution is known). Furthermore, we have access to a dataset {(xi,yi)}Bi=1

consisting of true input-output pairs. In such a scenario, employing the model-based inference

rule of (Equation 1.12) is hopeless due to the fact that the energy function cannot be exactly

characterized as θ is unknown, though its mathematical expression is available (i.e., we have

access to the domain-knowledge). In such a scenario, one can obtain an estimation of θ in a

data-driven fashion as follows:

θ⋆ = argminθ

1

B
∥yi − f(xi; θ)∥22. (1.13)

However, in many scenarios, any attempt to find θ⋆ is hopeless. This is due to the fact that the

solution map f(x; θ) is not differentiable with respect to the optimization variable θ.

In order to obtain a differentiable approximation of the solution map f(x; θ), we start with

an initial point y0(θ) and utilize N gradient descent updating steps:

yi+1(θ) = yi(θ)−Gi∇yE(x,yi; θ), for i ∈ {0, · · · , N − 1} (1.14)

where Gi ⪰ 0 denotes a positive-definite pre-conditioning matrix controlling the convergence

rate of the underlying iterations. Note that the final iterate yN (θ) can be viewed as a dif-

ferentiable approximation of the solution map f(x; θ), and with a proper choice of the pre-

conditioning matrices, one can prove that as N →∞ we have yN (θ) → f(x; θ). Alternatively,

the computations defined in (Equation 1.14) can be viewed as a N -layer feed-forward neural
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network where the parameterized mathematical expression carried out in its i-th layer is specif-

ically designed to carry out one iteration of the underlying optimization problem. Such a neural

network can be expressed as:

fγ(x0; θ) = yN−1 ◦ · · · ◦ y1(y0,x; θ), (1.15)

where γ = {θ,G0, · · · ,GN−1} denotes the set of trainable parameters of such network. Then,

one can easily carry out the training of such a model-based deep architecture in a data-driven

manner using automatic differentiation techniques, as the output of the network is differentiable

with respect to both θ and {Gi}.

In the above, we have provided an introduction to the mathematical foundation of the devel-

oped model-based deep architectures. We note that more sophisticated optimization techniques

and acceleration schemes can be directly used to design model-driven architectures to tackle a

wide variety of task expressed in terms of constrained and unconstrained optimization problems.

In the following chapters, we detail on various techniques for this purpose.

The resulting deep architecture is now fully model-based and interpretable and has far-

fewer trainable parameters as compared to its black-box counterparts. Furthermore, the model-

based nature of the derived architecture allows for performing mathematical analysis of the

underlying model both during the training and once the training is completed (e.g., analyzing

the generalization bounds).
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In the following chapters, we build upon the above presented ideas and demonstrate the

effectiveness of model-based deep learning for various signal processing applications. Further-

more, a literature review of the existing methodologies as well as the details of the procedural

design of the proposed model-based deep neural networks will be discussed in each respective

chapter.

The details of the materials used in each chapter is as follows:

Chapter 2: This chapter is based on the following published articles1:

[J1] S. Khobahi, N. Shlezinger, M. Soltanalian and Y. C. Eldar, "LoRD-Net: Unfolded Deep

Detection Network With Low-Resolution Receivers," in IEEE Transactions on Signal Processing,

vol. 69, pp. 5651-5664, 2021, doi: 10.1109/TSP.2021.3117503.

[C1] S. Khobahi, N. Shlezinger, M. Soltanalian and Y. C. Eldar, "Model-Inspired Deep

Detection with Low-Resolution Receivers," 2021 IEEE International Symposium on Information

Theory (ISIT), 2021, pp. 3349-3354, doi: 10.1109/ISIT45174.2021.9517812.

Chapter 3: This chapter is based on the following published articles:

[C2] S. Khobahi, N. Naimipour, M. Soltanalian and Y. C. Eldar, "Deep Signal Recovery

with One-bit Quantization," ICASSP 2019 - 2019 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2019, pp. 2987-2991, doi: 10.1109/ICASSP.2019.8683876.

Chapter 4: This chapter is based on the following published articles:

1[C]: Peer-Reviewed Conference Paper, [J]: Journal Papers, [SJ]: Submitted Journal Paper.
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[J2] S. Khobahi and M. Soltanalian, "Model-Based Deep Learning for One-Bit Compres-

sive Sensing," in IEEE Transactions on Signal Processing, vol. 68, pp. 5292-5307, 2020, doi:

10.1109/TSP.2020.3022319.

[C3] S. Khobahi, A. Bose and M. Soltanalian, "Deep One-Bit Compressive Autoencoding,"

2021 IEEE Statistical Signal Processing Workshop (SSP), 2021, pp. 371-375, doi: 10.1109/SSP49050.2021.9513806.

Chapter 5: This chapter is based on the following published articles:

[SJ1] N. Naimipour, S. Khobahi, and M. Soltanalian. "Unfolded algorithms for deep phase

retrieval.", Submitted to IEEE Transactions on Signal Processing, arXiv preprint arXiv:2012.11102

[C4] N. Naimipour, S. Khobahi and M. Soltanalian, "UPR: A Model-Driven Architecture

for Deep Phase Retrieval," 2020 54th Asilomar Conference on Signals, Systems, and Computers,

2020, pp. 205-209, doi: 10.1109/IEEECONF51394.2020.9443438.

Chapter 6: This chapter is based on the following published articles:

[C5] S. Khobahi, A. Bose and M. Soltanalian, "Deep Radar Waveform Design for Efficient

Automotive Radar Sensing," 2020 IEEE 11th Sensor Array and Multichannel Signal Processing

Workshop (SAM), 2020, pp. 1-5, doi: 10.1109/SAM48682.2020.9104367.

Chapter 7: This chapter is based on the following published articles:

[C6] C. Agarwal, S. Khobahi, A. Bose, M. Soltanalian and D. Schonfeld, "DEEP-URL:

A Model-Aware Approach to Blind Deconvolution Based on Deep Unfolded Richardson-Lucy

Network," 2020 IEEE International Conference on Image Processing (ICIP), 2020, pp. 3299-

3303, doi: 10.1109/ICIP40778.2020.9190825.

Chapter 8: This chapter is based on the following published articles:
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[C7] S. Khobahi, A, Mostajeran, M. Emadi, P. Wang, and M. Soltanalian, "Guaranteed

Deep Learning for Reliable Radar Signal Processing," IEEE Sensor Array and Multichannel

Signal Processing Workshop (SAM) 2022.

Other Contributions by Author: In addition to the above publications, the author has

published the following articles during his Ph.D. studies:

[J3] Y. Zeng, S. Khobahi, and M. Soltanalian. "One-Bit Compressive Sensing: Can We Go

Deep and Blind?." In press, IEEE Signal Processing Letter, 2022.

[J4] A. Bose, S. Khobahi, and M. Soltanalian, "Efficient waveform covariance matrix design

and antenna selection for MIMO radar," Signal Processing 183 (2021): 107985.

[J5] S. Khobahi, M. Soltanalian, F. Jiang and A. L. Swindlehurst, "Optimized Transmission

for Parameter Estimation in Wireless Sensor Networks," in IEEE Transactions on Signal and In-

formation Processing over Networks, vol. 6, pp. 35-47, 2020, doi: 10.1109/TSIPN.2019.2945631.

[C8] C. Agarwal, S. Khobahi, D. Schonfeld and M. Soltanalian . CoroNet: a deep network

architecture for enhanced identification of COVID-19 from chest x-ray images. In Medical

Imaging 2021: Computer-Aided Diagnosis (Vol. 11597, pp. 484-490), SPIE, (2021, February).

[C9] A. Bose, S. Khobahi and M. Soltanalian, "Joint Optimization of Waveform Covariance

Matrix and Antenna Selection for MIMO Radar," 2019 53rd Asilomar Conference on Signals,

Systems, and Computers, 2019, pp. 1534-1538, doi: 10.1109/IEEECONF44664.2019.9048709.
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CHAPTER 2

LORD-NET: UNFOLDED DEEP DETECTION NETWORK WITH

LOW-RESOLUTION RECEIVERS

Overview: The need to recover high-dimensional signals from their noisy low-resolution quan-

tized measurements is widely encountered in communications and sensing. In this paper, we focus on

the extreme case of one-bit quantizers, and propose a deep detector entitled LoRD-Net for recovering

information symbols from one-bit measurements. Our method is a model-aware data-driven architecture

based on deep unfolding of first-order optimization iterations. LoRD-Net has a task-based architecture

dedicated to recovering the underlying signal of interest from the one-bit noisy measurements without

requiring prior knowledge of the channel matrix through which the one-bit measurements are obtained.

The proposed deep detector has much fewer parameters compared to black-box deep networks due to

the incorporation of domain-knowledge in the design of its architecture, allowing it to operate in a data-

driven fashion while benefiting from the flexibility, versatility, and reliability of model-based optimization

methods. LoRD-Net operates in a blind fashion, which requires addressing both the non-linear nature

of the data-acquisition system as well as identifying a proper optimization objective for signal recovery.

Accordingly, we propose a two-stage training method for LoRD-Net, in which the first stage is dedicated

to identifying the proper form of the optimization process to unfold, while the latter trains the resulting

Parts of this chapter is taken from published conference article [24] and journal article [25]. Copyright
©2021, IEEE.
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model in an end-to-end manner. We numerically evaluate the proposed receiver architecture for one-bit

signal recovery in wireless communications and demonstrate that the proposed hybrid methodology out-

performs both data-driven and model-based state-of-the-art methods, while utilizing small datasets, on

the order of merely ∼ 500 samples, for training.

2.1 Introduction

Analog-to-digital conversion plays an important role in digital signal processing systems.

While physical signals take values in continuous-time over continuous sets, they must be rep-

resented using a finite number of bits in order to be processed in digital hardware [26]. This

operation is carried out using analog-to-digital converters (ADCs), which typically perform uni-

form sampling followed by a uniform quantization of the discrete-time samples. When using

high-resolution ADCs, this conversion induces a minimal distortion, allowing to effectively pro-

cess the signal using methods derived assuming access to the continuous-amplitude samples.

However, the cost, power consumption and memory requirements of ADCs grow with the sam-

pling rate and the number of bits assigned to each sample [27]. Consequently, recent years have

witnessed an increasing interest in digital signal processing systems operating with low-resolution

ADCs. Particularly, in multiple-input multiple-output (MIMO) communication receivers, which

are required to simultaneously capture multiple analog signals with high bandwidth, there is

a growing need to operate reliably with low-resolution ADCs [28]. The most coarse form of

quantization is reduction of the signal to a single bit per sample, which may be accomplished

via comparing the sample to some reference level, and recording whether the signal is above

or below the reference. One-bit acquisition allows using high sampling rates at a low cost and
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low energy consumption. Due to such favorable properties of one-bit ADCs, they have been

employed in a wide array of applications, including in wireless communications [29–31], radar

signal processing [32–34], and sparse signal recovery [35,36].

The non-linear nature of low-resolution quantization makes symbol detection a challenging

task. This situation is significantly exacerbated in practical one-bit communication and sensing

where the channel is to be estimated in conjunction with symbol detection. A coherent symbol

detection task is concerned with recovering the underlying signal of interest from the one-bit

measurements assuming the channel state information (CSI) is known at the receiver. On the

other hand, the more difficult task of blind symbol detection, which is the focus here, carries

out recovery of the underlying transmitted symbols when CSI is not available.

Two main strategies have been proposed in the literature to facilitate operation with low-

resolution ADCs: The first designs the overall acquisition system in light of the task for which

the signals are acquired. For instance, MIMO communication receivers acquire their channel

output in order to extract some underlying information, e.g., symbol detection. As the analog

signals are not required to be recovered from their digital representation, one can design the

acquisition system to reliably infer the desired information while operating with low resolution

ADCs [37–41]. Such task-based quantization systems rely on pre-quantization processing, which

requires dedicated hardware in the form of hybrid receiver architectures [42,43] or unique antenna

structures [44,45], which are configured along with the quantization rule.

An alternative approach to task-based quantization, which does not require additional con-

figurable analog hardware and is the focus of the current work, is to recover the desired infor-
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mation from the distorted coarsely discretized representation of the signal in the digital domain.

The main benefit of schemes carried out only in the digital domain is their simplicity of imple-

mentation, as they do not require to introduce modifications to the quantization system and

circumvent the need for adding pre-quantization analog processing hardware. In the context of

MIMO systems, various methods have been proposed in the literature for channel estimation

and signal decoding from quantized outputs, including model-based signal processing methods

as surveyed in [46], as well as model-agnostic systems based on machine learning and data-driven

techniques [47–54].

Most existing model-based detection algorithms require coherent operation, i.e., they rely

on prior knowledge of the CSI and other system parameters. Among these works are the near-

Maximum Likelihood (nML) detector proposed for one-bit MIMO receivers in [55], the linear

receivers studied in [56,57], and the message passing based detectors considered in [58,59]. The

fact that such approaches require accurate CSI led to several works specifically dedicated to

CSI estimation in the presence of low-resolution ADCs. These include [55, 60], which studied

maximum-likelihood estimation for recovering the CSI in the presence of one-bit data, the works

in [61, 62], which developed linear estimators for CSI estimation purposes in one-bit MIMO

systems, and [63] which focuses on sparse channels and utilizes one-bit sparse recovery methods

for CSI estimation. However, all these strategies inevitably induce non-negligible CSI estimation

error, which may notably degrade the accuracy in signal detection based on the estimated CSI.

Over the past several years, data-driven methods, and specifically deep neural networks

(DNNs), have attracted unprecedented attention from research communities across the board.
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The advent of low-cost specialized powerful computing resources and the continually increasing

amount of massive data generated by the human population and machines, along with new

optimization and learning methods, have paved the way for DNNs and machine learning-based

models to prove their effectiveness in many engineering areas, such as computer vision and

natural language processing [7]. DNNs learn their mapping from data in a model-agnostic

manner, and can thus facilitate non-coherent (blind) detection.

Previously proposed DNN-aided symbol detection techniques for communication receivers

can be divided based on their receiver architectures; namely, those that utilize conventional

machine learning architectures for detection, including [64–66], and schemes combining DNNs

with model-based detection methods, such as the blind DNN-aided receivers proposed in [67–70]

and the coherent detectors of [71, 72], see also surveys in [73, 74]. In the context of one-bit

DNN-aided receivers, previous works to date focus mainly on the first approach, i.e., applying

conventional DNNs for the overall detection task. Among these works are [47, 50] and [48],

which applied generic DNNs for channel estimation in one-bit MIMO receivers. The application

of conventional architectures for symbol detection was studied in [49, 52] and [53], while [51]

showed that autoencoders can facilitate the design of error correction codes for communications

with one-bit receivers. Recently, the authors in [54] considered the problem of symbol detection

for a one-bit massive MIMO system and proposed a linear estimator module based on the

Bussgang decomposition technique combined with a model-driven neural network.

The vast majority of the aforementioned works on learning-aided one-bit receivers rely on

conventional DNN architectures. Such DNNs require a massive amount of training samples and
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must be trained on data from the same (or a similar) statistical model as the one under which

they are required to operate, imposing a major challenge in dynamic wireless communications.

In fact, the use of generic black-box DNNs is mostly justified in applications where a satisfactory

description of the underlying governing dynamics of the system is not achievable, as is the case in

computer vision and natural language processing fields. As surveyed above, this is not the case

in the field of one-bit MIMO systems. This gives rise to the need that is bridging the gap between

data-driven and model-based approaches in this context, and moving towards specialized deep

learning models for signal processing techniques in one-bit MIMO systems—which is the aim of

this work.

In this paper, we develop a hybrid model-based and data-driven system which learns to carry

out blind symbol detection from one-bit measurements. The proposed architecture, referred to

as LoRD-Net (Low Resolution Detection Network), combines the well-established model-based

maximum-likelihood estimator (MLE) with machine learning tools through the deep unfolding

method [75–80] for designing DNNs based on model-based optimization algorithms. To derive

LoRD-Net, we first formulate the MLE for the task of symbol detection from one-bit samples.

Next, we resort to first-order gradient-based methods for the MLE computation, and unfold the

iterations onto layers of a DNN. The resulting LoRD-Net learns to carry out MLE-approaching

symbol detection without requiring CSI.

Applying conventional gradient-based optimization methods requires knowledge of the un-

derlying system parameters, i.e., full CSI. Hence, a typical approach to unfold such a symbol

detection algorithm would be to estimate the unknown parameters from training, and substi-
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tute it into the unfolded network [70]. We show that instead of estimating the unknown system

parameters, it is preferable to learn an alternative channel which allows the receiver to de-

tect the symbols reliably. Surprisingly, we demonstrate that the alternative channel learned by

LoRD-Net is in general not the true channel. Based on this observation, we propose a two-stage

training procedure, comprised of learning the proper optimization process to unfold, followed

by an end-to-end training of the unfolded DNN.

The proposed LoRD-Net has thus the following properties:

i) Compared to the vanilla MLE symbol detector, our model does not need to estimate the

channel separately.

ii) Owing to its hybrid nature, it has low computational cost in operation and is highly

scalable, facilitating much faster inference as compared to its black-box data-driven and

model-based counterparts.

iii) The proposed deep architecture is interpretable and has far fewer parameters compared to

existing black-box deep learning solutions. This follows from the incorporation of domain-

knowledge in the design of the network architecture (i.e., being model-based), allowing

LoRD-Net to train with much fewer labeled samples as compared to existing data-driven

one-bit receivers.

We verify the above characteristics of LoRD-Net in an experimental study, where we show that

training of the proposed LoRD-Net architecture can be performed with far fewer samples as

compared to its data-driven counterparts, and demonstrate substantially superior performance
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compared to existing model-based and data-driven algorithms for symbol detection in massive

MIMO channels with one-bit ADCs.

The rest of the paper is organized as follows. In Section 2.2, we present the considered

system model and the corresponding MLE formulation. In Section 2.3, we derive LoRD-Net by

unfolding the first-order gradient iterations associated with the MLE computation, and present

its two-stage training procedure. Section 2.4 provides a detailed numerical analysis of LoRD-Net

applied to MIMO communications. Finally, Section 2.5 concludes the paper.

Throughout the paper, we use the following notation. Bold lowercase and bold uppercase

letters denote vectors and matrices, respectively. We use (·)T , Diag(·), and sign(·), and log{·}

to denote the transpose operator, the diagonal matrix formed by the entries of the vector

argument, the sign operator, and the natural logarithm, respectively. The symbol ⊙ represents

the Hadamard product, while 1 and 0 are the all-one and all-zero vectors/matrices. The i-th

entry of the vector x is xi, and ∥x∥p is the ℓp-norm of x;Mn is the n-ary Cartesian product of

a setM, and S+ denotes the cone of symmetric positive definite matrices.

2.2 System Model and Preliminaries

In this section, we discuss the considered system model. We focus on one-bit data acquisition

and blind signal recovery. We then formulate the MLE for this problem, which is used in

designing the LoRD-Net architecture in Section 2.3.

2.2.1 Problem Formulation

We consider a low-resolution data-acquisition system which utilizes m one-bit ADCs. By

letting y ∈ Rm denote the received signal, the discrete output of the ADCs can be written as

r = sign (y − b), where b ∈ Rm denotes the vector of quantization thresholds, and sign(·) is the
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sign function, i.e., sign(x) = +1 if x ≥ 0 and sign(x) = −1 otherwise. The received vector y is

statistically related to the unknown vector of interest x ∈Mn ⊆ Rn according to the following

linear relationship:

y = Hx+ n, (2.1)

where n ∼ N (0,C) denotes additive Gaussian noise with a covariance matrix of the form

C = Diag(σ2
0, σ

2
1, . . . , σ

2
m−1) with diagonal entries {σ2

i }m−1
i=0 representing the noise variance at

each respective dimension, and H ∈ Rm×n is the channel matrix. We assume that the elements

of the unknown vector x are chosen independently from a finite alphabetM = {s1, s2, · · · , s|M|}.

This setup represents low-resolution receivers in uplink multi-user MIMO systems, where x is

the symbols transmitted by the users, and y is the corresponding channel output, as illustrated

in Figure 1.

The overall dynamics of the system are thus compactly expressed as:

r = sign(Hx+ n− b). (2.2)

In the sequel, we refer to Θ = {H,C} as the system parameters. Note that the above system

model can be modified using conventional transformations to accommodate a complex-valued

system model.

Our main goal is to perform the task of symbol detection, i.e., recover x, from the col-

lected one-bit measurements r. We focus on blind (non-coherent) recovery, namely, the system



33

Figure 1. System model illustration.

parameters Θ = {H,C}, i.e., the channel matrix and the covariance of the noise, are not avail-

able to the receiver. Nonetheless, the receiver has access to a limited set of B labeled samples

{xb
p, r

b
p}B−1

b=0 , representing, e.g., pilot transmissions. The quantization thresholds of the ADCs,

i.e., the vector b, are assumed to be fixed and known. While we do not consider the selection

of b in the following, we discuss in the sequel how its optimization can be incorporated into the

detection method.

2.2.2 Maximum Likelihood Recovery

To understand the challenges associated with blind low-resolution detection, we next discuss

the MLE for recovering x from r. In particular, the intuitive model-based approach is to utilize

the labeled data to estimate the system parameters Θ, and then to use this estimation to
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compute the coherent (non-blind) MLE. Therefore, to highlight the limitations of this strategy,

we assume here that the system parameters Θ = {H,C} are fully known at the receiver. Let

FΘ(x; r) ≜ log Pr(r|x,Θ)

(a)
= −

m−1∑
i=0

log

{
Q

(
ri
σi

(
bi − hT

i x
))}

, (2.3)

represent the log-likelihood objective for a given vector of one-bit observations r, where (a) is

proven in [31]. The coherent MLE is then given by

x̂ML(r) = argmax
x∈Mn

FΘ(x; r). (2.4)

Although the MLE in (Equation 2.4) has full accurate knowledge of the parameters Θ, its

computation is still challenging. The main difficulty emanates from solving the underlying

optimization problem in the discrete domain, implying that the MLE requires an exhaustive

search over the discrete domainMn, whose computational complexity grows exponentially with

n. A common strategy to tackle the discrete optimization problem in (Equation 2.4) is to relax

the search space to be continuous. This results in the following relaxed unconstrained MLE

rule:

x̄Θ(r) = argmax
x∈Rn

FΘ(x; r). (2.5)



35

The optimization problem in (Equation 2.5) is convex due to the log-concavity of Q(·), and thus

can be solved using first-order gradient optimization. In particular, the negative log-likelihood

function with respect to the unknown vector x can be compactly expressed as [31]:

∇xFΘ(x; r) = HT R̃ η
(
R̃ (b−Hx)

)
, (2.6)

where η is a non-linear function defined as η(x) ≜ Q
′
(x) ⊘ Q(x), in which the operator ⊘

denotes the element-wise division operation, Q′
(x) is the derivative of Q(x), that is given by

the negative probability density function of a standard Normal distribution, and R̃ = RC− 1
2 is

the semi-whitened version of the one-bit matrix R = Diag (r0, . . . , rm−1).

As x̄Θ(r) obtained via (Equation 2.5) is not guaranteed to take values in Mn, the final

estimate of the symbols is obtained by applying a projection operator PMn : Rn 7→ Mn to

x̄(r). This operator maps the continuous input vector onto its closest lattice point on the

discrete setMn, i.e.,

PMn(x) = argmin
z∈Mn

∥z − x∥22. (2.7)

Tackling a discrete program via continuous relaxation, as done in (Equation 2.5), is subject

to an inherent drawback. As a case in point, one can only expect x̄Θ(r) to provide an accurate

approximation of the true MLE if the real-valued vector x̄Θ(r) is very close to the discrete valued

MLE x̂ML(r). In such a case, the MLE is obtained by projecting into the lattice points inMn.

However, this is not the case in many scenarios, and specifically, when the noise variance in each
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respective dimension is high. In other words, it is not necessarily the case that the minimizer

of the objective function on the continuous domain (Equation 2.5) is close to the MLE, which

takes values in the discrete set Mn. Note that utilizing the true system parameters will only

lead to optimal estimates when considering the original discrete problem (Equation 2.4). In

fact, one can no longer necessarily argue that the true system parameters are optimal choices

for Θ in the relaxed MLE. This insight, which is obtained from the computation of the coherent

MLE, is used in our derivation of the blind unfolded detector in the following section.

2.3 Proposed Methodology

In this section, we present the proposed Low Resolution Detection Network, abbreviated

as LoRD-Net. We begin with a high-level description of LoRD-Net in Subsection 2.3.1. Then,

we present the unfolded architecture in Subsection 2.3.2 and discuss the training procedure in

Subsection 2.3.3. Finally, we provide a discussion in Subsection 2.3.4.

2.3.1 High-Level Description

As noted in the previous section, the intuitive approach to blind symbol detection is to

utilize the labeled data {xb
p, r

b
p}B−1

b=0 to estimate the true system model Θ, and then to recover

the symbol vector x from r using the MLE. Nonetheless, the coherent MLE (Equation 2.4)

is computationally prohibitive, while its relaxed version in (Equation 2.5) may be inaccurate.

Alternatively, one can seek a purely data-driven strategy, using the data to train a black-

box highly-parameterized DNN for detection, requiring a massive amount of labeled samples.

Consequently, to facilitate accurate detection at affordable complexity and with limited data, we

design LoRD-Net via model-based deep learning [81], by combining the learning of a competitive

objective, combined with deep unfolding of the relaxed MLE.
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Learning a competitive objective refers to the setting of the unknown system parameters

Θ. However, the goal here is not to estimate the true system parameters, but rather the ones

for which the solution to the relaxed MLE coincides with the true value of x. This system

identification problem can be written as

FΘ⋆(r;x)=min
Θ

1

B

B−1∑
b=0

∥∥∥x̄Θ(r
b
p)−xb

p

∥∥∥2
2
, (2.8)

where x̄Θ is the relaxed MLE (Equation 2.5). The optimization problem (Equation 2.8) yields a

surrogate objective function FΘ⋆ , or equivalently, a set of system parameters Θ⋆, referred to as

a competitive objective to the true FΘ. An illustration of such a competitive objective obtained

for the case of n = 1 is depicted in Figure 2.

The main difficulty in solving (Equation 2.8) stems from the fact that x̄Θ(r) = argmax
x∈Rn

FΘ(x; r)

is not differentiable with respect to the system parameters Θ. We overcome this obstacle by

applying a differentiable approximation of x̄(r), or equivalently, an algorithm that approximates

the argmax operator specific to our problem. Since x̄Θ(r) can be computed by first-order gra-

dient methods, we design a deep unfolded network [76] to compute the relaxed MLE in manner

which is differentiable with respect to Θ. The usage of deep unfolding allows not only to learn a

competitive objective via (Equation 2.8), but also results in accurate inference with a reduced

number of iterations compared to model-based first-order gradient optimization. Furthermore,

the unfolded network utilizes a relatively small amount of trainable parameters, thus enabling

learning from small amounts of labeled samples.
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Figure 2. An illustration of the relation between the optimal point of a competitive objective
function (dashed blue line) and the true MLE x̂ML obtained by an exact maximization of the

log-likelihood objective function (solid black line) over the discrete setM as well as an
approximation of the MLE x̄Θ obtained by a maximization of the log-likelihood objective

function over the continuous space R, when the true transmitted symbol is s3 ∈M.
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2.3.2 LoRD-Net Architecture

We now present the architecture of LoRD-Net, which maps the low resolution r into an

estimated x̂. For given system parameters Θ whose learning is detailed in Subsection 2.3.3 based

on the competitive objective rationale described above, LoRD-Net is obtained by unfolding the

iterations of a first-order optimization of the relaxed MLE (Equation 2.5). Our derivation thus

begins by formulating the first-order methods to iteratively solve (Equation 2.5) for a given Θ.

Let gϕi
: Rn 7→ R be a parametrized operator defined as gϕi

(x; Θ, r) = x−Gi∇xFΘ(x; r),

where Gi ∈ Rn×n is a positive-definite weight matrix and ϕi = {Gi} denotes the set of parame-

ters of the operator gϕi
. Such a linear operator can be used to model a first-order optimization

solver by considering a composition of t mappings of the form:

xt+1 = Gtϕ(x0; Θ, r) = xt −Gt∇xFΘ(xt; Θ, r), (2.9)

≜ gϕt ◦ · · · ◦ gϕ1 ◦ gϕ0(x0; Θ, r)

where x0 is an initial point, ϕ = {ϕ0, · · · , ϕt−1} is the set of parameters of the overall mapping

Gtϕ. The mapping (Equation 2.9) is differentiable with respect to the system parameters Θ,

and its local weights ϕ. For a fixed number of iterations L, the resulting function GLϕ(x0; Θ, r)

is thus differentiable with respect to the set of parameters {ϕ,Θ} and its input (unlike the

original argmax operator). Therefore, it can now be used as a differentiable approximation of

x̄Θ(r), which allows for a training (optimization) over the set of its parameters based on the

gradient-based training algorithms and the back-propagation technique.
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Following the deep unfolding framework [76], the function GLϕ(x0; Θ, r) can be implemented

as a L-layer feed-forward neural network, where the initial point x0 and the one-bit samples r

constitute the input to the network, and with trainable parameters that are given by {Θ,ϕ}.

By (Equation 2.6), the i-th layer computes:

gϕi
(xi; Θ, r) = xi −Gizi, with (2.10)

zi = HT R̃ η
(
R̃ (b−Hxi)

)
, (2.11)

where the overall dynamics of the LoRD-Net is given by:

GLϕ(x0; Θ, r)=gϕL−1 ◦ gϕL−2 ◦ · · · ◦ gϕ0(x0; Θ, r). (2.12)

Each vector xi in (Equation 2.10) represents the input to the i-th layer (or equivalently, the

output of the previous iteration), with x0 being the input of the entire network (which represents

the initial point for the optimization task). Upon the arrival of any new one-bit measurement

r, the recovered symbols x̂ are obtained by feed-forwarding r through the L layers of LoRD-

Net. In order to obtain discrete samples, the output of LoRD-Net is projected into the feasible

discrete setMn, viz.

x̂ = PMn

(
GLϕ(x0; Θ, r)

)
. (2.13)

An illustration of LoRD-Net is depicted in Figure 3.



41

Figure 3. An illustration of LoRD-Net, where trainable system parameters and unfolded
weights are highlighted in red and green colors, respectively.

We note that one can also propose an alternative architecture, derived by applying the pro-

jection operator PMn at the output of each layer, i.e., by defining gϕi
(xi; θ, r) = PMn(xi−Gizi).

Such a setting corresponds to the unfolding of a projected gradient descent method. However,

our numerical investigations have consistently shown that such an architecture suffers from the

vanishing gradient problem during training and a significant degradation in performance. As a

result, we implement LoRD-Net while applying the projection operator once on the output of

the network, and only during inference, as discussed above.

In principle, one can fix Gi = δI for some δ > 0, for which (Equation 2.12) represents L

steps of gradient descent with step size δ. In the unfolded implementation, the weights {Gi} are

tuned from data, allowing to detect with less iterations, i.e., layers. As a result, once LoRD-Net

is trained, i.e., its weight matrices ϕ = {Gi} and the unknown system parameters Θ are learned

from data, it is capable of carrying out fast inference, owing to its hybrid model-based/data-
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driven structure. Furthermore, the number of iterations L is optimized to boost fast inference

in the training procedure, as detailed in the following.

2.3.3 Training Procedure

Herein, we present the training procedure for LoRD-Net. In particular, our main goal is

to perform inference of the unknown system parameters Θ based on the rationale detailed in

Subsection 2.3.1, i.e., to obtain a competitive objective. The learning competitive objective is

used to tune the weights of the unfolded network ϕ. Accordingly, we present a two-stage training

procedure for LoRD-Net (Equation 2.12). Once the training of the LoRD-Net is completed, it

carries out symbol detection from one-bit information without requiring the knowledge of system

parameters Θ.

2.3.3.1 Training Stage 1 - Learning a Competitive Objective

The first stage corresponds to learning the unknown system parameter Θ. However, as

formulated in (Equation 2.8), we do not seek to estimate the true values of the channel matrix

H and noise covariance C, but rather learn the surrogate values which will facilitate accurate

detection using the relaxed MLE formulation. We do this by taking advantage of two propertities

of LoRD-Net: The first is the differentiability of the unfolded architecture with respect to

Θ, which facilitates gradient-based optimization optimization; The second is the fact that for

Gi = δI, LoRD-Net essentially implements L steps of gradient descent with step size δ over the

convex objective (Equation 2.5), and is thus expected to reach its maxima.

Based on the above properties, we fix a relatively large number of layers/iterations L for

this training stage, and fix the weights ϕ to Gi = δI. Under this setting, the output of LoRD-



43

Net GLϕ={δI}(x; Θ, r) represents an approximation of the relaxed MLE for a given parameter Θ,

denoted x̄Θ(r), i.e., we have that

x̄Θ(r) ≈ GLϕ={δI}(x0; Θ, r). (2.14)

We refer to the setting ϕ = {δI} using in this stage as the basic optimization policy. Note that

as the number of layers grows large, the above approximation becomes more accurate. Hence, by

substituting (Equation 2.14) into (Equation 2.8) and replacing x̄Θ(r
i
p) with the corresponding

outputs of LoRD-Net, we formulate the loss measure of the first training stage of LoRD-Net as:

Θ⋆ = argmin
Θ

1

B

B−1∑
i=0

∥∥∥GLϕ={δI}(x0; Θ, rip)− xi
p

∥∥∥2
2
. (2.15)

Owing to the differentiable nature of GLϕ(x0; Θ, r) with respect to Θ, we recover Θ⋆ based on

(Equation 2.15) using conventional gradient-based training, e.g., stochastic gradient descent

with backpropagation, as detailed in our numerical evaluations description in Section 2.4

2.3.3.2 Training Stage 2 - Learning the Unfolded Weights

Having learned the unknown system parameters Θ in Stage 1, we turn to tuning the param-

eters of LoRD-Net, i.e., the set ϕ = {Gi}. We note that in Stage 1, the rationale was to use the

basic optimization policy ϕ = {Gi = δI}L−1
i=0 with a large number of layers L, exploiting the

insight that under this setting, LoRD-Net effectively implements conventional gradient descent.

However, once Stage 1 is concluded and Θ⋆ is learned, it is preferable to reduce the number of

layers L compared to that used in Stage 1, thus exploiting the ability of the unfolded network
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to carry out faster inference compared to their model-based iterative counterparts by learning

the weights applied in each iteration [76,82]. Consequently, the first step in this stage is to set a

number of layers to a value which can potentially be smaller than that used in the first training

stage, and then optimize the weights according to the following criterion:

ϕ⋆=argmin
ϕ

1

B

B−1∑
i=0

∥∥∥GLϕ={Gl}Ll=1
(x0; Θ

⋆, rip)−xi
p

∥∥∥2
2
. (2.16)

Generally speaking, in order for a first-order optimizer (LoRD-Net in this case) to provide

a descent direction at each iteration (layer), the pre-conditioning matrices must be positive-

semidefinite so that each iteration does not reverse the gradient direction. To incorporate

this requirement into LoRD-Net training, we re-parameterize the pre-conditioning matrices by

writing {Gi = W iW
T
i } and performing the traning over the matrices {W i}. The resulting

two-stage training algorithm is summarized as Algorithm 2.1.

Algorithm 2.1 Training LoRD-Net
Input: Labeled data {xb

p, r
b
p}Bb=0

Stage 1 Init: Fix (large) L, step-size δ ∈ (0, 1), and weights Gl = δI. Initialize x0;
-Optimize Θ⋆ via (Equation 2.15)
Stage 2 Init: Fix (small) L. Initialize x0;
-Set the trainable parameters to {Gi = W iW

T
i };

-Optimize ϕ⋆ according to (Equation 2.16)
Output: LoRD-Net parameters {Θ⋆,ϕ⋆}
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When the network is properly trained, LoRD-Net is expected to carry out learned and

accelerated first-order optimization, tuned to operate even in channel conditions for which such

an approach does not yield the MLE for the true channel.

2.3.4 Discussion

LoRD-Net is a data-driven acquisition system based on unfolding first-order gradient opti-

mization methods, designed for low-resolution MIMO receivers operating without analog pro-

cessing. Its model-awareness enables the receiver to learn to accurately infer from smaller

training sets compared to conventional DNN architectures applied to such setups, as suggested,

e.g., in [49], giving rise to the possibility of tracking block-fading channel conditions via on-

line training, as in [67]. Furthermore, LoRD-Net differs from previously proposed deep unfolded

MIMO receivers as surveyed in [73] in two key aspects: First, LoRD-Net is particularly designed

for one-bit observations, being derived from the iterative optimization formulation which arises

from such setups. Second, previous unfolded MIMO receivers either assumed prior knowledge of

the channel parameters, as in [71], or alternatively, utilize external modules to directly estimate

the CSI as in [70]. LoRD-Net exploits the fact that, for its unfolded relaxed convex optimization

algorithm to yield the desired MLE, an alternative channel parameters, which differ from the

true Θ, should be estimated. Consequently, the training procedure of LoRD-Net does not aim to

recover the true CSI, but the one which yields a competitive objective which facilitates symbol

detection, thus accounting for the overall system task.

The proposed training procedure detailed in Algorithm 2.1 carries out each training stage

once in a sequential manner. This strategy can be extended to optimizing the hyperparameters
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and the weights in an alternating fashion, i.e. repeating the stages multiple times, while using

the learned ϕ in Stage 2 in the Stage 1 that follows. Alternatively, the hyperparameters and

the weights can be learned jointly in an end-to-end manner, by optimizing (Equation 2.16)

with respect to both Θ and ϕ simultaneously. The main requirement for carrying out these

training strategies compared to that detailed in Subsection 2.3.3 is that the same number of

layers L should be used when learning both Θ and ϕ, while when these stages are carried

out once sequentially, it is preferable to use large L at Stage 1 and a smaller value, which

dictates the number of learned weights, in Stage 2. Furthermore, our numerical evaluations

show that training once in a two-stage fashion via Algorithm 2.1 yields similar and sometimes

even improved performance compared to learning both Θ and ϕ simultaneously in a one-stage

manner, as well as when alternating between these two stages, as demonstrated in Section 2.4.

A possible extension of the training procedure is to account for ADCs with more than one bit,

as well as allow LoRD-Net to optimize the quantization thresholds b in light of the overall symbol

recovery task. While accounting for multi-level ADCs is a rather simple extension achieved

by reformulating the objective function (Equation 2.3), optimizing the quantization thresholds

requires modifying the overall training strategy. The challenge here is that modifying b results

in different one-bit measurements r. In a communication setup, in which periodic pilots are

transmitted, one can envision gradual optimization of b between consecutive pilot sequences,

using their corresponding one-bit observations to further optimize LoRD-Net. The study of

LoRD-Net with multi-level ADCs and optimized thresholds is left for future work.
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2.4 Numerical Study

In this section, we numerically evaluate LoRD-Net1, and compare its performance with

state-of-the-art model-based and data-driven methodologies. As a motivating application for

the proposed LoRD-Net, we focus on the evaluation of LoRD-Net for blind symbol detection task

in one-bit MIMO wireless communications. In the following, we first detail the considered one-bit

MIMO simulation settings in Subsection 2.4.1, after which we evaluate the receiver performance,

compare LoRD-Net to alternative unfolded architectures, and numerically investigate its training

procedure in Subsections 2.4.2, 2.4.3, and 2.4.4, respectively. .

2.4.1 Simulation Setting

We consider an up-link one-bit multi-user MIMO scenario as in (Equation 5.2). We focus on a

single cell in which a base station (BS) equipped with m antenna elements serves n single-antenna

users. Specifically, we consider two cases of (m,n) = (128, 16) and (m,n) = (64, 10), i.e., a 128×

16 and a 64×10 MIMO channel setup. The transmitted symbols of the users, represented by the

unknown vector x, are randomized in an independent and identically distributed (i.i.d.) fashion

from a BPSK constellation set M = {−1,+1}. The projection mapping is thus PMn(x) =

sign(x), where the sign function is applied element-wise on the vector argument. In the sequel,

we assume that while the channel matrix H, representing the CSI, is not available at the BS,

the noise statistics C are known and are fixed to C = I. Accordingly, our goal is to utilize

LoRD-Net to recover the transmitted symbols from the one-bit measurements. Note that the

1The source code is available at: https://github.com/skhobahi/LoRD-Net.



48

proposed methodology can carry out the task of symbol detection even for the case in which

the noise statistics C is unknown.

Channel Models: We evaluate LoRD-Net under two channel models: (i) i.i.d. Rayleigh

fading channels, where H ∼ N (0, I); and (ii) the COST-2100 massive MIMO channel [83].

The COST-2100 channel model is a realistic geometry-based stochastic model which accounts

for prominent characteristics of massive MIMO channels, and is considered to be an established

benchmark for evaluating MIMO communication systems. We generate the channel matrices for

the COST-2100 model for a narrow-band indoor scenario with closely-spaced users at 2.6 GHz

band, where the BS is equipped with a uniform linear array (ULA) that has m omni-directional

receive antenna elements. The one-bit ADC operation uses zero thresholds, i.e. b = 0. We

define the signal-to-noise ratio (SNR) as:

SNR = E
{
∥Hx∥22

}
/E
{
∥n∥22

}
. (2.17)

Benchmark Algorithms: As LoRD-Net combines both model-based and data-driven infer-

ence, we compare its performance with state-of-the-art model-based and data-driven method-

ologies in a one-bit MIMO receiver scenario. In particular, we use the following benchmarking

detection algorithms:

• The model-based nML proposed in [55]. The nML algorithm is based on a convex relax-

ation of the conventional ML estimator, and requires the exact knowledge of the channel

parameters Θ = {H,C}. We set the number of iterations of the nML algorithm to 700,
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and the step-size is chosen using a grid search method to further improve the performance

of the nML, while the remaining parameters are those reported in [55].

• The data-driven Deep Soft Interference Cancellation (DeepSIC) methodology proposed

in [68], with five learned interference cancellation iterations. DeepSIC is channel-model-

agnostic and can be utilized for symbol detection in non-linear settings such as low-

resolution quantization setups. Unlike LoRD-Net, which is designed particularly for ob-

servations of the form (Equation 5.2) where Θ = {H,C} is unknown, DeepSIC has no

prior knowledge of neither the channel model nor its parameters.

LoRD-Net Setting: The LoRD-Net receiver is implemented with L = 30 layers. Recall that

the first training stage of the LoRD-Net is concerned with finding a competitive objective by

carrying out the training of the network over the unknown set of channel parameters Θ =

{H,C}. Unless otherwise specified, we focus on the case where only H is unknown, and the

correlation matrix of the noise C is available.

During the first training stage, we set δ = 0.01, and recover Θ⋆ based on the objective

(Equation 2.15) using the Adam stochastic optimizer [84] with a constant learning rate of 10−3.

Next, we carry out the training of the LoRD-Net during the second stage according to the

objective function defined in (Equation 2.16) and over the set of trainable parameters ϕ, using

the Adam optimizer with a learning rate of 10−4, and a mini-batch of size 512. We consider

the learning of diagonal pre-conditioning matrices (unfolded weights) during the second training

stage. The network is trained for 400 epochs during the first training stage, and 400 epochs

during the second training stage, with the same value of L = 30 used in both stages.
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2.4.2 Receiver Performance

Here, we evaluate the performance of the proposed LoRD-Net, comparing it to the afore-

mentioned benchmarks as well as examining its dependence on the number of training samples

B. In particular, we numerically evaluate the bit-error-rate (BER) performance versus SNR

using different training sizes B ∈ {1024, 2048}, for both 128×16 and 64×10 channel configura-

tions. For DeepSIC, we use only B = 2048, while the nML recever of [55] operates with perfect

CSI, i.e., with full accurate knowledge of Θ. All data-driven receivers are trained for each SNR

separately, using a dataset corresponding to that specific SNR value.

The results are depicted in 4(a) and 4(b) for a 128 × 16 channel configuration under the

Rayleigh fading and COST-2100 channel models, respectively. Furthermore, the BER perfor-

mance for a 64 × 10 configuration under both channel models are illustrated in 5(a) for the

Rayleigh fading channel, and in 5(b), for the COST-2100 channel model. Based on the results

presented in Figure 4 and Figure 5, one can observe that LoRD-Net significantly outperforms

the competing model-based and data-driven algorithms and achieves improved detection per-

formance under both simulated channels, as well as both MIMO configurations.

In particular, the nML algorithm, which is designed to iteratively approach the MLE using

ideal CSI (prior knowledge of the channel matrix), is notably outperformed by LoRD-Net.

Such gains by LoRD-Net, which learns to compute the MLE from data without requiring CSI,

compared to the model-based nML algorithm, demonstrate the benefits of learning a competitive

objective function combined with a relaxed deep unfolded optimization process. Specifically, the

results depicted in Figure 4-Figure 5 illustrate that one can significantly improve the receiver
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Figure 4. BER performance versus SNR over a 128× 16 channel configuration.
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Figure 5. BER performance versus SNR over a 64× 10 channel configuration.

performance by learning a new channel matrix H upon which the learned competitive objective

function admits optimal points near the true symbols. The learning of the competitive objective

function is possible due to the hybrid model-based/data-driven nature of LoRD-Net, and the
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fact that it is derived based on the unfolding of first-order optimization techniques. From

a computational complexity point-of-view, the depicted performance of the nML algorithm in

Figure 4-Figure 5 is achieved by employing 700 iterations of a first-order optimization algorithm,

while LoRD-Net uses only L = 30 layers/iterations—exhibiting a significant reduction in the

computational cost during inference as compared to the nML algorithm.

Comparing LoRD-Net to DeepSIC illustrates that LoRD-Net benefits considerably from its

model-aware architecture. The fact that LoRD-Net is particularly tailored to the one-bit system

model of (Equation 5.2) allows it to achieve improved accuracy, even in the case of training

with small amounts of data. For instance, for the 128× 16 MIMO Rayleigh fading channel (see

4(a)), LoRD-Net trained with B = 2048 samples, achieves BER of 10−2 at SNR of 3dB, while

DeepSIC trained with the same dataset requires SNR as high as 5dB to achieve such an error

rate. Considering 4(b), a similar behavior is observed in the COST-2100 channel, for a BER of

3× 10−2. A similar performance gain for LoRD-Net can be observed in a 64× 10 configuration;

see Figure 5. Furthermore, it can be observed that the LoRD-Net still outperforms the DeepSIC

methodology, even when trained on 2 times less training samples. In particular, for the (128×16)

channel setup considered in this part, the total number of trainable parameters of LoRD-Net is

merely |Θ = {H}|+ |ϕ| = n (L+m) = 2528. For comparison, DeepSIC, which uses and trains

a multi-layer fully-connected network for each user at each interference cancellation iterations,

consists here of over 8×105 trainable parameters. Such a reduction in the number of parameters

allows for achieving substantially improved performance with much smaller training points, as

observed in Figure 4-Figure 5. Finally, we note that the small number of trainable parameters
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of LoRD-Net shows its potential for online or real-time training, as proposed in [67]. This can be

achieved by using periodic pilots with minimal overhead on the communication, while inducing

a relatively low computational burden in its periodic retraining.

So far, we have investigated the performance of the proposed LoRD-Net for scenarios with

known noise statistics, and unknown H (i.e., Θ = {H}). Next, we investigate the detection

performance of LoRD-Net when both the channel and noise covariance matrices are not avail-

able, i.e., we set Θ = {H,C} and carry out the training according to the proposed two stage

methodology. Specifically, we consider the learning of a diagonally structured C in addition to

the channel matrix H for this scenario. Figure 6 demonstrates the BER versus SNR perfor-

mance of LoRD-Net under both channel models, when trained using a dataset of size B = 1024.

The performance of LoRD-Net for the case of Θ = {H} is further provided for comparison pur-

poses. Observing Figure 6, one can readily conclude that the proposed network can successfully

perform the task of symbol detection also when C in unknown. Furthermore, it can be observed

that a small gain in performance is achieved for both channel models when Θ = {H,C} as

compared to the case of Θ = {H}, which is presumably due to the careful addition of more

degrees of freedom in learning a competitive surrogate model.

2.4.3 Performance of Competing Deep Unfolded Architectures

In this part, we compare the performance of the proposed LoRD-Net with alternative deep

unfolding-based architectures tailored for the problem at hand. Recall that the architecture of

LoRD-Net uses trainable parameters which are shared among the different layers, as illustrated

in Figure 3. Thus, LoRD-Net is comprised of a relatively small number of trainable param-
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eters, and uses a two-stage learning method to train the shared parameters, representing the

competitive model, and the iteration-specific weights, encapsulating the first-order optimization

coefficient. Nonetheless, the conventional approach for unfolding first-order optimization tech-

niques is to over-parameterize the iterations, and then, train in an end-to-end manner using a

one-stage training procedure discussed earlier. Therefore, to numerically evaluate the proposed

unfolding mechanism of LoRD-Net, we next compare it to two conventional unfolding based

benchmarks derived from the relaxed MLE:

• Benchmark 1: An over-parameterized deep unfolded architecture obtained by setting the

computational dynamics for the ith layer as:

ḡϕi
(xi; r) = xi −AiR η (R (b−Bixi)) . (2.18)

Here, ϕi = {Ai ∈ Rn×m,Bi ∈ Rm×n} are the trainable parameters of the ith layer, and

R = Diag(r).

• Benchmark 2: Here, we again use the unfolded architecture given in (Equation 2.18),

while limiting the number of trainable parameters by constraining the rank of the learned

matrices. In particular, we set Ai = P iQi and Bi = RiSi, where ϕi = {P i ∈ Rn×r,Qi ∈

Rr×m,Ri ∈ Rm×r,Si ∈ Rr×n} denotes the set of trainable parameters of the ith layer

of the unfolded network. The dimension r < min(m,n) controls the rank of the resulting

weight matrices {Ai,Bi}, and thus the number of trainable parameters.
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Comparing (Equation 2.18) with the corresponding dynamics of LoRD-Net in (Equation 2.10),

we note that the channel matrix H, the pre-conditioning matrices Gi, and the noise covariance

matrix C are now absorbed into the per-layer trainable matrices Ai and Bi. Accordingly, these

unfolded benchmarks, which follow the conventional approach for unfolding optimization algo-

rithms, are less faithful to the underlying model. These benchmarks also differ from LoRD-Net

in their number of trainable parameters. In particular, Benchmark 1 with L layers has 2Lnm

trainable parameters, while Benchmark 2 has 2Lr(m+ n) weights, which can be controlled by

the setting of the hyperparameter r. For comparison, LoRD-Net has n(L+m) trainable param-

eters for the case of Θ = {H} and diagonally structured pre-conditioning matrices, while for the

case of Θ = {H,C} with a diagonally structured pre-conditioning matrix and noise covariance

matrix it has n(L+m) +m trainable parameters.

We evaluate the performance of the proposed LoRD-Net compared to the unfolded bench-

marks in the following simulation setup. We consider train all the considered network using

a dataset of size B = 1024, while the highly-parameterized Benchmark 1 is also trained using

B = 2048 samples. For Benchmark 2, we set r = 1. All architectures have L = 30 layers

and their performance are evaluated on the same testing dataset of size B = 2048. The un-

folded benchmarks are trained in the conventional end-to-end fashion. The channel model is a

(128× 16) Rayleigh fading channel. Foror the considered scenario above, the LoRD-Net admits

a total of 2528 trainable parameters, while Benchmark 1 ha a total of 122880 (approximately

50 times more parameters than LoRD-Net), while Benchmark 2 has 8640 trainable parameters.
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Fig Figure 7 depicts the BER versus SNR of LoRD-Net compared to the unfolded bench-

marks. We observe in Figure 7 that the proposed LoRD-Net significantly outperforms the

conventional unfolding based benchmarks,indicating the gains of the increased level of domain

knowledge Incorporated in to the architecture of LoRD-Net and its two stage training procedure.

It is also observed that the performance of Benchmark 1 increases with more training samples.

Interestingly, for a small training set of B = 1024 samples, Benchmark 2, which is obtained by

imposing a rank constraint on the trainable parameters of Benchmark 1, achieves improved per-

formance over Benchmark 1, due to its notable reduction in the number of trainable parameters.

2.4.4 Training Analysis

In this part, we analyze the performance of the proposed two-stage training procedure de-

scribed in Subsection 2.3.3. The training aspects of LoRD-Net are numerically evaluated for

the 128× 16 Rayleigh channel model detailed before.

Following our insight on the ability of LoRD-Net to accurately train with small datasets, we

begin by evaluating the performance of the LoRD-Net versus the training data size B. For this

study, we generate training datasets of size B ∈ {32, 64, 128, 256, 512, 1024, 2048} and evaluate

the performance of LoRD-Net using 2048 test samples. Figure 8 depicts the BER achieved

for each training size B, for SNR ∈ {0, 2, 4, 6, 8, 10} dB. We can observe from Figure 8 that

the performance of the LoRD-Net improves across all SNR values, where the improvements are

most notable for B ≤ 256. Interestingly, it may be concluded from Figure 8 that LoRD-Net

is capable of accurately and reliably performing the task of symbol detection without CSI with
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Figure 6. BER versus SNR for both channel models and a training size of B = 1024. The
performance of the proposed LoRD-Net is provided for both scenarios of training over

Θ = {H} (i.e., known noise statistics C), and over Θ = {H,C} corresponding to unknown
channel matrix and noise statistics.
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as few as B = 512 samples. The ability of LoRD-Net to train with very few training samples

(compared to the black-box DNN models for one-bit MIMO receivers [47, 49], as well as the

DeepSIC architecture), stems from its incorporation of the domain-knowledge in designing the

LoRD-Net architecture. This in turn leads to far fewer trainable parameters requiring much less

training samples for optimizing the network.

Next, we analyze the performance and the effect of the two stage training methodology

detailed in Algorithm 2.1 on the detection performance of the LoRD-Net architecture. Recall

that the first training stage is concerned with finding a competitive objective function through

an optimization of LoRD-Net over the unknown system parameters Θ, while the second training

stage tunes the positive definite preconditioning matrices ϕ = {Gi} to accelerate the convergence

of the LoRD-Net to the optimal points of the obtained competitive objective. To numerically

evaluate the performance of the training methodology, we set SNR = 8 dB, and generate

a training dataset of size B = 512 and a testing dataset of size 2048. Then, we compare

performance of Algorithm 2.1 with two other competing training procedures:

• One-Stage Training : Here, the weights ϕ and the unknown system parameters Θ are jointly

learned in a single stage. The objective of this one stage training procedure for LoRD-Net is

min
ϕ={Gl}l,Θ∈Θ

1

B

B−1∑
i=0

∥∥GLϕ(x0; Θ, rip)− xi
p

∥∥2
2
. (2.19)

• Alternating Training : This procedure is concerned with training the network by alternating

between the two optimization problems (Equation 2.15) and (Equation 2.16) consecutively with
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Figure 8. BER versus training size B for the Rayleigh fading channel.
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respect to each training epoch. Here, the network is trained over 400 alternations, corresponding

to a total of 800 training epochs. Namely, at each epoch index i, we update the variables Θ for

odd i and update ϕ for even i.

Figure 9 depicts the BER versus the training epoch for both the training and testing dataset.

We first note that the proposed two-stage training method (Algorithm 2.1) outperforms the

competing procedures, yielding lower testing error values. Interestingly, we observe that the

proposed methodology successfully closes the generalization gap as the testing and training

error are very close to each other. On the other hand, the other two training procedures admit

relatively large generalization gaps, indicating the fact that their utilization has resulted in an

over-fitting of the network to the data. Furthermore, it can be observed from Figure 9 that

the major improvement of the detection accuracy of LoRD-Net is taking place during the first

training stage when finding a competitive objective function, where a slight improvement in the

BER is achieved during the second training stage, starting at epoch index 80(×5).

Before we proceed with the evaluation results, we provide some useful connections to notions

widely used in the deep learning literature. Generally speaking, the performance of a statistical

learning framework and its training procedure is evaluated using its generalization gap and

testing error. The generalization gap of a model can be defined as the difference between the

training and testing errors. Specifically, a model with smaller generalization gap and smaller

testing error is highly favourable. Furthermore, a higher generalization gap may indicate that

the network has over-fitted to the data, and hence, it does not generalize well. For two models

with the same generalization gap, the one with lower testing error is favourable. Figure 9 depicts
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the BER versus the training epoch for both the training and testing dataset. We first note that

the proposed two stage training method outperforms all other competing procedures and it

assumes a significantly lower testing error as compared to other algorithms. Interestingly, one

can observe that the proposed methodology has successfully closed the generalization gap as

the testing and training error are very close to each other. On the other hand, the other two

training procedures admits very large generalization gap indicating the fact that their utilization

has resulted in an over-fitting of the network to the data. Furthermore, it can be observed from

Figure 9 that the major improvement of the detection accuracy of the LoRD-Net is taking

place during the first training stage when finding a competitive objective function, i.e., epochs

i < 80(×5), where a slight improvement in the BER is achieved during the second stage, i.e.,

i ≥ 80(×5).

The success of the proposed two stage training procedure in closing the generalization gap

compared to the one stage training procedure is presumably due to the fact that the two-stage

training approach leads to an implicit regularization on the model capacity limiting the total

number of parameters used during the entire training procedure. On the contrary, the one stage

training procedure allows the neural network to use its full capacity leading to an over-fitting

and a larger generalization gap, as observed in Figure 9.

As discussed in Subsection 2.3.3, the second training stage allows LoRD-Net to achieve

fast inference, i.e., accelerated convergence to the optimal points of the competitive objective

function. To illustrate this behavior, we perform a per-layer BER evaluation of LoRD-Net,

exploiting the interpretable model-based nature of the LoRD-Net, in which each layer represents
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Figure 9. BER versus the training epoch number of LoRD-Net, Rayleigh fading channel,
SNR = 8 dB.
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Figure 10. BER performance of LoRD-Net after completing training stages 1 and 2 versus the
layer/iteration number for (a) the Rayleigh fading channel, and (b) the COST-2100 massive

MIMO channel, with SNR = 8 dB.

an unfolded first-order optimization iteration, and thus its output can be used as an estimate

of the transmitted symbols. 10(a) and 10(b) depict the BER versus the layer/iteration number

of LoRD-Net at the completion of training stages 1 and 2, for the Rayleigh fading channel and

the COST-2100 channel model, respectively. We observe in Figure 10 that the convergence of

LoRD-Net after the completion of the first training stage is slow and requires at least L = 30

layers/iterations to converge. Interestingly, we note from Figure 10 that the second training

stage indeed results in an acceleration of the convergence of LoRD-Net via learning the best set

of pre-conditioning matrices for the problem at hand in an end-to-end manner. In particular,

after the completion of the second training stage, LoRD-Net can accurately and reliably recover

the symbols with as few as 10 layers. This observation hints that one can consider further
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truncation of the LoRD-Net after the training to reduce the computational complexity while

maintaining its superior performance.

In order to quantify the quality of the learned competitive objective in closing the gap

between the discrete optimization problem and its continuous version, we further provide the

per-iteration performance of the nML algorithm and the LoRD-Net algorithm which operate

with perfect CSI. For this scenario, LoRD-Net utilizes the true Θ, and is thus optimizer only

over the weights ϕ while employing the exact channel model H. It is observed from 10(a)-10(b)

that learning a new surrogate model for the continuous optimization problem at hand is indeed

highly beneficial and admits a far superior performance in recovering the transmitted symbols.

The analysis provided in Figure 10 further supports the rationale behind the proposed two-stage

training methodology, and the fact that the second training stage results in an acceleration of

the underlying first-order optimization solver (i.e., achieving a much faster descent per step)

upon which the layers of the LoRD-Net are based.

2.5 Conclusion

In this work, we introduced LoRD-Net, which is a hybrid data-driven and model-based deep

architecture for blind symbol detection from one-bit observations. The proposed methodology

is based the unfolding of first-order optimization iterations for the recovery of the MLE. We

proposed a two-stage training procedure incorporating the learning of a competitive objective

function, for which the unfolded network yields an accurate recovery of the transmitted symbols

from one-bit noisy measurements. In particular, owing to its model-based nature, LoRD-Net

has far fewer trainable parameters compared to its data-driven counterparts, and can be trained
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with very few training samples. Our numerical results demonstrate that the proposed LoRD-Net

architecture outperforms the state-of-the-art model-based and data-driven symbol detectors in

multi-user one-bit MIMO systems. We also numerically illustrate the benefits of the proposed

two-stage training procedure, which allows to train with small training sets and infer quickly,

due to its interpretable model-aware nature.



CHAPTER 3

DEEP SIGNAL RECOVERY WITH ONE-BIT QUANTIZATION

Overview: Machine learning, and more specifically deep learning, have shown remarkable per-

formance in sensing, communications, and inference. In this paper, we consider the application of the

deep unfolding technique in the problem of signal reconstruction from its one-bit noisy measurements.

Namely, we propose a model-based machine learning method and unfold the iterations of an inference

optimization algorithm into the layers of a deep neural network for one-bit signal recovery. The resulting

network, which we refer to as DeepRec, can efficiently handle the recovery of high-dimensional signals

from acquired one-bit noisy measurements. The proposed method results in an improvement in accu-

racy and computational efficiency with respect to the original framework as shown through numerical

analysis.

Keywords: Deep learning, deep unfolding, MIMO communications, big data, machine learning,

neural network, maximum likelihood, one-bit quantization

3.1 Introduction

Quantization of signals of interest is an integral part of all modern digital signal processing

applications such as sensing, communication, and inference. In an ideal hardware implemen-

tation of a quantization system, a high-resolution analog-to-digital converter (ADC) with b-bit

resolution and sampling frequency of fs samples the original analog signal and maps the obtained

Parts of this chapter is taken from published conference article [31]. Copyright ©2019, IEEE.
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samples into a discrete state space of size 2bfs. Generally, a large number of bits is required to

obtain an accurate digital representation of the analog signal. In such a case, the quantization

process has negligible impact on the performance of algorithms which were typically developed

on the assumptions of infinite precision samples, and thus, the high-resolution (in terms of am-

plitude) quantization process can be directly modeled as an additive noise source. However, a

crucial obstacle with modern ADCs is that their power consumption, manufacturing cost, and

chip area grows exponentially with their resolution b [37, 85,86].

The required high sampling data rate of ADCs used in next generataion communications sys-

tems is another obstacle that must be tackled in such applications. For instance, the promising

millimeter wave (mmWave) multiple-input multiple output (MIMO) communication technology

requires a very large bandwidth, and the corresponding sampling rate of the ADCs must increase

accordingly. However, manufacturing ADCs with high-resolution (e.g., more than 8 bits) and

high sampling rate are extremely costly and may not be available. Moreover, in other applica-

tions such as spectral sensing and cognitive radio, which require extremely high sampling rates,

the cumulative cost and power consumption of using high-resolution and extremely fast ADCs

are typically prohibitive and impractical. Hence, when signals across a wide frequency band are

of interest, a fundamental trade-off between sampling rate, amplitude quantization precision,

cost, and power consumption is encountered. An immediate solution to such challenges is to

use low-resolution, and specifically one-bit, ADCs. The use of one-bit signed measurements

obtained via one-bit ADCS enables a very high sampling rate while keeping the cost and power

consumption very low. From a sampling viewpoint, the most extreme case of quantization is to
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use only one bit per sample. More precisely, one-bit sampling can be seen as a process through

which we repeatedly compare the amplitude of a signal (at each sample) to some reference

threshold level and use only one bit to convey whether the signal amplitude resides above or

below that threshold. Due to its appealing sampling properties, the problem of recovering a

signal from its one-bit measurements has attracted a great deal of interest over the past few

years [61, 87–90]. Therefore, it is vital to develop algorithms that can deal with low-resolution

samples for different applications.

The fields of machine learning (ML), and more particularly deep learning, are impacting

various fields of engineering and have recently attracted a great deal of attention in tackling

long-standing signal processing problems. The advent of low-cost specialized powerful computing

resources (e.g., GPUs, and more recently TPUs) and the continually increasing amount of

massive data generated by the human population and machines, in conjunction with the new

optimization and learning methods, have paved the way for deep neural networks (DNNs) and

machine learning-based models to prove their effectiveness in many engineering areas (see, e.g.,

[7, 91,92] and the references therein).

The main advantage of the deep learning-based model herein is that it employs several non-

linear transformations to obtain an abstract representation of the underlying data. Model-based

machine learning frameworks (e.g., probabilistic graphical models) incorporate prior knowledge

of the system parameters into the inference process. A recent promising approach in bridging the

gap between deep learning-based and model-based methods is the paradigm of deep unfolding

[75]. Particularly, iterations of a conventional recursive algorithm, such as fast iterative soft
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thresholding algorithm (FISTA), projected gradient descent, and approximate message passing

(AMP), can be used as a baseline to design the architecture of a deep network with trainable

parameters specifically customized to the problem of interest. Such a methodology results in

an improvement in accuracy, and computational efficiency of the original framework. The deep

unfolding method has already shown remarkable performance improvement in a wide range of

applications such as MIMO communications [93, 94], multi-channel source separation [95], and

sparse inverse problems [82,96].

In this paper, we consider the general problem of high-dimensional signal recovery from

random one-bit measurements. Specifically, we propose an efficient signal recovery framework

based on the deep unfolding technique that has the advantage of low-complexity and near-

optimal performance compared to traditional methods. Our proposed inference framework has

a wide range of applications in the areas of wireless communications, detection and estimation,

and sensing.

3.2 Problem Formulation

We begin by considering a general linear signal acquisition and one-bit quantization model

with time-varying thresholds, described as follows:

Signal Model: y = Hx+ n, (3.1)

Quantization Model: r ≜ sign(y − τ ), (3.2)
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where τ = [τ1, . . . , τM ]T denotes the vector of one-bit quantization thresholds, y ∈ RM denotes

the received signal prior to quantization, H ∈ RM×N denotes the sensing matrix, x ∈ RN

denotes the multidimensional unknown vector to be recovered, and n ∼ N (0,C) denotes the

zero-mean Gaussian noise with a known covariance matrix C = Diag(σ2
1, . . . , σ

2
M ). Further-

more, sign(·) denotes the signum function applied element-wise on the vector argument.

The above model covers a wide range of applications. For instance, the described model

(Equation 6.1)-(Equation 6.2) can be used in MIMO communication systems in which H is the

channel matrix, x is the signal sent by the transmitter, n is the additive Gaussian noise in the

system, and the base station is equipped with one-bit ADCs, where the goal is to recover the

transmitted symbols from r.

3.2.1 Maximum Likelihood Estimator Derivation

Given the knowledge of the sensing matrix H, noise covariance C, and the corresponding

quantization thresholds τ , our goal is to recover the original (likely high-dimensional) signal x

from the one-bit random measurements r. In such a scenario, each binary observation {ri}Ni=1

follows a Bernoulli distribution with parameter pi, given by:

pi = Prob{hT
i x+ ni − τi > 0} = Q

(
τi − hT

i x

σi

)
, (3.3)
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where Q(x) = 1 − Φ(x) with Φ(x) representing the cumulative distribution function (cdf) of a

standard Gaussian distribution and hT
i denotes the i-th row of the matrix H. In particular, the

probability mass function (pmf) of each binary observation can be compactly expressed as:

p(ri) = Q

(
ri
σi

(
τi − hT

i x
))

, (3.4)

where ri ∈ {−1,+1}. Therefore, the log-likelihood of the quantized observations r given the

unknown vector x can be expressed as:

L(x) = p(r|x) = log
{∏N

i=1
Q

(
ri
σi

(
τi − hT

i x
))}

(3.5)

=
N∑
i=1

log
{
Q

(
ri
σi

(
τi − hT

i x
))}

, (3.6)

where log {·} denotes the natural logarithm. As a result, the maximum likelihood (ML) estima-

tion of x can be obtained as

x̂ = argmax
x

L(x). (3.7)

Observe that the maximum likelihood estimator x̂ has to satisfy the following condition:

∇xL(x) = 0, (3.8)
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where the gradient of the log-likelihood function with respect to the unknown vector x can be

derived as follows:

∇xL(x) =
N∑
i=1

− ri
σi

Q′
(

ri
σi

(
τi − hT

i x
))

Q
(

ri
σi

(
τi − hT

i x
))
hi, (3.9)

where Q′(x) = − 1√
2π

exp
(
−x2/2

)
. It can be observed from (Equation 4.4) that the gradient of

the log-likelihood function is a linear combination of the rows of the sensing matrix H. Let

η : RM 7→ RM be a non-linear function defined as follows:

η(x) ≜
Q′(x)

Q(x)
, (3.10)

where the functions Q(·), Q′(·), and the division, are applied element-wise on the vector argu-

ment x. In addition, let Ω = Diag(r1, . . . , rM ) be a diagonal matrix containing the one-bit

observations and Ω̃ = ΩC− 1
2 be the semi-whitened version of the one-bit matrix Ω. Then, the

gradient of the likelihood function in (Equation 4.4) can be compactly written as follows:

∇xL(x) = −HT Ω̃η
(
Ω̃(τ −Hx)

)
. (3.11)

Recall that the ML estimator x̂ must satisfy the condition given in (Equation 4.4), i.e.,

∇xL(x) = −HT Ω̃η
(
Ω̃(τ −Hx)

)
= 0. (3.12)
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Other than certain low-dimensional cases, finding a closed-form expression for x̂ that satisfies

(Equation 3.12) is a difficult task [58,59,97]. Therefore, we resort to iterative methods in order

to find the ML estimate, i.e., to solve (Equation 4.3).

In this paper, the well-known gradient ascent method is employed to iteratively solve (Equation 4.3).

Namely, given an initial point x(0), the update equation at each iteration is given by:

x(k+1) = x(k) + δ(k)∇xL(x) (3.13)

= x(k) − δ(k)HT Ω̃η
(
Ω̃(τ −Hx(k))

)
, (3.14)

where δ(k) is the step size at the k-th iteration. The obtained maximum likelihood estimator

derived from the signal model, and the corresponding optimization steps, can be unfolded into

a multi-layer deep neural network, which improves the accuracy and computational effciency of

the original framework.

In the next section, we unfold the above iterations into the layers of a deep neural network

where each layer denotes one iteration of the above optimization method. Interestingly, we fix

the complexity budget of the inference framework (via fixing the number of layers), and apply

the gradient descent method to yield the most accurate estimation of the parameter in at most

K iterations.

3.3 Signal Recovery via Deep Unfolding

Conventionally, first-order optimization methods, such as gradient descent algorithms, have

slow convergence rate, and thus take a large number of iterations to converge to a solution.



75

Herein, we are interested in finding a good solution under the condition that the complexity

of the inference algorithm is fixed. This is important since, via unfolding the optimization

algorithm, we fix the computational complexity of the inference model (a DNN with K layers in

such a case) and optimize the parameters of the network to find the best possible estimator with

a fixed-complexity constraint. Below, we introduce DeepRec, our deep learning based signal

recovery framework which is designed based on the iterations of the form (Equation 3.14), to

find the maximum likelihood estimation of the unknown parameter.

—The DeepRec Architecture. The construction of DeepRec involves the unfolding of k =

1, . . . ,K, iterations each of which are of the form (Equation 3.14), as the layers of a deep

neural network. Particularly, each step of the gradient descent method depends on the previous

signal estimate x(k), the step size δ(k), the scaled one-bit matrix Ω̃, the sensing matrix H, and

the threshold vector τ . In addition, the form of the gradient vector (Equation 4.6) makes it

convenient and insightful to unfold the iterations onto the layers of a DNN in that each iteration

of the gradient descent method is a linear combination of the system paramteres followed by a
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non-linearity. The k-th layer of DeepRec can be characterized via the following operations and

variables:

z(k) = W 1kΩ̃τ −W 2kHx(k) + b1k, (3.15)

p(k) = η
(
z(k)

)
, (3.16)

t(k) = HT Ω̃p(k), (3.17)

x(k+1) = f

W 3k

x(k)

t(k)

+ b2k

 , (3.18)

where x(1) = 0, f(·) denotes a non-linear activation function where in this work we consider

f(x) ≜ ReLU(x) = max{0, x}, and the goal is to optimize the DNN parameters, described as

follows:

Ξ = {W 1k,W 2k,W 3k, b1k, b2k}Kk=1. (3.19)

The proposed DeepRec architecture with L layers can be interpreted as a class of estimator

functions ΨΞ(r,H, τ ) parametrized by Ξ to estimate the unknown parameter x given the

system parameters. In order to find the best estimator function ΨΞ(r,H, τ ) associated with

our problem, we conduct a learning process via minimizing a loss function R(x;ΨΞ(r,H, τ )),

i.e.,

min
Ξ

R(x;ΨΞ(r,H, τ )). (3.20)
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In this work, we employ the following least squares (LS) loss function:

R (x;ΨΞ(r,H, τ )) = ||x−ΨΞ(r,H, τ )||22, (3.21)

where during the training phase, we synthetically generate the system parameters Θ = {x, r,H, τ}

according to their statistical model.

3.4 Numerical Results

We now demonstrate the performance of the proposed DeepRec framework for the problem

of one-bit signal recovery. The proposed framework was implemented using the TensorFlow

library [98], with the ADAM stochastic optimizer [84] and an exponential decaying step size. In

the learning process of the network, we employed the batch training method with a batch size of

500 at each epoch and we performed the training for 2000 epochs. In all of the simulations, we

assumed N = 3, i.e., x ∈ R3, and we used the normalized mean square error (NMSE) defined

as NMSE = ||x− x̂||22/||x||22, for the performance metric.

The training was performed based on the data generated via the following model. Each

element of the vector x is assumed to be i.i.d and uniformly distributed, i.e., x ∼ U(δx,δ
x
u )

l .

The sensing matrix is assumed to be fixed and follow a Normal distribution, where we consider

H ∼ N (0, I). The quantization thresholds were also generated from a uniform distribution,

τ ∼ U(δτ ,δ
τ
u )

l , where the lower and upper bound of the distribution is chosen in a fashion that at

least covers the domain of x. The noise is assumed to be independent from one sample to another

and follows a Normal distribution, where the variance of each corresponding noise element is



78

different, e.g., the noise covariance C = Diag(σ2
1, . . . , σ

2
M ), with σ2

i ∼ U(δn1 , δnM ). Note that we

trained the network over a wide range of noise powers in order to make the DeepRec network

more robust to noise.

Fig. 11(a) demonstrates the performance of the DeepRec network for different numbers of

layers K. It can be observed that the averaged NMSE decreases dramatically as the number

of layers increases. Such a result is also expected as each layer corresponds to one iteration

of originial optimization algorithm. Thus, as the number of layers increases, the output of the

network will converge to a better estimation as well.

Fig. 11(b) demonstrates the performance of the proposed DeepRec architecture and the

original Gradient Descent method of (Equation 3.14) in terms of averaged NMSE for different

numbers of one-bit samples M . In this simulation, we implemented the DeepRec network

with K = 90 layers. It can be clearly seen from Fig. 11(b) that the proposed deep recovery

architecture (DeepRec) significantly outperforms the original optimization method in terms of

accuracy and provides a considerably better estimation than that of the gradient descent method

for the same number of iterations/layers. As a fair comparison, we also assumed a fixed-step

size of δ = 0.01 for the gradient descent method.

Fig. 11(c) shows a comparison of the computational cost (machine runtime) between the

gradient descent method and the proposed DeepRec network for different numbers of one-bit

samples M . It can be seen that our proposed method (DeepRec) has a significantly lower

computational cost than that of the original optimization algorithm for our problem. Hence,
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making the DeepRec a good candidate for real-time signal processing or big data applications

(the results were obtained on a standard PC with a quad-core 2.30GHz CPU and 4 GB memory).

3.5 Conclusion

We have considered the application of model-based machine learning, and specifically the

deep unfolding technique, in the problem of recovering a high-dimensional signal from its one-bit

quantized noisy measurements via random thresholding. We proposed a novel deep architecture,

which we refer to as DeepRec, that was able to accurately perform the task of one-bit signal

recovery. Our numerical results show that the proposed DeepRec network significantly improves

the performance of traditional optimization methods both in terms of accuracy and efficiency.
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Figure 11. The performance of DeepRec: (a) demonstrates the NMSE performance of the
DeepRec network for different numbers of layers K. (b) shows the performance of the

proposed DeepRec architecture and the original gradient descent method of (Equation 3.14) in
terms of averaged NMSE for different numbers of one-bit samples M . (c) shows a comparison
of the computational cost between the gradient descent method and the proposed DeepRec

network for different numbers of one-bit samples M .
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CHAPTER 4

MODEL-BASED DEEP LEARNING FOR ONE-BIT COMPRESSIVE

SENSING

Overview: In this work, we consider the problem of one-bit deep compressive sensing from

both a system design and a signal recovery perspective. In particular, we develop hybrid model-based

deep learning architectures based on the deep unfolding methodology. We further interpret the overall

data-acquisition and signal recovery modules as an auto-encoder structure allowing for learning task-

specific sensing matrix, quantization thresholds, as well as the latent-parameters of iterative first-order

optimization algorithms specifically designed for the problem of one-bit sparse signal recovery. The

proposed model-based deep architectures have the ability to adaptively learn the proper quantization

thresholds, paving the way for amplitude recovery in one-bit compressive sensing. We further show

that the proposed methodology implicitly learns task-specific sensing matrices with very low coherence,

which is highly desirable in a compressive sensing setting. Due to the model-based nature of the proposed

deep architecture, it enjoys from the interpretability and versatility of model-based techniques as well

as benefiting from the expressive power of data-driven methods. Specifically, owing to its model-based

nature, it has far fewer parameters and requires far less samples for training as compared to black-box

Parts of this chapter is taken from published journal article [99] and conference paper [100]. Copy-
right ©2020, 2021, IEEE.

81



82

machine learning models. Our results demonstrate a significant improvement compared to state-of-the-

art algorithms.

Keywords: Compressive sensing, low-resolution signal processing, one-bit quantization, deep un-

folding, deep neural networks, model-based deep learning, autoencoders

4.1 Introduction

In the past two decades, compressive sensing (CS) has shown significant potential in enhanc-

ing sensing and recovery performance in signal processing, occasionally with simpler hardware,

and thus, has attracted noteworthy attention among researchers. CS is a method of signal acqui-

sition which ensures the exact or almost exact reconstruction of certain classes of signals using

far less number of samples than what is needed in the Nyquist sampling regime [101]—where

the signals are typically reconstructed by finding the sparsest solution of an under-determined

system of equations using various available means.

In a practical setting, each measurement is to be digitized into finite-precision values for

further processing and storage purposes, which inevitably introduces a quantization error. This

error is usually modeled as an additive Gaussian noise, independent of the input source signal;

an approach that does not perform well in extreme cases of quantization. One-bit CS is an ex-

treme case of qunatization where only the information about the sign of each measured sample

is retained r ∈ {±1} [102–106]. One-bit quantizers are favourable due to their cost effectiveness

and low power consumption properties. Moreover, their sampling speed is far higher than tra-

ditional scalar quantizers [107], accompanied by great reduction in the complexity of hardware

implementation. Several algorithms have been introduced in the literature for efficient recon-
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struction of sparse signals in one-bit CS scenarios (e.g., see [102–106, 108] and the references

therein). A detailed discussion of such algorithms is provided in Sec II.

Notation: We use bold lowercase letters for vectors and bold uppercase letters for matrices.

(·)T , and (·)H denote the vector/matrix transpose, and the Hermitian transpose, respectively.

1 and 0 are the all-one and all-zero vectors. ∥x∥n denotes the ℓn-norm of the vector x defined

as (Σk|x(k)|n)
1
n . x(i) denotes the i-th element of the vector x and A(i, j) denotes the ij-th

element of the matrix A. Diag(x) denotes the diagonal matrix formed by the entries of the

vector argument x. The operator ⪰ denotes the element-wise vector inequality operator.

4.1.1 Background and Relevant Prior Art

One-bit compressive sensing is mainly concerned with the following data-acquisition model:

r = sign(Φx− b), (4.1)

where x ∈ Rn denotes a K-sparse source signal, Φ ∈ Rm×n is the sensing matrix, and b ∈ Rn

denotes the quantization thresholds vector. In addition to the mentioned advantages of using

one-bit ADCs for data-acquisition purposes, the use of one-bit information offers increased

robustness to undesirable non-linearities in the data-acquition process. Furthermore, there exists

strong empirical evidence that recovering a sparse source signal from only one-bit measurement

can outperform its multi-bit CS counterpart [104,109].

In this works, we seek to take a deeper look at the one-bit CS arena from both a system

design perspective related to the design of task-specific high-quality sensing matrices Φ and
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one-bit quantization systems (i.e., designing task-specific qunatization thresholds b), and the

development of accurate and efficient task-specific signal reconstruction techniques for one-bit

signal recovery in a CS setting. In the following, we go into the details of each aspect and give

an overview of the existing methodologies.

Sensing Matrix Design. From a system design point of view, the most relevant factors

to be taken into account are the sensing matrix and the one-bit quantization thresholds used

for data-acquisition. In particular, two key requirements of a CS-based signal reconstruction

algorithm are the sparsity of the underlying signal of interest and the incoherence which is

mainly related to the underlying sensing matrix Φ employed at time of the acquisition. It

can be shown that one can recover the underlying sparse signal from the linear compressive

measurements with overwhelming high probability if the sensing matrix have a low coherence

property [110]. Accordingly, such performance guarantees is based upon the Restricted Isometric

Property (RIP) which is at the heart of CS theory. Specifically, for a sensing matrix Φ, and two

sparse vectors x and y, the RIP can be stated as follows:

(1− γ)∥x− y∥22 ≤ ∥Φ(x− y)∥22 ≤ (1 + γ)∥x− y∥22,

where γ ∈ (0, 1). In short, for a matrix Φ satisfying the RIP condition, we have that the

distance of any two vectors (signals) is maintained up to the bounding factors {1−δ, 1+δ} after

applying the transformation Φ. Accordingly, one can perform an almost perfect reconstruction

of an sparse signal with high probability when the RIP condition is met by the measurement
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matrix [101]. Nonetheless, certifying the RIP condition for a given matrix is a difficult task in

general and it has been shown to be an NP-hard problem [111]. Consequently, there exist two

main strategies in employing sensing matrices for CS in the literature: The first one considers the

deployment of random matrices at the time of acquisition, while the other approach makes use of

task-specific deterministic sensing matrices. Having said that, in a general CS setting, the works

of [112,113] have shown that random sensing matrices (e.g., Gaussian matrices) satisfy the RIP

condition with a very high probability, hence providing mathematical ground-work for robust

sparse signal recovery. Taking this into consideration, many signal reconstruction techniques,

including but not limited to basis pursuit techniques, can be shown to provably recover a sparse

signal when random matrices are employed [114]. Nonetheless, using random matrices is not

applicable in many applications due to the imposed randomness in the measurement system

[114]. More importantly, in many applications the sensing matrix must be designed in a fashion

to account for the intricate physical model of the system and the measurement model. In such

applications, one can resort to a deterministic design (in contrast to a purely random linear

measurement) of the sensing matrix to accommodate for the measurement medium of interest.

However, as previously mentioned, it is a very difficult task to verify the RIP condition for

a matrix, and it cannot be easily used as an objective for a deterministic design of sensing

matrices. Note that there exist several alternative measures for quantifying the quality of a

sensing matrix. The most notable one and widely used metric is the mutual coherence [115],

which is a mathematically tractable alternative metric for measuring the incoherence required

by the compressed sensing theory and the success of many basis pursuit algorithms. Specifically,
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let Φ̄ denote the column-normalized version of the sensing matrix Φ and define the Gram matrix

M ≜ Φ̄
H
Φ̄. Then, the mutual coherence of a sensing matrix Φ is given by

µ(Φ) = max
i ̸=j

|M(i, j)|. (4.2)

Furthermore, the off-diagonal entries {|M(i, j)|}i ̸=j represent the coherence coefficients of the

sensing matrix Φ. Briefly speaking, the mutual coherence factor µ(Φ) provides a measure of

the worst-case similarity between the columns of Φ, and furthermore, a high mutual coherence

results in a significant degradation in the performance of basis pursuit signal recovery tech-

niques [116]. Hence, it is highly desirable to have a sensing matrix with low mutual coherence,

corresponding to a Gram matrix M close to identity I.

Designing task-specific and deterministic sensing matrices with low-coherence is an active

research area in various fields such as coding and communication [117], quantum signal process-

ing [118], machine learning [119], radar signal processing [120], among many others. Perhaps,

one of the most interesting of these applications is the one-bit compressive sensing area. To

the best of our knowledge, there exist no existing work in the literature that studies the design

of task-specific deterministic sensing matrices in a one-bit CS setting and its advantages over

using random matrices. Hence, one of the main motivations of this work is to address this issue

and to propose a unified framework that allows for designing task-specific deterministic sensing

matrices that can handle the severe non-linearity imposed by the one-bit quantization at the time

of acquisition, which further allows for a significant improvement of the signal reconstruction
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accuracy at the time of inference. The proposed methodology does not require an explicit op-

timization over the mutual coherence which may be difficult to handle from an optimization

point of view. Indeed, we empirically show that the proposed methodology implicitly learns

task-specific sensing matrices with very low mutual coherence leading significantly enhancing

the signal reconstruction accuracy.

We conclude this part by emphasizing that although it is common to consider the problem

of one-bit CS (or CS in general) and the design of task-specific sensing matrices for such sys-

tems from a purely mathematical point-of-view, the development of CS and one-bit CS-based

hardware data acquisition systems is still a great challenge in practice. The successful imple-

mentation of such systems might require further integration of theory and practice, considering

various limitations of physical hardware.

Low-Resolution Quantization and Signal Recovery. The other factor that affects the

performance of the signal recovery in a one-bit CS setting is the choice of the quantization

thresholds. There exist two strategies to be undertaken regarding the qunatization thresholds:

The first one is concerned with setting the quantization thresholds to zero while the other

way is to consider non-zero thresholds. In both settings, the current one-bit CS recovery algo-

rithms typically exploit the consistency principle, which represents the fact that the element-wise

product of the sparse signal and the corresponding measurement is always positive [102], i.e.

r ⊙ (Φx − b) ⪰ 0. However, most of the existing literature on one-bit CS considers zero-level

one-bit quantization thresholds (i.e., b = 0) leading to a total loss of amplitude information dur-

ing the data-acquisition process. Hence, by comparing the signal level with zero, one can only
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recover the direction of the source signal, i.e. x/∥x∥2, and not the amplitude information x. In

its most general form, any solution x∗ to the one-bit CS problem should: (i) satisfy the sparsity

condition, i.e. ∥x∗∥0 ≤ K with K = ∥x∥0, and (ii) achieve consistency, i.e. r ⊙ (Φx∗ − b) ⪰ 0.

As mentioned above, most of the existing literature on the problem of one-bit CS recovery prob-

lem considers the case of b = 0. In such a case, the solution to the one-bit CS problem can be

expressed as:

x∗ = argmin
x

∥x∥0 s.t. r = sign(Φx).

The above program is NP-hard and mathematically intractable [104]. However, there exist

several powerful iterative algorithms to find x∗ (for the case of b = 0) that rely on a relaxation

of the ℓ0-norm to its convex hull (i.e., using ℓ1-norm in lieu of ℓ0-norm) to obtain an estimate

of the support of the true source signal by restricting the feasible solutions to the unit-sphere,

i.e. ∥x∥2 = 1.

The most notable works which considers a zero quantization thresholding scheme are as

follows. In [102], the authors assume a zero-level quantization threshold and propose an iterative

algorithm called renormalized fixed point iteration (RFPI) where a convex barrier function is

used to enforce the consistency principle (as a regularization term in the objective function). A

detailed analysis of the RFPI algorithm is provided in Sec. II. It is worth mentioning that in a

traditional CS setting, one consider the under-sampled measurements (i.e., m < n), however, the

over-sampling regime is beneficial and of paramount interest in a one-bit CS setting in that the

use of one-bit ADCs provide a cheap and fast way to acquire measurements and to potentially

go beyond the limitations of the traditional CS methods. Another such reconstruction algorithm
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can be found in [103], referred to as restricted step shrinkage (RSS), for which a nonlinear barrier

function is used as the regularizer to enforce the consistency principle. Compared to RFPI

algorithm, RSS has three important advantages: provable convergence, improved consistency,

and feasible performance [121]. Ref. [104] introduces a penalty-based robust recovery algorithm,

called binary iterative hard thresholding (BIHT), in order to enforce the consistency principle.

Contrary to RFPI algorithm, BIHT exploits the knowledge of the sparsity level of the signal as

input, and was shown to be more robust to outliers and have a superior performance than that

of the RFPI method in some cases (at the cost of knowing the sparsity level of the source signal

a priori). Both RFPI and BIHT, however, only consider a zero-level quantization threshold,

as a result, the amplitude information is lost due to comparing the acquired signal with zero.

In [105] and [106], authors proposed modified versions of RFPI and BIHT, referred to as noise-

adaptive renormalized fixed point iteration (NARFPI) and adaptive outlier pursuit with sign

flips (AOP-f), that are robust against bit flips in the measurement signal. In [122], the authors

lay the ground work for a theoretical analysis of noisy one-bit CS problem based on a convex

programming approach for the problem of one-bit sparse signal recovery in a noisy setting.

There exist limited work on employing non-zero quantization thresholds in a one-bit CS

setting. Recently, the authors in [109] considered the problem of one-bit CS signal reconstruction

in a non-zero quantization thresholds setting that enables the recovery of the norm of the source

signal, i.e. recovering ∥x∥2. However, the proposed method in [109] still fails to accurately

recover the amplitude information of the source signal, and does not offer a straight-forward

method to design the quantization thresholds. Although the one-bit CS has a deterministic
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system model, the authors in [123] consider a non-zero quantization scheme and provide a

Bayesian formulation of the problem upon which a generalized approximate message passing

(GAMP) algorithm is used for signal recovery purposes. Furthermore, non-zero quantization

thresholds for one-bit compressive systems has been adopted in other fields such as one-bit

compressive radar systems [120].

In light of the above, it is of paramount importance to develop computationally efficient

one-bit CS models that can incorporate non-zero quantization thresholds to allow for recovering

the amplitude information. Additionally, the vast literature on the one-bit CS recovery problem,

does not yet tap into the potential of the available data at hand (to improve the performance

recovery). One can significantly benefit from a methodology that can facilitate not only in-

corporation of the domain knowledge on the problem (i.e., being model-driven), but also the

available data at hand to go beyond the performance of the traditional sparsity aware signal

processing techniques in a one-bit CS scenario.

There has recently been a high demand for developing effective real-time signal processing

algorithms that use the data to achieve improved performance [66, 67, 124–127]. In particular,

the data-driven approaches relying on deep neural architectures such as convolutional neural

networks [124], deep fully connected networks [125], stacked denoising autoencoders [126], and

generative adversarial networks [128] have been studied for sparse signal recovery in generic

quantized CS settings. we note that, parameterized mathematical models discussed above play

a central role in understanding and design of large-scale information systems and signal process-

ing methods. However, they usually fail to incorporate the complex interactions in such systems.
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In contrast to the mentioned models, black-box data-driven methodologies, and specifically deep

learning techniques, do not need explicit mathematical models for data generation and have a

wider applicability at the cost of interpretability. The main advantage of the deep learning-based

approach is that it employs several non-linear transformations to obtain an abstract representa-

tion of the underlying data. Data-driven approaches, on the other hand, lack the interpretability

and trustability that comes with model-based signal processing. They are particularly prone to

be questioned further, or at least not fully trusted by the users, especially in critical applications.

Furthermore, the deterministic deep architectures are generic and it is unclear how to incorpo-

rate the existing knowledge on the problem in the processing stage. The advantages associated

with both model-based and data-driven methods show the need for developing frameworks that

bridge the gap between the two approaches.

The recent advent of the deep unfolding framework [75,79,95,129–131] and the correspond-

ing deep unfolding networks (DUNs) has paved the way for a game-changing fusion of models

and well-established signal processing approaches with data-driven architectures. In this way,

we not only exploit the vast amounts of available data, but also integrate the prior knowledge

of the system model in the processing stage. Deep unfolding relies on the establishment of

an optimization or inference iterative algorithm, whose iterations are then unfolded into the

layers of a deep network, where each layer is designed to resemble one iteration of the opti-

mization/inference algorithm. The resulting hybrid method benefits from low computational

cost (in execution stage) of deep neural networks, and at the same time, from the versatility

and reliability of model-based methods; thus, appears to be an excellent tool in real-time signal
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processing applications due to the smaller degrees of freedom required for training and execution

(afforded by integration of the problem-level reasoning, or the model). A detailed analysis of

the deep unfolding methodology for the problem of one-bit CS is provided in Sec. 7.3.

4.1.2 Contributions of the Paper

In this paper, we propose a novel hybrid model-based and data-driven methodology (based

on DUNs) that addresses the drawbacks of both purely model-based (such as the discussed

RFPI and BIHT algorithm) and purely data-driven approaches. The resulting methodology

is far less data-hungry and assumes a slight over-parametrization of the system model as op-

posed to traditional deep learning techniques with extremely large number of variables to be

learned. In particular, the proposed method seeks to bridge the gap between the data-driven

and model-based approaches in the one-bit CS paradigm, resulting in a specialized architecture

for the purpose of sparse signal recovery from one-bit measurements. In particular, the proposed

methodology allows for learning task-specific sensing matrices with very low mutual coherence

factor, as well as learning data-specific quantization thresholds. Furthermore, we propose a

novel model-based interpretable deep learning model for sparse signal recovery in a one-bit

CS setting and show that the proposed methodology outperforms the existing state-of-the-art

methodologies in the area of one-bit CS. The proposed framework can be seen as a unification

of system design and signal recovery techniques, allowing for a joint optimization of all system

parameters. The contributions of this paper can be summarized as follows:

• We propose a novel hybrid model-based and data-driven one-bit compressive autoencoding

(AE) methodology that can deal with the optimization of the sensing matrix Φ (learning task-
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specific deterministic sensing matrices), the one-bit quantization thresholds b, and the latent-

variables of the decoder module according to the underlying distribution of the source signal.

Hence, such a methodology allows for quick adaptation to new data distributions and environ-

ments.

• To the best of our knowledge, this is the first attempt in the one-bit CS paradigm that allows

for joint optimization of the quantization thresholds and sensing matrix, also facilitating the

recovery of the amplitude information of the source signal. We show that by using the proposed

AEs, one can significantly improve upon existing iterative algorithms and gain much higher

accuracy both in terms of recovering the magnitude and the support of the underlying source

signal.

• The proposed methodology exhibits performance that goes beyond the traditional one-bit CS

state-of-the-art and allows for designing sensing matrices that are distribution-specific. In con-

junction to learning task-specific Φ, the quantization thresholds can also be learned in a joint

manner such that the learned parameters improve the signal reconstruction accuracy and speed.

•We propose two generalized optimization algorithms that can be used as standalone algorithms

for recovering the amplitude information of the source signal by utilizing non-zero quantization

thresholds.

Organization of the Paper: The remainder of this paper is organized as follows. In Sec.

II, we discuss the general problem formulation and system model of the one-bit compressive

sensing problem and propose two general algorithms that pave the way for incorporating non-

zero quantization thresholds. The proposed one-bit compressive autoencoding methodology is
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presented in Sec. III. The loss function characterization and training method for the proposed

model-based deep architectures are discussed at the end of Sec. III. In Sec. IV, we investigate

the performance of the proposed methods through various numerical simulations and for various

scenarios. Finally, Sec. V concludes the paper.

4.2 System Model and Problem Formulation

In this paper, we are interested in a one-bit CS measurement model (i.e., the encoder module)

with dynamics that can be described as follows:

Encoder Module: r = sign(Φx− b), (4.3)

where Φm×n denotes the sensing matrix, b ∈ Rm is the quantization thresholds, and x ∈ Rn is

assumed to be a K-sparse signal. Having the one-bit measurements of the form (Equation 4.3),

one can pose the problem of sparse signal recovery from one-bit measurements r by solving the

following non-convex program:

P0 : min
x∈Rn

∥x∥0, s.t. r = sign(Φx− b), (4.4)

where the constraint in (Equation 4.4) is imposed to ensure a consistent reconstruction with the

available one-bit information. Further note that the one-bit measurement consistency principle

in (Equation 4.4) can be equivalently expressed as

R (Φx− b) ⪰ 0, (4.5)
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where R = Diag(r).

Let us first consider the scenario in which the quantization thresholds b are all set to zero.

In this case, the non-convex optimization problem P0 can be further relaxed and expressed as

a well-known non-convex ℓ1-minimization program on the unit sphere [102]:

P1 : min
x

∥x∥1, s.t. RΦx ⪰ 0, ∥x∥2 = 1, (4.6)

where the ℓ1-norm acts as a sparsity inducing function. The intuition behind finding the sparsest

signal on the ℓ2 unit-sphere (i.e., fixing the energy of the recovered signal) is two-fold. First, it

reduces the feasible set of the optimization problem as the amplitude information is lost, and

second, it avoids the the trivial solution of x̂ = 0. By comparing the acquired data y = Φx

with non-zero quantization thresholds, the constraint defined in (Equation 4.5) not only reduces

the feasible set of the problem by defining a set of hyper-planes where the signal can reside on,

but also, implicitly exclude the trivial solution. There exists an extensive body of research on

approximately solving the non-convex optimization problem P1 (e.g., see [102,103,105,132,133],

and the references therein). The most notable methods utilize a regularization term R(s) to

enforce the consistency principle via a penalty term added to the ℓ1-objective function, viz.

x̂ = argmin
x∈Rn

∥x∥1 + αR(RΦx), s.t. ∥x∥2 = 1, (4.7)

where α > 0 is the penalty factor.
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Among the numerous iterative algorithms available for tackling the optimization problem in

(Equation 4.7), we plan to utilize and improve upon the state-of-the-art renormalized fixed-point

iterations (RFPI) [102], and the Binary Iterative Hard Thresholding (BIHT) [104] algorithms

as the starting point for our proposed hybrid model-aware deep architecture for the problem of

one-bit compressive sensing. To this end, we interpret a one-bit CS setting as a single auto-

encoder (AE) module allowing for an optimization over all system parametes (i.e., the sensing

matrix, quantization thresholds, and the laten variables of first-order optimization techniques).

Namely, in the subsequent sections, we use the mentioned algorithms as a base-line to design

the decoder module of our one-bit CS AE. In particular, we unfold the iterations of the two

specialized algorithms onto the layers of a deep neural network in a fashion that each layer of

the proposed deep architecture mimics the behavior of one iteration of the base-line algorithm.

Next, we perform an end-to-end learning approach by utilizing the back-propagation method

to tune the parameters of both the decoder and the encoder functions of the proposed one-bit

compressive AE.

4.2.1 Renormalized Fixed-Point Iteration (RFPI)

The RFPI algorithm considers a one-bit CS data acquisition model where the quantization

thresholds are all set to zero. With c = RΦx and b = 0, the RFPI algorithm utilizes the

following regularization term to enforce the consistency constraint in (Equation 4.6): R(c) =

1
2 ∥ρ(c)∥22, where ρ(c) ≜ max{−c,0}, and the function max is applied element-wise on the

vector arguments. Note that the function ρ(·) can be expressed in terms of the well-known

Rectifier Linear Unit () function extensively used by the deep learning research community,
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i.e. ρ(c) = (−c). Briefly speaking, the RFPI algorithm is a first-order optimization method

(gradient-based) that operates as follows: given an initial point x0 on the unit-sphere (i.e.,

∥x0∥2 = 1), the gradient step-size δ and a shrinkage thresholds α (or equivalently the penalty

term), at each iteration i, the estimated signal xi is obtained using the following update steps:

di = ∇xR(z)
∣∣
x=xi−1

= − (RΦ)T ρ (RΦxi−1) , (4.8a)

ti =
(
1 + δdT

i xi−1

)
xi−1 − δdi, (4.8b)

vi = sign (ti)⊙ (|ti| − (δ/α)1) , (4.8c)

xi =
vi

∥vi∥2
. (4.8d)

After the descent in (Equation 4.8a)-(Equation 6.6), the update step in (Equation 6.7) corre-

sponds to a shrinkage step. More precisely, any element of the vector ti that is below the

threshold δ/α will be pulled down to zero (leading to enhanced sparsity). Finally, the algorithm

projects the obtained vector vi on the unit sphere to produce the latest estimation of the signal.

Note that the latter step is necessary due to the fact that a zero-threshold vector (i.e., b = 0)

is employed at the time of the data acquisition, and hence, the amplitude information is lost.

While effective in signal reconstruction, there exist several drawbacks in using the RFPI

method. For instance, it is required to use the algorithm on several problem instances, while

increasing the value of the penalty factor α at each outer iteration of the algorithm, and to use

the previously obtained solution as the initial point for tackling the recovery problem for any

new problem instance. Moreover, it is not straight-forward how to choose the fixed step-size
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and the shrinkage threshold, that may depend on the latent-parameters of the system. In fact,

it is evident that by carefully tuning the step-sizes and the shrinkage threshold τ = δ/α, one

can significantly boost the performance of the algorithm, and further alleviate the mentioned

drawbacks of this method. In what follows, we extend the above iterations in a fashion that

it allows for incorporating the non-zero quantization thresholds, and hence, enabling us to

effectively recover the amplitude information of the source signal.

A.1. Extending the RFPI framework to non-zero quantization thresholds:

Recall that our focus is on the following encoding (measurement) model with an arbitrary

threshold vector b:

r = sign(Φx− b). (4.9)

Therefore, the problem of one-bit CS signal recovery with a non-zero quantization threshold

vector can be cast as:

min
x∈Rn

∥x∥1, s.t. R(Φx− b) ⪰ 0. (4.10)

Inspired by the regularization-based relaxation employed in [102], we relax the above program

and cast it as follows:

P2 : min
x∈Rn

∥x∥1 +
1

2
∥ρ (R (Φx− b)) ∥22. (4.11)
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Note that the second term in the objective function above applies a quadratic penalty to the

negative entries of the vector R (Φx− b), i.e., the ones which are not consistent with the

acquired one-bit measurements.

In this work, we consider an iterative first-order optimization solver to tackle the above

optimization problem. Specifically, we make use of the proximal algorithm [15] to derive the

updating steps required to solve P2. Let f(x) := g(x) + h(x) be a composite convex objective

function and consider the following optimization problem:

min
x∈Rn

f(x) ≡ g(x) + h(x). (4.12)

Furthermore, define the proximal operator proxαh(x) for a given convex differentiable function

h(x) as follows:

proxαh(x) = argmin
z∈Rn

h(z) +
1

2α
∥z − x∥22, (4.13)

where α > 0. Then, starting from an initial point x0 and a step-size δ ∈ (0, 1), the overall

updating equations of the proximal gradient method for solving (Equation 4.12) can be expressed

as:

xi+1 := proxαh (xi − δ∇xg(x)|x=xi) , (4.14)
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where it can be shown that for a convex function h, the proximal operator is monotone and

the above mapping (Equation 4.14) has a fixed point, coinciding with the global solution of

(Equation 4.12) [15]. Evidently, the proximal gradient algorithm is well suited for tackling our

optimization problem P2. In order to find the updating steps specific to our problem, we consider

the splitting of the objective function in (Equation 4.11) into g(x) = (1/2)∥ρ(R(Φx − b))∥22,

and h(x) = ∥x∥1. In the following, we first derive the gradient calculations of the function g(x),

and then, proceed with presenting the final update equations akin to our optimization problem

at hand based on (Equation 4.14).

Gradient calculation of g(x): Recall that the function ρ(x) = max{−x,0} is applied

element-wise on the vector argument. Let [x]i represent the i-th element of the vector x,

ϕi be a column-vector denoting the i-th row of the sensing matrix Φ, and ri and bi represent

the i-th one-bit measurement and quantization threshold, respectively. Define

gi(x) ≜
1

2
([ρ(R(Φx− b))]i)

2 (4.15)

=
1

2

(
ρ(ri(ϕ

T
i x− bi))

)2

=


1
2(ri)

2
(
ϕT
i x− bi

)2 if ri
(
ϕT
i x− bi

)
< 0,

0 else.

(4.16)

Note that ri ∈ {±1} and the term (ri)
2 = 1 is provided to obtain a concise representation

later. Using the above definition, we have that g(x) =
∑

i gi(x), and the convexity of each
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sub-function gi(x) renders the overall function g(x) convex. Now, assuming (ϕT
i x − bi) ̸= 0,

the gradient of the sub-function gi(x) can be expressed as:

∇xgi(x) = ρ(ri(ϕ
T
i x− bi))(−riϕ) (4.17)

=


ri
(
ϕT
i x− bi

)
(−riϕi) if ri

(
ϕT
i x− bi

)
< 0,

0 else.

Furthermore, note that gi(x) is convex, and hence, in the case of (ϕTx − bi) = 0, the set of

subgradients of the function are given by the convex hull {λ
(
ϕT
i x− bi

)
(−ϕi) : λ ∈ [0, 1]} ∋

ρ(ri(ϕ
T
i x− bi))(−riϕ) (i.e., the term (Equation 4.17) is a subgradient as well). Therefore, the

gradient of the overall objective function g(x) can be compactly expressed as:

∇xg(x) =
∑
i

∇xgi(x) = −(RΦ)Tρ (R (Φx− b)) . (4.18)

The final step is to derive the proximal operator for the function h(x). The proximal oper-

ator can be analytically derived for many convex functions including the one considered in

this work. In particular, the proximal mapping for the function h(x) = ∥x∥1 is given by the
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well-known (element-wise) soft-thresholding function (defined below), which recasts the overall

update equation given in (Equation 4.14) for solving our problem P2 as follows:

xi+1 = proxαh
(
t̃i
)

(4.19)

= sign
(
t̃i
)
⊙max

{
|̃ti| − (δ/α)1, 0

}
, and (4.20)

t̃i = xi − δ∇xg(x)|x=xi , (4.21)

where all the functions above are applied element-wise on the vector argument. Generally

speaking, the performance and the convergence of the above iterations depends heavily on the

choice of step-size δ and the thresholding factors α. In the following section, we show how the

above iterations can be unfolded onto the layers of a deep neural network allowing for obtaining

an enhanced first-order optimizer.

The proposed algorithm for solving the optimization problem P2 associated with the incor-

poration of non-zero quantization thresholds is summarized below.

The Proposed Generalized RFP Iterations:

d̃i = − (RΦ)T ρ (R (Φxi−1 − b)) , (4.22a)

t̃i = xi−1 − δd̃i, (4.22b)

xi = sign
(
t̃i
)
⊙
(
|̃ti| − (δ/α)1

)
, (4.22c)



103

where (Equation 4.22a) corresponds to computing the gradient at the current point, while the

step (Equation 4.22b) can be viewed as taking a descent step on the one-sided ℓ2-norm using

the obtained gradient, and (Equation 4.22c) corresponds to applying the proximal mapping

operator. In the rest of this paper, we refer to the iterations presented in (Equation 4.22) as

Generalized RFPI (G-RFPI).

4.2.2 Binary Iterative Hard Thresholding Algorithm (BIHT)

The BIHT algorithm is a simple, yet powerful, first-order iterative reconstruction algorithm

for the problem of one-bit CS where the sparsity level K is assumed to be known a priori.

BIHT iterations can be seen as a simple modification of the iterative hard thresholding (IHT)

algorithm proposed in [134]. Similar to the RFPI algorithm, the BIHT method considers a

zero-level quantization threshold. However, in contrast to the RFPI algorithm, it exploits the

knowledge of the sparsity level K of the signal of interest. In other words, the BIHT algorithm

is designed to tackle the following counterpart of P0:

P3 : min
x∈Rn

∥ρ (RΦx) ∥1, s.t. ∥x∥0 = K, ∥x∥2 = 1, (4.23)

where ρ(c) = max{−c,0} and R = Diag(r) as before. Note that the one-sided ℓ1 objective

function above (also related to the hinge-loss) enforces the consistency principle previously in-

troduced in (Equation 4.6), and that by solving the above optimization problem, we are working

to achieve maximal consistency with the one-bit measurements r. It is worth mentioning that

one can also consider different objective functions, and not necessarily an ℓ1 objective, as long
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as it promotes the data consistency principle (e.g., ℓ2 norm). For a detailed analysis of different

candidates for the objective function and their properties, see [134].

The BIHT iterations are described as follows. Let c = RΦx, and define F(c) = ∥ρ(c)∥1.

Furthermore, let ∂F(x) := {f : F(x) − F(y) ≥ ⟨f ,x − y⟩} denotes the sub-differential set

of F at the point x ∈ Rn. Then, given an initial point x0, the sparsity level K, and one-bit

measurements r (or equivalently R), at the i-th iteration, the BIHT algorithm updates the

current estimate of the signal xi through the following steps:

ui+1 = xi − δf i = xi +
δ

2
ΦT (r − sign(Φxi−1)) , (4.24a)

xi+1 = HK (ui) , (4.24b)

where f i−1 ∈ ∂F(x) denotes a sub-gradient of the one-side ℓ1 objective function in P3 at xi,

δ > 0 governs the fixed gradient step-size, and the projection operator HK(x) is defined such

that it retains the largest K elements (in magnitude) of the vector argument, and set the rest

of the elements to zero. Note that the term (−1/2)ΦT (r − sign(Φx)) is a sub-gradient of the

objective function at point x (more details is provided in subsection B.1 below).

The step (Equation 4.24a) can be interpreted as taking a descent step using the com-

puted sub-gradient of the objective function (Equation 4.23), while the projection step in

(Equation 4.24b) can be viewed as a projection of ui onto the support set of K-sparse sig-

nals. Once the above iterations terminate either by fully satisfying the consistency principle

(i.e., obtaining x∗ such that F(x∗) = 0), or by achieving a maximum number of iterations,
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the ultimate step to be taken is projecting the final estimate x∗ onto the unit-sphere, viz.

x∗ ← x∗/∥x∗∥2. Note that this is in contrast to the RFPI algorithm as the BIHT iterations

does not require a normalization step as in (Equation 6.8) at each iteration.

B.1. Extending the BIHT framework to non-zero quantization thresholds:

The extension of the BIHT iterations to incorporate the non-zero thresholds vector b is

straight-forward. In the case of non-zero quantization thresholds, we cast the signal recovery

problem as

min
x∈Rn

F(x) ≡ ∥ρ (R(Φx− b)) ∥1, s.t. ∥x∥0 = K, (4.25)

where R = Diag(r) and r = sign(Φx − b). Further note that the unit-ball constraint has

been dropped due to the fact that the amplitude ambiguity is resolved by employing non-zero

quantization thresholds.

In order to tackle the optimization problem (Equation 4.25), we make use of the well-known

iterative hard thresholding algorithm (IHT) extensively used in the literature for general CS

problems. In particular, the updating steps of the iterative hard thresholding algorithm is consist

of taking a descent step on the objective function in (Equation 4.25) followed by a projection

operator denoted byHk. Starting from a K-sparse initial point x0, the overall updating equation

of the IHT algorithm for recovering the underlying K-sparse solution is given by:

xi+1 = Hk (xi − δf i) , (4.26)
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where f i ∈ ∂F(x) at xi, and δ > 0 denotes the step-size. Similar to the steps we took in

(Equation 4.9)-(Equation 4.22), and extending the analysis provided in [104], we define F(x) =∑
i fi(x), where the convex sub-function fi is given by:

fi(x) = |[ρ (R (Φx− b))]i| (4.27)

=


|ϕT

i x− bi| if ri
(
ϕT
i x− bi

)
< 0,

0 else.

(4.28)

Assuming (ϕT
i x− bi) ̸= 0, the gradient of the sub-function fi can be expressed as follows:

∇xfi(x) = −
1

2

(
ri − sign(ϕT

i x− bi)
)
ϕi (4.29)

=


sign(ϕT

i x− bi)ϕi if ri
(
ϕT
i x− bi

)
< 0,

0 else.

In the case of (ϕT
i x− bi) = 0, since the sub-function fi is convex, we have the sub-gradients of

fi(x) given by the set

∂fi(x) =

{
−λ

2
(ri − sign(ϕT

i x− bi))ϕi : λ ∈ [0, 1]

}
(4.30)

∋ −1

2

(
ri − sign(ϕT

i x− bi)
)
ϕi. (4.31)
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Hence, considering that F(x) =∑i fi(x), we have

f = −1

2
ΦT (r − sign(Φx− b)) ∈ ∂F(x). (4.32)

Consequently, the updating steps of the IHT algorithm defined in (Equation 4.26) for solving

the optimization problem (Equation 4.25) can be expressed as:

The Proposed Generalized BIHT Iterations:

ui = xi−1 +
δ

2
ΦT (r − sign(Φxi−1 − b)) , (4.33a)

xi = HK (ui) , (4.33b)

Note the exception that in the proposed generalized BIHT iterations, there is no need for the

normalization of the obtained estimate of the signal x∗ after the update steps terminate. This

is due to the fact that a non-zero quantization threshold vector is employed at time of the

encoding, and hence, the amplitude information is not fully lost. In the rest of this paper, we

refer to the above iterations as Generalized BIHT (G-BIHT) algorithm.

Although simple and powerful, the BIHT algorithm requires a careful choice of the gradient

step-size δ for convergence and stability, and there is no straight-forward method to properly

choose the gradient step-size. Moreover, it only utilizes a fixed step-size through all iterations.

This motivates the development of a methodology by which one can design a decoder function

that exploits adaptive gradient step-sizes, which can result in a significant improvement of the

performance of the BIHT algorithm.
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In the next section, we discuss a slight over-parametrization of the iterations of RFPI, G-

RFPI, BIHT, and G-BIHT algorithms that paves the way for the design of our proposed one-bit

compressive AE and for jointly designing the parameters of the encoder function defined in

(Equation 4.3) parametrized on the sensing matrix Φ, the quantization thresholds b, and the

design of a set of decoder functions based on the discussed iterative optimization algorithms.

4.3 The Proposed Model-Based Deep Learning Models for One-Bit CS

We pursue the design of a novel model-driven one-bit compressive sensing-based autoencoder

deep architecture that facilitates the joint design of the parameters of both the encoder and

the decoder module when one-bit quantizers with non-zero thresholds are employed in the

data acquisition process (i.e., the encoding module) for a K-sparse input signal x ∈ Rn. In

particular, the decoder module can be seen as model-based deep architecture which is derived

upon unfolding the iterations of first-order optimization techniques provided above onto the

layers of a deep neural network.

In general terms, a AE is a generative model comprised of an encoder and a decoder module

that are sequentially connected together. The purpose of an AE is to learn an abstract repre-

sentation of the input data, while providing a powerful data reconstruction system through the

decoder module. The input to such a system is a set of signals following a certain distribution,

i.e. x ∼ D(x), and the output is the recovered signal from the decoder module x̂. Hence, the

goal is to jointly learn an abstract representation of the underlying distribution of the signals

through the encoder module, and simultaneously, learning a decoder module allowing for re-

construction of the compressed signals from the obtained abstract representations. Therefore,
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an AE can be defined by two main functions: i) an encoder function fEncoder
Υ1

: Rn 7→ Rm,

parameterized on a set of variables Υ1 that maps the input signal into a new vector space, and

ii) a decoder function fDecoder
Υ2

: Rm 7→ Rn parameterized on Υ2, which maps the output of the

encoder module back into the original signal space. Hence, the governing dynamics of a general

auto-encoder can be expressed as x̂ = fDecoder
Υ2

◦ fEncoder
Υ1

(x), where x̂ denotes the reconstructed

signal.

In light of the above, we seek to interpret a one-bit CS system as an AE module facilitating

not only the design of the sensing matrix Φ and the quantization thresholds b that best captures

the information of a K-sparse signal when one-bit quantizers are employed, but also to learn

the parameters of an iterative optimization algorithm specifically designed for the task of signal

recovery. To this end, we modify and unfold the iterations of the proposed G-RFPI algorithm

defined in (Equation 4.22), and the GBIHT method defined in (Equation 4.33) onto the layers

of a deep neural network and later use the deep learning tools to tune the parameters of the

proposed one-bit compressive AE.

4.3.1 Structure of the Encoding Module

In its most general form, we define the encoder module of the proposed AE based on our

data-acquisition model defined in (Equation 4.3), as follows:

fEncoder
Υ1

(x) = ˜sign(Φx− b), (4.34)
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L-RFPI	Deep	Architecture	-	

Encoder	Module

(a)

L-BIHT	Deep	Architecture	-	

Encoder	Module

(b)

Figure 12. An illustration of the computation dynamics in i-th layer of the proposed (a)
L-RFPI and (b) L-BIHT deep architectures, in which the trainable parameters are highlighted

in red color.

where Υ1 = {Φ, b} denotes the set of learnable parameters of the encoder function, and

˜sign(x) = tanh(t · x), for a large t > 0 (t was set to 50 in numerical investigations). Note

that we replaced the original sign function with a smooth differentiable approximation of it

based on the hyperbolic tangent function due to the fact that the sign function is not con-

tinuous and its gradient is zero everywhere except at the origin. Hence, the use of it would

cripple stochastic gradient-based optimization methods (later used in back-propagation method

for deep learning).
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4.3.2 Structure of the Decoding Module

In this part, we describe the different scenarios under which we pursue the design of our

decoder function by using the RFPI, BIHT, and the suggested G-RFPI and G-BIHT iterations.

In particular, we fix the total complexity of our decoding module by fixing the total number of

iterations allowed for the mentioned optimization iterations. Next, we slightly over-parameterize

each iteration/step of the mentioned algorithms to increase the per-iteration degrees-of-freedom

of each method and to further account for the learnable latent variables in the system. Finally,

we unfold the iterations of each algorithm onto the layers of a deep architecture such that each

layer of the deep network resembles one iteration of the base-line algorithm. We then seek to

learn the parameters of both the decoder and encoder function using the training tools already

developed for deep learning. We consider the following cases to design our decoder function:

• Learned RFPI (L-RFPI): We consider the RFPI iterations defined in (Equation 4.8) as

our base-line but slightly over-parametrize its iterations by introducing a gradient step-size δi

and a shrinkage thresholds vector τ i for each iteration i. This is in contrast to the original RFP

iterations where a fixed gradient step-size δ, and shrinkage threshold τ = (δ/α)1 were employed

for all iterations. Hence, the proposed unfolded over-parametrized iterations are much more

expressive. The decoder function will be parameterized on Υ2 = {δi, τ i}L−1
i=0 , and the encoder

function will be parametrized on the set Υ1 = {Φ} (note that b = 0).

• Learned BIHT (L-BIHT): We consider the unfolding of the iterations of the BIHT defined

in (Equation 4.24) similar to the previous case and by introducing per-iteration gradient step-

sizes δi in lieu of a fixed gradient-step size along all iterations. In this case, the decoder function
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will be parametrized on the set Υ2 = {δi}, while the set of parameters of the encoding module

is Υ1 = {Φ}; both are to be learned.

• Learned G-RFPI (LG-RFPI): We consider the unfolding of the proposed Generalized

RFPI iterations in (Equation 4.22) in a non-zero quantization thresholds setting. We over-

parameterize the iterations of the proposed G-RFPI by parametrizing the decoder function on

the set Υ2 = {δi, τ i}L−1
i=0 , and this time, by parameterizing the encoder function on both the

sensing matrix and the quantization thresholds vector, i.e. Υ1 = {Φ, b}.

• Learned G-BIHT (LG-BIHT): We consider the unfolding of the G-BIHT iterations defined

in (Equation 4.33) in a similar manner, i.e. by parameterizing the decoder function on Υ2 =

{δi}L−1
i=0 . However, similar to the previous case, we further parametrize the encoder function on

the quantization thresholds vector in conjunction with the sensing matrix, i.e. Υ1 = {Φ, b}.

4.3.3 The Proposed One-Bit Compressive Autoencoding Approach

In the following, we describe the design of four novel deep architectures based on the above

mentioned structures and discuss the governing dynamics of the proposed one-bit compressive

sensing-based AE.

C.1. L-RFPI-Based Compressive Autoencoding:

In this case, we consider the following parameterized encoder function:

fEncoder
Υ1

(x) = ˜sign(Φx), where Υ1 = {Φ}. (4.35)
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As for the decoder function, and based on the RFPI iterations in (Equation 4.8), define gϕi
:

Rm 7→ Rn as follows:

gϕi
(z;Φ,R) =

v

∥v∥2
, with (4.36a)

v = ˜sign (t)⊙ (|t| − τ i) , (4.36b)

t =
(
1 + δid

Tz
)
z − δid, (4.36c)

d = − (RΦ)T ρ (RΦz) , (4.36d)

where ϕi = {τ i, δi} represents the parameters of the function gϕi
, and τ i ∈ Rn denotes the

sparsity inducing shrinkage thresholds vector, and δi represents the gradient step-size at iteration

i. Next, we define the proposed L-RFPI composite decoder function as follows:

fDecoder
Υ2

(z0) = gϕL−1
◦ gϕL−2

◦ · · · ◦ gϕ1 ◦ gϕ0(z0;Φ,R), (4.37)

where Υ2 = {ϕi}L−1
i=0 represents the learnable (tunable) parameters of the decoder function, and

z0 is some initial point of choice. Note that we have over-parameterized the iterations of the

RFPI algorithm by introducing the new variable τ i at each iteration for the sparsity inducing

step in (Equation 4.36b). Moreover, in contrast with the original RFPI iterations, we have

introduced a new step-size δi at each step of the iteration as well (see Eq. (Equation 4.36c)).

Therefore, the above decoder function can be interpreted as performing L iterations of the

original RFPI algorithm with an additional L(n+1)−2 degrees of freedom (as compared to the
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base algorithm) expressed in terms of the set of the shrinkage thresholds τ i and the gradient

step-sizes δi, i.e. {τ i, δi}L−1
i=0 . As a reslt, the proposed decoder function is much more expressive

than that of the iterations of RFPI algorithm. A depiction of the computation dynamics of the

i-th layer of the proposed L-RFPI deep architecture is provided in Fig. 12(a).

Remark : Note that the above encoder and decoder function, once cascaded together, can

be viewed as a deep neural network with (L+1) layers, where the dynamics of the first layer is

described by the encoder function defined in (Equation 4.35), and the governing dynamics of the

succeeding layers is described by computations of the form (Equation 4.36a)-(Equation 4.36d).

Equivalently, such a deep architecture can be viewed as a computational graph with shared

variables among the computation nodes, and thus, its parameters can be efficiently optimized

by utilizing known deep learning tools such as back-propagation. Hence, the goal is to jointly

learn the parameters of such a cascaded network (i.e., Υ1 ∪Υ2) in an end-to-end manner by

using the available data at hand coming from the underlying distribution of the source signal

x. ■

C.2. L-BIHT-Based Compressive Autoencoding:

Similar to the previous case, we consider the same encoding function parametrized only on the

learnable sensing matrix Φ in a zero quantization thresholds setting, i.e. Υ1 = {Φ}. The
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governing equations for the decoder function in the case of the proposed Learned BIHT are as

follows. We re-define gϕi
: Rm 7→ Rn as:

gϕi
(z;Φ, r,K) = HK (v) , for i < L,where (4.38a)

v = z + δiΦ
T
(
r − ˜sign(Φz)

)
, (4.38b)

with ϕi = {δi}L−1
i=0 , and where we have an added final layer i = L, to renormalize the recon-

structed signal as,

gϕL
(z;Φ, r) =

z

∥z∥2
. (4.39)

Therefore, similar to the previous case, the proposed L-BIHT-based decoder function is defined

as:

fDecoder
Υ2

(z0) = gϕL
◦ gϕL−1

◦ · · · ◦ gϕ1 ◦ gϕ0(z0;Φ,R,K). (4.40)

We again observe the slight over-parametrization of the L-BIHT algorithm during the unfolding

process. Namely, at each iteration we are introducing the per-iteration step-sizes δi to be

learned which further enhances the performance of our iterations (see (Equation 4.38)). In this

case, the decoder function is parameterized only on the gradient step-sizes, i.e. Υ2 = {δi}L−1
i=0 .

The L-BIHT iterations have an additional (L − 1) degrees of freedom compared to that of the
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LG-RFPI	Deep	Architecture	-	

(b)

Figure 13. An illustration of the computation dynamics in the i-th layer of the proposed (a)
LG-BIHT and (b) LG-RFPI deep architectures, in which the trainable parameters are

highlighted in red color.

original BIHT iterations. Fig. 12(b) illustrates the computation dynamics of the i-th layer of

the proposed L-BIHT deep architecture.

C.3. LG-RFPI-Based Compressive Autoencoding:

We consider the unfolding of iterations of the Learned Generalized RFPI method according to

(Equation 4.22). As previously discussed, in the generalized iterations of both the RFPI and

BIHT algorithms, the encoder module can be expressed as:

fEncoder
Υ1

(x) = ˜sign(Φx− b), (4.41)
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where Υ2 = {Φ, b}, and b represents the tunable vector of quantization thresholds. We follow a

similar approach to the proposed L-RFPI-Based deep architecture and slightly over-parameterize

the iterations in (Equation 4.22a)-(Equation 4.22c), leading to the design of the decoder func-

tion:

gϕi
(z;Φ,R, b) = ˜sign (v)⊙ (|v| − τ i) , with (4.42a)

v = z − δid, (4.42b)

d = − (RΦ)T ρ (R (Φz − b)) , (4.42c)

where ϕi = {τ i, δi} represents the parameters of the function gϕi
, τ i ∈ Rn denotes the sparsity

inducing thresholds vector, and δi represents the gradient step-size at iteration i. Hence, the pro-

posed decoder function fDecoder
Υ2

(z0) can be represented in the same way as in (Equation 4.37),

with Υ2 = {ϕi}L−1
i=0 . Note that by incorporating the non-zero quantization thresholds, there is

no need for an additional normalization term at each iteration. The above iterations (compris-

ing the decoder function) have the same degree of freedom as L-RFPI iterations—an additional

L(n + 1) − 2 model parameters compared to that of the base-line G-RFPI iterations. Also,

note the additional m degrees of freedom that the encoder function offers in terms of tunable

quantization thresholds vector b (in addition to the sensing matrix). Fig. 13(b) illustrates the

computation dynamics of the i-th layer of the proposed L-BIHT deep architecture.

C.4. LG-BIHT-Based Compressive Autoencoding:

We consider an encoder function fEncoder
Υ1

of the form (Equation 4.41), where Υ1 = {Φ, b}
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denotes the learnable sensing matrix and arbitrary quantization thresholds. Additionally, we

present an over-parameterization of the Genralized BIHT iterations (see Eqs. (Equation 4.33))

and consider the resulting unfolded network as the blueprint of our decoder. Namely, we define

gϕi
: Rm 7→ Rn as:

gϕi
(z;Φ, r, b,K) = HK (v) , with (4.43a)

v = z + δiΦ
T
(
r − ˜sign(Φz − b)

)
, (4.43b)

where ϕi = {δi} denotes the set of parameters of the function gϕi
. Note that due to em-

ploying a non-zero thresholds vector, we do not need the additional normalization layer as in

(Equation 4.39) for this case. Consequently, the decoder function fDecoder
Υ2

can be expressed

in a similar manner as in (Equation 4.40), with Υ2 = {δi}L−1
i=0 . These iterations, similar to

L-BIHT case, have an additional (L − 1) degrees of freedom compared to that of the base-line

G-BIHT iterations; whereas, the encoder function has an additional m tunable parameters in

terms of the one-bit quantization thresholds compared to that of the L-BIHT-based AE. Fig.

13(a) illustrates the computation dynamics of the i-th layer of the proposed LG-BIHT deep

architecture.

In the next section, we discuss the training process of the above proposed one-bit compressive

autoencoders. Particularly, we formulate a proper loss function that facilitates the training

of such unfolded deep architectures, and for each model, we seek to jointly learn the set of
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parameters of the entire network (i.e., the encoder and decoder function) in a end-to-end manner

using the available deep learning techniques.

4.3.4 Loss Function Characterization and Training Method

The output of an autoencoder is the reconstructed signal from the compressed measurements,

i.e.

x̂ = fDecoder
Υ2

◦ fEncoder
Υ1

(x),

where x ∼ D(x) and x̂ denotes the input and output of the AE, respectively. The training of

an AE should be carried out by defining a proper loss function G
(
x, fDecoder

Υ2
◦ fEncoder

Υ1
(x)
)

that

provides a measure of the similarity between the input and the output of the AE. The goal is to

minimize the distance between the input target signal x and the recovered signal x̂ according

to a similarity criterion. A widely-used option for the loss function is the output MSE loss, i.e.,

Ex∼D(x)

{
∥x− x̂∥22

}
, and hence, the training loss of such a system can be formulated as:

G(x; x̂) = Ex∼D(x)

{
∥x− fDecoder

Υ2
◦ fEncoder

Υ1
(x)∥22

}

that is to be minimized over Υ1 and Υ2. Nevertheless, in deep architectures with a high

number of layers and parameters, such a simple choice of the loss function makes it difficult to

back-propagate the gradients; in fact, the vanishing gradient problem arises. Therefore, for the

training of the proposed AE, a better choice for the loss function is to consider the cumulative

MSE loss of the layers. As a result, one can also feed-forward the decoder function for only

l < L layers (a lower complexity decoding), and consider the output of the l-th layer as a good
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approximation of the target signal. For training, one needs to consider the constraint that the

gradient step-sizes {δi}L−1
i=0 , and the shrinkage thresholds {τ i}L−1

i=0 must be non-negative. By

parameterizing the decoder function on the step-sizes and the shrinkage step thresholds, we need

to regularize the training loss function ensuring that the network chooses positive step sizes and

shrinkage thresholds at each layer. With this in mind, we suggest the following loss function for

training the proposed one-bit compressive AE. Let g̃i = gϕi
◦ gϕi−1

◦ · · · ◦ gϕ0 ◦ fEncoder
Υ1

(x), and

define the loss function for training as

GL(x; x̂) =
L−1∑
i=0

wi||x− g̃i(xi)||22︸ ︷︷ ︸
accumulated MSE loss of all layers

+ (4.44)

λ

L−1∑
i=0

(−[δ]i) + λ

nL−1∑
i=0

(−[τ ]i)︸ ︷︷ ︸
regularization term for the step-sizes and shrinkage thresholds

,

where wi denotes the importance weight of choice for the output of each layer, λ > 0, [δ]i =

δi, and τ = [τT
0 , . . . , τ

T
L−1]. Note that as the information flows through the network, one

expects that as we progress layer by layer, the reconstruction shows improvement. A reasonable

weighting scheme for designing the importance weights wi is to gradually increase the importance

weights as we proceed through the layers. In this work, we consider a logarithmic weighting

scheme, i.e. wi = log(i+2), for i ∈ {0, . . . , L−1}. Moreover, in training the autoencoders based

on the BIHT algorithm, we exclude the last term in (Equation 4.44) as there is no shrinkage

thresholds required for these models.
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As for the training procedure, our numerical investigations showed that an incremental

learning approach is most effective for training of the proposed networks. The details of the

incremental learning method that we employed are as follows. During the l-th increment round

(for l ∈ {0, . . . , L − 1}), we seek to optimize the cost function Gl(x, x̂) by learning the set of

parameters Υl = Υ1∪{ϕi}li=0. At each round l, we perform a batch learning with mini-batches

of size B. After finishing the l-th round of training, the (l + 1)-th layer will be added to the

network, and the objective function will be changed to Gl+1(x, x̂). Next, the entire network will

go through another batch-learning phase. Interestingly, in this method of training, the learned

parameters from the l-th round Υl will be used as the initial values of the same parameters in

the next round.

4.4 Numerical Results

In this section, we present various simulation results to investigate the performance of the

proposed one-bit compressive AEs and to further show the effectiveness of our training. For

training purposes, we randomly generate K-sparse signals of length n = 128, i.e. x ∈ R128

where the non-zero elements are sampled from N (0, 1). Furthermore, we fix the total number

of layers of the decoder function to L = 30; equivalent of performing only 30 optimization

iterations of the form (Equation 4.36), (Equation 4.38), (Equation 4.42), and (Equation 4.43).

As for the sensing matrix (to be learned), we assume Φ ∈ R512×128. The results presented

here are averaged over 128 realizations of the system parameters. Similar to [102], we consider

the case that m > n, due to the focus of this study on one-bit sampling where usually a large

number of one-bit samples are available, as opposed to the usual infinite-precision CS settings.
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Figure 14. The performance of the proposed L-RFPI method compared to the RFPI algorithm
for sparsity levels: (a) K = 8, (b) K = 16, (c) K = 32, and (d) K = 40.

The proposed one-bit CS AEs are implemented using the PyTorch library [9]. The Adam

optimizer [84] with a learning rate of 10−3 is utilized for optimization of parameters of the
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Figure 15. The performance of the proposed LG-RFPI AE and the proposed G-RFPI method
in recovering the amplitude information of the K- sparse signals for sparsity levels: (a) K = 8,

(b) K = 16, (c) K = 32, and (d) K = 40.
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proposed deep architectures. Due to the importance of reproducible research, we have made all

the codes implemented publicly available along with this paper.1

As it was previously discussed in Sec. 4.3.4, we employ an incremental batch-learning ap-

proach with mini-batches of size 64 at each round l < 30, and a total number of 200 epochs per

round. For training of the the proposed AEs that are based on the RFPI iterations, i.e., the

L-RFPI and LG-RFPI deep architectures, we uniformly sample the sparsity level of the source

signal from the set K ∈ {16, 24, 32} for each training point in the mini-batch. We evaluate the

performance of the proposed methods on target signals with K ∈ {16, 32}, as well as K ∈ {8, 40}

(which was not presented to the network during the training phase). Moreover, due to the fact

that the BIHT method and the corresponding one-bit AEs (L-BIHT and LG-BIHT) require the

knowledge of the sparsity level of the source signal a priori, there is no need to train the network

on various sparsity levels; i.e., the corresponding deep architectures can be trained for a particu-

lar K. Hence, for the L-BIHT and LG-BIHT deep architectures, we train the network for source

signals with K = 16, and evaluate the performace of the resulted networks on K ∈ {16, 24}.

In the sequel, we refer to sd = s/∥s∥2 as the normalized version of the vector s. In all

scenarios, in order to have a fair comparison between the algorithms, the initial starting point

z0 of the optimization algorithms are the same.

1The code is also available at: https://github.com/skhobahi/deep1bitVAE
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Performance of the proposed L-RFPI AE:

In this part, we investigate the performance of the proposed L-RFPI-based AE in recovering

the normalized source signal x, i.e., recovering xd
i .

Fig. Figure 14 illustrates Mean Squared Error (MSE) for normalized version of the recov-

ered signal x̂d
i versus total number of optimization iterations i, for i ∈ {0, . . . , 29}, and for

sparsity levels (a) K = 8, (b) K = 16, (c) K = 32, and (d) K = 40. We compare the perfor-

mance of the proposed L-RFPI algorithm with the standard RFPI iterations in (Equation 4.8a)-

(Equation 6.8), in the following scenarios:

• Case 1 : The RFPI algorithm with a randomly generated sensing matrix whose elements are

i.i.d. and sampled from N (0, 1), and fixed values for δ and α.

• Case 2: The RFPI algorithm where the learned Φ is utilized, and the values for δ and α are

fixed as in the previous case.

• Case 3: The RFPI algorithm with a randomly generated Φ (same as Case 1), however, the

learned shrinkage thresholds vector {τ i}L−1
i=0 is utilized with a fixed step-size.

• Case 4: The proposed one-bit L-RFPI AE method corresponding to the iterations of the form

(Equation 4.36a)-(Equation 4.36d), with learned Φ, {δi}L−1
i=0 , and {τ i}L−1

i=0 .

To have a fair comparison, we fine-tuned the parameters of the standard RFPI method (Case

1), i.e., the step-size δ and the shrinkage threshold α, using a grid-search method. It can be

seen from Fig. Figure 14 that in all cases of K ∈ {8, 16, 32, 40}, the proposed L-RFPI method

demonstrates a significantly better performance than that of the RFPI algorithm (described in

Case 1)—an improvement of ∼ 10 times in MSE outcome. Furthermore, the effectiveness of
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the learned Φ (Case 2), and the learned {τ i} (Case 3) compared to the base algorithm (Case

1), are clearly evident, as both algorithms with learned parameters significantly outperform the

original RFPI. Finally, although we trained the network for K ∈ {16, 24, 32} sparse signals,

it still shows very good generalization properties even for K ∈ {8, 40} (see Fig. Figure 14 (a)

and (d)). This is presumably due to the fact that the proposed L-RFPI-based AE is a hybrid

model-based data-driven approach that exploits the existing domain knowledge of the problem

as well as the available data at hand. Furthermore, note that the proposed method achieves

a high accuracy very quickly and does not require solving (Equation 4.7) for several instances

as opposed to the original RFPI algorithm—thus showing great potential for usage in real-time

applications.

Performance of the proposed LG-RFPI AE :

Next, we investigate the performance of the proposed LG-RFPI AE (see Eqs. (Equation 4.42a)-

(Equation 4.42c)) and the G-RFPI algorihtm (see Eqs. (Equation 4.22a)-(Equation 4.22c)) that

we specifically designed for incorporating arbitrary quantization thresholds at data acquisiton.

We investigate the performance of the proposed method in both cases of recovering the amplitude

information as well as the normalized signal.

Fig. Figure 15 illustrates the MSE between the source signal x and the recovered signal x̂i

versus total number of optimization iterations i, for i ∈ {0, . . . , 29}, and for sparsity levels (a)

K = 8, (b) K = 16, (c) K = 32, and (d) K = 40. Similar to the previous case, we consider the

following scenarios:

• Case 1 : The proposed G-RFPI algorithm with a randomly generated sensing matrix and
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Figure 16. The performance of the proposed LG-RFPI AE and the proposed G-RFPI method
in recovering the normalized K-sparse signals for sparsity level K = 24.

quantization threhsolds vector, whose elements are i.i.d. and sampled from N (0, 1), and fixed

values for δ and α.

• Case 2 : The proposed G-RFPI algorithm where the learned sensing matrix Φ and quantization

thresholds vector b are utilized, and the values for δ and α are fixed as in the previous case.

• Case 3 : The proposed one-bit LG-RFPI AE method corresponding to the iterations of the

form (Equation 4.42a)-(Equation 4.42c), with the learned Φ, b, {δi}L−1
i=0 , and {τ i}L−1

i=0 .

Note that the focus of this part is on recovering the amplitude information of the underly-

ing K-sparse signal by means of using arbitrary quantization thresholds. Although the RFPI

method and the proposed L-RFPI AE can only recover the normalized signal xd = x/∥x∥, we

further provide the performance of the L-RFPI method (that significantly outperforms the RFPI

method) in recovering the amplitude information for comparison purposes. It can be observed

from Fig. Figure 15 that the proposed G-RFPI algorithm with randomly generated sensing ma-
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Figure 17. The performance of the proposed L-BIHT method compared to the base-line BIHT
algorithm for sparsity levels: (a) K = 16 and (b) K = 24.

trix and quantization thresholds (Case 1) provides good accuracy in recovering the amplitude

information of the true signal for sparsity levels K ∈ {8, 16, 32, 40}. This is in contrast to the

RFPI algorithm and the corresponding L-RFPI AE where the amplitude information is lost due

to zero quantization thresholds. More precisely, the proposed G-RFPI algorithm outperforms

the RFPI and the L-RFPI algorithm in terms of recovering the amplitude information of the

signal. One can observe that even with a randomly generated quantization thresholds (i.e., with-

out learning them), the proposed G-RFPI method achieve a significantly lower MSE in terms

of recovering the amplitude information of the source signal as compared to the RFPI and the

proposed L-RFPI method. Hence, the proposed G-RFPI method can be used as an stand-alone

algorithm for one-bit compressive sensing settings with non-zero quantization thresholds, where

both finding the direction of the source signal and the amplitude information is of great interest.
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Next, we explore the effect of learning the distribution-specific (data-driven) sensing matrix and

the quantization thresholds (Case 2). It is evident from Fig. Figure 15 that compared to the

vanilla G-RFPI method, one can significantly achieve a lower MSE in terms of recovering the

amplitude information by learning a proper sensing matrix and the quantization thresholds and

utilizing them during the data-acquisition process. Finally, it can be seen from Fig. Figure 15

that the proposed LG-RFPI AE (Case 3) significantly outperforms its counterparts by achieving

a much lower MSE very quickly. Moreover, the proposed LG-RFPI AE shows strong general-

ization properties for unseen sparsity levels K ∈ {8, 40} (see Fig. Figure 15 (b) and (d)). The

fact that such architectures show great performance in generalization is due to the model-driven

nature of the proposed deep networks.

We conclude this part by comparing the performance of the proposed LG-RFPI, G-RFPI, and

L-RFPI AEs in recovering the normalized version of the signal x. Fig. Figure 16 illustrates the

MSE between the normalized source signal and the recovered signal versus number of iterations

i, i.e. MSE(xd,x̂d
i ), for a sparsity level of K = 24. It can be observed from Fig. Figure 15 that

the proposed methods outperform the standard RFPI iterations and achieve a high accuracy in

recovering xd. Moreover, the proposed L-RFPI AE shows a slightly better performance than

that of the LG-RFPI method. This is presumably due to the fact that the L-RFPI iterations

and the corresponding deep architecture are specifically designed and tuned for recovering the

normalized source signal while the proposed G-RFPI and LG-RFPI algorithms are designed for

recovering the amplitude information of the source signal. Nevertheless, the MSE difference

between the LG-RFPI and L-RFPI methods in recovering xd is negligible, and hence, in a
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non-zero quantization thresholds setting, it is beneficial to use the proposed LG-RFPI AE as

it shows significant improvement in the performance of recovering the amplitude information

while maintaining a high performance in recovering xd as well.

Performance of the proposed L-BIHT AE:

In this part, we investigate the performance of the proposed L-BIHT AE, and compare our

results with the standard BIHT algorithm. Note that similar to the RFPI method and the

proposed L-RFPI AE, the BIHT algorithm considers b = 0 at the time of data acquisition.

Hence, we investigate the performance of the proposed method in recovering the normalized

source signal, i.e. xd. In particular, we provide the simulation results for the following cases:

• Case 1 : The BIHT algorithm with a randomly generated sensing matrix whose elements are

i.i.d. and sampled from N (0, 1), and fixed value for δ.

• Case 2 : The BIHT algorithm with a randomly generated Φ (same as Case 1); however, learned

gradient step-sizes δi are used at each iteration i.

• Case 3 : The BIHT algorithm where the learned Φ is utilized and the value for the step-size

δ is fixed as in Case 1.

• Case 4 : The proposed one-bit L-BIHT AE method corresponding to the iterations of the form

(Equation 4.38a)-(Equation 4.38b), with the learned Φ and {δi}L−1
i=0 .

Fig. Figure 17 demonstrates the MSE between normalized source signal xd, and the recov-

ered signal x̂d
i versus the number of optimization iterations i, for signals with sparsity levels

(a) K = 16 and (b) K = 24. Note that for learning the parameters of the proposed L-BIHT

algorithm, we trained the corresponding deep architecture on the sparsity level K = 16, and
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Figure 18. The performance of the proposed G-BIHT and the corresponding LG-BIHT AE in
recovering the amplitude information of the signal for sparsity levels: (a) K = 16, and (b)

K = 24.

we check the generalization performance of the learned parameters for the case of K = 24. It

can be seen from Fig. Figure 17 that in both cases of K ∈ {16, 24} the proposed L-BIHT

algorithm demonstrates a significantly better performance than that of the standard BIHT al-

gorithm (Case 1). Moreover, the effectiveness of the learned step-sizes {δi}L−1
i=0 (Case 2), and

the learned sensing matrix Φ (Case 3) compared to the base-line vanilla BIHT algorithm (Case

1) are evident. In particular, the learned step-sizes (Case 2) results in a fast descent while the

learned Φ (Case 3) leads to a lower MSE compared to Case 2. In addition, we provided the

performance of the standard RFPI algorithm for comparison purposes. It can be seen from Fig.

Figure 17 that the BIHT algorithm with and without the learned parameters achieves a better

accuracy in recovering the direction of the source signal compared to the RFPI method. Also, a

comparison between Fig. Figure 17 (a) and Fig. Figure 14 (b) reveals the fact that the proposed
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L-BIHT AE demonstrates a far better performance than that of the proposed L-RFPI AE. This

is due to the fact that the BIHT algorithm and the corresponding proposed L-BIHT AE, exploits

the knowledge of the sparsity level K of the source signal (note the mapping function HK used

in (Equation 4.38a) and (Equation 4.24b)). One can further observe that even for the unseen

case of K = 24, the proposed method generalizes very well and maintains its accuracy. This is

due the model-driven nature of the proposed L-BIHT AE architecture. It is worth mentioning

that it can be observed from Fig. Figure 17 that the proposed L-BIHT method converges very

fast (in 10 iterations), achieving a high accuracy—making it a great candidate for real-time

applications. Of course, the trade-off between using the L-RFPI and L-BIHT is implicit in the

knowledge of the sparsity level of the signal. For applications where K is known beforehand, the

proposed L-BIHT can be used in that it shows higher accuracy compared to the other methods.

However, the L-RFPI methodology is more flexible as it does not require knowing the sparsity

level of the signal a priori.

Performance of the proposed LG-BIHT AE:

Finally, we investigate the performance of the proposed G-BIHT method (see Eqs. (Equation 4.33a)-

(Equation 4.33b)) and the corresponding one-bit compressive LG-BIHT AE (see Eqs. (Equation 4.43a)-

(Equation 4.43b)) that are specifically designed to handle non-zero quantization thresholds b.

In particular, we are interested in evaluating the performance of the proposed methods in recov-

ering the amplitude information of the source K-sparse signal. Hence, for this part, we check

the MSE between the true signal x, and the recovered signal x̂i from the G-BIHT and LG-BIHT

methods for each iteration i. In addition, we provide the results for recovering the direction
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Figure 19. The performance of the proposed G-BIHT and the corresponding LG-BIHT AE in
recovering the normalized signal, i.e. xd, for sparsity levels: (a) K = 16, and (b) K = 24.

of the source signal xd as well. Specifically, we provide the simulation results for the following

cases:

• Case 1 : The proposed G-BIHT algorithm with a randomly generated sensing matrix and

quantization thresholds vector where the elements of both are i.i.d. and sampled from N (0, 1),

and fixed value for {δi}L−1
i=0 .

• Case 2 : The proposed G-BIHT algorithm, where the learned sensing matrix Φ and quantiza-

tion thresholds b are utilized and the values for {δi}L−1
i=0 are fixed as in the previous case.

• Case 3 : The proposed one-bit LG-BIHT AE method corresponding to the iterations of the

form (Equation 4.43a)-(Equation 4.43b), with learned Φ, b and {δi}L−1
i=0 .

Fig. Figure 18 illustrates the MSE between the true signal x and the recovered signal x̂i

versus optimization iteration i for sparsity levels (a) K = 16 and (b) K = 24. We further provide
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the numerical results for the proposed LG-RFPI AE and the proposed G-RFPI iterations for

comparison. It can be seen from Fig. Figure 18 that the proposed G-BIHT algorithm with

randomly generated latent-variables (Case 1) significantly outperforms its G-RFPI counterpart,

and achieves a high accuracy very quickly. On the other hand, the proposed LG-RFPI still

achieves a lower MSE compared to the vanilla G-RFPI method. In addition, a comparison

between the performance of the proposed G-BIHT algorithm with learned Φ and b (Case 2)

and the proposed LG-RFPI AE and vanilla G-BIHT (Case 1) reveals the effectiveness of the

learned parameters and the power of the proposed G-BIHT algorithm. Namely, by utilizing

only the learned Φ and b and by using a fixed step size for the G-BIHT algorithm, one can

achieve a superior performance than that of the LG-RFPI (where all of the learned variables are

in use) and the vanilla G-BIHT method. Finally, it can be observed from Figure 17(a)-(b) that

the proposed LG-BIHT algorithm (Case 3) significantly outperforms the other methods as it

achieves a much lower MSE very quickly, specifically, compared to the proposed LG-RFPI AE.

The superior performance of the LG-BIHT algorithm and the corresponding LG-BIHT AE is

due the fact that we are exploiting the knowledge of the sparsity level K present in the signal.

As discussed before, if the sparsity level is known a priori, it is beneficial to use either the

G-BIHT algorithm (when one do not wish to perform any learning) or the proposed LG-BIHT

methodology. It is worth mentioning that similar to the previously investigated methods, the

proposed LG-BIHT generalizes very well for K = 24 (see Fig. Figure 18(b)) even though the

sparsity level was not revealed to the network during the training phase.
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Figure 20. The generalization performance of (a) the proposed L-RFPI deep architecture
compared to the standard RFPI method in recovering the direction information, and (b) the
proposed LG-RFPI deep architecture and the proposed G-RFPI method in recovering the

amplitude information of the K-sparse signals for sparsity levels K ∈ {4, 5, 6, · · · , 64}.

Fig. Figure 19 demonstrate the MSE between the direction of the source signal, i.e. xd,

and the recovered direction x̂d versus optimization iteration i, for sparsity levels of (a) K = 16

and (b) K = 24. It can be seen from Fig. Figure 19 that the proposed LG-BIHT method

outperforms both the LG-RFPI method, and furthermore, it achieves a similar MSE to that of

the proposed L-RFPI method. However, the convergence of LG-BIHT is much faster than that

of the L-RFPI method. Furthermore, the proposed L-BIHT algorithm still achieves a superior

performance than that of the other methods both in terms of convergence speed and accuracy.

This is presumably due to the fact that the L-BIHT method is specifically designed and learned

to have a high accuracy in finding normalized true signal xd.

Generalization of the LG-RFPI and L-RFPI Methods:
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TABLE I

NUMERICAL ANALYSIS OF µ(Φ) AND THE GRAM MATRIX M .
Metrics L-BIHT LG-BIHT L-RFPI LG-RFPI Random Φ
µ(Φ) 0.0415 0.0904 0.0760 0.0852 0.2444
∥M − I∥2F 2.1716 8.7711 6.6117 8.0244 31.3032

In this part, we analyze the generalization performance of the proposed LG-RFPI and L-RFPI

deep architectures. We consider the same simulation setup as in the previous cases, i.e. both

architectures are assumed to have L = 30 layers. We performed the training of both architectures

on a dataset consisting of K-sparse signals where the sparsity level is sampled uniformly from the

set K ∈ {4, 8, 12, 16, 20}, and we evaluate the generalization performance of both architectures

on K-source signals with sparsity levels K ∈ {4, 5, 6, · · · , 64}.

Fig. 20(a) demonstrates the MSE between the direction of the true source signal, i.e. xd,

and the recovered direction x̂d versus the sparsity level K = ∥x∥0 for the proposed L-RFPI

deep architecture. Moreover, Fig. 20(b) demonstrates the MSE between the the true source

signal x and the recovered signal x̂ versus the sparsity level K for the proposed LG-RFPI

deep architecture, and the proposed base-line G-RFPI algorithm (provided here for comparison

purposes), both specifically designed to recover the amplitude information of the source signal.

It can be seen from both Figs. 20(a) and 20(b) that the performance of the proposed L-RFPI and

LG-RFPI methodologies is far superior to that of the standard model-based RFPI methods and

the proposed G-RFPI algorithm across all sparsity levels. Interestingly, although the proposed

deep architectures have been trained only on the sparsity levels K ∈ {4n}5n=1, they generalized
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very well to higher sparsity levels as well, while outperforming the model-based algorithms. Such

a good generalization performance is expected due to the model-based nature of the proposed

architecture. This is in contrast to the conventional black-box deep learning models where

the generalization performance usually degrades significantly as the input deviates from the

distribution of the data points considered for training.

Coherence analysis of the learned sensing matrices:

In this part, we give a detailed analysis of the quality of the learned sensing matrices obtained

by employing each of the proposed methodologies.

In order to quantify the quality of the learned task-specific sensing matrices, we make use of

the mutual coherence metric defined in (Equation 4.2) as a figure of merit for the learned sensing

matrices by the proposed methodologies. Fig. Figure 21 demonstrates the distribution of the

mutual coherence coefficients of the sensing matrices obtained by the proposed deep architecture

as well as the mutual coherence coefficients of a randomly generated sensing matrix (used in

the previous numerical results). Furthermore, a detailed numerical analysis of µ(Φ) and the

Gram matrix M is provided in Table Table I. It can be clearly observed from Fig. Figure 21

and Table Table I that the proposed methodologies result in task-specific sensing matrices with

considerably lower coherence coefficients as compared to that of a randomly generated one. In

Particular, the mutual coherence µ(Φ) is significantly lower for the proposed methodologies as

compared to a purely random Φ. These observations also support the superior performance of

the proposed methodologies in terms of signal reconstruction accuracy. In addition, the Gram

matrix associated with the learned sensing matrices admits a structure far closer to the identity
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as compared to a random matrix (see Table Table I). As it was previously mentioned, the design

of sensing matrices with low mutual coherence is the subject of numerous works in various fields

and directly carrying out such a design is a difficult task in general. Interestingly, although the

framework does not rely on explicit regularization or a tailored optimization objective to reduce

the mutual coherence, the proposed methodology learns sensing matrices with a very low mutual

coherence, i.e., the proposed methodology is implicitly biased towards learning high-quality task-

specific sensing matrices. This is presumably due to the model-based nature of the proposed

deep architectures.

4.5 Conclusion

In this paper, we considered the problem of one-bit compressive sensing and proposed a novel

hybrid model-driven and data-driven autoencoding scheme that allows us to jointly learn the

parameters of the measurment module (i.e., the sensing matrix and the quantization thresholds)

and the latent-variables of the decoder (estimator) function, based on the underlying distribu-

tion of the data. In broad terms, we proposed a novel methodology that combines the traditional

compressive sensing techniques with model-based deep learning—resulting in interpretable deep

architectures for the problem of one-bit compressive sensing. In addition, the proposed method

can handle the recovery of the amplitude information of the signal using the learned and opti-

mized quantization thresholds. Our simulation results demonstrated that the proposed hybrid

methodology is superior to the state-of-the-art methods for the problem of one-bit CS in terms

of both computional efficiency and accuracy.
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Figure 21. Distribution of the mutual coherence coefficients associated with the sensing matrix
learned through (a) the proposed L-BIHT method (b) the proposed L-GBIHT method, (c) the

proposed L-RFPI and (d) the proposed L-GBRFPI method, where (e) demonstrates the
distribution of the mutual coherence coefficient of a random generated sensing matrix Φ used
in the numerical sections. It can be observed that the proposed methodologies implicitly learn
sensing matrices with very low mutual coherence as compared to that of a randomly generated

Φ.
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CHAPTER 5

UNFOLDED ALGORITHMS FOR DEEP PHASE RETRIEVAL

Overview: Exploring the idea of phase retrieval has been intriguing researchers for decades, due

to its appearance in a wide range of applications. The task of a phase retrieval algorithm is typically

to recover a signal from linear phase-less measurements. In this paper, we approach the problem by

proposing a hybrid model-based data-driven deep architecture, referred to as Unfolded Phase Retrieval

(UPR), that exhibits significant potential in improving the performance of state-of-the-art data-driven

and model-based phase retrieval algorithms. The proposed method benefits from versatility and in-

terpretability of well-established model-based algorithms, while simultaneously benefiting from the ex-

pressive power of deep neural networks. In particular, our proposed model-based deep architecture is

applied to the conventional phase retrieval problem (via the incremental reshaped Wirtinger flow al-

gorithm) and the sparse phase retrieval problem (via the sparse truncated amplitude flow algorithm),

showing immense promise in both cases. Furthermore, we consider a joint design of the sensing matrix

and the signal processing algorithm and utilize the deep unfolding technique in the process. Our nu-

merical results illustrate the effectiveness of such hybrid model-based and data-driven frameworks and

showcase the untapped potential of data-aided methodologies to enhance the existing phase retrieval

algorithms. relative

Parts of this chapter is taken from a submitted journal article [135] and a published conference
paper [136]. Copyright ©2020, IEEE.
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Keywords: Deep learning, deep unfolding, IRWF, model-based deep learning, phase retrieval,

SPARTA.

5.1 Introduction

The task of phase retrieval is concerned with recovering a complex or real-valued signal of

interest, x ∈ Rn/Cn, from m linear phase-less measurements of the form

yi = |⟨ai,x⟩|, for i ∈ {1, 2, · · · ,m}, (5.1)

where the set of sensing vectors {ai ∈ Rn/Cn}mi=1, are assumed to be known a priori. The

journey of solving the decades old phase retrieval problem has led to numerous algorithms and

methodologies. This is no surprise given the many applications of phase retrieval, including

those in areas such as crystallography, optics, and imaging [137, 138]. These extensive practi-

cal applications have made their way into deep space as well, where phase retrieval plays an

important role in signal processing for space telescopes such as NASA’s Hubble Space Tele-

scope [139–141]. With the growing number of applications in various fields, the developed

methodologies continue to increase in number and efficiency. Note that a large number of

methods in the literature have their roots in the seminal works by Gerchberg, Saxton, and

Fienup [142–146]. Their extensive body of work was integral to the implementation of phase

retrieval algorithms in NASA’s Hubble Space Telescope [139,140], and is still widely referenced

in modern phase retrieval research. However, the Gerchberg-Saxton algorithm’s shortcomings

in terms of finding the optimal solution in an efficient manner has resulted in numerous new



143

directions. While some convex formulations have been proposed in the literature [147–149],

most of the existing phase retrieval algorithms view the problem through a non-convex lens. As

a case in point, methodologies such as Wirtinger flow (WF), truncated Wirtinger flow (TWF),

reshaped Wirtinger flow (RWF/IRWF), and incremental truncated Wirtinger flow (ITWF) have

all shown promise in addressing the problem in an efficient and accurate manner [152–155]. WF

was the first approach to display the significance of spectral initialization and updating. Since

then, other approaches such as RWF/IRWF improved the performance further by implementing

their own spectral initialization and updating method [152,155].

In many practical applications, the signal of interest is naturally sparse or can be made

sparse by design [156,157]. This has resulted in approaches that reduce the number of required

measurements via block-sparse phase retrieval solvers, such as the TWF [154]. In addition, more

robust approaches such as sparse truncated amplitude flow (SPARTA) have been formulated

and shown to further improve performance [157]. SPARTA’s two-stage approach of simple

power iterations for initializations, and truncated gradient calculations via thresholds, makes

it a particularly interesting. Despite the enormous progress made, there remains a number of

obstacles including the reduced applicability of algorithms developed based on the Gaussian

noise assumption for other kinds of disturbances [158]. Particularly, developing methods that

can deal with outliers is especially important. In this context, algorithms such as AltIRLS and

AltGD [158] can handle the existence of impulsive noise using an ℓp-fitting based estimator. Such

algorithms are of particular interest due to their ability to outperform versatile algorithms such

as TWF. Moreover, most established phase retrieval algorithms struggle with internal parameter
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optimization, such as determining the optimal step size for signal recovery while avoiding to fall

into local minima when sample sizes are small. This is still the case even with the improved

algorithms such as RWF [155]. In fact, computational inefficiency is still a major obstacle in

applying such phase retrieval algorithms in large-scale or real-time scenarios.

Along with the convex and non-convex divide, the phase retrieval algorithms can also be cate-

gorized based on whether they are model-based or data-driven: model-based methodologies, like

those discussed above, seek to design algorithms through a preliminary modeling of the problem

and incorporating the reasoning that emerge from the model, whereas data-driven methodolo-

gies rely primarily on data to solidify the workings of algorithms. Data driven approaches can

help with some of the shortcomings mentioned earlier by making use of the expressive power

of deep neural networks and training them in a manner that the resulting network acts as an

estimator of the true signal given the measurements vector y = |AHx|. Within the realm of

phase retrieval, deep learning has been only used to design neural nets for algorithms such

as hybrid-input-output (HIO) and Fienup’s method [159, 160]. Such works are limited due to

their inability to deal with multiple types of models, as well as the more recent phase retrieval

algorithms that are more complex in nature. Additional body work has been done using convolu-

tional neural nets, such as prDeep [161], leading to a separate class of architectures not versatile

enough to improve the existing algorithms. In fact, some of Fienup’s recent work for space

telescopes take advantage of smart initializations obtained from convolutional neural nets for

phase retrieval [162]. The said limitations directly relate to the two major pitfalls of data-driven

approaches, i.e., (i) their need to a relatively large amount of data for training purposes and (ii)



145

their inherent lack of interpretability, even after training. Still, data-driven approaches, such as

deep learning techniques, have become immensely useful in recent years for handling complex

signal processing problems. As a result, it is not difficult to see why a hybrid model-based

and data-driven model has the potential to improve the data acquisition model even further by

effectively dealing with each approach’s weaknesses. For complex systems, such a hybrid model

is promising due to its ability to integrate parameterized and non-parameterized mathematical

models. In addition, the employment of particular activation functions for model-based deep

architectures allows them to be differentiated from conventional deep learning methodologies.

Specifically, the activation functions can be designed to mimic non-linearities already present in

traditional optimization algorithms.

The deep unfolding technique is an effective amalgam of model-based and data-driven ap-

proaches. LeCun et al. first introduced this notion in [163]; which was extended thoroughly

by Hershey et al. in [75]. Deep unfolding facilitates the design of model-aware deep architec-

tures based on well-established iterative signal processing techniques. Deep unfolded networks

have repeatedly displayed great promise in the field of signal processing and can make use of

the immense amounts of data, along with the domain knowledge gleaned from the underlying

problem at hand [36,67,68,73,74,78,130,164]. Furthermore, they have the ability to utilize the

adaptability and reliability of model-based methods, while also taking advantage of the expres-

sive power of deep neural networks. As a result, they are an ideal candidate for problems such

as phase retrieval, particularly in non-convex settings where researchers struggle with bound-

ing the complexity of signal processing algorithms while keeping them effective. This problem
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particularly arises when applying iterative optimization techniques. In this context, first-order

methods are widely used as iterative optimization techniques with low per-iteration complexity.

The drawback, on the other hand, stems from their tendency to suffer from a slow speed of

convergence, since they usually require many iterations to converge. It should also be noted

that predicting the number of iterations required for convergence is generally a difficult task.

As a result, they may not be recommended for low-latency and reliable signal processing in

real-time applications. It is therefore logical to consider fixing the total number of iterations of

such algorithms (say L iterations), while at the same time, seeking to optimize the (parameters

of the) iterations in order to achieve the best improvement in the underlying objective function

at hand. Accordingly, our goal in this paper is to improve the existing first-order methods by

meta optimizing the SPARTA and IRWF iterations when the total computational budget is

fixed. This is done by formulating the meta-optimization problem in a deep learning setting,

and interpreting the resulting unrolled iterations as a neural network with L layers where each

layer is designed to imitate one iteration of the original optimization method. Eventually, such

a deep neural network can be trained using a small data-set and the resulting network can be

used as an enhanced first-order method for solving the underlying problem at hand.

A particular concern with regards to phase retrieval is the usual assumption that the sensing

matrix is known a priori. In the existing literature, designing the phase retrieval algorithms

has received the primary attention. Designing the measurement matrix, on the other hand, is

considerably unique. Random matrices have been shown to be effective in related areas such

as compressive sensing, but typically need to satisfy certain criteria to guarantee recovery. A
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particularly well-researched criterion that can guarantee said recovery is the Restricted Isom-

etry Property (RIP) [165], which is known to be a sufficient condition for noise-robust sparse

signal recovery [166]. Alternatively, deterministic design of the sensing matrix presents a set of

advantages that can counteract the pitfalls that stem from the random selection of matrices.

Although the RIP is a well-known criterion for random matrices, testing the matrices for RIP

compliance may not be efficient from a computational viewpoint. Furthermore, such random

matrices themselves tend to become large and unmanageable when the signal size grows large.

Such issues with random matrices naturally translate to the design of measurement matrices in

phase retrieval as well [152,167,168], but the corresponding solutions have not been looked into

thoroughly. Deterministic designs allow for judicious matrix constructions that can mitigate

the efficiency and storage issues that are associated with random matrix designs. In addition,

they can account for the underlying distribution of the signal and system parameters, which

is the main shortcoming of a typical random matrix approach. As such, an architecture that

could design the sensing vectors/matrices in a deterministic setup would be extremely valuable

in practical scenarios [169]. Whether it is astronomy, X-ray imaging, or any other application,

designing a sensing matrix for each signal is a difficult task [170,171].

We note that there already have been a number of research works on designing the sensing

matrix, including designs based on learning methodologies [172–178]. The interest in learning

techniques such as convolutional neural nets and stacked denoised autoencoders [175, 176, 178]

has increased greatly. This has led to works such as [179], where the measurement matrix is

designed based on mutual information, but the ideas are not exploited for recovery. A deep
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architecture that could handle the design of the sensing matrix along with the recovery task

would be able improve the accuracy and efficiency of phase retrieval in a way unmatched by

previous methods. As result, we undertake a deterministic task-specific and data-specific design

of the sensing matrix that can be cascaded to the recovery algorithm, resulting in an immense

improvement in the recovery performance.

Contributions Overview: In this paper, we propose model-aware deep architectures,

referred to as Unfolded Phase Retrieval (UPR)—as a new approach to the problem of phase

retrieval. In particular, we focus on two scenarios: the conventional phase retrieval problem

(with IRWF) and the sparse phase retrieval problem (with SPARTA), which have both shown

great promise. Furthermore, we propose a general framework for designing task-specific sensing

matrices for improving the performance of the underlying recovery algorithm and to outperform

numerous state-of-the-art algorithms as a supplementary feature. Deep unfolding has the unique

distinction of falling into the category of a hybrid model-based and data-driven methodology.

More explicitly, we consider a joint design of the sensing matrix and the signal processing

algorithm and utilize the deep unfolding technique in the process. As a result, our hybrid

methodology can adopt the advantages of both methodologies as well. Specifically, we have the

capability to exploit the data for better accuracy and performance, the resulting interpretability

leads to trusted outcomes, we require less data due to having less parameters to train, and obtain

an enhanced convergence rate. UPR allows for a unification of the optimization process for

system parameters in an end-to-end manner. Interestingly, UPR acts as a unified framework for

both optimal sensing and recovery. As mentioned before, such a framework can be cascaded to
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the recovery algorithm which allows for noticeable recovery accuracy improvement. Additionally,

UPR has a remarkable compatibility with gradient based algorithms, which is displayed both

in our description of the methodology and in our implementation with SPARTA and IRWF.

Finally, we compare our results with the said baseline algorithms and different variants of the

RWF algorithm that have already shown good performance in the context of phase retrieval.

We show that UPR significantly outperforms the baseline algorithms from which it has emerged.

Organization of the Paper: Section II is devoted to a technical overview of the system

model and a brief overview of deep unfolding in the context of phase retrieval. Section III

introduces the UPR framework, its baseline algorithms and its initialization method, as well as

our methodology for the design of the sensing matrix. We examine the performance of UPR in

Section IV. Finally, Section V concludes the paper.

Notations: Throughout the paper, we use boldface lowercase letters to denote vectors,

and boldface capital letters to denote matrices. Calligraphic letters are reserved for sets. The

superscripts (·)∗, (·)T , and (·)H represent the conjugate, the transpose, and the Hermitian

operators, respectively. ∥ · ∥2 represents the Euclidean norm of the vector argument. The

operator symbol ⊙ represents the Hadamard product of matrices.

5.2 System Model and Problem Formulation

In this section, we present a mathematical formulation of the phase retrieval problem and

provide a brief overview of the existing classical model-based phase retrieval algorithms which

will lay the ground for the proposed hybrid model-based and data-driven methodology.
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As discussed earlier, a phase retrieval system can be mathematically formalized by consid-

ering the following encoding module (i.e., the data-acquisition system):

Encoding Module: y = |Ax| , (5.2)

where x ∈ Cn denotes the underlying signal of interest, A = [a1,a2, · · · ,am] ∈ Cn×m denotes

the sensing matrix, and y ∈ Rm represents the captured phase-less measurements of the signal

x.

Traditionally, in a phase retrieval problem we seek to retrieve the measurement phase by

recovering the signal of interest x from the embedded phase-less measurements y given the

knowledge of the sensing matrix A. Specifically, the phase retrieval problem under the noise-

free assumption can be formally stated as:

P0 : find x s.t. y = |Ax| , (5.3)

where the constraint in P0 represents the feasible set of the problem corresponding to the data

consistency principle. Clearly, the above program is non-convex due to its non-convex constraint.

Moreover, observe that if x† is a feasible point of the problem P0, then e−jϕx† is also a solution

to the problem for an arbitrary phase constant ϕ. Hence, it is only possible to recover the

underlying signal of interest up to a phase shift factor in a phase retrieval problem. With that

in mind, let x† be any solution to the phase retrieval problem defined in (Equation 5.3) and
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let x⋆ represent the true signal of interest. A meaningful quantifying metric of closeness of the

recovered signal x⋆ to the true signal can then be defined as follows:

D(x⋆,x†) = min
ϕ∈[0,2π)

∥x⋆ − e−jϕx†∥22, (5.4)

which was first proposed in [152] and can be interpreted as measuring the Eucledian distance

of two complex vectors up to a global phase difference.

In this work, we consider the phase retrieval problem from the perspectives of system de-

sign and reconstructive algorithm development. A system design approach for a phase retrieval

problem is mainly concerned with finding the best set of parameters of the encoder module that

facilitate the recovery of the underlying signal of interest from the phase-less measurements cap-

tured through the encoder module (i.e., the data acquisition system). In particular, a system

design perspective for a phase retrieval data acquisition system can be defined as designing the

sensing matrix in a deterministic fashion according to a performance criterion. As an exam-

ple, [179] has considered the design of the sensing matrix in a deterministic manner such that

it maximizes the mutual information between the signal of interest and the acquired phase-less

measurements. However, the development of effective signal reconstruction techniques that can

harness this maximal mutual information obtained by a judicious design of the sensing matrix

is still an open problem. Hence, a more natural approach to this problem is to consider a joint

design of the sensing matrix and the recovery algorithm.



152

We seek to jointly design the sensing matrix (encoder module) and the reconstruction al-

gorithm (decoder module), in contrast to the existing methodologies that either consider the

development of the reconstruction algorithm or the design of the sensing matrix. The proposed

methodology can be viewed as a unification of both approaches. Specifically, we propose a

hybrid model-based and data-driven methodology to this problem and utilize the notions of

auto-encoders and the deep unfolding technique as the main tools to develop our proposed

framework. By implementing such a methodology, while the sensing matrix will be designed to

maximize the signal reconstruction accuracy at the decoder module, the decoder module itself

will be trained to perform the recovery by accounting for the learned sensing matrix—leading

to the promised joint design.

In order to make the joint design possible, we seek to identify sensing matrices that make the

recovery of the underlying signal of interest feasible and to identify structures that are amenable

to a specific class of reconstruction algorithms and vice versa. Let DΦ : Rn 7→ Cm denote the

class of decoder functions parameterized on a set of parameters Φ. Further assume that for

a given measurement matrix A and the corresponding measurements vector y, x̂ represents

an estimation of the signal of interest provided by a certain characterization of the decoder

function, viz.

x̂ = Dϕ (y;A) , (5.5)
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where ϕ ∈ Φ denotes a characterization of the decoder module from the original class. Recall

that for a fixed sensing matrix A, the dynamics of the data-acquisition model of a phase retrieval

system is given by y = |Ax|. Accordingly, for a fixed characterization of the decoder function

Dϕ∈Φ, the design of the sensing matrix A ∈ Cm×n can be considered according to the following

optimization problem:

min
A∈Cm×n

Ex∼P (x) {D(x,Dϕ(|Ax|;A))} , (5.6)

where P (x) represents the distribution of the underlying signal of interest. For simplicity, we

drop the notation x ∼ P (x), and unless mentioned otherwise, all expectations are taken with

respect to the input distribution in the sequel. The aforementioned approach for the design of the

sensing matrix considers the signal reconstruction accuracy as a design criterion with respect to

a particular realization of the decoder functions. Thus, the obtained matrix A can be viewed as a

task-specific encoding matrix which not only considers the underlying distribution of the signal,

but also the considered class of decoder functions resulting in a superior performance. Once a

solution to (Equation 5.6) is obtained, the sensing matrix can be utilized for data-acquisition

purposes while the fixed decoder module Dϕ can be used to carry out the reconstruction of

the signal of interest. However, starting our design from (Equation 5.6) presents us with an

inherent performance bottleneck. To see why, let Dϕ1∈Φ and Dϕ2∈Φ represent two realizations

of the decoder module from the same class, and let A denote a fixed sensing matrix that will
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be the solution to (Equation 5.6) for ϕ = ϕ2. Then, for a signal of interest x ∼ P (x) and the

corresponding phase-less measurements y, it might be the case that

E {D(x,Dϕ1(y;A))} ≤ E {D(x,Dϕ2(y;A))} . (5.7)

In other words, the realization of the decoder module on the set of parameters ϕ1 ∈ Φ, results

in a more accurate reconstruction algorithm as compared to the alternative realization. As a

result, it is better to consider the design of the sensing matrix with respect to Dϕ1 in such a

case. Nonetheless, finding an optimal ϕ⋆ ∈ Φ such that

E {D(x,Dϕ⋆(y;A))} ≤ E {D(x,Dϕ(y;A))} , ∀ϕ ∈ Φ,

is a particularly challenging task due to the non-convex nature of the problem. If such a

characterization ϕ⋆ is known, the design of the sensing matrix matrix can easily be carried out.

The above observation is further evidence for the paramount importance of developing a unified

framework that allows for a joint optimization of the reconstruction algorithm (i.e. finding an

optimal or sub-optimal ϕ⋆) and the sensing matrix. In the following, we consider the joint

design of the sensing matrix and the signal processing algorithm and propose a novel framework

based on the deep unfolding technique that allows for an optimization over the set of both design

parameters {Φ,A}. The resulting framework can be viewed as a hybrid data-driven model-based

deep neural network that achieves a far superior performance when compared to the existing

model-based and data-driven methodologies. Furthermore, the obtained deep architecture is
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interpretable due to the incorporation of the domain knowledge and assumes far less parameters

when compared to existing black-box neural networks. Due to the fewer training parameters, the

proposed architecture requires far fewer training samples for optimization of the network when

compared to the existing data-driven methodologies. We will provide a high-level description

of the proposed methodology and proceed deeper into the details of each module in the next

section.

We conclude this section by mathematically formalizing the problem at hand. We cast the

problem of jointly designing the sensing matrix and the reconstruction algorithm as the following

optimization problem:

min
{A∈Cm×n,ϕ∈Φ}

E{D(x,Dϕ (|Ax|;A))}. (5.8)

Our preliminary step is to mathematically formulate a proper parameterized class of the decoder

and encoder modules that facilitate the incorporation of domain knowledge. To this end, we

consider the realization of the decoder module by first formulating the problem of phase retrieval

as an optimization problem, and then, we resort to first-order optimization techniques that

lay the groundwork for obtaining a rich class of parameterized decoder functions. Once such

a class is formalized, we make the connection between deep neural networks and first-order

optimization techniques and propose two novel model-based deep architectures that encode the

domain knowledge in their respective architecture and task-specific computations. Next, we



156

show how to tackle the above program using the prominent deep learning techniques by taking

advantage of the available data.

5.3 UPR: The Proposed Framework

In this section, we present the proposed hybrid data-driven and model-based U nfolded

Phase Retrieval (UPR) framework. We begin our presentation by mathematically defining

the encoder and decoder modules which take the form of a model-based deep architecture,

highly tailored to the problem of phase retrieval. Then, we interpret the overall dynamics

of the proposed methodology as a single auto-encoder module whose training procedure takes

the form of (Equation 5.8), which can then be tackled using the well-established deep learning

techniques such as back-propagation. Once the training of the auto-encoder module is complete,

the optimized sensing matrix can be extracted from the encoder module for data-acquisition

purposes, while the optimized decoder module can be used as an enhanced signal reconstruction

algorithm to carry out the signal estimation task from the phase-less measurements obtained

through the optimized sensing matrix.

5.3.1 Architecture of the Encoder Module

We take this opportunity to formally define the class of encoder functions for the phase

retrieval problem. Recall that the governing dynamics of the data-acquisition system in a phase

retrieval problem is given by

y = |Ax|, (5.9)
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where the measurement vector y and the sensing matrix A are used as the input to a signal

reconstruction algorithm to obtain x̂. Now, we use the above dynamics as a blue-print to design

our encoder module parametrized on the sensing matrix. To this end, we define the hypothesis

class He of the possible encoder functions (module) as follows:

He = {fA : x 7→ |Ax| : A ∈ Cm×n}, (5.10)

where w fA(x) ≜ |Ax|. The above hypothesis class encapsulates the possible encoder modules

whose computation dynamics mimics the behaviour of the data-acquisition model in a phase

retrieval model. Alternatively, the above hypothesis class can be interpreted as a one-layer

neural network with n input neurons and m output neurons, where the activation function is

given by | · | with the trainable weight matrix A. Specifically, the input to such a neural network

is x ∈ Cn, while the output is |Ax| ∈ Rm. This paves the way for viewing the design of

the sensing matrix from a statistical learning theory perspective. For instance, the problem of

designing the sensing matrix for a given realization of a decoder function Dϕ with respect to the

hypothesis class He can be re-expressed as the following learning problem:

min
EA∈He

E{D(x,Dϕ ◦ EA(x))}. (5.11)

The above learning problem seeks to find an encoder function EA such that the resulting func-

tions maximizes the reconstruction accuracy according to the decoder function Dϕ. Equiv-

alently, (Equation 5.11) can be expressed as learning the weights of a one-layer neural net-
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work EA(x) = |Ax|, where for any choice of A we have EA ∈ He. Then, the problem in

(Equation 5.11) can be re-expressed as a deep learning problem by considering the training of

EA according to a loss function that is the same as objective function in (Equation 5.11), i.e.,

min
A∈Cm×n

E {D(x,Dϕ ◦ EA(x))} . (5.12)

Hereafter, we seek to formulate the joint design of the sensing matrix and the reconstruction

algorithm (i.e., see (Equation 5.8)) from a deep learning and statistical learning point-of-view,

and eventually, formulate (Equation 5.8) as a purely deep learning problem and tackle it by

utilizing the well-established deep learning techniques. The following subsection, in particular,

is devoted to mathematically defining two parameterized classes of decoder functions; one spe-

cialized for sparse phase retrieval, and the other, specialized for the conventional class of phase

retrieval problems. Moreover, we will formally introduce the UPR framework and its training

procedure.

5.3.2 Architecture of the Decoding Module

In this subsection, we propose two model-based deep architectures that are not only highly-

tailored to the problem of phase retrieval but also allow for learning task-specific superior re-

construction algorithms. Next, we cascade the decoder and the encoder module to obtain an

auto-encoder deep architecture that will facilitate the joint training of the sensing matrix and

the reconstruction algorithm.
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Deep Unfolded Networks for Phase Retrieval. We begin with a brief introduction to deep

unfolded networks and their relation with mathematical optimization. Note that the goal of a

decoder module is to obtain an estimate of the underlying signal of interest from the phase-less

measurements of the form EA(x) = |Ax|, for a given sensing matrix A. Equivalently, a decoder

function seeks to tackle the following problem:

find z s.t. EA(z) = EA(x). (5.13)

In lieu of directly tackling (Equation 5.13), a more practical approach is a reformulation of

(Equation 5.13) as an optimization problem to approximate of the true signal of interest. Ac-

cordingly, (Equation 5.13) can be reformulated as:

min
z∈Cn

ℓ(z) s.t. z ∈ Ω, (5.14)

where Ω represents the search space of the underlying signal of interest. For instance, if it is

known a priori that the signal of interest is s-sparse, this information can be encoded in Ω, i.e.,

Ω = {x ∈ Cn : ∥x∥0 = s}. On the other hand, for a conventional phase retrieval problem where

no prior structural information is assumed on x, we set Ω = Cm.

The ultimate formalization of a phase retrieval problem, as we move from (Equation 5.13) to

(Equation 5.14), boils down to a proper realization of the loss function ℓ(x) and the feasible set

Ω. In particular, for a given signal of interest x and sensing matrix A, if z⋆ ∈ argminz∈Ω ℓ(z)

then we must have EA(z⋆) = EA(x). Note that different choices of the loss function ℓ(x) and
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the feasible set Ω give rise to various flavors of recovery algorithms for a phase retrieval, as has

been previously discussed. In this work, we consider the development of the class of decoder

functions Hd such that for any realization of the decoder function Dϕ ∈ Hd, the function Dϕ

becomes a good approximator of the solution to (Equation 5.14). Note that there exist alterna-

tive approaches to tackling the phase retrieval problem. For example, the direct development of

a class of decoder functions can be considered which are model-agnostic. One particular class of

such model-agnostic methodologies can be derived by utilizing black-box deep neural networks.

Assume that the set {xi, EA(xi)}B−1
i=0 represents our available data from the phase retrieval sys-

tem, i.e., we have B realizations of the input-output relationship of our phase retrieval system

for a given A. Furthermore, let

Fσ,L = {fΓ : EA(x) 7→ x |fΓ(x) = σL
γL
◦ · · · ◦ σ1

γ1(EA(x))} (5.15)

represent the class of all L-layer deep neural networks with activation function σ(·), where γi

denotes the weights of the i-th layer, and Γ = {γi}Li=1. Then, a decoder function f̂Γ⋆ ∈ Fσ,L can

be found by training the neural network; e.g., the realization of a decoder function with respect

to some fixed sensing matrix A is given by:

f̂Γ⋆ = argmin
fΓ∈Fσ,L

1

B

B−1∑
i=0

∥xi − fΓ(EA(xi))∥22. (5.16)

The above model-agnostic decoder function is only justifiable in scenarios where the input-

output relationship of the system is unknown (i.e. in applications such as computer vision and
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natural language processing problems). Furthermore, due to the model-agnostic nature of the

above methodology, the obtained decoder function is not interpretable and acts as a black-

box decoder in which the decision making process of the decoder function cannot be examined

by the user. In addition, the above black-box methodology for solving the inverse problem

results in a very large number of training parameters Γ, which begs for a very large number

of training samples B to optimize the network. We note that there exists a rich literature on

phase retrieval, and hence, choosing such a black-box approach for this problem would not be

appropriate. Most prudent would be to develop a more mature deep learning model for this

problem which incorporates of domain knowledge, while still harnessing the expressive power

of deep neural network. In the following, we show how a model-aware deep architecture can be

obtained for phase retrieval. In particular, we employ the deep unfolding approach to obtaining

a class of decoder modules based on an optimization problem of the form (Equation 5.14).

Generally speaking, finding a closed-form solution to (Equation 5.14) for a given loss function

is either a very difficult task or even mathematically intractable. Thus, after formalizing the

objective function and the search space for a phase retrieval problem, first-order mathematical

optimization techniques are utilized to tackle (Equation 5.14). Iterative optimization techniques

are a popular choice for both convex and non-convex programming. Specifically, first-order

methods are among the most popular and well-established iterative optimization techniques

due to their low per-iteration complexity and efficiency in complex scenarios. One of the most

prominent first-order optimization techniques suitable for our problem in (Equation 5.14) is the

projected gradient descent algorithm (PGD) [180–185]. In particular, assuming z0 is the initial
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point for the algorithm, the l-th iteration of PGD to approximate the solution to (Equation 5.14)

can be defined as follows:

zl+1 = PΩ
(
zl − αl∇zℓ(z

l)
)
, (5.17)

where PΩ : Cn 7→ Ω ⊆ Cm denotes a mapping function of the vector argument to the feasible

set Ω, ∇zℓ(z
l) denotes the gradient of the objective function obtained at the point zl, and

αl represents the step-size of the PGD algorithm at the l-th iteration. We note that first-

order methods generally suffer from a slow speed of convergence and predicting the number of

iterations they require for convergence is a difficult task. As a result, they are not ordinarily

recommended for real-time signal processing applications. A sensible approach to circumvent

this issue is to fix the total number of iterations of such algorithms (e.g., L), and to follow up

with a proper choice of the parameters for each iteration (i.e., the step-sizes) that results in the

best improvement in the objective function, while allowing only L iterations.

Let gγl
: Cn 7→ Cn, be a parameterized mapping operator defined as

gγ1
(z) = PΩ

(
z −Gl∇zℓ(z)

)
, (5.18)

where γl = {Gl} denotes the set of parameters of the mapping function gγ l, and Gl denotes a

positive semi-definite matrix. The above mapping can then be utilized to model various first-

order optimization techniques for the problem at hand, and in particular, the considered PGD
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algorithm in this work. Consequently, performing L iterations of the form (Equation 5.17) can

be modeled as follows:

GLΓ(x) = gγL
◦ gγL−1

◦ · · · ◦ gγ1
(EA(x);x0), (5.19)

where the above function corresponds to the PGD in all scenarios, be it when we have a fixed

step-size Gl = αI, time-varying step-sizes Gl = αlI, or the general preconditioned PGD algo-

rithm with an arbitrary choice of Gl ⪰ 0. Note that the rate of convergence for the mapping

function GLΓ depends heavily on the choice of the parameter set Γ, i.e., the preconditioning

matrices. These parameters are usually heuristically selected in the literature and there is no

straightforward methodology to obtain the best set of parameters Γ such that GΓ results in

the best improvement in the objective function for applying exactly L iterations. Furthermore,

under some mild conditions and for a proper choice of the step-size α, it can be shown that as

L → ∞, the output of the mapping function GLΓ=α converges to a first-order optimal point of

the objective function.

In light of the above, we now formally give a high-level definition of the considered hypoth-

esis classes of the decoder function in accordance with (Equation 5.19). Note that for a fixed

realization of the set of parameters Γ and L, the realized mapping function GLΓ can be viewed

as a problem-specific decoder function. In particular, after the formalization of the objective

function ℓ(x) for a phase retrieval problem, and with an initial point of x0, the output of the
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mapping function x̂ = GLΓ(EA(x);x0) can be considered to be an estimate of the signal of

interest. Accordingly, we define the hypothesis class of possible decoder functions as follows:

Hd,L = {DΓ : Cn 7→ Cn|Γ = {γi = Gi ∈ S+}Li=1}, (5.20)

where Γ = {γi = Gi ∈ S+}Li=1 denotes the set of parameters of the proposed class of de-

coder functions, S+ denotes the set of all positive semi-definite matrices, and DΓ(EA(x);x0) =

gγL
◦gγL−1

◦· · ·◦gγ1
(EA(x);x0). Observe that for a fixed realization GΓ⋆ ∈ Hd,L, one can inter-

pret GΓ⋆ as an L-layer deep neural network, whose computation dynamics at each layer mimics

the behaviour of one iteration of a first-order optimization algorithm as given in (Equation 5.17).

Specifically, due to the incorporation of domain knowledge in the design of the deep unfolded net-

work, the resulting deep neural network GΓ is interpretable and has far fewer training parameters

as compared to its black-box counterparts. Moreover, the hypothesis class Hd,L encompasses

the class of gradient method realizations with a varying preconditioning matrix. We seek to

find the best set of parameters of a first-order optimization algorithm with only L-iterations,

or equivalently, to find GΓ ∈ Hd,L such that ∥x− GΓ ◦ EA(x)∥ is minimized. In the case of the

phase retrieval problem and an Euclidean metric D(·, ·), we are concerned with the following

optimization problem:

min
GΓ∈Hd,L

Ex∼P (x){D(x,GΓ ◦ EA(x))}. (5.21)
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The above program can be re-written in the more familiar form of optimizing the set of param-

eters Γ containing the weights of each layer of the considered deep neural network defined in

(Equation 5.19). Note that our goal is to perform a joint design over the set of parameters of

both the decoder and encoder module which we address in the next part. However, for a fixed

A, the learning of the deep decoder module with respect to a realization of the encoder function

can be expressed as the following reformulation of (Equation 5.21):

min
Γ={Gi∈S+}i

Ex∼P (x){D(x,GΓ ◦ EA(x))}, (5.22)

where the above optimization problem formulation corresponds to training an L-layer deep neu-

ral network GΓ with a task-specific architecture as defined in (Equation 5.19), and the input to

such a model-based deep architecture is given by a realization of the encoder module. In the

following, we build upon the aforementioned ideas and propose two model-based deep architec-

tures as decoder modules for both the conventional phase retrieval problem and a sparse phase

retrieval settings. Specifically, we consider the unfolding of iteration of two well-established

signal processing techniques for the phase retrieval problem to derive the considered decoder

modules.

• UPR-SPARTA: Sparse Phase Retrieval . We now present the structure of the pro-

posed UPR-SPARTA deep decoder module for the problem of sparse phase retrieval. As men-

tioned earlier, one particular area of interest in phase retrieval is when the signal of interest

is sparse in nature. The applications of sparse phase retrieval emerge across different fields
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of engineering, and are seen especially in domains such as imaging [138]. Several algorithms

and frameworks readily exist for sparse phase retrieval. The most notable one is the sparse

truncated amplitude flow (SPARTA) methodology which seeks to recover a s-sparse signal from

its phase-less measurements [157]. Inspired by SPARTA, the following discussion is aimed at

providing the iterations of a first-order gradient-based optimizer that lays the groundwork for

the proposed UPR-SPARTA model-based decoder module.

We begin our work by formalizing the problem in a non-convex form similar to (Equation 5.14).

Let EA(x) represent the encoder module providing the phase-less measurements of an underly-

ing s-sparse signal x, i.e., x ∈ Ω := {x ∈ Cn|∥x∥0 = s}. Then, decoding the signal x from the

measurement vector EA(x) can be formulated as the following non-convex optimization problem:

min
z

ℓ(z; EA(x)) ≡ 1

m
∥EA(x)− EA(z)∥22, s.t. ∥z∥0 = s. (5.23)

Note that not only both the objective function and the constraint in the above are non-convex,

the problem is deemed to be NP-hard in its general form. The SPARTA algorithm [157]

was proposed to efficiently approximate the solution to (Equation 5.23). In particular, the

SPARTA solver works through a two-stage process. The first stage is concerned with a sparse

orthogonality-promoting initialization and employs iterations based on truncated gradients.

Specifically, the initialization utilizes power iterations on the estimated support of the sparse

signal to solve a PCA-type problem. The second stage then makes use of truncated gradients

for thresholding iterations, except for s signal elements with the largest magnitudes.
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Starting from an initial guess z0, the SPARTA algorithm is tasked with approximating the

solution to (Equation 5.23) in an iterative manner, via update equations as follows:

zl+1 = Hs

(
zl − α∇zℓtr(EA(x), zl)

)
, (5.24)

where the above iterations can be viewed as performing the gradient descent algorithm with a

per-iteration step-size α, on the truncated loss function objective ℓtr whose gradient is defined

as:

∇zℓtr(EA(x), z) ≜
∑

i∈Il+1

(
aT
i z − [EA(x)]i

aT
i z

|aT
i z|

)
ai, (5.25)

and where Il+1 = {1 ≤ i ≤ m||aT
i z

l| ≥ [EA(x)]i/(1+τ)}, τ represents the truncation threshold,

Hs(z) : Rm 7→ Rm sets all entries of u to zero except for the s entries with the largest mag-

nitudes. In particular, z0 will be initialized as
√∑m

i=1[EA(x)]2i /mẑ0 where ẑ0 ∈ Rn is created

by placing zeros in ẑ0
Ŝ where the indices are not in Ŝ. The principal eigenvector ẑ0

Ŝ ∈ R
s is

determined by performing power method iterations on the matrix:

Λ ≜
1

|I0|
∑
j∈I0

(
ai,Ŝa

T
i,Ŝ

∥ai,Ŝ∥22

)
. (5.26)

With the structure of the iterations of SPARTA provided in (Equation 5.24) and the struc-

ture provided in (Equation 5.17) in mind, we can now easily derive the corresponding deep archi-

tecture by introducing a preconditioning matrix Gi at each iteration in lieu of α, and cast it as
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a trainable parameter. Ergo, UPR-SPARTA can be presented via the mathematical structure of

the proposed UPR architecture in the previous part, as we define the computational dynamics of

the l-th layer of the UPR-SPARTA architecture according to (Equation 5.18). Furthermore, the

dynamics of the overall network with L layers will be the same as (Equation 5.19) and the pri-

mary trainable parameters for the proposed decoder module become Γ = {G0,G1, · · · ,GL−1},

as described in the previous section.

For the sake of completeness, the inner computation dynamics of UPR-SPARTA is summa-

rized below:

UPR-SPARTA Computation Dynamics:

Initialize z0 according to the discussion above (Equation 5.26).

Every layer i ∈ {0, 1, . . . , L− 1} is tuned to compute:

gγi
(z) = Hs

z −Gi
∑

j∈Ik+1

ujaj

 , (5.27)

and

uj =

(
aT
j z − [EA(x)]j

aT
j z

|aT
j z|

)
, (5.28)

where z is the input to the l-th layer, and γi = {Gi ∈ S+}. The overall dynamics of UPR-

SPARTA is given by:

GLΓ(EA(x); z0)=gγL−1
◦ gγL−2

◦ · · · ◦ gγ0
(EA(x); z0). (5.29)



169

• UPR-IRWF: Conventional Phase Retrieval. We now consider the conventional

phase retrieval problem, and similar to our previous approach, consider the unfolding of the

IRWF algorithm for such problems. In addition, we propose the UPR-IRWF deep architecture as

a decoder module to perform the signal recovery task for a conventional phase retrieval problem.

WF based algorithms have had an unparalleled influence on the world of phase retrieval and

IRWF is no exception. In fact, IRWF’s performance made it of particular interest to further

explore. Specifically, as an immediate extension from RWF, IRWF was developed to tackle the

following optimization problem for the recovery purposes:

min
z∈Cm

ℓ(EA(x); z) ≡ 1

2m

∥∥∥EA(x)− EA(z)
∥∥∥2
2
. (5.30)

The iterations of the IRWF algorithm for finding the critical points of the non-convex problem

in (Equation 5.30) can be simply explained as follows. Starting from a proper initial point

z0 (more on this below), the IRWF algorithm generates a sequence of points {z0, z1, z2, · · · }

according to the following update rule:

zk+1 = zk − α∇zℓ(EA(x); z), (5.31)

where α is some positive step-size and the gradient of the objective function is given by:

∇zℓ(EA(x); z) = AH (Az − EA(x)⊙ Ph(Az)) , (5.32)
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where the function Ph(z) is applied element-wise and captures the phase of the vector argument;

e.g., for real valued signals Ph(z) = sign(z).

For initialization, [155] implements a method different than the commonly used spectral

initialization, which benefits from a lower-complexity than that of the spectral method. In

particular, the starting point is initialized as x0 = λ0z, where λ0 ≈
√
π/2, and z is the leading

eigenvector of the matrix (1/m)
∑m

i=1[EA(x)]iaia
H
i .

In light of the above description, we can view the mathematical structure of the proposed

UPR architecture in a similar fashion as we did for UPR-SPARTA. We define the computational

dynamics of the UPR-IRWF architecture as follows:

UPR-IRWF Computation Dynamics:

Initialize z0 according to the discussion below (Equation 5.32).

Every layer i ∈ {0, 1, . . . , L− 1} is tuned to compute:

gγi
(z) = z −Giu, (5.33)

and

u = AH (Az − EA(x)⊙ sign(Az)) , (5.34)



171

where z is the input to the l-th layer, and γi = {Gi ∈ S+}. The overall dynamics of UPR-IRWF

is given by:

GLΓ(EA(x); z0)=gγL−1
◦ gγL−2

◦ · · · ◦ gγ0
(EA(x); z0). (5.35)

5.4 Numerical Results

In this section, we investigate the performance of the proposed UPR-SPARTA and UPR-

IRWF frameworks for the task of phase retrieval through various numerical experiments and

compare their performance relative to their base-line state-of-the-art SPARTA [157] and IRWF

[155] algorithms. The numerical experiments are conducted for real-valued Gaussian signals per

convention, and are averaged over 100 Monte-Carlo trials. The proposed deep architectures are

implemented using the PyTorch library [9], and the optimization (training) of the networks

are carried out using the Adam stochastic optimizer [84] with a learning rate of 10−4 and for

100 epochs. For a fair comparison, the parameters of all competing algorithms are initialized

to their suggested values as reported in [157] and [155]. As a figure of merit for evaluating the

performance of the proposed methodologies, we make use of the empirical success rate (ESR)

and the relative mean-square error metrics. If a signal x is to be recovered, we define the relative

MSE metric for the recovered signal y as:

Relative MSE ≜
D(y,x)

∥x∥2
, (5.36)
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where we declare success for the recovery trial if the estimated signal assumes a relative MSE less

than 10−5. For both UPR frameworks, we consider a diagonal structure on the pre-conditioning

matrices, i.e., we set Gi = W iW
T
i , where W i = Diag(α0, α1, · · · , αn−1), and perform the

training over W i, to ensure the positive-definiteness of the resulting Gi.

5.4.1 Performance of the Proposed UPR-SPARTA

In this part, we evaluate the performance of the proposed UPR-SPARTA framework for the

case of recovering a k-sparse real-valued Gaussian signal. For training purposes, we generate a

training data-set of size 2048 where each data point x ∈ Rn in the data-set follows a standard

Gaussian distribution whose (n − k) entries set to zero are chosen randomly and uniformly.

Accordingly, a testing data-set of size 2048 with the same setting is generated using which

we evaluate the performance of the proposed UPR-SPARTA and the base-line SPARTA algo-

rithm. For all experiments in this part, the UPR-SPARTA is implemented with L = 20 layers

(iterations) and we let the base-line SPARTA algorithm run for the same number of iterations.

We first provide the exact recovery performance of the UPR-SPARTA in terms of the ESR

metric defined previously, based on conducting 100 Monte-Carlo trials. For this purpose, we set

the signal dimension to n = 100 and the sparsity level to k = 5, while the ratio (m/n) increases

from 0.1 to 3.0. In order to show the effectiveness of the learned parameters, we compare the

performance of the proposed approach with the standard SPARTA algorithm in the following

scenarios:

• Case 1 : The standard SPARTA algorithm with a randomly generated measurement matrix

A ∼ N (0, I) and a fixed step-size for the iterations as reported in [157].
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• Case 2 : The UPR-SPARTA algorithm with a learned measurement matrix A and a fixed

step-size whose value is similar to the previous case.

• Case 3 : The UPR-SPARTA algorithm with the learned pre-conditioning matrices {Gi}i and

for a fixed randomly generated A, same as Case 1.

• Case 4 : The UPR-SPARTA algorithm with the learned measurement matrix A and pre-

conditioning matrices {Gi}i.

Figure 22 demonstrates the ESR versus the number of measurements (m/n) for the above

scenario. It can be observed from Figure 22 that the proposed methodology significantly out-

performs the standard state-of-the-art SPARTA algorithm for recovering a sparse signal in all

considered cases, which is further evidence for the effectiveness of the learned parameters. More-

over, a comparison between the UPR-SPARTA with learned preconditioning matrices (Case

2) and the standard SPARTA algorithm reveals that for applications where the measurement

matrix is imposed by the physics of system, the learning of the preconditioning matrices can

significantly increase the performance of the recovery. On the other hand, considering a learning

over the measurement matrix A only and employing fixed step-sizes (Case 3) further indicates

the effectiveness of learning task-specific measurement matrices tailored to the application at

hand can significantly increase the performance of the recovery algorithm. Finally, it can be

observed from Figure 22 that the proposed UPR-SPARTA, while allowing a learning over all

system parameters, outperforms all other cases and achieves a significantly higher ESR metric

along all measurement ratios (m/n). We note that such a significant gain achieved by the pro-
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posed approach for Cases 2-4 is due to the hybrid model-based and data-driven nature of the

proposed methodology.

We further note that learning the preconditioning matrices must lead to accelerating the con-

vergence of the proposed methodology. In order to numerically validate this claim, we perform

a per-layer analysis of the proposed UPR-SPARTA framework in terms of the achieved relative

MSE. Furthermore, such an analysis is driven possible due to the model-driven nature of the

proposed approach which results in interpretable deep architectures as opposed to conventional

black-box data-driven approaches. Figure 23 demonstrates the relative MSE versus number of

iterations/layers for the case of recovering a k = 5 sparse signal x ∈ Rn, where n = m = 300.

Observing Figure 23, it can be deduced that the proposed methodology achieves a far lower

relative MSE much faster than that of the standard SPARTA.

Our final experiment in this part is an analysis of the ESR versus the sparsity level k, when

the signal dimension and number of measurements are set to n = m = 150. Figure 24 illustrates

the ESR metric versus the sparsity level k for the considered scenario. It can be observed

from Figure 24 that the proposed methodology has a far superior performance than that of the

base-line SPARTA algorithm.

5.4.2 Performance of the Proposed UPR-IRWF

In this part, we investigate the performance of the proposed UPR-IRWF specifically tai-

lored for conventional phase retrieval application where no prior knowledge is assumed on the

underlying signal of interest (e.g., sparsity). Similar to the previous subsection, we focus on

the recovering of a real-valued Gaussian signal x ∈ Rn from the phase-less measurements. In
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particular, we employ the UPR-IRWF framework with L = 50 layers (iterations), and we let

the base-line IRWF algorithm run for the same number of iterations for a fair comparison.

For the first experiment, we evaluate the performance of the proposed UPR-IRWF in terms

of its ESR versus number of measurements to signal-length ratio (m/n) and compare its per-

formance with the standard state-of-the-art IRWF algorithm in the following scenarios:

• Case 1 : The standard IRWF algorithm with a randomly generated measurement matrix

A ∼ N (0, I) and a fixed step-size for the iterations as reported in [155].

• Case 2 : The UPR-IRWF algorithm with a learned measurement matrix A and a fixed step-

size whose value is similar to the previous case.

• Case 3 : The UPR-IRWF algorithm with the learned preconditioning matrices {Gi}i and for

a fixed randomly generated A, same as Case 1.

• Case 4 : The UPR-IRWF algorithm with the learned measurement matrix A and precon-

ditioning matrices {Gi}i.

Figure 25 demonstrates the ESR versus measurement to signal-length ratio (m/n) when

the signal length is fixed and set to n = 100. It can be clearly observed from Figure 25 that

the proposed methodology significantly outperforms the base-line IRWF algorithm in terms of

ESR in all scenarios. As for Case 3, in which we consider the scenario where the measurement

matrix is fixed (i.e. imposed by the physics of the system) and is known a priori, the learning

of the preconditioning matrices significantly improves the performance of the underlying signal

recovery algorithm. This supports the proposition that a judicious design of the preconditioning
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Figure 22. Empirical success rate versus the measurement to signal-length ratio (m/n) for
x ∈ Rn with n = 100 and k = 5 nonzero entries.

matrices, when the number of layers (iterations) are fixed, can indeed result in an accelerated

convergence, thus immensely improving the performance. On the other hand, focusing on the

Case 2 in which we only learn the measurement matrix while employing a fixed scalar step-

size, further reveals the effectiveness of learning a proper task-specific data-driven measurement

matrix akin to the problem of interest. Finally, it is evident that the proposed UPR-IRWF with

both learned A and {Gi}i outperforms all other cases.

Now, we numerically investigate the convergence properties of the proposed UPR-IRWF as

compared to the standard IRWF algorithm via per-layer relative MSE analysis. We again stress

that such an evaluation is possible due to the model-based nature of the proposed methodology—
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Figure 23. Convergence behavior of the proposed UPR-SPARTA as compared to the original
SPARTA algorithm for the case of x ∈ Rn, where n = m = 300.

something that cannot be achieved when using conventional purely data-driven black-box tech-

niques. For this experiment, we set the signal dimension and number of measurements as

(n,m) = (100, 600). Figure 26 demonstrates the relative MSE versus iteration (layer) num-

ber. It can be clearly observed from Figure 26 that the proposed methodology benefits from

accelerated convergence properties and is able to converge to an optimal point of the objective

function with as few as L = 30 layers. This in turn reveals that the proposed methodology can

be further truncated to have much fewer iterations, which will reduce the computational cost of

the overall algorithm.
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Figure 24. Empirical success rate versus the sparsity level k for x ∈ Rn, where n = m = 150.

5.5 Conclusion

In this paper, we proposed a new approach to the phase retrieval paper via developing

hybrid model-aware and data-driven deep architectures, referred to as Unfolded Phase Retrieval

(UPR). Specifically, we focused on the conventional phase retrieval problem and the sparse phase

retrieval problem. We considered a joint design of the sensing matrix and the signal recovery

algorithm, while utilizing the deep unfolding technique in the process. Such an approach allowed

us to exploit the data for better accuracy and performance, and attain trusted results owing to

UPR’s model-based roots and the resulting interpretability. The UPR framework required less

data for effective training due to having fewer parameters, and enjoyed an enhanced convergence
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Figure 25. Empirical success rate versus the measurement to signal-length ratio (m/n) for
x ∈ Rn with n = 100.

rate. The unique capability of UPR to allow for designing task-specific sensing matrices further

enhanced the performance of the system.

The performance of UPR was compared with the state-of-the-art model-based phase retrieval

algorithms. Our results displayed a significant improvement in performance compared to such

algorithms thanks to UPR’s hybrid model-aware and data-driven nature.
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CHAPTER 6

DEEP RADAR WAVEFORM DESIGN FOR EFFICIENT AUTOMOTIVE

RADAR SENSING

Overview: In radar systems, unimodular (or constant-modulus) waveform design plays an impor-

tant role in achieving better clutter/interference rejection, as well as a more accurate estimation of the

target parameters. The design of such sequences has been studied widely in the last few decades, with

most design algorithms requiring sophisticated a priori knowledge of environmental parameters which

may be difficult to obtain in real-time scenarios. In this paper, we propose a novel hybrid model-driven

and data-driven architecture that adapts to the ever changing environment and allows for adaptive uni-

modular waveform design. In particular, the approach lays the groundwork for developing extremely

low-cost waveform design and processing frameworks for radar systems deployed in autonomous vehicles.

The proposed model-based deep architecture imitates a well-known unimodular signal design algorithm

in its structure, and can quickly infer statistical information from the environment using the observed

data. Our numerical experiments portray the advantages of using the proposed method for efficient

radar waveform design in time-varying environments.

Keywords: automotive radar, deep learning, deep unfolding, data-driven approaches, model-based

signal processing, unimodular waveform design

Parts of this chapter is taken from published conference article [189]. Copyright ©2020, IEEE.

182



183

6.1 Introduction

Waveform design for active sensing has been of interest to engineers, system theorists and

mathematicians in the last sixty years. In the last decade, however, civilian radar applications

such as the use of radar in autonomous cars have attracted much-deserved attention towards

enhanced resolvability for advanced safety. In vehicular applications, the radar technology offers

excellent resolvability and immunity to bad weather conditions in comparison to visible and

infrared imaging techniques. However, the cost overheads of ultra-high frequency radar signal

processors is excessive, which limits a mass deployment of radar-based advanced vehicular safety

features. Reliable and low-cost deep learning-based algorithms and hardware may promise a

solution to such difficulties.

Automotive radar sensors usually operate at the 24-77 GHz frequency domain, and are

able to measure the target range, radial velocity and azimuth angle simultaneously even in

multi-target situations [190]. The quality of these measurements, however, depends strongly

on the transmit waveform design process. There exist several approaches to tackle the task

of waveform design in such radar systems [32, 191–193, 193–219], which rely on known radar

models. In such model-based approaches, one only considers a simplified mathematical model

and often do not take into account the intricate interactions innate to the kind of complex

information systems that are common in real world. On the other hand, in a purely data-driven

approach, including deep learning techniques, one do not need an explicit mathematical model

of the problem, and should be able to use the available data at hand for designing the waveforms.

The major shortcoming of the data-driven approach stems from the fact that it is unclear how



184

to incorporate the existing knowledge of the system model in the processing stage. Namely,

purely data-driven approaches have a wider applicability at the cost of interpretability, and in

some cases, reliability [36, 223]. In this paper, we seek to bridge the gap between the model-

based and data-driven approaches, and propose a novel methodology in order to design efficient

waveforms for automotive radars by making use of the deep unfolding framework [31,31,36,224].

Specifically, the purpose of performing waveform design for a radar systems is to capture as much

as information possible from the the environment, where in fact, the transmitted waveform can

now be interpreted as a channel that retrieves and collects information. In light of this, we employ

the deep unfolding framework that aims to take the well-established iterative approaches, and

design a deep architecture for waveform design in radar systems under different unimodular

signal constraint, and boost the performance of the underlying inference optimization algorithm

in terms of speed of convergence and effectiveness.

6.2 Radar Model— and Signal Design Formulation

Consider a radar system transmitting unimodular codes used to modulate a train of sub-

pulses. Let s = [s1 s2 · · · sN ]T ∈ CN denote the complex-valued probing sequence to be

designed. Under some mild assumptions, the received discrete-time base-band signal y, after

signal compression and range focusing, can be modeled as follows [193]:

y = AHα+ ϵ, (6.1)
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where

AH =



s1 0 · · · 0 sN sN−1 · · · s2

s2 s1
... 0 sN

...

...
...

. . . 0
...

...
. . . sN

sN sN−1 · · · s1 0 0 · · · 0


, (6.2)

α = [α0 α1 · · · αN−1 α−N+1 · · · α−1]
T ∈ C2N−1. (6.3)

Here, the parameter α0 is the scattering coefficient of the current range cell, while {αk}k ̸=0 are

that of the neighboring cells adding to clutter, and ϵ is the signal independent interference term.

The main goal in a radar system given the measurement model in (Equation 6.1) is typically to

design the probing signal s such that it allows for an accurate recovery of the target scattering

coefficient α0.

Note that, in model-based radar waveform design, the statistics of the interference and noise

is usually assumed to be known, e.g., through stand-alone prescan procedures. Under such

conditions, the waveform design boils down to constrained quadratic or fractional quadratic

program as detailed in previous work [193, 214, 215, 217, 219]. An example for waveform design

criteria comes from the waveform’s merit for resolvability along with clutter rejection.
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Namely, using a matched filter (MF) in the pulse compression stage, one can look for codes

that maximize the following criterion:

f(s) =
n(s)

d(s)
≜

|sHy|2∑
k ̸=0 |sHJky|2

=
sHAs

sHBs
, (6.4)

where A = yyH , B =
∑

k ̸=0 JkAJH
k , and {Jk} are shift matrices satisfying [Jk]l,m =

[JH
−k]l,m ≜ δm−l−k, with δ(·) denotes the Kronecker delta function. Note that the above function

can be interpreted as an oracle to a signal-to-interference-noise (SINR) ratio as the numerator

represents the signal power and the denominator represents the combined interference and noise

power after applying the matched filter. We further note that, to lower the implementation cost,

it is desirable to use unimodular codes, i.e. sk = ejϕk , ϕk ∈ [0, 2π), k ∈ {1, . . . , N}, that attain

the smallest peak-to-average ratio possible for transmit signals. As a result, one can consider

the following fractional program in its general form for radar waveform design:

max
s

sHAs

sHBs
, s.t. |sk| = 1, k ∈ {1, . . . , N} (6.5)

Note that evaluating the objective function in (Equation 6.5), i.e. computing f(s), only re-

quires the knowledge of the transmit sequence s and the observed vector y at the receiver.

Nevertheless, solving the above optimization program is still NP-hard and very hard to tackle

in general. In order to approximate the solution, one can resort to power method-like iter-

ations specifically designed to tackle unimodular quadratic programs (UQPs) [214]. In what

follows, we reformulate the problem of (Equation 6.5) as a UQP, and present the corresponding



187

power method-like iterations that lays the groundwork for our proposed hybrid model-aware

and data-driven adaptive waveform design framework.

Observe that both the numerator n(s) and the denominator d(s) of the objective function

f(s) are quadratic in s. Hence, in order to tackle the maximization of (Equation 6.4) (or

equivalently tackling (Equation 6.5)) we resort to fractional programming techniques [225,226].

Since f(s), the SINR, is finite, we must have that d(s) = sHBs > 0. In addition, let s⋆ denote

the current value of the code sequence s. Then, we define

e(s) ≜ n(s)− f(s⋆)d(s), (6.6)

s† = argmax
s

e(s). (6.7)

Henceforth, it can be easily verified by the virtue of (Equation 6.7) that e(s†) ≥ e(s⋆) = 0. As

a result, we have that e(s†) = n(s†)− f(s⋆)d(s†) ≥ 0 implying that

f(s†) ≥ f(s⋆), (6.8)

as d(s†) > 0. In other words, we can argue that with respect to s⋆, the s† increases the objective

function f(s). It is noteworthy to mention that for the criteria in (Equation 6.8) to hold, it is

sufficient for s† to satisfy e(s†) ≥ e(s⋆) and that s† shall not necessarily be the maximizer of

e(s).
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For a given s⋆ maximizer of (Equation 6.5) we have that:

e(s) = sHAs− f(s⋆)
(
sHBs

)
= sH (A− f(s⋆)B)︸ ︷︷ ︸

≜χ̃

s

Now, in order to ensure that χ̃ is positive definite, one can perform a diagonal loading procedure

by defining χ ≜ χ̃ + λIN , where λ ≥ max{0,−λmin(χ̃)}. Next, the optimization problem of

(Equation 6.5) can be cast as the following UQP [214]:

max
s

sHχs, s.t. |sk| = 1, k ∈ {1, . . . , N}. (6.9)

In order to efficiently tackle (Equation 6.9), a set of power method-like iterations (PMLI)

were introduced in [214, 215] that can be used to monotonically increase the objective value in

(Equation 6.9) using the following nearest-vector problem:

min
s(n+1)

∥∥∥s(n+1) − χs(n)
∥∥∥
2
, s.t.

∣∣∣s(n+1)
k

∣∣∣ = 1, ∀ k. (6.10)

The solution to (Equation 6.10) can be computed analytically and is given as follows [214,215]:

s(n+1) = ej arg(χs(n)). (6.11)

where n denotes the internal iteration number, and s(0) is the current value of s. One can

continue updating s until convergence in the objective of (Equation 6.5), or for a fixed number
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of steps, say L. These iterations are already shown to provide a monotonic behavior of the

quadratic objective (no matter what the signal constraints are), and subsume the well-known

power method as a special case. Such a general approach to computationally efficient quadratic

programming that can handle various signal constraints (many of which cause the problems to

become NP-hard) opens new avenues in signal processing in low-cost scenarios.

Note that, in many practical scenarios, one might not have access to the a priori information

about environmental parameters. In the following, we aim to devise a hybrid data-driven and

model-based approach that allows us to jointly design adaptive transmit code sequences while

learning these parameters given the fact that the environmental information are in fact embedded

into the observed received signal y. Namely, we propose a novel neural network structure for

waveform design, Deep Evolutionary Cognitive Radar (DECoR), by considering the above

power method-like iterations as a baseline algorithm for the design of a model-based deep neural

network. In particular, we consider an over-parametrization of the power method-like iterations

and unfold them onto the layers of a deep neural network. Each layer of the resulting network

is designed such that it imitates one iteration of the form (Equation 6.11). Consequently, the

resulting deep architecture is model-aware, uses the same non-linear operations as those in

the power method, and hence, is interpretable (as opposed to general deep learning models).

The structure yet allow us to utilize data-driven approaches to optimize the parameters of the

network in an online learning manner—making the resulting network a great candidate for

reliable adaptive waveform design in automotive radar applications.
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6.3 The DECoR Architecture for Signal Design

Consider the dynamics of a general fully connected deep neural network. Let g̃ϕi
be defined

as

g̃ϕi
(z) = a(u), where u = W iz, (6.12)

where ϕi = {W i} denotes the set of parameters of the function gϕi
, and a(·) denotes a non-linear

activation function. Then, given an input x0, the dynamics of a fully connected neural network

with L layers can be expressed as follows:

xL = F (x0;Υ) = g̃ϕL−1
◦ g̃ϕL−2

◦ · · · ◦ g̃ϕ0(x0), (6.13)

where, for a general DNN, Υ = {ϕi}L−1
i=0 denotes the set of weight matrices W i for each layer.

Now, consider the power method-like iterations of the form (Equation 6.11). The connection

between the two becomes clear by paying attention to the fact that a fully connected DNN with

an activation function defined as a(x) = ej arg(x), and parameterized on a matrix W (that is

tied along the layers), boils down to performing L iterations of the PMLI. Therefore, one can

immediately see that a fully connected DNN with the specific choice of non-linear activation

function given by the projection operator S(x) ≜ ej arg(x) is an optimal architecture for waveform

design with respect to the power method-like iterations extensively used in waveform design in

various applications [227, 228]. Hence, power method-like iterations are perfect candidates for
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unfolding into DNNs since they can be characterized by a linear step, followed by a possibly

non-linear operation.

6.3.1 The Deep Evolutionary Cognitive Radar Architecture

The derivation begins by considering that in the vanilla PMLI algorithm, the matrix χ is

tied along all iterations. Hence, we enrich the PML iterations by introducing a weight matrix

χi per iteration i. Note that in the original PMLI algorithm, the matrix χ changes from one

outer iteration to another. Hence, such an over-parameterization of the iterations results in a

deep architecture that is faithful to the original model-based signal design method. Such an

over-parametrization yields the following computation model for our proposed deep architecture

(DECoR). Let us define gϕi
as

gϕi
(z) = S(u), where u = χiz, (6.14)

where ϕi = {χi} denotes the set of parameters of the function gϕi
, and recall that the non-linear

activation function is defined as S(x) = ej arg(x) applied element-wise on the vector argument.

Then, the dynamics of the proposed DECoR architecture with L layers can be expressed as:

sL = G (s0;Ω) = gϕL−1
◦ gϕL−2

◦ · · · ◦ gϕ0(s0), (6.15)

where s0 denotes some initial unimodular vector, and Ω = {χ0, . . . ,χL−1} denotes the set of

trainable parameters of the network. The block diagram of the proposed architecture is depicted

in Figure 27.
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Figure 27. The proposed DECoR architecture for adaptive radar waveform design.

Our goal is to optimize the set of parameters Ω of the proposed DECoR architecture using

an online learning strategy that allows for fast adaptation to different environment. Intuitively,

given the nature of the PML iterations, learning the parameters Ω = {W l}L−1
l=0 corresponds to

learning the information corresponding to the signal dependent interference and environmental

noise profile.

6.3.2 The Proposed Online Learning Strategy

In an automotive radar application, the environment might undergo drastic changes along

different coherent processing intervals, and the noise and interference statistics might vary as

a result. Hence, it is natural to consider an online learning strategy for training the proposed

DECoR architecture.

Let Ω(t) denote the set of parameters at time t. Then, the resulting code sequence given the

set of parameters Ω(t) is simply given by the output of the last layer of the proposed DECoR

architecture, i.e. s(t)L = G
(
s0;Ω

(t)
)
. We define the goal of our online training procedure as learn-
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ing the set of parameters Ω(t+1) such that the resulted code sequence s(t+1) = G
(
s0;Ω

(t+1)
)

satisfies the following criterion:

f(s(t+1)) ≥ f(s(t)). (6.16)

Accordingly, we propose the following random walk-based training strategy for optimizing the

parameters of the proposed DECoR architecture in an online manner:
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• Step 0 (Initialization): Choose an arbitrary unimodular transmit sequence s0 ∈ CN , and

set the training counter to t = 0. Initialize the radius σ of the search region to some positive

constant c, and choose δ ∈ (0, 1]. Further initialize the set of weight matrices Ω(0) = {χ(0)
i }L−1

i=0

such that χ
(0)
i ≻ 0, for i ∈ {0, . . . , L− 1}.

• Step 1 (Random walk- generation): For l ∈ {0, . . . , L−1}, generate B random lower triangu-

lar matrices L0
l , . . . ,L

B−1
l ∼ CN (0, σI), and form the set of Hermitian positive-definite search

direction matrices Di
l = Li

lL
iH
l , for each layer l and for i ∈ {0, . . . , B − 1}, where Di

l ∈ CN×N .

• Step 2 (Random walk- perturbation): For i ∈ {0, . . . , B − 1}, form the set of possible can-

didate updates for the current parameter space Ω(t) as Ω
(t)
i = {χ(t)

0 +Di
0, . . . ,χ

(t)
L−1 +Di

L−1}.

Compute the corresponding B unimodular codes s
(t)
L,i = G(s0;Ω

(t)
i ) for i ∈ {0, . . . , B} and form

the set of training transmission codes as S(t) = {s(t)L,0, . . . , s
(t)
L,B−1}.

• Step 3 (Collecting information): Transmit the unimodular codes in the set S(t) and obtain

the corresponding set of received signals Y = {y(t)
i }B−1

i=0 . Compute the function f(s) for each

transmit/receive pair (s
(t)
L,i,y

(t)
i ) and construct the set of objective values as F = {f(s(t)L,i)}B−1

i=0 .

• Step 4 (Optimizing the DECoR architecture): Choose the current optimal parameter space

using

i⋆ = argmax
i∈[B]

f(s
(t)
L,i).

Update the network parameters if f(s
(t)
L,i⋆

) ≥ f(s
(t−1)
L ) and set the search radius as σ ← c.

Otherwise, only update the search radius as σ ← δσ. Continue the online learning by going to

Step 1.
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The above proposed online learning strategy for the proposed DECoR architecture is an

amalgamation of natural evolutionary optimization techniques and policy optimization in rein-

forcement learning. In particular, the increase in the objective function f(s) can be seen as a task

for an agent that is interacting with an unknown environment over the action space of Ω and the

corresponding unimodular code sL = G(s0,Ω). Note that the power method-like iterations and

the model of the system impose a positive definite constraint on the weight matrices {χi}L−1
i=0 .

In order to impose such a constraint in incrementally learning the parameters Ω, we initialize

each χ
(0)
i with some positive-definite matrix. We then perform a random walk in the cone of

positive definite matrices by forming positive definite search direction matrices Di
l = Li

lL
iH
l .

Such a training strategy results in a fast adaptation to the ever changing environment. Hence,

the radar agent can continually perform the training on the fly.

6.4 Results and Concluding Remarks

We begin by evaluating the performance and effectiveness of the proposed online learning

strategy for optimizing the parameters of the DECoR architecture. For this experiment, we

fix the total number of layers of the proposed DECoR architecture as L = 30. Throughout

the simulations, we assume an environment with dynamics described in (Equation 6.1), and

with more details in [193], with clutter power β = 1, and a noise covariance of Γ = I. These

information were not made available to the DECoR architecture and we only use them for data

generation purposes.

28(a) demonstrates the objective value f(sL) in (Equation 6.4) vs. training iterations, for

a code length of N = 10. It can be clearly seen that the proposed learning strategy and
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Figure 28. Illustration of (a) the objective value f(sL) of the DECoR vs. training iterations
for a code length of N = 10, and (b) MSE values obtained by the different design algorithms

for code lengths N ∈ {10, 25, 50, 100, 200}.
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the corresponding DECoR architecture results in a monotonically increasing objective value

f(sL). Furthermore, note that the proposed learning algorithm optimizes the parameters of

the proposed DECoR architecture very quickly. Next, we evaluate the performance of the

presented hybrid model-based and data-driven architecture in terms of recovering the target

coefficient α0. In particular, we compare the performance of our method (DECoR) in designing

unimodular codes with two state-of-the-art model-based algorithms: (a) CREW(cyclic) [215],

a cyclic optimization of the transmit sequence and the receive filter, (b) CREW(MF) [215], a

version of CREW(cyclic) that uses a matched filter as the receive filter, and (c) CREW(fre) [229],

a frequency domain algorithm to jointly design transmit sequence and the receive filter. 28(b)

illustrates the MSE of the estimated α0 vs. code lengths N ∈ {10, 25, 50, 100, 200}. For each N ,

we perform the optimization of DECoR architecture by allowing the radar agent to interact with

the environment for 50 training epochs. After the training is completed, we use the optimized

architecture to generate the unimodular code sequence sL and use a MF to estimate α0. We let

the aforementioned algorithms to perform the code design until convergence, while the presented

DECoR architecture has been only afforded L = 30 layers (equivalent of L iterations).

It is evident that the proposed method significantly outperforms other state-of-the-art ap-

proaches. Although the DECoR framework does not have access to the statistics of the environ-

mental parameters (as opposed to the other algorithms), it is able to learn them by exploiting

the observed data from interaction with the environment.
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CHAPTER 7

DEEP-URL: A MODEL-AWARE APPROACH TO BLIND

DECONVOLUTION BASED ON DEEP UNFOLDED

RICHARDSON-LUCY NETWORK

Overview: The lack of interpretability in current deep learning models causes serious concerns as

they are extensively used for various life-critical applications. Hence, it is of paramount importance to

develop interpretable deep learning models. In this paper, we consider the problem of blind deconvolution

and propose a novel model-aware deep architecture that allows for the recovery of both the blur kernel

and the sharp image from the blurred image. In particular, we propose the Deep Unfolded Richardson-

Lucy (Deep-URL) framework — an interpretable deep-learning architecture that can be seen as an

amalgamation of classical estimation technique and deep neural network, and consequently leads to

improved performance. Our numerical investigations demonstrate significant improvement compared to

state-of-the-art algorithms.

Keywords: Blind deconvolution, model-aware deep learning, machine learning, deep unfolding,

non-convex optimization

7.1 Introduction

In digital photography, motion blur is a common and longstanding problem where the blur-

ring is induced by the relative motion of the camera or the subject with respect to the other [231].

Parts of this chapter is taken from published conference article [230]. Copyright ©2020, IEEE.
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In classical image processing, such a motion blur is generally regarded as a motion kernel be-

ing applied on the original sharp image through a linear operation, e.g., convolution. Often in

practice, however, neither the blur kernel nor the original image is known a priori, and thus

the task becomes to estimate both from the blurry input image. In image processing, the term

blind deconvolution is often used to represent the task of image restoration without any explicit

knowledge of the impulse response function, also known as the point-spread function (PSF) and

the original sharp image [1, 231]. The blurred image y is typically formulated as:

y = H ⊛ x+ n, (7.1)

where x and H are the unknown original clean image and the blur kernel, respectively, n is the

additive measurement noise generally modeled as white Gaussian noise (AWGN) with variance

σ2, and ⊛ represents the 2D convolution operator. Hence, the task of blind deconvolution is

to estimate a sharp x and the corresponding H from an infinite set of pairs (x,H) using the

blurry image y, making it an ill-posed and very challenging problem.

A judicious approach to such problems is to utilize some prior knowledge about the statistics

of the natural image and/or motion kernels. There exists a multitude of algorithms to efficiently
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estimate the image x and kernel H using prior knowledge of the model [232–234]. A majority

of them are based on maximum-a-posterior (MAP) framework,

(x̂, Ĥ) = argmax
x,H

Pr {x,H | y},

= argmax
x,H

Pr {y | x,H}Pr {x}Pr {H}, (7.2)

where Pr {y | x,H} is the likelihood of the noisy output y given a certain (x,H), that corre-

sponds to the data fidelity term, and Pr {x} and Pr {H} are the priors of the original image and

blur kernel, respectively. Note that, Eq. (Equation 7.2) is correct under the assumption that the

sharp original image x and the blur kernel H are independent. These MAP-based algorithms are

often iterative in nature and usually rely on the sparsity-inducing regularizers, either in gradient

domain [234–236] or more generally in sparsifying transformation domain [237]. However, the

knowledge of the prior is not usually enough, for instance, Levin et al. [1] shows that MAP-based

methods may lead to a trivial solution of an impulse kernel resulting in the same noisy image

as output. By carefully designing the appropriate regularizer and selecting the proper step size

and learning rate, one may find a sharper image. These parameters are, however, difficult to

determine analytically as they heavily depend on the noisy input image itself, and thus do not

admit any generalization.

Data-driven methods, on the other hand, make an attempt to determine a non-linear map-

ping that deblurs the noisy image by learning the appropriate parameter choices particular to

an underlying image dataset using deep neural networks (DNN) [238, 239]. Given the training



202

�1

� 2

�2

� �

��

( ⊛ , �)min
,�

�
�

�

�� � �� 0

�0

� 1

� = 1 � = 2 � = �

�

�∗

Figure 29. Proposed Deep-URL architecture for model-aware blind deconvolution. Given a
blurred image y and initial estimates of the clean image x0 and blurring kernel H0, the model

updates xk and Hk following Algorithm 7.1.

dataset, one can use a DNN either to extract features from the noisy image to estimate the

blur kernel [239] or directly learn the mapping to the sharp image [3]. Although these methods

achieve substantial performances in certain practical scenarios, they often do not succeed in

handling various complex and large-sized blur kernels in blind deconvolution. The structure

of the neural networks is usually empirically determined and thus they often lack inherent in-

terpretability. Recent works generate attribution based maps to explain the networks decision,

however, they disregard the untapped potential of the model knowledge [240].

In order to enjoy the advantages of both model-based iterative algorithms and data-driven

learning strategies, one may exploit the idea of deep unfolding [75, 82]. In recent years, deep

unfolding networks have gained a significant amount of attention in various branches of signal
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processing [36,75,164,241,242]. However, in the context of blind image deconvolution, the extent

of deep unfolding capabilities remains largely unexplored. Recently Li et al. [2], performed

motion deblurring by means of unfolding an iterative algorithm that relies on total-variation

(TV) regularization prior in the image gradient domain [243]. Although this approach performs

better than the state-of-the-art model-based and data-driven blind deconvolution counterparts,

the strict requirement of training a network for a certain dataset makes the algorithm impractical

for real-time usage: the algorithm requires a ground truth dataset, to begin with. Additionally,

in practice, motion kernels are not pre-deterministic (e.g., in drone image processing), and hence

acquiring a labeled dataset is not possible for a supervised learning scenario.

In this paper, we propose a novel technique to unfold an iterative algorithm that estimates

the latent clean image and corresponding blur kernel on the fly — a zero-shot self-supervised

algorithm. In particular, we use the classical Richardson-Lucy blind deconvolution algorithm

[244] to construct the network structure and iteratively estimate the clean image and the kernel.

We experimentally verify the performance of our algorithm and compare it with [2] and other

iterative algorithms and recent neural network approaches.

7.2 Problem Formulation

In this section, we lay the groundwork for our proposed model-aware deep architecture for

the problem of blind deconvolution. To this end, we consider an extension of the Richardson-

Lucy (RL) algorithm as a baseline to design a deep neural network such that each layer imitates

the behavior of one iteration of the RL algorithm.
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Generally, the problem of blind deconvolution can be cast as the following optimization

problem:

min
x,H

∥y −H ⊛ x∥22 + λTV(x), (7.3)

where the first term represents the data fidelity term and λ is the regularization coefficient for

the total variation (TV) regularization operated on the image x. The RL algorithm seeks to

recover the sharp image x and the blur kernel H in an iterative manner as described in [244].

Starting from an initial guess for the sharp image and the kernel (x0,H0), the update steps for

the image and the kernel at the k-th iteration is given by,

Hk+1 =

([
y

xk ⊛Hk

]
⊛ xk†

)
⊙Hk, (7.4a)

xk+1 =

([
y

xk ⊛Hk+1

]
⊛Hk+1†

)
⊙ xk, (7.4b)

where ⊙ represents the Hadamard product and (·)† denotes the flipped version of the vec-

tor/matrix argument.

7.3 Blind Deconvolution via Deep-URL

In order to obtain a model-aware deep architecture we slightly over parameterize the iter-

ations of RL algorithm (See Eq. (Equation 7.4a)-(Equation 7.4b)) and unfold them onto the

layers of a deep neural network. In particular, each layer corresponds to one iteration of the

baseline iterative algorithm. Namely, we fix the total computational complexity of the RL algo-

rithm by fixing the total number of iterations as a DNN with L layers. Thus, by substituting the
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xk and Hk in Eq. (Equation 7.4a)-(Equation 7.4b) with trainable parameters, we reformulate

each subsequent iterative operation as:

Hk+1 = σ

(
ReLU

([
y

ReLU(xk ⊛W k
H)

]
⊛ xk†

)
⊙W k

H

)
, (7.5a)

xk+1 = σ

(
ReLU

([
y

ReLU(W k
x ⊛Hk+1)

]
⊛Hk+1†

)
⊙W k

x

)
, (7.5b)

where W k
x and W k

H are the weights for k-th layer. Furthermore, σ(·) represents the Sigmoid

activation function and ReLU denotes the Rectifier Linear Unit. Note that there exist two

implicit constraints on the recovered sharp image and the kernel: (a) both x and H are non-

negative and (b) each element of x and H must meet a range constraint.Hence, in order to ensure

constraint (a), each convolution operation is activated by a ReLU function, and in addition we

use the Sigmoid activation after each update step to satisfy constraint (b).

Let Υk = {W k
x,W

k
H} denote the set of trainable parameters of layer k, and Υ = Υ1 ∪

Υ2 ∪ · · · ∪ ΥL. Using the iterative updates from Eq. (Equation 7.5a)-(Equation 7.5b), we

formulate the training of our proposed model-aware deep network: Deep Unfolded Richardson

Lucy (Deep-URL) architecture as follows,

min
Υ
L(xL ⊛HL,y) + λTV(xL) (7.6)

where the loss function L(·) is the negative of the structural similarity index (SSIM) [245]

between the true blurred image y and the reconstructed blurred image ŷ = xL ⊛HL.
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It is worth mentioning that the proposed deep architecture in conjunction with the proposed

learning method manifests itself as a self-supervised learning process where the degraded image

y is the only information used for estimation of the sharp image x∗ and the blurred kernel H∗.

Figure 29 illustrates the proposed Deep-URL architecture and the training process. Finally,

Algorithm 7.1 summarizes the joint optimization process for updating Υ. Note that, once the

self-supervised model is optimized for a given blur kernel, the learned weights can be directly used

for deblurring any image blurred with the same kernel.

Algorithm 7.1 Deep-URL
Input: y: blurred image, L: number of layers, N : number of epochs
Output: H∗: estimated kernel, x∗: sharp image
Initialize: H0 ← U(0, 1); x0 ← U(0, 1)
1: for i = 1 to N do
2: for k = 0 to L− 1 do
3: Compute Hk+1 using Eq. (Equation 7.5a).
4: Compute xk+1 using Eq. (Equation 7.5b).
5: end for
6: Compute the gradients of Eq. (Equation 7.6) w.r.t. Υ.
7: Update Υ.
8: H0 ←HL;x0 ← xL

9: end for
10: H∗ = HL;x∗ = xL

7.4 Experiments

In this section, we investigate the performance of the proposed Deep-URL framework and

compare it with several other state-of-the-art methods in the context of blind deconvolution.

First, we compare the performance of Deep-URL with the baseline RL algorithm using the
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standard MNIST handwritten digit dataset [246]. Second, we use Levin dataset [1] to com-

pare Deep-URL with existing iterative and deep learning-based blind deconvolution methods

proposed in [2, 3, 239].

Optimization setup. The training of Deep-URL (Eq. (Equation 7.6)) is carried out using the

RMSprop optimizer for 5000 epochs by employing an adaptive learning rate scheme with an

initial learning rate of 0.1 and a decaying factor of 0.1 when reaching 40% and 60% of the

total number of epochs. In addition, the TV regularization coefficient λ was set to 0.1 for

all experiments. All trainable parameters were initialized using a uniform distribution. We

performed a batch-wise optimization, with a batch size of 4, on images blurred using the same

kernel for enhancing the performance of Deep-URL.

Evaluation metrics. Inspired by [2], we use the following metrics to evaluate the performance

of our proposed method: (1) Structural Similarity Index (SSIM), (2) Peak Signal-to-Noise-Ratio

(PSNR), (3) Improvement in Signal-to-Noise-Ratio (ISNR) for the quality of the reconstructed

image x∗, and (4) Root-Mean-Square Error (RMSE) for comparing the recovered blur kernel

H∗ with the original H. In the sequel, we use the term PSF and blur kernel interchangeably.

MNIST dataset results. For this experiment, we consider the well-known MNIST dataset.

We randomly draw 1000 sample images from the MNIST training dataset and use the same

motion kernels provided by [1]. Particularly, for each image, we convolve the original image

with a randomly chosen aforementioned blur kernel to generate the degraded image. Table Ta-

ble II demonstrates the performances of the proposed Deep-URL framework with L ∈ {2, 5}

layers and the original RL algorithm with the same number of iterations. It is evident from
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TABLE II

EVALUATION METRIC SCORES AVERAGED OVER 1000 MNIST IMAGES. ACROSS
ALL IMAGE QUALITY METRICS, DEEP-URL (D-URL) OUTPERFORMS THE RL

ALGORITHM.
L = 2 L = 5

Metrics RL D-URL RL D-URL
PSNR(dB) 10.3919 18.2821 10.4742 19.7075
ISNR (dB) 0.0651 7.9554 0.0764 9.3096
SSIM 0.4453 0.7669 0.4484 0.8206
RMSE(×1e-3) 38.54 4.396 38.07 4.399

Table Table II that the proposed method significantly outperforms the baseline RL algorithm

across all evaluation metrics. Interestingly, Deep-URL achieves better performance in terms

of both recovering the original image and the PSF even with only L = 2 layers—this is

presumably due to the hybrid model-based and data-driven nature of the proposed method.

Moreover, Deep-URL with L = 5 layers attains a very high average ISNR value for the re-

covered image, which is 121× higher than that of the original RL algorithm. Note that, the

RMSE between the original and the reconstructed PSF using the proposed method assumes

a 8.55× smaller value than that of the RL algorithm. By comparing the evaluation perfor-

mance of Deep-URL for L ∈ {2, 5}, it is evident that increasing the number of layers result

in a much higher increase of scores across all evaluation metrics as compared to the baseline

RL algorithm. Finally, from Figure 30, we found that the classical RL algorithm is sensitive

to the number of iteration and the performance fluctuates on a random set of 100 MNIST

images. However, the performance of Deep-URL always increases as we increase the num-
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Figure 30. The evaluation metric scores across all image and kernel for different number of
layers (L) show that the performance of Deep-URL increases on increasing L as compared to

the baseline RL algorithm.

ber of iterations i.e., the number of layers.par Levin dataset results. For this experiment,

we use the dataset provided by [1] – a widely used benchmark dataset in several deblurring

works [2, 234, 235]. It comprises of 4 grayscale images and 8 motion blur kernels: a total of

32 motion blurred images. Table Table III summarizes the performance of Deep-URL in com-

parison with the baseline RL as well as the methodologies proposed in [239], [3] and [2] on the

same dataset. It can be observed from Table Table III that Deep-URL significantly outper-

forms the baseline RL algorithm across all image and kernel evaluation metrics. In contrast

to other methods that include a priori learning using training images, Deep-URL is a self-

deblurring framework and performs at par (PSNR) or better (ISNR and SSIM) on the image
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(a) (b) (c) (d) (e)
(f)

SSIM: 1.0 0.6809 [2] 0.7584 [239] 0.6082 [3] 0.5315 (RL) 0.9189
(Deep-URL)

Figure 31. Qualitative results for a sample image from Levin dataset [1] taken from [2]. The
SSIM score between the ground truth image (row 1, a) and the reconstructed images using

different iterative and deep learning based blind deconvolution methods (row 1, b-e) shows the
superior performance of Deep-URL (f). Comparing the inset images (green boxes in row 1),
shows the effectiveness of Deep-URL in retaining fine details of the image. Interestingly, the
SSIM of [2] (row 1, b) is low since the image is slightly shifted as it fails to reconstruct the

blurring kernel correctly (Figure 32, b)

quality evaluation metrics. Interestingly, an 1.8× increase can be observed in ISNR using Deep-

URL with just L = 5 when compared to [2]. In regards to the reconstructed blur kernel, it

was found that most pixels did not converge to absolute zero and hence a higher RMSE score

was obtained in reconstructing the motion kernel blindly. From Figure 31, we observe Deep-

URL reconstructs smoother images with lesser artifacts as compared to other state-of-the-art

methods.
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(a) (b) (c) (d) (e)

Ground Truth [2] [239] RL Deep-URL

Figure 32. Ground truth blur kernel (a) used to blur the image in Figure 31a. Deep-URL
reconstructs the kernel with minimum shifts as compared to other iterative and deep learning
methods (b-d). Classical RL algorithm completely fails and generates a noisy kernel (d). Note
that [3] does not predict the motion blur kernel and hence is not included in the figure above.

TABLE III

DEEP-URL (D-URL) OUTPERFORMS RL ALGORITHM (RAN TILL 5 ITERATIONS)

ACROSS ALL IMAGE QUALITY AND RMSE METRICS. IN CONTRAST TO EXISTING

DEBLURRING METHODS WHICH LEARN FROM TRAINING IMAGES, DEEP-URL

PERFORMS ON PAR (PSNR) AND BETTER (ISNR AND SSIM) IN RECONSTRUCTING

THE CLEAN IMAGE.

Metrics [2] [3] [239] RL
D-URL

(L = 2)

D-URL

(L = 5)

PSNR(dB) 27.15 24.51 23.18 19.42 24.85 27.12

ISNR (dB) 3.79 1.35 0.02 -2.98 5.36 6.95

SSIM 0.88 0.81 0.81 0.53 0.89 0.91

RMSE(×1e-3) 3.87 - - 10.10 8.08 7.10
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7.5 Conclusion

In this work, we considered the problem of blind deconvolution and proposed the Deep-URL

framework—a model-aware deep blind deconvolution architecture—by unfolding the Richardson-

Lucy algorithm (Sec. 7.3). Quantitative and qualitative evaluations (Sec. 7.4) show Deep-URL

achieves superior performance than both its baseline RL algorithm and several existing blind

deconvolution techniques. In contrast to other MAP-based frameworks, Deep-URL does not

show convergence to the trivial solution of an impulse like kernel.
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CHAPTER 8

GUARANTEED DEEP LEARNING FOR RELIABLE RADAR SIGNAL

PROCESSING

Overview: R ecently, there has been a significant level of attention paid to the application

of deep learning in radar signal processing. Despite its flexibility, deep learning imposes new

challenges in guaranteeing the performance of signal processing systems and in establishing

trust with regard to their outcome. This represents a critical bottleneck in the application of

deep learning in radar signal processing, where having trust in radar inferences is crucial. In

this work, we present a novel implicit deep learning model for learning fast and highly-scalable

solvers for a general family of optimization problems commonly encountered in the radar signal

processing area, encompassing applications in waveform design and target parameter estima-

tion. Specifically, the proposed methodology is based on generalizing the feed-forward neural

networks by introducing implicit layers derived from the dynamics of a fixed-point geometric

series. Unlike its black-box data-driven counterparts, the implicit and model-based nature of the

proposed neural solver significantly reduces the parameters of the network and implementation

cost, and most importantly, makes the network amenable to robustness analysis, as well as de-

riving performance guarantees/bounds on the output of the model. This presents considerable

Parts of this chapter is taken from published conference article [247]. Copyright ©2022, IEEE.
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potential for the adoption of our proposed models in radar applications, be it in the classical

settings or emerging applications in autonomous vehicles and automotive radar where a large

number of reliable radars are projected to be on the road in the near future.

Keywords: Implicit Deep Learning, Inference Guarantees, Model-Based Deep Learning, Radar

Signal Processing, Robustness and Reliability.

8.1 Introduction

The significant success of deep learning models in areas such as natural language processing

(NLP) [19], life sciences [20], computer vision (CV) [21], and collaborative learning [22], among

many others, have surged a significant interest in employing deep learning models for radar

signal processing applications. To account for difficulties in the underlying signal processing

tasks, most existing deep learning approaches however resort to very large networks whose

number of parameters are in the order of millions and billions [23]—making such models data and

computing power hungry. Furthermore, these bulky deep learning models further introduce non-

ignorable latency during inference which hinders in-time decision making by autonomous agents.

More importantly, with all their repertoire of success, the existing data-driven tools typically lack

the interpretability and trustability that comes with model-based signal processing. They are

particularly prone to be questioned further, or at least not fully trusted by the users, especially

in critical applications such as autonomous vehicles. Last but not least, the deterministic deep

architectures are generic and it is unclear how to incorporate the existing domain knowledge

on the problem in the processing stage. In contrast, many signal processing algorithms (e.g.,

in the fields of information theory, wireless communications, and radar signal processing) are
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backed by decades of theoretical development and research resulting in accurate, meaningful

and reliable models. Owing to their theoretical foundations, the model-based signal processing

algorithms thus usually come with performance guarantees and bounds allowing for interpreting

the output of the model and certifying the achievable performance required for the underlying

task.

Despite the above mentioned drawbacks of the generic deep learning models, there has been

a few attempts in adopting and re-purposing such generic deep learning models for applications

in radar signal processing, showing good performance. To name a few, the authors in [248]

consider developing a data-driven methodology for the problem of joint design of transmitted

waveform and detector in a radar system, while the authors in [249] have considered the problem

of automatic waveform classification in the context of cognitive radar using generic convolutional

auto-encoders models. For a detailed treatment of the recent deep learning models for radar

signal processing applications, we refer the reader to consult [250], and the references therein.

It has been long apparent that a mere adoption or modification of generic deep neural

networks designed for applications such as NLP and CV, and ignoring years of theoretical

developments mentioned earlier will result in inefficient networks. This is even more pronounced

in the long-standing radar problems with a rich literature. Hence, it is to our belief that one

needs to re-think the architectural design of deep neural models than re-purposing them for

adoption in critical fields such as radar signal processing for autonomous vehicles.

In this work, we lay the groundwork for our vision in developing interpretable, trustable,

and model-driven neural networks, starting from its theoretical foundations, to advance the
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state-of-the-art in radar signal processing, particularly for autonomous vehicles. In contrast

to generic deep neural networks, which cannot provide performance guarantees due to their

black-box nature, our proposed network allows for performing a mathematical analysis of the

worst-case performance bound of the model not only during the training of the network but

also once the network is trained and is to be used for inference purposes. Last but not least,

due to the incorporation of domain-knowledge in the design of the network, the total number

of parameters of the network are in the order of the signal dimension and the training can be

performed very quickly with far less data samples—allowing for on-the-fly training for real-time

applications.

8.2 Data Model and Problem Formulation

As a central task in radar processing, we begin by looking at the problem of receive filter

design for a given probing signal. Specifically, our goal is to design a filter to minimize the

recovery mean-square-error (MSE) of the scattering coefficient of the target in presence of clutter;

see below for more details.

We assume that the complex-valued probing sequence s ∈ Cn of length n, that modulates

the train of sub-pulses [251], is given by the vector s = [s1, s2, · · · , sn]T , and that the total

energy of the probing signal is fixed and constrained to ∥s∥22 = n. We note that such power-

constraints on s must be always imposed due to practical considerations [252]. Specifically, we

focus our attention on the widely used uni-modular probing signals, i.e., si = ejϕi , with |si| = 1

for i ∈ {1, · · · , n}.
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The received digital discrete-time base-band data y = [y1, · · · , yn]T , after pre-processing and

range alignment to the range bin of interest is given by [253,254], yi =
∑

0<|k|<n−1 αksn−k+i+

ni, i ∈ {1, · · · , n}, where sk = 0 for k /∈ [1, n], the vector of noise elements is assumed to

be white, complex-valued, and distributed according to n ∼ CN (0,C = σ2I), α0 ∈ C is

the scattering coefficient of the current range bin of interest, and {αi ∈ C}i ̸=0 represent the

scattering coefficients of the adjacent range cells contributing to clutter, as observed at the the

current range cell. Furthermore, we assume that the clutter scattering coefficients {αi}i ̸=0 are

independent of each other and that their power is fixed, i.e., E{|αi|2} = γ, for i ̸= 0. We note

that the scattering coefficients are directly proportional to the radar cross section of the range

bins illuminated by the radar system.

Under the considered sytem model, a principal task and challenging problem for a radar

signal processing unit is to obtain an estimation of the scattering coefficient α0 given the acquired

samples y in presence of clutter, to find the significantly contributing RCS. A useful methodology

in obtaining an estimation of the scattering coefficient of interest α0 is to use the so-called

mismatched filter (MMF) in the receiver side [254]. The deployment of mismatched filter in

pulse compression has a great impact in clutter rejection and can be viewed as a linear estimator

in which the estimate of α0 is given by the MMF model α̂0 = wHy/wHs, where w ∈ Cn

is the MMF vector. Under the aforementioned assumptions on the signal model and noise
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statistics, the optimal MMF filter w⋆ can be formulated as the minimizer of the following

objective function:

f(w; s) = MSE(α̂0;w, s) = E

{∣∣∣∣α0 −
wHy

wHs

∣∣∣∣2
}

=
wHRw

|wHs|2 , (8.1)

where the interference covariance matrix R is given by:

R = γ
∑

0<|k|≤(n−1)

Jkss
HJH

k +C, (8.2)

and {Jk} are the shift matrices (see, e.g., [254] for more discussion on the formation of this

interference covariance matrix). Specifically, the minimizer of the objective function f(w; s)

with respect to the MMF filter, follows the well-known closed-form solution [252]:

w⋆ = R−1s = argmin
w∈Cn

f(w; s), (8.3)

where the lower-bound on the performance of the estimator (Equation 8.3) is given by MSE (α̂0;w
⋆, s) =

(sHR−1s)−1.

Although the optimal MMF vector w⋆ = R−1s has a good performance in recovering the

scattering coefficient in the presence of clutter, obtaining it requires inverting an n×n matrix R,

which may be computationally prohibitive in practice for large n, and present a critical computa-

tional bottleneck in real-time radar implementation. The inversion is not only computationally

expensive, but also requires large data storage capabilities and is highly prone to numerical
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errors for ill-conditioned matrices. In the following, we propose a highly-tailored model-based

deep architecture based on the Neumann series inversion lemma, where the resulting network

allows for 1) controlling the computational complexity of the inference rule, 2) efficiently and

quickly finding the optimal MMF vector, and 3) deriving performance bounds on the error of

the estimator, upon training the network.

8.3 The Proposed Deep Architecture

In this section, we present our proposed Deep Neural Matrix Inversion technique, abbrevi-

ated as DNMI.

At the heart of our illustrative derivations in the following lies the Neumann power series ex-

pansion for matrix inversion [255]. As indicated earlier, in many signal detection and estimation

tasks, including our radar problem, one usually encounters matrix inversion, whose computation

may be prohibitive in large-scale settings. A similar problem arises, more broadly, in mathe-

matical optimization techniques where a Hessian matrix is to be inverted. In such scenarios,

truncated Neumann series (NS) expansions provide a low-cost alternative to approximate the

inverted matrices. In the following, we first give a brief introduction to Neumann series for

matrix inversion, upon which we derive the architecture of our proposed deep neural network.

Theorem 1. (Neumann Series Theorem) [256]: Denote by {λ1, λ2, · · · , λn} the set of eigen-

values of the augmented square matrix R̄ = (I −R). If ρ
(
R̄
)
≜ maxi|λi| < 1, the power series

R̄
0
+ R̄

1
+ R̄

2
+ · · · then converges to R−1, i.e., we have R−1 =

∑∞
l=0 (I −R)l .

The above Neumann series theorem provides a powerful alternative for the exact matrix

inversion by considering a truncation of the inversion series. Specifically, in practice, one may
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truncate the above expansion to only K-term and use it as an approximation of the exact

inversion. However, one can only rely on such an inversion technique if the underlying matrix

satisfies the condition ρ(I−R) < 1. In many practical applications, the underlying matrix does

not satisfy such a condition, which in turn renders the K-term Neumann series approximation

inapplicable. To alleviate this problem, we further propose to augment the NS technique with

a preconditioning matrix W ∈ Cn×n, to obtain the following modified NS for matrix inversion:

R−1 = (WR)−1W =

( ∞∑
l=0

(I −WR)l
)
W , (8.4)

where the convergence is now ensured if ρ(I−WR) < 1. Note that, even with this augmentation,

a judicious design of the pre-conditioning matrix is critical to the convergence of the above series.

Constructing such matrices is an active area of research and is indeed a very difficult task

[257, 258]. To the best of our knowledge, there exist no general methodology for designing the

pre-conditioning matrices that ensure convergence, and also result in an accelerated convergence

of the underlying truncated NS. In the following, we present our proposed deep learning model

which allows not only for tuning the pre-conditioning matrix in a data-driven manner but also

an accelerated and accurate matrix inversion.

In light of the above, we propose to interpret the first K-term truncation of the Neumann

series in (Equation 8.4) as a K-layer deep neural network, for which the matrix to be inverted

R constitutes the input, and the pre-conditioning matrix the set of trainable parameters, given

by ϕ = {W ∈ Cn×n}. Accordingly, let G = I −WR and L = {1, · · · ,K − 2}. Then, the
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mathematical operations carried out in the layers of the proposed deep architecture are governed

by the relations:

g0(R;ϕ) = u0, u0 = I,

gi(R;ϕ) = Gui−1 + gi−1(R;ϕ), ui = Gui−1, ∀ i ∈ L,

gK−1(R;ϕ) = gK−2(R;ϕ)W . (8.5)

The overall mathematical expression of the proposed neural network can be given as

Gϕ(R) = gK−1 ◦ · · · ◦ g0(R;ϕ). (8.6)

It is not difficult to observe that the proposed neural network in (Equation 8.6) is equivalent to

performing a K-term truncated version of (Equation 8.4), i.e.,

Gϕ(R) = R−1
K (W ) =

(
K−1∑
l=0

(I −WR)l
)
W (8.7)

yielding a matrix inversion operation with controllable computational cost, whose accuracy

depends on the choice of the pre-conditioning matrix W and the total number of terms K.

In particular, a judicious design of the pre-conditioning matrix W is expected to result in an

accelerated Neumann series that provides higher accuracy while utilizing very few terms, as well

as ensuring the convergence of the NS by guaranteeing ρ(I −WR) < 1. In fact, the proposed

deep architecture provides significant flexibility in learning the pre-conditioning matrix W : one
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can impose a diagonal structure by defining W = diag(w1, · · · , wn), a tri-diagonal structure, or

a rank-constrained structure via parameterization W = AB, where A ∈ Cn×m and B ∈ Cm×n;

among many other useful structures depending on the application.

Recall that the optimal MMF vector, for a given covariance matrix R and probing signal

s can be expressed as w⋆(R, s) = R−1s. The application of the proposed DNMI technique is

thus immediate. Instead of using (Equation 8.3), we propose the following approximation of the

MMF vector using the DNMI architecture:

w⋆
K(R, s;ϕ) = Gϕ(R)s, (8.8)

where w⋆
K(R, s;ϕ) denotes the DNMI-based MMF vector. In the following, we briefly discuss

the training stage of the DNMI network.

8.3.1 Training Procedure

The training of the proposed network can be carried out by using stochastic gradient descent

optimizers commonly used for deep learning. Specifically, we consider the following scenario for

training of the network depending on the available data. We assume the existence of a dataset of

size B containing training tuples of the form {(w⋆(Ri, si),Ri)}B−1
i=0 . Such a dataset can be easily

generated in an offline manner, via computing the optimal MMF vector through exact matrix

inversion (a one-time cost), and upon training the network, one can employ the optimized DNMI
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network for inference purposes through (Equation 8.8). The training is thus can be carried out

according to:

min
ϕ∈Cn×n

1

B

∑
i

∥w⋆(Ri, si)− Gϕ(Ri)∥22. (8.9)

8.3.2 Performance Guarantees

In contrast to generic deep neural networks, which cannot provide performance guarantees

due to their black-box nature, one can perform a mathematical analysis of the worst-case perfor-

mance bound of the expansion series-based deep networks after the training is completed. As a

case in point, one can verify that the accuracy of the K-layer DNMI network is bounded by the

(K + 1)-th power of the spectral norm of the matrix I −WR. This provides an upper bound

of the error that can guide the training in terms of the number of training epochs, training

samples, and number of layers, and once the network is trained, provides an upper bound on

the error of the network inference or optimization output—see below.

Let G = (I −WR). Then, we define the error vector between the true MMF vector

w⋆(R, s), and the output of the DNMI network as follows:

e = w⋆(R, s)− Gϕ(R)s =
(
R−1 −R−1

K (W )
)
s, (8.10)
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where we have that

R−1 −R−1
K (W ) =

∞∑
l=K

GlW = GK
∞∑
l=0

GlW (8.11)

= GKR−1. (8.12)

Thus, from (Equation 8.10)-(Equation 8.12), we have the following upper-bound on the error:

∥e∥2 = ∥GKR−1s∥2 ≤ ∥GK∥∥R−1s∥2 ≤ ρK(G)∥R−1s∥2, (8.13)

where the last inequality is obtained considering that ∥GK∥ ≤ ∥G∥K = ρK(G). Note that

such an error bound directly translates to a measure of closeness to the optimal MSE in the

recovery of the target scattering coefficient α0. It is clear from (Equation 8.13) that the spectral

norm ρ(G) provides a certificate for convergence. In addition, once can observe that a judicious

design of W can result in the acceleration of the convergence, i.e., having a smaller ρ(G). The

importance of the above upper-bound is two-fold. First, during the training of the network,

one can check the convergence of the network and obtain a measure of success by looking into

ρ(Gi = I −WRi) for training/testing data points. Second, once the network is trained, the

obtained ρ(G), for a specific covariance matrix, provides an upper-bound on the expected error

of the network for the current number of layers or as we introduce more layers. Indeed, once

the network is certified for a specific R (meaning ρ(G) < 1), one can aim to have ∥e∥2 ≤ ϵ, for

arbitrary ϵ > 0, by employing more layers, for instance K ′ layers, of the trained network (without
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Figure 33. Examination of training and test success: (a) empirical success rate of training/test
data versus training epoch number; (b) worst-Case spectral norm of the training and test data

versus epoch number.

re-training) to meet such a bound via simply choosing K ′ ≥ (ln ϵ− ln ∥w⋆(R, s)∥2) /ln ρ(G).

8.4 Numerical Studies and Concluding Remarks

In this part, we investigate the performance of the proposed DNMI network through various

numerical studies. We set β = 1, and σ2 = 1, and fix the number of layers of the proposed

DNMI to K = 3, and set the signal length to n = 25. We assume that the phases of the

uni-modular probing sequence s is independently and uniformly chosen from the range [0, 2π).

Accordingly, we generate a training dataset of size B = 5000, and evaluate the performance

of the network over a testing dataset of the same size. We train the network for a total of
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Figure 34. Numerical study of performance bounds: (a) the theoretical upper bound on the
performance of the network versus epoch number; (b) the MSE between the estimated

scattering coefficient from the exact MMF and the DNMI-based MMF vector, versus number
of layers of the DNMI network.

100 epochs. Moreover, we define the probability of success as the percentage of data-points for

which we have ρ(I −WRi) < 1.

Fig. 33(a) presents the empirical success rate of both training and testing points versus

epoch number. Furthermore, Fig. 33(b) presents the worst-case training and testing spectral

norm versus training epoch. We define the worst-case spectral norm as the maximum ρ(Gi)

among the points in testing and training datasets. We note that the pre-conditioning matrix is

initialized as W = I, and thus at the very first epoch the network boils down to a regular NS

operator. On the other hand, it can be deduced from Fig. 33(a) that merely using conventional

NS for matrix inversion is not possible (the series diverges) in that none of the data points
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satisfy the convergence criterion, as ρ(Gi) < 1. This shows the importance of employing an

optimized pre-conditioning matrix. However, as the training of the proposed DNMI continues,

one can deduce from Fig. 33(b) that for epochs ≥ 60, the proposed methodology can successfully

achieve ρ(Gi) < 1 for all data-points in both training and testing dataset. Furthermore, the

training and testing curves in Fig. 1 closely following each other indicates the highly significant

generalization performance of the proposed methodology. This is in contrast to the conventional

black-box data-driven methodologies for which the generalization gap is typically large.

Fig. 34(a) demonstrates the theoretical upper-bound on the error obtained in (Equation 8.13)

for the proposed DNMI network versus the training epoch. Interestingly, one can observe that

the network not only implicitly learns to reduce the theoretical upper-bound (which is a func-

tion of the network parameter W ), but also keeps reducing it even after epochs ≥ 60 where the

probability of success and worst-case spectral norm enter the convergence area. This implies

that the learned pre-conditioning matrix is indeed resulting in an acceleration of the underlying

NS (as the network keeps reducing the upper-bound). This phenomenon is also in accordance

with what we observe in Fig. 33(b).

Fig. 34(b) demonstrates the MSE between the estimated scattering coefficient obtained via

employing the exact MMF vector and the one obtained using the proposed DNMI network,

versus the number of layers of the DNMI network. First, we note the MSE between the two

methods is indeed very small, and one can obtain an accurate estimation even with K as low

as 3. Second, we observe that as the number of layers increases, the accuracy of the DNMI

network increases.
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To facilitate fully reliable deep learning for critical applications, we have proposed the model-

based DNMI network which is based on the Neumann series expansions—something that has

not been considered in the existing literature for advanced radar signal processing algorithms. In

contrast to the existing deep learning models, a key advantage of the proposed series expansion-

based DNMI network is its inherent ability to provide worst-case performance guarantees.



CHAPTER 9

CONCLUSION

Despite its flexibility, deep learning imposes new challenges in guaranteeing the performance

of signal processing systems and in establishing trust in safety and critical decision-making

scenarios. we lay the groundwork for our vision in developing interpretable, trustable, and

model-driven neural networks, starting from its theoretical foundations, to advance the state-

of-the-art in statistical signal processing for various applications including but not limited to

communication networks, compressive sensing, phase retrieval, computational imaging, radar

signal processing, and autonomous vehicles. In contrast to generic deep neural networks, which

cannot provide performance guarantees due to their black-box nature, our proposed methodol-

ogy allows for performing a mathematical analysis of the worst-case performance bound of the

model not only during the training of the network but also once the network is trained and

is to be used for inference purposes. Last but not least, due to the incorporation of domain-

knowledge in the design of the network, the total number of parameters of the network are in

the order of the signal dimension and the training can be performed very quickly with far less

data samples—allowing for on-the-fly training for real-time applications, making the proposed

methodologies a great candidate for real-time machine learning and signal processing. Namely,

we significantly advanced the state of the theory of machine learning and signal processing algo-

rithms through a foundational study of model-based deep learning. Specifically, we established

the theoretical guarantees and unveiled the potentials of model-based deep learning for advanced

230
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signal processing schemes. This work is expected to have a significant impact on the theory and

practice of advanced hybrid signal processing, computing and machine learning. The impact of

the proposed reliable model-based machine learning frameworks is remarkable and can be used

in the emerging hardware and software solutions in communication networks, signal processing,

autonomous vehicles, and numerous other fields.

9.0.1 Concluding Remarks and Future Directions

In this thesis, we significantly advanced the state of the theory of machine learning and signal

processing algorithms through a foundational study of model-based deep learning. Specifically,

in Chapter 2 and Chapter 3 we considered the development of a model-based deep architecture

that not on is capable of compensating for unknown system parameters in a data-driven man-

ner, but also is able to accelerate the convergence of the underlying inference algorithm while

showing significantly better performance than that of its fully model-based and data-driven

counterparts. In Chapter 4 and Chapter 5, we visited the problems of one-bit compressive

sensing and phase retrieval and developed several model-based deep architectures specifically

tailored for the problem at hand. We further showed the potential of the proposed model-based

architecture in allowing for learning not only the parameters of the underlying inference rule, but

also learning the sensing matrix in a data-driven manner for a specific task at hand. Our results

have shown that the resulting architecture outperforms the model-based techniques designed for

such problem. Moreover, in Chapter 6, we considered the development of a model-based deep

architecture for the field of automotive radar sensing and proposed a novel online-learning strat-

egy of the proposed approach. We further showed that the proposed approach equipped with



232

the considered online training methodology, is able to quickly adapt to an ever changing envi-

ronment while outperforming the state-of-the-art algorithms in the respective field. In Chapter

7, we considered the problem of blind deconvolution and developed a sophisticated model-driven

deep neural network outperforming the existing methodologies in the field in terms of accuracy,

performance, and speed of convergence. Finally, we devoted the second part of this thesis to pro-

vide mathematical analysis and performance guarantees on the proposed series expansion-based

deep architecture.

In the following, we suggest a few interesting and unexplored future directions:

• The majority of deep unfolding architectures are currently developed based on first-order

methods. A fundamental study on the best-case performance of deep unfolded networks

using the available mathematical analysis in the field of optimization theory can be of

significance interest.

• As explored in Chapter 2, the proposed methodologies and ideas in this thesis can be used

to bridge the gap between relaxed optimization processes and their original counterparts.

A fundamental study of the advantages and applications of learning surrogate models for

bridging such optimality gaps can significantly advance the field.

• As shown in this work, the proposed methodologies in this thesis can be used to not only

learn the optimization/inference solutions but also the underlying problem in a structured

manner. Hence, a fundamental study of learning parametric optimization models for

a given task can significantly advance the state of statistical inference, control theory,

economics, and game theory, among others.
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Transactions on Signal Processing, vol. 68, pp. 5292-5307, 2020. IEEE Xplore
Appeared on the IEEE TSP Popular Articles list, Oct., Nov., and Dec. 2020

• A. Bose?, S. Khobahi?, and M. Soltanalian, “Efficient Waveform Covariance Matrix Design and Antenna
Selection for MIMO Radar”, Signal Processing, Elsevier (2020): 107985. SIGPRO
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• S. Khobahi, M. Soltanalian, F. Jiang, and A. Lee Swindlehurst, “Optimized Transmission for Parameter
Estimation in Wireless Sensor Networks”, IEEE Transactions on Signal and Information Processing over
Networks, vol. 6, pp. 35-47, 2020, doi: 10.1109/TSIPN.2019.2945631. Preprint arXiv:1908.00600 IEEE
Xplore. Appeared on the IEEE TSIPN Popular Articles list, Dec. 2019 - Dec. 2020

• M. M. Naghsh, E. Alian, S. Khobahi, and O. Rezaei, “A Majorization–Minimization Approach for Reducing
Out-of-Band Radiations in OFDM Systems”, IEEE Communications Letters, Vol. 21, Issue 8, pp. 1739–1742,
Aug. 2017. IEEE Xplore

Peer-Reviewed Conference Articles

(? Equal Contribution)

• S. Khobahi, N. Shlezinger, M. Soltanalian, and Y. C. Eldar, “Model-Inspired Deep Detection with Low-
Resolution Receivers”, 2021 IEEE International Symposium on Information Theory (ISIT), 2021, pp. 3349-
3354, doi: 10.1109/ISIT45174.2021.9517812

• S. Khobahi, A. Bose, and M. Soltanalian, “Deep One-Bit Compressive Autoencoding”, 2021 IEEE Statistical
Signal Processing Workshop (SSP), 2021, pp. 371-375, doi: 10.1109/SSP49050.2021.9513806. Invited Paper .

• C. Agarwal?, S. Khobahi?, D. Schonfeld, and M. Soltanalian “CoroNet: A Deep Network Architecture
for Semi-Supervised Task-Based Identification of COVID-19 from Chest X-ray Images”, in Medical Imaging
2021: Computer-Aided Diagnosis. Vol. 11597. International Society for Optics and Photonics, 2021. SPIE
Library, preprint medRxiv

• N. Naimipour?, S. Khobahi?, and M. Soltanalian, “UPR: A model-driven architecture for deep phase
retrieval”, 2020 54th Asilomar Conference on Signals, Systems, and Computers, 2020, pp. 205-209, doi:
10.1109/IEEECONF51394.2020.9443438. Preprint arXiv:2003.04396

• C. Agarwal, S. Khobahi, A. Bose, M. Soltanalian, and D. Schonfeld “Deep-URL: A Model-Aware Approach
to Blind Deconvolution Based on Deep Unfolded Richardson-Lucy Network”, 2020 IEEE International Con-
ference on Image Processing (ICIP), 2020, pp. 3299-3303, doi: 10.1109/ICIP40778.2020.9190825. Preprint
arXiv:2002.01053, IEEE Xplore

• S. Khobahi, A. Bose, and M. Soltanalian, “Deep Radar Waveform Design for Efficient Automotive Radar
Sensing”, 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), 2020, pp. 1-5,
doi: 10.1109/SAM48682.2020.9104367. Invited Paper, preprint arXiv:1912.08180, IEEE Xplore

• S. Khobahi, N. Naimipour, M. Soltanalian, and Y. C. Eldar, “Deep Signal Recovery With One-Bit Quan-
tization”, 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019,
pp. 2987-2991, doi: 10.1109/ICASSP.2019.8683876. Preprint arXiv:1812.00797, IEEE Xplore

• A. Bose?, S. Khobahi?, and M. Soltanalian, “Joint Optimization of Waveform Covariance Matrix and
Antenna Selection for MIMO Radar”, 2019 53rd Asilomar Conference on Signals, Systems, and Computers,
2019, pp. 1534-1538, doi: 10.1109/IEEECONF44664.2019.9048709. Preprint arXiv:1910.07591, IEEE Xplore.

• S. Khobahi and M. Soltanalian, “Signal Recovery From 1-Bit Quantized Noisy Samples via Adaptive Thresh-
olding”, 2018 52nd Asilomar Conference on Signals, Systems, and Computers, 2018, pp. 1757-1761, doi:
10.1109/ACSSC.2018.8645383. Preprint arXiv:1812.03977, IEEE Xplore

• S. Khobahi and M. Soltanalian, “Optimized Transmission For Consensus in Wireless Sensor Networks”, 2018
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 3419-3423,
doi: 10.1109/ICASSP.2018.8461401. Preprint arXiv:1807.11631, IEEE Xplore

WORK EXPERIENCE

• Zadar Labs, Inc. (San Jose, California). Nov. 2021 - Present
· Senior Research Scientist: I am the lead scientist for research and development of novel signal processing
and data processing algorithms and AI for Zadar 4D imaging radar sensor solutions. I leverage my expertise
in signal processing, data processing algorithms, and AI development for the purpose of developing sensor
solutions for the next generation of autonomous systems. Specifically, I am leading a team for developing so-
phisticated signal processing algorithms and I am responsible for designing perception systems and algorithms
for autonomous systems and vehicles and trucking, industrial automation, and intelligent signal processing
modules to detect, classify, and track pedestrians and environmental objects, and conduct HD mapping, and
to further utilize AI models to enable next generation autonomous systems to learn from the ever changing
environment and adapt quickly.
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• Zadar Labs, Inc. (San Jose, California). May 2021 - Aug. 2021
· Research Intern - Signal Processing: I utilized my knowledge in the field of signal processing, telecom-
munications, mathematics, statistics, artificial intelligence, and machine learning to perform fundamental
research for perception systems for the next-generation intelligent and autonomous systems. In particular,
I focused on developing novel state-of-the-art signal processing and beamforming techniques for 4D imaging
radars. As a result, I devised a novel beamforming technique known as Zadar FFT which can carry out the
beamforming task with an outstanding accuracy outperforming all the existing models for this task.

• KMB TELEMATICS, Inc. (Arlington, VA). May 2019 - Aug. 2019
· Senior Research Engineer, Intern: Performed fundamental research in optimization theory, machine
learning, and novel signal processing techniques in the field of automotive radar with applications in FMCW
radar imaging systems. In particular, we developed an efficient optimizer for the task of 2D radar antenna
array design for autonomous vehicles.

SELECTED HONORS AND AWARDS

• Recipient of the 2020-21 College of Engineering Graduate Student Award for Exceptional Re-
search Promise, University of Illinois at Chicago (this scholarship is awarded annually to only one student
from the Electrical and Computer Engineering Department, Summer 2021.

• Recipient of the Firdawsi Science Fellowship Award, University of Illinois at Chicago (this scholarship
is awarded annually to only one student throughout the University of Illinois campuses), Summer 2020.

• Recipient of the Wexler Award ($5000), University of Illinois at Chicago (only 2% of the students), Fall
2016.

TEACHING EXPERIENCE

• Teaching Assistant. ECE437: Wireless Communications, University of Illinois at Chicago. Spring 2019

• Teaching Assistant. ECE417: Digital Signal Processing II, University of Illinois at Chicago. Fall 2018

• Teaching Assistant. ECE317: Digital Signal Processing I, University of Illinois at Chicago. Spring 2018

• Teaching Assistant. ECE310: Discrete and Continuous Signals and Systems, University of Illinois at
Chicago. Fall 2017

PROFESSIONAL SERVICES

• Main Contributer to the NASA’s Open-Source Project: “Toward an Open-Source, Python-Powered, Multi-
Doppler Radar Analysis Suite”, T. Lang, M. Souto, S. Khobahi, and B. Jackson.

• Reviewer (Journal) – Elsevier Journal of Signal Processing

• Reviewer (Journal) – IEEE Transactions On Signal and Information Processing over Networks.

• Reviewer (Journal) – IEEE Transactions on Signal Processing.

• Reviewer (Journal) – IEEE Transactions on Communications.

• Reviewer (Journal) – IEEE Transactions on Internet of Things.

• Reviewer (Journal) – IEEE Signal Processing Letters.

• Reviewer (Journal) – IEEE Communications Letters.

• Reviewer (Journal) – MDPI Journal of Sensors.

• Reviewer (Conference) – IEEE Vehicular Technology Conference (VTC2019-Spring)

• Reviewer (Conference) – European Signal Processing Conference 2017 (EUSIPCO).

COMPUTER SKILLS

• Programming Languages:
- C/C++, Python, MATLAB and Simulink, OCaml, Perl, Bash, X86 Assembly

- Verilog (VHDL), AVR Assembly

- PHP, HTML

• Machine Learning and Statistical Inference Frameworks:
- PyTorch, Tensorflow, Keras, OpenAI Gym, Numpy
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• Electrical and Computer Engineering Softwares and Modules:
- Orcad, Proteus, Pspice and Schematic, HSpice, Altium Designer

• Data Management:
- MySQL, Microsoft Access, NoSQL, Excel

• Other:
- Microsoft Office, LATEX, OpenCV Lib, VisualStudio, CodeVision, AVR/ARM Programming


