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ABSTRACT 

The varied atomic arrangements in face-centered cubic (FCC) solid solutions introduce atomic-

scale fluctuations to their energy landscapes that influence the operation of dislocation-mediated 

deformation mechanisms. These effects are particularly pronounced in concentrated systems, 

which are of considerable interest to the community. Here, we examine the effect of local 

fluctuations in planar fault energies on the evolution of deformation twinning microstructures in 

randomly arranged FCC solid solutions. Our approach leverages the kinetic Monte Carlo (kMC) 

method to provide kinetically weighted predictions for competition between two processes: 

deformation twin nucleation and deformation twin thickening. The kinetic barriers underpinning 

each process are drawn from the statistics of planar fault energies, which are locally sampled using 

molecular statics methods. kMC results show an increase in the fault number densities of solid 

solutions relative to a homogenized reference, which is found to be driven by the fluctuations in 

planar fault energies. Based on kMC relations, an effective barrier model is derived to predict the 

competition between deformation twinning nucleation and thickening processes under a 

fluctuating planar fault energy landscape. A key result from this model is a measurement of the 

length-scale over which the influence of local fluctuations in planar fault energies diminish and 

nucleation/thickening-dominated behaviors converge to bulk predictions. More broadly, the tools 

developed in this study enable examination of the influence of chemistry and length-scale on the 
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evolution of deformation twinning mechanisms in FCC solid solutions. 

Keywords: Deformation Twinning; Concentrated Solid Solutions; Molecular Dynamics; 

Molecular Statics; Kinetic Monte Carlo Simulations; Stacking Fault Energy. 

______________________________________________________________________________ 

1. INTRODUCTION  

The activation of deformation mechanisms in metallic materials is determined by a complex 

interplay between applied stresses, microstructure effects, and energetic process barriers that resist 

mechanism operation. The latter element can be conceptualized using the generalized planar fault 

energy (GPFE) landscape,1,2 which relates the critical planar fault energies (i.e., stacking fault and 

twinning fault energies) to the sequenced shearing of crystallographic planes. Subsequent 

investigations have leveraged this planar fault energy concept to provide analytical descriptors for 

the activation of dislocation-mediated mechanisms, which are relevant in face-centered cubic 

(FCC) materials. Notable examples include investigations from Rice3 and Ogata et al.4, where the 

critical fault energies of the GPFE landscape are used to predict the stresses for dislocation 

nucleation from a crack tip and a twin boundary, respectively. Building on the crack tip model of 

Rice,3 Tadmor and Hai5 showed that the competition between trailing partial and twinning partial 

dislocation emission is controlled by the ratio of unstable stacking and twinning fault energies. 

This effort produced a first principles-based metric to evaluate the incipient competition between 

deformation twinning and dislocation slip. This ‘twinnability’ criterion has been homogenized over 

a distribution of crack-tip orientations and crystal textures.6 Later works have applied similar 

GPFE-based criteria to consider the competition between grain boundary-mediated mechanisms 

in nanocrystalline materials7 and the evolution of mechanism competition beyond incipient 

plasticity events.8 Building on this concept, Daly et al.9 demonstrated how the competition between 

nucleation and thickening of deformation twins in FCC metals may also be determined by the 
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magnitudes of the critical planar fault energies of the GPFE landscape. 

While these contributions have provided important fundamental insights into mechanism 

competition, one limitation in these works is the restriction in applicability to the study of unary 

metals, where deformation twinning has limited engineering applications. Yet, with the ubiquity 

of complex alloys, an expansion of deformation twinning theory to predict deformation tendencies 

in these systems is of significant technological relevance. For instance, profuse twinning is known 

to underpin the exceptional work hardening of the twinning-induced plasticity (TWIP) steels.10,11 

Important studies on the TWIP effect include works from Bouaziz and co-workers,12–18 and  

Steinmetz et al.,19 with the status of these materials summarized in reviews from De Cooman and 

co-workers.20,21 Twinning is also cited as a contributing mechanism in the plasticity of several 

medium and high entropy alloy (MEA and HEA) systems (e.g., CoCrFeMnNi,22–27 CoCrNi,27–30 

and FeMnCoCr31–33). While previous works provide some guidance for the deformation twinning 

tendencies of these materials – that is, these materials profusely twin due to low stacking fault 

energies (e.g., as in Refs.10,11,22,34,35) – this interpretation is not entirely consistent with a careful 

examination of the literature. For instance, the stacking fault energies of TWIP steels and 

deformation-twinned HEAs generally fall in the range of ~ 20-60 mJ/m2 20,21 and 18-45 mJ/m2,36,37 

respectively. This range overlaps with the reported values for pure Cu (~36 mJ/m2 ).38 Yet, except 

under dynamic loadings or when nanostructured, Cu is not observed to exhibit significant 

deformation twinning.39  

The recent literature offers a partial explanation for this discrepancy between twinning 

behaviors in pure and multicomponent low stacking fault energy materials. For instance, 

dramatically different values for the stacking fault energy of equimolar CoCrNi have been 

observed, with large negative values of -62 mJ/m2 up to 22 mJ/m2 being reported.30,40–42 These 
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large variations have been linked to the varied arrangement of atoms in solid solutions, which gives 

rise to a distribution of planar fault energies that vary locally within fault planes.43–47 Zhao et al.46 

have used density functional theory (DFT) to analyze the effect of random atomic arrangements 

on the ‘local’ intrinsic stacking fault (ISF) energy and reported fluctuations up to 200 mJ/m2 for 

NiFe, NiCo, and CoCrNi systems. This finding is supported by our recent work, which has 

examined the statistical relationships between solute arrangement and fluctuations in fault 

energies.48 Collectively, these reports highlight the large scatter that can arise in planar fault 

energies due to solute arrangement, which is a behavior unique to multicomponent systems. Within 

the context of dislocation-mediated deformation mechanisms, local deviations in planar fault 

energies are significant as they provide new kinetic pathways for mechanism evolution.49 The 

implications of local fluctuations on the fault energies of solid solutions raise an interesting 

question: how do these local fluctuations drive the behavior of deformation mechanisms mediated 

by the GPFE landscape?  

Here, we examine this question through a study of the evolution of deformation twinning 

microstructures in randomly-arranged concentrated solid solutions. To capture this evolution, we 

implement kinetic Monte Carlo (kMC) simulations to measure the competition between nucleation 

and thickening of deformation twins. A key feature of this approach is that it enables a local 

definition and evaluation of the process barriers of deformation twinning, which we align to match 

the statistical distribution of critical planar fault energies that are obtained directly from GPFE 

landscape. Furthermore, we define a set of effective planar fault energies using analytical methods, 

which account for the variations in deformation twinning microstructures that arise from local 

fluctuations. This methodology is independently validated by tensile testing of nanowires using 

molecular dynamic (MD) simulations.  The results of this work provide insights into the evolution 
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of deformation twinning microstructures within a spatially heterogeneous process barrier 

landscape.  

2. METHODOLOGY 

We have selected the NiCo system to investigate the influence of a heterogeneous process 

barrier landscape on the evolution of deformation twinning microstructures. This choice was made 

because the NiCo system possesses solid solubility over wide ranges of concentrations and is well 

documented to exhibit deformation twinning.50,51 Furthermore, interatomic potentials are readily 

available to model planar faults for this system, which facilitates the atomistic simulations 

described in the subsequent sections. Our study is performed using an equimolar composition of 

NiCo binary alloy to maximize solute dispersion. Yet, the approach outlined herein can be 

expanded to different single-phase solid solutions with arbitrary compositions and numbers of 

components (e.g., MEAs and HEAs), for which accurate potentials exist to model bonding 

interactions. 

2.1 Molecular static simulations 

The fluctuations in the GPFE landscape are quantified using molecular statics (MS) 

simulations, which are implemented using the Large-scale Atomic/Molecular Massively Parallel 

Simulator (LAMMPS).52 The Open Visualization Tool (OVITO)53 was used to visualize the atomic 

topologies and common neighbor analysis was performed in OVITO to identify the faulted 

structures. Atomic interactions in the NiCo system are modeled using the embedded-atom method 

(EAM) with an interatomic potential developed by Béland et al.54 This potential has been validated 

by comparing the system-level GPFE landscape to first-principles density functional theory 

calculations (see Section S1, Figure S1 in the Supplementary Materials). Equimolar NiCo systems 

measuring 12 by 12 by 5 nm in the x, y, and z directions, respectively, were constructed to measure 
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the GPFE landscape. Figure 1 provides a schematic of the system used in MS simulations. We 

have validated the overall system sizes through sensitivity analysis (see Section S2, Figure S2 in 

the Supplementary Material). The equimolar systems are modeled such that the 

〈11̅0〉, 〈112̅〉, and 〈111〉 crystallographic directions are aligned to the global x, y, and z axes, 

respectively. The GPFE landscape is obtained through a three-stage rigid shearing process, where 

the total rigid shear per stage is equal to the Burger’s vector of a 〈112〉-type Shockley partial 

dislocation (i.e., 
𝑎𝑜

√6
, where 𝑎𝑜 = 0.351 nm is the lattice parameter). Each stage is executed over 100 

shearing increments to capture the intermediate configurations of the GPFE landscape. In between 

each shearing step, the system is relaxed in the z-direction and the per atom potential energies are 

recorded. Initially, an ISF is formed by displacing two halves of the NiCo crystal along the 

〈112̅〉 direction within the {111} shear plane. Adjacent layers of the crystal are sequentially 

sheared to form an extrinsic stacking fault (ESF) and a twin fault (TF). Periodic boundary 

conditions are enforced on the x and y boundaries and the z surfaces are free surfaces. The GPFE 

landscape is calculated from the excess energy, using the following relation: 

𝛾 =  
𝑈 − 𝑈0
𝐴

 
(1) 

where 𝑈 is the energy of faulted state, 𝑈0 is the energy of the initial, defect-free system, A is the 

area of the fault plane, and 𝛾 is the area normalized fault energy at a given shearing step. All MS 

simulations are performed at 0 K. This procedure for GPFE landscape determination is well-

established in the literature.55,56  

The local planar fault energy arises from the variations in atomic arrangements in the vicinity 

of the planar fault. To capture this effect, we define the local planar fault energy (𝛾∗) using a 

relation analogous to Eq. (1) and measure 𝛾∗ by sampling the GPFE landscape over a local area of 
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𝐴∗ in the {111} plane (see Figure 1). For the results presented in the main text, 𝐴∗ is taken as 

(√10
3

 𝑏112)
2
, where 𝑏112 is the magnitude of the 〈112̅〉 Burger’s vector for a Shockley partial 

dislocation. This selection is derived from an estimate for the activation area of a partial 

dislocation, which we obtain from the cubic activation volume  of ~10𝑏112
3 . Activation volumes in 

the range of 1-15𝑏112
3  have been reported in the literature for similar dislocation processes.57,58 As 

shown in this study and our previous work,9 an activation volume of 10𝑏112
3 delivers self-consistent 

predictions for dislocation-mediated deformation twin nucleation and thickening processes. Local 

sampling of faulted systems resulted in ≈ 15500 samples per shear increment. As anticipated, 

GPFE measurements converge and fluctuations vanish, as 𝐴∗ approaches 𝐴 (see Section S3, Figure 

S3 in the Supplementary Material). It should be noted that the z-axis dimension is selected 

conservatively and does not influence local measurements, when above a minimum threshold. That 

is, the GPFE landscape emerges from differences in atomic site energies that arise due to a change 

in local topology during shearing. These shearing-induced excess energy contributions decay  

significantly within five nearest neighbors of the planar fault (about 2-3 {111} planes),48 which is 

similar to the linear dimension of the activation volume (√10
3

 𝑏112, about 2 {111} planes). 

Consequently, selection of a sampling dimension larger than this threshold along 〈111〉 introduces 

negligible changes in excess energy to Eq. (1). 
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2.2 Kinetic Monte Carlo Model 

To predict the effect of local variations in atomic arrangement on the evolution of deformation 

twinning microstructures, we have expanded a kMC model developed previously by our group for 

unary systems. Using the algorithm proposed by Bortz et al.,59 this model predicts the evolution 

of deformation twinning microstructures by kinetically weighted selection of deformation twin 

nucleation or thickening processes. This kinetic weighting is determined from the process barriers 

for each activation event, which is defined by their dislocation mechanics, as described below.  

Each of these dislocation-mediated processes is considered in a discretized two-dimensional 

simulation cell that is defined along the relevant crystallographic directions for deformation 

twinning-based plasticity in FCC materials. An important aspect of our approach is that it focuses 

 

Figure 1: Schematic showing the system and sampling strategy used in MS simulations to measure the local GPFE 

landscape in the NiCo samples. The relevant crystal directions and fault structures are shown. The system area (𝐴) 
and sample area (𝐴∗) are shaded in grey and green, respectively and bounded by dashed stroke.  
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on the intrinsic competition between deformation twin nucleation and thickening along a single 

twin system, while removing convoluting extrinsic factors such as microstructure heterogeneities 

(e.g., stress concentrations at crack tips and grain boundaries) and Schmid effects. Furthermore, 

competing mechanisms such as trailing partial dislocation emission, dislocation cross-slip and 

dislocation constrictions/reactions are not considered, as they would complicate a direct 

comparison of nucleation and thickening phenomena. Given this framework, this approach is most 

accurate for FCC single crystals where deformation twinning is prevalent along a single twin 

system. A complete description of the basic method, assumptions, and its limitations are provided 

in Refs.8,9 A summary of the model updates and specific assumptions to accommodate fluctuating 

process barriers are outlined below.  

kMC simulations were performed on a NiCo single crystal with axes aligned to the 〈112̅〉 and 

〈111〉 crystal directions, respectively. This arrangement allows the study of mechanistic 

competition along the 〈11̅0〉 zone axis and mirrors the configuration of MS simulations. In the 

kMC model, the crystal is discretized such that the nucleation and movement of defects require a 

local process barrier to be overcome. These characteristics are well-suited to the objectives of this 

work as they enable a variable process barrier to be mapped to the kMC mesh. The kMC simulation 

cell dimensions measure M𝑏112 and N𝑑111, where 𝑑111 is the interplanar spacing of {111} planes, 

and M and N are integers. The simulation cell is designed with free surfaces along the y-axis and 

periodic boundaries along the z-axis. A schematic of the kMC simulation cell is provided in Figure 

2a. The kMC mesh is discretized into regions measuring ~(√10
3

 𝑏112)
2
 nm2, which follows from 

the sampling area selected in MS simulations. 

In kMC simulations, deformation twinning is realized through the activation of two dislocation 

processes: partial dislocation nucleation and glide. All the dislocations considered in this study are 



10 

 

90° leading <112>-type Shockley partials. Deformation proceeds through the nucleation and glide 

of leading dislocations from the free surface at the y = 0 boundary. The incipient nucleation and 

glide of a leading partial dislocation forms an ISF. Subsequent nucleation and glide events along 

adjacent {111} planes lead to the formation of a two-layered ESF and a multi-layered TF. The 

process barriers required to nucleate these faults are discussed in the subsequent paragraphs. 

Surface-based deformation twinning applies to a diverse set of systems including nanowires,60–64 

TWIP steels,65 nanostructured FCC66–68 and body-centered cubic,69 and hexagonal close-packed 

metals.70 This twin nucleation route bears some resemblance to the defect nucleation models 

proposed by Weinberger and co-workers71,72 and Sehitoglu and co-workers25,26 with some 

differences in the treatment of the process barrier. Dislocation nucleation and glide processes are 

considered along a single twin system to study the intrinsic competition between deformation twin 

nucleation and thickening mechanisms while suppressing extrinsic microstructure and loading 

(i.e., Schmid) factors, as previously discussed. These simplifications are intentional as they enable 

the effect of variable process barriers on deformation twinning processes to be isolated and directly 

studied. However, it should be noted that our method is sufficiently general to include extrinsic 

factors (e.g., far-field loading effects or Schmid factors) with some effort.  

Following the method of Ogata et al.4, the process barriers used in the kMC model are taken 

from the differences of critical planar fault energies in the GPFE landscape (see Figure 2b). As 

shown in the figure, the first process barrier in deformation twinning (𝐸1 = 𝛾𝑢𝑠𝑓
1 , where 𝛾𝑢𝑠𝑓

1  is the 

unstable stacking fault energy) is overcome to nucleate a single layer ISF. Thickening of the ISF 

proceeds by overcoming additional process barriers (𝐸2, 𝐸3, …, 𝐸∞) that are defined by the 

difference between the relevant stable fault energy and the peak unstable energies of the subsequent 

defect along the GPFE landscape. The unstable fault energies that must be overcome to form one- 
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and two-layer faults are denoted as 𝛾𝑢𝑠𝑓
1  and  𝛾𝑢𝑠𝑓

2 , respectively. 𝛾𝑢𝑡𝑓
3  and 𝛾𝑢𝑡𝑓

∞  refer to the unstable 

twinning fault energies required for the formation and thickening of a deformation twin. 𝛾𝑖𝑠𝑓, 𝛾𝑒𝑠𝑓, 

and 𝛾𝑡𝑓 are defined as the stable fault energies of the related faults (i.e., ISF, ESF, and TF). 𝛾𝑢𝑡𝑓
∞  

and 𝛾𝑡𝑓 represent the energies related to a single boundary in a thickened deformation twin 

comprised of two non-interacting twin boundaries, with the former energy approximated as 𝛾𝑢𝑡𝑓
∞ ≈

 𝛾𝑢𝑡𝑓
3 − 𝛾𝑡𝑓. In FCC materials, the GPFE landscape is known to stabilize after the formation of an 

ESF.4 Therefore, the process barrier for 𝐸∞ is taken to define the thickening of deformation twins 

beyond three layers such that 𝐸∞ ≈ 𝛾𝑢𝑡𝑓
3 − 2𝛾𝑡𝑓. Thus, the relative competition between 

nucleation and thickening of deformation twins is defined here by the process barriers 𝐸1 

(nucleation) and 𝐸2, 𝐸3, and 𝐸∞ (thickening), respectively. 
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To simulate the mechanistic competition using kMC simulations, the kinetics of nucleation and 

glide events are required. The rates of nucleation and glide (𝑅(𝑖, 𝑗)) operating at the ith activation 

site in the jth slip plane of the simulation cell are determined using an Arrhenius relationship:   

 

Figure 2: (a) The kMC simulation cell with the relevant crystal directions and geometric parameters noted. The 

color patches depict the discretized local value of the process barrier, with 𝐸1 shown here as an example. A 

schematic of the fault structures of deformation twinning (i.e., ISF, ESF, and TF) are shown, along with the 

associated process barriers for nucleation and thickening of deformation twins, and dislocation glide stresses. The 

determination of process barriers is defined by the deformation history and local critical energy values at position 

i,j in the discretized kMC simulation cell. (b) A schematic of a variable GPFE landscape for an FCC solid solution. 

The blue lines represent the system average, and the green lines indicate statistical scatter (1 standard deviation). 

The average critical energies and process barriers are indicated with an overline. The definitions of the process 

barriers from the differences of critical planar fault energies are also shown. 
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𝑅(𝑖, 𝑗) = 𝑅0exp {
−[�̂�(𝑖, 𝑗) − 𝜏(𝑖, 𝑗)]𝑉

𝑘𝑏𝑇
} 

 (2)   

where 𝑅𝑜 is the Debye frequency,73 𝑘𝑏 is the Boltzmann constant, 𝑇 is the temperature (set at 300 

K), �̂�(𝑖, 𝑗) and 𝜏(𝑖, 𝑗) are the process barrier and elastic shear stresses, respectively, and 𝑉 is the 

activation volume (taken as 10𝑏112
3 ). Under this framework, if a Shockley partial dislocation is not 

present in the jth slip plane, then �̂�(𝑖, 𝑗) = �̂�(0, 𝑗), which represents the process barrier stress for 

the nucleation or thickening of a deformation twin. This shear stress can be calculated from the 

process barriers of the GPFE landscape using the athermal nucleation relations of classic 

dislocation theory.74 Conversely, if a Shockley partial dislocation is present in the jth slip plane then 

�̂�(𝑖, 𝑗) represents the barrier to glide for a dislocation centered at the ith activation site, as given by 

the Peierls-Nabarro stress (𝜏𝑃𝑁, see Figure 2a).75 Thus, the conditional definition of process barrier 

�̂�(𝑖, 𝑗)  is as follows: 

�̂�(𝑖, 𝑗) =

{
 
 

 
 𝜋𝐸𝑘(𝑖, 𝑗)

𝑏112
, 𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛/𝑡ℎ𝑖𝑐𝑘𝑒𝑛𝑖𝑛𝑔 

𝐾𝜌
𝑏112
𝜌
𝑒𝑥𝑝 {

−2𝜋𝜍𝜌(𝑖, 𝑗)

𝜌
} , 𝑔𝑙𝑖𝑑𝑒 

 
  (3) 

where, 𝐸𝑘(𝑖, 𝑗) is the process barriers required to nucleate or thicken a fault at 𝑖𝑡ℎ activation site 

in the 𝑗𝑡ℎ slip plane as described in the previous paragraph, and 𝑘 is the index of the relevant 

process barrier as defined by the deformation history of the kMC system. The additional terms in 

the glide relation are defined as follows: 𝜌 represents the distance between adjacent atomic rows 

along the shear direction (i.e., 𝜌 =
3

2
𝑏112), 𝐾𝜌 is an elastic constant given by  𝐾𝜌 =

𝐺

(1−𝜈)
, where, 

𝐺 and 𝜈 are the shear modulus and Poisson’s ratio respectively, and 𝜍𝜌(𝑖, 𝑗) =  
𝐾𝜌𝑏112

2

4𝜋2𝐸𝑘(𝑖,𝑗)
 represents 

the half-width of the dislocation core. All constants related to dislocations are defined using an 

edge character. The elastic constants are determined from the relevant components of the cubic 
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stiffness tensor available in Li and Wang76, which are then homogenized to provide the effective 

isotropic shear modulus and Poisson’s ratio using the method of Bacon and co-workers.77,78 

Following the Volterra approach,74 the internal shear stress 𝜏(𝑖, 𝑗) is calculated from the additive 

elastic field stress contributions of active dislocations in the kMC simulation cell. Free surface 

effects are considered by modifying the Volterra solutions to include image dislocations that 

enforce vanishing shear stress along the 〈112̅〉 boundaries in the simulation cell, as in previous 

work.9 The relevant material parameters for the kMC models are given in Table I. 

Table I: NiCo material parameters used in kMC simulations.  

𝑎𝑜 (nm) 𝑏112 (nm) 𝑑111 (nm) G (GPa)a ν a Ro (1013/s)b 

0.351 0.143 0.203 92.4 0.344 9.88 

aCalculated based on stiffness constants from Ref.76 using the method of Bacon and co-workers.77,78 
bTaken from pure nickel from Ref.9  

To evaluate the influence of process barrier fluctuations on the evolution of deformation 

twinning microstructures, two different types of kMC simulations are performed, which are 

referred to here as the homogeneous and heterogeneous models. In the homogeneous model, the 

deformation kinetics are calculated using the average values for the process barriers. For instance, 

the barrier to nucleate an ISF becomes 𝐸𝑘 = �̅�1 = �̅�𝑢𝑠𝑓
1 , where �̅�𝑢𝑠𝑓

1  is the average unstable 

stacking fault energy obtained using the methods described in Section 2.1. The other process 

barriers required for fault thickening are similarly taken from their average values, 𝐸𝑘 = �̅�𝑘. Under 

the heterogeneous definition, a distribution of local process barriers is created using the statistics 

measured during MS sampling of the GPFE landscape. For example, the process barrier for the 

incipient nucleation event becomes 𝐸1
∗ = 𝛾𝑢𝑠𝑓

1,∗ = �̅�𝑢𝑠𝑓
1 + ∆𝛾𝑢𝑠𝑓

1 , where ∆𝛾𝑢𝑠𝑓
1  is drawn from a 

Gaussian distribution using the mean and standard deviation obtained from sampling statistics. As 

shown in Figure 2a, this distribution of process barriers is then mapped as local values in the kMC 

mesh using the same dimensions from MS sampling (i.e., √10
3

 𝑏112 by √10
3

 𝑏112). As previously 
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discussed, this discretization also encompasses the region that contributes most significantly to 

excess energies during shearing (about 2-3 {111} planes, see Section 2.1). For mapping purposes, 

we assume that the critical planar fault energies have perfect statistical correlation at the same 

location in the kMC mesh but are otherwise spatially uncorrelated. That is, the same standard 

scores (i.e., the z-scores of the statistical distribution) are used when assigning critical planar fault 

energies to each location in the kMC mesh, but the spatial arrangement of standard scores within 

a specific critical planar fault energy is selected at random. This assumption finds some support 

with the statistical correlations measured in MS sampling, which were generally higher than 0.6 

between all critical planar fault energy distributions. To capture the deformation twinning 

microstructure evolution, the deformation twinning fraction (F) and number of faults (𝑁𝐹) are 

measured at each simulation along the y = 0 boundary of the simulation cell. In these calculations, 

ISFs, ESFs, and TFs are all counted towards 𝐹 and 𝑁𝐹 and the terms fault and twin will be used 

interchangeably. The simulation termination condition is set at a deformation twinning fraction of 

0.15, which is in the range of experimental reports (i.e., 0.15 – 0.20, as per De Cooman et al.).21 

2.3 Analytical Model 

To reveal the relationship between the statistical parameters of critical planar fault energy 

distributions and the emergent deformation twinning microstructures, we develop an analytical 

model to predict the competition between deformation twin nucleation and thickening. As 

demonstrated in our previous work,9 in kMC simulations the ratio between the rate of change of 

fault number and deformation twinning fraction (
𝑑𝑁𝐹

𝑑𝐹
) is related to the probability of nucleation 

(𝑃𝑁) through the evolution law:  

𝑑𝑁𝐹
𝑑𝐹

= 𝑁𝑃𝑁 
(4) 

where 𝑁 is the total number of {111} planes in the system. 𝑃𝑁 is determined by the ratio between 
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rate of new twin nucleation (𝑅𝑁) to the total rates of all kinetic events (𝑅). Assuming glide events 

are exhausted, the total rate of all kinetic events is simply 𝑅 = 𝑅𝑁 + 𝑅𝑇, where 𝑅𝑇 is the rate of 

twin thickening. By summing these rates at all nucleation sites, 𝑃𝑁 is given by the following 

relationship:   

𝑃𝑁 =
∑ �̃�1𝑗1

∑ �̃�1𝑗1 + ∑ �̃�∞𝑗∞

 
(5) 

where �̃�1 = 𝑒𝑥𝑝{−𝑎𝐸1(0, 𝑗1)}, �̃�∞ = 𝑒𝑥𝑝{−𝑎𝐸∞(0, 𝑗∞)}, and 𝑎 =
𝑉𝜋

𝑘𝑏𝑇𝑏112
, which holds the 

thermodynamic parameters. Here the indices 𝑗1 and 𝑗∞ enumerate the {111} slip planes in the 

kMC system where deformation twin nucleation and thickening can be activated, respectively. In 

the homogeneous model, where 𝐸𝑘(0, 𝑗) =   �̅�𝑘 , Eqs. (4) and (5) reduce to the following relation:9  

𝑑𝑁𝐹
𝑑𝐹

− 𝑁 {
(𝑁 − 𝐹𝑁 − 2𝑁𝐹)�̃�1

(𝑁 − 𝐹𝑁 − 2𝑁𝐹)�̃�1 + 2𝑁𝐹�̃�∞
} = 0 

(6) 

which can be solved numerically using the 4th order Runge-Kutta method. As in our previous 

study,9 the number of nucleation sites available at a given deformation twinning fraction is taken 

as 𝑁 − 𝐹𝑁 − 2𝑁𝐹 and the number of thickening sites is 2𝑁𝐹. This treatment represents an upper 

bound for thickening sites and is most accurate at lower deformation twinning fractions. 

For treatment of the heterogeneous model (i.e., 𝐸𝑘(0, 𝑗) =  𝐸𝑘
∗), we extend this analytical 

derivation to incorporate the local statistical fluctuations in the GPFE landscape of solid solutions 

by considering the expected values of process rates (i.e., ⟨𝑒𝑥𝑝{−𝑎𝐸𝑘}⟩). For simplicity of 

presentation, we have omitted the trailing (𝑖, 𝑗) indices in the subsequent discussion. This 

derivation is based upon two assumptions: the distribution of process barriers follows Gaussian 

statistics (see Section 3.1) and that negative values of process barriers are not permitted. Although 

negative process barriers were not observed in the kMC mesh, in this model the tail of the 

associated Gaussian distribution can contain small, but non-zero probabilities of 𝐸𝑘 < 0, which 
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leads to instability in the analysis. Consequently, distribution tails with negative values are set to 

zero in analytical modeling. This simplification limits the maximum rate of kMC processes to the 

Debye frequency, which aligns with Cai et al.73 Under these assumptions, the expected value of 

the raised process barrier distribution ⟨exp{−𝑎𝐸𝑘}⟩ is determined as: 

⟨𝑒𝑥𝑝{−𝑎𝐸𝑘}⟩ =  
1

𝜎𝑘√2𝜋
(∫ 𝑒𝑥𝑝{−𝑎𝐸𝑘}𝑒𝑥𝑝 {−

1

2
(
𝐸𝑘 − �̅�𝑘
𝜎𝑘

)

2

}
∞

0

 𝑑𝐸𝑘

+∫ 𝑒𝑥𝑝 {−
1

2
(
𝐸𝑘 − �̅�𝑘
𝜎𝑘

)

2

𝑑𝐸𝑘}
0

−∞

) 

(7a) 

=  𝑒𝑥𝑝 {−𝑎 (�̅�𝑘 −
𝑎𝜎𝑘

2

2
)}(

1

2
+ 𝑒𝑟𝑓 (

�̅�𝑘 − 𝑎𝜎𝑘
2

√2𝜎𝑘
) 2⁄ ) + (

1

2
− 𝑒𝑟𝑓 (

�̅�𝑘

√2𝜎𝑘
) 2⁄ ) (7b) 

where 𝜎𝑘 is the standard deviation of the kth process barrier and 𝑒𝑟𝑓 is the error function. In Eq. 

(7b), the first exponential term represents the expected value of 𝑒𝑥𝑝{−𝑎𝐸𝑘} over the full 

integration range (i.e., −∞ to ∞) and the bracketed terms with the error functions are correction 

factors to account for treatment of the distribution tail that falls below zero. An effective process 

barrier �̂�𝑘 can now be defined by setting Eq. (7b) equal to an effective exponential term 

(𝑒𝑥𝑝{−𝑎�̂�𝑘}), which simplifies to the following relation:  

�̂�𝑘 = −
1

𝑎
𝑙𝑛 [𝑒𝑥𝑝 {−𝑎(𝐸𝑘 −

𝑎𝜎𝑘
2

2
)}(

1

2
+ 𝑒𝑟𝑓(

𝐸𝑘 − 𝑎𝜎𝑘
2

√2𝜎𝑘
) 2⁄ )

+ (
1

2
− 𝑒𝑟𝑓(

𝐸𝑘

√2𝜎𝑘
) 2⁄ )] 

(8) 

Examination of the extremes Eq. (8) shows that �̂�𝑘 converges to �̅�𝑘 as 𝜎𝑘 → 0, as expected, and 

�̂�𝑘 → −
1

𝑎
𝑙𝑛 (

1

2
) ≈ 0 as 𝜎𝑘 → ∞. The residual term in the latter limit arises due to the elimination 

of the negative portion of the distribution tail in this derivation. Given Eq. (8), Eq. (6) may now 

be solved for the heterogeneous model using the same numerical methods by inserting the 
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appropriate effective process barriers (i.e., 𝐸1(0, 𝑗) =  �̂�1 and 𝐸∞(0, 𝑗) =  �̂�∞).  

The final consideration in this analytical model is the determination of the statistical parameters 

of the process barriers. The deformation twin nucleation barrier (i.e., 𝐸1) is defined explicitly by 

the unstable stacking fault energy, which delivers �̅�1 = �̅�𝑢𝑠𝑓
1  and 𝜎1 = 𝜎𝑢𝑠𝑓

1 . However, as the 

deformation twin thickening barrier is defined by the difference of two correlated critical planar 

fault energies (i.e., 𝐸∞ ≈ 𝛾𝑢𝑡𝑓
3 − 2𝛾𝑡𝑓), the statistical parameters become �̅�∞ = �̅�𝑢𝑡𝑓

3 − 2�̅�𝑡𝑓 and 

(𝜎∞)
2 = (𝜎𝑢𝑡𝑓

3 )
2
+ (𝜎2𝑡𝑓)

2
− 2𝜎𝑢𝑡𝑓

3 𝜎2𝑡𝑓𝑐𝑜𝑟𝑟(𝛾𝑢𝑡𝑓
3 , 2𝛾𝑡𝑓), where 𝑐𝑜𝑟𝑟(𝛾𝑢𝑡𝑓

3 , 2𝛾𝑡𝑓) ≈ 0.75 is the 

statistical correlation coefficient between the unstable twinning fault and twinning fault energies 

measured in MS simulations.   

2.4 Molecular dynamics simulations of nanowires in tension 

The simplifications and assumptions undertaken to develop the kMC and analytical models 

motivate the search for an independent validation method. In this regard, MD nanowire tensile 

simulations offer several attractive features to verify the predictions of deformation twinning 

microstructures. Namely, the deformation of a nanowire proceeds from the nucleation of Shockley 

partial dislocations at free surfaces, and a sufficiently long nanowire therefore possesses a 

statistically representative collection of nucleation sites. Furthermore, the structural topology of 

free surface nucleation sites in MD are nearly identical. This aligns well with the conditions of 

kMC simulations, where the selective activation of deformation mechanisms relies only on the 

heterogeneities introduced by the chemical topology.  

MD nanowire tensile testing is performed using LAMMPS. OVITO is used to visualize the 

atomic topologies in MD simulations and deformation twinning structures are identified using the 

Crystal Analysis Tool.79 The same EAM potential used in Section 2.1 is implemented in MD 

simulations to model interatomic interactions. Although stacking faults and deformation twins are 
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commonly observed in nanowires,57,60 the competition between deformation twinning and other 

mechanisms (e.g., dislocation slip) is highly orientation dependent. To ensure activation of 

deformation twinning mechanisms only, nanowires are modeled with the 〈118〉, 〈11̅0〉,  and 〈441̅〉 

crystallographic directions aligned to the global x, y, and z axes, respectively. This orientation 

maximizes Schmid factors along the 〈112̅〉/{111} twinning system. Nanowires are constructed 

with square cross-sections using a deletion scheme outlined in previous work.9 The dimensions of 

the nanowire are selected to align with the sizes of kMC simulations (66𝑏112 by 300𝑑111), which 

results in nanowires measuring ~6 by 87 nm along the x and z axes, respectively. The nanowires 

are modeled at an equimolar NiCo composition and possess approximately 400,000 atoms, with 

solute randomly assigned to each atomic site. A size sensitivity analysis for the MD nanowire 

testing is provided in Section S4, Figure S4 of the Supplementary Materials. Periodic boundary 

conditions are enforced along all the axes, with a 6 nm vacuum layer in the x and y directions 

between periodic replications. A typical nanowire and the relationships between the twinning 

system, crystallographic and simulation axes are provided in Figure 3.  

MD nanowire tensile simulations begin with static relaxation under the conjugate gradient 

energy minimization method. Subsequently, initial velocities are assigned to atoms by drawing 

values from a Gaussian distribution centered at a temperature of 300K. After velocity application, 

the nanowires are equilibrated using a Nosé-Hoover style thermostat and barostat, which maintains 

a stress-free loading on the system boundaries and a temperature of 300 K. Following 

equilibration, uniaxial tensile testing is achieved by strain-controlled deformation along the 

longitudinal axis of the nanowire at a strain rate of 109/s. A time step of 1 fs is used for all 

simulations and testing is replicated 7 times.  
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3. RESULTS AND DISCUSSION 

The report of results begins with an analysis of the statistics collected from MS simulations. 

These statistics are then used to generate the process barriers for the homogeneous and 

heterogeneous kMC models using the methods described in Section 2.2. kMC simulation cells are 

constructed for equimolar NiCo samples and measure 66𝑏112 by 300𝑑111. The deformation 

twinning fraction and fault number density are measured at each kMC simulation timestep to track 

 

Figure 3: (a) A snapshot of a nanowire created for MD tensile testing simulations. (b) A planar section of the 

nanowire from (a) with the trace of a {111} slip plane shown in dashed blue stroke. This slip-plane is oriented to 

maximize the Schmid factor along the 〈112̅〉 crystallographic direction. (c) A closeup of the nanowire with a slip-

plane exposed. The angular relations between crystallographic and simulation axes are indicated. Scale bars in (b) 

and (c) measure 3 nm each. Atoms shown in green are FCC coordinated and white atoms do not have a fixed 

symmetry. 



21 

 

the competition between nucleation and thickening processes. Each kMC simulation is replicated 

200 times for statistical sampling, with results converging well below the replication limit. A 

sensitivity analysis of the kMC system size and replication number is provided in Sections S4 and 

S5 of the Supplementary Materials, respectively. We use the symbols NiCo  and NiCo* to denote 

results for the homogeneous and heterogeneous models, respectively. The results of kMC 

simulations are then examined using the analytical model of Section 2.3 and validated by MD 

nanowire tensile simulations. All error is reported as ±1 standard deviation.  

3.1 Statistics of the GPFE landscape  

Figure 4 provides the results of MS sampling of equimolar NiCo samples. As shown in Figure 

4a, significant deviations from the nominal equimolar chemistry are observed during local 

sampling. The sampling data is reported here as a binned histogram, which has been overlaid with 

a fitted probability density function (PDF). The local samples are found to exhibit a Gaussian 

distribution (≈ 0.50 ± 0.08) about the mean molar value, as anticipated.  A slight asymmetry in the 

distribution creates small deviations from the nominal equimolar value (i.e., 0.50), but these 

deviations are less than 0.01 by mole. Although these variations in chemistry are sensitive to 

sampling dimensions, they are reported here to underscore the link between fluctuations in the 

GPFE landscape and local composition. 
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The results of local sampling of the GPFE landscape are provided in Figure 4b. Here, the blue 

lines provide the average data and the green region represents the ±1 standard deviation from the 

mean. It should be noted that the average of the locally-sampled GPFE landscape data aligns well 

with the GPFE landscape calculated over the entire system area, as expected. Furthermore, the 

statistical fluctuations in the GPFE landscape are independent of sampling dimension along 〈111〉, 

as per the excess energy arguments presented in Section 2.1. Examination of the statistical scatter 

in the GPFE landscape highlights the dramatic variations in fault energies that are encountered 

 
Figure 4: (a) A histogram showing the composition statistics measured during local sampling of the GPFE 

landscape. The probability density function (PDF) is fit to the collected samples. The values for composition are 

shown in atomic percent (i.e., by mole). (b) The fluctuations in the GPFE landscape are shown for the local sampling 

of equimolar NiCo samples. The green region provides the bounds of ±1 standard deviation for the measured planar 

fault energies (average shown in blue stroke).  
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locally along the planar defect. As shown in Section S3, Figure S3 of the Supplementary Materials, 

the statistical scatter in the GPFE landscape vanishes as the sample area (i.e., in the {111} plane) 

approaches the system size. One interesting observation is that the stable fault energies (i.e., 𝛾𝑖𝑠𝑓, 

𝛾𝑒𝑠𝑓, and 𝛾𝑡𝑓) exhibit negative values in some samples, which aligns with recent reports in the 

literature. For instance, NiCo is known to undergo an FCC to hexagonal close-packed (HCP) 

transformation at chemistries of > 70 at.% Co,80 which implies a negative intrinsic stacking fault 

energy for these Co-rich compositions. Indeed, negative stacking fault energies have been reported 

in NiCo41 and NiCo-based MEA30,40,42 systems in DFT studies, which is related, in part, to 

limitations in the simulation cell size available to first principles methods.46,48 Within this context, 

we interpret negative stacking fault energies in this study as arising from Co-rich regions localized 

within the fault plane.  

Figure 5 provides the distributions of critical planar fault energies obtained from local sampling 

of the GPFE landscape. As shown in the figure, the binned data is overlaid with a fitted Gaussian 

distribution. The statistical parameters of the critical planar fault energy distributions have been 

provided in the plot and are summarized in Table II. Each critical planar fault energy distribution 

is found to be reasonably approximated by a Gaussian with minor skewing noted in the unstable 

stacking fault energy (i.e., 𝛾𝑢𝑠𝑓
1 ). These results align with a study from Zhao et al.46 who report a 

normal distribution of intrinsic stacking fault energies for several concentrated FCC solid 

solutions. The data provided in Figure 5 also emphasizes the proportion of negative stable fault 

energies, which appears to be almost half of the distribution for each fault type. It should be noted 

that the twinning fault energy (i.e., 𝛾𝑡𝑓) is doubled as two twin faults are created by MS shearing 

operations. Furthermore, the standard deviation (i.e., 𝜎2𝑡𝑓) is provided in reference to the 2𝛾𝑡𝑓 

distribution. Collectively, the statistical distributions reported here underscore the large variations 
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in processes barriers encountered by dislocations during the operation of deformation twinning. In 

the subsequent section, the statistical parameters obtained from Gaussian fitting of the critical 

planar fault energy distributions are leveraged to inform kMC process barriers, through which the 

effects on the evolution of deformation twinning microstructures are examined. 

  
Figure 5: The distribution of critical planar fault energies sampled from the GPFE landscape of equimolar NiCo, 

shown as histograms. The unstable planar fault energies sampled are the (a,c) unstable stacking and (e) unstable 

twinning fault energies (i.e., 𝛾𝑢𝑠𝑓
1 , 𝛾𝑢𝑠𝑓

2 , and 𝛾𝑢𝑡𝑓
3 ). The stable fault energies sampled are the (b) intrinsic and (d) 

extrinsic stacking fault and (f) twinning fault energies (i.e., 𝛾𝑖𝑠𝑓, 𝛾𝑒𝑠𝑓, and 𝛾𝑡𝑓). A Gaussian fit to the histogram data 

is overlaid and the statistical parameters are provided (i.e., the average and standard deviation). The stable twinning 

fault energy is provided at double its value as there are two twin faults created during MS shearing operations. 
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Table II: Average and standard deviations of critical planar fault energies (mJ/m2) as measured from MS simulations.  

Model �̅�𝑢𝑠𝑓
1 ± 𝜎𝑢𝑠𝑓

1  �̅�𝑢𝑠𝑓
2 ± 𝜎𝑢𝑠𝑓

2  �̅�𝑢𝑡𝑓
3 ± 𝜎𝑢𝑡𝑓

3  �̅�𝑖𝑠𝑓 ± 𝜎𝑖𝑠𝑓 �̅�𝑒𝑠𝑓 ± 𝜎𝑒𝑠𝑓 2�̅�𝑡𝑓 ± 𝜎2𝑡𝑓 

NiCo* 265.1±78.9 287.6±98.7 288.3±106.8 40.0±61.3 42.2±77.9 43.9±91.1 

NiCo   265.1 287.6 288.3 40.0 42.2 43.9 

 

3.2 Evolution of deformation twinning microstructures  

Representative snapshots of the microstructure of the kMC simulation cell are provided in   

Figure 6a and Figure 6b for the homogeneous and heterogeneous models, respectively. The colored 

regions represent areas that are faulted and/or twinned in the microstructure. The evolution of 

deformation twinning microstructures shows distinct behaviors between the two models. In the 

homogeneous system, the fault number density is comparatively lower and is accompanied by 

thicker deformation twins at each twinning fraction. By contrast, the heterogeneous system is 

profusely twinned, with most defects appearing as one- and two-layer stacking faults (i.e., ISFs 

and ESFs). One observation from this result is that the presence of a variable process barrier 

landscape disproportionately biases deformation twinning towards nucleation mechanisms. This 

interpretation aligns with the correlations between process barrier statistics, as discussed in Section 

2.3. Specifically, the larger standard deviations in the nucleation barrier compensate for its higher 

relative average value (i.e., 𝐸1 = 265.1 ± 78.9 mJ/m2), which drives nucleation-dominated 

deformation behavior. Conversely the process barriers to thickening, exhibit lower standard 

deviations due to correlations between critical planar fault energies that reduce the statistical 

scatter (e.g., 𝐸∞ = 244.4 ± 71.2 mJ/m2).  
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Snapshots of representative defect structures during MD nanowire tensile testing are provided 

in Figure 6c. Here, planar defects are shown in red and yellow stroke for ISFs and ESFs/TFs, 

respectively. The deformation twinning fractions are calculated using an image processing 

algorithm described in our previous work.9 As shown in the image, nanowire samples exhibit a 

monotonic increase in planar faults with increasing deformation twinning fraction. Activation of 

dislocation slip is not observed in the deformation of MD nanowires, as expected from Schmid 

 
Figure 6: Representative snapshots from (a,b) kMC and (c) MD nanowire tensile simulations at deformation 

twinning fractions of 0.05, 0.1, and 0.15. For the heterogeneous NiCo model (green), the simulation is segmented 

by several planar defects that traverse across the cell. For the homogeneous NiCo model (blue), the snapshots reveal 

a lower density of planar defects with larger average thicknesses. MD snapshots are taken from the center cross-

section of a representative nanowire and show fault-free FCC atoms (blue), ISFs (red), ESFs/TFs (yellow) and 

atoms without a fixed symmetry (dark blue). The scalebar in (c) measures 3 nm. 
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theory. The deformation twinning microstructures of the MD nanowires are qualitatively similar 

to those of the heterogeneous model in number density and thickness. A quantitative comparison 

of kMC and MD results follows in the subsequent discussion.  

Figure 7 provides the evolution of the fault number density for each of the methods examined 

in this effort. The fault number density is defined here as 𝑛𝐹 =
𝑁𝐹

𝑁𝑑111
⁄  and has been computed 

by considering contributions from planar faults (i.e., ISFs and ESFs) and thickened TFs, as 

previously discussed. The results of kMC simulations for both the heterogeneous and 

homogeneous models are provided as averages with error bars indicating 1 standard deviation over 

200 replications. As shown in the figure, the differences between the heterogeneous and 

homogeneous kMC models are quantitatively consistent with the qualitative observations from the 

snapshots of deformation provided in Figure 6. That is, deformation twinning processes in the 

heterogeneous model favor nucleation relative to the homogeneous simulations. The evolution of 

the fault number density in MD nanowire tensile simulations is overlaid with the kMC data in red 

stroke. Here, the average data is represented by the red midline and ± 1 standard deviation is given 

by the bounds of the shaded area. Examination of the MD data shows excellent agreement with 

the heterogeneous model. This outcome is significant and offers two key observations. First, as an 

independent predictor of deformation twinning physics, the agreement of MD results with kMC 

methods provides encouraging validation of our approach. Second, the alignment of MD results 

specifically with the heterogeneous kMC model underscores the influence of variable process 

barriers on the activation of deformation twinning processes in FCC solid solutions. 
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Numerical solutions to the analytical model developed in Section 2.3 are provided for the 

homogeneous and heterogeneous systems in Figure 7. In the homogeneous solution, the fault 

number density is calculated from the solution of Eq. (6) using the average values of the process 

barriers (i.e., 𝐸1 = 265.1 mJ/m2 and 𝐸∞ = 244.4 mJ/m2). However, for the heterogeneous solution, 

computation of Eq. (6) proceeds using the effective process barriers (i.e., �̂�1 and �̂�∞) that are 

determined from Eq. (8) with  �̅�1 = 265.1 mJ/m2, 𝜎1 = 78.9 mJ/m2, �̅�∞ = 244.4 mJ/m2, and 𝜎∞ = 

71.2 mJ/m2. In both analytical calculations, the other model parameters match those used in kMC 

simulations. As shown in the figure, the analytical model is in good agreement with the results of 

kMC and MD simulations. Some over-prediction at high deformation twinning fractions is noted 

in the heterogeneous analytical calculations, which may be due to merging of planar defect 

 

Figure 7: The evolution of the fault number density as predicted by heterogenous (green) and homogeneous (blue) 

kMC models and MD simulations (red, NiCoMD). The average kMC results over 200 replications are provided, and 

error bars represent ±1 standard deviation. The average of MD results is provided by the solid midline and the 

shaded region represents the bounds of 1 standard deviation. These results are overlaid with numerical solutions to 

analytical model for the homogeneous (blue dashed line) and the heterogeneous (green dashed lines) calculations, 

as determined using the relevant process barriers. 
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structures in highly twinned microstructures, as described in previous work.9 Nonetheless, a key 

observation from analytical modeling is that the essential physics of deformation twin nucleation 

and thickening in solid solutions can be captured through consideration of statistical fluctuations 

in the relevant process barriers. This outcome supports scalability of the analysis to larger system 

sizes without the significant computational overhead incurred by kMC and MD simulations.  

Although the fault number density predictions find excellent agreement with MD nanowire 

tensile simulations in this work and in our previous study,9 this alignment must be interpreted with 

caution. Namely, dislocation nucleation and glide kinetics are known to have significant 

nonlinearities under the high strain rate loadings imposed by MD simulations. These include 

nonlinear contributions of applied stresses to activation barrier kinetics and variable activation 

volumes.58,81 Therefore, MD nanowire tensile simulations at different temperatures or strain rates 

may require different activation parameters (e.g., activation volumes) to be used to find agreement 

with kMC and analytical predictions. Nonetheless, we emphasize that this combination of 

thermomechanical testing parameters (i.e., 300 K temperature and 109/s strain rate) is consistent 

with the kMC and analytical model across several FCC systems, as shown here and in previous 

work.9 As an additional note, MD testing under different temperatures and strain rates may activate 

different dislocation-mediated mechanisms (e.g., as in Refs.82–84) that are not directly captured by 

kMC or analytical models, but we expect this is largely precluded by the nanowire and loading 

configurations used in this study. 

3.3 Competition between nucleation and thickening processes in FCC solid solutions 

The presentation of the analytical model for the fault number density evolution motivates a 

broader examination of the competition between the nucleation and thickening processes of 

deformation twinning in solid solutions. In our previous work,9 we developed a twin nucleation 



30 

 

tendency criterion (𝑇𝜂) for a similar purpose in unary FCC systems. Using the definition of the 

effective barrier from Eq. (8), 𝑇𝜂 may be updated to incorporate the statistics of variable GPFE 

landscapes in FCC solid solutions as: 

𝑇𝜂 = 𝑙𝑛 (
1 − 𝐹 − 2𝑛𝐹𝑑111

2𝑛𝐹𝑑111
) −  𝑎(�̂�1 − �̂�∞) (9) 

where the nucleation of deformation twins is favored when 𝑇𝜂 > 0 and the thickening of existing 

deformation twins is preferred when 𝑇𝜂 < 0. The first term in 𝑇𝜂 captures the changes in nucleation 

and thickening tendencies based on the evolution of deformation twinning microstructures. That 

is, as the fault number density rises, fewer sites become available for nucleation of new defects 

and thickening becomes increasingly favored. The second term in 𝑇𝜂 accounts for contributions of 

the process barriers to the inherent competition between nucleation and thickening processes. 

Figure 8 plots the evolution of 𝑇𝜂 with increasing deformation twinning fraction for both the 

homogeneous and heterogeneous models. As shown in the figure, both models exhibit a monotonic 

decline in nucleation-favored behavior at increasing deformation twin fractions, as expected with 

the microstructure becoming increasingly faulted. Furthermore, the heterogeneous model is 

observed to favor nucleation of deformation twins relative to the homogeneous model, which is 

consistent with the results presented in the kMC analysis. This finding further underscores the 

sensitivity of deformation twinning mechanisms to the statistical fluctuations in process barriers. 

In order to study the effects of length-scale on the twin nucleation tendency, we have also plotted 

𝑇𝜂 for varied GPFE landscape sampling areas, which presents the opportunity to examine the twin 

nucleation tendency under process barriers with varied statistical scatter. As shown in the figure, 

the twin nucleation tendency criterion converges to the homogeneous limit at a sampling area of 

25𝐴∗. This result is significant as it reveals the length-scale over which the influence of statistical 
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fluctuations in process barriers diminish and the local behavior transitions towards the bulk.   

4. CONCLUSIONS 

The effects of local fluctuations in planar fault energies on the deformation twinning 

microstructures of FCC solid solutions have been examined by kMC simulations, with equimolar 

NiCo serving as the benchmark system. To examine the evolution of deformation twinning 

microstructures, the processes of nucleation and thickening of deformation twins were of specific 

interest in kMC simulations. The fluctuating process barriers for activation of nucleation and 

thickening behaviors were assigned using statistical parameters obtained from local sampling of 

the GPFE landscape. kMC results showed an increase in the fault number densities in NiCo solid 

solution samples when compared against a homogenized reference calculation where statistical 

scatter was not considered. Furthermore, the results of kMC simulations were compared with MD 

nanowire tensile simulations, which showed excellent agreement with the NiCo solid solution 

 

Figure 8: The evolution of the twin nucleation tendency criterion. The nucleation of deformation twins is preferred 

when 𝑇𝜂 > 0 and thickening-favored behavior is expected when 𝑇𝜂 < 0. The data is plotted for the homogeneous 

and heterogenous models in blue and green stroke, respectively. The sampling area used to define the statistics of 

process barriers is varied between 2.25𝐴∗ and 25𝐴∗, with criterion predictions converging to the homogeneous 

values at larger sampling areas. 
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samples. This alignment served to independently validate our kMC approach and underscored the 

importance of local fluctuations in driving deformation twinning behaviors. 

In addition to kMC studies, an analytical model was developed to predict the evolution of the 

fault number density in FCC solid solutions using the process barriers of deformation twinning as 

key inputs. To capture the effects of fluctuations, a relation for an effective barrier was derived, 

which was based on the expected values of deformation twinning kinetics under a statistical 

distribution of process barriers. The formulation of this analytical model enabled a direct analysis 

of the competition between nucleation- and thickening-favored deformation twinning processes. 

In addition, this model revealed the length-scale by which the effects of local fluctuations on the 

deformation twinning processes diminish and the nucleation/thickening-dominated behaviors 

converge to bulk predictions. More broadly, the tools developed in this work provide a pathway to 

study the influence of chemistry and length-scale on the evolution of deformation twinning 

mechanisms in FCC solid solutions. 
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