
1 
 

 
Technical Report # MBS2022-5-UIC 

Department of Mechanical and Industrial Engineering 
University of Illinois at Chicago 

 
 

December 2022 
 

 
 
 
 
 
 

SPATIAL-DYNAMICS FORMULATION OF THE L/V RATIO  
 

 
 
 
 
 
 
 
 

Ahmed A. Shabana (shabana@uic.edu) 
Department of Mechanical and Industrial Engineering 

University of Illinois at Chicago 
842 West Taylor Street 
Chicago, Illinois 60607 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

mailto:shabana@uic.edu


2 
 

ABSTRACT 
 
Nadal’s L V  limit, which is based on quasi-static planar analysis, was used to develop derailment 
criteria; where L  and V  are, respectively, lateral and vertical forces acting on railroad wheel 
flange. This paper describes new spatial L V  dynamic formulation based on the assumptions of 
Nadal’s limit. The spatial analysis, which leads to simple L V ratio that demonstrates limitations 
of the planar analysis, employs non-generalized coordinates and is independent of the bank angle 
that defines the track super-elevation. The single-degree-of-freedom wheel-climb model 
developed accounts for curving behavior, track super-elevation, and centrifugal and Coriolis 
inertia forces; and can be used to develop an inverse problem to study different wheel climb 
patterns. It is demonstrated that the wheel absolute acceleration is not in general zero for zero 
climb acceleration as in the planar analysis, and the lateral force L  and vertical force V  depend 
on quadratic-velocity inertia forces. The condition of zero absolute acceleration and non-zero 
climb acceleration is defined. It is shown that the spatial L V  limit can approach four if the 
direction of the friction force is properly accounted for, highlighting the need for accurate 
measurement of the components of the relative velocity at the wheel/rail contact point to have 
proper interpretation and use of the wheel-climb criteria. The proposed approach can be used to 
develop real-time onboard-computer positive-train-control (PTC) algorithms that define wheel-
climb pattern using online measurements. Such PTC algorithms can contribute to avoiding 
derailments caused by wheel climb during curve negotiations. 
 
Keywords: Wheel climb; L V  ratio; Nadal’s limit; wheel/rail flange contact; non-generalized 
coordinates.  
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1. INTRODUCTION 

The two railroad-derailment mechanisms most likely to occur are wheel climb and wheel lift. The 

wheel lift is more common during hunting oscillations on tangent tracks. Severe hunting leads to 

high lateral velocity, large roll moment, and impulsive wheel/rail contact forces that may lead to 

derailments. In this case, resultant tangential force or roll moment at one wheel can be downward 

due to the wheel lift at the other wheel [1, 2]. On the other hand, wheel-flange climbs, more 

common during curving and can occur at low velocity, are associated with large angle of attack 

aα  ( 3aα ≈ ° ). During wheel climb, the direction of the friction force acting on the wheel flange is 

defined by the relative-velocity direction and not by acceleration direction; forces are directly 

associated with accelerations and positive acceleration does not always imply positive velocity.  

 The ( )L V  ratio, where L  and V  are, respectively, lateral and vertical forces acting on the 

wheel flange at the contact point with the rail, has been used to develop several railroad derailment 

criteria. Derailments are assumed to occur if this ratio, which has its roots in Nadal’s formula 

introduced more than a century ago, exceeds a certain limit. The ( )L V -based criteria are 

concerned with wheel climb during curve negotiation characterized by large angle of attack. 

Nonetheless, a planar analysis is used to define Nadal’s formula, which can be derived using 

geometric approach or quasi-static force balance. In the geometric/static approach, a coordinate 

transformation is used to write the lateral and vertical forces in terms of the normal-reaction and 

friction forces without considering velocity-dependent inertia forces. The L  and V  forces are 

interpreted as force resultant acting on the wheel flange excluding constraint and friction forces at 

the contact point. The assumption used by Nadal, that direction of friction force in its totality is 

tangent to the flange neglecting longitudinal friction-force component, is investigated in this study 

by relaxing the planar-analysis assumptions. 
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 Nadal’s L V  ratio is defined in terms of the flange angle α  and the coefficient of friction µ  

as ( ) ( )tan 1 tanL V α µ µ α= − + . This equation is not function of the angle of attack aα  or the 

wheel yaw angle and is used, as reported in the literature, to conclude that for a given α , an 

increase of µ  leads to a decrease of Nadal’s limit. That is, increasing µ  is associated with a 

decrease in L  for given V  regardless of the magnitude of α ; and in the special case in which 

0µ = , one has ( ) tanL V α= . For values of α  used in most rail systems, the ratio ( ) tanL V α=  

is much larger than one, implying that Nadal’s formula suggests lubrication significantly increases 

the L V  limit. The quasi-static analysis can lead to contradictory results as in case of 

predominantly longitudinal friction force. Such concerns can be further explained using spatial 

dynamic analysis to account for the inertia-force effect on the normal force N  that enters into 

formulating the friction force Nµ .  

 

2. SCOPE AND CONTRIBUTIONS OF THIS STUDY 

Despite limitations addressed in the literature [3], a large number of investigations have been 

devoted to developing and validating ( )L V -based derailment criteria [4 – 9]; examples of which 

are Nadal single-wheel L V  limit criterion, Weinstock axle-sum L V  limit criterion, FRA high 

speed passenger distance limit (5 ft), AAR Chapter 11 50-millisecond time limit, Japanese 

National Railway (JNR) L V  time duration criterion, EMD L V  time duration criterion, and 

TTCI wheel climb distance criterion. In Weinstock’s criterion [10], two wheels instead of single 

wheel and non-flange-wheel friction are considered. The derailment is predicted by summing 

absolute values of the L V  ratios of two wheels rigidly connected by an axle; the sum is known 

as the axle sum L V  ratio. The JNR and EMD time-duration criteria suggest increasing the L V  
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limit if lateral-thrust duration is less than certain time duration; with the JNR criterion assuming 

time duration of 50 ms [11], while the EMD is considered less conservative [12]. The AAR wheel 

climb-duration limit proposes using 50 ms (0.05 s); while the FRA wheel-climb distance limit 

proposes 5 ft limit for class 6 and higher in case of high speed rails. The TTCI wheel climb distance 

criterion, developed for freight trains with AAR1B wheel profile and 75°  flange angle, considers 

both Nadal’s L V  limit and the L V  distance limit that do not account for the angle of attack, is 

considered applicable for speeds below 80 km/h in case of curving. Studies on effect of flange 

angle ranging from 63°  to 75°  on the L V  ratio show that increasing the flange length can lead 

to increasing flange climb-distance limit, particularly in case of small angle of attack [8, 9].  

2.1  Scope and Contributions of the Study 

The scope and contributions of this investigations can be summarized as follows: 

1. A new three-dimensional dynamic formulation is used to develop simple L V  ratio and 

incorporate the longitudinal component of the friction force using basic assumptions employed 

in deriving Nadal’s ratio. A special case of the spatial dynamic analysis confirms results 

previously obtained in the literature using a quasi-static intuitive engineering approach [6]. 

While the L V  formula obtained as a special case of the spatial dynamic formulation appears 

intuitive, the mathematical derivation confirms its correctness and demonstrates the 

dependence of the normal-reaction force on quadratic-velocity inertia forces. 

2. A planar dynamic model is developed to demonstrate that Nadal’s L V  limit corresponds to 

zero climb acceleration or quasi-static force analysis [13]. The zero climb-acceleration 

condition can be associated with flange downward motion since the velocity and acceleration 

signs can be different. Concept of non-generalized coordinates is used to develop planar 

dynamic model, define wheel-climb kinematic constraints, and determine constraint-reaction 
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force [14, 15]. It is shown that the absolute wheel acceleration is zero for the planar model 

when the climb component of the acceleration is zero. 

3. Concept of non-generalized coordinates is used to develop new three-dimensional wheel-climb 

dynamic formulation, which accounts for the track curvature, super-elevation, and centrifugal 

and inertia forces that enter into definition of constraint-reaction forces. It is shown that the 

L V  ratio does not depend on the bank angle that defines the track super-elevation. The spatial 

dynamic formulation leads to an L V  ratio that demonstrates limitations of the planar static-

force analysis. The spatial single-degree-of-freedom model developed can be used to define an 

inverse problem to study different climb patterns. It is shown that wheel acceleration can be 

zero for non-zero climb acceleration due to centrifugal and Coriolis acceleration components. 

Condition of zero wheel acceleration and non-zero climb acceleration is formulated. Based on 

the analysis presented in this study, a new approach that can be used to define the wheel-climb 

pattern based on simple experimental measurements is introduced. 

4. Effect of the longitudinal component of the friction force on the L V  ratio is demonstrated. 

This friction-force component is not accounted for in the planar analysis. The fact that the 

longitudinal friction-force component can significantly alter magnitude of the L V  ratio 

demonstrates the need for accurate measurement of the climb velocity to have an accurate 

estimate of the L V  ratio. It is demonstrated that by properly accounting for friction-force 

direction using the spatial analysis, the L V  limit can approach four, justifying concerns 

regarding the limits currently used in accident investigations. 

2.2  Friction-Force Direction and Pitch Rotation 

In deriving Nadal’s limit, it is assumed that the friction force in its totality acts upward due to the 

wheel rotation, which is not considered in the mathematical derivation of the L V  ratio. 
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Furthermore, the sliding down of the wheel contact point on the rail due to the wheel pitch rotation 

in case of large angle of attack does not imply that direction of the relative velocity is downward; 

the cross product of the wheel angular velocity and local position vector of the contact point can 

define a vector which is predominantly longitudinal. In the spatial dynamic formulation used in 

this study, it is assumed that the friction force is opposite to the direction of the relative velocity 

between the wheel and rail. Nonetheless, there are obvious concerns regarding the use of 

orientation of the friction force in deriving Nadal’s formula [3]: (1) In case of flange contact at 

zero or small angle of attack, the contact point shifts closer to the wheel center in the longitudinal 

direction and the direction of the friction force becomes predominantly longitudinal. That is, in 

general, one cannot in general assume that the friction force is in the direction used in deriving 

Nadal’s limit [3, 6]; (2) During wheel climb and as the result of the tread contact of the other 

wheel, the wheel continues to move forward with a significant longitudinal relative velocity 

component that has an influence on the direction of the friction force and such a component cannot 

be ignored. Furthermore, the absolute velocity of the contact point on the wheel is the sum of two 

components: the velocity of the wheel reference point wR  and the velocity of the contact point 

with respect to the reference point due to the wheel rotation. The reference-point velocity can be 

influenced by the suspension forces and roll moment resulting from the non-flange contact at the 

other wheel. Therefore, assuming that the friction force in its totality is along the flange cannot be 

justified and it is doubtful that such scenario dominates wheel-climb mechanics; and (3) Nadal’s 

planar force analysis does not account for the wheel rotation or angle of attack. In such an analysis, 

the proper mathematical treatment is based on assuming the climb is associated with upward 

relative velocity (since pitch rotation is not considered). Furthermore, the quasi-static force balance 
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used can be applicable to wheel climb as well as when the wheel sliding down, and therefore, such 

a force analysis is not indicative of or particular to wheel climb. 

2.3  Positive-Train-Control (PTC) Algorithms 

While this study proposes a new procedure for developing an L V  ratio based on spatial dynamic 

analysis, no recommendations are made regarding derailment and no derailment criterion is 

developed. Furthermore, this study does not suggest that increasing the lateral force does not 

contribute to increasing the possibility of wheel climb. Credible derailment and wheel-climb 

criteria require extensive analytical and numerical investigations that are not within the scope of 

this investigation. Nonetheless, the proposed approach can be used as the basis for developing real-

time positive-train-control (PTC) algorithms, implemented on onboard computers, to define 

wheel-climb pattern using online measurements. Such PTC algorithms can produce, in real-time, 

results that define the climb acceleration, velocity, and displacement. Such online information, if 

properly used with control actions, can contribute to avoiding wheel-climb derailments during 

curve negotiations. 

 

3. PLANAR WHEEL-CLIMB KINEMATICS 

The assumptions used in developing Nadal’s L V  ratio based on quasi-static considerations are 

followed in this study to develop a planar wheel-climb dynamic model that sheds light on the effect 

of the lateral and vertical forces on the direction of the acceleration along wheel flange. However, 

before developing such simplified wheel-climb model, a more general kinematic approach is 

described in this section to highlight simplifications which allow using Newton equations only 

instead of Newton-Euler equations for describing the wheel motion. 
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 In case of planar analysis, vectors tangent and normal to the flange, shown in Fig. 1, can be 

defined in a wheel coordinate system, respectively, as 

[ ] [ ]cos sin , sin cosT Tw wα α α α= = −t n      (1) 

where α  is the flange angle. Wheel motion can be described using three coordinates; two 

coordinates 1 2
Tw w wR R =  R  describe translation of wheel center of mass, and one angle wθ  

defines wheel angular orientation. If sliding along the flange is considered as the only degree of 

freedom as it is the case when deriving Nadal’s L V  ratio, the wheel is subjected to two motion 

constraints; one of the constraints eliminates the rotational displacement during the climb, that is, 

w
rcθ = where rc  is a constant. If the non-generalized coordinate (surface parameter) ws  is 

introduced to describe the wheel climb, two additional motion constraints are required to define 

single-degree-of-freedom wheel-climb model.  The location of the contact point on the wheel 

flange can be written in terms of the non-generalized coordinate ws  as 

( )w w w w w w w w w
c o s= + = + +r R A u R A u t , where  wA  is the planar transformation matrix that 

defines the wheel orientation, w w w w
c o s= +u u t  is the contact-point position vector with respect to 

the wheel coordinate system, w
ou  is a constant vector that defines the lateral position of the point 

on the wheel,  and w w w=t A t  [15]. Assuming fixed contact point on the rail during the climb, one 

can write the constraint equations wr w w w r
c= + − =r R A u R 0 , where  in the planar analysis rR  is 

constant vector that defines the location of the contact point on the rail. 

 Following the assumptions used in deriving Nadal’s limit, assuming 0w
rcθ = = , which 

eliminates the rotational degree of freedom and the associated Euler equation of motion and leads 

to an identity rotation matrix, that is, w =A I , one has w w w w= =t A t t  and the planar wheel motion 
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is subjected to the following two kinematic constraints written in terms of three generalized and 

non-generalized coordinates 
T T

w ws =  p R : 

     ( )wr w w w w r
o s= + + − =r R u t R 0     (2) 

This equation shows that 

( ) ,
,

T

T

w w r w w
o

w w w w w w

s

s s

= − − 

= − = − 

t R R u

t R R t 

 

    (3) 

 Alternatively, the non-generalized coordinate ws  can be eliminated leading to only one constraint 

equation that can be combined with the two equations of motion to define a one-degree-of-freedom 

model. For example, pre-multiplying w w ws= −R t

  by 
Twn  and using w w w=n A n  and w =A I , one 

has single constraint equation at the acceleration level  1 2sin cos 0
Tw w w wC R Rα α= = − + =n R    . It 

is clear from w w ws= −R t

  that in case of Nadal’s planar model, the wheel absolute acceleration 

wR  is zero if the climb acceleration ws  is zero. As will be shown, this is not the case when the 

spatial analysis is considered. 

 

4. PLANAR CLIMB DYNAMIC EQUATIONS 

 Because wheel rotation can be eliminated, planar wheel-climb dynamics is governed by two 

Newton equations subject to the constraint equation C . The equations of motion and the constraint 

equation at the acceleration level can be written as 

1 2

,

sin cos 0
T

w w w w
c

w w w wC R Rα α

= + 


= = − + = 

M R F F

n R



   

     (4) 
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where 1 2, , w

Tw w w w w w T w
cm F F C λ λ = = = − = −  R

M I F F n , wm  is wheel mass, wF  is vector of 

applied forces, w
cF  is vector of constraint force, w

wC C= ∂ ∂
R

R  is constraint Jacobian matrix, and 

λ  is Lagrange multiplier which, in this case, equals the reaction force N  normal to the contact 

surface. That is, Nλ =  [15]. The equations of motion and constraint equation at the acceleration 

level can be written in the augmented Lagrangian form as 

1 1

2 2

0 sin
0 cos

sin cos 0 0

w w w

w w w

m R F
m R F

α
α

α α λ

     −
     

=     
     −     



     (5) 

The solution of this equation defines the accelerations and Lagrange multiplier in terms of wF  as 

( ) ( )1 2

1 2

1

sin cos

T

T

Tw w w w w w w w

w w w w

R R m

N F Fλ α α

  = = −     
= = = − + 

R F n F n

n F

  

    (6) 

This solution can be verified by pre-multiplying the equation of motion by the transpose of the 

normal vector wn  to obtain ( )T Tw w w w w w
c= +n M R n F F . Since w wm=M I  and the acceleration 

component along the normal vector must be zero because of the climb constraints, one has 

( )T T Tw w w w w w
c λ= − = −n F n n n F , defining Lagrange multiplier as 

Tw wNλ = = n F , which when 

substituted into the equation of motion leads to ( ) ( )( )1
Tw w w w w wm= −R F n n F , verifying the 

solution previously obtained. The acceleration vector wR  can also be written as 

( )1w w w w
pnm=R P F , where 

Tw w w w w
pn = − ⊗ = −P I n n I n n  is a projection matrix and 

Tw w w w⊗ =n n n n  is the outer (dyadic) product. It can be shown that w w
pn =P n 0   and 

Tw w T
pn =n P 0 . 
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5. WHEEL-CLIMB ANALYSIS 

Planar wheel-climb analysis of the preceding section shows that the acceleration vector can be 

written in terms of the applied forces as ( ) ( )( )1
Tw w w w w wm= −R F n n F . This acceleration vector 

has zero component along the normal to the wheel/rail contact surface, that is, 0
Tw W =n R . 

5.1  Climb Acceleration 

The projection of the acceleration vector along the tangent to the wheel flange defines the climb 

acceleration, which can be written as 

   
( ) ( )( )

( ) ( )( )1 2

1

1 1 cos sin

T T T

T

w w w w w w w w

w w w w w w

m

m m F Fα α

= −

= = +

t R t F n n F

t F



    (7) 

At time of zero tangential acceleration, one has ( )1 2cos sin 0
Tw w w wF Fα α= + =t F . That is, at the 

point of instantaneous zero acceleration or in case of quasi-static analysis, regardless of the 

magnitude of the reaction force N , one has 1 2 sin cosw wF F α α= − . 

5.2  Nadal’s Lateral and Vertical Forces 

In Nadal’s planar force balance, the lateral and vertical forces L  and V , respectively, are defined 

as the resultant of all applied forces excluding the friction force Nµ . In case of wheel climb, the 

friction force w
fF  acts downward along the flange slope. That is, ( )w w w

f F Nµ= − = −F t t , where 

F Nµ=  . In this case, Nadal definition of the lateral ad vertical force is 

[ ] ( )T w wL V Nµ− = −F t       (8) 

In developing Nadal’s L V  ratio, it is assumed that the friction force acts upward due to the wheel 

rotation and the angle of attack aα .  In this case, and to keep the same assumptions used in 
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developing Nadal’s L V  ratio, the preceding equation is altered to [ ] ( )T w wL V Nµ− = +F t . As 

previously discussed, there are concerns regarding the use of positive direction of the friction force 

that include validity of this assumption in case of flange contact at zero angle of attack; change in 

direction of the velocity component of the wheel due to rotation and direction of the friction force 

as the climb displacement increases and the contact point shifts closer to the wheel center in the 

longitudinal direction; the wheel forward-velocity and friction-force components in the 

longitudinal direction can be significant and cannot be ignored; absolute velocity of the contact 

point is the sum of two components and is not only the result of the wheel rotation; and Nadal’s 

planar force analysis does not account for the wheel rotation or angle of attack [3]. Despite these 

concerns, the equation [ ] ( )T w wL V Nµ− = +F t  is used to write ( )1
T Tw w w w wm=t R t F  as 

( ) ( )( )1 1 cos sin
T Tw w w w w wm m L V Nα α µ= = − −t R t F    (9) 

Since 
Tw wN λ= = n F , one has 

[ ]( )
[ ] sin cos

T T

T

Tw w w w

Tw

N L V N

L V L V

µ

α α

= = − +

= − = − −

n F n t

n
    (10) 

Therefore, 

( )
( ) ( ) ( )( )
( )( )

1

1 cos sin sin cos

1

T Tw w w w w

w

w
L V

m

m L V

m c L c V

α µ α α µ α

=

= + − −

= +

t R t F

  (11) 

 where cos sinLc α µ α= +  and sin cosVc α µ α= − . At points of instantaneous zero climb 

acceleration or in case of quasi-static analysis, 0
Tw w =t R , and one has 

( ) ( )cos sin sin cos 0L Vα µ α α µ α+ − − = , which leads to Nadal’s limit 
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sin cos tan
cos sin 1 tan

L
V

α µ α α µ
α µ α µ α
− −

= =
+ +

     (12) 

 This equation demonstrates that the simple wheel-climb dynamic analysis leads to Nadal’s limit 

if the climb acceleration is zero, that is, 0
Tw w =t R . In case of flange angle 72α = °  and coefficient 

of friction 0.5µ = , Nadal’s limit is 1.0153L V = . In this case, the coefficient of L  and V  in the 

tangential equation of motion are, respectively, 0.7845Lc =  and 0.7965Vc = .  

5.3  Nadal’s Limit and Three-Dimensional Analysis 

In addition to using planar analysis only when deriving Nadal’s L V  ratio, an assumption is made 

that the friction force in its totality acts opposite to the wheel climb. There are, however, two modes 

of sliding. The first mode is sliding in the direction of the forward motion, which is not 

characterized by a pure rolling, while the second sliding mode is the climb of the wheel. These 

two sliding modes define friction-force components in case of wheel climb, which can occur at 

low speed relative to the forward velocity of the wheel. 

 The friction force in its totality acts in a direction opposite to the direction of the relative 

velocity between the wheel and the rail. In case of wheel climb, it is assumed that the wheel flange 

maintains contact with the rail inner surface, and the relative velocity between the wheel and rail 

can have the above-described two components; a component in the climb direction and the other 

in the forward-motion direction; both components oppose the motion. The forward-velocity 

component is proportional to the magnitude of the wheel angular velocity wω  and the radial 

location of the contact point defined by the vector w
cr , that is, the forward velocity at the contact 

point due to the sliding velocity w
fv  in the forward direction is approximately equal to w w

c×ω r . 

Since the climb velocity w
cv  can be small compared to the forward velocity w

fv  during the climb, 
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that is, 1w w
c fv v  , the friction force can be predominantly longitudinal making the friction force 

that opposes the climb small in comparison to the normal reaction force N . In this case, Nadal’s 

limit based on the planar analysis can be written as tanL V α≈ . This limit for a flange angle of 

075  is approximately 3.73. Furthermore, in practical motion scenarios, the vibration of the track 

due to the rail flexibility and foundation movements can have significant effect on the direction of 

the wheel/rail relative velocity, and for this reason, performing computer simulations based on 

fully nonlinear models may be required to identify root causes of accidents. 

 

6. SPATIAL KINEMATICS 

While wheelset rotations and moments cannot, in general be ignored in the analysis of wheel/rail 

interaction forces, a simplified three-dimensional dynamic model consistent with Nadal’s 

assumptions can still be developed to examine the effect of the forward motion and develop a 

simple model that can be used to define the climb pattern and develop a real-time PTC algorithm. 

6.1  Wheel Kinematics  

In this study, motion constraints are applied to obtain single-degree-of-freedom wheel-climb 

model that accounts for the forward motion on a curve. To this end, the flange geometry is defined 

in the wheel coordinate system by the following tangent and normal vectors, respectively: 

[ ] [ ]0 cos sin , 0 sin cosT Tw wα α α α= − =t n    (13) 

These vectors are defined with the assumption that 1X  is the longitudinal axis in the motion 

direction, 2X  is the lateral axis, and 3X  is the vertical axis.  

 The wheel orientation can be described using the three Euler angles ,ψ φ , and θ  about the 

wheel 3 1,X X , and 2X  axes, respectively [15]. In the three-dimensional model developed in this 
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study, the roll angle φ  and pitch angle θ  are constrained, while the yaw angle ψ  is defined as 

r rs Rψ =  where rs  is the curve arc length and rR  is the curve radius of curvature [15]. The yaw 

angle ψ  is assumed to account for the angle of attack aα . The position of an arbitrary point on the 

wheel flange can be written as ( )w w w w w w
o s= + +r R A u t , where w

ou  and ws  are, respectively, 

lateral position vector and surface parameter that defines contact-point location, and 

cos sin 0 cos sin sin sin
sin cos 0 , cos cos , sin cos

0 0 1 sin cos

w w w w w w w

ψ ψ α ψ α ψ
ψ ψ α ψ α ψ

α α

− −     
     = = = − = =     
          

A t A t n A n  (14)  

Assuming constant forward velocity, one has r rs Rψ =  . One also has the following identities and 

derivatives, where w w
ψ ψ= ∂ ∂A A : 

( ) ( )

2 2

2 2

0 1 0 cos sin 0
1 0 0 , sin cos 0
0 0 0 0 0 0

cos cos sin cos
cos sin , sin sin ,

0 0

cos sin
co

Tw w w w w
sd

w w w w w w

w w w
sd

ψ ψψ

ψ ψ

ψ ψ
ψ ψ ψ

α ψ α ψ
ψ ψ α ψ ψ ψ α ψ

α ψ
ψ ψ

− −   
   = = = ∂ ∂ = − = −   
      

−   
   = = = = −   
      

= − = − −

A A I A A A

t A t n A n

t A t





    



  ( ) ( )2 2
sin sin

s cos , sin cos
0 0

w w w
sd

α ψ
α ψ ψ ψ α ψ











−   
   = − = −    
      

n A n  

(15) 

To describe wheel/rail contact, two surface parameters are used: the first is the wheel surface 

parameter ws  used to define contact-point location, and the second is the rail surface parameter rs  

which defines the distance travelled by the wheel [15, 16]. A contact frame can be defined on the 

wheel surface by three orthogonal unit vectors ,w w
lt n , and wt , where 

[ ]cos sin 0 Tw w w
l ψ ψ= × =t n t . Using surface parameter ws , the global position vector of the 
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contact point on the wheel can be written, as previously discussed, as w w w w w w
o s= + +r R A u t , 

where 1 2 3
Tw w w wR R R =  R  is the global position vector of the wheel mass center. 

6.2  Rail Geometry  

The location of an arbitrary point on the rail can be written in case of a curve with zero super-

elevation in terms of the rail surface parameter rs  as ( ) [ ]sin cos 0 Tr r rs R ψ ψ= −R . The unit 

tangent to the rail at a potential contact point is defined as [ ]cos sin 0 Tr w
lψ ψ= =t t . Using 

these definition, one has 

[ ]
[ ]

1 0 0 ,

1 0 0

T

T

Tw r r r

Tw r

R Rψ
= − = − 


= = 

A R i

A t i
     (16) 

That is, [ ]cos sin 0 Tr w
lψ ψ= =t t  remains along the wheel longitudinal axis. In case of non-

zero super-elevation by a bank angle rφ  performed about the 1X−  axis,  

  
( ) sin cos cos cos sin

cos sin cos sin sin

Tr r r r r

Tr r r

s R ψ ψ φ ψ φ

ψ ψ φ ψ φ

 = −  

 = −  

R

t
   (17) 

In case of constant ψ , the preceding equation shows that ( )2,r r r r rRψ ψ= = −R t R R 

  , and 

2 2cos sin cos
Tr w r

l ψ ψ φ= +t t , which shows the effect of the bank angle. If the bank angle rφ  is 

small, cos 1rφ ≈  and 1
Tr w

l ≈t t .  

 

7. SPATIAL MOTION CONSTRAINTS  
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To obtain single-degree-of-freedom wheel-climb model based on the three spatial Newton 

equations of motion, four kinematic constraints are applied since two surface parameters ws  and 

rs  are introduced. These four constraint equations are 

    
0

wr w r w w w w w r
o

r w

s

s v t

= − = + + − = 


− = 

r r R R A u t R 0
   (18) 

where wv  is the forward velocity of the flange contact point which is assumed constant. The fourth 

equation in the preceding equation can be used to eliminate rs  as an unknown from the first three 

equations, that is, rR  becomes known function of time. This reduces the number of constraint 

equations to three equations, which can be written as 

[ ]1 2 3
T w w w w w r

oC C C s= = + + − =C R A u t R 0    (19) 

Pre-multiplying these equations by 
Twt  and denoting w w w

o o=u A u  lead to 

( )Tw w w w r
os = − + −t R u R      (20) 

This equation can be used to eliminate ws  and reduce number of constraint equations to two. The 

constraint equations C  lead to the following velocity and acceleration equations assuming that rs

, or equivalently ψ , is constant:  

( )2 2

w w w r r w w
c

w w w r w w w w w
sd c

w w w

R s

s s

s

ψ

ψ

ψ ψ

ψ ψ

= − + −
 = − − −  


= − + 

R A u t t

R A u R A t t

t γ



  



  



    (21) 

where w w w w
c o s= +u u t , ( )2 2w w w r w w w

sd c s ψψ ψ = − − γ A u R A t  , and w w w
c c=u A u . The preceding 

equation represents the constraint equations at the velocity and acceleration levels. The 

acceleration equation contains centrifugal and Coriolis acceleration terms. The equation 
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w w w ws= − +R t γ

  shows that zero climb acceleration, 0ws = , does not imply w =R 0  due to the 

curving behavior; and if 0ws = , one has w w=R γ . Using the definition ( )Tw w w w r
os = − + −t R u R

, the following velocity and acceleration equations can be developed: 

( ) ( )

( )2

T T

T

T T

w w w w w r w w w r
o o

w w
s

w w w w w w r
sd c

s

s

ψψ

γ

ψ

= − + − − + −

= − + 


 = − + −   

t R A u R t R u R

t R

t R t A u R

 










   (22) 

where ( ) ( )T Tw w w r w w w w r
s o oψ ψγ ψ ψ= − − − + −t A u R t A R u R

  .  

 The equation w w w ws= − +R t γ

  can play an important in defining the climb pattern in accident 

investigations. If the vector wR  can be measured, the climb acceleration ws  can be determined 

from the equation ( )( )2Tw w w w w r
sd cs ψ  = − + − t R A u R

  for a given forward velocity rs  and track 

geometry. This measured climb acceleration can be numerically integrated to determine ws  and 

ws .  

 

8. SPATIAL WHEEL-CLIMB DYNAMIC MODEL 

To generalize Nadal’s analysis and assess the effect of such a generalization on L V  definition, 

the spatial Newton equations w w w w
cm = +R F F  are considered, where wF  and w

cF  are three-

dimensional vectors that define, respectively, applied and constraint forces.  

8.1  Single-Degree-of-Freedom Model and Inverse Problem 
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Substituting wR  defined in the preceding section into Newton equations, pre-multiplying by 
Twt , 

and using 0
Tw w

c =t F  because non-generalized coordinate ws  is treated as the degree of freedom, 

one obtains 

( )( )2Tw w w w w w w r
sd cm s m ψ  = − + − t F A u R      (23) 

This equation shows that  

( ) ( )( )
( )

2T

T

w w w w w w r
sd c

w w w

s m

m

ψ

γ

 = − + − 

= − +

t F A u R

t F



     (24) 

where ( ) ( )2 Tw w w w r
sd o sγ ψ  = + − t A u R . The preceding equation, which shows the effect of the 

forward velocity on the climb acceleration, leads to 

( ) ( )Tw w w w w w w w w ws m γ= − + = + −R t γ t F t γ t

     (25) 

Denoting w w wγ= −γ γ t , one has 
Tw w w w w w w w w

pγ= − = − =γ γ t γ t γ t P γ , which can be written as, 

where ( )w w w
p = − ⊗P I t t  is a projection matrix that defines direction perpendicular to climb 

direction, and ⊗  refers to the dyadic or outer product. The accelerations can then be written as 

( )( )1
Tw w w w w wm= +R t F t γ      (26) 

The constraint force vector w
cF  can then be defined as 

( )
( ) ( ) ( )
( )

T

T T T

w w w w w w w w w w
c

w w w w w w w w w w w w w

w w w w w
p

m m

m

= − = + −

   = − − − = −      

= − − ⊗ = −

F R F t F t γ F

t F t F t γ t γ t F t F

I t t F P F



  (27) 
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where w w w wm= −F F γ . The preceding equation, upon substituting in w w w w
cm = +R F F , 

eliminates constraint forces and leads to ( )w w w w w w w
pm m= − −R F P F γ , which can be written as 

w w w w w w w w
p rm m= + =R P F P γ F , where w w w w w w

r pm= +F P F P γ  and w w w= ⊗P t t . The projection 

matrices wP  and w
pP  satisfy the identities , ,

T Tw w w w w w w w
p= = =t P t P t t P t 0 , and 

Tw w T
p =t P 0 . 

8.2  Friction Force  

Using the expression of w
cF , the normal reaction force is defined as 

T T Tw w w w w w w
c pN  = = − = − n F n P F n F     (28) 

In case of wheel climb, the ratio between the climb velocity w
cv  and forward wheel velocity 

w w
lv s=   is tanw w

c l cv v γ= , which defines the friction force as 

ˆ ˆw w w
f c cF Nµ= − = −F v v       (29) 

where cγ  is an angle that defines the direction of the relative velocity vector, and ˆ w
cv  is a unit 

vector in the direction of the wheel velocity with respect to the rail at the contact point, defined as 

( ) ( ) ( ) ( )
2 2

ˆ sin cosw w w w w w w w w
c c l l c l c c lv v v v γ γ= + + = +v t t t t    (30) 

The angle cγ  is used to define the L V  ratio developed in this study. Recall that 

Tw w w w w w w
p= − =γ γ t γ t P γ , which shows that wγ  is a vector perpendicular to the climb direction. 

The friction-force equation ˆ ˆw w w
f c cF Nµ= − = −F v v  is general and is applicable to both scenarios of 

wheel climb and sliding-down since it is in a direction opposite to the relative velocity between 

the wheel and rail. This direction of the relative velocity is defined by the unit vector ˆ w
cv . 
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9. SPATIAL L/V RATIO 

It was previously shown that w w w
rm =R F , where w w w w w w

r pm= +F P F P γ  and w w w= ⊗P t t . 

Following the definitions used in developing Nadal’s ratio and the definition of the unit vector 

r r r= ×b t n , the lateral force L  and the vertical force V  can be written as 

( ) ( )
( ) ( )

ˆ

ˆ

T T

T T

r w w r w w
r f r c

r w w r w w
r f r c

L N

V N

µ

µ

= − = − 


= − = − 

n F F n F v

b F F b F v
      (31) 

The resultant of the reaction force normal to the contact surface can be written as 

[ ]( )
[ ]

ˆ

sin cos

T T

T

Tw w w w w
r l c

Tw
l

N F L V N

F L V L V

µ

α α

= − = − +

= − = − +

n F n A v

n
    (31) 

In the limiting case used in deriving Nadal’s limit, which ignores the effect of wγ , 

[ ]( )
[ ]

ˆ0

sin cos cos sin

T T T

T

Tw w w w w w w
r l c

Tw
l c c

F L V N

F L V N L V N

µ

µ γ α α µ γ

= = = − +

= − + = − − +

t R t F t A v

t



  (32) 

The preceding two equations show that 

sin cos sin tan sin
cos sin sin 1 tan sin

c c

c c

L
V

α µ α γ α µ γ
α µ α γ µ α γ
− −

= =
+ +

   (33) 

This ratio is derived using the track bank angle that defines the track super-elevation and accounts 

for the forward motion, angle of attack, and direction of the friction force. This equation is also 

consistent with the result obtained in [6] using a quasi-static engineering approach. It is obtained 

in this section as a special case of the three-dimensional dynamic formulation developed in this 

investigation. 

 As an example, a flange height of 1.5 in (0.0381 m) is considered. Even if a wheel climb is 

completed in 2 s, 0.019w
cv =  m/s, which is a low velocity. In case of a vehicle forward velocity 
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20w
lv =  m/s (72 km/h), one has 4tan 8.5 10w w

c c lv vγ −= = × . In this case, 4tan 8.5 10c cγ γ −≈ = ×  , 

and for a flange angle of 72° , one has 3.077L V = . Increasing the flange angle increases the L V  

ratio. For example, for a flange angle 75° , 3.73L V = ; and for a flange angle 77° , 4.33L V = , 

demonstrating sensitivity of the L V  limit to changes in the flange angle and validity of concerns 

regarding its use as the basis for developing derailment criteria, particularly in cases of altered 

wheel geometry due to wear. 

 The formulation of the spatial L V  ratio presented in this section allows for investigating the 

effect of the assumption 0
Tw w =t R . The vector wR  can be determined using different climb 

profiles defined by the function ( )w ws s t= . The solution of the inverse problem defines wR , 

which depends on both the centrifugal and Coriolis acceleration terms that are dependent on the 

curve geometry and forward velocity rs . Furthermore, because in general w w w ws= − +R t γ

  and 

T Tw w w w ws= − +t R t γ

 , the condition that 0
Tw w =t R  does not imply always that ws  is zero as in 

the planar analysis. One can show that in the spatial analysis, 0
Tw w =t R  leads to 

( )2T Tw w w w w w r
sd cs ψ  = = − t γ t A u R . Because cos

Tw r rR α=t R  in the case of small track super-

elevation angle rφ , this condition can be written as 

    ( )2 cos
T Tw w w w w w r

sd cs Rψ α = = − t γ t A u     (34) 

 This condition states that, when w =R 0 ,  the climb acceleration ws  is equal to the component of 

the centrifugal acceleration along the wheel flange. The fact that this condition can be rarely 

satisfied during the wheel climb raises concerns with regard to using the L V  ratio in accident 

investigations. If, on the other hand, 0ws = , one has ( )2 2w w w w r w w w
sd c s ψψ ψ = = − − R γ A u R A t

 
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, and this term can be included in the longitudinal, lateral, and vertical force to define the L V  

ratio. Nonetheless, the condition 0ws =  cannot be ensured during the wheel climb. 

 

10. SUMMARY 

While wheel climb has been a source of many railroad accidents, simple analysis based on quasi-

static planar analysis is often used to provide explanation for the climb phenomenon [17, 18]. In 

particular, Nadal’s L V  limit has been used for developing several railroad derailment criteria 

often used in accident investigations and in developing operation and safety guidelines. This is 

despite the fact that such a limit is based on quasi-static planar analysis. A new spatial dynamic 

formulation of the L V  ratio is developed in this study using the basic assumptions adopted in 

developing Nadal’s limit. The three-dimensional analysis, which leads to minor modification of 

Nadal’s L V limit, demonstrates the limitations of the planar analysis. The spatial L V  ratio, 

derived using non-generalized coordinates, is independent of the bank angle that defines the track 

super-elevation, accounts for curving behavior, track super-elevation, and centrifugal and Coriolis 

inertia forces. The spatial analysis presented in this study demonstrates the dependence of the 

lateral and vertical forces on the quadratic-velocity inertia forces and that the wheel absolute 

acceleration is not in general zero when the climb acceleration is zero as in the planar analysis. It 

is shown that the L V  limit can approach high values if the direction of the friction force is 

properly accounted for, highlighting the need for accurate measurement of the wheel/rail relative 

velocity and its direction for proper interpretation and use of the L V  limit. The single-degree-of-

freedom model defined in this study based on spatial formulation can be used to define an inverse 

problem for the study of different climb patterns. Furthermore, such a model can be used for 

developing real-time PTC onboard-computer algorithms that utilize online measurements to 
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define, from the outset, a wheel-climb pattern. Using measured accelerations, the PTC algorithms 

can compute in real-time the climb acceleration, velocity, and displacement; which when properly 

used with control actions, can contribute to avoiding wheel-climb derailments during curving.  
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Figure 1 Nadal’s force balance [15] 


