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Abstract

With the urgent need of analyzing extraordinary amount of data, the information-

based optimal subdata selection (IBOSS) approach has gained considerable attention

in the recent literature due to its ability to maintain rich information of the full data.

On the other hand, there lacks a systematic exploration of the framework, especially

the characterization of the optimal subset when the model is more complex than first-

order linear models. Motivated by a real finance case study concerning the impact of

corporate attributes on firm value, we systematically explore the framework consisting

of the exact steps one can follow when employing the idea of IBOSS for data reduction.

In the context of the second-order models, we develop a novel algorithm of selecting an
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informative subdata. We also provide a thorough evaluation of the performance of the

proposed algorithm from the standpoints of both predictions and variable selection,

the latter of which is important for complex models but has not been given enough

attention in the IBOSS field. Empirical studies including a real example demonstrate

that the new algorithm adequately addresses the trade-off between the computation

complexity and statistical efficiency, one of six core research directions for theoretical

data science research proposed by the US National Science Foundation (NSF, 2016).

The real case study demonstrates the potential impact of the IBOSS strategy in scien-

tific fields beyond statistics. In particular, we note that finance field, where the speed

is critically important, is a promising area for applications of IBOSS.

Keywords: Algorithm, Computation complexity, IBOSS, Statistical efficiency



1 Introduction

The extraordinary amount of data that are collected easily with the proliferation of electronic

devices offers us unprecedented opportunities for scientific discovery and advancement. At

the same time, using these massive data sets also presents unprecedented challenges due to

not only the volume of data, but also the speed with which it must be analyzed. While

computational resources have also been growing rapidly, under the traditional analysis ap-

proaches, the astonishing sizes of massive datasets dwarf the growth of computational re-

sources. New statistical methods and computational algorithms are needed to “convert data

into knowledge” (van Dyk et al., 2015).

One attractive idea that has received considerable attention for dealing with massive data

(full data) is on intelligently storing/analyzing a subset of the data (subdata). The sampling

distribution-based optimal subsampling approach is one way to select a subdata. Some

exemplary works include Drineas et al. (2012), Ma, Mahoney, and Yu (2015), and Wang,

Zhu, and Ma (2018). However, this approach cannot take advantage of the rich information

contained in big datasets. Under linear models, Wang, Yang, and Stufken (2019) developed

a novel Information-Based Optimal Subdata Selection (IBOSS) method. They proved that,

if each independent variable has a distribution in the domain of attraction of the generalized

extreme value distribution, the variance of the estimator of the slope parameters goes to

zero even though the size of the subdata is fixed. IBOSS-based approaches have received

increasing attention in recent years. Follow up works include Cheng, Wang, and Yang

(2020) that dealt with logistic regression models, Wang, Yang, and Li (2021) that discussed

a LASSO-IBOSS approach for models with a large number of variables, and Wang et al.

(2021) that proposed an orthogonal subsampling approach to select a subset under linear

model setups.

These encouraging results have built a strong theoretical foundation for the IBOSS-based

subdata selection. However, there are still various challenges that need to be addressed before

we observe more widespread use of IBOSS strategies in practice. First, most of existing
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results were obtained based on the linear models that contains main effects only. Modern

big data problems can be complex for which a main-effect model often is not adequate. It

would be desirous to build a general framework that provides guidance on how to develop

an IBOSS-type of algorithm for a given model. The second major limitation in existing

studies assess the performance of IBOSS from the perspective of parameter estimation in

model fitting. This was probably sufficient when the model is relatively simple. But for a

more complex model consisting of a large number of model terms, we may also be interested

in knowing the prediction capability of the model using IBOSS. It is also desirous to assess

the performance of IBOSS from the standpoint of variable selection procedures. Another

“missing piece” in the field of IBOSS was a real case study that showed not only IBOSS

could preserve the rich information in the full data but also the savings in computing time

from using IBOSS would be worth it in the practical situation.

This paper aims to make three important contributions from these aspects. First, we

systematically explore the IBOSS framework consisting of the exact steps one can follow when

employing the idea of IBOSS for data reduction. Due to the relatively simple model format

used in most existing papers in this field, little attention has been paid to exploring how to

characterize the informative points through optimal designs, arguably the most important

and challenging step. The resulting characterization will dictate the procedure obtaining an

appropriate algorithm. We describe a general framework of IBOSS that is applicable to any

given model, consisting of three steps:

1. Step 1: Derive the optimal (approximate) design in terms of an optimality criterion,

say, D-criterion;

2. Step 2: Based on the characterization of the derived optimal design, develop a fast

algorithm to efficiently select the desired subdata of size k < n;

3. Step 3: If possible, investigate the asymptotic properties of the resulting estimators.

Motivated by an important research question in finance, we discuss the application of the
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framework in the context of optimal second-order designs. Section 2 contains a step-by-step

guidance on how to address important issues in the framework. We show that the resulting

IBOSS algorithm, which selects not only extreme end points, but also middle points, is a

novel approach that is different from all existing IBOSS strategies. We note that the same

technique may be used for obtaining optimal designs for other models, such as polynomial

models and generalized linear models. In the discussion section, we shall briefly discuss the

use of the framework for a non-linear model and present some novel results.

The second contribution is to provide a comprehensive and thorough evaluation of the

IBOSS strategy from the standpoint of variable selection. In the context of second-order mod-

els, we assessed the variable selection performance in terms of the sensitivity and specificity

of our method and compared them with those of uniform sampling and leverage sampling.

The results were encouraging for the proposed IBOSS strategy. For some model settings, the

proposed IBOSS strategy can identify nearly as many significant terms as using the full data.

At the same time, it can have higher specificity than using the full data, implying that using

the IBOSS subdata does not incorrectly identify non-significant model terms more often than

using the full data. Note that the time complexity of the new algorithm is O(np+ kp4 + p6),

which represents substantial computational savings compared with the time complexity of

analyzing the full dataset of O(np4 + p6) as k is much smaller than n.

The third contribution we aim to make is to investigate the applications of IBOSS in

other scientific fields beyond statistics. The motivating example of this project was a real

finance case study concerning the impact of corporate attributes on firm value. We chose to

investigate the relationship between firm value and other variables such as firm’s asset, cash,

capital expenditure, and leverage because it was suspected that the relationship between the

response and many of those variables can be better represented by a second-order model.

The results were very promising. Using 181,755 data points from all U.S. non-financial public

firms, we found several important second-order effects both from the full data and from the

IBOSS-selected subdata that had been largely neglected in the related finance literature. We
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shall demonstrate in Section 4 that the proposed IBOSS strategy indeed can preserve the

rich information from the full data. At the expense of slightly higher prediction MSE from

the IBOSS subdata, the computational savings from IBOSS is substantial (4.32 seconds vs.

79.59 seconds).

There are several important reasons why we chose to investigate the use of the IBOSS

strategy in finance. It has been noted that the IBOSS strategy works particularly well when

the distribution of the independent variables is heavy tailed, which is exactly what happens

in many financial data. More importantly, speed is critically important in this field. For

example, it has been stated that a 1 millisecond advantage can be worth $100 million to a

major brokerage firm (Martin, 2007). Three factors that impact the speed are proximity,

hardware, and highly efficient algorithms. The demand for faster trading speed induces

an arms race for faster trading algorithms and better trading infrastructure among high-

frequency trading (HFT) firms. For instance, Budish, Cramton, and Shim (2015) found that

the arbitrage opportunities between S&P 500 index, which is essentially the benchmark of

U.S. stock market, and S&P 500 futures, declined substantially by over 92 percent, from 97

milliseconds in 2005 to 7 milliseconds in 2011, due to HFT. At the same time, the efficiency

of algorithms has been widely considered as critically important, as predictability does not

mean anything if the trader cannot act on those predictions promptly. Consequently, a

good subset strategy such as the proposed IBOSS algorithm represents a very promising

opportunity in finance, from the standpoints of both practice and research.

The remainder of the manuscript is organized as follows. In Section 2, we present a

series of techniques to characterize the D-optimal design and a computationally efficient

algorithm based on the characterization. The performance of the proposed algorithm is

examined through extensive simulations in Section 3. Section 4 is devoted to the application

of the proposed IBOSS strategy in the finance data. Several important issues are discussed

in Section 5. Most technical proofs are presented in the supplementary material.
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2 Application of the framework in second-order mod-

els

In this section, we provide a step-by-step guideline to demonstrate how to use the framework

in using IBOSS for second-order models.

2.1 Model setup and information matrix

Let (xi, yi), i = 1, . . . , n, denote the full data, where xi = (xi1, . . . , xip)
T are the independent

variables and yi is the corresponding continuous response. The response yi is modeled with

interaction and quadratic terms:

yi = βTf(xi) + εi (2.1)

where f(xi) is a vector in the following order: f1(xi) = 1; f1+j(xi) = x2ij, 1 ≤ j ≤ p;

f1+p+j(xi) = xij, 1 ≤ j ≤ p; for 1 ≤ l ≤ p(p− 1)/2, f1+2p+l(xi) consists of the terms xijxij′

and 1 ≤ j ≤ p− 1, j < j′ ≤ p; β is the corresponding vector of coefficients, with dimension

(p+ 1)(p+ 2)/2; and εi is an error term satisfying E(εi) = 0 and var(εi) = σ2.

When using full data with n observations (x1, y1), . . . , (xn, yn), the least-squares estima-

tor resulting from Model (2.1) is β̂full =
(∑n

i=1 f(xi)f
T (xi)

)−1∑n
i=1 f(xi)yi. Its covariance

matrix is σ2M−1
full, where Mfull =

∑n
i=1 f(xi)f

T (xi). Under the additional assumption that

εi
iid∼ N(0, σ2), this matrix is the Fisher information matrix. While we do not impose the

normality assumption, we still call Mfull the information matrix for simplicity.

For extraordinary size of n, we aim to use a subdata with k observations for regression.

Let δi be an indicator variable, δi = 1 if the ith data point is in the subdata, δi = 0 otherwise,

and δ = (δ1, . . . , δn). Using the notation δ to denote the subdata, the resulting estimator

can be written as

β̂(δ) =

(
n∑

i=1

δif(xi)f
T (xi)

)−1 n∑
i=1

δif(xi)yi, (2.2)
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with covariance matrix σ2M(δ)−1, where

M(δ) =
n∑

i=1

δif(xi)f
T (xi). (2.3)

2.2 Step 1: Characterization

The first step in the IBOSS framework is to derive the associated optimal design. In general,

optimal designs are available only for sporadic cases (e.g., first-order linear model, logistic

model with one independent variable). For most general models, obtaining optimal designs

may be very difficult. Here, we utilize a new approach called “complete classes” of designs,

developed by a series of papers (Dette & Melas, 2011; Dette & Schorning, 2013; Yang, 2010;

Yang & Stufken, 2009, 2012). The new tools greatly simplify the process of deriving optimal

designs, and most of the available optimality results for GLMs and nonlinear models can be

readily derived as special cases with the new tools.

Without loss of generality, we assume that the design region is the cubic region
⋂p

j=1[−1, 1].

The objective is to construct theD-optimal approximate design, denoted by ξ = {(zi, wi), i =

1, . . . , q}, in which wi is the weight on the design point zi ∈
⋂p

j=1[−1, 1], q is the number of

support points, and
∑q

i=1wi = 1. Under Model (2.1), the corresponding information matrix

can be written as

I(ξ) =

q∑
i=1

wif(zi)f
T (zi). (2.4)

It is rather complicated to maximize I(ξ) directly for a general model. In the appendix, we

present a series of results for the characterization of the D-optimal design for the second-

order model. The same techniques are also applicable to more general models, which will be

discussed in more details in the last section.

The key ideas of the three lemmas given in the appendix involve simplifying the optimiza-

tion of I(ξ) by making a large number of non-zero off-diagonal elements in the information

matrix to zero, as well as reducing the number of distinct non-zero elements in the matrix.
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This can be achieved by exploring the symmetry of variables for the model considered. Us-

ing a two-dimensional example for illustration, it consists of three steps: (i) split a point

(xi1, xi2, wi) into four points (±xi1,±xi2, wi/4); (ii) move points to extreme points, like {-1,

0, 1} for the quadratic model; (iii) explore symmetry between variables of x1 and x2 to reduce

the number of distinct parameters in the information matrix that need to be optimized.

Employing the procedure described above, we can show that the optimal design for the

quadratic model (2.1) has all support points in
⋂p

j=1{−1, 0, 1}. Let Θl denote the set of

design points with l elements equal to ±1, and the remaining p− l elements equal to 0. Then

the optimal design for model (2.1) can be found from those with the form

ξ̄ =

zi,0 ∈ Θ0 zi,1 ∈ Θ1 · · · zi,p ∈ Θp

π0 π1 · · · πp

 , (2.5)

where πl ≥ 0 is the equal weight assigned to each design point in Θl, l = 0, 1, . . . , p. Further,

it can be shown that the information matrix of ξ̄ is given by

I(ξ̄) =

A O

O B

 , (2.6)

where

A =



1 a a . . . a

a a b . . . b

a b a . . . b

. . .

a b b . . . a


(p+1)×(p+1)

, (2.7)

B = diag(a, . . . , a︸ ︷︷ ︸
p

, b, . . . , b︸ ︷︷ ︸
p(p−1)/2

). In (2.7), a =
∑q

i=1wiz
2
ij and b =

∑q
i=1wiz

2
ijz

2
ij′ for any j 6= j′.

Maximizing the determinant of the information matrix I(ξ̄) results in optimal values of a∗
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and b∗:

a∗ =
p+ 3

4(p+ 1)(p+ 2)2

[
(2p2 + 3p+ 7) + (p− 1)

√
4p2 + 12p+ 17

]
, (2.8)

b∗ =
p+ 3

8(p+ 1)(p+ 2)3

[
(4p3 + 8p2 + 11p− 5) + (2p2 + p+ 3)

√
4p2 + 12p+ 17

]
. (2.9)

Finally, in order to find the optimal design ξ∗ from the class of designs satisfying (2.5 ξ̄, we

need to find optimal weights π∗i (i = 0, 1, . . . , p. As the support points are in
⋂p

j=1{−1, 0, 1},

it can be shown that optimal π∗i can be obtained by solving the three equations:

p∑
l=0

(
p

l

)
2lπl = 1,

p∑
l=1

(
p− 1

l − 1

)
2lπl = a∗,

p∑
l=2

(
p− 2

l − 2

)
2lπl = b∗. (2.10)

Theorem 1 (D-optimality). Let ξ∗ =
{(

(z∗i1, . . . , z
∗
ip)

T , π∗i
)
, i = 1, . . . , q

}
, where z∗ij takes

values -1, 0, and 1, and π∗i satisfies (2.10), for which a∗ and b∗ are determined by (2.8) and

(2.9), respectively. Then ξ∗ is a D-optimal design for β under Model (2.1).

Theorem 1 shows the optimal design for model (2.1). Notice several papers have studied

optimal designs for second-order models in earlier years in the literature (Kiefer 1961; Kôno

1962; Farrell, Kiefer, and Walbran 1967). Their main ideas were to start from a guessed

optimal design and then verify the optimality using the equivalence theorem. In comparison,

we derived them from Lemmas 1–3. There are three equations in (2.10), which shows that

solutions are not unique when p ≥ 3. One way of solving this problem is to allow only some

of the weights to be non-zero, which was the approach taken by Kiefer (1961) and Kôno

(1962). More specifically, the former approach considered designs where support points

are restricted to corners, midpoints of edges, and centers of two-dimensional faces, so that

πp, πp−1, πp−2 > 0. And the latter approach provided solutions for designs with support on

corners, midpoints of edges, and the origin (πp, πp−1, π0 > 0). We showed their numerical

results for p = 3 and p = 4 in Table 1 for illustration. As seen in Theorem 1, there are

more solutions than those given in Table 1. For example, any linear combination of the two

8



designs given in the table is also an optimal design.

The more general results are given in Farrell, Kiefer, and Walbran (1967), and most of

our results in this subsection are similar to theirs. Again, the difference is that they utilized

some geometry arguments and the general equivalence theorem. As stated in Farrell, Kiefer,

and Walbran (1967, page 113), “Our main way of finding D− and G− optimum designs

and of verifying their optimality is thus to guess a ξ∗ (perhaps by minimizing det M(ξ) over

some subset of designs depending on only a few parameters) and then to verify (1.4).” Our

use of the complete class approach is based on a series of lemmas that can be be more

easily adapted to obtaining optimal designs for more general models. One such example for

non-linear models will be given in Section 5.1.

2.3 Step 2: Algorithm and its properties

There are two challenges in selecting optimal subdata under the model (2.1). When p ≥ 3,

there is an infinite number of optimal designs to choose from. Furthermore, after an optimal

design is chosen, it usually requires a substantial number of points where multiple variables

take the extreme values, which may not exist in the full data.

Fortunately, all optimal designs ξ∗ having the form of (2.5), independent of πi, satisfy

a common property when the design space is projected onto a 1-dimensional space of each

independent variable. As can be seen in (2.7) and the definitions of a and b given below

(2.7), the optimal designs satisfy

q∑
i=1

wiz
2
ij = a∗, j = 1, . . . , p, (2.11)

where the sum is taken over all the support points of the design. Along with the condition
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that zij = −1, 0, 1, the support points always have

−1 0 1

a∗

2
1− a∗ a∗

2

 (2.12)

as one-dimensional projections. We now propose the main IBOSS algorithm for the 2nd-order

model.

Algorithm 1 Suppose r = k/(2p) is an integer. Denote x(1)j and x(n)j as the minimum

and maximum of xij, i = 1, . . . , n, j = 1, . . . , p, respectively. Perform the following steps:

1. Determine a∗ according to Equation (2.8). Then calculate r1 = dr · a∗e, r2 = r − r1.

2. For xi1, i = 1, . . . , n, select r1 data points with the smallest xi1 values, r1 data points

with the largest xi1 values, and 2r2 data points closest to
x(1)1+x(n)1

2
.

3. For j = 2, . . . , p, exclude previously selected data points. From the remainder, select r1

data points with the smallest xij values, r1 data points with the largest xij values, and

2r2 data points closest to
x(1)j+x(n)j

2
.

4. Let δi, i = 1, . . . , n be an indicator variable, δi = 1 if (xi, yi) is selected in the previous

steps, and δi = 0 otherwise.

Compared to existing IBOSS algorithms proposed previously in the literature, there are

two key differences. First, for each independent variable, it chooses three types of values:

the largest, the smallest, and the middle values. In comparison, almost all existing IBOSS

algorithms select only the largest and the smallest values. Second, the weights assigned to

each of the three types of values depends on the number of factors p. Results in Table 2 are

interesting and, to certain extent, surprising. One might expect the weights given to three

values of −1, 0, and +1 to be the same. Instead, it shows that the weight for the middle

number should be smaller than the weights for extreme values. In addition, the weight

allocation is a function of p.
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2.4 Step 3: Asymptotic properties of the algorithm

The proposed algorithm is a partition-based selection algorithm that needs to identify three

groups of values for each independent variable: the largest, the smallest, and the middle

values. As with any newly proposed algorithm, we wish to measure the statistical efficiency

of the selected subdata. An ideal solution is to measure how the variance of each element of

β̂ changes asymptotically as a function of n, i.e., the asymptotic properties of inverse of the

information matrix. Unfortunately, the resulting information matrix is much more compli-

cated than the main-effects only model because of the additional quadratic and interaction

effects. Consequently, some well-known criteria such as D-, A-, or E-criteria are intractable

under the resulting information matrix.

One alternative choice is the T -criterion, defined as the trace of the information matrix

(Pukelsheim, 2006). This approach is feasible as the criterion is generally tractable, which

is crucial for a complicated information matrix. The T -criterion also has an attractive

property. If the trace of resulting information matrix goes to infinity as a function of n, it

implies that the sum of all eigenvalues of the matrix goes to infinity. Consequently, at least

one of eigenvalues of the corresponding covariance matrix goes to zero as a function of n. In

other words, there exists at least one linear combination of the elements of β̂, such that its

variance goes to zero when n goes to infinity even when k is finite.

Under certain distribution assumptions of x, we have the following theorem.

Theorem 2 Let µ = (µ1, ..., µp) and Σ = σρσ, where σ = diag(σ1, ..., σp) is a diagonal

matrix of standard deviations and ρ is a correlation matrix. Assume that xi’s, i = 1, ..., n,

are i.i.d. with a distribution specified below. The following results hold for M(δ)jj, the

j-th diagonal element of the information matrix for β̂(δ), the estimator from the proposed

algorithm.
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(i) For multivariate normal independent variables, i.e., xi ∼ N(µ,Σ),

M(δ)jj =


Op((log n)2) for 2 ≤ j ≤ p+ 1,

Op(log n) for p+ 2 ≤ j ≤ 2p+ 1,

Op((log n)2) for 2p+ 2 ≤ j ≤ (p+ 1)(p+ 2)/2

(2.13)

(ii) For multivariate lognormal independent variables, i.e., xi ∼ LN(µ,Σ), then

M(δ)jj =



Op(4σj
√

2 log n) for 2 ≤ j ≤ p+ 1,

Op(2σj
√

2 log n) for p+ 2 ≤ j ≤ 2p+ 1,

Op(max1≤l≤p{|2ρlmσm + 2ρlm′σm′ |}
√

2 log n), 1 ≤ m ≤ p− 1,m < m′ ≤ p,

for 2p+ 2 ≤ j ≤ (p+ 1)(p+ 2)/2.

(2.14)

Theorem 2 shows that, under the T -criterion, the resulting information matrix increases as

a function of n even when k is fixed. That is, Var(L′β̂)→ 0 when n→∞, for some non-zero

vector L. Theoretically, it is not as strong as the A-criterion, which minimizes the sum of

the variance of each element of β̂ (except the intercept). However, the extensive simulation

studies in the next section show that the proposed algorithm actually demonstrates the

desirous asymptotic properties of β̂ and is sufficient from the practical standpoint.

3 Simulation Studies

3.1 Estimation and Prediction MSE

The first part of simulations is focused on the Mean Squared Error (MSE) criteria. We gener-

ate independent samples xi = (xi1, . . . , xip) under three different covariance structures: mul-

tivariate normal N(0,Σ), multivariate lognormal LN(0,Σ), and multivariate t-distribution
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with 2 degrees of freedom t2(0,Σ). In our study, p = 10, Σjj′ = 0.5I(j 6=j′), where I(·) is the

indicator function. The training set with size n and the test set with fixed size ntest = 10, 000

are generated independently. Responses are generated according to Model (2.1) with β being

a vector of unity; the noise εi’s are i.i.d. N(0, 32).

The data generating process is repeated for S = 100 times. Let β−0 denote the vector of

all parameters except the intercept term, β
(s)
−0 and β(s) denote the estimators of β−0 and β at

the sth repetition, respectively. For each method, calculate the estimation MSE as MSEe =

1
S

∑
s

∥∥∥β̂(s)

−0 − β−0
∥∥∥2 and prediction MSE as MSEp = 1

ntest·S
∑

s,i

(
βTf(xi)− (β̂

(s)
)Tf(xi)

)2
.

Following the above procedure, we conduct two simulations. In the first simulation, we

generate training data of sizes n = 5, 000, 104, 105 and 106 while fixing the subdata size at

k = 1, 000. Figure 1 compares all approaches in terms of MSEe and MSEp (in logarithm scale)

when n increases. For estimation MSE, Panel (a) of Figure 1 shows that the IBOSS approach

dominates uniform sampling and leverage sampling for all three distributions considered. The

MSEe values of the IBOSS approach decrease with the increase in n, and the convergence

rate is faster when the independent variables are more heavy-tailed. In particular, when

x ∼ t2(0,Σ), the IBOSS approach yields comparable MSEe as using the full data. For

prediction MSE, Panel (b) of Figure 1 shows very similar patterns.

In the second simulation, we fix the full data size at n = 106, and select subdata of sizes

k = 500, 1000, 2000, 3000, and 5000. The plots of MSEe and MSEp (in logarithm scale)

are given in Panels (a) and (b) of Figure 2, respectively. As expected, the performance of

all subsampling approaches improves as k increases, and the IBOSS approach outperforms

the uniform and leverage sampling methods consistently. The advantage of IBOSS becomes

more significant when the distribution of x has heavier tails. For MSEp, the prediction MSE

value for a given k becomes larger for uniform sampling when the distribution changes from

normal to the t-distribution, as observed from the yellow curve (corresponding to uniform

sampling) moving upwards from the top to the bottom in the three figures in Panel (b).

In comparison, the three green curves corresponding to leverage sampling hardly move, and
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the three blue curves corresponding to IBOSS actually move downwards, indicating smaller

prediction errors for heavy tailed distributions.

Table 3 compares computing times of the three sampling methods (k = 1000) with using

the full data. For the full data approach, each number amounts to the time used for fitting

the second-order regression model. For the IBOSS and other subsampling approaches, each

number is the total CPU time for selecting the subdata and then fitting the model. For the

IBOSS approach, a C++ function is implemented to find out the desired quantiles of a given

vector. All other codes are implemented in R and carried out on a laptop with Intel® Core™

i7-10710U processor and 16GB memory. Not surprisingly, uniform sampling and the IBOSS

approach take a fractional of the computation time using the full data. Leverage sampling

shows no reduction in computational time since calculating the leverage values has the same

complexity as fitting the full model. Note that when n or k increases, both the IBOSS

and full data approaches requires larger computation time. But the computation time of

the IBOSS method increases at a much slower rate than fitting with the full data. Overall,

combined with the results in terms of MSEe and MSEp, the IBOSS approach appears to

achieve satisfactory statistical efficiency at a small computational cost.

3.2 Sensitivity and specificity

Most of existing papers examined the performance of the IBOSS strategy focusing on es-

timation error, and not much attention has been given to its variable selection capability.

This was not an issue as most models in existing studies were relatively easy, and it was

often assumed that all effects in the model were significant. However, for a more complicated

model that has many model terms, it is also important to assess the capability of the model

using the IBOSS subdata to effectively identify the significant effects.

Variable selection has been studied extensively in the literature. See, for example, Tib-

shirani (1996), Fan and Li (2001), and Choi, Li, and Zhu (2010). More recently, (Wang,

Yang, & Li, 2021) proposed a LASSO approach for an IBOSS subdata strategy under the
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first-order linear model. We now evaluate the performance of IBOSS subdata under the

second-order model (2.1). Traditionally, two important variable selection criteria are sensi-

tivity and specificity, which are defined respectively as follows:

sensitivity =
number of selected significant effects

total number of true significant effects
,

specificity =
number of unselected insignificant effects

total number of true insignificant effects
.

We adopt a similar simulation setting as the ones in Choi, Li, and Zhu (2010) and Chen,

Li, and Wang (2020). Five settings are considered in Table 4. There are p = 10 lognormally

distributed variables in the model. However, in each of the five settings, we assume that only

p1 < p main effects are significant. We further assume that the corresponding p1 quadratic

effects and
(
p1
2

)
2-factor interactions between them are significant. Among the five settings,

Setting 1 can be considered as a “base” setting; Setting 2 represents a model with larger

coefficients for a part of the five significant terms; Setting 3 is similar to Setting 2, but only

second-order effects are assumed to be significant; Setting 4 increases p1 from 5 to 7; and

Setting 5 increases the full data size from 10,000 to 50,000. In all settings, the error terms

are assumed to follow a normal distribution with σ = 100. The stepwise regression approach

is used with the AIC criterion in model fitting.

Figure 3 compares box plots of distributions of sensitivity and specificity over 100 tries for

four methods: full data, the subdata using IBOSS, uniform sampling and leverage sampling

(k = 1000). For all settings, the sensitivity of IBOSS is comparable to the full data, both of

which are significantly better than the uniform sampling and leverage sampling. Compared

to the base setting of Setting 1, when the coefficients of some significant terms increase in

Setting 2, the sensitivities of all four methods increase, but the overall trend remains the

same as Setting 1. In Setting 3, we require that all main effects are zero, but some second-

order terms are significant. In this case, the sensitivities of both the full data and IBOSS

was near 100% for most tries, indicating that both appeared to have strong capability of
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identifying significant second-order effects. In Setting 4, the number of significant variables

is increased from p1 = 5 to p1 = 7. The sensitivities of all the methods are similar to

Setting 1, as expected. The results in Setting 5 are very interesting. In this setting, we

increase the overall data size n from 10,000 to 50,000. Consequently, the sensitivity of the

full data increases as expected, but the sensitivity of IBOSS also improves even if the size

of the subdata is unchanged at k = 1, 000. This shows that IBOSS can take advantage of

a larger dataset. With more candidate points available, the points selected by IBOSS also

becomes more informative. This feature makes the IBOSS approach advantageous for big

data regression.

The specificity values of the four methods are similar in all settings. It is interesting to

notice that in all settings except Setting 5, the specificity of IBOSS is slightly better than that

of the full data. In particular, the specificity of IBOSS is noticeably better than the full data

in Setting 3. This suggests that IBOSS does not incorrectly choose insignificant second-order

effects as often as the full data approach. The specificity of uniform sampling and leverage

sampling are better than the IBOSS approach. However, given their poor performance

on sensitivity, which is arguably more important than specificity by many scholars, these

methods are clearly inferior.

To assess the overall performance of both sensitivity and specificity, we also plotted sen-

sitivity and “1− specificity” in Figure 4. In each figure, a dot at the upper left corner would

mean that the corresponding method has an overall good performance in both sensitivity

and specificity. It is clear that in all five settings, the overall performance of IBOSS is very

close to the full data, and significantly better than uniform sampling and leverage sampling.

The settings considered in Table 4 assume that all variables follow a lognormal distribu-

tion. Unreported simulation results based on other distribution assumptions shows similar

patterns, although IBOSS performs better for more heavy tailed distributions, consistent

with findings in most existing IBOSS studies. Interestingly, many financial data are indeed

heavy tailed. For example, in the finance case we studied in this paper, the main variable
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of interest, financial leverage, is heavy tailed with a kurtosis of 27.42. In fact, it has been

argued that many results in finance that were based on normal distribution assumptions

may not be valid. For example, Deakin (1976) showed that many important financial ratios

were proved to be non-normally distributed. The authors urged researchers to be cautious

when using these financial data in empirical studies.

In sum, the simulation results showed that the proposed IBOSS subdata strategy clearly

outperformed alternative uniform sampling and leverage sampling methods. As noted by

an anonymous reviewer, Table 2 shows that when p increases, the weight assigned to center

points is closer to zero. Figure 5 provides further information between a∗ and p. In the sim-

ulations, we noted that the proposed Algorithm 1 may select similar points as those selected

using the IBOSS algorithm of (Yang & Stufken, 2009), and the similarity is more notable for

larger p. This phenomenon stems from not only the smaller weight assigned to center points,

but also that both IBOSS algorithms used a one-variable-at-a-time approach, and the final

selected subdata are only a proxy for the theoretically optimal solution. Nonetheless, we

will show in the two next sections that the proposed algorithm enjoys clearly advantages for

real cases when the true model is more complicated than used in the simulation. Further, it

has better robustness properties against possible missing terms.

4 A finance case study

One of the fundamental research questions in finance literature is the impact of corporate

attributes on firm value. We study the relationship between the firm value and several

important variables by using a second-order model. Typical approaches in finance usually

involved identifying one main independent variable and several control variables and then

running a linear regression models. More often than not, first-order models were used, and

less attention was paid to quadratic and interaction effects. However, second-order effects

may also be significant in corporate finance studies. For instance, financial leverage has been
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considered as one of the key variables that are related to firm value. But its relationship

with firm value may not be linear. In fact, there have been contradicting results reported in

the literature. The Modigliani-Miller Theorem (Modigliani & Miller, 1958) stated that the

value of the firm is independent of the firm’s capital structure. Then Baxter (1967) showed

the negative effect of leverage, which increases the financial distress costs before reaching the

optimal debt-equity ratio; and Jensen (1986) reported the positive effect of leverage on firm

value due to agency costs.

This motivated us to consider a second-order model consisting of leverage and several

other critical variables, whose impact on firm value have been previously studied. The

variables included in the model are: LEVERAGE (X1), measured as total liabilities divided

by total assets; SIZE (X2), measured as the logarithm of total assets (in millions); CASH

(X3), measured as total cash and cash equivalent holding scaled by total assets; PPE (X4),

measured as net value of property, plant and equipment scaled by total assets; CAPEX

(X5), measured as capital expenditure scaled by total assets; ROE (X6), measured as net

income divided by shareholder’s equity; RD (X7), measured as research and development

costs scaled by total assets; and AGE (X8), which is the firm age.

In empirical financial studies, a key issue was how to measure the firm value. Tobin’s Q,

which is the ratio of the market value of the financial claims on the firm to the replacement

cost of the firm’s assets, has been widely accepted as a fundamental performance metric since

its introduction by Brainard and Tobin (1968) and Tobin (1969). Of particular importance

behind the notion of Tobin’s Q is that it captures profitable investment opportunities. Higher

Tobin’s Q values suggest that the firm uses the economics resources more effectively because

the market value created by firm’s assets is higher than the cost of reproducing the firm’s

underlying assets.

We follow the conventional way of many finance researchers who have extensively used the

Compustat Fundamentals database to examine the effect of various firm-specific attributes

on Tobin’s Q. The Compustat database collects the financial statement and financial market
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data of all the U.S. publicly traded companies and is published by Standard & Poor’s Global.

We select the data of all U.S. non-financial public firms for 1980 through 2020 and delete the

observations with missing values. The final data consists of 181,755 firm-year observations,

representing 20,117 distinct firms. We calculate the dependent variable Tobin’s Q as the

market value of a company (common shares outstanding multiple with fiscal-year end share

price) divided by the book value of the net assets.

We first examine the prediction capability of the IBOSS subdata for k = 10, 000, which

amounts to approximately 5% of the full data, in Figure 6. In the calculation of MSE, we

randomly select 20% of the full data as the test set, and the remaining 80% constitute the

training set. We then employ the stepwise model selection procedure using the AIC criterion.

For k = 10, 000, the MSE for using the IBOSS data is 2.456, which was only slightly higher

than the MSE value of 2.434 for using the full data. However, the CPU time for the IBOSS

approach was only 4.32 seconds, which is substantially smaller than 79.59 seconds for using

the full data. In an industry where the improvement is often measured by milliseconds and

one millisecond advantage could be worth $100 million (Martin, 2007), the CPU time savings

from the IBOSS strategy have enormous financial implications.

Figure 6 also compares the proposed IBOSS strategy (labeled as “IBOSS (quadratic)”)

with leverage sampling, the existing IBOSS of Wang, Yang, and Stufken (2019) that was

developed for the linear model (labeled as “IBOSS (linear)”), and the linear model using the

full data. MSE values are computed for various k values from 2,000 to 10,000. We first note

that the proposed IBOSS strategy is superior to leverage sampling for all subdata sizes. Not

only does the former have smaller MSE than the latter, leverage sampling sometimes becomes

unstable, as evidenced by the surprisingly increased MSE when k increases from 8,000 to

10,000. Another interesting observation is that the IBOSS (linear) approach performs nicely

even if the true model is quadratic, indicating that the IBOSS algorithm of Wang, Yang,

and Stufken (2019) can have some nice robust properties against model misspecifications.

We shall provide with more detailed discussions on robustness in the next section. Finally,
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Figure 6 also demonstrates that it is important not to ignore second-order terms in a model.

As mentioned previously, in the research of the finance field, scholars often focus on the

first-order linear model. This would result in significantly higher MSE values even if the full

data was used. Finally, Table 5 assesses the performance of the proposed IBOSS strategy

from the standpoint of variable selection. The results in the table correspond to k = 10, 000.

It can be seen that the IBOSS subdata allows us to identify most of the terms that are

shown to be significant using the full model. IBOSS identifies all the main effects and most

of second-order terms that are identified to be significant from using the full data.

5 Discussion

5.1 Characterization for a non-linear model

We have been focusing on developing an IBOSS strategy for the second-order model. How-

ever, the proposed framework is applicable to a more general model. As an example, we

now briefly discuss how to develop an IBOSS strategy for a non-linear model. Consider a

multivariate logistic regression model with binary responses where a subject is administered

p covariates at level xi = (1, xi1, . . . , xip)
′ (Agresti, 2002). The associated theoretical opti-

mality results for such a model are relatively scarce and were mainly focused on the model

containing main effects only (Sitter & Torsney, 1995; Yang, Zhang, & Huang, 2011). As far

as we know, there is no optimality result available when interaction effects are present in a

multivariate logistic regression model. In this section, utilizing the aforementioned strategy,

we provide an optimality result for the following model:

logit(yi = 1) = β0 +

p−1∑
k=1

βkxik +

p−2∑
k=1

p−1∑
l=k+1

βklxikxil + βpxip. (5.1)

Here, yi is the response of subject i with covariates level xi, p ≥ 3, β = (β0, β1, . . . , βp,

β12, . . . , βp−2,p−1) are unknown parameters. We assume the first p−1 covariates are bounded,
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i.e., xij ∈ [Lj, Uj], j = 1, . . . , p− 1 and there is no constraint on the last covariate, i.e., xip ∈

(−∞,∞). Such an assumption is typical for deriving optimal designs under multivariate

logistic regression models (Sitter & Torsney, 1995; Yang, Zhang, & Huang, 2011).

In the locally optimal design context, there is a one-to-one mapping between xi and ci,

where ci = (1, xi1, . . . , xi,p−1, ci)
′. Here, ci = β0+

∑p−1
k=1 βkxik+

∑p−2
k=1

∑p−1
l=k+1 βklxikxil+βpxip.

It is convenient to denote the design ξ as ξ = {(ci, ωi), i = 1, ..., k}. Let

al,j =


Lj d l

2p−1−j e is odd,

Uj d l
2p−1−j e is even,

l = 1, . . . , 2p−1; j = 1, . . . , p− 1, (5.2)

where dae is the smallest integer greater than or equal to a.

Theorem 3 Under Model (5.1), ξ∗ is a D-optimal design of parameter vector β if ξ∗ =

{(c∗l1, 1/2p)&(c∗l2, 1/2
p), l = 1, . . . , 2p−1}, where (c∗l1)

T = (1, al,1, . . . , al,p−1, c
∗) and (c∗l2)

T =

(1, al,1, . . . , al,p−1,−c∗), al,j is defined in (5.2), c∗ minimizes c−2(Ψ(c))−m, and m = (p2 −

p+ 4)/2.

The characterization in Theorem 3 lays the theoretical foundation for developing subdata

selection algorithms. One can follow Step 2 outlined in Section 2.3 and Step 3 outlined in

Section 2.4 to develop an efficient subdata selection algorithm as well as some theoretical

properties.

5.2 Robustness

Like all other existing IBOSS approaches in the literature, the characterization of optimal

designs in the general framework depend on model assumptions. An important issue which,

as far as we know, has not been adequately addressed previously, is how robust they are

against model misspecifications. For example, is the IBOSS algorithm proposed by Wang,

Yang, and Stufken (2019), which was based on the linear model, also effective for the second-

order model (2.1)? This important question was raised by an anonymous reviewer. For the
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finance example, we compared the performance of two IBOSS approaches. As shown in

Figure 6, the IBOSS (linear) approach performed surprisingly well even if the true model

has significant second-order terms. Across all selected subsample sizes, it has slightly higher

prediction MSE values than the proposed algorithm, labeled as IBOSS (quadratic), but

outperforms both random sampling and leverage sampling. This demonstrates that the

IBOSS algorithm proposed by Wang, Yang, and Stufken (2019) is robust against possible

important second-order terms in the true model. One possible explanation is that their

IBOSS algorithm selects points one-variable-at-a-time. Thus, even if the characterization of

the D-optimal design for the linear model requires that only end points be chosen, in reality,

the true weight distributions may resemble those in Table 2, and some middle points would

be selected inevitably.

By the same token, the true distribution of weights in our proposed algorithm, which

also takes up the one-variable-at-a-time approach, would be different from those theoretic

results shown in Table 2. Thus, we suspected that the inclusion of middle points in the

proposed algorithm based on the second-order model would make the algorithm even more

robust than the one of Wang, Yang, and Stufken (2019). We investigated this by a simulated

example, in which we generate independent samples xi from a bivariate normal distribution:

x =

x1
x2

 ∼ N


0

0

 ,

 1 0.5

0.5 1


 . (5.3)

The responses are generated from the following model: y = x1 + x2 + cos(x1) + ε, where

ε ∼ N(0, 32). Suppose that, without knowledge of the true data generating process, we

would attempt to fit a quadratic regression model.

Figure 7 presents boxplots for out-of-sample prediction errors over 100 repetitions. For

both linear IBOSS and quadratic IBOSS, we select a subdata of size of 1,000. The left

and right panel has full data size of 10,000 and 100,000, respectively. We can see that

the prediction MSE values resulting from using the quadratic IBOSS algorithm are much
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smaller than those using the linear IBOSS algorithm. Furthermore, when the full data size

increases, there are more extreme values that lead to a further deterioration of linear IBOSS.

In contrast, the prediction MSE values resulting from quadratic IBOSS remain stable. This

example demonstrates that the additional points selected in the middle by the quadratic

IBOSS models may provide a certain level of robustness against model misspecification.
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Tables

Table 1: Examples of Kiefer (1961)’s and Kôno (1962)’s designs.

p = 3 p = 4

Kiefer’s Kôno’s Kiefer’s Kôno’s

Corner (πp) 0.0720 0.0638 0.0370 0.0282
Midpoint of edge (πp−1) 0.0190 0.0353 0.0038 0.0157

Center of face (πp−2) 0.0328 0 0.0118 0
Origin (π0) 0 0.0656 0 0.0474

Table 2: Relationship between p, a∗, and the weights on 0 and ±1 in the D-optimal design.
on the original scale, ±1 correspond to the extreme points, and 0 corresponds to the median.

p a∗ 0 ±1

2 0.7435 0.2565 0.3717
3 0.7930 0.2070 0.3965
4 0.8271 0.1729 0.4136
5 0.8518 0.1482 0.4259
6 0.8705 0.1295 0.4352
7 0.8850 0.1150 0.4425
8 0.8967 0.1033 0.4484
9 0.9062 0.0938 0.4531
10 0.9142 0.0858 0.4571

· · ·
20 0.9537 0.0463 0.4768

· · ·
40 0.9759 0.0241 0.4880
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Table 3: CPU times for different approaches, subdata size fixed at k = 1, 000.

(a) CPU times for different n with p = 10

n Unif Leverage IBOSS Full

5× 104 0.01 1.08 0.05 0.39
105 0.01 1.73 0.05 0.84
106 0.02 16.74 0.42 6.87

(b) CPU times for different p with n = 106

p Unif Leverage IBOSS Full

5 0.01 4.12 0.25 1.50
10 0.02 16.74 0.42 6.87
15 0.04 65.21 0.78 26.30

Table 4: Setup details for simulations comparing sensitivity and specificity.

Settings 1 2 3 4 5

# of variables 10 10 10 10 10
# of non-zero main effects 5 5 0 7 5
# of non-zero interaction effects 10 10 10 21 10
# of non-zero quadratic effects 5 5 5 7 5
Coef of non-zero main effects 1 5 or 1* - 1 1
Coef of non-zero interaction effects 0.5 2.5 or 0.5* 2.5 or 0.5* 0.5 0.5
Coef of non-zero quadratic effects 0.5 2.5 or 0.5* 2.5 or 0.5* 0.5 0.5
Full data size 10,000 10,000 10,000 10,000 50,000
Subdata size 1,000 1,000 1,000 1,000 1,000

∗ In Settings 2 and 3, coefficients are not equal. In Setting 2, the coefficients of X1, X2 are 5, while the
coefficients of X3 − X5 are 1; the coefficients of X2

1 , X
2
2 are 2.5, while the coefficients of X2

3 − X2
5 are 0.5;

and the non-zero second-order effects involving X1, X2 are 2.5, and the others are 0.5. Setting 3 is the same
as Setting 2 except that all main effects are 0.
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Table 5: Terms included in the final model of forward selection.

IBOSS Full

Main Effects 1, 2, 3, 4, 5, 6, 7, 8 1, 2, 3, 4, 5, 6, 7, 8

Interaction Effects
12, 16, 17, 23, 26, 28
35, 37, 45, 46, 47, 48
56, 67, 78

13, 14, 15, 16, 23, 24, 25
26, 27, 28, 34, 35, 37, 38,
45, 48, 58, 67, 68, 78

Quadratic Effects 1, 2, 4, 5, 7, 8 1, 2, 3, 4, 5, 7, 8

Adjusted R2 with linear 20.76% 16.71%
Adjusted R2 (linear+lev2) 20.76% 16.79%
Adjusted R2 with second-order 26.94% 21.65%
Time (seconds) 4.32 79.59

X1 : LEVERAGE X2 : SIZE X3 : CASH X4 : PPE
X5 : CAPEX X6 : ROE X7 : RD X8 : AGE
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Figures

Figure 1: MSEs for estimating the slope parameter (Panel a) Out-of-sample prediction errors
(Panel b) for three different distributions of the independent variables. The subdata size is
fixed at k = 1, 000 and the full data size n changes.
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Figure 2: MSEs for estimating the slope parameter (Panel a) Out-of-sample prediction errors
(Panel b) for three different distributions of the independent variables. The full data size is
fixed at n = 106 and the subdata size k changes.
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Figure 3: Sensitivity and specificity boxplots of Settings 1 - 5.
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Figure 4: Sensitivity plotted against 1− specificity for Settings 1 - 5, 100 runs each. Points
are jittered. Upper left points have best performances.

7



Figure 5: Relationship between p and a∗.

Figure 6: Out-of-sample prediction errors of different methods in real data.
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Figure 7: Out-of-sample prediction errors when the model is misspecified.
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Appendix

Lemma 1 For any given design ξ =
{(

(zi1, . . . , zip)
T , wi

)
, i = 1, . . . , q

}
, there exists a de-

sign ξ̃ such that |I(ξ)| ≤ |I(ξ̃)|. Here

ξ̃ =
{(

(±zi1, . . . ,±zip)T , wi/2
p
)
, i = 1, . . . , q

}
. (A.1)

Lemma 1 states that, in an optimal design, each independent variable should be sym-

metric in its possible range of values. The updated design ξ̃ requires splitting the weight of

one design point to 2p design points, resulting in a much larger number of support points.

Lemma 2 For a design ξ̃ described in Lemma 1, there exists a design ξ̄ such that |I(ξ̃)| ≤

|I(ξ̄)|, and all variables of the design points in ξ̄ take the values −1, 0, 1.

This lemma states that, for a given design in the form of ξ̃, we can always find a better

design ξ̄ with at most 3p support points. Thus, a design that is optimal in the design space⋂p
j=1{−1, 0, 1} is also optimal among all designs in

⋂p
j=1[−1, 1].

Lemma 3 For l = 0, 1, . . . , p, let Θl denote the set of design points with l elements equal to

±1, and the remaining p− l elements equal to 0. An optimal design assigns equal weight to

all points that belong to the same set Θl.

Lemma 3 states that all points in the same Θl should receive the same weight in an

optimal design. Therefore, even though there are 3p design points, we only have p weights

to determine (one for each Θl, and the last weight can be decided by the constraint that all

weights sum to 1).

Proof of Theorem 2 For i = 1, ..., n, j = 1, ..., p, let x(i)j be the ith order statistic for

x1j, . . . , xnj. For l 6= j, let x
(i)l
j be the concomitant of x(i)l for xj, i.e., if x(i)l = xsl then

x
(i)l
j = xsj, i = 1, ..., n.
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When xi ∼ N(µ,Σ), by the similar argument as that of Proof Theorem 6 in Wang,

Yang, and Stufken (2019), we obtain

x(i)j = µj − σj
√

2 log n+ oP (1), i = 1, ..., r,

x(i)j = µj + σj
√

2 log n+ oP (1), i = n− r + 1, ..., n,

x
(i)l
j = µj − ρljσj

√
2 log n+OP (1), i = 1, ..., r,

x
(i)l
j = µj + ρljσj

√
2 log n+OP (1), i = n− r + 1, ..., n.

(A.2)

By Equation (A.2), and the definitions of M(δ) and f(xi) (Equations (2.3) and (2.1), re-

spectively), we can directly verify Equation (2.13) holds.

When xi ∼ LN(µ,Σ), also by the similar argument as that of Proof Theorem 6 in Wang,

Yang, and Stufken (2019), we obtain

x(i)j = exp(−σj
√

2 log n)OP (1), i = 1, ..., r,

x(i)j = exp(σj
√

2 log n)OP (1), i = n− r + 1, ..., n.

x
(i)l
j = exp(−ρljσj

√
2 log n)OP (1), i = 1, ..., r,

x
(i)l
j = exp(ρljσj

√
2 log n)OP (1), i = n− r + 1, ..., n.

(A.3)

We can directly verify Equation (2.14) using the same strategy as that of (2.13).
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