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01 INTRODUCTION

This is a watershed moment in which public demands for roadway safety intersect with 
public outcry for municipal fine and fee reform.1 This is evident in an unprecedented 
alliance between the Vision Zero Network, principally concerned with improving road 
safety and eliminating traffic fatalities, and the Fines and Fees Justice Center. These 
advocacy organizations agree that monetary sanctions for all manner of traffic infractions 
do not necessarily make our roads safer. Instead, fines, fees, forfeitures, and other imposed 
costs disproportionately harm poor people, particularly in Black and Latinx communities, 
thereby distorting the justice system and thwarting regulatory compliance.

Debates about the efficacy of automated enforcement of red-light and speed cameras can be 
contentious, and findings can be ambiguous, but the empirical evidence suggests that 
roadways are typically safer once cameras are installed. Numerous studies find that the 
automated enforcement cameras reduce the overall number of collisions as well as the 
severity of vehicular injuries.2 Nevertheless, as of July 2021, 11 states have prohibited or 
restricted cameras.3 According to the Insurance Institute for Highway Safety, the number of 
municipalities using red-light cameras has declined from 533 in 2012 to 345 by 2020.4 

Although public sentiment is generally more favorable toward speed cameras, 
implementation of speed camera programs has declined, with some jurisdictions restricting 
speed cameras to specific zones. For example, Pennsylvania recently enacted an initiative, 
Automated Work Zone Speed Enforcement, which allows speed enforcement cameras in 
active construction zones on the Turnpike, interstates, and highway system. Drivers caught 
traveling 11 mph or more over the speed limit are mailed a ticket for $75 for the first 
violation.5 The constitutionality of automated enforcement laws are being challenged in 
numerous states. Jurisdictions that have recently discontinued camera enforcement usage, 
such as Texas and New Jersey, cite dubious efficacy of automated cameras, challenges 
enforcing violations, expense of maintaining the program, and, most frequently, community 
opposition to inadequate transparency in the system.6  

Racial disparities in municipal ticketing and the regressivity of monetary sanctions are 
robust literatures.7 Camera enforcement technologies are frequently excluded from the 
analyses, although automated enforcement typically yields the largest volume of tickets 
annually. Traffic enforcement cameras have attracted unlikely support from advocates of 
police reform because cameras, presumably, offer a race-neutral alternative to police 
enforcement of traffic infractions. Proponents emphasize dual concerns -- racially 
disproportionate stops and the risk of violent encounters with police particularly for Black 
drivers – mitigated by traffic enforcement cameras.8 Automation provides apparent 
advantages to police enforcement, but it does not eliminate racial and economic inequities. 
The spatial location of cameras, the volume of automated tickets issued, and the structure 
of ticket fines, fees and forfeitures can reinforce and further racial and economic inequities.
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The purpose of this study is to analyze the City of Chicago’s automated red-light and speed 
camera enforcement program given the dual concerns of traffic camera effectiveness for 
improving roadway safety and social and economic equity impacts. This study contributes 
to the Chicago Department of Transportation’s (CDOT) effort to routinely evaluate the 
efficacy, functionality, distributive effects of red-light and speed cameras, known as the City 
of Chicago Automated Enforcement Program. 

This study of Chicago’s Automated Enforcement Program tackles three empirical questions 
around which this report is organized. First, what are social and spatial distributional 
effects of red-light and speed camera tickets for city households? To address this concern, 
data are analyzed at both the camera-level and the neighborhood/census tract-level. 
Second, what are economic effects of camera ticket fines and fees, and are effects equitably 
distributed across Chicago neighborhoods and households? To explore this question, 
measures of economic burden are used to compare neighborhoods and households.  Third, 
how effective are Chicago’s speed cameras for improving safety? The incidence and severity 
of crashes at more than 100 speed cameras across the city are analyzed. Findings from all 
three areas of inquiry inform our recommendations to the City of Chicago Mayor’s Office 
and City Departments responsible for administering automated enforcement policies, 
monitoring camera effectiveness, and structuring penalties. 

Before turning to the empirical chapters, the next section briefly describes the City’s 
Automated Enforcement Program, followed by a description of the camera ticket data used 
in this study. Each of the three research aims employs a distinct methodology and data 
sources, which are detailed within respective empirical chapters. Finally, Appendix A-C 
contains regression output, site-level crash counts, and other technical documentation that 
corresponds with the three empirical chapters.
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02 CHICAGO'S AUTOMATED ENFORCEMENT CAMERAS

The City of Chicago has one of the largest and longest operating automated traffic 
enforcement systems in the country. Chicago’s Automated Enforcement Program began 
under Mayor Richard M. Daley in July 2003 with the passing of a city ordinance authorizing 
red-light cameras. By the end of the year the first red-light cameras were installed and 
activated at two intersections – N. Western Ave. & Peterson Ave. and S. Western Ave. & 
Garfield Blvd. The number and dispersion of red-light cameras across the city consistently 
increased until reaching a peak of nearly 400 cameras in 2013. Since then, the city’s usage 
of automated red-light cameras has declined to approximately 300 operating at 149 
intersections by 2020. 

In 2012, the State of Illinois permitted the City of Chicago to install speed enforcement 
cameras in a maximum of 20% of all eligible Child Safety Zones, which are 1/8th of mile 
buffers around schools and parks. Automated speed enforcement camera program officially 
began in August 2013. As of 2019, there were 161 speed cameras operating in 68 of the 
city’s nearly1,500 Safety Zones.  Approximately 87% of speed cameras were installed 
during the first two years of the program. 

In addition to cameras, the city has implemented a variety of traffic calming mechanisms to 
enhance pedestrian safety including better road markings, radar speed signs, pedestrian 
refuge islands, speed humps, road diets or lane reduction, and more.9 However, these and 
other roadway safety tools are not equally distributed across city neighborhoods. 

The Automated Traffic Enforcement Program is officially administered and managed 
by CDOT. The city contracts private vendors to install, calibrate, monitor, and maintain 
requisite hardware and software for tracking vehicle motion and capturing infractions with 
high-resolution digital photographs and video. For the first ten years of the red-light camera 
program, the City’s vendor was Redflex Traffic Systems. In October 2013, the contract was 
transferred to the current vendor, Conduent State and Local Solutions. American Traffic 
Solutions (rebranded as Verra Mobility) has been the speed camera vendor since the 
program’s inception.

Illinois State Law mandates manual review of all red-light and speed camera enforcement 
of all vehicular triggering of camera sensors, also referred to as “events.” The vendors 
review images and video for all events and make the initial determination as to whether a 
valid vehicular infraction has occurred. Prima facie evidence of violations is transferred to 
the Department of Finance for a final determination and enforcement. The Department of 
Finance mails violation notices to the address of the registered vehicle owner. In 2019, just 
31% of red-light camera events and 28% of speed camera events were determined to be 
enforceable violations.10  
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03 CAMERA TICKET DATA

This study draws on proprietary red-light and speed camera and ticket data obtained from 
the Chicago Department of Finance for the years 2016-2019. 

We focus on 438 cameras (289 red-light and 149 speed) operational throughout the study 
period. Over four years, these cameras generated 5,735,680 enforceable violation notices 
or “tickets” mailed to vehicle owners. As shown in Table 1, of the five million camera tickets 
issued, 3,013,517 tickets were issued to Chicago residents, owners of vehicles registered 
within the City of Chicago. This study analyzes 2,707,216 red-light and speed camera 
tickets to Chicago households because we were able to geocode these tickets based on the 
addresses provided. We excluded from analyses about 14,000 red-light and speed camera 
tickets that we determined were issued to vehicles registered to identifiable institutions, 
such as police stations, public facilities, airports, and car dealerships, among other 
institutions. 

Table 1 Number of automated camera tickets issued to Chicago residents, and tickets 
analyzed in this study 

There is not a reliable measure of the number of Chicago households that received camera 
tickets. The vehicle-level variables likely inflate the number of households. However, the 
camera ticket dataset includes a vehicle-level variable “Notice Number” that is useful 
estimate of drivers. Notice Number can be tracked over time and across address changes, 
thus it serves as a proxy for vehicle license plate for determining camera ticket frequency 
by vehicle (Figure 1).  Further analysis is needed to exploit driver-level patterns.  However, 
ticket frequencies in Table 1 might inform high-level policy decisions regarding vehicles 
that accumulate multiple tickets per year, although the driver is unknown. Over four years, 
1,090,847 vehicles registered in Chicago were issued 2,707,206 red-light and speed camera 
tickets. It is worth noting that 48% of ticketed vehicles received just one violation. This 
includes one Speed Warning ticket. An additional 33% received 2-3 violations. This suggests 
that a relatively small proportion of registered ticketed vehicles accumulated what would 
amount to two of more tickets per year over four years. As we discuss later, skewedness in 
vehicle ticketing warrants considering the number of infractions as one of the criteria for 
reforming the city’s system of fines and fees. 
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Camera Ticket Fine Levels

Fine levels are presented in Table 2. In compliance with State statute and municipal code, 
owners of registered vehicles are fined $100 for all camera enforced red-light violations, 
$100 for camera speed violations equal to or more than 11 mph over the posted limit, 
and $35 for speeding 6-10 mph over the limit, although tickets were only sent when 
driving 10 mph over the limit. This policy changed in 2021; $35 tickets are now issued 
for speed violations 6-10 mph. First time offenders of camera enforced speed regulations 
are issued a Warning ticket, which has no monetary fine. Between 2016 and 2019, 20% 
of all speed camera tickets (or 30% of all camera tickets) result in Speed Warning tickets. 
Understanding the effectiveness of Speed Warning tickets for deterring subsequent speed 
violations is an area for further study. 

Figure 1 Frequency of camera tickets over four years by vehicle 

Table 2 Fine levels for camera ticket violations

Camera Ticket Attributes

The automated enforcement camera dataset obtained from the Chicago Department of 
Finance included the attributes listed in Table 3 sans fees which was derived by the authors. 
The three empirical chapters include data and methods sections where the specific data 
used in analyses are described in more detail. 
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Table 3 Camera Ticket dataset variables
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04 SPATIAL AND SOCIAL DISTRIBUTION OF TICKETS

Introduction

This chapter examines ticketing patterns across Chicago. For both red-light and speed 
cameras, rates of ticketing per household at the census tract level as well as rates of 
ticketing per vehicle at the camera level are examined. 

Between 2016-2019, there were a total of 971,235 red light tickets and 1,634,521 
speeding tickets issued to households in the city that we were able to geocode based on 
the addresses provided. At the city level, this is equivalent to 0.23 red-light tickets per 
household per year and 0.38 speeding tickets per household per year.  However, there are 
significant differences across the city when ticketing levels are examined at the census tract 
basis. Rates of red-light tickets range from 0.04-0.71 tickets per household per year, and 
speed tickets range from 0.07-0.94 tickets per household per year. Census tracts that are on 
the higher end of these ranges are predominantly majority Black areas followed by majority 
Latinx/Hispanic areas. 

Figure 1 shows a box and whisker plot of the distribution of ticketing rates by majority 
race/ethnicity in city of Chicago.  Figures 2 shows the spatial distribution of tickets per 
household for red-light cameras and speed cameras across the city. Both figures show the 
intensity of ticketing for red-light and speed cameras are highest in the predominantly 
Black and Latinx/Hispanic areas of the city.

Figure 1 The Distribution of automated tickets per household per year by race/
ethnicity in Chicago (2016-2019)
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Figure  2 The spatial pattern of ticketing per household per year (2016-2019)

We use households as the denominator in this analysis because the tickets are issued to 
specific addresses. Using the total number of vehicles in a census tract as the denominator 
also leads to similar patterns. In Figure 2, areas showing as missing in the maps have no 
households reported and correspond to the O’Hare and Midway airports and one small 
tract that has no housing reported on the American Community Survey.

Patterns of Ticketing Across the City

The similarity in ticketing patterns across the city between speeding and red-light cameras 
begs the question of whether exposure to the two sets of cameras bear similarities. 

In Figure 3, we show that the number of cameras within a 3-mile radius of each census 
tract for the two types of cameras are similar to one another.  A census tract that has a 
high number of speed cameras within a 3-mile radius also has a high number of red-light 
cameras in close proximity. While exposure to these camera systems rises together, it is 
also true that the exposure to cameras does not show the same racialized pattern at the 
residence end as ticketing rates. However, it is important to note that ticketing can occur 
in any part of the city regardless of where a vehicle may be registered. What Figure 3 also 
shows is that depending on where people’s activities take them, their exposure to the two 
camera systems rises or falls together. Further, to the extent there are similarities in the 
geography of movement for residents in close-by tracts, encounters with these automated 
systems may bear similarity across space. 
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Figure 3 Number of speed and red-light cameras within a 3-mile radius

Key variables that we do not observe, but are critical to explaining the incidence of ticketing, 
are where and how much travel occurs by each vehicle.  A vehicle that is able to avoid all 
the cameras in the city would have no tickets at all from the automated system regardless 
of how safe (or unsafe) the driver maybe. On the other hand, we can assume that a vehicle 
that is driven many miles a day would have some chance of exposure to the camera systems 
on some occasions. Unfortunately, neither of these measures of exposure – the geography 
of movement or the number of miles driven– are known to us. Instead, we use several 
variables at the census tract level, including household structure, number of proximate 
groceries, jobs per household and rideshare trips as driver, along with the number and type 
of cameras within certain catchment areas to approximate the amount of driving and thus 
exposure to cameras which may help explain the ticketing levels observed. 

We also estimate the rates of ticketing at the camera level while controlling for traffic 
volume, type of camera, camera placement and socio-demographic variables in proximity to 
the cameras. Findings from the camera-level and census tract level analysis at are presented 
below.
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Ticketing at the Camera Level

The number of tickets issued at a camera is going to depend on the number of vehicles that 
pass by it. In addition, the location of the cameras and the characteristics of the area in 
which they are placed may impact both driver behavior and the number of tickets issued.  
The ticketing levels for red light and speed cameras is done separately and reported below. 
This analysis uses all red-light and speeding tickets issued by cameras between 2016-2019 
regardless of the residence area of the recipient.  

Red Light Cameras

At red light cameras, ticketing levels range from 0.3 to 79.8 tickets per 10,000 vehicles 
per day. The average number of red-light tickets issued is 5.4 tickets per camera for every 
10,000 vehicles in day. While ticketing levels depend on the amount of traffic on a roadway, 
attributes such as camera placement, roadway characteristics near the camera, and socio 
demographic characteristics may affect the number of tickets issued at a location. Using a 
regression model, we examine the tickets per 10,000 vehicles for each camera as a function 
of whether the camera is within 350 ft of a freeway, how far it is from a freeway, the road 
density within a square mile of the camera, violent crime levels in the vicinity of the camera 
(within a half mile buffer), and the majority race/ethnicity in the area. 

The findings depicted in Figure 4 show that cameras in close proximity to freeways (within 
350 feet) issue higher level of tickets relative to cameras outside of that buffer. As the 
distance of red-light cameras to the nearest freeway increases, the number of tickets it 
issues, after accounting for traffic volume, declines.  When road density in proximity to 
a red-light camera is high, the number of tickets issued decrease. When violent crime in 
proximity to a camera (within a half mile) increases, ticketing levels rise with it.  Finally, red 
light cameras in majority Latinx/Hispanic areas tend to issue fewer tickets as compared to 
cameras elsewhere. 

Figure 4 also shows the relative importance of the variables we control for. For continuous 
variables, the percentage change shows the expected increase/decline in tickets per camera 
for a two-standard deviation move in the variable. For binary variables, it indicates the 
difference between the attribute being true or false – for example, a camera being within 
350 ft of freeways or not.  The scaling offers a quick view that allows for comparison of 
importance among the variables. 

Cameras in close proximity to freeways have a large impact on ticketing.  A camera in such 
a location is expected to issue 170% more tickets all other things equal. From 2016-2019, 
cameras within 350 ft of a freeway only accounted for 12.8% of the red-light cameras but 
issued 32% of all red-light tickets. Looking across the city, red-light cameras within 350 
feet of freeways constitute 21.2% of cameras in majority Black areas, 7.6% of cameras in 
majority Hispanic/Latinx cameras, and 10.4% of cameras in majority White or other census 
tracts.  
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Figure 4 Effect size of different variables on camera level ticketing rates based on 
standardized variables. Note the percentage changes indicate what would be expected for 
a 2 standard deviation move for continuous variables, all other variables held constant. For 
Binary variables, it shows the effect of the change from 0 to 1 – for example, from a camera 

not being within 350 ft of freeways to being within 350 ft of a freeway.  

The variables in Figure 4 are in order of importance. Cameras that enforce 5 lanes issue 
more tickets than others. Currently, most red-light cameras enforce between 2-4 lanes and 
only four cameras enforce five lanes. Three of these cameras are in majority Black areas 
while one is in a majority Latinx/Hispanic area. These cameras on average issue double 
the tickets than other cameras. Increases in incidences of violent crime within half a mile 
of cameras is associated with higher levels of tickets, suggesting that drivers may behave 
differently in areas they deem unsafe.  

Cameras that are in majority Hispanic/Latinx areas issue fewer red-light tickets than other 
areas. However, we find no difference in the ticketing rates between cameras in majority 
Black and majority White/Other census tracts after controlling for the other factors shown 
in Figure 4.   

Cameras that are farther away from the freeway system tend to issue fewer tickets. Here 
again, we observe differences in the spatial distribution of cameras.  The median distance-
to-freeway for cameras in majority Black areas is 0.6 miles. That is, half the cameras in 
majority Black areas are within 0.6 miles of freeways. In majority Hispanic/Latinx areas, 
half are within 1.7 miles of freeways, and the median camera distance from freeways in 
majority White or other areas is 0.85 miles.  Finally, cameras in places that have higher road 
density (measured as miles of roadway within a quarter mile buffer around the camera) 
tend to issue fewer tickets than cameras in places where the road density is less. 
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Figure 5 shows the daily rates of ticketing between cameras proximate to freeways and 
cameras that are more than 350 feet of freeways. These figures align with findings from the 
models.

Figure 5 Cameras within 350 ft of freeways (left) and Cameras outside of 350 feet of 
freeways (right). Bubble sizes reflect daily ticketing rates across cameras.

Speed Cameras

Here we consider 149 cameras that were continuously operational between 2016-2019.  
All speed cameras are located in school and park safety zones. At speed cameras, ticketing 
levels ranged from 0.3 to 109 tickets per 10,000 vehicles per day. The average number of 
speeding tickets issued is 11.6 tickets per camera for every 10,000 vehicles in day. However, 
half of these cameras issued below 6.7 tickets per 10,000 vehicles per day

There are large differences in rates of ticketing among speed cameras that align with 
operating in a school safety zone or a park safety zone. School safety zone cameras are 
operational for fewer days of the year and have limited hours of operation.11 While school 
cameras account for 46% of the 149 speed cameras considered here, they issued only 
17.7% of the tickets between 2016-2019.  

Using a regression model, we examine the tickets per 10,000 vehicles for each speed camera 
as a function of whether it is a school or park safety zone camera, road density within a 
quarter mile of the camera, population density in the tract that the camera is located in and 
the majority race/ethnicity in the tract the camera is located in. 
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Figure 6 shows the results of the model with the variables sorted by their standardized 
impact. As with red-light cameras, speed cameras in areas with higher road density issue 
fewer tickets, all other things equal, suggesting that road density (measured as miles of 
roadway within a quarter mile buffer of the camera) may have a calming effect on speeds. 
Cameras in areas of higher population density also tend to issue fewer tickets, suggesting 
that density also helps lower speeds. 

Similar to red-light cameras, speed cameras in majority Latinx/Hispanic areas issue fewer 
tickets than in majority Black areas. The difference detected between majority Black and 
majority White/Other areas is not statistically significant. 

Figure 6 Effect size of different variables on speed camera ticketing rates based on 
standardized variables. Note the percentage changes indicate what would be expected for 

a 2 standard deviation move for continuous variables, all other variables held constant.

The distribution of school safety zone vs park safety zone cameras across Chicago differs by 
area demographics. School cameras, which only issue about 18% of speeding tickets, make 
up 71% of cameras in majority Hispanic/Latinx areas.  In contrast, school cameras make up 
33% of majority Black area speed cameras and 36% of majority White/Other area cameras. 

In general, school safety zone cameras operate for fewer hours than park safety zone 
cameras and some school safety zones may enforce different speed limits when children are 
present. School cameras operate from 7 a.m. to 7p.m. on school days, while park cameras 
operate every day from 6 a.m. to 11 p.m. The higher concentration of school safety zone 
cameras in majority Hispanic/Latinx areas, their lower hours of operation, and differences 
in enforcement speeds, may account for some of the racial/ethnic differences captured by 
the model depicted in Figure 6.
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Figure 7 shows the spatial distribution of speed cameras along with their intensity of 
ticketing. While the bubbles below can be compared between park (left) and school (right) 
zone speed cameras, they should not be used to compare to Figure 5 which uses a different 
scale. 

Figure 7 Park safety zone cameras (left) and School safety zone cameras (right). Bubble 
sizes show the difference in daily ticketing rates across cameras. Part of the difference in 
ticketing rates is due to the limited hours and days that school safety zone cameras are 

operational.

Ticketing at the Census Tract Level

Drivers may be ticketed by any of the cameras in the city based on their driving geography. 
In this section, we examine ticketing rates at the census tract level on a per household level. 
We explore what factors explain or correlate with ticketing rates at the tract level. The data 
used in this analysis are all tickets issued to Chicago households between 2016-2019 that 
we were able to geocode to a census tract. 

As Figures 1 and 2 above show, tickets per household for both speed and red-light cameras 
are higher in majority Black areas, followed by majority Hispanic/Latinx areas, and finally 
majority White/Other areas. At the camera level, however, we do not find such relationships. 
Cameras in majority Hispanic/Latinx areas tend to issue fewer tickets than others for both 
red-light and speed cameras. There is not a statistical difference in ticketing rates between 
cameras installed majority Black and majority White/Other areas for red-light cameras, and 
there is weak evidence that rates of ticketing by cameras in majority White/Other areas are 
lower than those in majority Black areas for speed cameras.  
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As we discussed earlier, ticketing rates will depend on exposure to the automated 
enforcement system, the characteristics of the roadway, as well as the built and social 
environment around cameras. In the absence of direct measure of exposure to cameras 
for households or census tracts, such as vehicles miles travelled, we employ other census 
tract level proxies that are likely indicative of travel behavior. These include jobs per 
household, children per household, percent multi-person households, household income, 
and number of rideshare trips made as driver by residents in a census tract. These variables 
are intended to capture how much people are likely to travel. For example, more jobs per 
household is likely associated with higher vehicle miles traveled (VMT) at the household 
level, and thus increasing exposure to the camera system. More children and multi-person 
households likely mean higher demand for travel. There may also be differences in VMT by 
income. Rideshare drivers likely travel many more miles each day as part of their job.  

Second, we control for the number and type of cameras that residents in different tracts 
are exposed to proximate to their home tract as well as other built environment factors. 
We include the number of cameras within a 3-mile buffer of each census tract centroid, 
distinguishing between school and park cameras for speed cameras. We also control for the 
road density within a 3-mile radius of a tract, and the number of chain groceries within a 
3-mile radius of a tract.  The road density variable only captures road miles within Chicago. 
A lack of chain groceries near home likely means longer travel to access groceries and 
essential amenities.  

Separate spatial error models are estimated for red-light and speed tickets per household 
at the census tract level. The data summary and the full models are reported in Appendix 
A, Tables 3-5. Below we show standardized estimates from the two models for a one-
unit change in each independent variable. Continuous variables are standardized by two 
standard deviations; a one-unit move is thus equal to a change of two standard deviations 
on the original scale.  The dependent variables are not standardized. For each model, the 
dependent variable is the number of tickets per household per year at the census tract level.  
Figure 8 shows the standardized estimates from the model for red light tickets and Figure 9 
shows the standardized estimates for speed ticket model. 

For red light cameras, majority Black areas have higher levels of ticket per household 
all else equal. Differences between majority Hispanic/Latinx and majority White/Other 
areas were not detected. Among the variables added as proxies for travel demand, jobs 
per household, average number of children per household, the percent of multi-person 
households are all associated with higher number of tickets per household. The number 
of rideshare trips made as a driver was not statistically significant in the red-light ticket 
model. Tracts with higher median incomes received fewer tickets per household, all other 
things equal. 

Among variables used to capture exposure to cameras and built environment factors, the 
number of red-light cameras within 3 miles of census tracts has a positive effect (i.e., more 
cameras, more tickets).  Tickets increase with roadway miles within a 3-mile radius of the 
census centroid. Finally, tracts that have more chain groceries within a 3-mile radius had 
fewer red-light tickets per household. 



Sutton and Tilahun | Equity and Efficacy of Chicago’s Red-light and Speed Cameras | Final Report 16

Figure 8 Standardized model estimates for red light tickets per household per year 
(2016-2019) based on a spatial error model. Estimates in gray are not significant at p < 0.05. 

The results for the speed ticket model are mostly in line with red-light tickets, although 
there are some differences. Similar to red-light models, majority Black areas receive higher 
tickets per household than majority White/Other areas, but majority Hispanic areas also 
have a slightly higher ticketing rate than majority White/ Other areas. Similar to red-light 
camera tickets, jobs per household, children per household and percent multi-person 
households in a tract were associated with higher levels of ticketing. In the speed ticket 
model, median income was not important but the number of rideshare trips was associated 
with higher levels of ticketing on a tract per household basis. 

Among the variables controlling for cameras and the built environment, the number of park 
speed cameras in a 3-mile radius of a tract was associated with higher levels of ticketing per 
household while the number of school cameras within the same radius was not associated 
with ticketing levels. Road density has a positive impact on ticketing similar to red light 
camera tickets. Finally, similar to ticketing levels for red light cameras, higher numbers of 
chain grocery stores were associated with lower levels of ticketing. 
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Figure 9 Standardized model estimates for speed tickets per household per year (2016-
2019) based on a spatial error model. Estimates in gray are not significant at p < 0.05.

Both the red-light camera tickets and speed-camera tickets show that   household structure 
variables expected to increase the amount of driving are associated with higher levels of 
ticketing. Exposure to the camera systems as well as built environment variables such 
as lower access to groceries are also associated with higher levels of ticketing. While 
differences based on the majority race/ethnicity variables persist in the model particularly 
for majority Black areas, our controls for travel levels are only approximate, and the race/
ethnicity variable maybe picking up differences in travel among tracts.

Conclusion

The analysis in this section looked at ticketing levels at both the camera level and at 
the census tract level.  For red light cameras, we show that cameras within 350 feet of 
expressways issue significantly more tickets than other cameras after controlling for 
the volume on the roadway.  Such cameras also constitute a higher proportion of the 
cameras in majority Black areas.  Cameras enforcing 5 lanes, even though few in number, 
issue markedly more tickets than others. Three of these cameras are in majority Black 
areas while one is in a majority Hispanic/Latinx area. Additionally, higher levels of crime 



Sutton and Tilahun | Equity and Efficacy of Chicago’s Red-light and Speed Cameras | Final Report 18

proximate to a camera was also associated with higher levels of ticketing. Cameras in 
majority Hispanic/Latinx areas issued fewer tickets, while differences in ticketing rates 
between cameras in majority Black and majority White/Other are not detected, all other 
things equal.  The farther away a camera is for from expressways, the fewer tickets it issued. 
Cameras which have higher road density around them also issued fewer tickets. 

For speed cameras, as expected, school safety zone cameras issued far fewer tickets than 
park safety zone cameras.  Road density and population density around speed cameras 
are both associated with lower levels of ticketing after controlling for volume, suggesting 
a speed calming effect for both variables.  Cameras in majority Hispanic areas issue fewer 
tickets after controlling for volume, but there was not a statistically significant difference 
between cameras in majority White/Other and majority Black tracts.

Even though we do not see a difference in ticketing rates per vehicle between cameras in 
majority White/Other areas and majority Black areas, and cameras in majority Latinx/
Hispanic areas have lower ticketing rates, these results change when tickets are aggregated 
back to the census tract that the ticketed vehicles are registered to.  

At the tract level, majority Black and majority Hispanic areas receive more red-light and 
speed camera tickets on a per household level. After controlling for a variety of camera 
exposure, built environment and household structure variables at the census tract level, the 
ticketing rates for majority Black areas are higher for both types of tickets. The differences 
in ticketing levels between majority Hispanic and majority White/Other areas, while 
smaller, persist for speed tickets, but disappear for red-light cameras. The differences 
between the camera level findings and the tract level findings suggest that there may be 
systematic differences in travel patterns (e.g., variables such as amount of travel, routes 
used, users per car, and cameras encountered on a per trip basis) for residents in majority 
Black areas that we are unable to control for. 

From a policy perspective, the city should take a closer look at the red-light cameras 
proximate to expressways.  As we discuss, these cameras issue a disproportionate share 
of tickets relative to their numbers in the system. The nature of the movement that is 
triggering a ticket to be issued at these (and other) cameras should also be examined.  The 
city for example should discern between through and left turn vehicles that run a red light 
from those not making a full stop on a permitted right-turn on red. Adjusting fine levels on 
red-light cameras to the potential for harm is recommended either based on the movement 
type and/or the presence of pedestrians/bicyclists.  

Ticketing at speed cameras is influenced by the built environment. Lower population 
densities and lower roadway densities pushup the ticketing rates at    speed cameras after 
accounting for roadway volume. In areas where lower population density and roadway 
density are likely to increase speeds, the city should attempt to use other tools to lower 
speeds in lieu of or in addition to speed cameras.  The city should also look at what drives 
placement of speed cameras given the higher proportion of school cameras in majority 
Hispanic/Latinx areas as compared to majority White/Other or majority Black areas.
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05 ECONOMIC IMPACT OF 
     PAID TICKET FINES AND FEES

Introduction

This chapter examines the distribution of camera-ticket fines and fees using an equity 
framework to explore the economic burden of camera ticket fines and fee for Chicago 
households. 

As previously noted, between 2016 and 2019 Chicago’s automated enforcement cameras 
issued 3,013,517 tickets, of which approximately 622,000 were speed warning tickets 
which carry no monetary fine. Warning tickets are excluded; the analysis in this chapter 
focuses on 2,391,464 monetized and geocoded speed and red-light tickets issued to Chicago 
households over four years.  According to the Woodstock Institute’s 2018 report, the City of 
Chicago issued citations for over 100 different vehicle-related offences, of which red-light 
and speed camera tickets constituted 30%.12 Findings from this analysis show that between 
2016 and 2019, approximately 72% of camera ticket fines ($100 or $35) and penalty 
charges (“fees”) were paid, generating roughly $51 million annually from Chicago 
households. 

This chapter uses the monetary sanctions literature as the basis for analyzing distributional 
effects of Chicago’s camera tickets and attendant fines and fees. The literature engages 
multiple perspectives on the utility and effectiveness of monetized vehicle-related and non-
vehicle related citations. Proponents of monetary sanctions argue that fines and fees are a 
deterrent for recurring infractions of administrative regulations, ordinances, and municipal 
codes.13 Whereas opponents contend that fine levels and fees are driven by municipal 
budgets more than compliance.14 Questions related to the disparate impact of fines and fees 
are also raised. There is general agreement that the typical payment structure of monetary 
penalties is a regressive tax that increases incrementally with nonpayment, thus 
disproportionately harming low-income residents.15  

Moreover, monetary sanctions “disproportionately harm families of color, both due to 
discriminatory practices in issuing fines and fees and in the systemic issues of income and 
wealth inequities that make it more difficult for these families to pay.”16 Poor and working-
class households are more likely to incur pecuniary penalties for nonpayment or late 
payment, which can lead to vehicle immobilization, towing, impounding and severe 
monetary penalties and collateral damages, which upper-income households are rarely 
subjected to.17 Ability to pay precludes upper-income households from the most punitive 
effects of ticket fines and fees but may have negligible impact on driver compliance. As 
sociologist Carla Shedd notes, in unequal cities, the impacts of punitive policies are 
disparate and manifest both racially and spatially, and “ticketing can be a means of entry to 
the carceral continuum.”18 Similarly, fine and fee reform advocates assert that ticket-induced 
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economic shocks disproportionately affect Black and Latinx communities, further sullying 
their relationship to law enforcement, widening the racial wealth gap, and, potentially, 
having adverse effects on city revenue if a substantial number of tickets go unpaid and 
municipalities incur the cost of debt collection.19  

The lifesaving potential of traffic enforcement cameras is the most important criterion of 
camera efficacy. The empirical evidence on safety impacts is generally positive though 
periodically overshadowed by beliefs, both founded and unfounded, about automated 
traffic cameras as principally revenue generating technologies for city coffers and private 
vendors.20 In jurisdictions with recent statutes eliminating the use of one or both types of 
automated traffic enforcement cameras, such as New Jersey and Texas, deactivation was 
contested. Public concerns about camera program transparency in implementation and 
ongoing operations, specifically methodologies for site selection and performance 
monitoring, criteria for camera removal, and potential racial and economic disparities 
resulting from onerous fines, fees, and forfeitures, fueled community contention.

Data and Approach

This section analyzes of red-light and speed camera ticket fines and fees data (2016-2019) 
and estimates the socio-economic and spatial distribution of economic burden.

The primary variables of interest include violation type (Red-Light, Speed 6-10 mph, 
Speed 11+ mph, Warning), original fine level ($100, $35, $0), payment status, total amount 
paid, and total amount due. These data were used to determine ticket fees, defined here 
as monetary assessments on any ticket, above the original fine, that accrues because of 
late or non-payment. We calculate ticket fees by differencing the original Fine Level and 
Total Payment, Fine Level and Amount Due, or a combination for partial payment. Ticket 
data was spatially joined to census tracts and merged with social, economic, housing and 
employment data from the U.S. Census American Community Survey 5-year estimates 
(2015-2019). 

The distribution of red light and speed tickets by census tract is depicted in Figure 1 (left). 
These are aggregate ticket counts, but distribution is comparable to the spatial pattern of 
ticketing per household presented in the previous chapter. Figure 1 (right) shows spatial 
clustering of the share of tickets paid by tract. On average, slightly more than 70% of tickets 
are paid, across tracts percent paid ranges from 32% to 98% over four years. 
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Figure 1 Distribution of camera tickets by tract (left) and the share of paid tickets by tract (right)

Measures of Economic Burden

This section summarizes the data and explains the three measures developed to estimate 
economic burden developed by tract. The next section focuses on the distribution of burden 
across the city by race and income.  

Households paid $255,456 in ticket fines and fees, on average, with a standard deviation of 
$147,133 (Table 1). This corresponds to approximately $211 per household, with a range of 
$37 to $409. For nearly 20% of city tracts, households spent one standard deviation above 
the city average (µ + σ): ($211 + $78) on camera tickets.   

Table 1 Data Summary for Paid Camera Tickets (2016-2019)

Total payment as a share of aggregate household income is used to estimate the Absolute 
Economic Burden per census tract. Absolute Burden scores range from .024 to 1.49, with a 
mean =.368 and standard deviation = .239. This means that on average, .36% of household 
income went to pay camera ticket fines and fees between 2016-2019 [1sd (µ ± σ): (.368 - 
.239) to (.368 + .239) or 0.129 to .607]. Households in tracts with scores >.607 are most 
economically burdened by camera-ticket fines and fees paid. Conversely, households 
in tracts with scores < .129 ostensibly experienced less burden. Average scores erase 
variability within tracts but offer a quick view of the distribution of economic burden across 
the city. 
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The second measure of economic burden is Relative Income Burden, measured as the share 
of total payment divided by the share of aggregate income per tract relative to the city 
overall. The Relative Income Burden depicted in Figure 2 shows the spatial distribution 
of Income Burden. The average household in red tracts is considered burdened because 
they paid a larger share of fines and fees than their share of aggregate income in the city. 
In contrast, the average household in blue tracts is not economically burdened by camera 
ticket fines and fees relative to their income share.

Figure 2 Relative Ticket Burden

We would expect the amount that any neighborhood pays toward tickets to approximate 
citywide income shares if the structure of ticket fines and fees were not regressive. Instead, 
the fines and fees regime in Chicago disproportionately burdens lower income households, 
which Figure 2 shows manifests spatially and by majority race. 

As a rule of thumb, tracts with scores >1.0 are considered economically burdened whereas 
tracts with scores <1.0 are not economically burdened by camera ticket fines and fees 
relative to their income share. Since the average total payment burden is above 1.0, we 
use 1sd (µ + σ) as a better estimate of economic burden. Nearly 140 tracts (17.5%) have 
Relative Burden scores that are >2.71 or their share of paid fines and fees was 2.71 times 
their share of total income in the city. 
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The third measure of economic burden is Relative Ticket Burden. This reflects ticket 
payment ($) as a share of the number tickets received (#) per tract relative to the city 
overall. From Table 3 we see that Relative Ticket Burden for the average Chicago tract is 
closer to 1.0. This suggests that Total Payment as a share of tickets received per tract is on 
par with the city overall. The Burden of Paid Fees variable shows greater dispersion than 
Paid Fines, potentially suggesting distinct effects. In the next section Relative Ticket Burden 
associated with either fines or fees are analyzed separately. 

Table 2 Data Summary for Relative Income Burden 

Table 3 Data Summary for Relative Ticket Burden 

Racial and Economic Effects of Fines and Fees 

Ticket fines and fees do not affect households equally. The regressivity of Chicago’s ticket 
fines and fees means economic burden is disproportionately borne by lower income 
residents who are disproportionately Black and Latinx. 

The scatter plot below in Figure 3 illustrates Absolute Economic Burden of camera ticket 
fines and fees for tracts by income and majority race. Had the plot produced a horizontal 
line, with a non-racial pattern, we would say that the effects of fines and fees are similar 
across neighborhoods. Instead, Figure 3 shows stark racial and economic inequalities. 
Median income for most majority Black and majority Latinx tracts is less than $50,000. In 
some instances, majority Black tracts pay as much as 1.5% of household income toward 
camera ticket fines and fees over four years. Majority Latinx neighborhoods paid upwards 
of .75% of household income on camera tickets over four years, but most paid less than 
.5%. 

In Figure 4, Relative Economic Burden for fines and fees are plotted separately. They have 
a similar concave pattern but use different scales, reflecting the wider variability in the 
share of Paid Fees as a share of income.  This is particularly stark for low-income majority 
Black neighborhoods whose share of paid fees was upwards of 10 times their share of 
income in the city over four years. While these neighborhoods are outliers, majority Black 
neighborhoods pay a larger share of fines and fees relative to income than majority Latinx 
or majority White/Other neighborhoods.  
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Figure 3 Paid fines and fees as share of income or “Absolute Economic Burden"

Figure 4 Share of paid fines (left) and share paid fees (right) relative to income

The share of Paid Fines and the share of Paid Fees relative to share of tickets received 
is presented in the box and whisker plot shown in Figure 5. The boxplots illustrate that 
the share of Paid Fines (left) is comparable to the share of tickets received across income 
groups. This should not be interpreted as Paid Fines are not associated with economic 
burden. There may be adverse economic effects but, on average, Fines Paid are what is 
expected relative to the number of tickets received.     
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The findings depicted in Figure 5 for the share of Paid Fees (right) tell a different story. 
Low-income households paid a higher share of ticket fees relative to the number of tickets 
received. Over four years, the share of Paid Fees was, on average, 1.5 times the share of 
tickets received by drivers in low-income neighborhoods and could rise as high as 2.25 
times. Recall that measures of Economic Burden only include paid tickets. Had the measure 
included both paid and unpaid tickets, the disparity for fees accrued relative to tickets to be 
even greater between lower- and upper-income neighborhoods as unpaid tickets are more 
concentrated in lower-income neighborhoods compared to upper-income neighborhoods, 
40.7% and 7.14% respectively.

Figure 5 Share paid Fines (left) and share paid Fees (right) relative to tickets

Probability of Paying Tickets  

The previous section shows disparate impacts of camera ticket fines and fees for the 
approximately 70% of tickets that were paid between 2016 and 2019. This section uses 
regression models to examine the likelihood that tickets are paid in varying conditions 
including vehicles accumulate multiple tickets and tickets accrue fees. The purpose of these 
models is to analyze individual-level heterogeneity for tickets that were paid. Unfortunately, 
theoretically relevant social and economic attributes are not available at the individual level. 
Instead, individual-level tickets are linked to recipients’ census tract for socioeconomic 
measures likely to influence payment such as income status, percent in neighborhood not 
working, and majority race of neighborhood. 

Linear probability models are used to examine three possible outcomes: 1) the probability 
that tickets are paid if drivers receive more than one ticket in four years; 2) the probability 
that tickets accrue fees; and 3) the probability of payment if tickets accrue fees. The results 
of the regression models are presented in Appendix B, Table 1. The probability any ticket 
is paid is also modeled. The results are not presented because they are not discernably 
different from the probability of paying conditioned on vehicles having more than one 
ticket (Model 1). 
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Figure 6 Standardized coefficients for linear probability models. Model 1 is the 
probability tickets are paid if vehicle has >1 ticket, Model 2 is the probability tickets 

accrue fees, and Model 3 is the probability tickets with fees are paid 

Figure 6 shows the standardized coefficients from the three regression models. The benefit 
of presenting standardized coefficients is to give a common point of reference for comparing 
the relative importance of variables in the model that may be measured in different units 
or scales. Model 1 illustrates the probability tickets are paid if a vehicle has more than one 
ticket. The model shows that with every increase of one standard deviation in the percent 
of residents not working, the probability of payment vehicle has more than one ticket 
decrease by .365 standard deviations, assuming other variables are held constant. Among 
the socioeconomic and other control variables, the percent of neighborhood residents 
not working, potentially a measure of ability to pay, is most strongly associated with the 
probability of payment. Majority Black neighborhoods, Majority Latinx neighborhoods, and 
low-income neighborhoods are negatively associated with the probability of payment if 
vehicles have more than one ticket. 

Model 2 shows the standardized findings of the regression models for the likelihood that 
any ticket accrues fees. It makes sense that the direction of the variable coefficients in this 
model are opposite Model 1, but the relative importance of variables remains the same with 
the percent of residents not working and Majority Black areas having the largest impact on 
whether tickets accumulate fees. The other factors in the model are significant but of less 
importance, controlling for the other factors shown. Model 2 includes both paid and unpaid 
tickets. For the probability that tickets with fees are paid (Model 3), we find no difference 
between upper income and middle-income census tracts after controlling for the other 
factors. All three models show little of no difference for upper income tracts relative to 
middle income. The probability of payment is not sensitive to income for households in the 
middle and upper strata.  
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Conclusion  

The analysis in this chapter examined the distribution of Chicago’s camera ticket fines and 
fees to assess economic impacts across neighborhoods and households and the probability 
of payment. The regressivity of ticket fines and fees is estimated with measures of economic 
burden. We find that economic burden (payment as a share of income) of ticket fines and 
fees is disproportionately borne by Chicago’s Black, Latinx, and low-income residents. To 
better account for income and population variability across tracts, we examine the relative 
economic burden for tracts as a share of aggregate income, and as a share of aggregate 
tickets received. 

We find that although Black, Latinx and low-income residents pay a disproportionate share 
of fines and fees relative to income, fees alone are particularly harmful for low-income 
residents. Residents of low-income tracts incurred fees on 46% of all tickets received 
compared to just 17% for those living in upper-income tracts. For tickets that were paid, 
fees were incurred on 34% of tickets going to low-income tracts and on 16% of tickets 
going to upper-income tracts. We also note that residents in low-income neighborhoods pay 
a higher share of ticket fees relative to aggregate income as well as relative to the number of 
tickets received. These findings suggests that racial and income disparities associated with 
camera ticket fines and fees cannot be fully explained by the number of tickets received.

Linear probability models were used to examine neighborhood factors that affect the 
likelihood of accumulating ticket fees and the likelihood tickets with fees are paid. Residents 
in majority Black, Latinx, and low–income neighborhoods have a much higher likelihood of 
accruing fees on any ticket and a much lower likelihood of paying a ticket once they have 
accumulated fees or more than one ticket. However, the standardized coefficients show 
that the percent of residents not working in a neighborhood is the most important factor 
associated with the probability of ticket payment and accruing fees.

Given these findings, we offer the following policy recommendations to the City of Chicago. 
Introduce a camera ticket fine structure that is commensurate with the risk of harm. As 
discussed, the risk of harm for all traffic infractions is not the same. For example, running 
a red-light through a major intersection has greater potential for severe injury than a 
rolling right turn violation. Yet they carry the same $100 fine. The city currently employs a 
graduated pricing structure for speed violations ($35 and $100). A similar pricing structure 
should be introduced for red-light violations. We also suggest reducing economic burden 
for low-income households by eliminating the doubling of fines as penalty for late payment, 
introducing caps on late fees, and implementing a statute of limitations for non-payment. 

The city should implement a progressive fine and fee structure. There are multiple variants 
of progressive fine systems that improve compliance and do not negatively affect road 
safety.21 We recommend developing fine and fee pricing system that considers the type of 
violation/severity of harm, number of vehicle infractions, and ability to pay. Eliminating the 
doubling of fines as penalty for late payment, introducing caps on late fees, and 
implementing a statute of limitations for non-payment would help to reduce economic 
burden for low-income households. 
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The idiom "don't do the crime, if you can't do the time" has been used in debates about 
the pricing of automated enforcement camera tickets as if to suggest the technological 
enforcement system creates a neutral playing field. drivers unable to afford to pay 
tickets should abide by the rules. There are no repercussions for drivers who can afford 
to pay tickets, even if they repeatedly flout traffic rules. Over four years, 23% of camera 
tickets were issued to drivers residing in low-income areas, and 19% of tickets went 
to drivers in upper-income areas. The current structure of fixed fines and rising fees 
pricing is fundamentally unjust because it disproportionately punishes Chicago’s low-
income households with marginal adverse effects for upper-income households despite 
accumulating more than 500,000 tickets in four years.  
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06 THE SAFETY IMPACTS OF 
     CHICAGO'S SPEED CAMERAS

Introduction

This chapter examines the safety impacts of speed cameras in Chicago. In Illinois speed 
cameras are permitted within 1/8th of a mile of a school or park in municipalities with a 
population of over one million. These 1/8th mile buffers are termed Safety Zones. The state 
also allows the use of speed cameras in construction or maintenance zones when workers 
are present.22 While Chicago has approximately 1500 safety zones, the city has set a 20% 
limit as to how many can have automated speed cameras. In addition to automated 
cameras, the city uses a variety of strategies including enhanced signage, better road 
markings, pedestrian refuge islands, etc. to enhance safety in Safety Zones.23 

Chicago started installing automated speed cameras in 2013. As of 2019, there were 161 
automated speed cameras operational in the city. In all, 142 of the 161 cameras were 
installed in 2013 and 2014. The hours of enforcement for these cameras depends on 
whether the camera is installed in a school or a park Safety Zone. School cameras operate 
from 7 a.m. to 7p.m. on school days, while park cameras operate every day from 6 a.m. to 
11 p.m.  The first speed violation triggers a warning ticket with no fines. Thereafter, the 
registered owner of the vehicle is fined $35 when cars are travelling 6-10 mph over the 
speed limit or $100 when speeds exceed 10 mph. In practice, the $35 tickets were only 
issued when speeds were at 10 mph over the limit until 2021. The city has changed this 
policy starting in 2021 so that all those traveling in the 6-10 mph over posted limit are 
issued tickets.

According to the city, the location of cameras is based on a "model that ranks safety zones 
based on total crashes, crashes involving a pedestrian or bicyclist, speed related crashes, 
serious/fatal crashes, crashes involving a person 18 or under." The location is further 
determined by speed studies and other equity considerations.24     

The analysis in this section focuses on cameras that were installed in 2013 and 2014 and 
continued to be operational through 2015-2017. The paper examines all injury and fatality 
crashes that occurred within a 250m buffer of the cameras on the instrumented road. 
Because buffers overlapped for some cameras, the analysis looks at 101 camera locations.  

Background

According to the National Highway Traffic Safety Administration (NHTSA), speeding was a 
factor in 26 to 31% of crash fatalities annually in the U.S. from 2009 to 2018.  Because of the 
impact energy involved, injuries in high-speed crashes are more likely to be severe or fatal. 
As a result, policy makers often allocate significant effort to curb speeding. These range
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from the posting of prominent speed limit and other signage, variable messaging signs, 
placement of speed bumps and other calming structures, and various enforcement actions 
including spot enforcement by officers. Automated speed enforcement has also become one 
of the mechanisms employed to enforce speeding laws and reduce speeds since the 1980s.25  

Much of the evidence on automated speed camera enforcement indicates that the cameras 
are effective at reducing injury crashes. One review looking at 14 studies finds collision 
reductions of 5-69%, injury reduction of 12-65%, and a reduction in death of 17-71%.26  

Another study which looked at 13 studies reported a 20-25% reduction as the best estimate 
of injury crash reductions at fixed camera locations.27 A third study that summarize six 
studies that report reductions in personal injury accidents in the range of 9% to 51% and a 
reduction in the range of 6% to 40% in fatal or serious accidents.28 An evaluation of the 
camera program in the U.K. also showed a decline in people exceeding the speed limit in 
camera locations.29 The general findings suggest that cameras enhance safety, but there is a 
high degree of variation in their degree of effectiveness based on the locations being 
studied.  Some of the variation may also have to do with the methodologies adopted. 

Data and Approach

The analysis in this section relies on multiple data sources. Crash data for the period from 
2010-2017 with geocoded data locations and injury types was received from the Illinois 
Department of Transportation. Each crash incident is coded with the injuries associated 
with it. In Illinois, injury classifications are coded as K when a fatality occurs, A when an 
incapacitating injury occurs, B when a non-incapacitating injury occurs, and C when an 
injury is reported or claimed that is not among the ones that fall in categories K, A, or 
B.  Crashes coded as O, which stands for no indication of injury, are not included in this 
analysis.  In any crash incident, multiple types of injuries may occur on persons involved. 
The most severe type of injury reported is used to classify each crash as type K, A, B or C in 
this analysis. 

Other data used in this analysis includes the roadway volume, which is based on IDOT’s 
Getting Around Illinois website, and Chicago’s speed cameras for the post-installation 
period for the treated sites. The roadway geometry data is based on roadway data from 
Chicago’s Open Data Portal, and population figures from the U.S. Census were also employed 
to compute population density.  

The analysis focuses on 101 speed camera instrumented locations. Changes in the count 
of injury crash incidents within 250 meters on either side of the cameras along the 
instrumented road over a three-year period are used as a basis for evaluating safety. Figure 
1 shows the number of fatality and injury crashes observed at the 101 sites included in the 
study by year. 
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Figure 1 Injury Crash Counts within 250 meters on either side of 
a camera location for 101 sites from 2010-2017.

The Empirical Bayes (EB) method is used to examine the safety impacts of Chicago's speed 
cameras.  The analysis uses an observational before-after approach and estimates safety by 
comparing the after-period crash counts against what would have happened if cameras were 
not installed at the treated sites.30 Since most speed cameras in Chicago were installed in 
2013 and 2014, the 2010-2012 period is taken as the “before treatment” period and the 
2015-2017 period is used as the “post treatment” period in this analysis. 

Direct comparison of before and after period crash counts are inappropriate for a number 
of reasons. First, treated sites often are chosen based on the count of crashes, which 
often naturally fluctuate. Excessively high crash counts, which may have led to camera 
installation, are often followed by lower counts without treatment due to the regression-
to-the-mean phenomenon. Direct comparison therefore often overestimates the safety 
benefits of interventions. Second, in the after period, volume or other changes may have 
occurred on treated roadways that alter its safety profile. In addition, there may be long run 
changes in crash outcomes due to technology, weather or other factors that a direct before-
after comparison may attribute to the intervention. The approach followed here attempts 
to tease out these factors by comparing the observed crash record against what would have 
been expected to happen if speed cameras were not installed at the treated locations. 

The EB method is implemented as follows. First, locations that could have had a speed 
camera installed (but did not) are identified to assess the safety performance of roadways 
in safety zones in the before and after periods. These sites are used to estimate models, 
often called safety performance functions (SPFs), that estimate the number of expected 
crashes over some specified period given traffic and geometric conditions on roadways.    
The SPFs, along with the characteristics of the treated sites, are then used to estimate the 
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expected number of crashes on the 101 treated locations on the basis of their measurable 
attributes. These estimates provide a base line for how unsafe a typical location with the 
characteristics of the treated sites is. This estimate is then combined with the prior crash 
record of the treated sites to estimate the expected crash count for each location. 

SPFs for the after period, along with roadway characteristics in the after period on treated 
sites, are also used to estimate expected crash numbers on typical roadways post-treatment 
on facilities that match the characteristics of the treated sites.  These estimates, along with 
the pre-treatment period crash estimates for each site, are used to predict what would have 
happened had cameras not been installed at the treated sites (the counter-factual case).  A 
comparison of the counter-factual case against what actually happened gives an estimate 
of the impact that cameras had on the safety record at each location.  The SPFs and the 
technical details are provided in Appendix C.

Safety Impacts

We examine safety impacts both at the aggregate level across all sites and at the site level in 
the following two sections.

Overall Safety Impacts

The results from the aggregate safety impacts assessment are given in Table 1. Over the 
3-year period from 2015-2017, we estimate that there were 36 fewer KA type injury 
crashes, 68 fewer type B crashes, and 100 fewer type C crashes across the 101 locations. In 
all, there were 204 fewer injury crashes. Reductions of type A and C crashes were estimated 
at around 15% and that for type B injuries at 9%.  Overall, speed cameras led to a 12% 
reduction in injury crashes. 

The overall estimate of safety improvement is smaller than what a direct comparison of 
before and after crash counts would have estimated. A simple comparison of the 2010-
2012 crashes against the 2015-2017 crashes yields an overall reduction of 218 crashes 
as opposed to 204 crashes. It would underestimate the total K and A crash reductions 
(estimated as a change of 1 as opposed to 36) and overestimate the reductions in B and C 
injury crashes (a reduction of 89 and 128 respectively as opposed to the 68 and 100 shown 
in Table 1).  Such an estimate would not have accounted for the regression to the mean 
phenomenon that occurs when high-crash locations are selected for treatment or how 
crashes changed in the after period based on the SPFs from the reference safety zones (i.e., 
the treatable but untreated sites used to estimate SPFs).  
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Table 1 Estimated Safety Impacts of Speed Cameras by Crash Injury Type

Site Level Impact Assessment

While on aggregate, the speed cameras improve safety, there is some variation in how 
successful they have been at the camera level. Of the 101 sites in this analysis, 93% had a 
safety improvement estimated in at least one injury type. In 71% of sites (N = 72), we could 
be 90% confident that the estimated improvement in at least one injury type was greater 
than zero. Only seven sites had an estimated crash increase across all injury classes. 

Table 2 summarizes site level improvements by injury type. Safety improvements for KA, 
B, and C injury types were seen in 60-66% of sites based on injury type. We could be at 
least 75% confident that there was an improvement in the crash outcomes in 44-50% 
of instrumented locations by injury type. If we apply a more stringent 90% confidence 
threshold for improvements, between 34-40% of sites show a reduction in crashes for 
different injury types. 

Aggregating across all injury crashes (KABC), we see safety improvements in 70% of cases. 
At 54% of the sites, we could be at least 75% confident we have a non-zero improvement 
in the overall reduction of crashes. At the higher threshold of 90% confidence, 37% of the 
treated sites saw an improvement in overall crashes. On the other hand, between 33-40% 
of sites had an estimated increase in crashes.  In 14-20% of the cases by injury type, we 
could be about 90% confident that these increases in crashes were significantly different 
from zero.  Two thresholds at 75% and 90% are used in part to emphasize that different 
decision makers may make differing assessments of what is a desired level of confidence in 
these improvements.  The estimated changes in the number of crashes for the sites in this 
analysis is reported in Appendix C Table 3.
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Table 2 Site Level Safety Improvemennt Estimates by Camera Location

Based on the site level estimates, Figures 2-4 show the actual and expected crashes at 
each location included in the analysis. In total, 43 sites had reductions that exceeded one 
standard deviation of the expected number of crashes. These are shown in Figure 2 as 
showing marked improvement in their safety record. These sites primarily accounted for 
the benefits of the speed camera program, accounting for a total reduction of 294 fewer 
injury crashes. Another 42 sites had crashes within one standard deviation of what was 
expected without cameras. In total, the net reduction in KABC crashes from these sites 
was 36 fewer crashes. These are shown in Figure 3. Finally, 16 sites had an increase in 
crash frequency that exceeded one standard deviation of what would have been expected 
without cameras, accounting for an increase of 126 injury crashes in treated areas. Figure 4 
shows these 16 sites. The total reduction in KABC injury crashes of 204 across all cameras 
reported earlier is a total sum of the changes from these three sets of sites. 
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Figure 2 Sites where the actual crash record was below what would have been 
expected by 1 standard deviation or more. Based on KABC crashes.

Figure 3 Sites where the actual crash record in the after period is within 1 standard 
deviation of what would have been expected without cameras. Based on KABC crashes.
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Conclusion and Discussion

This chapter examined the effectiveness of automated cameras in Chicago while controlling 
for regression to the mean and time period effects. On aggregate we estimate a 12% 
reduction in fatal and injury crashes at treated locations within a 250-meter buffer from 
2015-2017. The estimate for serious injuries and fatalities is about 15%. The overall 
performance of speed cameras in Chicago is within the reported range cited in the literature 
(see Background section), though on the lower side of estimates.  

We also note that cameras were not universally effective across all treated sites. In 
70% of locations, estimated crash reductions were greater than zero. In 43% of cases 
improvements in safety exceeded 1 standard deviation of expected without cameras. In 
16% of cases, a marked increase, exceeding 1 standard deviation of expected, was also 
observed.  In some locations, crash outcomes have not changed significantly or have 
worsened. 

For the city of Chicago, some pragmatic recommendations can be made. As a first step, the 
city should closely examine the sites where crash outcomes have increased. It is possible 
that something fundamentally has changed at these sites in the after period that the models 
here were not able to capture.  It may also be that crash outcomes have sources outside of 
speeding that require attention.  Second, the city should examine the sites where conditions 
have not changed from the before period.  

Figure 4 Sites where the actual crash record in the after period has increased by 1 
standard deviation or more of what would have been expected without cameras.

Based on KABC crashes.
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Related to both points above, the city should also look at the decision-making process it 
uses to decide where to deploy speed cameras. While the city states that crash frequencies 
inform decision making, the length of the crash history, the weights attached to crash events 
involving pedestrians, bicyclists or children in deciding placement is not clear. Reliance on 
relatively rare crash events or on short term spikes may lead to treatment of sites that are 
otherwise as safe as other untreated locations. Whether speed is the underlying cause for 
observed unsafety locations should also examined before deploying cameras.

Finally, the city should continuously review the effectiveness of cameras at different sites to 
ensure that each is delivering the safety benefits expected from it. Where cameras are found 
to be ineffective, turning them off, rotating them to other locations where speed is an issue, 
or using other interventions in lieu of cameras should also be considered. 
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 Model of Red-Light Ticket Rates at the Camera Level 

Appendix A:
Technical Documentation of the Camera and Tract Level Analysis

Table 1 Model for ticketing levels at red-light cameras. Dependent variable is 
              the natural log of daily tickets per 10,000 vehicles.  Uses ticketing data from 2016-2019.
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Table 2 Model for ticketing levels at speed cameras. Dependent variable is 
              the natural log of daily tickets per 10,000 vehicles.  Uses ticketing data from 2016-2019.

 Model of Speed Camera Ticket Rates at the Camera Level 
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Table 3 Data Summary for Tract Level Analysis
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Table 4 Spatial error model for red light tickets per household per year for Chicago census tracts. 
              Continuous variables are standardized by subtracting their mean and dividing 
              by twice their standard deviation. Dependent variable is not standardized.

 Model of Red-Light Ticketing Levels per Household at the Census Tract Level
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Table 5 Spatial error model for speed tickets per household per year for Chicago census tracts. 
Continuous variables are standardized by subtracting their mean and dividing 
by twice their standard deviation. Dependent variable is not standardized.

 Model of Speed Ticketing Levels per Household at the Census Tract Level
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 Probability Models of Fine and Fee Payment at the Ticket Level

Appendix B:
Technical Documentation of the Fine and Fee Analysis

Table 1 Standardized coefficients from linier probability models estimating
the likelihood of camera tickets and likelihood payment over four years. 
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Appendix C:
Technical Documentation of the Safety Analysis

The Empirical Bayes (EB) method is used to examine the safety impact of Chicago's speed 
cameras. The analysis looks at 101 speed camera instrumented locations. Changes in the count 
of crash incidents within 250 meters on either side of the camera on the instrumented road over 
a three-year period are used as a basis for evaluating safety. The analysis uses a before-after 
approach and estimates safety on the basis of comparing the after-period crash counts against 
what would have happened if cameras were not installed at the treated sites. Since most speed 
cameras in Chicago were installed in 2013 and 2014, the 2010-2012 period is taken as the before 
treatment period and the 2015-2017 period is used as the post treatment period in this analysis. 

The EB method is implemented as follows. First, similarly treatable, but untreated, road segments 
were identified to assess the safety performance of roadways in safety zones. These sites are used 
to estimate safety performance functions (SPFs)–regression equations that are used to estimate 
the number of expected crashes over some specified period given traffic and geometric conditions 
on the roadways.  These sites were selected by first identifying road segments that fell within 
safety zones in Chicago. Segments with no volume data were removed. Three hundred points 
were then randomly placed on these road segments. These locations were taken as an initial 
set of treatable sites. Sites were then matched against treated locations using propensity score 
matching on the basis of AADT and number of driveways within a 250-meter buffer on either side 
of the randomly placed point. The process matched 101 locations in this manner. From the pool of 
unmatched locations, those with AADT in the range of treated sites were added back. This led to a 
sample 146 sites based on which safety performance functions for the sites could be estimated. 

Next, the crash histories for these sites are gathered and prepared along with volume on the 
instrumented road, roadway characteristics and population density data for each location.  The 
volume data for this analysis comes from the Illinois Department of Transportation's Getting 
Around Illinois website. Volume data from the analysis period or closest to the analysis period is 
used in the estimation of the models. This data is then used to estimate SPFs for the before and 
after periods. 

We use a negative binomial generalized linear model is estimated for the SPF. Three separate 
SPFs were estimated by injury class to model crashes with fatalities or type A injuries, type B 
injuries, and type C injuries respectively. The variables included in the SPFs are the road's average 
annual daily traffic, the intersection density within the buffer, and the population density in the 
census tract that the camera is located. Each SPF also included a time period dummy to capture 
the effects of other uncontrolled variables such as vehicle technology and weather that may have 
impacted safety outcomes but are not directly measured. Population density was included as 
another proxy for exposure as it may indicate potential conflicts with pedestrians and bicyclists. 
However, it may also offer some level of traffic calming and therefore influence crash outcomes.  
The expected number of crashes of a given type at a location, μ is expressed as follows, and 
estimated using a negative-binomial model: 



Sutton and Tilahun | Equity and Efficacy of Chicago’s Red-light and Speed Cameras | Final Report 45

where: 
• μ: expected crashes of of a given injury severity (separate models are estimated for KA, B and

C injury severity crashes with similar specification)
• P: analysis period, equal to 1, if year 2015-2017, 0 otherwise
• V: the vehicle miles travelled in the buffer over the period of analysis (AADT * #days* Length

of segment)
• I: the intersection density within the buffer (Nintersections/Length of segment)
• D: population density in the census tract
• β: are model parameters unique for each injury type

Once SPFs are estimated, they are then used to compute the expected number of crashes on 
the 101 treated locations using their volume and roadway characteristics. These estimates 
provide a base line estimate for how unsafe a particular location is based on its built and traffic 
characteristics. The treated sites are not used in the estimation of the SPFs as treatments are often 
influenced by high crash counts. 

The safety performance functions were estimated using the R statistical software. The parameters 
for the three models and their dispersion parameter θ are reported in Table 3. Comparison with 
the restricted Poisson model supports the use of the Negative Binomial model.  The variables in 
the model–VMT, intersection density and population density– were all important predictors for all 
crash types with higher values for each variable increasing the number of expected crashes.  The 
period effect was significant only for crashes of injury type K and A and suggested that fatality 
and incapacitating injury crashes increased in the after period. 

Figure 2 shows how the model predictions align with the crash data used to estimate the SPF.

Table 3 Safety performance functions by injury type
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Figure 2 Safety Performance Function (SPF) predictions compared to crash data. 
Note that for B and C injury crashes the before and after predictions based on the data 

are identical since the period variable was not found to be important.

The Empirical Bayes Approach

In the Empirical Bayes (EB) method, the safety of a given entity is estimated as a weighted sum of 
the entity's crash record (Yi) and the estimate of a representative road section with the 
characteristics matching the entity as estimated by the SPF. Following Hauer,32 we can write the 
expected number of crashes for an entity yi, given its crash record Yi, as:
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The weight αi is between 0 and 1, and for a given injury type at a given location can be computed 
as follows: 

where θi is the ispersion parameter from the estimated SPF for injury type i and μi is the estimate 
for the location from the SPF.  In this way, the crash estimate from the EB method incorporates 
information on what we expect to happen for a representative site similar to the site under 
consideration along the measured attributes, and also adds information about the specific site 
through the inclusion of the site-specific crash history Yi. 

The estimate yi in equation 2 provides our best guess as to the safety of an entity in the before 
period. For treated sites, the crash count in the after period had the site not been treated cannot 
be observed and is hence unknown. Hauer (1997) offers a way to estimate yi in the after period.  
We first estimating μi in the after period (μi,a) using the conditions (P, V, I, D) on the treated sites 
in the after period utilizing our SPFs. To get these estimates, we set P=1 and the VMT (V) is set the 
to after-period VMT at each location. The after-period volumes come from traffic counts made by 
each speed camera. A correction factor to estimate the number of crashes in the after period is 
then computed as follows: 

The crash count estimate in the after period for a location yi,a is then computed as follows:

and its variance is computed as:

where the subscripts a and b designate the before and after periods respectively. 

The next step is to compute the estimated safety impact of the treatment, which is achieved by 
comparing our estimate of safety in the after period with (measured by the entities crash record 
Ki) and what we would have expected to happen had the treatment not been deployed yi,a. The 
safety of impact at each location for crash severity i is then:

Along with this estimate of safety improvement, the variance is also computed as var(δi) = 
var(yi,a) + var(Ki), which will allow us to build confidence intervals for the safety impact at each 
location.
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Safety impacts across the analyzed locations can also be summed to offer an overall picture of 
the effectiveness of speeding cameras.  If we use Kt to represent the sum of all crashes across all 
analysis locations and yt,a as the total of the estimated after period no-treatment crash estimate, 
the collision reduction ϕ is computed as follows:

and its variance is computed as:

The variance of yt,a in the above equation is the sum of the site specific variances given in equation 
6.

In this way, the approach allows us to estimate the safety impact of speed cameras at specific 
locations as well as on aggregate across all locations considered. We can then examine if speed 
cameras may not be delivering on their promise at specific locations while being effective on 
aggregate or vice versa. The separate analysis of crashes by injury severity also allows for 
different degrees of effectiveness for the cameras in counteracting crashes of different severity.

The site level estimates of crash counts in the before and after periods as well as the expected 
number of crashes of injury type for the 2015-2017 period had the cameras not been installed is 
provided in Table 4 below. The table also shows the estimated safety benefits at each location. 
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Table 4 Site level crash counts and estimates of improvement in the after-treatment period
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