
Machine Learning and Signal Processing Algorithms for a CPS with

Chemical and Infrared Sensors

BY

DIAA H J BADAWI
M.Sc. in Electrical and Electronics Engineering, Bilkent University, Turkey

B.Sc. in Communications Engineering, An-Najah National University, Palestine

DISSERTATION

Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Chicago, 2022

Chicago, Illinois

Defense Committee:
Rashid Ansari, Chair
Ahmed Enis Cetin, Advisor
Pai-Yen Chen
Natasha Devroye
Erdem Koyuncu
Sule Ozev, Arizona State University

Copyright by

DIAA H J BADAWI

2022

dedicated to my family

iii

ACKNOWLEDGMENTS

I would like to thank the National Science Foundation NSF for providing funding for my

research via Grant 1739396. I would like to thank Professor Sule Ozev of ASU and her team

for providing us with sensor data that was used throughout this work. I would like to thank my

advisor Professor Enis Cetin for his support and invaluable feedback throughout my doctoral

journey.

DB

iv

CONTRIBUTION OF AUTHORS

In the work “Computationally Efficient Spatio-Temporal Dynamic Texture Recognition for

Volatile Organic Compound (VOC) Leakage Detection in Industrial Plants”, Diaa Badawi and

Ahmet Enis Cetin developed the algorithms. Diaa Badawi collected most of the data and

processed the data and carried out most of the experiments. Hongyi Pan and Sinan Cem Cetin

helped in collecting the data and carrying out parts of the experiments. Ahmet Enis Cetin was

the supervisor of the work. Diaa Badawi wrote the paper, with help from Ahmet Enis Cetin.

In the work “Real-Time Low-Cost Drift Compensation for Chemical Sensors Using a Deep

Neural Network with Hadamard Transform and Additive Layers”, Diaa Badawi and Ahmet Enis

Cetin developed the framework. Diaa Badawi carried out the experimentations. Agamyrat

Agambayev collected part of the data used in the work. Ahmet Enis Cetin and Sule Ozev

supervised the work. Diaa Badawi wrote most of the paper, with help from the other co-

authors.

In the work “Detecting Anomaly in Chemical Sensors via Regularized Contrastive Learn-

ing”, Diaa Badawi developed the idea. Ishaan Bassi collected part the data used in the work,

under the supervision of Sule Ozev. Ahmet Enis Cetin supervised the work. Diaa Badawi wrote

the paper, with help from Ahmet Enis Cetin.

v

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION & OVERVIEW . 1
1.1 Specific Objectives . 5
1.2 Significant Results . 5
1.3 Key outcomes or Other achievements 7
1.4 Organization of This Thesis . 7

2 GAS LEAK SOURCE LOCALIZATION USING SPARSE UN-
RELIABLE SENSOR DATA . 8
2.0.1 Organization . 9
2.1 Gas Source Localization . 9
2.2 Bandlimited Interpolation . 11
2.2.1 Iterative Projections Onto Convex Sets 12
2.2.1.1 Background . 12
2.2.1.2 Papoulis-Gerchberg (PG) Algorithm 14
2.2.2 Limitations of Bandlimited Based Interpolation 15
2.3 Deep Learning Methods for Solving Inverse Problems 16
2.4 Deep Learning Based Projection onto Convex Sets (POCS)

Framework . 17
2.4.1 Discrete Cosine Transform POCS Procedure for Interpolating

Gas Density Field from Sparse Data 17
2.4.2 DCT POCS for Binary Input . 20
2.4.3 Deep DCT POCS . 23
2.4.3.1 Deep DCT POCS with Unknown Bandwidth 26
2.4.3.2 Training Deep DCT POCS . 30
2.4.4 Network Architecture . 32
2.5 Methane Leak Detection . 33
2.5.1 Pre-processing IR Imaged Data 33
2.5.2 Modeling Sparse Unreliable Sensor Data from Pixel Intensity

Values . 34
2.6 Experimental Results for Methane IR Methane Data 36
2.6.1 Results with Real-Valued Input Measurements 36
2.6.1.1 Source Localization Results . 37
2.6.2 Results with Binary-Valued Input Measurements 43
2.6.2.1 Peak-Location Aware Loss Criterion 43
2.7 Isopropyl Alcohol Leak Detection and Source Localization . . 47
2.7.1 Data Acquisition . 48
2.7.2 Sensors Calibration . 49

vi

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

2.8 Experimental Results . 53
2.8.0.1 Training the Model with Partially Known Ground Truth . . . 53
2.9 Conclusion . 56

3 COMPUTATIONALLY EFFICIENT DEEP LEARNING SYS-
TEM FOR VOC LEAK DETECTION USING INFRARED IMAG-
ING AND CHEMICAL SENSORS . 58
3.1 Motivation and Background . 58
3.1.1 Organization . 63
3.2 Computationally Efficient Spatio-Temporal Video Analysis Frame-

work . 65
3.2.1 Computational Complexity of 1-D CNN vs 2-D CNN 66
3.2.2 One-dimensional Temporal Analysis of Dark Moving Pixels in

IR Video . 66
3.2.3 Two-Dimensional (2-D) Spatio-Temporal Analysis Network . 69
3.2.4 Additive-Correlation Based Spatio-temporal Neural Network . 70
3.3 Dataset and Results . 73
3.3.1 One-Dimensional (1-D) Data Set 73
3.3.2 IR Video Dataset for 2-D Spatio-Temporal Processing 78
3.3.3 Joint Performance Evaluation and Discussion 81
3.3.4 Computational Efficiency of AddNet 83
3.4 Conclusion . 89

4 REAL-TIME LOW-COST DRIFT COMPENSATION FOR CHEM-
ICAL SENSORS USING A DEEP NEURAL NETWORK WITH
HADAMARD TRANSFORM AND ADDITIVE LAYERS 90
4.1 Introduction . 90
4.1.1 Organization . 93
4.2 The Sensor Drift Problem . 93
4.3 TCNN with Spectral Transform Domain Layers 96
4.3.1 Transform Domain Thresholding Blocks 97
4.3.2 Additive TCNN with Transform Domain Layers 101
4.3.3 TCNN Architecture . 102
4.4 Min Operator: Multiplication-Free Kernel `1 Based-Operator 105
4.5 Unsupervised Sensor Drift Estimation Using Min-Op PCA and

Discrete Cosine Transform . 110
4.6 Experimental ans Simulation Results 113
4.6.1 Datasets . 113
4.6.2 Comparison with Papoulis-Gerchberg (PG) Algorithm-Based

Method . 120
4.6.3 Comparison with Shallow Multi-Layer Perceptron-Based Pre-

dictor . 123

vii

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4.6.4 Results of Usupervised Sensor Drift Estimation via Min Oper-
ator KPCA on the JPL Dataset 125

4.7 Conclusion . 130

5 DETECTING ANOMALY IN CHEMICAL SENSORS VIA REG-
ULARIZED CONTRASTIVE LEARNING 131
5.1 Introduction . 131
5.2 Organization . 133
5.3 Anomaly Detection Network . 134
5.3.1 Outlier-Modified Contrastive Loss 134
5.3.2 Kernel-Based Cosine Similarity Metric 136
5.3.3 Inference Phase . 138
5.3.4 Feature Extraction Deep Network 139
5.4 Experiments and Results . 140
5.4.1 Experiment Setup and Data acquisition 141
5.4.2 Anomaly Detection Example . 141
5.5 Conclusion . 146

APPENDICES . 147
Appendix A . 148
Appendix B . 151

CITED LITERATURE . 155

VITA . 167

viii

LIST OF TABLES

TABLE PAGE

I THE ARCHITECTURE OF THE DEEP REGULARIZED NET-
WORK. THE FILTER SIZE IS 3 × 3 IN THE LAYERS EXCEPT
THE FIRST AND LAST (CONV 1 AND CONV 7), WHERE IT IS
SET TO 5× 5. 33

II RESULTS WITH 480 SENSOR MEASUREMENTS FOR THE DEEP
REGULARIZED POCS COMPARED TO GMM FITTING AND
TRADITIONAL POCS. 38

III RESULTS WITH 100 SENSOR MEASUREMENTS FOR THE DEEP
REGULARIZED POCS COMPARED TO GMM FITTING AND
TRADITIONAL POCS. 39

IV RESULTS WITH 480 SENSOR MEASUREMENTS FOR THE DEEP
REGULARIZED POCS COMPARED TO GMM FITTING AND
TRADITIONAL POCS. 44

V RESULTS WITH 100 SENSOR MEASUREMENTS FOR THE DEEP
REGULARIZED POCS COMPARED TO GMM FITTING AND
TRADITIONAL POCS. 47

VI AVERAGE DISTANCE BETWEEN THE LOCATION OF THE
PEAK OF THE RECONSTRUCTED SIGNAL AND THE TRUE
SOURCE LOCATION VERSUS THE DISTANCE BETWEEN THE
TRUE SOURCE AND THE CENTROID OF THE THREE SEN-
SOR MEASUREMENTS . 56

VII ARCHITECTURE OF THE 1-D CONVOLUTIONAL NEURAL NET-
WORK USED IN TEMPORAL SIGNAL CLASSIFICATION 69

VIII ARCHITECTURE OF THE 2-DIMENSIONAL SPATIO-TEMPORAL
NEURAL NETWORK AND THE ADDNET. “N” REFERS TO
THE NUMBER OF SUCCESSIVE FRAMES FED TO THE CNN
(TEMPORAL DEPTH DOMAIN). THROUGHOUT OUR EXPER-
IMENTS, WE SET N TO 3,4 AND 5. 70

ix

LIST OF TABLES (Continued)

TABLE PAGE

IX RESULTS OF THE CONFIDENCE SCORE OVER DIFFERENT
SCENES. THE MEAN SCORES AND THE STANDARD DEVIA-
TIONS ARE ESTIMATED FROM 10 DIFFERENT TRIALS. . . . 77

X TRUE POSITIVE RATES OVER BUTANE-POSITIVE IR-THERMAL
VIDEOS WE GATHERED USING A LOW RESOLUTION BOLOMETER-
TYPE IR CAMERA. RESULTS ARE SHOWN FOR DIFFERENT
NUMBER OF INPUT CHANNELS (FRAMES) OF THE 2D CNN. 81

XI RECOGNITION RATES OVER THE POSITIVE AND THE NEG-
ATIVE SCENES WE USED IN OUR VALIDATION DATA SET. . 82

XII THE PERFORMANCE RESULTS OF THE SPATIO-TEMPORAL
VOC DETECTION SYSTEM OVER A TEST DATA SET. 84

XIII EXECUTION TIME RESULTS OF CNN AND ADDNET MINI-
BATCH INFERENCE FOR DIFFERENT MINI-BATCH SIZES. . 85

XIV MEAN SQUARE ERROR (MSE) OVER THE JPL DATA SET FOR
SIX TCNN MODELS AND THE PAPOULIS-GERCHBERG (PG)
ALGORITHM: THREE REGULAR AND THREE ADDITIVE (MULTIPLICATION-
FREE) MODEL. WE IMPLEMENTED THREE MODELS USING
THE REGULAR TCNN AND ADDITIVE TCNN, RESPECTIVELY:
“NONE” MEANS REGULAR TCNN, THE SECOND AND THE
3RD COLUMNS REFER TO DCT AND HT BASED TCNNS, RE-
SPECTIVELY. THE LAST THREE COLUMNS REPORT THE
MSE RESULTS OF THE PG ALGORITHM FOR DIFFERENT
BANDWIDTH SELECTION. THE NUMBERS 8,16, AND 24 COR-
RESPOND TO THE CUTOFF FREQUENCY INDEX FOR A DFT
OF SIZE 4096 USED IN PG ALGORITHM. WE ALSO SHOW THE
AVERAGE MEAN-ABSOLUTE ERROR FOR THE DIFFERENT
ALGORITHMS USED. 127

XV MEAN SQUARE ERROR (MSE) OVER THE AMMONIA DATA
SET FOR SIX TCNN MODELS: THREE REGULAR AND THREE
ADDITIVE (MULTIPLICATION-FREE) MODEL. “NONE” MEANS
A REGULAR TCNN STRUCTURE (WITHOUT TRANSFORM
DOMAIN LAYERS). WE ALSO REPORT THE AVERAGE MEAN-
ABSOLUTE ERROR FOR THE DIFFERENT MODELS USED. . 128

x

LIST OF TABLES (Continued)

TABLE PAGE

XVI MEAN SQUARE ERROR (MSE) OF THE DRIFT ESTIMATION
USING UNSUPERVISED PCA AND DCT. WITH TWO TYPES
OF PCA: LINEAR AND MIN-OPERATOR KERNEL PCA. . . . 129

XVII TEMPORAL CONVOLUTIONAL NEURAL NETWORK ARCHI-
TECTURE. EACH BLOCK (EXCEPT THE FINAL LAYER), CON-
SIST OF 3 LAYERS. THERE ARE RESIDUAL (SKIP) CONNEC-
TIONS BETWEEN CONSECUTIVE BLOCKS. 139

XVIII AREA UNDER CURVATURE (AUC) FOR VARIOUS METHODS.
THE DEEP CONTRASTIVE LEARNING FRAMEWORK PRO-
VIDES THE BEST AUC. 142

XIX HYPERLINKS OF THE VIDEOS FROM WHICH WE OBTAINED
TEMPORAL 1-D SIGNALS. HERE, WE USED ONLY ONE SCENE
PER VIDEO TO EXTRACT TEMPORAL 1-D SIGNALS. 148

XX HYPERLINKS OF THE VIDEOS FROM WHICH WE EXTRACTED
TWO DATASETS: SCENE 1-20 ARE THE DATA SET USED TO
ESTABLISH THE CONFIDENCE SCORE AS IN TABLE IX. SCENE
1-20 ARE ALSO USED AS VALIDATION DATASET FOR THE
SPATIO-TEMPORAL CNN AS IN TABLE XI. SCENE 21-32 ARE
THE TEST DATA SET USED IN THE JOINT EVALUATION OF
BOTH 1-D AND 2-D CNNS AS IN TABLE X 149

XXI VIDEO LINKS FOR THE SPATIO-TEMPORAL TRAINING DATA
SET. THERE ARE A TOTAL OF 33 SCENES WHICH CONTAIN
NO VOC-LEAK AND 15 SCENES WHICH CONTAIN VOC LEAK.
THE SCENES VARY IN LENGTH. 150

xi

LIST OF FIGURES

FIGURE PAGE

1 example of the convergence of the acceleration factor α to unity in the
POCS procedure with binary constraints 24

2 Illustration of the Deep DCT POCS Architecture with two steps unrolled 29

3 illustration of the background subtraction process 35

4 Example of an input signal and the DNN-DCT-POCS with 480 input
measurements. (a) the ground truth gas leak image with the source
marked in red. (b) Location of the all sensors. (c) the sparse input
signal to the DNN. (d) the output of the DNN. The global maximum
point is marked in blue. 41

5 Another example of an input signal and the DNN-DCT-POCS with only
100 input measurements. (a) The ground truth gas leak image with
the source marked in red. (b) Location of the all sensors. (c) The
sparse input signal to the DNN. (d) The output of the DNN. The global
maximum point is marked in blue. 42

6 Example of an input signal and the DNN-DCT-POCS with 480 binary
input measurements. (a) the ground truth gas leak image with the source
marked in red. (b) the fully binarized ground truth. (c) the locations
of the sparse measurement. (d) the output of the DNN. The global
maximum point is marked in blue. 45

7 Example of an input signal and the DNN-DCT-POCS with 100 binary
input measurements. (a) the ground truth gas leak image with the source
marked in red. (b) the fully binarized ground truth. (c) the locations
of the sparse measurement. (d) the output of the DNN. The global
maximum point is marked in blue. 46

8 Illustration of the isopropyl alcohol 18×18 inch2 grid with the source
stationed at (x = 6, y = 9) and the three sensors located at (x = 9, y =
6), (x = 6, y = 12), and (x = 15, y = 9). The corresponding time series
are shown in Figure 9 . 51

xii

LIST OF FIGURES (Continued)

FIGURE PAGE

9 The corresponding calibrated time series measurements of each sensor
in the experiment shown in Figure 8 . 52

10 Example of output image given the isopropyl alcohol sensor measure-
ments over three locations. The sensor locations are colored in red. The
source is located at the blue point, while the predicted source location
(the argmax of the output image) is located at the green point. 55

11 Toluene absorbance as a function of the wavelength in infrared range.
The scale of the wavelengths (x-axis) is in micrometers. The plot is
downloaded from [1]. 59

12 Example IR thermal image (a) and a corresponding ordinary camera
image (b) for the same scene. As we can see, the VOC leak is not visible
in the case of visible light image. Images (a) and (b) are taken from [2] 61

13 Example IR-thermal frames of VOC leaks. As we can see, it is not easy
to figure out the VOC leak from a single image frame. 62

14 Example IR-thermal frame sequence of VOC leaks. 62

15 Time-series data of three pixels in VOC leakage regions in IR video. . . 63

16 Time-series data of three pixels in thermal IR video. The time-series
shown in blue corresponds to a moving object. 64

17 Block diagram of our proposed system. “Th” stands for threshold. . . . 67

18 Example IR image frames containing VOC leaks. 76

19 Example ordinary image frames from IR videos used in training the
neural networks . 78

xiii

LIST OF FIGURES (Continued)

FIGURE PAGE

20 Intermediate feature maps for 4 different example time-series signals.
The signals in blue are the input signals and the signals in green and
red are four different features maps from the second convolutional layer.
Example (a) is taken from a VOC-positive video and classified as VOC-
positive. Example (b) is taken from a VOC-positive video and classified
as VOC-negative. Example (c) is taken from a normal (VOC negative
video) and classified as negative, whereas Example (d) is taken from a
VOC negative video and classified erroneously as VOC-positive. Each
feature signal has a length of 35 samples and is scaled to match the
length of the original signal (160 samples) for demonstration purposes. 86

21 An example of thermal image obtained by a low-cost bolometer-type IR
camera. The darker region corresponds to butane leakage. 87

22 Example image frames from various videos that we used in testing our
deep neural networks. All the frames except the bottom-left frame are
correctly recognized by the CNN and AddNet. 87

23 Example feature maps of the first convolutional layer for two examples:
(a) A wildlife scene with no VOC and (b) a scene with VOC gas leak.
The values are re-scaled for demonstration purposes. 88

24 Example image from Scene 27 (pump gas leak). 88

25 Example of drift signal showing the low-frequency nature of the drift
signal . 94

26 Example of drift signal showing that the drift signal can increase and
decrease . 95

27 Block diagram of the proposed system: The system receives sensor mea-
surements and estimates the drift using a TCNN network with transform
domain layers. The TCNN network is made up of a cascade of dilated
convolutional and orthogonal transform residual blocks. The system
then subtracts the drift estimate from the input signal and generates
the drift-corrected signal in real-time. 96

28 Test examples from the JPL data set (in black) and the estimated drift
from JPL data set using regular (multiplicative) TCNNs with no spectral
thresholding (in red), with DCT based layers (in green), and with HT
based layers (in blue). Vertical lines mark the beginnings of gas excitations. 114

xiv

LIST OF FIGURES (Continued)

FIGURE PAGE

29 Test examples from the JPL data set (in black) and the estimated drift
using additive (multiplication-free) TCNNs with no spectral threshold-
ing (in red), with DCT based layers (in green), and with HT based layers
(in blue). 115

30 Results over the Ammonia data set obtained by the three TCNN models.
The original signal is in black. The red-colored signals are obtained by
the baseline TCNN, while the green- and blue-colored are obtained by
the TCNNs with DCT and HT layers, respectively. 118

31 Results over the Ammonia data set obtained by the three additive TCNN
models. The original signal is in black. The red-colored signals are
obtained by the baseline TCNN, while the green- and blue-colored are
obtained by the TCNNs with DCT and HT layers, respectively. 118

32 JPL Sensor 5: Original Signal (in red) and the predicted drift using a
MLP predictor (in green), with ε = 0.1(top), and 0.7(bottom), compared
to the drift estimate of the HT based TCNN (in blue). 122

33 JPL Sensor 13: Original Signal (in red) and the predicted drift using a
MLP predictor (in green), with ε = 0.1(top), and 0.7(bottom), compared
to the drift estimate of the HT based TCNN (in blue). 123

34 Results of the drift estimates using the unsupervised PCA-DCT ap-
proach. The black signals correspond to the manually estimated drift.
The blue signals correspond to the drift estimates using Min-op kernel
PCA (R=1), and the red signals correspond to the drift estimates using
linear PCA (R=1). 126

35 Illustration of our experimental setup. 140

36 Outlier score results for the three sensors in two experiments used in
testing. The second sensor (second rows) is the poisoned sensor. The
learned-representations outlier score is in red, while the dashed red lines
correspond to the outlier score with the cosine similarity metric applied
directly to the input (no learning). Notice in the case of the second
sensor, almost all the time the deep outlier score is significantly higher
than in the baseline case. In the right experiment, both scores decrease
at around time 4000 seconds. This is because the anomaly experienced
at the previous discharge is no longer present in the 384-second-long
segments. We consider the output then to be in-lier. 144

xv

LIST OF FIGURES (Continued)

FIGURE PAGE

37 Receiver operating characteristic curve (ROC) for the contrastive-learning
model (blue), shallow cosine-similarity-based model (green), and the
shallow min-operator-based similarity (red). 145

xvi

LIST OF ALGORITHMS

ALGORITHM PAGE

1 Pseudocode for the deep regularizer DCT-POCS procedure. The algo-
rithm takes the sparse input xg and the two logical masks MNZ and MNZ, the
number of unrolling steps is L, and the number of unrolling steps for the POCS
algorithm is K. The algorithm returns the output zL that represents the com-
pleted (interpolated) image data. The subroutine POCS(yij , xg,MNZ,MZ,BWj ,K)

implements Equation 2.7 with initial condition yij for K steps. The set BW
has B different bandwidth parameters . 27

2 Pseudocode for the deep regularizer DCT-POCS procedure with binary
constraints. The algorithm takes the two input masks Su and Si and the two
.The number of unrolling steps is L, and the number of unrolling steps for the
POCS algorithm is K. The algorithm returns the output zL that represents
the completed (interpolated) image data. The subroutine POCS(yij ,Su,Sl,K)

implements Equation 2.7 with initial condition yij for K steps. The initial

condition for the entire procedure xinit is an N ×N map with 1 if (i, j) ∈ Su,
and zero otherwise. The set BW has B bandwidth parameters 28

3 Pseudocode of the design of TCNN. Conv1D(k,r,D) is a convolutional
layer of filters of sizes k, dilation rates r, and outputs D feature maps. 104

4 Proposed algorithm for separating the drift and the desired signals from
sensor measurements from sensor array. α is the update rate. PCA(., R)
calculates and returns the leading R principal components 112

xvii

SUMMARY

In this dissertation, we present our deep learning-based solutions to crowd-sourced cyber-

physical systems (CPS) with low-cost chemical sensors to detect ammonia and methane gas

leakages. The first algorithm is a gas-leak detection method using uncalibrated sensors. The

idea is to construct one-dimensional time-varying waveforms that represent the temporal history

of sensor measurements at a location and feed the one-dimensional signals to a convolutional

neural network. Our main observation is that while ammonia and other volatile organic com-

pounds can be detected using chemical sensors, sensor measurements decrease over time due

to deterioration in the sensor conditions known as sensor drift. We show that it is possible to

detect gas leaks even with “below-the-threshold values” using data-driven machine learning al-

gorithms. Furthermore, we show that the detection process can be improved by using the data

from multiple sensors. We develop a multiplication-free neural network that is more suitable

for energy-constrained devices than the vanilla network, and we show it can achieve good detec-

tion and drift correction accuracy. We also show that integrating Hadamard-transform-based

layers into the deep learning structure achieves better results, thanks to the regularization ef-

fect of the transform. We also investigate a novel `1-inducing kernel metric for drift correction

in a multiple-sensor system in unsupervised settings. Our results show that the kernel-based

approach achieves better robustness than the baseline methods. The second algorithm aims

to detect malfunctioning units in a sensor array system. The deep-learning algorithm aims

at learning contrast between normal and abnormal sensors to achieve better sensitivity than

xviii

SUMMARY (Continued)

direct similarity comparison. We also devise a similarity score based on the aforementioned

`1-inducing operator. Our results show that learning new representations via a contrastive

learning scheme improves the ROC score from direct methods by 3.5%. Our third algorithm

estimates the location of a gas leak source using sparse unreliable spatio-temporal chemical sen-

sor data. This algorithm is based on deep learning and classical inverse problem methods. The

neural network has a Fourier-domain layer that models the smoothness of the gas plume. In the

transform domain, we project the feature map values onto a low-pass region whose boundary is

determined during training using the backpropagation algorithm. This operation is equivalent

to making a projection onto a convex set representing the smoothness of the data, and it is em-

bedded into the non-linear structure of the convolutional neural network. We considered both

VOC source leak detection and the ammonia vapor leak detection problems. In practice, we use

the Discrete Cosine Transform (DCT) instead of the Fourier transform to take advantage of real

arithmetic. Our method produces better results than the classical Papoulis-Gerchberg-based

interpolation and Gaussian-mixture model-based interpolation methods.

xix

CHAPTER 1

INTRODUCTION & OVERVIEW

We developed deep machine learning-based solutions to a crowd-sourced Cyber-Physical

System (CPS) with low-cost sensors detecting leaking ammonia and methane gas plumes. These

machine learning algorithms are (i) gas detection methods without using a system-level fixed

threshold, (ii) anomalous sensor detection, and (ii) estimation of the gas leak source location

using multiple sensors. Our machine learning algorithms are computationally efficient and can

be used in edge devices.

(i) We developed Machine Learning (ML) based gas leakage detection algorithms using

uncalibrated sensors. We tested the algorithm using ammonia and Volatile Organic Compounds

(methane, ethane, butane, etc.). We collected our own Volatile Organic Compound (VOC) data

and used data available on the Internet in our paper [3]. The sensor response to ammonia and

VOC’s are similar [4]. Our main idea is to construct a one-dimensional (1-D) time-varying

waveform representing the temporal history of sensor measurements and feed the 1-D signals

obtained from several sensors to 1-D convolutional neural networks. Generally speaking, sensors

generate random values close to zero when there is no gas leak, but whenever ammonia and

VOC chemicals are detected, the sensor values increase. The sensor values may fluctuate and

decrease after some time in open air due to wind and chemical sensor drift. Nevertheless,

gas leaks can be detected even when “below a fixed-threshold value” using a machine learning

algorithm that was trained using similar sensor data.

1

2

Drift correction is a crucial pre-processing step for reliable and accurate gas analyte detection

and identification in chemical sensors and Electronic nose (E-nose) systems [5]. Sensor drift

causes the characteristics of a chemical sensor’s response to change over time. Our Deep-

Learning (DL) algorithm can estimate the baseline level of the sensor using an interpretable

multiplication-free Hadamard transform-based layer. We apply data (feature-map) smoothing

in the transform domain [6–8]. As a result, we showed that detecting gas molecules below

system resolution is possible using uncalibrated sensors using DL. We also showed that the

detection process is more reliable than a single sensor by taking advantage of a large number of

deployed sensors [4]. The developed ML algorithms allow us to detect gas leaks at “below-the-

threshold” levels because the server-based decision-making framework improves the accuracy

significantly compared to a single sensor. We not only used a regular 1-D temporal convolutional

neural network but an Additive neural Network (AddNet) [3,4,9]. AddNet uses the Hadamard

transform and additive operators which adds the absolute values of two operands and determines

the sign of the result as the sign of multiplication. The resulting dot-product “induces” the `1

norm. AddNet performed better than the binary neural network in our dataset. The AddNet

allows us to implement the ”below-the-threshold” gas leak detection algorithms at the edge in

simple architectures which do not have the GPU processing capability. This approach when

combined with server-based decision making will provide a very reliable solution for ammonia

leak-based explosive detection in large-area public gatherings.

In summary, the proposed DL-based algorithm utilizes both the spatial correlation between

the sensors and the temporal correlation between sensor measurements to make decisions, and

3

it can be used in other crowd-sourced CPS systems with low-cost sensors. In addition, the

proposed ML-based ’below-the-threshold” detection scheme can be used in Infrared (IR) sensors

and cameras as well [3]. VOC and ammonia plumes appear as dark clouds in IR cameras. In [3]

we describe a two-stage deep neural network structure, taking advantage of both spatial and

temporal structure of the dynamic texture regions created by the leaking VOC plume. We first

detect moving pixels that are darker than their neighboring pixels. We extract one-dimensional

(1-D) signals representing the temporal history of such pixels from video and feed the 1-D

time-history waveforms to a 1-D convolutional neural network. If those pixels are near the edge

of a VOC plume, their 1-D temporal signals exhibit high-frequency behavior and eventually

they become dark pixels. A properly trained ML algorithm such as a neural network generates

high probability estimates for such pixels. If the 1-D neural network generates high confidence

values, the final decision is reached using a deep convolutional neural network (CNN) which

processes image frames. The proposed algorithm uses both spatial and temporal correlations

to reach the final decision. As a result, the system does not rely on (a) any fixed thresholds,

and (b) it is more robust compared to an ML algorithm using only spatial information (similar

to an image). The computational complexity of the system is also lower compared to a system

using multiple image frames or the three-dimensional data cube for decision making.

(ii) Some of the low-cost sensors may malfunction due to sensor drift and chemical poisoning

or they may simply be dead. We developed a method for detecting anomalous chemical sensors

using a deep neural network using the contrastive learning-based framework [10]. In many

practical systems including our CPS, an array of multiple chemical sensors is used. In standard

4

contrastive learning, the aim is to learn representations that will have maximum agreement

among data samples of the same concept while having a minimal agreement with data samples

from other concepts. We adapted standard contrastive learning to find useful representations

for out-of-distribution sample detection. Furthermore, we compare the proposed framework

with the cosine similarity measure and a novel similarity measure that we developed based

on the `1 norm. The measure uses the operator that we use in the AddNet structure. Our

experimental results show that our approach achieves higher AUC scores than baseline methods

in our dataset. The low-cost `1 norm-based similarity measure can be used in systems requiring

computational efficiency.

(iii) Our third algorithm estimates the location of a gas leak source using sparse unreliable

spatio-temporal chemical sensor data. This algorithm is also based on deep learning and it has

transform domain layers similar to our networks described in [3, 4, 6, 7, 9]. The neural network

has a Fourier domain layer that models the smoothness of the gas plume. In addition, we have a

novel projection-based operation for estimating the underlying gas leak signal and, henceforth,

predicting the source location. In the transform domain, we project the feature map values onto

a low-pass region whose boundary is determined during training using the backpropagation

algorithm. This operation is equivalent to making a projection onto a convex set representing

the smoothness of the data and it is embedded into the non-linear structure of the convolutional

neural network. We considered both VOC source leak detection and the ammonia vapor leak

detection problems. In practice, we use the Discrete Cosine Transform (DCT) instead of the

Fourier transform to take advantage of real arithmetic. Our method produces better results

5

than the classical Papoulis-Gerchberg based interpolation and Gaussian-mixture model-based

interpolation methods.

1.1 Specific Objectives

• We developed an adaptive chemical sensor drift estimation algorithm. The algorithm

estimates the chemical sensor’s baseline response. Our sensor drift estimation algorithm

is computationally efficient and it can be an embedded part of the low-cost smart sensors.

The estimation algorithm can be implemented in the server as well. The server can

subtract the estimated baseline level from the sensor response to determine gas leaks that

are ”below-the-threshold” level.

• We developed anomalous sensor detection algorithms. One of the algorithms is based on

deep learning. The second algorithm is based on classical principal component analysis

(PCA) using a novel correlation operator which induces the L1 norm. Since the new

correlation operator is a Mercer-type kernel. The method is a kernel-PCA method.

• We developed a deep-learning based method pinpointing the location of the explosive

device producing the gas vapor from sparsely located sensor data. Our method combines

a Fourier domain interpolation method with deep learning. We tested our algorithm using

VOC methane gas data.

1.2 Significant Results

• We showed that using thresholds in chemical sensors may lead to incorrect detection

results due to sensor poisoning. We observe the temporal waveform (time-varying signal)

6

that the sensor produces, and decide if the sensor is detecting ammonia or the VOC

compounds including methane. The time-varying signal is very noisy in practice. We

developed a neural network-based algorithm to monitor the temporal sensor waveform

and the network makes the detection decision.

• We developed computationally efficient neural networks using binary operations. The

neural networks can be used in other edge computing applications. The correlation oper-

ation that we use in these neural networks is related to the `1 norm.

• One of our computationally efficient correlation operations turns out to produce positive

semi-definite covariance matrices. Therefore it is a Mercer-type kernel. We perform the

vector product of two vectors as follows: K(x,w) =< x,w >:=
∑

i sign(xiwi) min(|xi|, |wi|)

which turns out to induce the `1 norm: < x, x >= ||x||1. This kernel is novel and it can

be used in other applications [11].

• We introduced interpretable Fourier, DCT, and Hadamard transform domain layers to

neural networks. In the transform domain, we impose a “band-limitedness” (or smooth-

ness) constraint on the sensor signal. The gas vapor signal should have a smooth texture

and be low-pass in nature. We observe this behavior in infrared videos of methane and

ammonia leaks. We can impose this information on the feature maps of the neural net-

work by using transform domain layers. We do not assume any specific bandwidth value

as in classical Projections Onto Convex Sets (POCS)-based interpolation algorithms. We

also denoise the feature maps in the transform domain using soft-thresholding (or smooth

thresholding).

7

• Our gas source location estimation algorithm from sparsely located sensor data can be

used in other applications. Source location detection problem is similar to reconstructing

a physical field from sparse sensors or 3D scene reconstruction from point clouds.

1.3 Key outcomes or Other achievements

We developed a crowdsourced cyber-physical system made up of large numbers of ordinary

people using small and low-cost sensors which respond to gas leaks. We developed ML algo-

rithms using the temporal waveforms that the sensors produce. Our data is spatio-temporal in

nature because the sensors are not in fixed locations. We showed that the source of a gas leak

can be determined using this framework [3–8].

The proposed ML-based approaches can be also used in VOC (methane) leak, air pollution

detection, and wildfire smoke detection [3, 4]. Since our algorithms use time-history of sensor

values, they do not depend on fixed thresholds and the use of multiple sensors allows us to

detect gas leaks below a system-level fixed threshold.

Our algorithms are computationally and energy-efficient. They are based on fast algorithms

such as discrete cosine transform (DCT) and a Mercer-type kernel related to the `1 norm.

Therefore they can be implemented at the edge in smartphones and/or in low-cost hardware.

1.4 Organization of This Thesis

in Chapter 2, we present our gas source leak localization algorithm in a cyber-physical

system. In Chapter 3, we present our energy efficient DL system for VOC leak detection. In

Chapter 4, we present our Hadmard-based drift correction system. In Chapter 5, we present

our snsor anomaly detection system.

CHAPTER 2

GAS LEAK SOURCE LOCALIZATION USING SPARSE UNRELIABLE

SENSOR DATA

Gas leak detection is crucial for environmental and security purposes. The rising levels

of organic gases such as methane in the atmosphere are very concerning for the environment

because of their strong greenhouse effect. This makes developing leak gas detection technology

crucial to reducing emissions and, consequently, combating climate change. On another note,

gases such as Ammonia (NH3) are by-products of improvised explosive devices (IEDs) that can

wreak havoc on life and property. In light of this, detecting ammonia in these scenarios can

immensely help in early identification of such dangers.

VOC gas detection technologies encompasses methods such as satellite imagery [12–14],

commercially available bolometer-type IR cameras [15], spectrometry [16], and chemical olfac-

tory technology [5,17]. While these technologies vary vastly based on the application, chemical

sensors are the cheapest and most flexible to use in cyber physical systems for indoor and out-

door environments. Chemical sensors can detect a wide array of gas analytes such as Ammonia,

Methane, Acetone, Ethylene, Ethanol, and Toluene [18]. Nonetheless, one of the most impor-

tant challenges facing the electronic nose technology is the sensor-to-sensor response variation

due to aging and environmental factors such as, temperature and humidity, which is known as

sensor drift. Furthermore, sensor calibration is costly and impractical.

8

9

Ammonia can be detected by low-cost Chemically Field Effect Transistors (ChemFET)

[5,19]. The low cost of this technology and its relative ease to connect to processing units have

spurred interest in developing cyber-physical systems (CPS) for dangerous gas detection and

source targeting [5]. In [5], A crowd-based CPS system for IED detection in public large events

is envisioned. In their system, a large number of mobile sensory units are hosted by volunteers

among the crowd. These units are attached to the participants’ smartphones, and the data

is sent to a central server to be analyzed. given the limited accuracy of the sensors, the CPS

employs a two-level feedback logic.

2.0.1 Organization

The organization of this chapter is as follows: In Sec. 2.1 we provide a background on the

problem of estimating gas leak source localization. In Sec. 2.2, we provide a background on

bandlimited interpolation. In Sec. 2.3 and Sec. 2.4, we discuss the use of deep learning to

solve inverse problems, and present our Deep Projection-onto-Convex-Sets (POCS) algorithms.

In Sec. 2.5 we discuss the IR-based mathane leak data and its preprocessing, and we present

our experimental results in Sec. 2.6. In Sec. 2.7 we discuss the Isopropyl alcohol data and

its preprocessing, and present our experimental results in Sec. 2.8. Finally, we present our

conclusion in Sec. 2.9

2.1 Gas Source Localization

While the inherent inaccuracies of sensor measurements is an issue in its own right, deter-

mining the source location is very challenging even with ideal sensory measurements. Many

methods have been suggested to estimate the location of gas source leak indoor and outdoor.

10

Traditional approaches rely on expert-knowledge modeling and analyses. One of the most

popular models is the Gaussian plume model [20, 21], thanks to its simplicity. In [20], the au-

thors estimate the model parameters using different optimization algorithms and determine the

source location accordingly. In [22] the authors maximize the likelihood function of a Gaussian

plume model in an indoor setting and perform tracking by moving towards the predicted source

location. In [23], the authors adopt a wave dispersion model to locate the gas source based

on computational fluid dynamics (CFD). In that work, the authors argue that the downwind

distance to the source is linearly correlated with the time it takes gas concentration to stabi-

lize. Other approaches include the use of non-parametric models such as Gaussian processes

regressions [24]. In [24], a bayesian prior of Gaussian processes is assumed and based upon the

density construction, tracking is conducted using simulated annealing to balance between ex-

ploration and exploitation. In [25], the authors optimize a Eulerian simulator model given with

the observed measurements of the sensors and the wind information as the initial conditions.

The sensors are mounted on unmanned autonomous vehicles (UAVs), and the UAV are then

flown to the location that maximizes a likelihood score.

While the previous body of work explores a wide array of approaches, Simulation-based

models are complicated and require thorough domain-based fluid dynamics or meteorological

knowledge. On the other hand, semi-analytical plume-based morphology models assume knowl-

edge of the wind information and strong homogeneity of the wind field, which may not be the

case in many real-world scenarios. Furthermore, selecting the best model is non-trivial and

requires expert knowledge [26]. This motivates us to use deep learning to perform the task of

11

source locating, given sparse and noisy low-cost sensor measurements. For this purpose, we

pose the problem as a spatio-temporal signal completion task.

Generally speaking, signal completion problem is an ill-posed inverse problem that. Without

any prior assumptions, there exists an infinite number of solutions. Only a very small set of

these solutions is meaningful. In this paper, we pose the problem as a generic image completion

task. Unlike previous work, we do not incorporate any expert knowledge assumption but rather

make use of natural assumptions on the underlying gas density signal. The main assumption

we make is that the gas density signal is bandlimited.

2.2 Bandlimited Interpolation

The bandlimitedness assumption is wildly used in many signal processing applications such

as image super-resolution [27], Direction-of-arrival (DoA) estimation [28], and medical imaging

[29]. While signals cannot simultaneously be bandlimited and have finite support, a large class

of natural finite-support signals has most of their energy concentrated in a finite bandwidth.

This means that one can obtain a “good” bandlimited approximation of such signals.

In the classic image interpolation (completion) problem, one is presented with a subset of

image pixel intensities, and the task is to find the missing points from the given point. The

interpolated points should conform to a certain assumption made a priori. In our case, we use

the bandlimited assumption. We pose the problem as a constrained optimization problem, i.e.,

finding a bandlimited two-dimensional signal whose pixel intensity at the given pixel locations

is identical or as close as possible to the intensity of these given pixel values. This problem has

been studied well over the past, and there exist many algorithms to solve it. One of the earliest

12

and most simple algorithms is Papoulis-Gerchberg (PG) algorithm [30] which falls under the

more general framework of Alternating projection onto convex sets (POCS) [31–33].

2.2.1 Iterative Projections Onto Convex Sets

2.2.1.1 Background

Here, we provide some important mathematical facts on operator theory

Definition 1. [35] Let (X,d) be a complete metric space. A mapping T : X 7→ X is called

non-expansive if

d(T (x), T (y)) ≤ αd(x, y), α ∈ [0, 1] ∀x, y ∈ X

The mapping is called contractive if α is strictly less than one.

Definition 2. Let H be a Hilbert space. A mapping T : H 7→ H is called firmly non-expansive

[35] if

||T (x)− T (y))||22 + ||(I − T)(x)− (I − T)(y)||22 ≤ ||x− y||22, ∀x, y ∈ H

where I is the identity mapping.

Examples of firmly nonexpansive operators include orthogonal projectors, soft-thresholding,

and hard thresholding. Furthermore, we can obtain a firmly nonexpansive operator from an

expansive operator T through the following transform.

Tx =
(T + I)

2
x (2.1)

Example of nonexpansive but not firmly nonexpansive operators is T = −I.

13

Theorem 3. (Contraction Mapping Theorem) [34] Let C 6= ∅ be a closed subset in a complete

normed space (X, ||.||). Let f : C 7→ C be a contractive operator. Then f has a unique fixed

point in C.

Theorem 4. [31,35] Let H be a Hilbert space. Let T : H 7→ H be firmly nonexpansive operator.

Let Fix T 6= ∅. The iteration xn+1 = Txn converges weakly to a point in Fix T .

Theorem 5. (Iterative Projections onto Affine Subspaces) [31, 35] Let H be a Hilbert space.

Let {C1, C2, . . . CN } be closed affine subspaces in H. Let C0 = ∩Ni=1Ci 6= ∅. Let Pi : H 7→ Ci be

the orthogonal projection operator onto subspace Ci. The alternating projection:

xn+1 := P1P2 . . . PNx
n

converges strongly to P0x for any x ∈ H

Theorem 6. (iterative Projections onto Convex Sets) [31, 35] Let H be a Hilbert space. Let

P1, P2, . . . , PN be a family of firmly non-expansive operators from D to D, where D ⊂ H is a

closed and convex subset. Let Fix(P1P2 . . . PN) 6= ∅. Then the iteration

xn+1 = P1P2 . . . PNx
n (2.2)

converges weakly to a point y ∈ Fix(P1P2 . . . PN).

14

2.2.1.2 Papoulis-Gerchberg (PG) Algorithm

In the PG algorithm, the problem is posed in a Hilbert-space framework and it is assumed

that the discrete-space image xg[m,n] is bandlimited in the Fourier domain. This means that

the signal lies in the intersection of two convex sets in l2(Z2).

C1 := {x ∈ l2(Z2)| X(ejω1 , ejω2) = 0, (ω1, ω2) /∈ BW}, where X(ejω1 , ejω2) is the Fourier

transform, and C2 = {x ∈ RM×N | x(m,n) = xg(m,n) for (m,n) ∈ S}. In this chapter F and

F−1 denote the discrete-time Fourier transform (DTFT) and the inverse discrete-time Fourier

transform (IDTFT), respectively. The bandwidth BW ∈ [0, 2π] × [0, 2π] is the bandwidth set

defining the space of bandlimited signals. We use the upper case X to denote the DTFT of a

signal x. The two sets C1 and C2 are known to be closed and convex sets in RN×N . The PG

algorithm is an iterative algorithm since it performs successive orthogonal projections onto C1

and C2. The orthogonal projection onto a set C is defined as

PCx = inf
z∈C
||x− z|| (2.3)

The algorithm generates a sequence of iterates

xk+1 = P1 ◦ P2(xk), k = {0, 1, 2, . . . }, (2.4)

where P1 and P1 are the orthogonal projection operators onto C1 and C2, respectively. If the

intersection C1∩C2 is non-empty, the iteration converges to a solution xc ∈ C1∩C2. It is assumed

15

that the intersection is nonempty. Since the sets C1 and C2 are closed and convex, the projection

operators are firmly nonexpansive operators and so is the composite operator P1 ◦ P2 [31].

The projection operation onto the set C1 can be implemented in the Fourier domain. First,

the DFT of xk is computed and all the high frequency components of Xk are forced to zero.

Then its inverse DFT is computed. The resulting image may have different values than xg[m,n]

in in the spatial domain at locations (m,n) ∈ S. The projection onto C2 imposes the known

image values such that xk+1(m,n) = xg(m,n), ∀(m,n) ∈ S.

2.2.2 Limitations of Bandlimited Based Interpolation

Despite its appealing concept, this alternating projection method has its limitations. First of

all, the assumption of bandlimitedness does not hold in reality, given that bandlimited signals

must have infinite support in the space domain. In reality, the spectrum of natural signals

decay very quickly at high frequencies, so one should in principle find an effective “bandwidth”

for good interpolation. Nevertheless, signals vary in their spectral energy distribution and

finding an effective bandwidth parameter for each case is non-trivial. This makes the algorithm

impractical for automated tasks. Another concern is that the bandlimited interpolation is

optimal in mean-square-sense. This means that interpolating the signal via the aforementioned

algorithm is likely to gloss over some fine details that are crucial in some applications, as in

locating the gas source in our case. This motivates us to explore the idea of utilizing deep

learning in a classical POCS procedure to overcome the aforementioned limitations.

16

2.3 Deep Learning Methods for Solving Inverse Problems

Deep Learning has shown remarkable success in computer vision and image processing tasks

such as object detection, image-to-image translation and denoising, to name a few. Recently,

there has been wide interest in applying deep learning to solve inverse problems in imaging [36].

While deep neural networks (DNNs) possess large generalization capabilities, the theoretical

understanding of their behavior is still lacking. Furthermore, supervised learning, which is the

hallmark of the performance superiority of DNNs, require large amount of data with ground

truth, which may not be available. On the other hand, classical approaches are fully unsuper-

vised since the prior assumptions do not depend on any data. Nevertheless, classical methods

such as Majorizor Minimization (MM), POCS, gradient-descent-based Landweber iteration,

and the more general proximal algorithms are computationally expensive because they are not

single-shot forward models. This has motivated researchers to integrate deep learning in such

algorithms to improve the quality of the solution and accelerate the convergence process. These

methods include Learned Iterative Shrinkage Thresholding (Learned ITSA) algorithm [37], in

which the authors learn transforms and thresholding parameters from the data using backprop-

agation and use them in a forward model that implements the traditional iterative shrinkage

and thresholding algorithm for sparse inverse problems. Other methods include deep unrolling,

in which one uses a neural network in an iterative inverse problem framework. This type of

approach has become popular and has been used for many inverse problem tasks such as image

denoising, deblurring, compressive sensing [38,39].

17

2.4 Deep Learning Based Projection onto Convex Sets (POCS) Framework

In this section, we describe our deep-learning-based POCS framework in mathematical

terms. We first describe our POCS-based approach, that is slightly different from the standard

PG algorithm. We then state the deep-learning POCS framework, which we call Deep DCT

POCS.

2.4.1 Discrete Cosine Transform POCS Procedure for Interpolating Gas Density

Field from Sparse Data

Let x ∈ RN×N be the input measurements image of the gas density field 1. Let MNZ ∈

{0, 1}N×N be a logical mask such that MNZi,j = 1 if there is a measurement exceeding a preset

threshold at location (i, j) and zero otherwise. Let MZ ∈ {0, 1}N×N be a logical mask such

that MZij = 1 if the reading at location (i, j) is below that same threshold and 0 otherwise. Let

◦ denote the Hadamard (element-wise) matrix product. One is presented with a sparse input

map xg := x◦MNZ. We wish to recover the missing points x◦ (1−MNZ). As stated earlier, one

can obtain a “good” approximation of the image x in the subspace of bandlimited functions,

which can be practically very useful. Furthermore, we have the additional constraint that the

gas density is non-negative. Based on that, we can use alternating projection onto convex sets

(POCS) to complete the missing data point with the following constraints: The reconstructed

map x̂ is in the intersection of the bandlimited subspace and the affine subspace satisfying the

observations xg.

1We assume that the spatial dimensions are the same and equal to N.

18

We define the “bandlimitedness” of a signal in the sense of discrete cosine transform (DCT)

instead of Fourier transform to avoid dealing with complex-number arithmetic. Let TDCT :

RN×N 7→ RN×N be the two-dimensional type-II DCT. The two-dimensional DCT of an input

x is given by [40]

Xk,l =

N−1∑
i=0

N−1∑
j=0

xm,n cos
[π
N

(
m+

1

2

)
k
]

cos
[π
N

(
n+

1

2

)
l
]

(2.5)

We define projection onto the the bandlimited subspace by

[PDCTX]ij :=


[X]ij , (i, j) ∈ ΛBW

0, otherwise

(2.6)

We take the set ΛBW := {(i, j) ∈ {0, 1, . . . N − 1}2 |i + j ≤ BW}, for some integer bandwidth

parameter BW.

19

We now state our alternating projection procedure; Let x̂i and X̂i be the interpolated

image at step i and its respective DCT transform, our projection-based method is given by the

following

X ← TDCTx̂i

Y ← PDCTX

y ← αT −1
DCTY (inverse DCT)

y ←MNZ ◦ xg + (1−MNZ) ◦ y

y ← (1−MZ) ◦ y

x̂i+1 ← (y)+

(2.7)

where α is a normalizing scalar that is chosen to accelerate the convergence of the iterative

algorithm, and the operator (.)+ zeros-out the negative values. We select our α as follows

α =
< MNZ ◦ (T −1Y), xg >

||MNZ ◦ (T −1Y)||22 + ε
, (2.8)

where < ., . > denotes the dot product. This variant of the algorithm is known to accelerate

the convergence of the POCS procedure. Furthermore, it was shown to converge to a solution

provided that one exists [41]. Given an appropriate DCT-bandwidth parameter BW, one can

obtain a globally smooth reconstruction of the original image x. Based on that, one can deduce

the gas leak location from the reconstructed image.

20

2.4.2 DCT POCS for Binary Input

In addition to the algorithm prescribed in Equation 2.23, we also consider the case in

which one is presented with logical sensor input measurements, indicating whether a sensor is

reading a signal or not. In this case, we need to modify our settings to accommodate binary-

input constraints. We consider that a sensor gives a reading of 1 if the gas density exceeds a

threshold and zero otherwise. In this case, we do not directly enforce the spatial constraints by

projecting onto the affine subspace as in Equation 2.23. Instead, we define two new constraint

sets, which are

C2 := {xi,j ≥ Th | ∀(i, j) ∈ Su} (2.9)

and

C3 := {xi,j < Th |∀(i, j) ∈ Sl}, (2.10)

where Su denotes the set of the locations of the sensors whose measurement exceeds the pre-

defined threshold Th, and Sl denotes the set of sensors whose measurements are below the

threshold Th. Without loss of generality, assume our threshold is equal to 1. Apart from pro-

jecting onto the bandlimited subspace, we now need to perform projection onto the two convex

sets C2, and C3. The two sets are polyhedral cones. Given a point x ∈ RN×N , its projection

onto the set C2 is given by

[PC2x]ij =


1, xij ≤ 1 & (i, j) ∈ Su

xij otherwise

(2.11)

21

and

[PC3x]ij =


1, xij ≥ 1 & (i, j) ∈ Sl

xij otherwise

(2.12)

Given that the set C2 is unbounded, one may need to imposes a further constraint that the

signal x be of finite energy. This can be achieved by projecting the signal x onto an `2 ball

with radius E as follows

PEx =


x, ||x||2 ≤ E

E x
||x||2 , otherwise

(2.13)

The DCT-based POCS procedure now becomes

X̂ = PDCTT xk

ŷ = T −1X̂

ỹ = αŷ

xk+1 = PC3 ◦PC2 ỹ

, (2.14)

where α is an acceleration factor. Nevertheless, we cannot use the same formula for α as in

Equation 2.8. This is because in previous case, we want to push the bandlimited signal toward

the spatial constraints, while in this case, we want to either upper-bound or lower-bound the

22

signal at the given constraints locations. In order to do this, we use a very simple, closed-form

expression for α that minimizes the following heuristic function

L(α) :=
∑

(i,j)∈Su

log(1 + exp(1− αyij)) +
∑

(i,j)∈Sl

log(1 + exp(αyij − 1)) (2.15)

The function log(1 + exp(y)) is known as Softplus, and can be seen as a smoothed version of

the hinge loss function max(x, 0) [42]. In fact,

Softplus(y) := log(1 + exp(y)) =
1

4
max(x, 0) ∗ sech2

(x
2

)
=

1

4

∫ ∞
−∞

max(y − t, 0)sech2
(t

2

)
dt,

(2.16)

where ∗ denotes convolution, and sech(x) is the hyperpolic secant function. The function is

convex and twice differentiable and is an upper bound on the hinge loss max(y, 0). The function

L is convex in α. Therefore, we can perform a one-step update using Newton’s method and we

obtain the following expression

α = 1−
{
∂2L(α)

∂α2

∣∣∣
α=1

}−1
∂L(α)

∂α

∣∣∣
α=1

, (2.17)

where we set our “initial condition” to α = 1. After evaluating the derivatives in Equation 2.17,

we obtain the following expression

α = 1−
∑

(i,j)∈Su −yi,jσu(yi,j) +
∑

(i,j)∈Sl yi,jσl(yi,j)∑
(i,j)∈Su yi,j

2σu(yi,j)(1− σu(yi,j)) +
∑

(i,j)∈Sl yi,j
2σl(yi,j)(1− σl(yi,j))

, (2.18)

23

where σu(y) = σ(1 − y) and σl(y) = σ(y − 1), where σ(x) is the sigmoid function, which is

the derivative of the solftplus function. In this case, we have a simple, one-shot expression for

α. Practically speaking, α is important in the early steps of the POCS algorithm, and it is

especially helpful in accelerating the process of “filling up” the space initially, given the sparse

constraints. Once the algorithm generates an interpolated image with appropriate energy, the

importance of α lessens and, if the algorithm is converging to a solution in C1 ∩ C2 ∩ C3, α

becomes very close to 1. In practice, we observed that the acceleration factor α converges to

α = 1 in very few iterations as shown in Figure 1.

2.4.3 Deep DCT POCS

In order to motivate the usage of deep learning, one can consider the following optimization

problem

minimize ı(x ∈ C1) + ı(x ∈ C2) + ı(x ≥ 0) + f(x), (2.19)

where ı is the 0−∞ indicator function given by

ı(x ∈ C) =


0, x ∈ C

∞, otherwise

(2.20)

and the sets C1 and C2 are the sets of bandlimited signal and the signals matching our observation

xg.

24

0 1 2 3 4 5 6 7
iteration step

100

101

102

α
fa

ct
or

Figure 1. example of the convergence of the acceleration factor α to unity in the POCS
procedure with binary constraints

25

In the case of binary constraints, the problem becomes

minimize ı(x ∈ C1) + ı(x ∈ C2) + ı(x ∈ C3) + ı(x ≥ 0) + f(x), (2.21)

where C2 is the constraint set of measurements exceeding a threshold, and C3 is the constraint

set of measurements below a threshold. The function f(x) is a sub-differentiable regularizer

term. When f(x) is absent, the problem reduces to a feasibility problem, and one can use the

POCS procedure described in Sec. 2.4.1 to solve the problem. Instead, we want to learn a

regularizing function from our data. The problem in Equation 2.19 can be solved using the

following procedure

y = POCS(xi)

xi+1 = Proxλf (y),

(2.22)

where POCS is the composite operator of all the steps in Equation 2.7 and Proxλf (y) :=

argmin
z

(1
2 ||y − z||22 + λf(z)) is the proximal operator of the regularizing function f(.) with

hyper-parameter λ > 0. Instead of directly learning a regularizing function f(x), we replace

the second step in the procedure in Equation 2.22 with a function DNN(y). This function is

implemented by an optimized deep neural network. The procedure now becomes

y = POCS(xi)

xi+1 = DNN(y)

(2.23)

26

Therefore the neural network can now be interpreted as the proximal operator of a regularizing

function f(.) learned implicitly when the deep neural network is optimized.

2.4.3.1 Deep DCT POCS with Unknown Bandwidth

As mentioned earlier, in the POCs procedure one needs to set up the bandwidth constraints

in advance. The issue with this is that the bandwidth constraints need to be set for each

inverse problem separately. Furthermore, different bandwidths constraints may result in dras-

tically different solutions to the inverse problem. To overcome this limitation, we propose the

use of different bandwidth constraints in parallel and let the deep neural network fuse the dif-

ferent solutions and decide on which one fits the observed data. We modify our procedure in

Equation 2.23 to become as in Algorithm 1.

where POCS(y; BW) is the POCS procedure with input y and bandwidth parametrization

BW, concat(...) is the concatenation of B N × N gray-scale images into a single 3D tensor

∈ RN×N×B, where B is the number of bandwidth parameters. zil is the output of the iterate

i with bandwidth parameters BWl. The neural network DNN : RN×N×B 7→ RN×N . Note

that the intermediate outputs yi+1
l are “damped” version of the output of the neural network.

These residual connections help stabilizing the forward procedure and make training the neural

network easier via backpropagation as explained in the next subsection. Note that the number

of parallel passes is set to 4 in this but it can be done for any number of bandwidth parameters

selection.

27

Algorithm 1: Pseudocode for the deep regularizer DCT-POCS procedure. The algo-
rithm takes the sparse input xg and the two logical masks MNZ and MNZ, the number
of unrolling steps is L, and the number of unrolling steps for the POCS algorithm is
K. The algorithm returns the output zL that represents the completed (interpolated)
image data. The subroutine POCS(yij , xg,MNZ,MZ,BWj ,K) implements Equation 2.7

with initial condition yij for K steps. The set BW has B different bandwidth parame-
ters

Input: xg,MNZ,MZ, L
1 x̂0 ← xg
2 y0

j ← xg (j=1 to B)

3 for i=1 to L do
4 for j=1 to B do

5 yij ← βyi−1
j + (1− β)xi−1

6 zij ← POCS(yij , xg,MNZ,MZ,BWj ,K)

7 end
8 Zi ← Concat(zi1, z

i
2, . . . , z

i
B)

9 xi ← DNN(Zi)

10 end
11 return xL

Likewise, we apply the same approach to combining the other variant of our algorithm

that deals with binary constraints with deep neural network. The pseudocode is provided in

Algorithm 2. A visual demonstration of the algorithm is shown in Figure 2.

28

Algorithm 2: Pseudocode for the deep regularizer DCT-POCS procedure with bi-
nary constraints. The algorithm takes the two input masks Su and Si and the two
.The number of unrolling steps is L, and the number of unrolling steps for the POCS
algorithm is K. The algorithm returns the output zL that represents the completed (in-
terpolated) image data. The subroutine POCS(yij ,Su,Sl,K) implements Equation 2.7

with initial condition yij for K steps. The initial condition for the entire procedure

xinit is an N × N map with 1 if (i, j) ∈ Su, and zero otherwise. The set BW has B
bandwidth parameters

Input: Su,Sl, xinit, L
1 x̂0 ← xinit

2 y0
j ← xinit (j=1 to B)

3 for i=1 to L do
4 for j=1 to B do

5 yij ← βyi−1
j + (1− β)xi−1

6 zij ← POCS(yij ,Su,Sl,K)

7 end
8 Zi ← Concat(zi1, z

i
2, . . . , z

i
B)

9 xi ← DNN(Zi)

10 end
11 return xL

29

In
it
ia
l
V
al
u
e

S
p
at
ia
l
C
on

st
ra
in
ts

P
O
C
S
B
W
1

P
O
C
S
B
W
2

...

P
O
C
S
B
W
N

c
o
n
c
a
t

C
on
vo
lu
ti
on
al

N
eu
ra
l
N
et
w
or
k

S
p
at
ia
l
C
on

st
ra
in
ts

P
O
C
S
B
W
1

P
O
C
S
B
W
2

...

P
O
C
S
B
W
N

c
o
n
c
a
t

C
on
vo
lu
ti
on
al

N
eu
ra
l
N
et
w
or
k

+
β

1
−
β

..
.

F
ig

u
re

2.
Il

lu
st

ra
ti

on
of

th
e

D
ee

p
D

C
T

P
O

C
S

A
rc

h
it

ec
tu

re
w

it
h

tw
o

st
ep

s
u

n
ro

ll
ed

30

2.4.3.2 Training Deep DCT POCS

As mentioned earlier, DNN is to be trained to serve as an optimizer of a data-learned

regularizing function. While earlier methods such as Plug-and-Play (PnP) suggest placing a pre-

trained model into an optimization procedure, this approach has its shortcomings. First, neural

networks are highly non-linear functions with difficult-to-control dynamic behavior. While

many have attempted to regularize the weights of a neural network such that it serves as a

non-expansive operator by design, layer-wise constraints seem very restrictive. Secondly- and

perhaps more importantly, is the nature of our task; we are given an input of very sparse

observations, and we wish to fill out the missing data. This means that a neural network

trained to complete the field image in a single forward pass might generate unexpected results

on the second forward pass due to the difference in the energy of the input. These concerns are

alleviated by “unrolling” the iterative procedure for a few steps and training the neural network

in these settings. In our case, we unroll the procedure expressed in Algorithm 1 for five steps

and optimize the final result in a supervised fashion. Our loss function is

J(x̂) := ||x− x̂||W 2
2 − λSSIM(x, x̂), (2.24)

where x is the ground truth gas density image, and x̂ is the interpolated image. W is a weighing

mask for the mean-square error (MSE). SSIM is the similarity index measure. The reason for

optimizing a weighted MSE, as opposed to uniform MSE, is that we want to put more emphasis

31

on the region surrounding the source of the gas leak since our ultimate task is to identify the

source location. given the source location at (i∗, j∗), the mask W is

W (i, j) = 1 +B exp

(
− (i− i∗)2 + (j − j∗)2

2σ2

)
(2.25)

where (i∗, j∗) are the coordinates of the source. We select B = 20 and σ = 7. The second term

SSIM in Equation 2.24 refers to the structural similarity index metric [43]. The SSIM between

two image patches x and y is given by

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (2.26)

where µx and µy are the means, σ2
x and σ2

y are the variances, and σxy is the cross correlation,

and c1 and c2 are small constants. The hyperparameter λ = 10−3. As for the training the

binary-constraint algorithm, i.e., Algorithm 2, we use a slightly different loss function as follows

J(x̂) := ||(1 +W) ◦ x

Th
− x̂||

2

2
− λSSIM((1 +W) ◦ x

Th
, x̂), (2.27)

where Th is the preset threshold used to generate the masks Su and Sl, and W is a wight mask

given by Equation 2.25. In this case, we artificially make the ground-truth signal larger closer

to the source, in order to guarantee the generate image has a peak closer to the source. In this

case we set B = 5.

32

2.4.4 Network Architecture

In our framework, we used a convolutional neural network that takes a multi-channel N×N

input and returns a single N ×N output image. The convolutional neural network consists of 7

convolutional layers. Each of the convolutional layers outputs a 64-channel output, except for

the last layer, which outputs a one-channel output image. The convolutional layers implement

the dilated 2d convolution (correlation) operation [44], which is known to achieve better results

for multi-scale recognition tasks. In our case, the use of dilated convolution is to increase the

effective size of the receptive fields of the filters. Therefore, enabling feature smoothing at

different scales. Furthermore, we noticed that using dilated convolution instead of a down-

sampling-up-sampling pipeline avoids creating unwanted artifacts. The architecture of our

convolutional neural network is detailed in Algorithm I. It is worth mentioning that, expect for

the last convolutional layer, we use leaky Rectified Linear Units (Leaky ReLU) in our neural

network. This is to avoid the issue of dying units, i.e., units that generate a zero output.

33

Layer Num Channels Dilation Rate Activation

Input (128× 128× 4)

Conv 1 64 1 Leaky Relu (0.2)

Conv 2 64 2 Leaky Relu (0.2)

Conv 3 64 4 Leaky Relu (0.2)

Conv 4 64 8 Leaky Relu (0.2)

Conv 5 64 4 Leaky Relu (0.2)

Conv 6 64 2 Leaky Relu (0.2)

Conv 7 1 1 Relu

Output (128× 128× 1)

TABLE I

THE ARCHITECTURE OF THE DEEP REGULARIZED NETWORK. THE FILTER SIZE
IS 3× 3 IN THE LAYERS EXCEPT THE FIRST AND LAST (CONV 1 AND CONV 7),

WHERE IT IS SET TO 5× 5.

2.5 Methane Leak Detection

As discussed earlier, we are interested in locating a gas source given sparse unreliable chem-

ical sensor data. Due to the difficulty of collecting such data, we used IR-imaged video data of

controlled methane leaks collected by [21] in our analysis. The data set corresponds to high-

quality IR-imaged videos of controlled methane gas leaks from industrial plants. While our

original task is to do gas source localization from sparse chemical sensors, IR based sensing can

be used for detecting volatile organic compounds (VOC) such as methane and propane. This

is because methane has high absorbance in the long-wave infrared (LWIR) spectrum.

2.5.1 Pre-processing IR Imaged Data

In order to pose the problem as a source identification from sparsely located IR sensor data,

we first pre-process the videos by removing the background from the scene. This was done by

34

estimating the optical flow using Kanade-Lucas algorithm [45]. We segmented the foreground

from the background based on whether the magnitude of the optical flow field exceeds a certain

threshold. Given that the camera is stationary in these videos, we estimated the background

by taking the average over the different background estimates. Let a video have T frames. Let

v[i, j, t] be the pixel intensity value at location (i, j, t). Let the background pixels be BG. The

estimated background pixel intensity value at location (i,j) is given by

b[i, j] =

∑T
t=1 v[i, j, t]I((i, j, t) ∈ BG)∑T

t=1 I((i, j, t) ∈ BG)
when

T∑
t=1

I((i, j, t) ∈ BG) 6= 0 (2.28)

As it can be seen from Equation 2.28, we cannot estimate the background at all locations. This

is true near the source because it is always detected as foreground. For this reason, we need

to complete the background in those regions. We do so by using the PG algorithm. This is

because the background is mostly flat (low frequency). Afterward, we manually smooth out

any artifacts and obtain a background estimate. The procedure and an example background

reconstruction are shown in Figure 3.

2.5.2 Modeling Sparse Unreliable Sensor Data from Pixel Intensity Values

To make the data match low-cost IR sensory data, we model the sensor response from

the pixel intensity values to reflect the limitations of their sensing capabilities. To do this,

we investigate two scenarios: In the first case, let v(m,n, t) ∈ [0, 1] for t ∈ {1, . . . T} be the

35

video
frames

background
estimation

background

+

×− 1

original frame backgroud-subtracted frame

Figure 3. illustration of the background subtraction process

36

(background-subtracted) pixel intensity value at location m,n at time step t. We use the

following relation to model a low-cost sensor response

x(m,n) =
1

T

T∑
t=1

I(v(m,n, t) ≥ Th), (2.29)

where I is the 0-1 indicator function, Th is a certain threshold. Equation 2.29 accounts for the

low accuracy and the low temporal resolution of an IR sensor.

We then sample a relatively small number of data points {xg | s ∈ S} from the image x

such that |S| << N × N , where N × N is the size of image xg. We then feed these sparse

images, along with constraints masks to our deep framework to try and retrieve the full image

x. In our experiments, we set Th = 16/255 and T = 16.

In the second case, we consider more extreme limitations of the sensor output; we model

the sensor response as a binary variable as follows

x(m,n) = I
(1

T

T∑
t=1

v(m,n, t) ≥ Th
)
. (2.30)

2.6 Experimental Results for Methane IR Methane Data

2.6.1 Results with Real-Valued Input Measurements

We trained our neural network by unrolling a few steps of the forward model in Algorithm 1.

We used 4 DCT bandwidth parameters BW = {4, 8, 16, 32}. Each inference pass is 4 iterations

(L = 4 in Algorithm 1) with the POCS procedure applied 4 times (K = 4 in Algorithm 1). Our

dampening factor β is set to 0.5. We used the same parameters for training and inference. The

37

final output x̂ is then optimized to minimize the loss function in Equation 2.24. We trained the

neural network over the frames of one video for 10 epochs. We construct our inputs from the

pixel intensity values according to Equation 2.29 our averaging window size is 16 frames, and

our threshold Th is set to 10/255. This means the values of xg(i, j) ∈ { 0
16 ,

1
16 , . . .

16
16}.

2.6.1.1 Source Localization Results

We assess the goodness of the output of our Deep-POCS network, i.e. the interpolated

image, by considering how close the maxima with the largest amplitude to the source. In order

to do this, we first detect all local maxima of the output of the neural network. Let x̂ be the

output of the framework. We first apply a maximum filter to x̂

x̂max
i,j = max{x̂k,l | (k, l) ∈ NBR(i, j)}, (2.31)

where the neighborhood NBR(i, j) is defined as the 7× 7 grid surrounding point (i, j). We then

find all the local maxima S := {(i, j) | x̂i,j = x̂max
i,j }. We then select the maxima with the

largest k values and construct our set Sk. In our case, we take the top 5 points. Let the source

be located at (p, q), We then define our distance-to-source metric as follows

distmin := min({dist
(
(p, q), (m,n)

)
| (m,n) ∈ Sk}, (2.32)

where {dist
(
(p, q), (m,n)

)
is the euclidean distance between the points (p, q), and (m,n) In

addition to that, we perform another pass to the deep NN while removing the constraints

38

around the maxima points in Sk. Mathematically, we modify our non-zero mask MNZ as

follows

[MNZ
new]i,j =


0, (i, j) ∈ ⋃s∈Sk NBR(s)

[MNZ]i,j , otherwise

, (2.33)

where NBR(s) is the neighborhood of the extreme point s. In our case, for each of 5 extreme

points in Sk we eliminate the constraints contained in their 7× 7 grid neighborhood. Once we

obtain the eroded mask MNZ
new, multiply it with the sparse input xnew

g := x ◦MNZ
new and

feed the new input to the deep model again and obtain a new interpolated output. We then

detect the maxima points and compare their distances to the source location

Vid ID Maxima Distance to Source
NN (one step) NN(two step) GMM POCS POCS

DCT BW=16 DCT BW=32

Exp 1 22.4 15.8 19.7 27.8 29.4
Exp 2 19.1 13.3 20.1 26.6 35.1
Exp 3 11.7 10.1 11.4 17.3 10.1
Exp 4 21.3 18.9 31.9 42.1 48.4
Exp 5 15.7 9.6 12.0 18.5 17.9
Exp 6 28.1 17.9 26.5 33.3 34.7
Exp 7 12.8 8.9 12.0 17.6 11.5

Avg. 18.7 13.5 19.1 26.2 26.7

TABLE II

RESULTS WITH 480 SENSOR MEASUREMENTS FOR THE DEEP REGULARIZED
POCS COMPARED TO GMM FITTING AND TRADITIONAL POCS.

39

Vid ID Maxima Distance to Source
NN (one step) NN(two step) GMM POCS POCS

DCT BW=16 DCT BW=32

Exp 1 25.1 22.5 26.2 27.7 31.4
Exp 2 19.1 14.1 22.0 27.4 29.6
Exp 3 19.9 17.1 15.3 20.4 16.6
Exp 4 27.1 24.2 36.7 43.4 44.5
Exp 5 18.1 15.9 14.3 18.7 19.7
Exp 6 28.5 20.1 25.8 31.4 35.5
Exp 7 18.7 15.2 14.1 18.4 18.6

Avg. 22.4 18.4 22.1 26.8 28.0

TABLE III

RESULTS WITH 100 SENSOR MEASUREMENTS FOR THE DEEP REGULARIZED
POCS COMPARED TO GMM FITTING AND TRADITIONAL POCS.

We also compared our Deep-DCT-POCS results with a Gaussian-mixture model (GMM).

In this case, we start off by selecting a number of mixtures M . We then repeat the location

pair (x, y) of the sparse measurements based on the intensity of measurement at that location.

In our case, since the measurements correspond to the count the pixel intensity exceeds the

threshold Th = 10/255 in a total of 16 consecutive, these counts range from 0 to 16. Therefore,

we duplicate these points in our fitting data sets accordingly. For example if the intensity at

location (x0, y0) is 3/16 and the intensity at location (x1, y1) is 10/16, we include the location

pair (x1, y1) in our fitting data points 10 times, while repeating the location (x0, y0) three times.

Notice that if the value of xg(m,n) is 0, we then do not include that point in GMM fitting

40

process. Once we have constructed our location-tuple dataset according to their intensities, we

end up with a d× 2 dataset D, where d is the final size after repetition and now we try to find

the two dimensional mean vectors µi, the 2× 2 co-variance matrices Ci and the weights of each

Gaussian in the mixture model π by finding maximum likelihood location

{π∗i , µ∗i , C∗i }M−1
i=0 = argmax

M−1∑
i=0

πiN (µi, Ci|D), (2.34)

where N is a two dimensional Gaussian distribution. We solve Equation 2.34 using the

expectation-maximization algorithm. Once the algorithm converges, we then take the locations

of the means µi as our candidate maxima locations and construct our set Sk and find the score

distmin defined in Equation 2.32. Finally we compare the results with the traditional POCS

algorithm as explained in Sec. 2.4.1. Our results are summarized in Algorithm II for inputs

with 480 input measurements and in Algorithm III for inputs with 100 sensor measurements.

As one can see from Algorithm II and Algorithm III, the Deep DCT-POCS approach pro-

vides better score in most cases than in both the GMM fitting and traditional POCS approaches.

Furthermore, while the GMM fitting gives distances better that the Deep DCT-POCS in some

examples, it is significantly worse that our method in some videos. In addition to that, the

GMM will always give a higher mixture weight πi for the distribution N (µi, Ci) with µi clos-

est to the center of mass, which is far from the peak (source) location. Visual examples are

provided in Figure 4.

41

(a) (b)

(c) (d)

Figure 4. Example of an input signal and the DNN-DCT-POCS with 480 input
measurements. (a) the ground truth gas leak image with the source marked in red. (b)

Location of the all sensors. (c) the sparse input signal to the DNN. (d) the output of the
DNN. The global maximum point is marked in blue.

42

(a) (b)

(c) (d)

Figure 5. Another example of an input signal and the DNN-DCT-POCS with only 100 input
measurements. (a) The ground truth gas leak image with the source marked in red. (b)

Location of the all sensors. (c) The sparse input signal to the DNN. (d) The output of the
DNN. The global maximum point is marked in blue.

43

2.6.2 Results with Binary-Valued Input Measurements

We trained our neural network by unrolling a few steps of the forward model in Algorithm

2. Similar to the the case of real-valued constraints, we used 4 DCT bandwidth parameters

BW = {4, 8, 16, 32}. Each inference pass is 4 iterations (L = 4 in Algorithm 2) with the

POCS procedure applied 4 times (K = 4 in Algorithm 2). Our dampening factor β is set

to 0.5. We used the same parameters for training and inference. The final output x̂ is then

optimized to minimize the loss function in Equation 2.24. We construct our logical inputs

from the according to Equation 2.30 our averaging window size is 16 frames. Our threshold is

calculated using Otsu’s method [46], which seeks to find a threshold based on the histogram of

the intensity values. Given random sample locations S, we generate the logical masks Su and

Sl based on the threshold parameter Th. We trained the neural network over the frames of one

video for 10 epochs. We then normalize the ground truth image x by Th and then train it to

minimize our loss function.

2.6.2.1 Peak-Location Aware Loss Criterion

Unlike the real-valued case, optimizing the loss function in Equation 2.24 did not produce

high intensity values around the peak. This is because the constraint are binary values. To

overcome this issue, used the loss function defined in Equation 2.27. This incentives the model

to reconstruct images with higher energy close to the source location, which is our ultimate

goal to locate the peak. We also compared with the GMM mixture model approach and with

traditional with the traditional POCS approach with binary constraints. Our results with 480

input measurements and for 100 input measurements are summarized in Algorithm IV and

44

Algorithm V, respectively. Two examples of the results are shown in Figure 6 and Figure 7.

Here, it is worth mentioning that we do not do the two-step processes as in Sec. 2.6.1. We

compare the results using the metric in Equation 2.32 with k=1 (only the argmax of the

predicted image) and with k=5 (the locations of the largest 5 points). As for the GMM model,

we fitted a mixture with 5 gaussians, i.e., |{π}| = 5 and compared the results with all the

estimated modes {µ} and the location of the source. Furthermore, we compared the distance

between the gaussian of the highest mixture density and the source location.

Vid ID Maxima Distance to Source
NN GMM (5 mix.) POCS BW=16 POCS BW=32

Top 1 Top 5 Top 1 Top 5 Top1 Top5 Top 1 Top 5

Exp 1 14.2 11.0 67.9 23.1 70.4 26.2 74.3 37.8
Exp 2 20.5 14.1 70.8 25.3 80.2 34.1 82.2 41.0
Exp 3 17.1 11.6 44.7 12.9 50.6 15.5 52.1 17.1
Exp 4 12.2 11.7 78.5 35.8 85.7 25.6 82.5 50.9
Exp 5 20.3 13.3 46.3 14.5 51.3 17.7 52.0 21.3
Exp 6 37.5 25.6 66.2 27.5 74.2 32.2 70.7 39.3
Exp 7 21.6 10.4 48.2 12.9 52.0 15.1 48.6 18.8

Avg. 20.5 14.0 60.3 21.7 66.3 23.8 66.1 32.3

TABLE IV

RESULTS WITH 480 SENSOR MEASUREMENTS FOR THE DEEP REGULARIZED
POCS COMPARED TO GMM FITTING AND TRADITIONAL POCS.

45

(a) (b)

(c) (d)

Figure 6. Example of an input signal and the DNN-DCT-POCS with 480 binary input
measurements. (a) the ground truth gas leak image with the source marked in red. (b) the
fully binarized ground truth. (c) the locations of the sparse measurement. (d) the output of

the DNN. The global maximum point is marked in blue.

46

(a) (b)

(c) (d)

Figure 7. Example of an input signal and the DNN-DCT-POCS with 100 binary input
measurements. (a) the ground truth gas leak image with the source marked in red. (b) the
fully binarized ground truth. (c) the locations of the sparse measurement. (d) the output of

the DNN. The global maximum point is marked in blue.

47

Vid ID Maxima Distance to Source
NN GMM (5 mix.) POCS BW=16 POCS BW=32

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

Exp 1 23.8 16.6 67.9 23.1 77.5 28.2 76.8 39.6
Exp 2 26.7 23.4 70.8 25.3 80.7 36.1 78.8 37.9
Exp 3 27.5 14.4 44.7 12.9 53.6 19.6 78.8 19.7
Exp 4 29.1 27.1 78.5 35.8 87.9 39.8 85.8 51.2
Exp 5 29.2 18.1 46.3 14.5 54.7 18.6 54.3 23.7
Exp 6 38.3 28.3 66.2 27.5 75.2 32.9 71.6 35.3
Exp 7 33.9 14.5 48.2 12.9 55.7 19.6 53.6 18.6

Avg. 29.7 20.3 60.4 21.7 69.3 27.8 71.3 32.3

TABLE V

RESULTS WITH 100 SENSOR MEASUREMENTS FOR THE DEEP REGULARIZED
POCS COMPARED TO GMM FITTING AND TRADITIONAL POCS.

2.7 Isopropyl Alcohol Leak Detection and Source Localization

We collected sensor measurements using three Tin oxide (SnO2) MQ137 sensors [47]. Data

collection was done using an Arduino, as the sensors have an analog output wired connection

were used for reliability. For the experiments of source localization a grid of 18×18 inch2 was

created. As the sensors are resistive chemical sensors, they need to be preheated for a certain

period of time before testing. This is done so that the sensors form a desired active oxide layer

than can detect any gas present in the air. In this case prior to starting the experiments, we

heated the sensors for up to 48 hours. These sensors are not calibrated, so to do sensor to

sensor calibration firstly a controlled experiment was done. In these controlled experiments, we

48

placed the three sensors closed to one another so that they all read the same underlying gas

concentration signal.

2.7.1 Data Acquisition

The experiment was conducted in the following order:

• Firstly, the source was placed at a an arbitrary location.

• Then the three sensors were placed at different grid points as shown in Figure 8.

• Once the source and the sensors were place at their respective locations, the lid of the

source was removed, exposing the air.

• The data was collected from each sensor using the Arduino which transferred the data to

a computer.

• After collecting the data for a required amount of time, which was controlled in a way

such that the air in the room was not saturated.

• Figure 9 shows how the data from the sensors look like for one set of experiment.

• After one set of experiment was completed, the lid of the source was closed and the room

air was vented out. We wait for a while so that the sensors return back to their baseline

response, indicating that there is no more gas in the air.

• This was repeated 6 times with different source and sensor positions on the define grid

and corresponding sensor data was collected each time. This data was then used in our

source localization framework.

49

2.7.2 Sensors Calibration

Ideally, the relation between the sensor measurement and the actual concentration can be

approximated by the following formula

s(t) = Ac(t) + b, (2.35)

where s(t) is the sensor measurement (in volt) and c(t) is the gas concentration (in ppm). b is

the DC offset, and A is a gain factor. Each sensor will have its own parameters A and b. We

first estimated the DC offset using the measurement values when no gas signal is present. We

then calculated the relative gains of each sensors with respect to a reference sensor. Let sensor

s1 be our reference sensor, The relative gain is given by

Ai
A1

=
1

T

T∑
t=1

si(t)− bi
s1(t)− b1

(2.36)

We then calibrated the sensor measurements using the following formula

ĉi(t) =
A1

Ai
(si(t)− bi) (2.37)

One issue with this calibration approach is that the actual sensor response can deviate signif-

icantly from the ideal model expressed in Equation 2.35. In order to get reliable and robust

estimates for the relative gains, we manually selected segments for calibration in which the

sensor responses are linearly correlated the most.

50

According to our experiments, we found that the DC offsets b1, b2, and b3 are equal to 0.7

Volt. The relative gains are A2
A1

= 1.43 and A3
A1

= 1.61.

51

Source

Sensor1

Sensor2

Sensor3

(0,0)

Figure 8. Illustration of the isopropyl alcohol 18×18 inch2 grid with the source stationed at
(x = 6, y = 9) and the three sensors located at (x = 9, y = 6), (x = 6, y = 12), and

(x = 15, y = 9). The corresponding time series are shown in Figure 9

52

0 25 50 75 100 125 150 175
t (sec)

0.0

0.5

1.0

1.5

2.0

2.5

̂ c(
t)

Figure 9. The corresponding calibrated time series measurements of each sensor in the
experiment shown in Figure 8

53

2.8 Experimental Results

After calibrating the chemical sensor data as in accordance with the procedure explained

in 2.7.1, we down-sampled the input data by a factor of 2. Therefore, our sampling rate is 1

sample/sec. The original images have a spatial dimension of 18×18. Because we use 32-point

DCT transform, our input images and masks must be 32 × 32 pixels. We pad zeros to the

original 18× 18 images, and we set our zero mask Mz as follows:

[Mz]ij =


1, 9 ≤ i ≤ 24 and 9 ≤ j ≤ 24

0, otherwise

(2.38)

This means that we limit the support of to be equal to the original input image size while

using a higher resolution DCT in our POCS layers. Given the limited number of data points

at each time step, we feed 4 consecutive time frames to our neural network in order to capture

some information from the temporal behavior of the the measurements at each location, i.e.,

our input size is 32× 32× 4, with a total number of 12 non-zero constraints.

2.8.0.1 Training the Model with Partially Known Ground Truth

Given the limited amount of measurement we have at each time step, and the fact that we

do not have the full gas signal across the entire grid, this makes the problem of estimating the

isopropyl alcohol source location very challenging.

In order to supervise the neural network, we create a dense “gas field” signal as follows:

given the 12 input constraints, we add 4 additional fake measurements at the source location

54

for each temporal map. The intensity is selected large enough to be larger that any of the

measurements. We then use the POCS procedure to create an artificial dense ground-truth

signal from the sparse constraints such that its peaks at each time step coincide with true source

location. We then stored these dense fields and supervised the neural network to minimize the

following loss

L(f̂) = ||f̂ − fsynth||22, (2.39)

where f̂ is the output of the neural network, and fsynth is the synthetic signal with argmax(fsynth)
N×N

=

(xsrc, ysrc). We used two bandwidth parameters BW1=4, and BW2=8. The POCS procedure

is implemented for 8 iterations (K = 8 in Algorithm 1), while the overall Deep DCT-POCS

procedure is carried out only for one iteration (L = 1 in Algorithm 1).

We used five experiments for training, three for validation, and three more experiments for

testing our model. Our results over the test dataset are given in Algorithm VI. Example of an

output image is shown in Figure 10. As one can see, our model achieves better distance score

than predicting the source location using the center of mass. This suggests that the time series

measurements are very noisy and simple averaging is very sensitive to these fluctuations in

signal values as can be seen in Sec. 2.7.1. On the other hand, the model learns robust features

from the time series that as less sensitive to these fluctuations.

55

Figure 10. Example of output image given the isopropyl alcohol sensor measurements over
three locations. The sensor locations are colored in red. The source is located at the blue

point, while the predicted source location (the argmax of the output image) is located at the
green point.

56

Exp
avg dist

DNN Centroid

Exp 1 3.14 4.49
Exp 2 2.77 2.80
Exp 3 3.89 4.82

TABLE VI

AVERAGE DISTANCE BETWEEN THE LOCATION OF THE PEAK OF THE
RECONSTRUCTED SIGNAL AND THE TRUE SOURCE LOCATION VERSUS THE

DISTANCE BETWEEN THE TRUE SOURCE AND THE CENTROID OF THE THREE
SENSOR MEASUREMENTS

2.9 Conclusion

In this chapter, we addressed the issue of locating a leaking gas source given sparse and

noisy sensor measurements. For this purpose, we proposed a data interpolation framework that

combines deep neural networks with regular projection-onto-convex-sets (POCS)-based one-

dimensional signal and two or higher dimensional interpolation algorithms. In particular, we

utilized the iterative bandlimited interpolation algorithm, also known as Papoulis-Gerchberg

algorithm, with two variants: one deals with real-valued sensor measurements, while the latter

deals with binary-valued sensor measurements. Instead of using the Fourier transform, we used

the discrete cosine transform to avoid complex numbers. We combined the iterative structure

with a convolutional neural network to regularize the iterations to achieve reliable solutions.

The overall algorithm is trained with past data.

We experimented with two different data sets at two different scales. The first example is

indoor isopropyl alcohol gas leak data, which we collected using three commercially available

57

chemical sensors. The second data corresponds to methane leak in industrial plants that was

extracted from infrared (IR) videos. We tested our approach on the two data sets and we were

able to interpolate the gas field spatial signal with high accuracy. We considered the local

maxima of the reconstructed two-dimensional data as candidates for the source locations. Our

approach achieved better results that Gaussian Mixture Model based interpolation in the case

of the methane data, and the center of mass based location estimation in the case of isopropyl

alcohol data.

CHAPTER 3

COMPUTATIONALLY EFFICIENT DEEP LEARNING SYSTEM FOR

VOC LEAK DETECTION USING INFRARED IMAGING AND

CHEMICAL SENSORS

The content of this chapter is based on our work that was published in the IEEE Jour-

nal of Selected Topics in Signal Processing, 2020, under the title “Computationally Efficient

Spatio-Temporal Dynamic Texture Recognition for Volatile Organic Compound (VOC) Leakage

Detection in Industrial Plants” © 2020 IEEE [3].

3.1 Motivation and Background

The US Environmental Protection Agency (EPA) estimates that more than 70,000 tons

of Volatile Organic Compounds (VOC) are emitted from leaking equipment such as valves,

pumps, and connectors, at petroleum refineries and chemical manufacturing facilities annually

[48]. Some types of VOCs such as acetaldehyde, benzene, formaldehyde, methylene chloride,

naphthalene, toluene, and xylene are Volatile Hazardous Air Pollutants (VHAPs), which cause

cancer, birth defects. Furthermore, they affect reproduction. VOCs are a major contributor

to the formation of ozone, which is a toxic gas that causes many respiratory diseases in urban

areas and areas close to refineries and chemical plants [49].

58

59

Figure 11. Toluene absorbance as a function of the wavelength in infrared range. The scale of
the wavelengths (x-axis) is in micrometers. The plot is downloaded from [1].

Medium Wave Infrared (MWIR) and Long Wave Infrared (LWIR) bands are absorbed by

most VOCs. An example is toluene, which absorbs light in both bands. Its absorbance response

is shown in Figure 11.

As a result, MWIR or LWIR thermal camera imaging can detect leaking VOC plumes

[50–52]. To see the efficacy of using IR thermal cameras, as opposed to ordinary visible light

cameras, Figure 12 shows an IR thermal frame and a visible light frame of the same scene.

While the VOC leak is obvious from Figure 12(a), which is the IR thermal frame, there is

no visible VOC leak in the visible-light frame shown in Figure 12(b). Nevertheless, examining

single frames may not be sufficient to detect VOC leak occurrence, as can be seen from Figure 13

(a) and (b), where two frames containing VOC leak are shown. On the other hand, VOC leak

regions are not stationary since they move erratically due to wind and other factors. A sequence

60

of successive frames containing VOC leak is shown in Figure 14. In contrast to the single-frame

case, one can easily identify VOC leaks in sequences of frames.

Therefore, a computer vision algorithm should use spatial and temporal information to

detect VOC leak regions. The VOC gas leak detection problem in infrared video is similar to

the wildfire smoke detection problem [50, 53–59]. Smoke and flames are also dynamic textures

in the video [4, 60–64]. While it is possible to train a neural network on cubes of video data

for VOC leakage detection, such an approach is not computationally efficient. Furthermore, it

may not be possible to implement it on resource-constrained devices for real-time detection.

In this work, we design two types of neural networks for VOC detection. We implement

these neural networks in two stages in order to take advantage of the spatial and temporal

structure of the dynamic texture created by the leaking VOC plume. We first detect moving

pixels that are darker than some of their neighboring pixels. These pixels are likely to be at the

boundary of a VOC plume. We then extract one-dimensional (1-D) temporal (history) signals

at these locations from the video and feed these 1-D signals to the first neural network. If those

pixels are near the edge of a VOC plume, their 1-D temporal signals exhibit high-frequency

behavior because VOC clouds move erratically, similar to ordinary smoke. A typical 1-D signal

corresponding to a pixel at the edges (or near the edges) of a VOC plume is shown in Figure 15.

On the other hand, regular background pixels have stationary behavior, as shown in Fig-

ure 16. One can notice that the motion patterns of ordinary moving objects are different from

the VOC gas leak pixels shown in Figure 15.

61

(a)

(b)

Figure 12. Example IR thermal image (a) and a corresponding ordinary camera image (b) for
the same scene. As we can see, the VOC leak is not visible in the case of visible light image.

Images (a) and (b) are taken from [2]

The neural network is trained in such a way that it generates high probability estimates for

such pixels. If the 1-D neural network generates high confidence values, we feed the correspond-

ing video frame to a deep convolutional neural network (CNN), which processes image frames.

Based on the output of the second CNN, we decide on whether a VOC leak is present in the

62

(a) (b)

Figure 13. Example IR-thermal frames of VOC leaks. As we can see, it is not easy to figure
out the VOC leak from a single image frame.

Figure 14. Example IR-thermal frame sequence of VOC leaks.

63

0 20 40 60 80 100 120 140 160

190

195

200

205

210

215

220

Figure 15. Time-series data of three pixels in VOC leakage regions in IR video.

scene. The overall structure is computationally efficient because the CNN does not process all

of the image frames of the captured video. It only processes data after a suspicious activity is

identified by the preceding 1-D neural network, which processes the temporal signals of dark

pixels.

3.1.1 Organization

The organization of the chapter is as follows. In Sec. 3.2.2 we present the 1-D neural

network analyzing the temporal history of a pixel. In Sec. 3.2.3 we present the spatio-temporal

2-D neural network. In Sec. 3.2.4, we present the energy-efficient additive-correlation based

64

0 20 40 60 80 100 120 140 160

25

50

75

100

125

150

175

Figure 16. Time-series data of three pixels in thermal IR video. The time-series shown in blue
corresponds to a moving object.

spatio-temporal neural network. In Sec. 3.3 we present our experimental results for the different

algorithms. Finally, we present our conclusion and discussion in Sec. 3.4.

65

3.2 Computationally Efficient Spatio-Temporal Video Analysis Framework

As pointed out earlier, plumes of VOC leaks appear as dark regions in a white-hot mode

thermal IR video (VOC leaks appear as bright regions in black-hot mode). Such regions do

not have a stationary shape over time since they expand and move in an erratic manner that is

similar to flames and smoke in regular-imaging videos [56, 58, 65–71]. Therefore VOC leakage

in IR video can be determined using spatio-temporal analysis.

Deep neural networks have demonstrated their abilities in complex pattern recognition tasks.

However, they are computationally demanding and may not be a practical solution to be used

on ordinary low-cost computers for real-time applications. For this purpose, we develop a com-

putationally efficient framework consisting of two components in a cascade. The first component

is computationally efficient and can be used for real-time monitoring, while the latter is more

computationally demanding and is invoked by the first sub-system only when needed.

In detail, the system first samples temporal trajectories from an IR video and feeds those

samples of 1-D time-series signals of pixels of possible VOC regions to a 1-D neural network.

Afterward, the system determines a likelihood score of VOC leakage from the results obtained by

the 1-D neural network. If the score exceeds a certain threshold, the second component processes

the corresponding image frames. The second component is a spatio-temporal convolutional

neural network, as shown in Figure 17. In these settings, the task of continuous monitoring is

assigned to the relatively efficient 1-D neural network instead of an ordinary 2-D CNN.

66

3.2.1 Computational Complexity of 1-D CNN vs 2-D CNN

To see the computational saving, one can compare the computational complexity of con-

volution carried out in 1-D vs. 2-D CNN. For an input of size N × N × D, and a filter of

size k × k × D, the realization of a single 2-D feature map has a computational complexity

O(N ×N × k× k×D). On the other hand, the realization of a single 1-D feature map with an

input size M ×D and a filter size of l ×D has a computational complexity of O(M × l ×D).

Therefore, as long as M < N2 and l < k2, the realization of 1-D based convolution feature map

requires fewer add-multiply operations. In fact, we have M << N2 in our system, Therefore,

the computational saving of the 1-D neural network is enormous.

3.2.2 One-dimensional Temporal Analysis of Dark Moving Pixels in IR Video

The first step of our VOC leak detection method is to identify dark moving regions in

IR video. In other words, we extract 1-D temporal records from the original spatio-temporal

(video) data. We process these 1-D history signals separately using a neural network to identify

whether these history signals are part of a VOC leakage scene or not. If the pixel is at the

boundary or near the perimeter of a VOC leak region-As shown in Figure 15, it will exhibit an

erratic (high-frequency) behavior over time. On the other hand, if the pixel is from an ordinary

object absorbing IR light or a cold place, it will be stationary and exhibit low-frequency behavior

most of the time, as shown in

We tried two classifiers of the 1-D temporal data. The first is a regular 1-D convolutional

neural network. The second is a long-short term memory (LSTM) recurrent neural network.

Our input is a single temporal time-series history signal generated by a moving dark pixel of

67

1-D Classifier

Sample
time-series signals

at time 𝑡 Samples
Predictions

Likelihood
Score

Calculation

> Th

Spatio-temporal
Neural Network

Yes

read new data
 at time 𝑡 + 𝑁

𝑡
𝑡 − 1

𝑡 − 𝐿

No

video
input

activate

decision

leak
positive?

Yes alert

Figure 17. Block diagram of our proposed system. “Th” stands for threshold.

the IR camera, and the output is a binary value indicating whether this specific time-series

signal comes from a VOC leakage region or not.

In our settings, we read temporal signals of size 160 at a frame rate of 25 fps, which roughly

corresponds to 6.4 seconds from IR videos with spatial dimensions of 224× 224. The time span

of 6.4 seconds is sufficient for any gas leakage to have a noticeable spread-out across the scene

as shown in Figure 15. Therefore, we expect a sufficient number of temporal signals to have

time-varying intensity values informative of VOC leakage. Given a 1-D temporal classifier, we

68

expect to be able to recognize any potential leakage from other moving objects in the IR video.

The architecture of the CNN used is given in Algorithm VII.

Since our decision is based on the collective prediction results of the 1-D time-series signals,

we devise a confidence score that quantifies our confidence as to whether the scene contains

VOC leaks or not. In this regard, let x ∈ R160 represents the input signal, which is a vector of

length 160. Let D(x) ∈ {0, 1} be the hard decision made by the 1-D convolutional classifier,

where “0” corresponds to predicting ordinary temporal signals, and “1” corresponds to a VOC

leak. Let N be the number of sample trajectories extracted from the entire spatio-temporal

video data. The VOC-leak confidence score is defined as follows:

L :=

∑N
i=1 I

(
D(xi) = 1

)
N

, (3.1)

where I(.) is the indicator function and xi is the i-th signal. In other words, if there are enough

time-series signals identified as class Positive (VOC leak), the VOC-leak confidence score L

will be high. On the other hand, if the sampled time-series signals do not contain any leakage,

the score will be low. When the confidence score L exceeds a certain threshold, the system

recognizes a suspicious event and, subsequently, invokes the deep neural network that analyzes

spatial data to verify the entire scene. The architecture of the 1-D convolutional neural network

is summarized in Algorithm VII.

69

Layer Specification

Input Layer input size: 160× 1
Conv Layer 32 5× 1 filters, strides=2

Batch-norm Layer applied

Conv Layer 64 3× 32 filters, no strides
Max-pooling Layer down-sampling by 2
Batch-norm Layer applied

Conv Layer 128 3× 64 filters, no strides
Max-pooling Layer down-sampling by 2
Batch-norm Layer applied

Global Average-pooling output size: 128

Dense Layer output size: 128
Batch-normalization Layer applied

Output Layer
output size: 1

(soft prediction)

TABLE VII

ARCHITECTURE OF THE 1-D CONVOLUTIONAL NEURAL NETWORK USED IN
TEMPORAL SIGNAL CLASSIFICATION

3.2.3 Two-Dimensional (2-D) Spatio-Temporal Analysis Network

As mentioned earlier, we also utilize the image-based deep convolutional network. Because

of the first stage in the system, only a relatively few consecutive frames need to be processed

by the image-based deep CNN, in contrast to processing the entire scene. The input to the 2D

CNN is 3-D spatio-temporal images, where the first two dimensions correspond to the height

and width, and the last dimension corresponds to the number of successive temporal frames.

The reason for using multiple consecutive frames rather than single frames is two-fold: First, in

some VOC leak scenes, the leakage is very weak and barely discernible by the human eye from

70

Layer Specification

Input Layer input size: 112× 112×N
Conv Layer 64 5× 5 filters, strides=2

Batch-norm Layer applied

Conv Layer 128 3× 3 filters, no strides
Max-pooling Layer pooling size: 2
Batch-norm Layer applied

Conv Layer 256 3× 3 filters, no strides
Max-pooling Layer pooling size: 2

Global Average-pooling output size: 256
Batch-norm Layer applied

Dense Layer output size: 256
Batch-norm Layer applied

Output Layer
output size: 1

(soft prediction)

TABLE VIII

ARCHITECTURE OF THE 2-DIMENSIONAL SPATIO-TEMPORAL NEURAL
NETWORK AND THE ADDNET. “N” REFERS TO THE NUMBER OF SUCCESSIVE
FRAMES FED TO THE CNN (TEMPORAL DEPTH DOMAIN). THROUGHOUT OUR

EXPERIMENTS, WE SET N TO 3,4 AND 5.

a single frame. Secondly, incorporating temporal information ensures that the network does

not erroneously associate spatial features, like pipelines or chimneys, always with the presence

of VOC leaks. The architecture of our network is shown in Sec. 3.2.3.

3.2.4 Additive-Correlation Based Spatio-temporal Neural Network

This subsection reviews an energy-efficient neural network that can be used in mobile sys-

tems or cameras. We implemented a neural network, which we call the Additive Neural Network

(AddNet). AddNet was first introduced in [4,6,72] and it performs what we call Additive Cor-

71

relations (AC) in its neurons. The additive correlation is based on the following arithmetic

operation:

x⊕ w := sgn(xw)(|x|+ |w|) (3.2)

where x and w are two real-valued scalars, sgn(.) is the Signum function. One can easily

generalize the definition to the multi-dimensional (vector) case. Let x and w ∈ Rd. We define

the additive-correlation of two vectors as follows:

x⊕w :=

d∑
i=1

sgn(xiwi)(|xi|+ |wi|) , (3.3)

where each entry of the above equation has the same sign of regular multiplication. As a result,

whenever xi and wi have the same sign, they positively contribute to the AC [4,6, 72]. On the

other hand, if they have opposing signs, they negatively contribute to the AC, just as in the

regular correlation operation between the two input vectors. The above operation avoids the

use of multiplication operation which consumes significant amount of energy in many mobile

systems. It is straightforward to show that Equation 3.3 can be also expressed as follows:

x⊕w =
d∑
i=1

sgn(xi)wi + xisgn(wi) (3.4)

72

While the ordinary dot product induces the `2 norm, the new operation induces the `1 norm,

multiplied by 2, as follows:

x⊕ x =

d∑
i=1

sgn(xixi)(|xi|+ |xi|) = 2||x||1 (3.5)

The operation can be written in the same fashion as ordinary matrix-vector multiplication:

let the vector x ∈ RN and the weight matrix W ∈ RN×M . We operation is now defined as

follows [4, 72]:

y := W ⊕ x = [x⊕w1 x⊕w2 . . . x⊕wM]T , (3.6)

which carries out the AC operations between the columns wi of the matrix W for i = 1, 2, . . . , M

and the input vector x.

In regular fully connected layers, the forward function is expression mathematically as:

y = σ(WTx + b) (3.7)

where W ∈ RN×M is the weights matrix, x ∈ RN is the output of the previous layer, b ∈ RM

is the additive bias, and σ(.) is the nonlinear activation function. In AddNet, one replaces

the matrix-vector multiplication in feed-forwarding by the operation defined in Equation 3.6.

Furthermore, we introduce a normalization vector γ ∈ RM so as to control the range of the

73

responses of the term W⊕x. We express the forward operation by an AC-based fully connected

layer as follows:

y = σ(γ � (W ⊕ x + b)) (3.8)

where � represents the element-wise vector-vector product. Scaling W ⊕ x + b by the vector

γ is computationally inexpensive because it is an element-wise vector-vector product (O(M)).

Convolutional AC layers can be realized by replacing the multiplication in the convolution

operations with the AC operator. AddNet is more energy-efficient than regular neural networks

because it performs only one multiplication per “convolution” operation.

In our experiments, we used the architecture described in Sec. 3.2.3, i.e., the same as in the

case of our regular convolutional network used in analyzing IR video frames.

3.3 Dataset and Results

We compiled a data set of hundreds of frames and a data set of thousands of time-series

pixel history (trajectory) signals from 29 publicly available IR thermal videos and 12 videos

that we recorded using a low resolution bolometer type IR camera. We used these data sets to

train the two components of the systems and evaluate their recognition capabilities separately

and jointly. It is worth mentioning that some videos contain more than one scene of interest.

For information about the data sources, the reader may refer to Appendix.

3.3.1 One-Dimensional (1-D) Data Set

We gathered a time-series data set of 15,000 pixel history signals from 6 normal IR videos,

and 7 IR videos that contain VOC leaks in order to create a binary-class data set for training

74

the 1-D classifier. In order to obtain an accurate data set, we carefully extracted the temporal

data from VOC leakage regions from the 7 video clips containing VOC leaks. On the other

hand, we randomly extracted 1-D signals from different locations in 6 normal video clips. This

is to ensure our normal data cover different motion and intensity patterns. One can also select

one pixel out of each 8 by 8 block or 16 by 16 block of the relatively dark regions of the video

clip. IR cameras produce Discrete Cosine Transform (DCT) compressed data. Therefore it is

also possible to use the DC value of each 8 by 8 or 16 by 16 image blocks. Example time-series

signals corresponding to pixels in VOC leaks and ordinary pixels are shown in Figure 15 and

Figure 16, respectively.

In a bid to enforce classification invariance to background intensity levels, we augmented our

training data set by adding a a small random DC value to the recorded signals while training.

Since the 1-D temporal signals are pixel intensities, their values are bounded between 0− 255.

We also implemented an LSTM based classifier. Similar to the 1-D CNN case, we used

time-series signals of length 160. The architecture is an LSTM layer, which has 20 cells that

read the input signals. The output size of the LSTM layer is 20. We then feed the output

vector to a dense linear layer, which serves as our output layer. The input to each LSTM

cell is a feature vector extracted from a segment of the original temporal signal of length 16.

The segments corresponding to adjacent LSTM cells overlap by 50%. The features fed to

each cell are the magnitudes of the discrete Fourier Transform (DFT) of 16-sample long time-

series segments. The reason for using DFT instead of time-series data segments is to achieve

translation invariance.

75

We reserved 20% of the aforementioned 1-D data set to use it for early-stopping validation

purposes. We trained our 1-D neural network for 5 epochs using Adam Optimizer. We were

able to achieve 98% accuracy over the validation data set.

In order to establish a VOC-leak confidence score threshold as defined in (Equation 3.1), we

carried out stochastic inference over another validation data set of video scenes. This data set

is obtained from 19 video scenes (Scene 1-20 as in Algorithm IX and Algorithm XI)1 , each of

which contains successive frames of a spatial size of 224. The videos have significantly different

resolutions and scales because they were obtained using different IR cameras. We have 7 videos

that do not contain VOC leaks. The remaining 12 videos contain scenes in which there are

VOC leaks. The VOC-leak videos have different scenarios and vary greatly in the VOC gas

eruption location and the scale. These videos are different from those used initially to train

the 1-D classifier. In each trial, we sampled 80 1-D temporal signals randomly from each video

and calculated the VOC confidence score defined in Equation 3.1. We repeated the process 10

times for each video. We report the average score and the standard deviation of the confidence

score for the different scenes in Algorithm IX. Example IR image frames of the two classes are

shown in Figure 18 and Figure 19, respectively.

As we can see from Algorithm IX the VOC confidence scores of temporal signals obtained

from ordinary scenes are significantly lower than those of VOC-leak scenes, with the highest

confidence score being 0.16 for the 1-D CNN as shown in the 4-th column of Table III. On the

1For information about the data sources, see Algorithm XX in Appendix.

76

Figure 18. Example IR image frames containing VOC leaks.

other hand, the lowest confidence score for VOC leaks is 0.26. When the input 1-D signals

come from VOC leaks, the lowest score is 0.26. We can set the threshold for the confidence

score defined in Equation 3.1 as 0.16. All the other scores of video scenes 1-7 are much lower

than 0.16. Example 1-D signals and some intermediate layers are shown in Figure 20.

On the other hand, the LSTM-based classifier does not produce as good results as does the

CNN-based classifier. The confidence scores of positive videos are consistently higher compared

to negative (no-leakage) videos. We can still set a threshold separating the two classes in our

data set. However, the score margin between the two classes is small when compared to that

of the CNN-based classification (0.35-0.31 vs 0.26-0.16). This suggests that the LSTM-based

classifier has a higher tendency of producing more false alarms in comparison with the CNN

based classifier.

77

TABLE IX

RESULTS OF THE CONFIDENCE SCORE OVER DIFFERENT SCENES. THE MEAN
SCORES AND THE STANDARD DEVIATIONS ARE ESTIMATED FROM 10

DIFFERENT TRIALS.
CNN LSTM

Scene ID
Scene Contains leak? Confidence Score Confidence Score

Description (Y/N) mean std. mean std.

Scene 1 wildlife No 0.01 0.01 0.22 0.04
Scene 2 wildlife No 0.02 0.02 0.23 0.04
Scene 3 wildlife No 0.11 0.05 0.21 0.06
Scene 4 wildlife No 0.16 0.08 0.20 0.06
Scene 5 road No 0.05 0.04 0.23 0.05
Scene 6 road No 0.03 0.01 0.31 0.08
Scene 7 road No 0.02 0.01 0.18 0.05

Worst-Case Score (for VOC negative videos) 0.16 0.31

Scene 8 pipe leak Yes 0.42 0.1 0.71 0.09
Scene 9 pipe leak Yes 0.41 0.08 0.40 0.08
Scene 10 jet engine Yes 0.54 0.09 0.57 0.08
Scene 11 chimneys Yes 0.36 0.13 0.50 0.07
Scene 12 pipe gas leak Yes 0.37 0.1 0.35 0.08
Scene 13 natural gas leak Yes 0.85 0.06 0.47 0.09
Scene 14 natural gas leak Yes 0.26 0.11 0.47 0.07
Scene 15 chimneys Yes 0.49 0.11 0.38 0.07
Scene 16 VOC leak Yes 0.34 0.08 0.72 0.08
Scene 17 VOC leak Yes 0.71 0.07 0.76 0.09
Scene 18 chimneys Yes 0.37 0.07 0.68 0.07
Scene 19 natural gas leak Yes 0.62 0.12 0.64 0.08

Worst-Case Score (for VOC positive videos) 0.26 0.35

78

Figure 19. Example ordinary image frames from IR videos used in training the neural
networks

3.3.2 IR Video Dataset for 2-D Spatio-Temporal Processing

We extracted infrared image frames from 17 publicly available videos, which account for

48 different scenes, and constructed a training data set for the spatial classifier stage 1. For

validation, we utilized the data set we used earlier for establishing the confidence score for the

1-D classifier as mentioned in Sec. 3.3.1 (Scene 1-20).

We used entire frames and we tried different temporal depths. In particular, we set our

temporal depth to 3, 4 and 5 image frames, respectively. In our data set we normalized the

image input size to 112× 112. We gathered a total of 8, 400 frames of VOC scenes and 10, 246

1See Algorithm XXI in Appendix for details about the data sources

79

frames of ordinary scenes for our training data set. As for the validation data set, we used the

data set that we test upon the 1-D neural network as detailed in Sec. 3.3.1.

In order to enhance the capabilities of the network to detect VOCs, we randomly rotated

the frames in the spatial domain during training so that the network is exposed to the textures

in all different locations. This mitigates the risk of having the classifier over-fit the background

scenes. Furthermore, We employed the early stopping criterion based on the recognition rates of

the validation data set. Our validation dataset consists of 7 normal scenes and 12 VOC-leakage

scenes. This is the same dataset we used for validating the 1-D temporal signals. It should

be noted that both training and validation sets are disjoint. We implemented an ordinary

2-D convolutional neural network and an AddNet, both of which have the architecture shown

in 3.2.3. We investigated 3, 4 and 5 consecutive image frames for the temporal depth of the

input. We used Adam optimizer with a learning rate of 10−4. We used Tensorflow-Keras in our

implementation. We compared our method with a regular smoke detection algorithm that we

developed with Mobilenet-V2 [73]. We utilized transfer learning using Mobilenet-V2 due to the

relatively small data set size. We trained (fine-tune) only the last dense layers while keeping the

weights of the convolutional layers intact. Our VOC image frame recognition results over the

validation data set were 91 − 95% for regular networks with different number of input frames

(3-5) and 93% for AddNet. We were able to identify the events of VOC leak in all of the videos.

Smoke detection algorithm developed using Mobilenet-V2 did not produce as good results as

our algorithms.

80

We also tested the neural networks over a set of videos we gathered using a bolometer

type FLIR IR camera. These 12 videos contain butane leakage 1. We report the results per

video/scene in Algorithm X and Algorithm XI. Images generated by low cost bolometer IR

cameras are corrupted by noise as shown in Figure 21. As it can be seen from Algorithm X

and Algorithm XI, the true positive rates are high in the case of CNN and AddNet, in contrast

to Mobilenet-V2, which misses out more VOC-positive videos. This can be attributed to the

fact that the earlier layers in Mobilenet-V2, which are used for feature extraction and are not

trained during fine-tuning, were originally optimized using a dataset, namely ImageNet, which

is radically different from IR-thermal images. Furthermore, despite the fact that AddNet and

CNN do suffer from false positive rates in some videos as demonstrated in Algorithm XI, what

matters the most is not missing out any VOC-positive leak. It should be pointed out that

we use image analysis to verify the results of 1-D network which detects all the VOC leaks

in our validation data set. Two feature maps corresponding to the same filter from the first

convolutional layers are shown in Figure 23 for a VOC leakage example and a normal example.

As it can be seen from Figure 23, feature maps have high response in the regions of darker

areas. This is expected since the gas leak will generate dark spots in white-hot mode thermal

IR video. Nevertheless, we can see that the response is zero for the animal appearing in the

negative example as in Figure 23 (a). We can interpret this feature extraction process to be

sensitive to darker areas, while not responsive to other patterns.

1These videos are available on YouTube given the following link: https://www.youtube.com/

playlist?list=PL9_9ATqpfzwPcHBnq2UdxHJ96aSVgVTF-

81

TABLE X

TRUE POSITIVE RATES OVER BUTANE-POSITIVE IR-THERMAL VIDEOS WE
GATHERED USING A LOW RESOLUTION BOLOMETER-TYPE IR CAMERA.
RESULTS ARE SHOWN FOR DIFFERENT NUMBER OF INPUT CHANNELS

(FRAMES) OF THE 2D CNN.
Video # of True Positive Rate (%)

ID Frames CNN Add- Mob-
3 frames 4 frames. 5 frams Net NetV2

104414 101 100.0 60.5 72.2 98.6 56.3
104703 56 84.0 82.0 65.6 70.7 27.6
103421 104 22.7 20.3 100.0 0.0 0.0
104741 95 100.0 80.2 100.0 100.0 0.0
103934 103 100.0 100.0 100.0 98.2 3.0
104903 100 3.9 70.6 100.0 100.0 93.0
104955 97 100.0 98.9 100.0 100.0 100.0
104255 99 100.0 100.0 100.0 100.0 30.2
103732 78 100.0 80.0 100.0 100.0 10.0
104534 88 100.0 100.0 100.0 100.0 0.0
103236 113 74.8 20.2 10.1 2.6 67.8
103126 97 100.0 94.5 100.0 100.0 100.0

Total 1131 81.1 74.8 86.6 79.3 42.1

We also note that bolometer type low-cost IR cameras are not as reliable as regular LWIR

or MWIR cameras due to the noisy nature of bolometer images.

3.3.3 Joint Performance Evaluation and Discussion

We tested the overall VOC detection system over a data set consisting of 7 normal and 5

VOC-positive scenes extracted from 9 videos1. The recognition results are reported in Algo-

1For information about the data sources, see Table IX in the following link: https:

//github.com/Diaa0/Volatile-Organic-Compound-VOC-Leakage-Detection/blob/master/VOC_

leak_appendix.pdf

82

TABLE XI

RECOGNITION RATES OVER THE POSITIVE AND THE NEGATIVE SCENES WE
USED IN OUR VALIDATION DATA SET.

Scene ID
Scene Contains # Frames CNN

AddNet MobileNet-V2
Description leak? 3 frames 4 frames 5 frames

False Positive Rate (%)

Scene 1 wildlife No 48 0.0 0.0 0.0 0.0 41.7
Scene 2 wildlife No 48 0.0 0.0 0.0 0.0 14.6
Scene 3 wildlife No 48 0.0 0.0 0.0 100.0 0.0
Scene 4 wildlife No 82 7.2 0.0 0.0 1.2 7.3
Scene 5 road No 143 26.6 55.2 11.8 0.0 11.9
Scene 6 road No 485 4.1 0.0 0.0 0.0 2.4
Scene 7 road No 67 28.4 0.0 0.0 0.0 9.0

Total - - 921 8.3 8.6 1.8 5.3 7.4

True Positive Rate (%)

Scene 8 pipe leak Yes 157 95.6 80.2 62.3 80.3 87.3
Scene 9 pipe leak Yes 289 99.7 100.0 91.9 91.0 82.0
Scene 10 jet engine Yes 51 60.8 100.0 38.2 100.0 31.4
Scene 11 chimneys Yes 72 100.0 100.0 100.0 100.0 100.0
Scene 12 pipe gas leak Yes 156 100.0 100.0 100.0 54.5 94.9
Scene 13 natural gas leak Yes 48 100.0 100.0 100.0 100.0 100.0
Scene 14 natural gas leak Yes 58 100.0 49.1 100.0 12.7 100.0
Scene 15 chimneys Yes 50 98.0 0.0 100.0 100.0 100.0
Scene 16 VOC leak Yes 41 100.0 100.0 100.0 0.0 100.0
Scene 17 VOC leak Yes 629 75.8 100.0 99.8 92.9 4.3
Scene 18 chimneys Yes 406 100.0 99.7 100.0 69.7 55.4
Scene 19 natural gas leak Yes 3544 99.4 100.0 93.2 98.9 97.7
Scene 20 natural gas leak Yes 528 41.5 96.8 100.0 100.0 0.0

Total - - 6029 91.6 97.7 94.1 92.9 75.0

83

rithm XII. As one can see from Algorithm XII, the 1-D CNN classifier with zero-mean input

(CNN 0) recognizes all the VOC leaks in positive video clips. However, it produces false alarms

in Scene 26 (aerial scene) and the wildlife scene 27. The 2-D spatio-temporal network with 3

or 5 image inputs can correct the false alarm in Scene 26, as shown in the 6th row of Table VI.

The 1-D network without mean subtraction (CNN 1) recognizes all the VOC leaks except

the gas pump (scene 28) and produces a false alarm in Scene 27. The gas pump leak is relatively

faint compared to other leak-positive video clips. An example frame from Scene 27 is shown

in Figure 24. The 2-D spatio-temporal network recognizes the leak in more than 80% of the

image frames of the IR video consisting of 177 frames.

The 2D spatio-temporal networks with 3, 4, or 5 inputs recognize the VOC leaks in all the

video clips. They have a low recognition rate in Scene 29. However, it is enough to identify the

VOC leak to sound an alarm. The 2D network with 3 or 5 images produces a false alarm only

in Scene 27.

3.3.4 Computational Efficiency of AddNet

We carried out time analysis over inference passes for a regular CNN and AddNet on a

PC equipped with an Intel Core I7-7700HQ CPU. We measured the inference time for mini-

batches of different sizes. The averaged results are presented in Algorithm XIII. As it can

be seen from Algorithm XIII, the computational efficiency of AddNet is not significant in the

case of a single-example batch. However, AddNet could process batches of 3 images faster than

CNN by 5% in a regular PC. Furthermore, It can achieve 15% efficiency when the batch size

increases to 20 images. Cameras output compressed video, and decoders generate batches of

84

TABLE XII

THE PERFORMANCE RESULTS OF THE SPATIO-TEMPORAL VOC DETECTION
SYSTEM OVER A TEST DATA SET.

Scene ID
Scene Contains # of frames confidence Score (1D) VOC Recognition rates (2D CNN)

Description leak? CNN 1 CNN 0 3 frames 4 frames 5 frames

Scene 21 building No 417 0.08 0.0 0.0 0.0 0.0
Scene 22 pedestrians No 237 0.14 0.04 0.0 0.0 0.0
Scene 23 pedestrians No 507 0.08 0.05 0.0 16.9 0.0
Scene 24 building No 717 0.08 0.07 0.0 0.0 0.0
Scene 25 aerial scene No 230 0.06 0.04 0.0 10.0.0 0.0
Scene 26 aerial scene No 117 0.11 0.41 0.0 89.0 0.0
Scene 27 wildlife No 148 0.25 0.23 89.0 87.8 87.5

Scene 28 gas pump Yes 177 0.10 0.57 88.0 90.0 85.1
Scene 29 oil well Yes 177 0.27 0.44 12.4 13.6 18.2
Scene 30 pipe gas leak Yes 177 0.18 0.47 100.0 100.0 100.0
Scene 31 pipe gas leak Yes 217 0.19 0.26 32.5 100.0 100.0
Scene 32 pipe gas leak Yes 207 0.19 0.40 99.5 97.2 98.0

image frames in practice. The time saving that we achieved using AddNet allows for processing

more mini-batches of spatio-temporal frames. This, in turn, increases the recognition capacity

of the system.

It is worth mentioning that the energy efficiency of AddNet depends on the type of processor

that is being used in video analysis, but it is related to the computational time savings.

85

TABLE XIII

EXECUTION TIME RESULTS OF CNN AND ADDNET MINI-BATCH INFERENCE FOR
DIFFERENT MINI-BATCH SIZES.

Mini-Batch CNN AddNet
Size Average (ms) Average (ms) Saving Rate

1 2.532 2.489 1.70%
3 1.175 1.106 5.88%
5 1.147 1.051 8.37%
10 1.074 0.968 9.87%
20 0.994 0.839 15.59%

86

−1

0

1

0

1

0

1

0

1

0

1

(a)

−1

0

1

0

1

0

1

0

1

0

1

(b)

−1

0

1

0

1

0

1

0

1

0

1

(c)

−1

0

1

0

1

0

1

0

1

0

1

(d)

Figure 20. Intermediate feature maps for 4 different example time-series signals. The signals
in blue are the input signals and the signals in green and red are four different features maps

from the second convolutional layer. Example (a) is taken from a VOC-positive video and
classified as VOC-positive. Example (b) is taken from a VOC-positive video and classified as
VOC-negative. Example (c) is taken from a normal (VOC negative video) and classified as

negative, whereas Example (d) is taken from a VOC negative video and classified erroneously
as VOC-positive. Each feature signal has a length of 35 samples and is scaled to match the

length of the original signal (160 samples) for demonstration purposes.

87

Figure 21. An example of thermal image obtained by a low-cost bolometer-type IR camera.
The darker region corresponds to butane leakage.

Figure 22. Example image frames from various videos that we used in testing our deep neural
networks. All the frames except the bottom-left frame are correctly recognized by the CNN

and AddNet.

88

(a)

(b)

Figure 23. Example feature maps of the first convolutional layer for two examples: (a) A
wildlife scene with no VOC and (b) a scene with VOC gas leak. The values are re-scaled for

demonstration purposes.

Figure 24. Example image from Scene 27 (pump gas leak).

89

3.4 Conclusion

We presented a computationally efficient VOC gas leak detection method, which is based

on two neural networks connected in series. The first neural network analyzes the time-series

data generated by some of the moving dark pixels of the thermal IR camera. If such pixels

exhibit erratic behavior, it is possible that the scene may contain a dark cloud-like region due

to a VOC gas leak. In such cases, three or more consecutive frames of the video are fed to

the 2-D spatio-temporal neural network. The overall system achieved high recognition rates

in our dataset. The VOC-leak detection structure that we propose is scalable in the sense

that one can use only 1D temporal history signals if the processor is of limited capacity. If

more processing power is available, the 2D spatio-temporal network can also be used for more

reliable VOC-leak detection results. The spatio-temporal network will verify the results of the

1D temporal neural network. We also used a novel neural network, AddNet, which is based on

what we call the ”additive-correlation” operation. The AddNet is more energy-efficient than

regular neural networks. For this reason, they can be used in mobile applications, including

drones. The recognition results of the AddNet are slightly inferior to the regular deep 2-D

convolutional neural network. However, the gain in energy-efficient and time saving of AddNet

allows for processing more frames to compensate for the drop in performance.

CHAPTER 4

REAL-TIME LOW-COST DRIFT COMPENSATION FOR CHEMICAL

SENSORS USING A DEEP NEURAL NETWORK WITH HADAMARD

TRANSFORM AND ADDITIVE LAYERS

The content of this chapter is based on our work that was published in IEEE Sensors Jour-

nal, 2021, under the title “Real-Time Low-Cost Drift Compensation for Chemical Sensors Using

a Deep Neural Network With Hadamard Transform and Additive Layers” © 2021 IEEE [8].

A preliminary version of this work was published in IEEE International Conference on Acous-

tics (ICASSP) 2021, under the title “ Discrete Cosine Transform Based Causal Convolutional

Neural Network for Drift Compensation in Chemical Sensors” © 2021 IEEE [7]

4.1 Introduction

Drift correction is a crucial pre-processing step for reliable and accurate gas analyte detection

and identification in chemical sensors and Electronic nose (E-nose) systems [19,74–77]. Sensor

drift causes the characteristics of a chemical sensor’s response to change over time. This happens

due to multiple factors, such as variations in temperature and humidity, aging, and the so-called

sensor poisoning [18]. An electronic nose system can neither be reliable nor accurate without

addressing the sensor drift problem [78].

Recently, there has been significant interest in drift correction in the sensors community

by utilizing machine learning algorithms. Zhang et al. [79] propose an unsupervised subspace

90

91

projection method, named Domain Regularized Component Analysis (DRCA), which aims at

adapting the distribution of the drifted data to that of drift-free data for analyte classification.

Liu et al. [80] propose an online active-learning algorithm that calibrates sample drift for class

identification. In [81], Tao et al. propose learning drift-invariant features in an adversarial

manner by minimizing the Wasserstein distance to perform domain adaptation between the

drifted data and the drift-free data domains. In [6], we proposed a generative adversarial

framework to train a discriminator-classifier network to learn drift-invariant feature parameters

using the chemical sensor dataset collected by Vergara et al. [18].

While the previous work addresses long-term drift in chemical sensors, the machine learning

algorithms are implemented over several extracted features, such as the maximum and minimum

values of the original time-series data. Unfortunately, the original time-series measurement data

is not available in [6, 18, 80, 81]. Huang et al. propose a Papoulis-Gerchberg (PG) algorithm-

based method for drift correction. The PG algorithm-based algorithm first extrapolates the

drift signal from the observed data by assuming that the drift signal is a band-limited low-pass

signal [82]. This PG-based algorithm is not applicable to online, real-time applications since

the PG algorithm is an iterative method that requires computing successive Fourier Transforms

(FT) between time and frequency domains until a satisfactory convergence level is achieved.

Furthermore, some baseline drift samples should be known for convergence. Other chemical

sensor drift estimation approaches include Kalman filtering and shallow neural network-based

methods [78,83–87].

92

In this chapter, we propose using deep learning to estimate the sensor drift signals from

raw time-series data in real time. Deep convolutional neural networks (CNNs) have excelled

in various time-series related tasks, such as prediction, interpolation, and classification [88].

Researchers have recently used CNNs in the analyte classification problem [3,6,89]. CNNs have

been increasingly preferred to recurrent neural networks in time-series recognition problems

thanks to their highly flexible architectures and relative ease to train [90]. Since our goal is to

carry out drift correction in real-time using a causal regression framework, we propose to use

novel temporal convolutional neural networks (TCNNs) for sensor drift estimation. TCNNs

have been able to outperform recurrent neural networks over several benchmark data sets

[90,91]. In TCNNs, convolutional layers implement causal convolution (or correlation), meaning

that the current output depends only on the current and previous input values. Convolutions

are carried out at different dilation rates, thus enabling the network to learn long- and short-

term features for the task.

To take advantage of the slowly varying nature of the sensor drift signal, we propose incor-

porating orthogonal transforms and thresholding layers in the TCNNs architecture to produce

smooth intermediate features, which in turn will generate a smooth drift estimate. This ap-

proach also removes the noise in the observed data. In particular, we compute the Hadamard

Transform and Discrete Cosine Transform (DCT) over sliding windows of the past and current

intermediate feature maps and apply soft thresholds to the high-frequency components in the

transform domain. The transform layer will essentially suppress the high-frequency components

and regularize the features. The thresholding parameters are also learned during training us-

93

ing artificially created data. Both transforms are fast and can be implemented efficiently using

O(n log n) operations. Hadamard transform is even faster than the DCT as it is a multiplication-

free transform, which can be constructed from the Haar wavelet transform [92]. Furthermore,

we replace the convolutional layers of TCNN with multiplication-free additive layers that can

be implemented efficiently on a low-performance processor to design an energy-efficient and

low-cost system.

Our results show that the proposed framework can accurately provide smooth and slowly

varying drift estimates from the sensor measurements in real-time, even for severely degraded

sensors.

4.1.1 Organization

The organization of this chapter is as follows: In Sec. 4.2, we review the sensor drift problem.

In Sec. 4.3 we describe the TCNN framework, the transform domain layers, and the additive

convolutional layers. In Sec. 4.4 we present a novel multiplication-free operator that defines a

mercer-type kernel. In Sec. 4.5 we present an algorithm for unsupervised drift estimation using

kernel PCA and DCT. In Sec. 4.6, we present and discuss our experimental results. Finally,

we provide our conclusion in Sec. 4.7.

4.2 The Sensor Drift Problem

Sensor drift is a common problem in chemical sensors, such as the E-nose technology, leading

to inaccurate measurements. Sensor drift stems from many sources, such as the binding of

molecules to the sensor surface, electronic aging of components, environmental contamination,

and temperature variations. Examples of sensors drift are shown in Figure 25 and Figure 26.

94

0 25 50 75 100 125 150 175 200
Time (mins)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

ma
gn

itu
de

Figure 25. Example of drift signal showing the low-frequency nature of the drift signal

In Figure 25, the signal decays over time, although there is no methane gas excitation.

Comparatively, in Figure 26 the baseline drift signal first decreases until around t=110 minutes

and slowly increases afterward. Ideally, both sensors should not have produced any output.

Therefore, the measured output is the offset, which drifts in time. Furthermore, although the

sensors are identical in design, they exhibit different drift signals. These two examples show

that it is difficult to rely on analytical models to characterize drift signals due to the individual

nature of each sensor.

In [82], it is further assumed that the drift signal is a band-limited lowpass signal, and the

drift estimation is formulated as an interpolation problem. The iterative Papoulis-Gerchberg

(PG) algorithm [30, 32, 93] is used to construct missing parts of the drift signal. In particular,

this drift estimation method assumes that the sensor is not exposed to a chemical gas initially

and at the end of the measurement cycle. PG algorithm imposes time and frequency domain

information iteratively to perform interpolation until both the time and frequency constraints

95

0 25 50 75 100 125 150 175 200
Time (mins)

0.0

0.2

0.4

m
ag

ni
tu

de

Figure 26. Example of drift signal showing that the drift signal can increase and decrease

are satisfied, or a satisfactory convergence level is achieved. The shortcoming of the PG method

is the need for prior information about the gas exposure to be able to interpolate a section of

the drift signal corresponding to gas exposure [82]. As pointed above, it is also necessary to

assume a lowpass bandwidth for the drift signal in [82]. On the contrary, we do not assume any

prior bandwidth information. The neural network automatically imposes sparsity constraints

on the drift signal in the transform domain during training by learning the transform domain

soft thresholds. Furthermore, we do not use future samples during the DCT and Hadamard

transform computations to estimate the drift signal. We use only the past and current samples

of sensor measurement signal y(t) to estimate the drift signal d(t). As a result, we compute a

real-time estimate of d(t).

In this paper, we study the real-valued DCT and Hadamard transforms instead of the Dis-

crete Fourier Transform, which is complex. The Hadamard transform is based on the Haar

96

wavelet transform and can be computed without performing any actual multiplication opera-

tions.

0 200 400 600 800 1000
Time (mins)

sensor input

TCNN-based framework

residual block

convolutional
block

transform
block

+

cascade of convolutional
and transform residual blocks

intermediate
feature

f i

N-point HT/DCT
Transform

SoftThreshold(.)

Inverse
N-point HT/DCT
Transform at t = t0

→
time

regularized
feature

f i

t = 0 t = t0
(current time)

0 200 400 600 800 1000
Time (mins)

0 200 400 600 800 1000
Time (mins)

drift estimate

drift corrected signal

subtract drift
from input

Figure 27. Block diagram of the proposed system: The system receives sensor measurements
and estimates the drift using a TCNN network with transform domain layers. The TCNN

network is made up of a cascade of dilated convolutional and orthogonal transform residual
blocks. The system then subtracts the drift estimate from the input signal and generates the

drift-corrected signal in real-time.

4.3 TCNN with Spectral Transform Domain Layers

TCNNs have been widely used in time-series related tasks [90]. Typically, TCNNs are made

up of successive blocks of convolutional layers and residual connections. The convolutional

97

layers carry out one-dimensional causal convolution at different dilation rates. The so-called

dilated convolution is expressed mathematically as follows:

yar [n] :=

C−1∑
c=0

K−1∑
k=0

ha[k, c]× x[n− rk, c], (4.1)

where n is the time index, c is the input channel index, a is the output feature map index, and

r is the dilation rate. One block is typically made of a dilated convolutional layer, followed by a

1× 1 convolutional layer, another dilated convolutional layer, and finally a residual connection

between the output and the input of the block.

In this chapter, we are interested in finding a drift estimate d̂[n] at time t = nTs given the

sensor time series y[t] for t ∈ {0, Ts, 2Ts, . . . , nTs}, where Ts is the sampling period. Notice that

we have a causal framework that estimates baseline drift signals. After we estimate d̂[n], we

can obtain an estimate of the desired sensor response signal p̂[n] by subtracting the drift signal

from y[n]. The TCNN structure is suitable for this causal time-series estimation task because

the dilated convolution operation uses not only recent samples (short-term features), but also

past samples (long-term features) to estimate the current output.

4.3.1 Transform Domain Thresholding Blocks

The sensor drift signal is a slowly varying signal without any high-frequency noise. There-

fore, one needs to obtain a smooth estimate using the deep learning structure. In our case,

we perform denoising and smoothing using orthogonal transforms [94, 95]. We propose novel

orthonormal transform-based blocks to perform smoothing and denoising as a part of the deep

98

neural network. The orthonormal blocks with soft-thresholding features serve as smoothing

units. We perform orthonormal transform operations on sliding causal windows to make them

compatible with the online estimation task because feature parameters will be shifted one step

at a time.

Let {f in}n∈N be the i-th feature map of a specific layer resulting from the earlier convolutional

layers at time step n. The corresponding feature vector f in is defined using a sliding window as

follows:

f in :=

[
f i[n] f i[n− 1] . . . f i[n−N + 1]

]T
(4.2)

where N is the size of the causal sliding window. We select N to be a power of 2 to take

advantage of the fast O(N logN) efficiency of the Hadamard transform and the DCT. The

transformed feature vector, denoted by Fi
n, is defined as:

Fi
n = WN f in (4.3)

where WN ∈ RN×N is the transform matrix.

The Hadamard Transform (HT) is based on an orthogonal matrix defined using the recursive

relation:

HN =

1 1

1 −1

⊗HN/2 (4.4)

with H0 = [1] and ⊗ is the Kronecker product. The matrix WN = 1√
N

HN is the unitary version

of the orthogonal HT. It is essentially constructed from butterflies, and it does not require any

99

actual multiplication operation to compute the transform domain coefficients. It can also be

constructed from the Haar wavelet transform [92]. It is worth mentioning that there are different

ordering conventions for the Hadamard matrix. For example, the four-by-four sequency-ordered

Walsh-Hadarmard transform matrix is defined as follows:

H4 =



1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1


(4.5)

The first row of the matrix approximates the action of two successive half-band lowpass filtering

and down-sampling operations; It generates the low-low output with an approximate bandwidth

of [0, π/4]. The second row of the matrix generates the so-called low-high output with the

approximate bandwidth of [π/4, π/2], the third row is the high-low and the last row is the

high-high with approximate bandwidths [π/2, 3π/4], [3π/4, π], respectively.

In the case of DCT, WN is given by the N-point type-II unitary DCT matrix, whose entries

are defined as follows:

[WN]ij =


√

2
N cos

(πj
2N (2i+ 1)

)
i 6= 0√

1
N i = 0

(4.6)

It is well-known that the DCT approximates the Karhunen-Loeve transform when the correla-

tion between the entries of the input vector is high [40].

100

Once we have values in the transform domain, we apply a soft-thresholding function to each

coefficient except the DC value to obtain a sparse transform domain representation as follows:

SoftTh(x) =



x− b, x ≥ b

0, |x| ≤ b

x+ b, x ≤ −b

, (4.7)

where b is the soft-thresholding parameter that we learn during the training process. In practice,

we do not apply the soft-thresholding function to the first No = 3 values of the DCT transformed

feature parameters and the first value (DC) of the Hadamard-transformed features. This is to

preserve the DC level of the drift estimate over the sliding windows, given that our ultimate task

is regression. Leaving the DC value unchanged is also a common practice in denoising [94,95].

After we obtain the thresholded coefficients in the transform domain, we compute the inverse

transform and feed the resulting smoothed feature vector to the next layer of the deep neural

network. We repeat the same process whenever we get a new reading from the sensor.

Unlike the work of [82], we do not assume any specific bandwidth for the low-frequency drift

signal; the soft-thresholding parameters of each transform domain coefficient are automatically

learned during training.

It is worth mentioning that, in this chapter, we refer the transform domain thresholding

blocks as spectral-domain thresholding blocks. This is because both the Hadamard and the

DCT transforms approximate the DFT.

101

4.3.2 Additive TCNN with Transform Domain Layers

While CNNs are very powerful, they are computationally expensive because of the large

number of add-multiply operations needed for the inference phase. This becomes more of a

pressing issue when deploying CNNs on embedded systems for real-time monitoring, in which

case the power and computational capabilities are often limited. In our bid to reduce the com-

putational cost of CNNs, we utilize the so-called additive (multiplication-free) layers defined in

Equation 3.2. AddNets also improve the energy efficiency of the network because they perform

only one multiplication per convolution operation [88]. Additive nets have been applied to

many recognition tasks in fire detection, gas leak detection, and time-series prediction [3,4,88].

For further details, see Sec. 3.2.4. We define the multiplication-free (⊕) dilated ”convolution”

as follows

yar [n] := β
C−1∑
c=0

K−1∑
k=0

ha[k, c]⊕ x[n− rk, c], (4.8)

where β is a normalization factor used to scale down the resulting ⊕ product. Although

normalization by β requires a multiplication, it is performed once for each yar [n] value, as

opposed to C ×K multiplication operations required in regular dilated convolution defined in

Equation 4.1. We set β = 1√
C×K . By selecting a number equal to the power of 2 as β, it

is possible to eliminate all the multiplications in the dilated convolution defined in Equation

(Equation 4.1).

102

4.3.3 TCNN Architecture

We combine the convolutional units, the transform domain thresholding blocks, and the

residual connections to construct our TCNN. At time step n, the input to the TCNN is a

vector of size M containing the sensor measurements y[n], y[n − 1], ..., y[n −M + 1] and the

output is a single value d̂[n], which is the estimate of the drift signal at time instant t = nTs.

Our TCNN design is summarized in Figure 27 and Algorithm 3, where Conv1d(k,r,D) is

the one-dimensional causal convolutional layer with filter size k, dilation rate r, and D output

features. Transform(32) represents the orthogonal transformation of size 32. L is the number

of convolutional blocks and we set it to 7. Each convolutional block carries out temporal

convolution, followed by 1×1 convolution, and finally another temporal convolution. We apply

orthogonal transforms after the 4-th block. We use the LeakyReLU with leakage factor = 0.2

as our nonlinearity throughout the TCNN.

The network has residual connections between successive blocks similar to the well-known

ResNet [96] architecture, which introduced the so-called identity shortcut connection. These

connections skip one or more layers. In our case, a skip connection linearly combines the

input of a block, after scaling it by 0.5, to the output of that block. The next block of the

network processes Fn−1(x) + 0.5x, where x represents the input to the previous block, and

Fn−1 represents the output of the previous block. The scaling by 0.5 is important so that the

magnitude of the final output is stable. This is necessary since we carry out a regression task.

We only apply bias in the 1 × 1 convolutional layers. We do not have the bias term in the

transform domain.

103

As it can be seen from Algorithm 3, we have a bottleneck layer that maps from 64 feature

channels to 32. We then map back to 64 feature channels in each block. Using 64 feature

channels makes the network powerful enough while not being very computationally expensive,

while the bottleneck layer (mapping to 32 channels) regularizes these features.

The number of blocks is tied to the dilation rates and the input size. Because we double

the dilation rate, the number of blocks is in order of the logarithm of the input size. In our

case, we have seven blocks, and the dilation rate of the last block is 27 = 128, which means

the filters of the last block can look back in time by this amount (128) multiplied by the filter

size. The actual “effective” length will still be larger, given the contribution from earlier blocks.

Increasing the dilation rate after some point will have the effective filter size larger than the

input size. This means that early filter coefficients will lie outside the input support.

The orthogonal transform can be either the Hadamard transform or the DCT, depending

on the network. It is applied after the 4th round of convolutions. This is because the size of the

features exceeds the transform block size of 32 after the 4th round of successive convolutions.

“Soft -thresholding” operations have threshold values that are learned during training. We do

not apply thresholds to the DC value of the transforms to maintain continuity between the

blocks, just like in image and audio processing.

104

Algorithm 3: Pseudocode of the design of TCNN. Conv1D(k,r,D) is a convolutional
layer of filters of sizes k, dilation rates r, and outputs D feature maps.

1 Out = Conv1D(3,1,64)(Input)
2 OutRes = LeakyReLU(Out)
3 for idx ∈ {1, 2, ..., L} do
4 r = 2idx Out = Conv1D(3,r,64)(OutRes)
5 Out = LeakyReLU(Out)
6 Out = Conv1D(1,1,32)(Out)
7 Out = LeakyReLU(Out)
8 Out = Conv1D(3,r,64)(Out)
9 Out = LeakyReLU(Out) if idx>= 4 then

10 Out = Transform(32)(Out)
11 Out = SoftThresholding(Out)
12 Out = InverseTransform(32)(Out)

13 end
14 if idx> 1 then
15 OutRes = 1

2Out + 1
2OutRes

16 else

17 end
18 OutRes = Out

19 end

20 end
21 Out = Conv1D (1,1,1)(OutRes)
22 return Out

105

As mentioned earlier, we train the TCNNs to find a drift estimate d̂[n]. In order to do so,

we minimize the following regularized cost function:

J :=
N−1∑
n=0

(
d[n]− d̂[n]

)2
+ λ

N−1∑
n=1

|d̂[n]− d̂[n− 1]|

− γ
I−1∑
i=0

J−1∑
j=0

logbij

(4.9)

where the first term in Equation 4.9 is the reconstruction square errors, and the second term

is the Total Variation (TV) regularization term [97,98], which also imposes smoothness on the

drift estimates because it minimizes the difference between the neighboring samples. The last

term is a log penalty for the soft-thresholding parameters bij for layer i and channel j. This

term is required to make sure that the threshold parameters are pushed away from zero. We

use synthetically generated data using Equation 4.21 and Equation 4.22 to train the networks,

as detailed in Sec. 4.6.

4.4 Min Operator: Multiplication-Free Kernel `1 Based-Operator

The good performance of addNet motivates us to study other energy-efficient dot-product-

like operators. In this section, we discuss another `1-norm-inducing operator and some of its

properties. Let x ∈ RN and w ∈ RN , we define the min-operator as follows

xmOw :=

N∑
i=1

sgn(xiwi) min(|xi|, |wi|). (4.10)

106

This operator induces the `1 norm because

xmOx = ||x||1 (4.11)

Furthermore, just like the AddNet operator, it does not require any multiplication.

Another important property of the operator defined in Equation 4.10 is that it induces a

kernel, i.e., for any arbitrary vector x ∈ RN we have

∑
i

∑
j

cicjK(xi, xj) ≥ 0 ∀ci ∈ R, (4.12)

which, according to Mercer’s theorem, means that we can write the Kernel as an inner product

in a Reproducing-Kernel Hilbert Space (RKHS) [99]

K(x,w) =< Φ(x),Φ(w) >=
∞∑
i=1

φi(x)φi(w), (4.13)

where the basis {φi}i∈N are orthogonal.

We show that the operator defined in Equation 4.10 induces a kernel. To do so we need the

following theorems

Theorem 7 (Schur product theorem). [100] Let X and Y ∈ RN×N be two positive semi-definite

matrices, then their Hadamard product (A×B)ij := AijBij is also positive semi-definite.

Theorem 8. [101] if K1(x, y) and K2(x, y) are both kernels, then the product K(x, y) =

K1(x, y)K2(x, y) is also a kernel.

107

Lemma 9 (Schur Compliment Criterion for Positive Semi-Definite Matrices). [102] Let M be

a symmetric matrix of the form M =

 A B

BT C

, then M is positive-definite if and only if

both C and A−BTC−1B are both positive definite.

Our main result is the following

Corollary 9.1. xmOw :=
∑N

i=1 sgn(xiwi) min(|xi|, |wi|) is a mercer kernel.

Proof. Let x be a vector in RN such that x1 ≥ x2 ≥ x3 . . . xN ≥ 0. We will show by induction

that xmOxT is positive definite.

The case when N = 1 is trivial to prove since xmOxT = x ≥ 0.

Let xmOxT for x ∈ RN as defined above be positive semi-definite. Define A :=

 x

xN+1

 mO

[
x xN+1

]
∈

R(N+1)×(N+1). We will now show that the matrix A is positive semi-definite.

108

A =

 x

xN+1

 mO

[
x xN+1

]

=



x1

x2

...

xN+1


mO

[
x1 x2 . . . xN+1

]

=



x1 x2 x3 . . . xN+1

x2 x2 x3 . . . xN+1

...
...

...
...

...

xN+1 xN+1 xN+1 . . . xN+1



=

 xmOxT xN+11

xN+11
T xN+1



, (4.14)

where 1 ∈ RN is an all-one vector. if xN+1 = 0, then then matrix A becomes

A =

 xmOxT 0

0 0

 , (4.15)

109

which is obviously positive semi-definite, since the extra zeros do not contribute to the quadratic

form zTAz, ∀z ∈ RN+1. When xN+1 > 0, then we need to show that the Schur compliment

xmOxT − xN+11[xN+1]−1xN+11
T = xmOxT − xN+111T is positive semi-definite.

xmOxT − xN+111T =



x1 − xN+1 x2 − xN+1 x3 − xN+1 . . . xN − xN+1

x2 − xN+1 x2 − xN+1 x3 − xN+1 . . . xN − xN+1

...
...

...
. . .

...

xN − xN+1 xN − xN+1 xN − xN+1 . . . xN − xN+1



=



x1 − xN+1

x2 − xN+1

...

xN − xN+1


mO

[
x1 − xN+1 x2 − xN+1 . . . xN − xN+1

]

= x′mOx′
T

(4.16)

The vector x′ ∈ RN . We have x′1 ≥ x′2 ≥ · · · ≥ x′N . Furthermore, it is non-negative

because xN+1 ≤ xN . By the induction assumption, x′mOx is positive semi-definite. Therefore,

the matrix A is positive semi-definite. For any vector y ∈ RN with positive entries, one can

permute it into a vector x with descending entries. Therefore

y mOyT = [Px]mO[Px]T

= P(xmOxT)PT

(4.17)

110

Given that xmOxT is positive semi-definite. It admits the eigen decomposition xmOxT = UΣUT ,

where U is an orthonomral matrix, and Σ is a diagonal matrix with non-negative entries.

Therefore y mOyT = PUΣUTPT . The matrix PU is orthonormal since the permutation matrix

is orthonomral. This proves that for any non-negative vector y ∈ RN . y mOyT is positive semi-

definite.

To proof 9.1 for any real vector x, observe that

xmOxT =



|x1| sgn(x1x2) min(|x1|, |x2|) . . . sgn(x1xN) min(|x1|, |xN |)

sgn(x1x2) min(|x1|, |x2|) |x2| . . . sgn(x2xN) min(|x2|, |xN |)
...

...
. . .

...

sgn(x1xN) min(|x1|, |xN |) sgn(x2xN) min(|x2|, |xN |) . . . |xN |


= (sgn(x)sgn(x)T) ◦ (|x|mO|x|T)

(4.18)

The first term sgn(x)sgn(x)T is a rank-one positive semi-definite matrix. The second term

|x|mO|x|T is a positive semi-definite matrix, as shown above. Therefore, according to 7, the

element wise product (sgn(x)sgn(x)T) ◦ (|x|mO|x|T) = xmOxT is also positive definite. This

establishes that the operator mO defines a kernel.

4.5 Unsupervised Sensor Drift Estimation Using Min-Op PCA and Discrete Cosine

Transform

In this section, we study the problem of unsupervised drift estimation using multiple sensor

measurements. Here we use the dataset from the sensor array simultaneously and use the fact

111

that the desired (drift-corrected) signal is strongly correlated across the different sensor mea-

surements, while the drift signals are slowly varying. We investigate two variants of Principal

Component Analysis (PCA): Linear PCA, and min-operator-based kernel PCA. Mathemati-

cally speaking, given the sensor array measurements Y ∈ RT×N , where N is the number of

sensors, and T is the temporal size. We are interested in estimating the drift signals D ∈ RT×N

and the drift-corrected signals X ∈ RT×N . Let T be the type-2 dct transform. As in Chapter

2, we define bandlimitedness in the dct domain. Let C = {x ∈ RN | X[i] = 0 i ≥ BW} be the

subspace of bandlimited one-dimensional signal parametrized by bandwidth parameter BW,

where X is the dct transform of signal x. We pose the problem as follows

minimize
D,X

||Y − (X + D)||2F

subject to di ∈ C i ∈ {1, 2, . . . , N}

rank(X) = R

(4.19)

The parameter R < N is equal to the number of principal components we wish to use (project

onto). We propose the following iterative algorithm in Algorithm 4 to solve the problem posed

in Equation 4.19. The algorithm first starts with initial guesses for both X and D. The

algorithm then minimizes the square-error ||Y − (X + D)||2F by performing one-step gradient-

descent update (Lamdweber iteration) (line 3-4). Afterwards, the algorithm projects the drift

estimates, i.e., the column vectors of D onto the subspace of C (line 5-7). Afterwards, the

algorithm calculates the leading R principal components for the matrix X, and then projects

112

the columns of X onto the subspace spanned the these principal components. The algorithm

repeats until it converges.

Algorithm 4: Proposed algorithm for separating the drift and the desired signals from
sensor measurements from sensor array. α is the update rate. PCA(., R) calculates
and returns the leading R principal components

1 initialize X,D
2 while not convergent do
3 X = X + α(Y − [X + D])
4 D = D + α(Y − [X + D])

5 D̂ = TD

6 [D̂]ij =

{
[D̂]ij i < BW

0, otherwise

7 D = T−1D̂
8 U = PCA(X, R)
9 X = UUTX

10 end

We also inspected another variant of the algorithm in which we perform Kernel PCA, with

the min operator defined in Equation 4.10. in other words, the covariance matrix used is :

K(X,X) = XmOXT , (4.20)

where mO is defined in Equation 4.10.

113

4.6 Experimental ans Simulation Results

4.6.1 Datasets

In our experiments, we used data from Electronic-nose (E-nose) sensors used for air quality

monitoring. This dataset is collected by the Jet Propulsion Lab (JPL) [103] using 32 different

carbon-polymer sensors. We use data from 16 sensors for the experimental evaluation of the

proposed technique.

We also collected our own data using the commercially available MQ-137 ammonia sensor,

which has a detection range of 5-500 ppm [104].

Some sensor recording examples are shown in Figure 28 and Figure 29. In what follows, we

refer to this data set as JPL sensor data. We considered recordings corresponding to single-gas

(methanol) exposure experiments as in [82]. In E-nose sensors, the sensor reacts with the vapor

upon contact with its surface. Once the sensor is no longer exposed to the gas vapor, it starts

exuding the vapor it had absorbed earlier. Absorbing and exuding the vapor depends on the

sensor material, the analyte type, and the environment.

The ideal sensor response in the absence of drift can be approximated analytically as follows

[105]

p(t) =



0 t ≤ Ts

βτ tan−1
(
t−Ts
τ

)
Ts ≤ t ≤ Ts + ∆T

βτ
[
tan−1

(
t−Ts
τ

)
− tan−1

(
t−Ts−∆T

τ

)]
t ≥ Ts + ∆T

, (4.21)

114

0.0

0.5

1.0
m
ag

ni
tu
de

0.0

0.5

1.0

m
ag

ni
tu
de

0 500 1000
Time(mins)

0.0

0.5

1.0

m
ag

ni
tu
de

0 500 1000
Time(mins)

0 500 1000
Time(mins)

Figure 28. Test examples from the JPL data set (in black) and the estimated drift from JPL
data set using regular (multiplicative) TCNNs with no spectral thresholding (in red), with
DCT based layers (in green), and with HT based layers (in blue). Vertical lines mark the

beginnings of gas excitations.

where Ts is the starting time of the exposure, and ∆T is the exposure duration.

The sensors are exposed to the gas vapor after 200, 400, 600, and 800 minutes in Figure 28

and the exposure duration is about 150 minutes.

The sensor responses more or less obey the model described in Equation (Equation 4.21),

in the first two rows of Figure 28. Even in some of these sensors, it may not be possible to

set a threshold without estimating the drift waveform to detect the VOC gas because the drift

115

0.0

0.5

1.0

m
ag

ni
tu
de

0.0

0.5

1.0

m
ag

ni
tu
de

0 500 1000
Time(mins)

0.0

0.5

1.0

m
ag

ni
tu
de

0 500 1000
Time(mins)

0 500 1000
Time(mins)

Figure 29. Test examples from the JPL data set (in black) and the estimated drift using
additive (multiplication-free) TCNNs with no spectral thresholding (in red), with DCT based

layers (in green), and with HT based layers (in blue).

waveform is decaying. In the last row of Figure 28, there are “noninformative” sensors, and the

pulses due to gas are irregular and noisy.

Three typical sensor recordings obtained from the ammonia sensors are shown in Figure 30

and Figure 31.

We refer to this data set as the Ammonia data set. The real E-nose data was used as our

test set. We trained and validated our TCNN models on synthetic data that we created. The

116

drift-correct signal modelling is based on Equation 4.21. We created a total of 10,000 time series

with the different levels of gas exposure duration. The length of the time series is resampled to

512 samples.

In our synthetic data, we randomized the starting time and the end time of each gas exposure

session and the parameters β and τ in synthetic training data. Furthermore, to generate slowly

varying drift signal, we sampled data from a Gaussian process of mean µ and the covariance

given by:

Cov
(
x(t1), x(t2)

)
= exp

((t1 − t2)2

σ2

)
, (4.22)

where σ2 is a hyperparameter controlling how strongly correlated the samples of the realizations

are. The process is locally smooth, and by selecting a large σ2 value, we can generate slowly

varying realizations of the random process. In particular we select σ2 to be equal to either

2048, 4096 or 8192. The mean value µ is also chosen randomly. Afterward, the synthetic

sensor measurements are created by adding the synthetic drift signal and signals created using

Equation 4.21. Finally, we add zero-mean white noise with various standard deviation levels to

the training waveforms.

We trained our networks using the synthetic training data for 80 epochs. We employed early

stopping over our validation data set, starting from the tenth epoch. We used mini-batches of

size 32. We used Adam optimizer with a learning rate equal to 10−3, β1 = 0.9, and β2 = 0.99.

We set the TV parameter λ in Equation (Equation 4.9) to 0.1 and the log penalty parameter

γ to 10−3.

117

Our numerical results over the JPL data set and the Ammonia data set are shown in

Algorithm XIV and Algorithm XV, respectively. We also show the drift estimates for some

examples in Figure 28 for baseline TCNN, TCNN with Hadamard Transform (HT) thresholding

layers, and TCNN with DCT thresholding layers. The drift estimates for the additive neural

networks are shown in Figure 29.

As it can be seen from results in Figure 28 and Figure 29, the TCNN structures with

Hadamard Transform (HT) and DCT layers can accurately estimate the drift. The TCNN with

the HT layer achieves the lowest average MSE in both regular and additive systems in the JPL

data set.

The sensors in the 3rd row of Figure 28 and Figure 29 generate very noisy data. In all cases,

the methane gas was applied to the sensors after roughly 250 min four times. The DCT-based

network overfits the data compared to the regular TCNN and TCNN with HT layer in one case.

In JPL sensor 12 (shown in the first column, third row in Figure 28), the TCNN with the

DCT layer misses the first pulse (the green curve). The network follows the sensor measurements

very closely. As a result, this methane gas exposure cannot be detected by thresholding the

difference between the sensor measurement and the estimated drift signal because they follow

the baseline drift level of the sensor. On the other hand, the TCNN with HT layer (blue) and

regular TCNN (red) can detect the first pulse due to methane exposure because they generate

drift curves well below the sensor measurement data. Therefore, our results in Figure 28 and

Figure 29 indicate that degraded sensors can be used for methane detection when the sensor

data is processed using the TCNN with HT layers in real-time.

118

0 100 200 300 400 500
Time (mins)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

m
ag

ni
tu

de

0 100 200 300 400 500
Time (mins)

0 100 200 300 400 500
Time (mins)

Figure 30. Results over the Ammonia data set obtained by the three TCNN models. The
original signal is in black. The red-colored signals are obtained by the baseline TCNN, while

the green- and blue-colored are obtained by the TCNNs with DCT and HT layers,
respectively.

0 100 200 300 400 500
Time (mins)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

m
ag

ni
tu

de

0 100 200 300 400 500
Time (mins)

0 100 200 300 400 500
Time (mins)

Figure 31. Results over the Ammonia data set obtained by the three additive TCNN models.
The original signal is in black. The red-colored signals are obtained by the baseline TCNN,

while the green- and blue-colored are obtained by the TCNNs with DCT and HT layers,
respectively.

In the second set of experiments, we used the Ammonia data set. Our sensors are new, and

we do not observe any baseline drift in the Ammonia data set. Since they are not degraded

sensors the baseline level is zero as shown in Figure 30 and Figure 31. The proposed TCNN-

119

based algorithms should not generate false curves in this data set. All of the network models

more or less follow the zero baseline level.

The results for the Ammonia data set are shown in Figure 30 and Figure 31 corresponding

to regular and additive TCNNs, respectively. It is possible to detect all the ammonia gas pulses

because the drift signals are well below the pulse levels except for the additive network with

the DCT transform block in the middle signal. Although the overall MSE values of the regular

networks are lower than the additive networks- as shown in Algorithm XV, the estimated drift

levels of the regular networks are very close to zero whenever the gas excitation occurs in all

the three sensors, as shown in Figure 30. The additive TCNN with HT and DCT layers yields

inferior results compared to the regular networks in the middle plot. They may miss the 5th

gas exposure in the middle plot of Figure 31. Only the regular additive network without any

transforms (red curve) can detect the 5th pulse of the middle experiment in Figure 31.

The TCNN with the HT layer generates the lowest MSE among the three regular network

models, as shown in Algorithm XV.

The additive networks do not produce as good results as the regular networks. Nevertheless,

they can be used in low-cost processor embedded systems, such as IoT devices.

The sensor at the bottom right of Figure 28 and Figure 29 is a ”noninformative” sensor.

After subtracting the estimated drift waveform, one can clearly detect the gas exposure, as

shown in the demonstrative figure (Figure 27). We can set up thresholds to detect gas leaks

because the sensor signal has an approximate zero baseline level.

120

It is worth mentioning that the additive network replaces the regular dot-product opera-

tions used in convolutions with a correlation operation related to the `1 norm. As a result,

intermediate features obtained in additive network learning turn out to be different from those

in traditional networks. This is reflected in our finding that the additive network can achieve

better performance on some of the examples in terms of the MSE. We also compared the wave-

forms using the `1 norm-based Mean Absolute Error (MAE). It turns out that the average MAE

results of the regular (additive) network with DCT and Hadamard layers are 0.07 (0.06) and

0.06 (0.06), respectively1.

4.6.2 Comparison with Papoulis-Gerchberg (PG) Algorithm-Based Method

Huang et al. developed a PG algorithm-based method for sensor drift estimation method

as described in Sec. 4.2 [82]. We compared our TCNN-based networks with the method

introduced in [82] using the same JPL data set. In our case, we assume that we only know that

there is no gas exposure in the initial portions of the sensor recording and an upper bound on

the duration of the gas exposure. This is an advantage of our method compared to the PG

algorithm-based method because we do not need to know when the gas exposure starts and

ends. In [82], it is assumed they know the exact time that the gas exposure ends, which is not

a realistic assumption for a typical gas leak detection application in an open field or inside a

building [6, 106].

1We did not include the MAE results per example in order not to overcrowd the tables.

121

Next, we present a summary of the PG method; Let x[n] be the desired discrete-time signal

for n ∈ {0, . . . , N−1}. let I[n ∈ S] be the indicator function which is equal to 1 if the predicate

is true and zero otherwise. Let S be the set of “available” samples, which is the first 100 samples

out of 512 in JPL sensor recordings. The PG algorithm aims at reconstructing all x[n] values

from x[n]I[n ∈ S] through the following iteration:

x̂i[n] = x[n]× I[n ∈ S] + ŷi[n]× (1− I[n ∈ S]) (4.23)

where

ŷi[n] = F−1[P (ejω)X̂i(ejω)] (4.24)

where X̂i(ejω) is the Discrete-Time Fourier transform (DTFT) of x̂i[n], P (ejω) is an ideal low-

pass filter performing band-limiting operation, F−1 is the inverse-DTFT operator and i is the

iteration index. The algorithm is globally convergent regardless of the initial estimate [30].

One weakness of the PG algorithm is that one has to know the bandwidth of the desired

signal a priori, which is not possible in general. In addition, the algorithm is very sensitive to

the noise present in the available portion of the data [32, 95]. It generates high mean-square-

error results, as shown in the last three columns of Algorithm XIV, especially for noisy sensor

signals shown in the third row of Figure 28.

To estimate the drift signals, we implemented the algorithm using the Discrete Fourier

Transform (DFT) of size 4096. We tried three different bandwidth choices with the following

cut-off frequencies: 8/4096, 16/4096, and 24/4096. The MSE results are presented in the last

122

three columns of Algorithm XIV. As it can be seen from the table, the PG-based algorithm

does not produce as good results as the deep learning-based TCNN structures. Furthermore,

the PG algorithm is very sensitive to the quality of the samples. We conclude that the PG

algorithm is not suitable for gas leak detection. However, it can be useful when used as an

interpolator as in [82].

0 200 400 600 800 1000
Time (mins)

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000
Time (mins)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 32. JPL Sensor 5: Original Signal (in red) and the predicted drift using a MLP
predictor (in green), with ε = 0.1(top), and 0.7(bottom), compared to the drift estimate of the

HT based TCNN (in blue).

123

0 200 400 600 800 1000
Time (mins)

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000
Time (mins)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 33. JPL Sensor 13: Original Signal (in red) and the predicted drift using a MLP
predictor (in green), with ε = 0.1(top), and 0.7(bottom), compared to the drift estimate of the

HT based TCNN (in blue).

4.6.3 Comparison with Shallow Multi-Layer Perceptron-Based Predictor

We also compared the deep learning-based TCNN methods with the shallow neural network.

In [107], a Radial-Basis Function (RBF) neural network is trained to predict the sensor drift

using the current and past samples.

124

We also implemented a shallow multi-layer-perceptron (MLP) neural network. In [107],

the authors gathered long time series of recordings of three different chemical sensors. The

recordings correspond to baseline drift signals, and the first portion of each time-series are used

to train a shallow one-step RBF neural network predictor.

In the JPL dataset, the initial portions of the time series sensor data correspond to the

baseline sensor drift.

d̂[n] = f(y[n− 1], y[n− 2], . . . , y[n−N + 1]), (4.25)

where f(.) represents the neural network function, N is the number of past samples used in the

nonlinear neural network-based predictor, y[n] = d[n] + p[n] is the augmented input signal at

time n containing the underlying drift d[n] and the added pulse signal. We then trained the

neural network to minimize the MSE between d[n] and d̂[n] over the training data. Once the

MSE converges, we infer the drift over the remaining portion of the signal using the following

expression:

d̂[n] = εf(y[n− 1], . . . y[n−N + 1]) + (1− ε)d̂[n− 1], (4.26)

where 0 < ε ≤ 1 is a memory factor . We use ε to account for the fact that the pulse signal

might last longer than the predictor order N , in which case the rule in Equation 4.25 has no

means of distinguishing the drift from the additive signal p[n].

We trained a one-hidden neural network with input size N = 16 with the hyperbolic tangent

activation function and a hidden layer of size 32. The results of two examples from the JPL

125

data set are shown in Figure 32 and Figure 33. In Figure 32, one sees that it is possible to

get a reasonable drift prediction when using an appropriate smoothing factor ε. In contrast,

in Figure 33, the initial portion of the drift does not look similar to the remaining portion,

resulting in a total failure of the shallow predictor in generating any meaningful drift estimate.

This is in contrast to our proposed approach, in which the network can learn all sorts of slowly

varying signals during the training because the TCNN is deep with many layers, which can

“store” and “learn” the large training set of possible slowly varying signals.

4.6.4 Results of Usupervised Sensor Drift Estimation via Min Operator KPCA

on the JPL Dataset

We used Algorithm 4 to estimate the drift from the 16 JPL sensor measurements. We

excluded one example (JPL 10) because the sensor measurement is noninformative. We have

T = 512, and N = 15. For estimating the drift signals D, we set our DCT bandwidth parameter

BW is set to 6. We used α = 0.01. We investigated different numbers of principal components

R for estimating the drift-corrected signals X. We compared the estimated drift signal with

the manually estimated drift signals (ground-truth). Our numerical results are summarized in

Algorithm XVI.

As it can be seen from Algorithm XVI, the Min-operator KPCA with one principal compo-

nent yield the best results for the drift estimation. It achieves a MSE of 1.69, compared to the

case of the linear PCA with a single component. On the other hand, using two principal com-

ponents for estimating X results in poor estimations of the drift, in case of using linear PCA.

Nevertheless, using the min-operator kernel PCA with two principal components to estimate X

126

results in good drift signal estimation, albeit not as good as in using one principal component.

Figure 34 shows the drift estimates of 12 sensors.

0 200 400 600 800 1000
0.00

0.25

0.50

0.75

1.00

m
ag

ni
tu

de

0 200 400 600 800 1000
0.00

0.25

0.50

0.75

1.00

m
ag

ni
tu

de

0 200 400 600 800 1000
0.00

0.25

0.50

0.75

1.00

m
ag

ni
tu

de

0 200 400 600 800 1000
Time (mins)

0.00

0.25

0.50

0.75

1.00

m
ag

ni
tu

de

0 200 400 600 800 1000
Time (mins)

0 200 400 600 800 1000
Time (mins)

Figure 34. Results of the drift estimates using the unsupervised PCA-DCT approach. The
black signals correspond to the manually estimated drift. The blue signals correspond to the
drift estimates using Min-op kernel PCA (R=1), and the red signals correspond to the drift

estimates using linear PCA (R=1).

127

Example
Regular Network Additive Network PG Algorithm

(fcutoff
4096

)
None DCT HT None DCT HT 8 16 24

JPL 0 3.41 4.59 2.52 4.17 2.98 4.59 12.42 11.27 5.96
JPL 1 0.75 0.98 0.97 1.12 1.09 1.20 2.82 4.48 7.54
JPL 2 1.02 0.97 0.78 1.10 1.02 1.23 2.74 6.20 8.85
JPL 3 2.27 1.52 1.74 1.55 1.81 1.91 2.21 5.87 7.45
JPL 4 0.75 0.40 0.52 0.44 0.88 0.54 13.55 7.15 5.78
JPL 5 1.02 0.50 0.73 1.35 0.70 0.34 16.56 9.32 6.04
JPL 6 4.41 5.21 5.93 3.02 2.40 2.34 11.43 13.52 20.13
JPL 7 2.39 1.87 1.56 2.86 1.65 3.91 4.43 1.86 7.28
JPL 8 1.52 2.45 1.25 2.03 1.47 1.15 5.56 10.13 12.47
JPL 9 1.96 3.08 1.55 2.10 1.02 1.21 2.51 7.89 11.43
JPL 11 1.11 0.47 0.60 1.11 1.49 0.74 19.51 12.33 10.92
JPL 12 5.23 8.27 4.37 7.17 3.89 4.90 15.71 12.60 13.86
JPL 13 5.62 8.65 5.01 5.88 5.86 6.34 21.23 12.44 11.29
JPL 14 1.39 4.14 2.53 1.35 2.99 1.45 7.47 9.81 11.23
JPL 15 3.11 3.92 2.25 6.58 8.24 4.49 12.82 8.15 10.77

Average (MSE) 2.63 3.22 2.35 3.04 3.20 2.60 8.46 8.84 11.62

Average (MAE) 0.07 0.07 0.06 0.07 0.06 0.06 0.23 0.25 0.30

TABLE XIV

MEAN SQUARE ERROR (MSE) OVER THE JPL DATA SET FOR SIX TCNN MODELS
AND THE PAPOULIS-GERCHBERG (PG) ALGORITHM: THREE REGULAR AND

THREE ADDITIVE (MULTIPLICATION-FREE) MODEL. WE IMPLEMENTED THREE
MODELS USING THE REGULAR TCNN AND ADDITIVE TCNN, RESPECTIVELY:

“NONE” MEANS REGULAR TCNN, THE SECOND AND THE 3RD COLUMNS REFER
TO DCT AND HT BASED TCNNS, RESPECTIVELY. THE LAST THREE COLUMNS

REPORT THE MSE RESULTS OF THE PG ALGORITHM FOR DIFFERENT
BANDWIDTH SELECTION. THE NUMBERS 8,16, AND 24 CORRESPOND TO THE

CUTOFF FREQUENCY INDEX FOR A DFT OF SIZE 4096 USED IN PG ALGORITHM.
WE ALSO SHOW THE AVERAGE MEAN-ABSOLUTE ERROR FOR THE DIFFERENT

ALGORITHMS USED.

128

Example
Regular Network Additive Network

None DCT HT None DCT HT

Ammonia 1 22.30 28.32 17.95 5.10 10.22 12.85
Ammonia 2 2.99 4.34 2.06 2.12 3.56 4.23
Ammonia 3 1.00 1.86 2.18 2.07 2.70 3.06

Average (MSE) 8.67 11.51 7.39 3.09 5.49 6.71

Average (MAE) 0.08 0.10 0.09 0.08 0.10 0.12

TABLE XV

MEAN SQUARE ERROR (MSE) OVER THE AMMONIA DATA SET FOR SIX TCNN
MODELS: THREE REGULAR AND THREE ADDITIVE (MULTIPLICATION-FREE)

MODEL. “NONE” MEANS A REGULAR TCNN STRUCTURE (WITHOUT
TRANSFORM DOMAIN LAYERS). WE ALSO REPORT THE AVERAGE

MEAN-ABSOLUTE ERROR FOR THE DIFFERENT MODELS USED.

129

Example
Linear PCA Min-op KPCA
R=1 R=2 R=1 R=2

JPL 0 0.56 18.8 0.79 1.0
JPL 1 0.75 4.23 0.74 0.79
JPL 2 0.66 4.05 0.70 0.75
JPL 3 7.11 13.8 5.7 7.7
JPL 4 2.0 10.6 1.54 2.3
JPL 5 1.2 9.06 0.8 1.0
JPL 6 1.3 4.29 2.08 0.86
JPL 7 0.8 1.9 0.93 1.55
JPL 8 3.1 6.1 1.6 4.0
JPL 9 3.31 6.5 2.8 4.4
JPL 11 3.32 11.3 1.8 2.6
JPL 12 1.5 1.2 2.7 3.4
JPL 13 0.52 8.3 0.96 1.2
JPL 14 0.79 1.3 0.59 0.52
JPL 15 0.54 9.1 0.77 1.0

Average (MSE) 1.83 7.36 1.69 2.29

TABLE XVI

MEAN SQUARE ERROR (MSE) OF THE DRIFT ESTIMATION USING UNSUPERVISED
PCA AND DCT. WITH TWO TYPES OF PCA: LINEAR AND MIN-OPERATOR

KERNEL PCA.

130

4.7 Conclusion

In this chapter, we introduced a novel deep learning-based framework for sensor drift esti-

mation. The proposed TCNN structures have built-in Hadamard and additive transform-based

layers, which smooth and denoise the input signal because the sensor drift signal is a slowly

varying signal. The Hadamard transform is related to the Haar wavelet transform, and it can be

implemented without performing any real multiplication operations. The Hadamard transform

can be implemented using binary operations. Similarly, the proposed additive layers can be

implemented using only binary operations.

We experimentally observed that the Hadamard transform performs better than the DCT,

which approximates the Karhunen-Loeve Transform, in our dataset. The DCT is used in signal,

image, and data compression, and it fits the input very efficiently. However, it overfits the data,

which are feature parameters of the previous layer in our case. Since our goal is smoothing and

denoising, the Haar wavelet transform-based Hadamard transform is more suitable than DCT.

Other wavelet transforms can also be used in this problem. Nevertheless, they are not as

computationally efficient as the Hadamard transform.

We also introduced a novel multiplication-free `1-inducing operator. We show that this op-

erator can be used to define a mercer-type kernel. We used this kernel to perform unsupervised

drift estimation using DCT and PCA. Our results indicate that the kernel PCA achieves better

drift estimation that linear PCA.

CHAPTER 5

DETECTING ANOMALY IN CHEMICAL SENSORS VIA

REGULARIZED CONTRASTIVE LEARNING

The content of this chapter is based on our work that was published in IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, under the title “De-

tecting Anomaly in Chemical Sensors via Regularized Contrastive Learning”© 2022 IEEE [10].

5.1 Introduction

Chemical sensory technology provides cheap and mobile solutions to detecting and iden-

tifying different gas analytes. Chemical sensors are widely used in ammonia, methane, and

Volatile Organic Compound (VOC) detection, which are known to be carcinogenic and main

contributors to the greenhouse effect [1, 3, 6, 8, 18,48–50].

One of the main challenges facing chemical sensors technology is the fact that sensor re-

sponses vary significantly due to process variations and in-field degradation, which is dubbed

sensor drift. Sensor drift can arise due to internal factors which result in a low-frequency change

in a sensor response and due to external reasons such as changes in humidity and temperature.

This makes detecting anomalous behavior in the sensory system crucial for reliable gas iden-

tification, and concentration estimation [19, 78, 108–111]. In this work, we focus on detecting

anomalies in sensor behavior due to external factors in a system consisting of multiple sensors.

In [109], the authors propose an online method to detect anomalous changes in wireless sensor

131

132

measurements by fitting piecewise linear models for the time-series data and comparing them

with reference signals. If the absolute differences are larger than a threshold, an anomaly is

declared. However, with large sensor-to-sensor variation, such consensus methods will likely fail

to identify the failing sensors and introduce unnecessary uncertainty into the decision-making

process.

Deep learning architectures such as recurrent neural networks (RNN) and temporal convo-

lution neural networks (TCNN) have been quite popular in learning tasks involving time-series

data and anomaly detection [111]. In [112], the authors propose using deep autoencoders to

detect sudden changes in a sensor time series in wireless sensor networks. One type of learn-

ing, namely contrastive learning, has proven effective in learning pretext tasks that are useful

when there not enough labeled data [113–115] is available. In standard contrastive learning,

the objective is to learn representations with maximum agreement among data samples of

the same concept while having a minimal agreement with data samples from other concepts.

Many frameworks have been recently developed such as unsupervised non-parametric Instance

discrimination (InstDisc) [113], Momentum Contrast (MoCo) [114], and Simple Contrastive

Learning (SimCLR) [115]. In InstDisc, the authors try to maximize the contrast between indi-

vidual instances across the entire data set.

In SimCLR, the authors sample a subset of data points and duplicate each data point by ap-

plying an augmentation transform. The objective therein is to maximize the similarity between

the data points of each pair against the remaining data points. Unlike previous methods, Sim-

133

CLR is simple to implement as it avoids the usage of memory banks used in other paradigms.

Furthermore, SimCLR achieves state-of-the-art results on ImageNet with a linear classifier.

Motivated by these recent advances, we aim to leverage a deep contrastive framework for

detecting an outlier sensor in a sensor array system based on the temporal responses of the

sensors. Recent work that applies contrastive learning to detect outliers includes Novelty De-

tection via Contrastive Learning [116] on Distributionally Shifted Instances (CSI) [116]. In

this framework, the authors apply so-called shifted transforms to create OOD samples. Like

in InstDisc, the authors try to minimize similarity between the original instance and its OOD

counterparts.

In this work, we have actual sensor measurements rather than relying on data augmentation

transforms to learn similarity/dissimilarity. We modify the standard multi-view contrastive loss

criterion to encourage learning representations that are similar among in-distribution samples,

i.e., good sensor time series. Simultaneously, we want to learn contrasted representations for

outlier time series, i.e., degraded sensor time series. In contrastive learning, the cost function

uses the cosine similarity measure. We also study an `1 norm-based similarity measure as a

part of contrastive learning for anomalous sensors.

5.2 Organization

The organization of this chapter is as follows: In Sec. 5.3 we present our anomaly detection

framework. In Sec. 5.4 we discuss our dataset and present our experimental results. In Sec.

5.5 we provide our conclusion.

134

5.3 Anomaly Detection Network

In standard multi-view contrastive learning, a random mini-batch of size N is sampled, and

each sample is augmented by a set of data augmentation transforms. This yields a total of

2N -sample bag. Let g(z, w) be a similarity score (e.g., the cosine similarity measure) between

the representation codes z and w. Let (zi, zj) be a pair of samples, where zi is an image from

the mini-batch, and zj represents its augmented version. In [115], the following loss function is

minimized:

Li,j := − log
exp

(
g(zi, zj)/τ

)∑2N
k=1 Ii 6=k exp

(
g(zi, zk)/τ

) , (5.1)

where I is an indicator function, and τ > 0 is the temperature hyper-parameter controlling how

strong the contrast should be.

5.3.1 Outlier-Modified Contrastive Loss

The loss function in Equation 5.1 is not suitable for anomalous sensor detection problem.

This is because the loss in Equation 5.1 tries to maximize the similarity between one data

instance and its corresponding augmented version one at a time. This is in contrast to our

objective to maximize similarity among all in-distribution samples, while maximizing the dis-

similarity between the in-distribution and the outlier samples.

135

Given a set of in-lier sensor measurements X = {x1, x2, . . . xn} and an outlier {xn+1}.

Let z = f(x) be the corresponding features extracted by a neural network. Define pij for

i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., n+ 1} as follows

pij =
exp

(
g(zi, zj)/τ

)∑N
k=1 exp

(
g(zi, zk)/τ

)
+ exp(g(zi, zn+1)/τ)

(5.2)

Our goal is to have pi,n+1 = 0 while maximizing the entropy of the in-liers, i.e., minimizing

the following objective

Li =

N∑
l=1, l 6=i

pil log pil (5.3)

where pi,n+1 represents the softmax score between an in-lier xi and the outlier xn+1. In our

framework, we minimize the unconstrained modification loss criterion defined as follow

Li =

N∑
l=1,l 6=i

pil log pil − α log(1− pi,n+1), (5.4)

where α > 0. The first term measures the disparity between sample xi and all other in-lier

instances in the mini-batch. The second term measures the repulsion between sample xi and

the outlier sample xn+1. If pi,n+1 approaches to 1, the second term grows to infinity. On the

other, hand, when pi,n+1 approaches zero, as desired, the second term vanishes in Equation 5.4.

By controlling the Lagrange multiplier α, we can emphasize learning invariance among the

in-lier samples, in the case of small alpha. For a large value of α, we put more emphasis on

136

differentiating the samples xi from the outlier point xn+1. The overall minibatch loss is given

by

L :=
1

N

n∑
i=1

Li (5.5)

The loss function defined in Equation 5.4 can be easily modified to accommodate multiple

outliers. Let {xn+1, xn+2, ..., xn+k} be a set containing k outliers, then the corresponding loss

function becomes:

Li =

n∑
l=1, l 6=i

pil log pil − α
n+k∑
j=n+1

log(1− pi,j), (5.6)

5.3.2 Kernel-Based Cosine Similarity Metric

The cosine similarity metric is widely used to measure the similarity between representations

in contrastive learning. The correlation coefficient or the cosine similarity is bounded between

-1 and +1. While cosine similarity is the most common similarity metric, one can devise a

kernel-based similarity metric as follows

sim(x,y) =
K(x,y)√

K(x,x)K(y,y)
(5.7)

137

The metric defined in Equation 5.7 ranges between -1 and +1. This follows immediately from the

fact that a Mercer-type (positive semi-definite kernel) can be written as k(x,y) =< φ(x, φ(y) >

for some function φ, using Cauchy-Swartz inequality, we obtain

K(x,y) =< φ(x), φ(y) >≤ ||φ(x)||2||φ(y))||2 =
√
K(x,x)K(y,y) (5.8)

Motivated by the fact that the min operator xmOy defined in Equation 4.10 induces a Mercer-

type kernel [117], as shown in Sec. 4.4, we define a kernel cosine similarity metric as follows

gmO(z,w) =
zmOw√
||z||1||w||1

, (5.9)

where ||.||1 is the `1 norm. Furthermore, we also try another quasi-cosine metric based on the

mO operator defined as follows

gmO(z,w) =
zmOw

min(||z||1||w||1)
(5.10)

The second variant has the advantage of giving a similarity metric equals to +1(-1) when

z = αw where α is a positive(negative) scalar. We try these two mO-based quasi cosine metrics

in our framework, i.e., replacing the usual cosine similarity metric g(., .) in our calculation of

the probability scores in Equation 5.2 in both training the contrastive model and carrying out

inference.

138

5.3.3 Inference Phase

During inference, we are presented with a patch of N time series collected by the N sensors

in our multi-sensor system. We extract features zi = f(xi), where xi is the i-th time series and

f(.) is our neural network. Once we have extracted a feature zi, we find its “distance” scores

from the remaining features zj for j 6= i. The notion of distance score is closely related to the

similarity metric. We define it to be

d(zi, zj) :=
1− g(zi, zj)

2
(5.11)

where g(., .) is the cosine similarity metric or the metrics defined in Equation 5.9 or Equa-

tion 5.10. As one can see, if the similarity score is close to 1, d(., .) will be close to zero, and if

the similarity score is close to -1, d(., .) will be close to one. Given all distance scores between

feature vector zi and the remaining features, we now define our anomaly score S(zi) as follows

S(zi) := Median{d(zi, zj) : j 6= i} (5.12)

Note that for a patch of N time series, one needs to calculate N(N−1)
2 distance scores. If

the feature-extracting model has been trained properly, one should be able to find a threshold

T ∈ (0, 1) such that if s(z) = s
(
f(x)

)
≥ T , the corresponding sample x should be declared

out-of-distribution.

139

Input Operator Filter size Channels dilation rate

384× 1 Conv1d 3 16 1
384× 16 Conv1d 1 32 1
384× 32 Conv1d 3 16 1

384× 16 Conv1d 3 16 2
384× 16 Conv1d 1 32 1
384× 32 Conv1d 3 16 2

384× 16 Conv1d 3 16 4
384× 16 Conv1d 1 32 1
384× 32 Conv1d 3 16 4

384× 16 Conv1d 3 16 8
384× 16 Conv1d 1 32 1
384× 32 Conv1d 3 16 8

384× 16 Conv2d 1 1 1

TABLE XVII

TEMPORAL CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE. EACH
BLOCK (EXCEPT THE FINAL LAYER), CONSIST OF 3 LAYERS. THERE ARE

RESIDUAL (SKIP) CONNECTIONS BETWEEN CONSECUTIVE BLOCKS.

5.3.4 Feature Extraction Deep Network

We train a temporal convolution neural network with four convolutional blocks, each com-

prising three convolutional layers. The first and the last layers implement causal dilated convo-

lution, while the middle layer implements 1×1 convolution. There is skip (residual) connections

between these blocks. The dilation rates are {1, 2, 4, 8}. Finally, we have a 1× 1 convolutional

layer, and the output is a 1-dimensional representation z that has the same length as the input

x. The details of our model are summarized in Algorithm XVII.

140

5.4 Experiments and Results

The commercial sensors used for data collection were MQ137 which are Tin oxide(SnO2)

based sensors [47]. When heated and exposed to air, the sensors react with the oxygen present in

the air and form a layer of negative ions on the surface and reduce the surface conductivity [47].

However, when gases such as Ammonia come in contact with the surface, they combine with

the oxide ion layer on the top and release electrons for conduction, increasing the surface

conductivity. This change in surface resistance can be measured in the form of voltage.

Ammonia Source

1 2 3

Arduino UNO

Sensors Data Collection

Fume Release

Figure 35. Illustration of our experimental setup.

141

5.4.1 Experiment Setup and Data acquisition

For the experiment, three MQ137 sensors were used. The data was recorded using an

Arduino UNO board. The experimental set-up is illustrated in Figure 35. The three sensors are

placed in an airtight chamber. The pre-heating duration of the sensors is 48 hours, during which

time no ammonia is introduced into the chamber. A cylindrical ammonia source (commercial

low concentrations ammonia cleaner liquid) is placed in the chamber. The lid of the ammonia

cylinder is removed to release ammonia gas into the chamber slowly. The ammonia then starts

to leak up into the closed environment, gradually building up in the air. Since the chamber

is small (< 10 Liter in volume), the concentration of ammonia homogenizes quickly. The

sensor responses change accordingly. Based on the proximity of the sensors to one another,

they should read the same ammonia concentration. One of the sensors is obstructed by a

cylindrical cover with multiple holes. The covering of one of the sensors causes it to react more

slowly to the ammonia build-up and release. Therefore, by inducing discrepancies in the sensor

response with respect to the other unblocked sensors, we created outlier sensor measurements.

The obstruction level of the outlier sensor is modified from experiment to experiment to avoid

overfitting to one condition. The chamber lid is opened at random intervals and at random

duration to generate a more realistic environment with varying ammonia concentration levels.

We repeatedly opened and closed the lid to create different rise and fall responses.

5.4.2 Anomaly Detection Example

In the training phase, we segment our time series into segments of 384 units. We then pre-

process each segment by subtracting its mean and dividing by its `2 norm. This is to eliminate

142

Model AUC score

Deep Contrastive Model
93,6%

(Cosine Similarity)

Deep Contrastive Model
91.9%

(Min-operator Similarity [Equation 5.9])

Contrastive Model
88,1%

(Min-operator Similarity [Equation 5.10])

Cosine Similarity
90,1%

(No Feature Extraction)

Min-operator Similarity
90,0%

(No Feature Extraction [Equation 5.9])

Min-operator Similarity
89,4%

(No Feature Extraction [Equation 5.10])

Absolute Difference [109]
77,6%

(No Feature Extraction)

TABLE XVIII

AREA UNDER CURVATURE (AUC) FOR VARIOUS METHODS. THE DEEP
CONTRASTIVE LEARNING FRAMEWORK PROVIDES THE BEST AUC.

global biases among different sensors. We train a temporal convolutional neural network with

the architecture described in Sec. 5.3.4. We set α in Equation 5.4 and τ in Equation 5.2 to 0.5

and 1, respectively.

We used measurements corresponding to five experiment sessions for training. Each ex-

periment has three time series belonging to the three sensors, one of which is an outlier (or

anomaly). We extracted a total of 6000 384-unit-long segments from these time series. We re-

served 20% for the data for validation. We used a dataset of four experiments as our test data.

During the test phase, we apply three sliding windows of size 384 on each time series coming

143

from the three sensors. We pre-process each segment as in training, and feed them into our neu-

ral network to extract features. We then calculate the anomaly score as described in Sec. 5.3.3.

For comparison, we applied the cosine similarity and the min-operator similarity metric defined

in Equation 5.10 directly on these segments without applying the temporal neural network.

Furthermore, we also applied the absolute difference metric d(zi, zj) := 1
T

∑T
t=1 |zi[t] − zj [t]|

used in [109] for anomaly detection. We summarize our accuracy results on the test data set

in Algorithm XVIII. The best result is obtained by the contrastively learned TCNN model

as shown in Algorithm XVIII. We plot the Receiver Operating Characteristic (ROC) curve in

Figure 37. By examining the ROC curves, the contrastive-learning-based model can achieve a

true positive rate (TPR) of 85% at a false positive rate (FPR) of 2.5%. On the other hand, the

other models (the cosine-similarity and min-operator-similarity modes) cannot achieve a TPR

higher than 78% at the same FPR.

In this case, the standard cosine similarity based contrastively learned TCNN produces

superior results, as opposed to the `1-norm based methods defined in Equation 5.9 and Equa-

tion 5.10. We believe that in different scenarios, in which the data is contaminated by impulsive

noise, the min op-related approaches could provide more robust results as demonstrated in [117].

144

0 1000 2000 3000 4000 5000 6000
Time (s)

0.5

1.0

1.5

2.0
Se

ns
or

 R
es

po
ns

e

0.0
0.2
0.4
0.6
0.8
1.0

Ou
tli

er
 S

co
re

0 1000 2000 3000 4000 5000 6000
Time(s)

0.5

1.0

1.5

2.0

Se
ns

or
 R

es
po

ns
e

0.0
0.2
0.4
0.6
0.8
1.0

Ou
tli

er
 S

co
re

0 1000 2000 3000 4000 5000 6000
Time(s)

0.5

1.0

1.5

2.0

Se
ns

or
 R

es
po

ns
e

0.0
0.2
0.4
0.6
0.8
1.0

Ou
tli

er
 S

co
re

0 1000 2000 3000 4000 5000 6000
Time (s)

0.5

1.0

1.5

2.0

2.5

Se
ns

or
 R

es
po

ns
e

0.0
0.2
0.4
0.6
0.8
1.0

Ou
tli

er
 S

co
re

0 1000 2000 3000 4000 5000 6000
Time(s)

0.5

1.0

1.5

2.0

2.5

Se
ns

or
 R

es
po

ns
e

0.0
0.2
0.4
0.6
0.8
1.0

Ou
tli

er
 S

co
re

0 1000 2000 3000 4000 5000 6000
Time(s)

0.5

1.0

1.5

2.0

2.5

Se
ns

or
 R

es
po

ns
e

0.0
0.2
0.4
0.6
0.8
1.0

Ou
tli

er
 S

co
re

Figure 36. Outlier score results for the three sensors in two experiments used in testing. The
second sensor (second rows) is the poisoned sensor. The learned-representations outlier score
is in red, while the dashed red lines correspond to the outlier score with the cosine similarity

metric applied directly to the input (no learning). Notice in the case of the second sensor,
almost all the time the deep outlier score is significantly higher than in the baseline case. In
the right experiment, both scores decrease at around time 4000 seconds. This is because the
anomaly experienced at the previous discharge is no longer present in the 384-second-long

segments. We consider the output then to be in-lier.

145

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 37. Receiver operating characteristic curve (ROC) for the contrastive-learning model
(blue), shallow cosine-similarity-based model (green), and the shallow min-operator-based

similarity (red).

146

5.5 Conclusion

In this chapter, we presented a framework for detecting anomalous sensor(s) in a chemical

sensory system using a contrastive learning approach. In this approach, we adapt the standard

multi-view contrastive learning loss function such that the model learns to maximize similarity

among in-distribution samples (good sensors’ readouts) while at the same time maximizing dis-

similarity between the in-distribution and out-of-distribution samples. We gathered data from

three commercial Tin Oxide (SnO2) sensors by exposing them to Ammonia in an environment-

controlled experiment. We train a temporal CNN on 4 sets of measurements, and test it on 6

other sets. Our results show that we can identify the anomalous sensor among the three sensors

with an AUC score of 93.6%, compared to 90.1% in the baseline case.

APPENDICES

147

Appendix A

VOC IR DATASET SOURCES

In this appendix we provide detailed lists of the different data sets used in this work. Many of

source videos contain multiple scenes. Our own video clips are available on Google Drive via the

following link https://drive.google.com/open?id=1Sm0FwgUgP_j1TNBIxzUi8Pr7TvIdiuh0.

Scene ID Hyperlink Contains leak?

Scene 1 https://www.youtube.com/watch?v=G7boBAAoQPA No
Scene 2 https://www.youtube.com/watch?v=Xpsz0B67NAI No
Scene 3 https://www.youtube.com/watch?v=YU-8pg_fFWQI No
Scene 4 http://www.cantronics.com/images/stories/download/video/TR4700-Video-Bridge-Far-2010.avi No
Scene 5 http://www.cantronics.com/images/stories/download/video/TR4700-Video-Bridge-Near-2010.avi No
Scene 6 http://www.cantronics.com/images/stories/download/video/TR4700-Video-Road-Near-2010.avi No

Scene 7 https://www.youtube.com/watch?v=yqz4-Neo0IY Yes
Scene 8 https://www.youtube.com/watch?v=Zumb-sTzgHY Yes
Scene 9 https://www.youtube.com/watch?v=GHXon3g2cAM Yes
Scene 10 https://www.youtube.com/watch?v=FqD41AODUyY Yes
Scene 11 https://www.youtube.com/watch?v=LPCte7Bn7Qw Yes
Scene 12 https://www.youtube.com/watch?v=D5FjEAYsvv8 Yes
Scene 13 https://www.youtube.com/watch?v=S3Mzay6j1q4 Yes

TABLE XIX

HYPERLINKS OF THE VIDEOS FROM WHICH WE OBTAINED TEMPORAL 1-D
SIGNALS. HERE, WE USED ONLY ONE SCENE PER VIDEO TO EXTRACT

TEMPORAL 1-D SIGNALS.

148

149

Appendix A (Continued)

Video ID Hyperlink Contains leak?

Scene 1-4 https://www.youtube.com/watch?v=G7boBAAoQPA No
Scene 5-7 https://www.youtube.com/watch?v=Xpsz0B67NAI No
Scene 8-9 https://www.youtube.com/watch?v=YU-8pg_fFWQ Yes
Scene 10-11 https://www.youtube.com/watch?v=GHXon3g2cAM Yes
Scene 12 https://www.youtube.com/watch?v=FqD41AODUyY Yes
Scene 13-15 https://www.youtube.com/watch?v=Sqg43EeBkY8 Yes
Scene 16-20 https://www.youtube.com/watch?v=YZlnV3o4TRk Yes
Scene 21-24 https://www.youtube.com/watch?v=lcTPioWkeCc\&t=149s No
Scene 25 https://www.youtube.com/watch?v=4RVhik7eIzk No
Scene 26 https://www.youtube.com/watch?v=5k8GORDmpog No
Scene 27 https://www.youtube.com/watch?v=623iAfO8D_Q No
Scene 28 https://www.youtube.com/watch?v=p4Q2jBVxrPw Yes
Scene 29 https://www.youtube.com/watch?v=UeN18sEPSK0 Yes
Scene 30 https://www.youtube.com/watch?v=QZ9iPz7HCig Yes
Scene 31 https://www.youtube.com/watch?v=B_lOx0Cc7Z4 Yes
Scene 32 https://www.youtube.com/watch?v=9PDJAEWg3Ok Yes

TABLE XX

HYPERLINKS OF THE VIDEOS FROM WHICH WE EXTRACTED TWO DATASETS:
SCENE 1-20 ARE THE DATA SET USED TO ESTABLISH THE CONFIDENCE SCORE

AS IN TABLE IX. SCENE 1-20 ARE ALSO USED AS VALIDATION DATASET FOR THE
SPATIO-TEMPORAL CNN AS IN TABLE XI. SCENE 21-32 ARE THE TEST DATA SET
USED IN THE JOINT EVALUATION OF BOTH 1-D AND 2-D CNNS AS IN TABLE X

150

Appendix A (Continued)

Video ID Hyperlink Number of Scenes Contains leak?

Video 1 https://www.youtube.com/watch?v=G7boBAAoQPA 15 No
Video 2 https://www.youtube.com/watch?v=Xpsz0B67NAI 5 No
Video 3 https://www.youtube.com/watch?v=YU-8pg_fFWQ 1 No
Video 4 https://www.youtube.com/watch?v=xsMMvLL0B_k 3 No
Video 5 https://www.youtube.com/watch?v=xsMMvLL0B_k 3 No
Video 6 https://www.youtube.com/watch?v=Sqg43EeBkY8 3 No
Video 7 http://www.cantronics.com/images/stories/download/video 1 No
Video 8 http://www.cantronics.com/images/stories/download/video 1 No
Video 9 http://www.cantronics.com/images/stories/download/video 1 No

Video 10 https://www.youtube.com/watch?v=yqz4-Neo0IY 1 Yes
Video 11 https://www.youtube.com/watch?v=Zumb-sTzgHY 1 Yes
Video 12 https://www.youtube.com/watch?v=GHXon3g2cAM 3 Yes
Video 13 https://www.youtube.com/watch?v=FqD41AODUyY 1 Yes
Video 14 https://www.youtube.com/watch?v=YZlnV3o4TRk 1 Yes
Video 15 https://www.youtube.com/watch?v=D5FjEAYsvv8 4 Yes
Video 16 https://www.youtube.com/watch?v=S3Mzay6j1q4 2 Yes
Video 17 https://www.youtube.com/watch?v=Z_4wa3UW-2o 2 Yes

TABLE XXI

VIDEO LINKS FOR THE SPATIO-TEMPORAL TRAINING DATA SET. THERE ARE A
TOTAL OF 33 SCENES WHICH CONTAIN NO VOC-LEAK AND 15 SCENES WHICH

CONTAIN VOC LEAK. THE SCENES VARY IN LENGTH.

Appendix B

COPYRIGHT PERMISSIONS

151

152

Appendix B (Continued)

153

Appendix B (Continued)

154

Appendix B (Continued)

CITED LITERATURE

1. National Institute of Standards and Technology. Toluene. https://webbook.nist.gov/

cgi/cbook.cgi?ID=C108883&Type=IR-SPEC&Index=2#IR-SPEC, last accessed:
2019-06-30.

2. The Oil and Gas Threat Map. Infrared video. https://oilandgasthreatmap.com/about/
infrared/, last accessed: 2019-06-30.

3. D. Badawi, H. Pan, S. C. Cetin, and A. Enis Çetin. Computationally efficient spatio-
temporal dynamic texture recognition for volatile organic compound (voc) leakage
detection in industrial plants. IEEE Journal of Selected Topics in Signal Process-
ing, 14(4):676–687, 2020.

4. Hongyi Pan, Diaa Badawi, Xi Zhang, and Ahmet Enis Cetin. Additive neural network for
forest fire detection. Signal, Image and Video Processing, pages 1–8, 2019.

5. Chengmo Yang, Patrick Cronin, Agamyrat Agambayev, Sule Ozev, A Enis Cetin, and Alex
Orailoglu. A crowd-based explosive detection system with two-level feedback sensor
calibration. In Proceedings of the 39th International Conference on Computer-
Aided Design, pages 1–9, 2020.

6. Diaa Badawi, Tuba Ayhan, Sule Ozev, Chengmo Yang, Alex Orailoglu, and Ahmet Enis
Cetin. Detecting gas vapor leaks using uncalibrated sensors. IEEE Access,
7:155701–155710, 2019.

7. Diaa Badawi, Agamyrat Agambayev, Sule Ozev, and A Enis Cetin. Discrete cosine trans-
form based causal convolutional neural network for drift compensation in chemi-
cal sensors. In ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 8012–8016. IEEE, 2021.

8. Diaa Badawi, Agamyrat Agambayev, Sule Ozev, and A Enis Cetin. Real-time low-cost drift
compensation for chemical sensors using a deep neural network with hadamard
transform and additive layers. IEEE Sensors Journal, 2021.

9. Hongyi Pan, Diaa Badawi, and Ahmet Enis Cetin. Block walsh-hadamard transform based
binary layers in deep neural networks. arXiv preprint arXiv:2201.02711, 2022.

155

156

CITED LITERATURE (Continued)

10. Diaa Badawi, Ishaan Bassi, Sule Ozev, and Ahmet Enis Cetin. Detecting anomaly in
chemical sensors via regularized contrastive learning. In ICASSP 2022-2022 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 86–90. IEEE, 2022.

11. Hongyi Pan, Diaa Badawi, Ishaan Bassi, Sule Ozev, and Ahmet Enis Cetin. Detecting
anomaly in chemical sensors via l1-kernels based principal component analysis.
arXiv preprint arXiv:2201.02709, 2022.

12. AJ Turner, Daniel J Jacob, Kevin J Wecht, Johannes D Maasakkers, E Lundgren, Arlyn E
Andrews, Sebastien C Biraud, Hartmut Boesch, Kevin W Bowman, Nicholas M
Deutscher, et al. Estimating global and north american methane emissions with
high spatial resolution using gosat satellite data. Atmospheric Chemistry and
Physics, 15(12):7049–7069, 2015.

13. Robert Parker, Hartmut Boesch, Austin Cogan, Annemarie Fraser, Liang Feng, Paul I
Palmer, Janina Messerschmidt, Nicholas Deutscher, David WT Griffith, Justus
Notholt, et al. Methane observations from the greenhouse gases observing satel-
lite: Comparison to ground-based tccon data and model calculations. Geophysical
Research Letters, 38(15), 2011.

14. Siraput Jongaramrungruang, Andrew K Thorpe, Georgios Matheou, and Christian
Frankenberg. Methanet–an ai-driven approach to quantifying methane point-
source emission from high-resolution 2-d plume imagery. Remote Sensing of Envi-
ronment, 269:112809, 2022.

15. KC Liddiard. Thin-film resistance bolometer ir detectors. Infrared Physics, 24(1):57–64,
1984.

16. Herbert H Hill Jr, William F Siems, and Robert H St. Louis. Ion mobility spectrometry.
Analytical Chemistry, 62(23):1201A–1209A, 1990.

17. Margaret Amy Ryan, Hanying Zhou, Martin G Buehler, Kenneth S Manatt, Victoria S
Mowrey, Shannon P Jackson, Adam K Kisor, Abhijit V Shevade, and Margie L
Homer. Monitoring space shuttle air quality using the jet propulsion laboratory
electronic nose. IEEE sensors journal, 4(3):337–347, 2004.

18. Alexander Vergara, Shankar Vembu, Tuba Ayhan, Margaret A Ryan, Margie L Homer, and
Ramón Huerta. Chemical gas sensor drift compensation using classifier ensembles.
Sensors and Actuators B: Chemical, 166:320–329, 2012.

157

CITED LITERATURE (Continued)

19. Kow-Ming Chang, Chih-Tien Chang, Kuo-Yi Chao, and Chia-Hung Lin. A novel ph-
dependent drift improvement method for zirconium dioxide gated ph-ion sensitive
field effect transistors. Sensors, 10(5):4643–4654, 2010.

20. Denglong Ma, Jianqiang Deng, and Zaoxiao Zhang. Comparison and improvements of
optimization methods for gas emission source identification. Atmospheric Envi-
ronment, 81:188–198, 2013.

21. Arvind P Ravikumar, Jingfan Wang, and Adam R Brandt. Are optical gas imaging tech-
nologies effective for methane leak detection? Environmental science & technology,
51(1):718–724, 2017.

22. Zhang Yong, Zhang Liyi, Han Jianfeng, Ban Zhe, and Yang Yi. An indoor gas leak-
age source localization algorithm using distributed maximum likelihood estimation
in sensor networks. Journal of Ambient Intelligence and Humanized Computing,
10(5):1703–1712, 2019.

23. Denglong Ma, Jianmin Gao, Zaoxiao Zhang, Hong Zhao, and Qingsheng Wang. Locating
the gas leakage source in the atmosphere using the dispersion wave method. Journal
of Loss Prevention in the Process Industries, 63:104031, 2020.

24. Porsteinn B Jónsson, Jeonghyeon Wang, and Jinwhan Kim. Scalar field reconstruction
based on the gaussian process and adaptive sampling. In 2017 14th International
Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pages 442–
445. IEEE, 2017.

25. Martin Asenov, Marius Rutkauskas, Derryck Reid, Kartic Subr, and Subramanian Ra-
mamoorthy. Active localization of gas leaks using fluid simulation. IEEE Robotics
and Automation Letters, 4(2):1776–1783, 2019.

26. Michael Hutchinson, Hyondong Oh, and Wen-Hua Chen. A review of source term esti-
mation methods for atmospheric dispersion events using static or mobile sensors.
Information Fusion, 36:130–148, 2017.

27. RW Gerchberg. Super-resolution through error energy reduction. Optica Acta: Interna-
tional Journal of Optics, 21(9):709–720, 1974.

28. Irina F Gorodnitsky and Bhaskar D Rao. Sparse signal reconstruction from limited data
using focuss: A re-weighted minimum norm algorithm. IEEE Transactions on
signal processing, 45(3):600–616, 1997.

158

CITED LITERATURE (Continued)

29. Arnold Lent and Heang Tuy. An iterative method for the extrapolation of band-limited
functions. Journal of Mathematical Analysis and Applications, 83(2):554–565,
1981.

30. Athanasios Papoulis. A new algorithm in spectral analysis and band-limited extrapolation.
IEEE Transactions on Circuits and systems, 22(9):735–742, 1975.

31. Dan C Youla and Heywood Webb. Image restoration by the method of convex projections:
Part 1-theory. IEEE transactions on medical imaging, 1(2):81–94, 1982.

32. Patrick L Combettes. The foundations of set theoretic estimation. Proceedings of the
IEEE, 81(2):182–208, 1993.

33. PL Combettes. The convex feasibility problem in image recovery. In Advances in imaging
and electron physics, volume 95, pages 155–270. Elsevier, 1996.

34. James C Robinson. An Introduction to Functional Analysis. Cambridge University Press,
2020.

35. Heinz H Bauschke, Patrick L Combettes, et al. Convex analysis and monotone operator
theory in Hilbert spaces, volume 408. Springer, 2011.

36. Alice Lucas, Michael Iliadis, Rafael Molina, and Aggelos K Katsaggelos. Using deep neural
networks for inverse problems in imaging: beyond analytical methods. IEEE Signal
Processing Magazine, 35(1):20–36, 2018.

37. Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceed-
ings of the 27th international conference on international conference on machine
learning, pages 399–406, 2010.

38. Steven Diamond, Vincent Sitzmann, Felix Heide, and Gordon Wetzstein. Unrolled opti-
mization with deep priors. arXiv preprint arXiv:1705.08041, 2017.

39. Gregory Ongie, Ajil Jalal, Christopher A Metzler, Richard G Baraniuk, Alexandros G
Dimakis, and Rebecca Willett. Deep learning techniques for inverse problems in
imaging. IEEE Journal on Selected Areas in Information Theory, 1(1):39–56, 2020.

40. Nasir Ahmed, T Natarajan, and Kamisetty R Rao. Discrete cosine transform. IEEE
transactions on Computers, 100(1):90–93, 1974.

159

CITED LITERATURE (Continued)

41. C Chamzas and Wen Xu. An improved version of papoulis-gerchberg algorithm on band-
limited extrapolation. IEEE transactions on acoustics, speech, and signal process-
ing, 32(2):437–440, 1984.

42. Ovidiu Calin. Deep learning architectures. Springer, 2020.

43. Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity for
image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals,
Systems & Computers, 2003, volume 2, pages 1398–1402. Ieee, 2003.

44. Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions.
arXiv preprint arXiv:1511.07122, 2015.

45. Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique with an
application to stereo vision. Vancouver, 1981.

46. Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE transac-
tions on systems, man, and cybernetics, 9(1):62–66, 1979.

47. Joseph Watson, Kousuke Ihokura, and Gary SV Coles. The tin dioxide gas sensor. Mea-
surement Science and Technology, 4(7):711, 1993.

48. United States Environmental Protection Agency. Leak detection and repair a best
practices guide. https://www.epa.gov/sites/production/files/2014-02/

documents/ldarguide.pdf. urldate: 2016-12-112. Accessed: 2019-06-30.

49. National Service Center for Environmental Publications . Inspection manual: Federal
equipment leak regulations for the chemical manufacturing industry 3 VOLUME
SET.

50. Fatih Erden, E Birey Soyer, B Ugur Toreyin, and A Enis Cetin. Voc gas leak detection
using pyro-electric infrared sensors. In 2010 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 1682–1685. IEEE, 2010.

51. Ahmet Enis Cetin and Behcet Ugur Toreyin. Method, device and system for determining
the presence of volatile organic compounds (voc) in video, April 30 2013. US
Patent 8,432,451.

160

CITED LITERATURE (Continued)

52. New York Times. Methane emissions soared to a record in 2021, noaa says -
the new york times, 2022. https://www.nytimes.com/2022/04/07/climate/

methane-emissions-record.html, urldate: 2022-04-07.

53. B Ugur Toreyin and A Enis Cetin. Volatile organic compound plume detection using
wavelet analysis of video. In 2008 15th IEEE International Conference on Image
Processing, pages 1836–1839. IEEE, 2008.

54. B Uğur Töreyin, Yiğithan Dedeoğlu, Uğur Güdükbay, and A Enis Cetin. Computer vision
based method for real-time fire and flame detection. Pattern recognition letters,
27(1):49–58, 2006.

55. Y Hakan Habiboglu, Osman Gunay, and A Enis Cetin. Real-time wildfire detection using
correlation descriptors. In 2011 19th European Signal Processing Conference, pages
894–898. IEEE, 2011.

56. Osman Gunay, Behçet Ugur Toreyin, Kivanc Kose, and A Enis Cetin. Entropy-functional-
based online adaptive decision fusion framework with application to wildfire de-
tection in video. IEEE Transactions on Image Processing, 21(5):2853–2865, 2012.

57. B Uğur Töreyin, Yiğithan Dedeoğlu, and A Enis Cetin. Wavelet based real-time smoke
detection in video. In 2005 13th European Signal Processing Conference, pages
1–4. IEEE, 2005.

58. Turgay Celik and Hasan Demirel. Fire detection in video sequences using a generic color
model. Fire Safety Journal, 44(2):147–158, 2009.

59. Yusuf Hakan Habiboğlu, Osman Günay, and A Enis Çetin. Covariance matrix-based
fire and flame detection method in video. Machine Vision and Applications,
23(6):1103–1113, 2012.

60. BU Toreyin, Yigithan Dedeoglu, A Enis Cetin, Sándor Fazekas, Dmitry Chetverikov,
Tomer Amiaz, and Nahum Kiryati. Dynamic texture detection, segmentation and
analysis. In Conference On Image And Video Retrieval: Proceedings of the 6 th
ACM international conference on Image and video retrieval, volume 9, pages 131–
134, 2007.

61. Renaud Péteri, Sándor Fazekas, and Mark J Huiskes. Dyntex: A comprehensive database
of dynamic textures. Pattern Recognition Letters, 31(12):1627–1632, 2010.

161

CITED LITERATURE (Continued)

62. A Enis Cetin and Fatih Porikli. Special issue on dynamic textures in video. Machine
Vision and Applications, 22(5):739–740, 2011.

63. B Ugur Toreyin and A Enis Cetin. Computer vision based forest fire detection. In 2008
IEEE 16th Signal Processing, Communication and Applications Conference, pages
1–4. IEEE, 2008.

64. Turgay Celik, Hasan Demirel, Huseyin Ozkaramanli, and Mustafa Uyguroglu. Fire detec-
tion using statistical color model in video sequences. Journal of Visual Communi-
cation and Image Representation, 18(2):176–185, 2007.

65. A Enis Çetin, Kosmas Dimitropoulos, Benedict Gouverneur, Nikos Grammalidis, Osman
Günay, Y Hakan Habiboglu, B Ugur Töreyin, and Steven Verstockt. Video fire
detection–review. Digital Signal Processing, 23(6):1827–1843, 2013.

66. A Enis Cetin, Bart Merci, O Gûnay, B Uğur Töreyin, and Steven Verstockt. Methods
and techniques for fire detection: signal, image and video processing perspectives.
2017.

67. Steven Verstockt, Peter Lambert, Rik Van de Walle, Bart Merci, and Bart Sette. State of
the art in vision-based fire and smoke dectection. 2:285–292, 2009.

68. Panagiotis Barmpoutis, Kosmas Dimitropoulos, Kyriaki Kaza, and Nikos Grammalidis.
Fire detection from images using faster r-cnn and multidimensional texture anal-
ysis. pages 8301–8305, 2019.

69. Byoung Chul Ko, Kwang-Ho Cheong, and Jae-Yeal Nam. Fire detection based on vision
sensor and support vector machines. Fire Safety Journal, 44(3):322–329, 2009.

70. Feiniu Yuan. A fast accumulative motion orientation model based on integral image for
video smoke detection. Pattern Recognition Letters, 29(7):925–932, 2008.

71. Suleyman Aslan, Ugur Gudukbay, B Ugur Toreyin, and A Enis Cetin. Early wildfire
smoke detection based on motion-based geometric image transformation and deep
convolutional generative adversarial networks. In ICASSP 2019-2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
8315–8319. IEEE, 2019.

72. Arman Afrasiyabi, Diaa Badawi, Baris Nasir, Ozan Yildi, Fatios T Yarman Vural, and
A Enis Çetin. Non-euclidean vector product for neural networks. In 2018 IEEE

162

CITED LITERATURE (Continued)

International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 6862–6866. IEEE, 2018.

73. Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 4510–4520,
2018.

74. DY Chen and Pak Kwong Chan. An intelligent isfet sensory system with temperature and
drift compensation for long-term monitoring. IEEE Sensors Journal, 8(12):1948–
1959, 2008.

75. Luc Bousse, Nico F De Rooij, and Piet Bergveld. Operation of chemically sensitive field-
effect sensors as a function of the insulator-electrolyte interface. IEEE Transactions
on Electron Devices, 30(10):1263–1270, 1983.

76. Clinton ZD Goh, Pantelis Georgiou, Timothy G Constandinou, Themistoklis Prodro-
makis, and Christofer Toumazou. A cmos-based isfet chemical imager with auto-
calibration capability. IEEE Sensors Journal, 11(12):3253–3260, 2011.

77. Blake C Jacquot, Nini Munoz, Darren W Branch, and Edwin C Kan. Non-faradaic elec-
trochemical detection of protein interactions by integrated neuromorphic cmos
sensors. Biosensors and Bioelectronics, 23(10):1503–1511, 2008.

78. Alisa Rudnitskaya. Calibration update and drift correction for electronic noses and
tongues. Frontiers in chemistry, 6:433, 2018.

79. Lei Zhang, Yan Liu, Zhenwei He, Ji Liu, Pingling Deng, and Xichuan Zhou. Anti-drift in e-
nose: A subspace projection approach with drift reduction. Sensors and Actuators
B: Chemical, 253:407–417, 2017.

80. Tao Liu, Dongqi Li, and Jianjun Chen. An active method of online drift-calibration-sample
formation for an electronic nose. Measurement, page 108748, 2020.

81. Yang Tao, Chunyan Li, Zhifang Liang, Haocheng Yang, and Juan Xu. Wasserstein distance
learns domain invariant feature representations for drift compensation of e-nose.
Sensors, 19(17):3703, 2019.

82. Dongliang Huang and Henry Leung. Reconstruction of drifting sensor responses based on
papoulis–gerchberg method. IEEE Sensors Journal, 9(5):595–604, 2009.

163

CITED LITERATURE (Continued)

83. Dheeraj Kumar, Sutharshan Rajasegarar, and Marimuthu Palaniswami. Automatic sen-
sor drift detection and correction using spatial kriging and kalman filtering. In
2013 IEEE International Conference on Distributed Computing in Sensor Systems,
pages 183–190. IEEE, 2013.

84. Dheeraj Kumar, Sutharshan Rajasegarar, and Marimuthu Palaniswami. Geospatial
estimation-based auto drift correction in wireless sensor networks. ACM Transac-
tions on Sensor Networks (TOSN), 11(3):1–39, 2015.

85. Shenglan Ma, Jun Li, Hong Hao, and Shaofei Jiang. Structural response recovery based on
improved multi-scale principal component analysis considering sensor performance
degradation. Advances in Structural Engineering, 21(2):241–255, 2018.

86. Cosimo Distante, Marco Leo, and Krishna C Persaud. Wavelet transform for electronic
nose signal analysis. Discrete Wavelet Transforms: Biomedical Applications, page
177, 2011.

87. Lei Zhang and Xiongwei Peng. Time series estimation of gas sensor baseline drift using
arma and kalman based models. Sensor Review, 2016.

88. Tolga Ergen, Ali H Mirza, and Suleyman Serdar Kozat. Energy-efficient lstm networks for
online learning. IEEE Transactions on Neural Networks and Learning Systems,
2019.

89. Pai Peng, Xiaojin Zhao, Xiaofang Pan, and Wenbin Ye. Gas classification using deep
convolutional neural networks. Sensors, 18(1):157, 2018.

90. Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling. arXiv preprint
arXiv:1803.01271, 2018.

91. Lubna Shibly Mokatren, Ahmet Enis Cetin, and Rashid Ansari. Deep layered lms predic-
tor. arXiv preprint arXiv:1905.04596, 2019.

92. A Enis Cetin, Omer N Gerek, and Sennur Ulukus. Block wavelet transforms for im-
age coding. IEEE Transactions on Circuits and Systems for Video Technology,
3(6):433–435, 1993.

93. A Enis Cetin, Omer N Gerek, and Yasemin Yardimci. Equiripple fir filter design by the
fft algorithm. IEEE Signal Processing Magazine, 14(2):60–64, 1997.

164

CITED LITERATURE (Continued)

94. Hamid Krim, Dewey Tucker, Stephane Mallat, and David Donoho. On denoising and best
signal representation. IEEE transactions on information theory, 45(7):2225–2238,
1999.

95. A Enis Cetin and Mohammad Tofighi. Projection-based wavelet denoising [lecture notes].
IEEE Signal Processing Magazine, 32(5):120–124, 2015.

96. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

97. Curtis R Vogel and Mary E Oman. Iterative methods for total variation denoising. SIAM
Journal on Scientific Computing, 17(1):227–238, 1996.

98. Mohammad Tofighi, Onur Yorulmaz, Kivanç Köse, Deniz Cansen Yıldırım, Rengül Çetin-
Atalay, and A Enis Cetin. Phase and tv based convex sets for blind deconvolution
of microscopic images. IEEE Journal of Selected Topics in Signal Processing,
10(1):81–91, 2015.

99. CS Withers. Mercer’s theorem and fredholm resolvents. Bulletin of the Australian Math-
ematical Society, 11(3):373–380, 1974.

100. Jssai Schur. Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich
vielen veränderlichen. Journal für die reine und angewandte Mathematik,
1911(140):1–28, 1911.

101. Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning,
volume 4. Springer, 2006.

102. Jean Gallier. Geometric methods and applications: for computer science and engineering,
volume 38. Springer Science & Business Media, 2011.

103. Hanying Zhou, Margie L Homer, Abhijit V Shevade, and Margaret A Ryan. Nonlin-
ear least-squares based method for identifying and quantifying single and mixed
contaminants in air with an electronic nose. Sensors, 6(1):1–18, 2006.

104. LTD Zhengzhou Winsen Electronics Technology Co. Ammonia gas sensor (model
mq137 manual, 01 2018. http://https://www.winsen-sensor.com/d/files/

semiconductor/mq137.pdf, 2018-01-18.

165

CITED LITERATURE (Continued)

105. L Carmel, S Levy, D Lancet, and D Harel. A feature extraction method for chemical
sensors in electronic noses. Sensors and Actuators B: Chemical, 93(1-3):67–76,
2003.

106. Chengmo Yang, Patrick Cronin, Agamyrat Agambayev, Sule Ozev, A. Enis Cetin, and
Alex Orailoglu. A crowd-based explosive detection system with two-level feedback
sensor calibration. In ICCAD, 2020.

107. Lei Zhang, Fengchun Tian, Shouqiong Liu, Lijun Dang, Xiongwei Peng, and Xin Yin.
Chaotic time series prediction of e-nose sensor drift in embedded phase space.
Sensors and Actuators B: Chemical, 182:71–79, 2013.

108. DY Chen and Pak Kwong Chan. An intelligent isfet sensory system with temperature and
drift compensation for long-term monitoring. IEEE Sensors Journal, 8(12):1948–
1959, 2008.

109. Yuan Yao, Abhishek Sharma, Leana Golubchik, and Ramesh Govindan. Online anomaly
detection for sensor systems: A simple and efficient approach. Performance Eval-
uation, 67(11):1059–1075, 2010.

110. Matt Calder, Robert A Morris, and Francesco Peri. Machine reasoning about anomalous
sensor data. Ecological Informatics, 5(1):9–18, 2010.

111. Laura Erhan, M Ndubuaku, Mario Di Mauro, Wei Song, Min Chen, Giancarlo Fortino,
Ovidiu Bagdasar, and Antonio Liotta. Smart anomaly detection in sensor systems:
A multi-perspective review. Information Fusion, 2020.

112. Tie Luo and Sai G Nagarajan. Distributed anomaly detection using autoencoder neural
networks in wsn for iot. In 2018 ieee international conference on communications
(icc), pages 1–6. IEEE, 2018.

113. Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning
via non-parametric instance discrimination. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3733–3742, 2018.

114. Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast
for unsupervised visual representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9729–9738, 2020.

166

CITED LITERATURE (Continued)

115. Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple frame-
work for contrastive learning of visual representations. In International conference
on machine learning, pages 1597–1607. PMLR, 2020.

116. Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detec-
tion via contrastive learning on distributionally shifted instances. arXiv preprint
arXiv:2007.08176, 2020.

117. Hongyi Pan, Diaa Badawi, Erdem Koyuncu, and A Enis Cetin. Robust principal com-
ponent analysis using a novel kernel related with the l1-norm. arXiv preprint
arXiv:2105.11634, presented in EUSIPCO 2021, 2021.

VITA

NAME Diaa H J Badawi

EDUCATION MSc. in Electrical and Electronics Engineering, Bilkent University,
Turkey, 2018
BSc. in Communication Engineering, An-Najah National Univer-
sity, Palestine, 2015

EXPERIENCE Research Assistant, University of Illinois Chicago, 2018–2022
Teaching Assistant, University of Illinois Chicago, 2018–2022
Interim Research Engineer, Qualcomm Inc., California, 2020
Research Assistant, Bilkent University, 2016–2018
Teaching Assistant, Bilkent University, 2016-2018
Software Engineer, Asal Technology, Palestine, 2015 – 2016

PUBLICATIONS Journal Publications

Pan, H., Badawi, D., & Cetin, A. E. (2022). Block Walsh-
Hadamard Transform Based Binary Layers in Deep Neural Net-
works. ACM Transactions on Embedded Computing Systems
(TECS).
Badawi, D., Agambayev, A., Ozev, S., & Cetin, A. E. (2021).
Real-time low-cost drift compensation for chemical sensors using a
deep neural network with hadamard transform and additive layers.
IEEE Sensors Journal, 21(16), 17984-17994.
Nasrin, S., Badawi, D., Cetin, A. E., Gomes, W., & Trivedi,
A. R. (2021). Mf-net: Compute-in-memory sram for multibit
precision inference using memory-immersed data conversion and
multiplication-free operators. IEEE Transactions on Circuits and
Systems I: Regular Papers, 68(5), 1966-1978.
Pan, H., Badawi, D., Zhang, X., & Cetin, A. E. (2020). Additive
neural network for forest fire detection. Signal, Image and Video
Processing, 14(4), 675-682.
Pan, H., Badawi, D., & Cetin, A. E. (2020). Computationally effi-
cient wildfire detection method using a deep convolutional network
pruned via fourier analysis. Sensors, 20(10), 2891.

167

168

VITA (Continued)

Badawi, D., Pan, H., Cetin, S. C., & Çetin, A. E. (2020). Com-
putationally efficient spatio-temporal dynamic texture recognition
for volatile organic compound (voc) leakage detection in indus-
trial plants. IEEE Journal of Selected Topics in Signal Processing,
14(4), 676-687.
Badawi, D., Ayhan, T., Ozev, S., Yang, C., Orailoglu, A., & Cetin,
A. E. (2019). Detecting gas vapor leaks using uncalibrated sensors.
IEEE Access, 7, 155701-155710.

Conference Publications

Badawi, D., Bassi, I., Ozev, S., & Cetin, A. E. (2022, May). De-
tecting Anomaly in Chemical Sensors via Regularized Contrastive
Learning. In ICASSP 2022-2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (pp. 86-
90). IEEE.
Pan, H., Badawi, D., Miao, R., Koyuncu, E., & Cetin, A. E. (2022,
May). Multiplication-avoiding variant of power iteration with ap-
plications. In ICASSP 2022-2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5608-
5612). IEEE.
Pan, H., Badawi, D., Chen, C., Watts, A., Koyuncu, E., & Cetin,
A. E. (2022). Deep Neural Network With Walsh-Hadamard Trans-
form Layer for Ember Detection During a Wildfire. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 257-266).
Pan, H., Badawi, D., Koyuncu, E., & Cetin, A. E. (2021, August).
Robust Principal Component Analysis Using a Novel Kernel Re-
lated with the `1-Norm. In 2021 29th European Signal Processing
Conference (EUSIPCO) (pp. 2189-2193). IEEE.
Badawi, D., Agambayev, A., Ozev, S., & Cetin, A. E. (2021,
June). Discrete Cosine Transform Based Causal Convolutional
Neural Network for Drift Compensation in Chemical Sensors. In
ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (pp. 8012-8016). IEEE.
Chen, Y. H., Twing, A. H., Badawi, D., Danavi, J., McCauley,
M., & Cetin, A. E. (2020, May). Atrial Fibrillation Risk Predic-
tion from Electrocardiogram and Related Health Data with Deep
Neural Network. In ICASSP 2020-2020 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP) (pp.
1269-1273). IEEE.

169

VITA (Continued)

Afrasiyabi, A., Badawi, D., Nasir, B., Yildi, O., Vural, F. T. Y., &
Çetin, A. E. (2018, April). Non-euclidean vector product for neural
networks. In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (pp. 6862-6866). IEEE.

