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SUMMARY

Inertial migration of spherical particles has been investigated extensively using experiments,

theory, and computational modeling. Yet, a systematic investigation of the effect of particle

shape on inertial migration is still lacking. Herein, we numerically mapped the migration dy-

namics of a prolate particle in a straight rectangular microchannel using smoothed particles

hydrodynamics (SPH), at moderate Reynolds number flows. After validations, we applied our

model to 2:1 and 3:1 shape aspect ratio particles at multiple confinement ratios. Their effects

on the final focusing position, rotational behavior, and transitional dynamics were studied. In

addition to the commonly reported tumbling motion, for the first time, we identified a new

logrolling behavior of a prolate ellipsoidal particle in the confined channel. This new behavior

occurs when the confinement ratio is above a threshold value of K = 0.72. Microfluidic experi-

ments using cell aggregates with similar shape aspect ratio and confinement ratio confirmed this

new predicted logrolling motion. We also found that the same particle can undergo different

rotational modes, including kayaking behavior, depending on its initial cross-sectional position

and orientation. Furthermore, we examined the migration speed, angular velocity, and rotation

period, as well as their dependence on both particle shape aspect ratio and confinement ratio.

The computational model we developed in the present work can be extended to study other

shapes, channel geometries, and flow conditions. Our findings are especially relevant to the

applications where particle shape and alignment are used for sorting and analysis, such as the

xii



SUMMARY (continued)

use of barcoded particles for biochemical assays through optical reading, or the shape-based

enrichment of microalgae, bacteria, and chromosomes.
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CHAPTER 1

BACKGROUND

In the past decade, inertial microfluidics has gained popularity among the different tech-

niques to separate and sort cells and particles at the microscale [3]. It is particularly suitable for

biological and medical applications since it solely relies on the effect of fluid inertia [4]. The ma-

jority of studies on inertial migration have focused on spherical particles, and there is a lack of

experimental and computational studies on shaped particles [5] due to the associated technical

challenges. Shaped particles are difficult to manufacture and their complex dynamics make their

simulations computationally expensive. Common non-spherical particles include ellipsoids, such

as prolate (λ = radial diameter/equatorial diameter > 1) and oblate (λ < 1), non-ellipsoids, such

as rod-like and disk-shaped beads, and asymmetric particles. Cells found in biological samples

are best represented by deformable spherical particles, capable of changing their morphology,

thus shape could be used to distinguish between different cell types, cell states, and cell cycle

stages.

In this work, we systematically explored the inertial migration dynamic behavior of pro-

late particles in a straight rectangular microchannel. We numerically investigated the effects of

different shape aspect ratios and confinement ratios using smoothed particles hydrodynamics

(SPH) [6]. Our computational study serves as the first systematic investigation of the inertial

migration behavior of prolate particles in a microchannel. In the following sections, a description

of inertial microfluidics will be provided, followed by the current state of the art, with a specific

1
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focus on shaped-particles. Then, a brief overview of numerical analysis will be given, followed

by the computational modeling of inertial microfluidics. The Methods section will mainly cover

a description of SPH and its implementation. Next, the results will be presented and discussed.

Lastly, in the Conclusions section, the final remarks and future perspectives will be addressed.

1.1 Inertial microfluidics

Microfluidics is the area of research devoted to the manipulation of fluids in micro channels

and it has experienced a massive development in the past decade. The purpose of microfluidic

devices is to mix or separate particles or fluids, in a cheap, fast and portable way. Particles

include cells and biological specimens. The enrichment and sorting of particles can be obtained

by applying an external force field or exploiting passive hydrodynamic forces. Many microfluidic

devices employ external forces, using either an electromagnetic field [7, 8], acoustic field [9],

or light field [10]. However, they could result in damage to the biological particles that are

being analyzed. These sorting methods are classified as active microfluidics. In addition to

these techniques, separation can be also achieved by exploiting the fluid properties, channel

geometry, the particle morphology and its interaction with posts and walls. Some examples

include hydrodynamic filtration (HDF), deterministic lateral displacement (DLD), pinched-flow

fractionation (PFF), and gravitational methods [11,12].

Most of the previous separation methods operate in Stokes regime, where the characteristic

Reynolds number of the flow is smaller than one. The Reynolds number Re represents the ratio

of inertial to viscous forces

Re =
vDhρ

µ
(1.1)
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where v is the average velocity of the fluid, Dh is the hydraulic diameter of the channel, ρ

and µ are the fluid density and viscosity, respectively. If Re << 1, it means that the effect of

inertia is negligible. The low velocity of the flow is responsible for the low throughput of these

devices. Considering also their design complexity, their use for industrial scale applications is

hindered [13].

Inertial microfluidics exploits fluid inertia in confined channel flows, where the Reynolds

number is typically in the range of 1-100, and the laminar flow regime is ensured. Brownian

motion is negligible in this range of applications. Since inertia is not zero, in a straight channel

with either a square or a rectangular cross-section, particles are subjected to inertial lift forces.

When the forces are balanced, a stable equilibrium position for a particle can be achieved [14].

The current understanding of the physics underlying this phenomenon is based on the two

main forces acting on a spherical particle – the shear gradient-induced lift force and the wall-

induced lift force [15], that will be described later on. Besides these, in specific cases, such as

spiral channels, other secondary lift forces take place and further influence the final equilibrium

position of the particle. In general, several variables affect the inertial migration of a particle, and

these include flow parameters, types of channel cross-sections and geometries, and particle and

suspension characteristics. Rapid prototyping allows to explore a variety of channel geometries,

such as straight, curving, spiral, that can be used with different cross-sections, such as square,

circular, rectangular, and triangular.

In a straight channel with rectangular cross-section, there are typically two stable equilibrium

positions located close to the longer channel walls, at the center mid-line, as shown in Figure 1.
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Figure 1: (a) Straight rectangular channel where the particles focus at the top and bottom
of the cross-section’s center-line. (b) Portion of a spiral channel with trapezoidal cross-section.
The presence of secondary flows drives bigger particles close to the inner part of the channel
and smaller particles move towards the outer region of the channel.

The inertial migration of particles in a microchannel was first reported in 1961 by Segre and

Silberberg [16]. They observed that, in a circular pipe, it was possible to collect spherical

particles in an annular region located at a distance 0.6 times the radius length, away from the

center. A lot of theoretical, experimental and numerical studies followed this first observation,

and they allowed to gain a better understanding of this phenomenon, even though there is still

a lot to be clarified and discovered.

1.1.1 Physics of inertial microfluidics

One of the main characteristics of inertial microfluidics is the laminarity of the flow. If a

particle moves downstream in a microchannel and no external forces are applied, it will follow

the fluid streamlines. In fluid mechanics, a flow streamline is a path that goes along with the
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velocity vector field, that an ideal massless particle would follow. When the Reynolds number

of the channel increases, inertial forces prevail over viscous forces, and the migration of particles

across streamlines is observed [17].

Inertial forces are classified as dominant and weak lift forces. The dominant inertial lift forces

include:

1. The wall-induced lift force, directing the particles away from the wall. The effect of walls

in a confined flow is different from that in an unbounded flow. If a particle is sufficiently

close to a wall, the primary effect it experiences is a deceleration, and then it is driven

away from the wall, towards the channel centerline;

2. The shear gradient induced lift force, which pushes the particles towards the walls. It

is due to the curvature of the fluid velocity profile. In general, when there is no curvature,

it is referred as a simple shear flow. Inside a channel, the presence of the curvature directs

the particle away from the center of the channel;

3. The rotation-induced lift force, introduced for the first time in the two-stage model by

Zhou and Papautsky [18]. In this model, the particle migrates towards the nearest wall

in the first stage. The main driving force is the shear gradient induced force. This is

balanced by the wall repulsive force. Once the two forces are balanced, the particle has

reached a region called equilibrium manifold, near the channel wall. At this point, the

particle experiences a lateral migration towards the final focusing position. It is a slower
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migration governed by the rotation of the particle. An empirical relationship for the lift

coefficient was derived [18]:

C+
L ∝ H2

a
√
Re

(1.2)

Lift coefficients are associated with lift forces and the sign determines the direction of the

force. In this case, the positive sign means that the rotation-induced force moves up to

the velocity gradient, towards the lateral centerline of the channel, along the wall [18].

Among the weaker inertial forces there are:

1. The Magnus lift force, due to the pressure gradient around a rigid spherical particle, re-

sulting from the asymmetry of the streamlines, generated from the rotation of the particle.

In a microchannel this effect acts as a lift force directed upwards, and it was originally

studied in the work by Rubinow and Keller [19]. This force is expressed as:

FRK = πa3ρ~Ω× ~V (1.3)

where a is the radius of the spherical particle, ρ is the density of the fluid, ~Ω is the angular

velocity of the particle and ~V the velocity of the fluid. On the side where the spinning

of the particle increases the velocity of the fluid, the pressure is reduced, thus the force is

directed towards the high velocity region. A particle near a wall will migrate towards the

center of the channel. This force is not dominant in the process of lateral migration of a

spherical particle [20];
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2. The Saffman force, or slip-shear force, is another inertial effect due to the presence of

the walls. In this case, the effect is not related to the interaction of the particle with a

single wall, like the wall-induced lift, but results from the particle lagging behind the fluid,

which is indirectly caused by the presence of the channel walls. This results in a lateral

force directed towards the center of the channel. If the particle is leading the flow instead

of lagging, the force is directed away from the center of the channel. However, this force

is only present in simple shear flows and not in Poiseuille flows, where most particles are

more likely to undergo a shearing behavior. It is still important to mention this force,

because it can play a major role in determining the final equilibrium position in specific

cases, for example when the particle is not neutrally buoyant;

In curved channels, other phenomena can take place, such as the well-known Dean flow. It is a

secondary flow appearing in curved channels or straight channels containing posts or other types

of obstacles [21, 22]. Two symmetric vortexes are generated in the top and bottom part of the

channel due to the difference in velocity between the region near the wall and in the center of the

channel. The direct consequence is that a particle near the center will experience a centrifugal

force directed outwards. The aforementioned vortexes are formed due to the re-circulation of

the fluid near the wall.

1.2 Applications of inertial microfluidics

Inertial microfluidics can be applied to a variety of different fields and integrated into Lab-

on-Chip devices, due to its portability and simplicity. In particular, its passive nature makes

it extremely suitable for biological and medical applications [14]. These include cell cytometry,



8

enrichment, separation and sorting of cells and bacteria, also including blood cells, cancer cells,

and budding yeast [13]. Flow cytometry is a basic analytical tool in biology, used to perform

single-cell analysis. Conventionally, a train of cell passes through an optical detection system for

analysis and counting. Inertial microfluidics has been successfully used to build different types

of cytometry systems, reducing the cost, the amount of reagents required and the processing

speed. [23]

In addition, the high-throughput of inertial microfluidics well integrates with high-speed imaging

techniques. [24] The most common applications for this application are the identification of

rare cells and cell phenotyping. [25] Other single-cell analysis applications include magnetic-

inertial separation, PCR(polymerase chain reaction)-based detection, spectrophotometry and

mass spectrometry. [23] In general, the most common targets are bacteria and circulating tumor

cells (CTCs). [26–28] Cancer is characterized by the uncontrolled growth of malignant cells that

can invade other districts of the body, resulting in metastases. During this process, cancer

cells can be found in the blood stream, becoming CTCs. Therefore, they can be used as a

fundamental diagnostic tool against cancer. However, CTCs are rare and difficult to isolate, but

inertial microfluidics can help in their collection and counting.

Most of the works are developed in straight, curved and spiral channels, or a combination

of them. Spiral channels are particularly suitable for separation and sorting, thanks to the

presence of the secondary flows. Moreover, various cross-sections of the channel can be adopted,

each of them with unique effects on the manipulation of the particles. The variety of possible

combinations makes inertial microfluidics a versatile tool that can satisfy specific needs. In
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the recent work published by Shiriny and Bayareh [29], they built a single loop spiral channel

for the segregation of cancer cells from white blood cells (WBCs) and red blood cells (RBCs),

achieving 100% of purity. The extraction of CTCs from a background population belongs to the

more general field of microfluidic-based cell separation. The separation technology varies

according to the channel geometry. [30] In straight channels, ones relies mainly on the lateral

migration of the particles due to inertial forces. Common applications for straight rectangular

channels involve the manipulation of bacteria, DNA, bubbles and droplets. [31–33] Arcuate

channels have been used for the separation of polystyrene beads [34] and skeletal satellite cells for

therapeutic purposes and tissue engineering. [35] Sinusoidal channels with various curvatures and

serpentine channels have been used to separate polystyrene particles and to target cyanobacteria.

[36] Spiral channels have been used for the manipulation of neutrally buoyant particles and

cells [37], CTCs [38], micro-beads [39] and fluorescent beads. [40]

Finally, inertial microfluidics has been widely integrated with active microfluidics to improve

the throughput, purity and efficiency of the separation. For example, it was combined with

magnetophoresis and DLD for CTCs separation or with acoustic devices targeting fluorescent

particles [41], bacteria in blood [42] and CTCs [43]. Also the dielectric technology was used for

particle handling, such as in the work by Li et al. [44], where they built an integrated on-chip

device for mRNA extraction in living cells.

In order to increase the efficiency and the purity of the process, different channel geometries

and technologies can be combined in the so-called multi-technology cascading channels.

When the chip is made only by different channel geometries connected in series or parallel, the
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technique goes under the name of single-technology cascading channel. [30] For example,

in Ren et al. 2021, serpentine channels were organized in parallel to scale up the throughput of

separation of tumor cells. [45]

Overall, there is a huge amount of possible solutions depending on the specific application.

Comprehensive design rules are still lacking, and providing a general framework is necessary,

and also one of the aims of the present work. From the engineering perspective, beside the

geometry of the channel, one can act on a set of parameters, some of which are described in the

following section.

1.2.1 Parameters affecting inertial migration

In general, several parameters affect the final equilibrium position of a particle in a mi-

crochannel. These can be related to the channel topology, the fluid properties, flow conditions,

particle characteristics or a combination of them. The flow rate affects the equilibrium position

of a particle by shifting it closer to the wall when Re increases. In terms of forces, both the

wall-induced and shear gradient-induced forces increase at higher Re, but the increment is higher

for the latter. This have been previously observed by Segre and Silberberg [16] in circular ducts

starting from Re > 30. Not only the flow conditions, but also the fluid properties can affect the

final equilibrium positions. The rheological properties of non-Newtonian fluids introduce the

viscoelastic force, that contributes to the lateral migration of a particle in a channel. Although

the present study has been developed modelling a Newtonian fluid, like water, it is important to

know that viscoelastic forces have been used for high-throughput separation and combined with

inertial forces, also in computational studies [46]. An interesting way to manipulate particles
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at the microscale is to exploit their own characteristics. Particle size determines the focusing

position, which is shifted towards the nearest wall when the size is reduced. Bigger particles

get closer to the center, due to the steric effect. Moreover, in real case scenarios, particles are

not perfectly rigid, and especially bio-particles such as cells are deformable. Their deformabil-

ity introduces a lift force perpendicular to the flow direction. The general trend is that softer

particles focus closer to the channel center than stiffer particles. Another thing to take into

account is the particle concentration. Higher numbers of particles can introduce a disturbance

in the migration across adjacent streamlines, creating new focusing positions and affecting the

particles spacing. Finally, particle shape affects the inertial migration process, in a way that

still needs to be elucidated, and the current progress on the topic will be discussed next.

1.3 Inertial migration of shaped particles: state of the art

Spherical particles are relatively easy to investigate due to their symmetry and simplic-

ity. Nonetheless, cells found in biological samples are best represented by deformable spherical

particles, capable of changing their morphology. Therefore, shape and deformability could be

used to distinguish between different cell types, cell states, and cell cycle stages [13], but also

between eukaryotic cells and bacteria, that are generally non-spherical and approximately 10

times smaller [47]. Indeed, as it can be noticed from the previous list of applications, most of the

studies on inertial migration have focused on spherical particles. There is a lack of experimental

and computational studies on shaped particles due to the associated technical challenges. From

the experimental side, non-spherical particles are difficult to manufacture, and from the com-

putational side their complex dynamics make their simulations expensive and time consuming.
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Common non-spherical particles include ellipsoids, such as prolate (λ = radial diameter/equa-

torial diameter > 1) and oblate (λ < 1), non-ellipsoids, such as rod-like and disk-shaped beads,

and asymmetric particles.

The first theoretical study on ellipsoids was done by Jeffery in 1922 [1], considering a simple

shear flow in Stokes regime (Re = 0). He showed that the particles rotate around their vor-

ticity axis, which is perpendicular to the plane of the flow gradient, as shown in Figure 2a.

He found that a particle can undergo a set of infinite possible orbits that depend on the start-

ing orientation, the so-called Jeffery orbits, which include kayaking, tumbling, and log rolling

( Figure 2b-d). He also studied the particle angular velocity and provided a formula to compute

its orbit period given the aspect ratio and the shear rate. This mathematical framework was

generalized for rigid bodies forty years later, in the work by F.P. Bretherton. [48] Even in this

study, non-Newtonian and inertial effects were not considered. Bretherton also introduced the

"mirror symmetry time reversal" theorem (MSTR theorem). In brief, it shows that if we con-

sider a particle moving in a channel flow or a viscous shear flow, if we imagine to reverse time,

we will obtain the mirror symmetric configuration in terms of flow, force and pressure field. The

MSTR theorem is only valid if the particle is sufficiently symmetric. In a way, shaped particle

may represent an exception to this theorem, thus they can be subjected to lift forces even if

inertia is absent.

In the current literature, despite a significant number of studies of ellipsoidal particles in

shear flows [49], there is little work on the rotational and inertial behavior of ellipsoidal particles

in microchannels. For a non-spherical particle in a microfluidic system, lateral migration and
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Figure 2: (a) The gradient of velocity lies on the x-z plane, with the fluid flowing in the x-
direction. The vorticity axis, perpendicular to the flow-gradient plane corresponds to the y-axis.
(b) Kayaking motion. (c) Tumbling motion. (d) Log-rolling motion.

the rotation are strongly related, and the experimental observation of exact motion is not trivial

and requires new imaging techniques such as 3D reconstruction.

It has been shown that in a Poiseuille flow a prolate particle prefers to tumble [50,51], similar to

the studies in shear flows. The main experimental work reported in literature on the study of the

shape effects on the lateral migration and translational behavior is the one by Di Carlo and his

coworkers [13,52]. Hur et al. [52] experimentally investigated the lateral and vertical equilibrium

positions of a variety of artificial beads, with different size and cross-sectional shapes. From the

numerical side, the complex rotational behavior of non-spherical particles is associated with a
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smaller time step and requires a higher computational cost [53]. Lashgari et al. [2] mapped

the inertial migration dynamics of oblate particles in square and rectangular microchannels. To

the best of our knowledge, it is the only systematic computational investigation for ellipsoidal

particles in a microchannel, but it was limited to oblate particles.

Prolate particles have been investigated even less than oblate particles. The only integrated

experimental and computational study of prolate ellipsoids in a microchannel was performed by

Masaeli et al. [13], who used prolate particles of different aspect ratios and compared experi-

mental results with lattice Boltzmann and finite element simulations. They experimentally and

computationally studied the shape-based separation of prolate ellipsoid, and applied the results

to the enrichment of artificial beads and yeast. In this work, they distinguished between an

in-plane rotation, when the particle rotates around the y-axis, and out-of-plane rotation, when

there is any other component of rotation. Increasing the particle Reynolds number from 0.3

to 0.75, the percentage of in-plane rotations increases, and the rotational behavior is tumbling.

The particle Reynolds number is defined as

ReP = Re
( a

W

)2
(1.4)

where Re is the channel Reynolds number introduced in (Equation 1.1), while a and W are the

diameters of the particle and the channel, respectively.

They have also compared the period of rotation from their simulations to the theoretical value

from Jeffery’s theory, mainly observing no significant variation and, concluding that inertia has
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no notable effect on it. However, inertia reduced the infinite number of Jeffery’s orbits to just

one stable orbit, implying that the starting orientation does not influence the final equilibrium

orbit. They observed how the rotation of the particles is responsible for the shape-dependent

separation. Higher aspect ratio prolates focuses closer to the center of the channel since the

repulsive wall lift from the wall is stronger, when the major axis of the particle is aligned perpen-

dicular to the flow during the rotation. Finally, similar to what was reported by Hur et al [52],

they confirmed that spherical and prolate particles with equivalent diameters have similar fi-

nal equilibrium positions, and that the maximum rotational diameter is the main parameter

responsible for the focusing positions.Yet, since these studies focused on experiments and appli-

cations [13, 52], a limited range of confinement ratios were investigated computationally. More

important, the transient migration dynamics was less explored than the final focusing positions

in these studies.

1.4 Overview of numerical analysis and mathematical modelling

In order to describe a physical problem, a suitable mathematical formulation is required.

The general laws need to be particularized in the specific forces acting on a body. The equa-

tions constitute the basic relations within the model. In addition, a set of initial and boundary

conditions must be considered. Once the model has been defined, the solution, in principle

unique, should be found. The theoretical understanding of the existence and the smoothness of

the solutions of the Navier-Stokes equation is still debated in the literature. The complexity of

physical phenomena does not allow to find an exact solution to a given problem, most of the
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time. For this reason, this needs to be approximated by a method, implemented on a computer,

hence the definition of numerical methods. In this section, only a brief introduction is provided,

following the treatment in ref. [54] After that, the mathematical model must be validated. This

is a crucial step, to make sure that what the model produces is consistent with the results

observed in the real case scenario. That is because a model is inherently prone to errors. This

concept will be briefly mentioned next.

Numerical methods are an instrument that can be used to model reality and support experi-

ments. Most of the real case problems do not have an exact solution, or we may need to capture

some parameters that are not accessible via traditional experimental investigation. To do this,

several mathematical instruments need to be combined to solve a set of governing equations.

These include interpolation, numerical differentiation, numerical integration. There are several

numerical methods to conduct simulations, which need to be suitable to the specific application.

Regardless of the method, the common feature of numerical schemes is the discretization. It is

a necessary step to make a continuum domain discrete. Space can be simplified with a grid or

mesh, and time can be discretized with time steps. As previously mentioned, when doing this

approximations, errors are inevitable. Here is a brief overview of the different types of errors

that characterize numerical schemes:

1. Round-off error is related to the precision of the computer itself (e.g. single or double

precision) and it is always present;
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2. Truncation error: associated with the approximation of a mathematical procedure, e.g.

approximating the derivative with finite differences. Using the Taylor expansion of f(x),

it is obtained that:

f ′(x0) =
f(x0 + h)− f(x0)

h
− 1

2
f ′′(x0)h− 1

6
f ′′′(x0)h

2 + . . . (1.5)

where the first part is the the approximation of the derivative of f and the second part

is the truncation error. It could be possible to choose more precise approximations, thus

reducing the order of the truncation error;

3. The Local truncation error is the one introduced by a single step of the integration

algorithm assuming that the previous step is the exact value of the function;

4. The Global truncation error is caused by the accumulation of the truncation error.

Besides the errors, numerical methods are characterized by fundamental properties, that should

be taken into account when studying a numerical scheme or when trying to design a new one.

Here are introduced some of these key concepts for numerical analysis:

1. Stability: it is assumed that the solution of the numerical problem is bounded. A method

can be stable or unstable, and stability does not imply accuracy. In particular a method

can be:

(a) Unconditionally stable: the method is always stable (for any time step);

(b) Unstable: the method is always unstable (for any time step);
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(c) Conditionally stable: the method is stable only for some time steps or under a range

of conditions;

2. Accuracy: it is the order of the truncation error, which can be amplitude errors or phase

errors (if the phase is negative, it means that the solution is slightly behind the true value);

3. Stiffness: an integration problem whenever the ratio between the maximum and minimum

eigenvalues is too large:

λmax

λmin
≫ 1 (1.6)

The choice of the time step size may depend from this property;

4. Consistency: a numerical scheme is consistent when, in the limit of the grid size, it goes

to zero;

5. Convergence: the sequence arising from successive solutions (as the grid size goes to

zero) approaches a limit.

The Lax-Richtmyer [55] theorem states that given a consistent numerical approximation of

a problem, the stability is the necessary and sufficient condition for the numerical solution to

converge to the analytical solution.

1.4.1 Outline of numerical differentiation and integration

Differential equations are useful to describe a variety of physical phenomena, for example in

fluid dynamics with the Navier-Stokes equations. In this section, an outline of the main numer-

ical techniques to solve differential equations and to tackle numerical integration are presented.
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There are two main types of differential equations: Ordinary Differential Equations (ODE)

and Partial Differential Equations (PDE). An example for ODE is the equation governing

the vibration of a mass connected with a spring and a damper, while Navier-Stokes equations

are a set of PDEs, that will be briefly described later on. Typically there are three types of

problems that can be solved. The initial value problems (IVPs), when the initial conditions are

know, and the evolution of the phenomenon is the object of interest. For example, a system

of particles with given initial coordinates and velocities, whose evolution dynamics is computed

over time can be considered an IVP, commonly referred to as molecular dynamics. Secondly, the

boundary value problems (BVPs), when the boundary values are provided, and the behavior of

the function between them is to be determined. At the boundaries there can be distinguished

essential boundary conditions or natural boundary conditions. In fluid mechanics, the essential

boundary condition is typically the velocity, while the natural boundary condition is the stress.

The third problem is the eigenvalue problem, namely when a linear operation is applied to a

vector, and the result is a scalar (the eigenvalue) multiplying the vector itself. There can be

also combined initial and boundary value problems.

ODEs and PDEs are characterized by an order, according to the maximum derivative present

within the equation. In general, they can be mainly classified as linear versus non-linear differ-

ential equations, and homogeneous versus in-homogeneous differential equations.
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1.4.2 First order ODEs and the model problem

In the design of numerical algorithms, it is useful to compare them with a model problem,

to gain information related to their performance and stability. A simple model problem that

can be used as an example is the following initial value problem defined as:

dy

dt
= λy, y(0) = y0 where λ = λR + iλI and λR ≤ 0 (1.7)

where λ is the eigenvalue of the problem, and in general it is a complex number. The nature of

λ is associated to the nature of the analytical solution

y = y0 e
λt (1.8)

and λ has to satisfy some characteristics to guarantee consistency, convergence and stability.

The goal is to extend the model problem to general non-solvable cases, investigating the stability,

accuracy, and robustness.

In general:

eix = cosx+ i sinx = e(λR+iλI)t = eλR eiλI t = eλR(cosλRt+ i sinλIt) (1.9)

and since the second part is bounded between 1 and -1, it follows that λR must be < 0.

At this point, the continuous function is discretized in a finite number of points. It is now
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considered the model problem of the so-called difference equation, which is solved recursively

as:

yn+1 = σyn (1.10)

y1 = σy0 (1.11)

y2 = σy1 = σ2y0 (1.12)

y3 = σy2 = σ3y0 (1.13)

yn = σny0 (1.14)

and the solution is bounded for |σ| ≤ 1.

The analytic solution is valid anytime. Assuming a constant time step ∆t:

yn = y0 e
λtn = y0 e

λ∆tn (Differential problem) (1.15)

yn = σny0 (Difference problem) (1.16)

The equivalence between these 2 equations is:

σn = eλ∆tn → σ = eλ∆t (1.17)
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and in order to have stability, namely a bounded solution, the condition that must be satisfied

is |σ| < 1, thus eλ∆t < 1. The only way to satisfy this condition is to have the exponential

decreasing:

Re(λ∆t) = λR∆t < 0 → λR < 0 (1.18)

1.4.3 Integration schemes

When doing differentiation, it is generally possible to find the analytical solution. The

same is not always true for integrals, for which numerical methods are particularly useful in

practice. [56] Here are reported the main integration schemes, that can be useful to the reader

to understand some part of the present work. Given a generic bounded differential equation

dy

dt
= f(t, y), t > t0 and y(t0) = y0 (1.19)

the integration between two arbitrary time steps is:

∫ tn+1

tn

dy

dt
=

∫ tn+1

tn

f(t, y)dt (1.20)

y(tn + 1) = y(tn) +

∫ tn+1

tn

f(t, y)dt (1.21)

The integral, namely the area under the curve, can be approximated in a number of ways. These

include rectangle methods, such as explicit and implicit Euler, and trapezoidal methods, such

as the Crank-Nicolson scheme:
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1. Explicit Euler

∫ tn+1

tn

f(t, y)dt ≃ f(yn, tn)∆t (1.22)

2. Implicit Euler

∫ tn+1

tn

f(t, y)dt ≃ f(yn+1, tn+1)∆t (1.23)

3. Crank–Nicolson

∫ tn+1

tn

f(t, y)dt ≃ f(yn+1, tn+1) + f(yn, tn)

2
∆t (1.24)

In the explicit methods, the solution at n+1 depends only on the previous step, whereas in

the implicit ones we have a dependence on n+1 itself. Both Euler schemes have a first order

accuracy (order ∆t), and both schemes are also consistent: as ∆t approaches zero, the solution

approaches the true one. On the other hand, the Crank-Nicolson approach has a second order

accuracy (∆t2) and it is always stable. Since providing details on numerical analysis is out of

the scope of this work, the reader is referred to textbooks, such as [56], for further information.

In the next section, more details are provided on the numerical modelling of fluid dynamics.

1.5 CFD: numerical modelling of inertial microfluidics

Despite the great amount of experimental work published in the literature, since the dis-

covery of inertial microfluidics by Segre and Silberberg, little work has been conducted to gain
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more insights on the fundamentals of the phenomenon. Part of the underlying physics is still

unknown and a lot of cases have not been investigated yet. Numerical simulations can be used

to bridge this gap. The current application of computational fluid dynamics (CFD) on inertial

microfluidics can be grouped into mesh-based and mesh-free methods. Numerical solutions can

be further divided into Navier-Stokes-based solutions and Lattice Boltzmann Method (LBM).

The asymptotic solutions were among the first to be adopted to predict the inertial behavior

of a particle inside a channel and allowed to lay the fundamental principles of inertial microflu-

idics, following 1961. For example, asymptotic analysis is the method adopted in the previously

mentioned work by Rubinow et al. [19] on the transverse force on a spinning sphere (1961) and

the work by Saffman [57] on the lift force on a particle in shear flow (1965). These methods

are able to provide an explicit formula of the force that is being studied, but they are limited.

For complicated scenarios, the Navier-Stokes methods are more suitable. In general, the incom-

pressible Navier-Stokes equations are probably the most important partial differential equations

in fluid mechanics and they describe the motion of a Newtonian fluid.

∇ · u = 0 (1.25a)

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p+ µ∇2u (1.25b)

(Equation 1.25a) ensures that mass in conserved, since the divergence of the velocity field u

is zero across the fluid. (Equation 1.25b) comes from Newton’s second law, normalized by the

infinitesimal volume of fluid which is being considered. In this case, ρ is the density of the
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fluid, p is the pressure and µ is viscosity, that appears in the friction term. The Navier-Stokes

equations assume that the fluid is a continuum, it is incompressible and isothermal [58]

1.5.1 Navier-Stokes-based numerical methods

As previously mentioned, the solutions coming from asymptotic methods are limited by

the relatively narrow range of particle size and flow conditions that can be explored. Direct

numerical simulations (DNS) are preferred for this purpose [53]. In this case, the fluid-particle

interaction is considered for the computation of the inertial forces. Here is a list of the most

common methods employed for a particle flowing in a channel:

1. Flow at Specific Particle Position (FSPP) is a method that computes the steady-

state flow field around a particle, varying its position within the channel. In this way,

it is not necessary to compute the whole trajectory of the particle in order to derive the

inertial forces. Once the particle position has been chosen, the boundary conditions are

applied: a fully developed laminarity flow at the inlet and outlet of the channel, moving

walls and no-slip boundary condition at the particle surface. The particle is initially at

rest. Then, Navier-Stokes equations are used to compute the pressure and velocity field

around the particle, while the linear and angular velocities are calculated using Newton’s

second law;

2. Arbitrary Lagrangian-Eulerian (ALE) method considers a suspension of rigid parti-

cles and solves the incompressible Navier-Stokes equations, typically using finite elements.

The particle velocity, orientation and position are obtained via the integration of the total

stress on the surface of each particle. However, this method has several limitations. If
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the particles are not neutrally buoyant, the scheme might lead to an unstable solution.

Moreover, the mesh needs to be updated at every time step, thus the method is extremely

time-consuming;

3. Fictitious Domain Methods are similar to ALE methods, but a fixed mesh that covers

the entire domain (particle and fluid) is used instead. The key point of this method is

that, since the mesh spreads across the whole domain, a force needs to be applied to the

particle grid points so that it behaves as a rigid body. This method may be referred to as

immersed boundary method (IBM), when the force is applied to the surface of the particle,

or immersed body method, if this force is applied to the body of the particle [53];

4. The Immersed Boundary Method (IBM) was first introduced by Peskin in 1972 [59],

and allows to perform the simulation of the flow on a fixed grid [60]. At the same time,

there is a second mesh that is distributed at the surface of the particle. These two meshes

are typically called Eulerian and Lagrangian mesh, respectively. In general, the latter does

not align with the former grid, and the computational cells are cut. Several variants of

the IBM were developed after his first appearance, to accommodate the possible types of

geometries in a flow and to treat the cut cells. [61] The Lagrangian mesh is constituted

of elements ∆vl with markers Xl located at the center of each element. In the case of a

particle flowing in a microchannel, the main goal is to compute the force distribution.

u(Xl, t) =
∑

ijk

uijk(xijk, t)δh(xijk −Xl)∆x∆y∆z (1.26)
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This is done by interpolating the value of velocity of the Eulerian grid with the Lagrangian

markers, following (Equation 1.26). In the second place, the difference between the in-

terpolated velocities and the particle velocity gives the forces acting on the Lagrangian

mesh:

f(xijk, t) =
∑

l

ρ
Up(Xl, t)− u(Xl, t)

∆t
δh(xijk −Xl)∆vl (1.27)

In both (Equation 1.26) and (Equation 1.27), δh(xijk − Xl) is the Dirac delta function

used to interpolate the two meshes. The last step is to add the force term computed from

(Equation 1.27) to the Navier-Stokes equation, in order to finally derive the motion of the

particle. The way the boundary is treated leads to different variants of the methods. For

example, Lashgari and his coworkers [2] used IBM to describe the inertial migration of

oblate particles in straight ducts, using the discrete forcing method to compute the fluid-

solid interaction. This variant was first introduced by Uhlmann in 2005 [62] and modified

by Breugem in 2012 [63] for neutrally buoyant particles.

Overall, the generation of the grid is easy in IBM, but it is limited by the complicated

implementation of the boundary conditions. [64]

1.5.2 Lattice Boltzmann Method (LBM)

CFD generally refers to the direct discretization of the governing partial differential equations

(PDEs), such as the Navier-Stokes equations. LBM has emerged as an alternative approach to

CFD, and it was originally introduced by McNamara and Zanetti in 1988 [65], originated from

its earliest form of Lattice gas automata (LGA). [66]
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The basic concept of LBM is to solve the kinetic equation for the particle distribution function.

[67] The general idea is to derive information of the macroscopic behavior of the fluid from its

microscopic properties, such as the density. At the microscale, density and velocity needs to be

redefined. The velocity vector can point in any direction, and this leads to a zero velocity at the

macro scale. However, the average velocity magnitude is not zero, and from this, one can derive

the mean kinetic energy. Overall, a certain probability of finding a particle with a given velocity

magnitude is introduced. The distribution of velocities is dependent on the temperature. When

describing particles, the information of their position and speed is integrated. That is why a

distribution function is introduced. The particles are described with a propagation and collision

step over a discrete lattice. The classic Boltzmann equation for a single particle can be written

as:

∂f

∂t
+ c · ∂f

∂r
+ F · ∂f

∂c
= Q(f) (1.28)

where c is the particle velocity, F is the body force and Q(t) is the collision term. A common

linearized form of the collision term is widely employed nowadays and it is described by the

Bhatnagar–Gross–Krook (LBGK) collision model. [68] (Equation 1.28) is than discretized in

space and time. The resulting LBM equations consider a population of particles at a given

position and time, and the one at the following time step, that will have moved according to

the velocity of the considered population. This is set equal to the collision operator, according
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to the adopted formulation.

For example, for the LBGK single-relaxation-time model we have:

fi(x+ ci∆t, t+∆t)− fi(x, t) = −1

τ

(

fi(x, t)− f
(0)
i (x, t)

)

(1.29)

where fi(x, t) and f
(0)
i (x, t) are the particle and equilibrium distribution functions at a given

position and time, ci is the particle velocity along the ith direction considered, and τ is the

single-relaxation-time parameter, which is responsible for the rate at which the equilibrium is

approached. (Equation 1.29) [69] is then divided into a collision and streaming step.

The key differences between Navier-Stokes based methods and LBM are [67] the nature of the

equations adopted, the linearity of convection terms and the continuum assumption, which is

not present in LBM. For more information and a complete description of the methodology of

LBM, please refer to textbooks [70] and [71].

1.5.3 From mesh-based to mesh-free methods

All the numerical schemes solving fluid dynamics problems described so far are mesh-based

methods. It means that they either use a Lagrangian mesh or Eulerian grid to create a relation-

ship between nodes, which are the constitutive blocks of the numerical scheme. Recently, it has

become clear that many of the academic researches and industrial applications cannot be easily

solved with conventional mesh-based methods, especially when large deformations are involved,

such as in fluid mechanics. [72] In the presence of discontinuities, the common solution to pre-

serve the grid is to re-mesh the domain, and this increases the computational cost and reduces
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the accuracy of the solution. The purpose of mesh-free methods is to overcome the drawbacks

of mesh-based methods, thus to broaden the range of possible applications. However, in some

cases traditional methods are still more convenient, and a lot of research is going on to better

understand the performance of these techniques. [73] Mesh-free methods use a set of nodes to

represent the entire domain and boundaries, and these nodes are used to locally approximate

the field variables. [74]

The basic steps to build a mesh-free method are:

1. Domain representation: the domain is represented with a distribution of nodes, also

called field nodes, and the boundary conditions are applied. The nodal density can be

uniform or adapted depending on the specific applications;

2. Interpolation: a support domain is used to interpolate the field variable of interest. The

support domain describe a geometric region with center x, that contains the nodes, now

called support nodes, that will be used to approximate the field variable at the point x.

The support domain can have different shapes and a weighting function is used to compute

the average field variable from all the support nodes;

3. Building the system equations: this step changes accordingly to the specific method.

The global system equations can be a set of algebraic, eigenvalue or differential equations

depending on the type of problem;

4. Solving mesh-free equations: the solving techniques depend on the nature of problem.

For dynamic problems, one wants to obtain the history of the displacement, velocity,
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and acceleration, and this can be done with finite difference methods, either implicit or

explicit. [74]

The key feature of mesh-free methods is the creation of the shape function. Ideally, it should

satisfy several requirements, that are listed in [74]. Some of them are herein reported:

1. First, the shape function should satisfy the Delta function property and defined accord-

ingly. The Kronecker delta is defined as:

Φi(xj) =























1 when i = j

0 when i 6= j

; (1.30)

2. The support domain of the shape function should be compact, meaning that it should

contain a small number of nodes;

3. The nodal distribution should be arbitrary;

4. The algorithm should be efficient and stable.

The different ways to construct a shape function can be grouped in: integral representation

method, series representation method, differential representation method and gradient smooth-

ing method.

The earliest mesh-free method to be developed was smoothed particle hydrodynamics (SPH),

described by Lucy, Gingold and Monaghan [75, 76] in 1977. Following this, the diffuse element

method (DEM) was proposed in 1992, the element free Galerkin (EFG) method in 1994, based

on DEM, point interpolation method (PIM) in 1999, mesh-free weak-strong form (MWS) in
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2002 and many others. [77]

In the present work, we used SPH to model a multi-phase flow in a inertial microfluidic con-

figurations. The next section is devoted to the description of the numerical method and its

implementation.



CHAPTER 2

METHODOLOGY

Reproduced from [Lauricella, Giuseppe, et al. "Computational study of inertial migration of

prolate particles in a straight rectangular channel." Physics of Fluids 34.8 (2022): 082021], with

the permission of AIP Publishing

2.1 Smoothed Particles Hydrodynamics (SPH)

SPH is a mesh-free Lagrangian method, originally designed for astrophysical problems [75],

but it is also widely employed for various fluid mechanics problems [78]. It has several advantages

over traditional finite difference methods, such as a straightforward handling of the interface

between different materials, and the fact that the computations take place only where there are

material particles. [79] In the classical SPH approach, a state equation for a weakly compressible

fluid is used to approximate the incompressibility of the Navier-Stokes equations [76]. The gen-

eral idea of SPH is to represent the fluid domain with Lagrangian particles, i.e. SPH particles.

Each of these particles has its own mass, velocity, energy, and other properties. Navier-Stokes

equations are discretized using SPH particles and a set of field variables, such as density and

velocity, are interpolated by means of a kernel function, which decays to zero within a range

of the smoothing length h. From the mathematical point of view, SPH particles can be seen

as interpolation points to compute the fluid properties, and their interaction reproduces the

governing equations. [79]

33
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In the original proposed version of SPH, the conservation of linear and angular momentum

was not ensured. The model was improved in 1982 [80], when the similarities with molecular dy-

namics became more obvious, later explored more in detail by Hoover and coworkers. [81,82] SPH

is preferable over traditional mesh-based methods when large perturbations are involved. [79]

Although SPH has been applied and validated for many fluid mechanics applications, it has not

been widely used for inertial microfluidics simulations. The group led by Peng and Papautsky

successfully applied SPH to study the transient motion of rigid spheres in straight rectangu-

lar channels. [83] The computational predictions match well with the high speed fluorescence

imaging trajectories, demonstrating that SPH is a reliable modeling approach in predicting the

trajectory and equilibrium position of spherical particles in inertial microfluidics.

2.1.1 Interpolation

In general, fluid dynamics equations have the form

dA

dt
= f(A,∇A, r) (2.1a)

d

dt
=

∂

∂t
+ v · ∇ (2.1b)

where (Equation 2.1b) defines the Lagrangian derivative and the differential operator represents

the trajectory of a fluid particle. [79]

The integral interpolant for an SPH quantity A is:

AI(r) =

∫

AI(r
′)W (r − r′, h)dr′ (2.2)
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where W is a kernel function, that approximates the Dirac delta function, and dr′ is an in-

finitesimal volume element. [79] This integral can be approximated by doing a summation over

the mass elements.

For each field variable A, the local average at position ri is computed as:

A (ri) =
∑

j

mj
Aj

ρj
W (ri − rj), (2.3)

where mj and ρj are the value of mass and the density of the particle at position rj . One

possible kernel, proposed originally by Lucy, is a bell-shape kernel function [75]. Other popular

kernel functions include the Gaussian, cubic spline and B-spline, fourth and fifth spline [84].

The estimation of the error for the integral interpolant is difficult due to the disordered motion

of the Lagrangian particles, thus it is highly dependent on the dynamics of the system.

2.1.2 SPH acceleration equation

The SPH version of computing the acceleration was presented in the original work of 1977

by Lucy, Gingold and Monaghan [75,76] as:

dvi
dt

= − 1

ρi

∑

j

mj
Pj

ρj
∇aWij (2.4)

where the subscripts i and j refer to the Lagrangian particle considered.

mimjPj

ρiρj
∇iWij 6=

mimjPi

ρiρj
∇jWij (2.5)
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As anticipated before, in this original formulation the conservation of momentum is not exact,

meaning that the force that a particle j exerts on a particle i in not opposite and equal to the

force on the particle i owing to j, as shown in (Equation 2.5). The problem was solved using a

Lagrangian. [80]

2.1.3 Lagrangian equation in SPH

Considering the motion of a fluid in a potential Φ(r) with no dissipation, the Lagrangian L

is [85]:

L =

∫

ρ

(

1

2
v2 − u(ρ, s)− Φ

)

dr (2.6)

where u is the specific thermal energy, ρ the density and s is the entropy.

The corresponding SPH version of (Equation 2.6) is:

L =
∑

j

mj

(

1

2
v2j − u(ρj , sj)− Φj

)

(2.7)

and for a particle i one finds that:

d

dt

(

∂L

∂vi

)

− ∂L

∂ri
= 0. (2.8)

With the introduction of (Equation 2.8), it is possible to re-write (Equation 2.4) as:

dvi
dt

= −
∑

j

mj

(

∂u

∂ρ

)

s

∂ρj

∂ri
− ∂Φi

∂ri
(2.9)
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2.1.4 Momentum conservation

Thanks to the invariance of the Lagrangian (Equation 2.7), the fluid dynamics terms conserve

their linear and angular momenta. [79] This is valid for the entire system. In a way, a SPH

system behaves as a system of molecules exerting a force between them, but the strength of the

interaction, modulated by P and ρ, depends on the position of the surrounding particles. [79]

SPH interpolants are applied to the Navier-Stokes equations. The equations are split into the

individual forces: these leads to the main formulation for momentum conservation:

(

du

dt

)

i

= −
∑

j

mj

(

Pi

ρ2i
+

Pj

ρ2j

)

∇W (xij , h) (2.10a)

(

du

dt

)

i

=
∑

j

mj
µi + µj

ρiρj

xijuij

|xij |2
∇W (xij , h) (2.10b)

where (Equation 2.10a) is the formulation for the pressure force [86, 87], and (Equation 2.10b)

represents the viscous force. [88] The resulting force on the particle i is given as

Fi = −
∑

j

mimj

(

Pi

ρ2i
+

Pj

ρ2j

)

∇jWij +
∑

j

mimj(µi + µj)

ρiρj

(

1

rij

∂Wij

∂ri

)

(2.11)

by combining (Equation 2.10a) and (Equation 2.10b). (Equation 2.11) is the final momentum

equation for two interacting particles i and j. In (Equation 2.11) m is the mass, ρ is the density,

P is the pressure tensor, Wij is the kernel function, µ is the dynamic viscosity and r the position

vector of the considered particle.
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2.1.5 SPH formulations

In the history of SPH, two main families of formulations have been developed and widely

employed: a ‘weakly compressible’ variant (WCSPH) [89] and a family of ‘incompressible’ SPH

(ISPH). [6]

In WCSPH, a stiff equation is used to relate pressure and density in viscous isothermal fluids,

using an explicit timestepping method. ISPH methods uses the pressure-correction idea of grid

methods and it is a semi-implicit method. [90] In the latter case, the particle density does not

change, and this ensures the incompressibility of the fluid. Generally, the pressure Poisson’s

equation (PPE) is solved

∇
(∇Pn+1

ρ

)

=
3

2∆t
∇ · u (2.12)

while in WCSPH an artificial equation of state is used, such as

P = c2(ρ− ρ0) (2.13)

where c is the sound speed and ρ is the density.

In the case of intermediate density values, the standard projection method of ISPH can

accumulate errors, therefore ISPH has been modified, sometimes resulting in an increased com-

putational cost, such as calculating the PPE twice in a single timestep. [91] One important

feature to consider in SPH simulations and in the comparison between different formulations is

the Mach number and the speed of sound. The Mach number is used in fluid dynamics and it is

the ratio of the local flow velocity with the sound speed in the fluid, therefore it is a dimension-
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less number. It can be seen as a measure of the compressibility of a fluid flow. Different Mach

regimes can be distinguished such as subsonic (<0.8), transonic (0.8 - 1.2), supersonic (1.2 - 5.0)

and hypersonic (5.0 - 10). In general, WCSPH provides a more ordered particle distribution

and ease of programming. [92] However, for flow high Reynolds number flows, where Re > 100,

WCSPH presents wide density variations, thus the speed of sounds needs to be increased, using

a much smaller Mach number, generally lower than 0.1. This impacts the computational cost,

since increasing the sound speed implies a reduction of the time step, to avoid instabilities, and

this affect the simulation time. Violeau and Leroy [93] investigated how the flow conditions,

boundaries and time-integration affects the maximum time step allowed in weakly compressible

SPH, finding that the general stability criterion of SPH

Ch =
c0∆t

h
≤ 0.4 (2.14)

could be increased for practical problems.

2.2 Overview of parallel computing

All the equations and numerical schemes presented so far need to be computed a high number

of times, in order to collect a sufficient number of data, over a given period of simulation time.

Memory-intensive computations can be solved with greater speed using parallel programming.

It relies on message passing libraries, that mediate the transfer of data within the parallel

architecture.

Parallel computers can work with a shared memory, distributed memory or a combination of
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them. A shared memory is made of multiple processors that can access a global shared memory

via a memory bus. A distribute memory architecture can be seen as a set of serial computers,

called nodes, that communicate each other by means of a communication network. [94] MPI

(Message Passing Interface) is a standardized message-passing library for C, C++, and Fortran

programs running on parallel architectures. A parallel computer can be seen as a combination of

processors, memory modules and an interconnection network, which allows the communication

between different CPUs and memory modules. The way these objects are connected determines

the working style of the computer. [95] Briefly, following the architectures classification defined

by Flynn, commonly known as Flynn’s taxonomy [96], there can be distinguished four main

categories:

1. Single instruction stream, single data stream (SISD), used by serial computers;

2. Single instruction stream, multiple data streams (SIMD), where calculations can be either

executed sequentially or in parallel;

3. Multiple instruction streams, single data stream (MISD), used for uncommon architectures

that operates on a single data stream and must agree each other;

4. Multiple instruction streams, multiple data stream (MIMD).

Numerical simulations have become an ubiquitous tool in scientific research, and the need of

high performance computing (HPC) is essential. For more information on parallel computing,

the reader is addressed to the textbooks [97,98].
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2.3 Fundamentals of molecular dynamics

In the present work, smoothed particle hydrodynamics was implemented in LAMMPS (Large-

scale Atomic Molecular Massively Parallel Simulator) [99], a molecular dynamics code, that is

also used for particle-based algorithms such as SPH. It was introduced in 1994 by Steve Plimpton

(Sandia National Laboratories) [99] and its use has been increasing for a variety of applications.

The current version of the code, released as open source in 2004, is written in C++, which

is suitable for high-level programming due to its object-oriented nature. Molecular dynamics

(MD) has been widely used in physics, chemistry, biology and many more research fields. In

this approach, Newton’s equation of motion are integrated over a given number of time steps,

to model the time evolution of a system of particles. [99] MD well suites the rapid development

of CPUs and GPUs, together with parallel computing, that will be briefly described later on.

LAMMPS is among a variety of parallel MD codes, such as NAMD [100], GROMACS [101],

and CHARMM [102], and it has a focus on material modelling.

The way the code integrates with distributed memory parallel computers is by partitioning the

simulation box. It is divided into uniform pieces, and each of them is assigned with an MPI

rank (a processor). However, one important parameter to take into account during this pro-

cess is the density within the simulation. If it’s not uniform across the simulation domain, the

parallelization becomes inefficient, since the entire simulation will be limited by the slowest pro-

cessor, namely the one assigned with an high-density subdomain. In this case, the partitioning

is controlled by a dynamic load-balancing algorithm, thus the subdomain distribution will not
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be uniform, but it will accommodate the density gradient instead.

Each processor collects and manages two types of data:

1. The positions, velocities and other information of all the atoms in its subdomain, called

owned atoms;

2. Information related to atoms belonging to nearby MPI ranks, within a certain cutoff

threshold, called ghost atoms.

Another key concept is the neighbor list [103]. Among all the structures in LAMMPS, this is

one of the most memory-consuming. The idea of this list is to perform the force computation

efficiently for each atom i, considering only the neighboring atoms j in the list for that atom

i. The cutoff distance is chosen by the user, as well as the number of time steps to be used to

re-build the list. The cutoff distance is defined as:

Rn = Rf +∆s (2.15)

where Rf is the short-range pairwise forces cutoff of the interatomic potential, while ∆s is called

skin distance. When any atom has moved half the skin distance, the re-neighboring is triggered.

This is an important step, where atoms that have moved are re-assigned the correct processor

and periodic boundary conditions are enforced. Moreover, to improve chace efficiency, from time

to time every processor spatially reorder its owned atoms, to benefit the force computation and

the building of the neighbor list. [99, 104]

An interatomic potential is a function approximating the electronic energy of a system. The
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gradient of these functions determines the forces between atoms, needed in MD simulations.

Interatomic potentials can be classified according to the number of bodies participating in the

interaction, bonding topology and chemical nature. [105] One of the most used potential in

MD is the Lennard-Jones potential [106], suitable for entities with species with closed-electrons

shells, and it has the form:

U(r) = U0

[

(r0

r

)12
− 2

(r0

r

)6
]

(2.16)

where r0 is the equilibrium bond length between the two species and U0 is the binding energy.

It is a two-body potential, with an attractive and repulsive term. The atoms get too close to

each other, the energy increases rapidly. When the distance increases, the energy approaches

zero.

In molecular dynamics, the forces are given in terms of an empirical potential, and the potential

energy can be written as [107]:

E =
∑

bonds

ai

2
(li − li0)

2 +
∑

angles

bi

2
(θi − θi0)

2 +
∑

torsion

Vn

2
(1 + cos(nω − γ))+

+
1

2

N
∑

i=1

N
∑

j 6=i

4εij

[

(

σij

rij

)12

− 2

(

σij

rij

)6
]

+
1

2

N
∑

i=1

N
∑

j 6=i

4
qiqj

rij

(2.17)

In general, the energy is a contribution of bonded interactions, given by the first three terms

in (Equation 2.17), and non-bonded interactions, given by the last two. The first term is an

harmonic potential representing the internal bonds of a molecule, accounting for the energy

when the bond length li deviates from the length at rest li0. The same concept applies for the

second and third terms. The fourth term is a Lennard-Jones potential constituting the van der
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Waals potential and the last term is the coulombic interaction.

In MD, the electrostatic interactions represent the most expensive part of the simulation and

their computational handling can be problematic, for two main reasons:

1. The finite size of the simulation domain and the mathematical discretization cannot deal

with the in principle infinite long-range interaction;

2. Even a limited calculation can be very expensive due to the general high number of

atoms/particle within a numerical simulation. [107]

Within LAMMPS, the long-range interaction of charged systems using a variety of methods,

such as the FFT-based particle-particle/particle-mesh method [108, 109], particle-mesh Ewald

(PME) method [110], or the multilevel summation method (MSM). [111]

2.3.1 Thermostatting and Barostatting

Another fundamental aspect of molecular dynamics is controlling the conditions of the system

throughout the simulation. Thermostatting is the process of controlling the temperatures of the

particles in a simulation, by means of a "thermostat". A similar concept can be extended to

a simulation at a constant pressure, controlled by a "barostat". In general, a system can be

defined as a statistical ensemble, that can be considered as a simplified version of the more

complex real scenario, where multiple states co-exist. A system which is completely isolated

from the surrounding is called microcanonical ensemble (NVE), which is defined in terms of

the number of particles in the system (N), its volume (V) and its energy (E), which are all

constant. If we allow the system to change its energy, we have a canonical ensemble. In this
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case, the system is in contact with an heat bath, the thermostat, which allows to set a constant

temperature. If also the pressure is set to be constant, the ensemble is called isothermal-isobaric,

often abbreviated with NPT. Some thermostats and barostats that are commonly used in MD

are the Nose-Hoover, the Andersen and the Berendsen thermostats and barostats.

2.4 The LAMMPS code

Starting from its original version in Fortran, LAMMPS was designed to be compatible with

MPI. Within LAMMPS, it is possible to defined a 2D or 3D simulation box, whose boundaries

can be fixed, which means that if a particle moves outside the box it is deleted, or they can

be periodic, that is when a particle exits from one side of the box it will re-enter from the

other side. Finally, the faces of the box can also be shrink-wrapped, meaning that the box

can change in size to always enclose all the atoms or particles inside itself. [99] One of the key

features of LAMMPS is its flexibility, so that the user can accommodate his specific needs.

This can be done by acting on the input script, by the modification of the source code and by

using LAMMPS as an external library. [99] In this section, only the first two methods will be

described.

The input script of LAMMPS is a text file, where commands are invoked to build the simulation

environment and the dynamic of the system. Each command has its own arguments and syntax

rules that must be followed, to guarantee the correct execution of the code. In the script,

variables can be defined, read or computed from a mathematical expression, which can also

contain outputs from the simulation itself. [99] The main source of flexibility is represented by

the variety of commands that can act on different atoms and produce different types of outputs,
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that can be related to specific groups of atoms and processors. In LAMMPS it is possible to

define static or dynamic groups of atoms, which the user can operate on. The outputs can be

per-atom quantities, internally stored by the MPI rank owning the atom, or global properties,

for which each processor possesses a copy. Per-atom properties confer a lot of flexibility, since

the user can assign them to groups or chunks of atom, providing different behaviors. One

can customize the entire simulation including the simulation box, the atom type, interatomic

potentials, boundaries, groups of atoms, neighbor lists, data handling (space and time averaging

is also possible), definition of variables, property definition and output post-processing. [99]

The second way to modify LAMMPS is to act on the C++ source code, especially at its

high-level. The main functionalities of LAMMPS are organized into classes. [99] There can be

distinguished core classes and parent classes, called styles. The user can add child classes by

modifying the parent class, including a few methods and adding it to the source folder. [99] This

structure favors modularity and sets of child classes related to specific applications are grouped

into packages, and the users can choose which of them include in their LAMMPS build. [99]

2.4.1 Atom styles

Per-atom properties are defined by atom styles. These can be extremely different considering

the variety of models that can be implemented. For example, for dynamic-size electron particles

one needs to store their radius and radial velocity, or internal energy and heat capacity for

SPH particles and dissipative particle dynamics (DPD). With the atom_style command in

the LAMMPS input script it is possible to determine the attributes assigned to the atoms in a

simulation. [99,112] If a style belongs to a package, it will not work if the packages was not build.
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Some styles include: atomic (liquids, solid, metals), ellipsoid (aspherical particles), molecular

(uncharged molecules), charge (atomic system with charges), full (a combination of molecular

and charge styles, suitable for bio-molecules), sph (for SPH particles). LAMMPS also allows

to generate hybrid styles, concatenating multiple atomic properties to obtain more complex

models, for example adding charges to SPH or DPD particles.

2.4.2 Pair styles

These classes allow the implementation of pairwise interatomic interactions, following the

general structure of (Equation 2.17). LAMMPS include more than 230 pair styles, including

many-body potentials such as AIREBO [113], embedded atom method (EAM) [114] and many

more. In addition to all-atom simulations, in order to achieve longer space and time scales it is

possible to implement coarse-grained models. These were developed for polymers [115,116] and

other systems, most of them with specific LAMMPS packages. The most related models to the

present work are particle-based models.

Pair styles work with a compute() method, which is invoked every time step to compute the

forces on each atom. Similarly to the atom style, it is possible to combine multiple pair styles in

the same model using the hybrid pair style. [99] Once the most appropriate pair style has been

selected, the pair_coeff command is used to specify the pairwise coefficients of the force field.

A comprehensive updated list of all the pair styles available in LAMMPS can be found in the

online LAMMPS documentation (docs.lammps.org/Manual).
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2.4.3 Fix styles

During a time step, fix commands allow to implement specific operations. One fix style can

use multiple methods, that are invoked in different moments of each time step. Commonly,

fixes act on atom groups and they can be invoked multiple times. For example, in the present

work, in order to define the suspended ellipsoidal particle in the flow, the fix rigid command

has been applied to a group of atoms, to distinguish them from the background fluid particles.

In general, a fix can be applied during timestepping or minimization. In LAMMPS there

are hundreds of fixes, that allow the control over forces, temperature, boundaries and many

more. Some examples include fix addforce, to add a force to a group of atoms, fix ave_chunk,

to compute per-chunk time-averaged quantities, fix ave/time, to compute/output global time-

averaged quantities, fix move, to move atoms in a desired way, or fix rigid/meso, constrain

clusters of SPH or DPD particles to behave as a rigid body.

A comprehensive list of all the fix styles available in LAMMPS can be found in the online

LAMMPS documentation (docs.lammps.org/Manual).

2.5 Implementation of SPH in LAMMPS

The USER-SPH package was introduced by Georg Ganzenmuller in 2011. In this section,

a summary of the relevant information present in the user guide [117] is given. The package

introduces four new per-particle variables: the internal energy E, the local density ρ, and their

derivatives Ė and ρ̇. These new information are collected in a new data structure and accessible
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using atom_style meso.

The local density is computed using Equation (Equation 2.3) as:

ρi =
∑

j

mj
ρj

ρj
Wij =

∑

j

mjWij (2.18)

and it is a smoothed quantity resulting from the contribution of the particle of the support

domain. In LAMMPS, its calculation is invoked using

pair_style sph/rhosum

pair_coeff I J h

where I and J are the SPH particles considered for the calculation of the local density, and h is

the radius of the kernel function, defined as

W (r < h) =
1

s

[

1−
(

1

h

)2
]4

(2.19)

where s is a normalization constant. The local density can be also assigned at the beginning of

the simulation using a set command.

2.5.1 Equation of State

The equation of state determines the pressure as a function of the temperature the ρ.

P (ρ) =
c20ρ0

7

[

(

ρ

ρ0

)7

− 1

]

(2.20)
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The Tait equation of state (EOS) (Equation 2.20) computes the pressure as a function of the

local density and the temperature, where c0 is the speed of sounds and ρ0 is the density at zero

applied stress. It is combined with (Equation 2.11), namely Morris expression [88] for laminar

viscosity in our simulations. (Equation 2.20) is an incomplete EOS to model water at ambient

conditions. It is selected in LAMMPS using:

pair_style sph/taitwater

pair_coeff I J rho_0 c_0 alpha h

where the alpha coefficient determines the strength of the artificial viscosity according to the

equation:

∏

ij

= −αh
ci + cj

ρi + ρj

vij · rij
r2ij + εh2

(2.21)

where ci and cj are the speed of sound of the particles and ε is a constant value which in this

case is set such that ε ≃ 0.01.

Moreover, the h coefficient that appears in the pair_coeff command is the smoothing length

of the Lucy kernel [75]:

W (r < h) =
1

s

[

1 + 3
r

h

] [

1− r

h

]3
(2.22)

The Tait EOS can be also combined with the expression for laminar viscosity [88]:

(

1

ρ
∇ · ∇v

)

=
∑

j

mj(µi + µj)rij · ∇jWij

ρiρj(r2ij + εh2)
vij (2.23)
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and it is used in LAMMPS by invoking

pair_style sph/taitwater/morris

pair_coeff I J rho_0 c_0 alpha h

2.5.2 Boundary conditions

In the context of fluid dynamics, generally one wants to confine the fluid is a region of space.

Although the default LAMMPS build provides several fix styles to do that, it is possible to

perform an integration only of the energy and local density of SPH particles by invoking

fix fix_ID group_ID meso/stationary

2.5.3 Velocity-Verlet integration

The numerical method used to integrate Newton’s equations of motion is a Velocity-Verlet

algorithm [103, 118], and it is commonly implemented in molecular dynamics. There are other

methods that can be used, such as the leap frog algorithm or the Beeman’s algorithm. Consid-

ering a time step ∆t, the Velocity-Verlet integration is performed as:

1a) vi
(

t+ ∆t
2

)

= vi(t) +
∆t
2mi

fi(t)

1b) ri (t+∆t) = ri(t) + ∆tvi
(

t+ ∆t
2

)
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2) Calculation of the new forces fi(t) (t+∆t)

3) vi (t+∆t) = bmvi
(

t+ ∆t
2

)

+ ∆t
2mi

fi(t+∆t)

However, as explained in [117], the original algorithm needs to be modified, because when the

forces are computed the velocity is lagging the position half a time step. For this reason, an

extrapolated velocity is computed as:

ṽi (t+∆t) = vi(t) +
∆t

2mi
fi(t) (2.24)

The atom style meso takes into account for this estimate value, and all the SPH calculations

are based on it. The complete integration scheme will be:

1a) vi
(

t+ ∆t
2

)

= vi(t) +
∆t
2mi

fi(t)

1b) ṽi (t+∆t) = vi(t) +
∆t
2mi

fi(t)

1c) ρi
(

t+ ∆t
2

)

= ρi(t) +
∆t
2 ρ̇i(t)

1d) Ei

(

t+ ∆t
2

)

= Ei(t) +
∆t
2 Ėi(t)
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1e) ri (t+∆t) = ri(t) + ∆tvi
(

t+ ∆t
2

)

2) Calculate fi(t+∆t) , ρ̇i(t+∆t) and Ėi(t+∆t)

3a) ρi (t+∆t) = ρi(t+
∆t
2 ) + ∆t

2 ρ̇i(t+∆t)

3b) Ei (t+∆t) = Ei(t+
∆t
2 ) + ∆t

2 Ėi(t+∆t)

3c) vi (t+∆t) = vi(t+
∆t
2 ) + ∆t

2mi
fi(t)(t+∆t)

This time integration can be performed in LAMMPS with

fix fix_ID group_ID meso

2.6 Simulation setup

In the present work, we run our simulations using Theta/ThetaGPU Argonne Leadership

Computing Facility (ALCF) computing resources. We used Theta, which is an 11.7-petaflops

supercomputer with 4,392 nodes, each of them made of 64 processors. It is intensively used for

data analysis, machine learning and numerical simulations. [119] In the current study, we applied

a similar setup as in our previous work [83]. We used weakly compressible SPH with the Lucy

kernel function, with a smoothing length of 2 µm, and implemented it in LAMMPS [99]. The

flow is generated by applying a constant body force to all particles, namely the fluid and the rigid
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prolate particles, using periodic boundary conditions (PBCs). Although more sophisticated pro-

cedures could be implemented to generate a pressure-driven flow in the channel [120], the ease of

handling PBCs in SPH makes the body force solution preferable to other techniques [121,122].

We computed the Reynolds number as Re = vaveDhρ
µ

where vave is the average velocity in the

channel, Dh is the hydraulic diameter computed as 2WH
W+H

where W and H are the channel width

and height respectively. The density ρ and viscosity µ of the SPH particles constituting the

fluid were set to the water’s value 1000 kg
m3 and 10−3Pa · s The incompressibility of the flow is

enforced by setting the speed of sound c0 at least 10 times greater than the maximum velocity

in the system.

The initial lattice of SPH particles was divided into groups, each one assigned with spe-

cific properties. The non-spherical prolate object to be simulated was created by defining an

ellipsoidal region whose constituting SPH particle behaves as a single rigid body using the

LAMMPS fix rigid command. In addition, we took into account for the no-slip boundary con-

ditions, modeling the interaction between fluid particles and the walls following the procedure

described by Morris et al [88]. An artificial velocity was constructed for the particles at the

boundaries, and it was used to compute the viscous forces [88]. The flow develops in the X

direction, and it is confined by fixed particles constituting the channel walls. Finally, all the

relevant information (position of the center of mass, angular velocity, torque, force, etc.) of

the rigid prolate are recorded throughout the simulations. We tracked the entire migration of

the particle by dumping the position of the SPH particles and visualizing it with VMD (Visual

Molecular Dynamics). [123]
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2.6.1 Output visualization

In order to store all the information related to the inertial migration of the shaped particle,

the command

fix ID group-ID rigid

is invoked in LAMMPS. A list of the rigid bodies in the domain is created, and their properties

are calculated at the beginning of the run. The main properties include the position of the center

of mass at each time step, useful to plot the trajectory of the particle, the linear and angular

velocities of the objects, in all three directions, the torque and the forces. The keyword reinit

is particularly important. In the default setting it is set to yes, meaning that at every run, the

data structure is re-created. In the present work, since each case has been re-run several times,

this keyword was set to no, to avoid unwanted shifts in the rigid body coordinates. The output

structure for one rigid body is a matrix whose number of rows corresponds to the number of

time steps of the simulation. The number of columns is generally 15, corresponding to the x,

y, and z components of: the coordinates of the center of mass (COM), COM velocity, force and

torque acting on the COM, and the image flags of the COM. All these data are collected in a

text file, and then visualized in the Linux shell using gnuplot. [124–126] It is a command-line

driven graphic utility introduced in 1986, mainly used as a plotting engine.

Moreover, it is possible to generate animations of the simulations. Combined with numerical

outputs, these are a valuable instrument to visualize the results and, in case of errors, to under-

stand what might have gone wrong in a prompt way. To do that, the trajectory of the COM is

dumped using
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dump ID group-ID style N file args

where style is set to atom. Dump commands are generally used to store information of specific

quantities, related to groups of atoms, every N time steps. A text file containing the LAMMPS

trajectory ("*.lammpstrj") is generated, and it can be directly imported in VMD.

VMD is a molecular graphics program released in 1996, written in C++. [123]

It is possible to visualize molecules, atoms, particles and assign them a custom representation

style, namely different coloring and rendering modes. VMD contains several additional tools,

including its own console, which can be used to add graphical features in the scene. In the

present work, this tool was used to include the microchannel edges in the scene, as solid black

lines, to assist and improve the final visualization of the particle flowing downstream. The scene

itself can be customized changing the background color, perspective, and lighting. It is also

possible to modify the trajectories imported in VMD, by adding or deleting frames. Finally,

the play back of the trajectory can be controlled by frame increment to modify the animation

speed and direction.

2.7 Experimental setup

2.7.1 Device fabrication and high-speed imaging in experiments

Microchannels were designed in a L-shape, so that cross-sectional imaging orthogonal to

the flow direction can be setup without difficulty. L-shaped microchannels were fabricated in

polydimethylsiloxane (PDMS) using a dry film master. The process for making the dry film

master is detailed in our previous work [127]. Briefly, a 150 µm × 50 µm rectangular straight

microchannel was patterned on a 3” silicon wafer using dry film (ADEX 50, DJ MicroLaminates
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Inc., USA). The microchannel was then replicated in PDMS (Sylgard 184, Dow Corning®, USA)

which was bonded to 1” × 3” glass slides (Fisher Scientific, USA) to form sealed devices after O2

surface plasma treatment (PE-50, Plasma Etch Inc., USA) for 20 s. Inlet and outlet ports were

made using a biopsy punch with an outer diameter of 1.5 mm (Ted Pella Inc., USA). Cell sample

solution was loaded in a syringe (Norm-Ject®, Air-Tite Inc., USA), which was connected to

1/16” Tygon® tubing (Cole-Palmar, USA) using proper fittings (IDEX Health & Science LLC,

USA). The other end of the tubing was secured to the device inlet. A syringe pump (Legato 200,

KD Scientific Inc., USA) was used to sustain stable flow rate of 300 µL/min. The microchannel

was placed on the stage of an inverted microscope (IX83, Olympus America, USA). Images of

cell aggregates inside the microchannel were acquired using a high-speed camera (Mini AX200,

Photron USA, Inc.). The frame rate was 25,000 fps and exposure time was 1 µs.

2.7.2 Cell sample preparation

Non-small-cell-lung cancer (NSCLC) cell line A549 was cultured in RPMI 1640 medium

supplemented with 10% (v/v) FBS, and 1% (v/v) 100X antibiotic–antimycotic solution in an

incubator at 37°C and 5% CO2. Cell aggregates were formed in the low attachment plates,

which were made by coating 12-well plate with anti-adherence solution (Stemcell Technology,

Vancouver, Canada) [128]. Anti-adherence solution coated the entire well bottom and excess was

removed. Plates treated with anti-adherence solution were placed in a biosafety hood overnight

under UV exposure until completely dry. Then, a 1 mL of A549 cell suspension was added into

each well at 500K cells/mL. After 2 d of culture, cell aggregates formed and were imaged. Cell
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aggregates were fixed using 4% paraformaldehyde (PFA) for 20 min and rinsed in phosphate

buffered solution (PBS) before they were run into the microchannel.



CHAPTER 3

RESULTS AND DISCUSSION

Reproduced from [Lauricella, Giuseppe, et al. "Computational study of inertial migration of

prolate particles in a straight rectangular channel." Physics of Fluids 34.8 (2022): 082021], with

the permission of AIP Publishing

3.1 Validation of SPH model

We first compared values of orbit period with the Jeffery’s theory [1]. Jeffery’s theory shows

that an ellipsoidal particle, in an unbounded linear shear flow, rotates along the so-called Jeffery

orbits: a set of infinite orbits that depend on the initial particle orientation. The time required

to complete one orbit, the period of rotation, is given as:

T =
2π

γ
·
(

1

λ
+ λ

)

where it is inversely proportional to the shear rate γ, and it increases for higher values of the

particle aspect ratio λ. We set up a simulation of a simple shear flow, generated by two parallel

plates moving in opposite directions. The prolate particle was located halfway between the

two plates and the period of rotation was computed from the simulation. We set the distance

of the plates to 80 µm and their velocity to 10 mm/s, 15 mm/s, and 25 mm/s generating 3

different values of shear rate. Our results in Figure 3 are in agreement with the theoretical

values. Considering the lowest value of shear rate we used (250 s−1), for a prolate with λ=3,

59
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the theoretical value predicted by the formula is 0.0837 s, the value from our simulation was

T=0.0842 s. Similarly, for λ=5, we got T=0.1315 s, versus an expected value of 0.130 s.
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Figure 3: Orbits period from Jeffery’s formula [1] (red diamonds) and the result from our SPH
simulations in a simple shear flow (blue squares). Higher aspect ratios prolate particles rotate
slower, namely 5:1 prolates exhibits higher periods of rotation than the 3:1’s. In addition, for
increasing values of shear rate, the rotational period decreases for all the ellipsoids.

We also validated our model against an existing numerical study for oblate particles, that

employs an immersed boundary method (IBM) in square and rectangular microchannels [2].

We investigated 3 different cases, to test our model in capturing the characteristic behaviors

observed in the study. In Figure 4, the cross-sectional view of the channels is shown. The

dashed red line is the reference trajectory from Lashgari et al. 2017 [2], which overlaps with the
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blue and black trajectories from our simulations. We first simulated the motion of an oblate

spheroid in a square channel of side H, with a cross-section of 50 µm x 50 µm as shown in

Figure 4(b). We set the body force to match the bulk Re=100 used in the study. We tested

the first oblate matching the relation H
D0

= 3.466, corresponding to a diameter D0 of 14.4 µm

related to our channel dimensions. For this case, Lashgari et al. [2] monitored the orientation

of the oblate using a unit vector n parallel to the symmetry axis of the particle and then

tested different starting positions. We selected one of them and we imposed the same starting

orientation, namely n = [0, 1, 0]. We obtained the same final focusing position and orientation

with SPH. The transitional behavior is a chaotic motion shifting to tumbling, rapidly turning

into a log-rolling motion, namely with n = [1, 0, 0]. The focusing position was 25 µm and 12 µm

away from the wall in the lateral and vertical positions, respectively. Lashgari et al. [2] reported

that the particle focused on a vertical distance of 0.26H away from the center, corresponding to

12 µm away from the wall for H= 50 µm, thus matching our predicted position. A good match

was also obtained in the second case for an oblate particle with a size of 20.6 µm. In this case,

Lashgari et al. [2] reported a focusing behavior, which was inclined-rolling on the diagonal of

the microchannel. The final focusing position was 14.5 µm in both directions. The focusing

dynamics and position match the results also in this case. However, we noted that the oblate

migrates toward to nearest diagonal from which it was released, as shown in Figure 4c. On the

contrary, Lashgari et al. [2] reported that the larger oblate migrated to the opposite diagonal,

due to an initial acceleration towards to center of the channel. They explained that this is due

to the streamwise rotation, that in this case does not decay to zero, as it does for the smaller
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particles. We did not observe this behavior, and the discrepancy might be due to the different

way in which the solid and fluid phase interaction is handled by the different numerical methods

adopted (SPH and IBM) [129]. We observed that the rotation rate increases first and then

decrease, following the same trend found in all the other case.

Lastly, since our investigation of prolate particles is in rectangular cross-section, we also

tested a case of oblate particles in a rectangular duct of aspect ratio 2 against the result by

Lashgari et al. [2] as shown Figure 4(a). For this, we kept one side at H = 50 µm and then scaled

the top and bottom walls to 100 µm. In addition, the constant body force was chosen so that

the resulting bulk Reynolds number was close to 100. We also changed the box length to 200

µm, twice the length used for the square channel. Lashgari et al. [2] reported that the distance

between the centers of the oblate and the channel is 0.22H, corresponding to a distance 11 µm

from the center and 14 µm from the wall. This matches our results, where the oblate focuses in a

vertical position oscillating between 13.8 and 14.2 µm from the bottom wall. We also confirmed

the logrolling behavior for this case. In Figure 4, the dashed-red line represents the trajectories

shown in the paper and are here plotted against our results from SPH simulations. Overall, the

initial configuration was set the same as the reference cases for all three simulations. The final

focusing behavior and position were confirmed for all cases, except for the bigger oblate, where

the focusing position is on the closest diagonal from which it is released.

3.2 Inertial migration of prolate particles in a rectangular microchannel

After the validation of our SPH model, we focused on the transient migration behavior of

prolate particles in a straight channel with a rectangular 50 µm x 25 µm cross-section. The
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length of the simulation box was set as twice the width of the channel, thus 100 µm, and Re =

50 for all cases. We found that different values of confinement ratio and particle aspect ratio

affect the migration dynamics of prolate particles in terms of focusing length and time, period

of rotation, angular velocity and rotational motion. These values are reported in Table I and

discussed throughout the following sections.

We defined the confinement ratio K for each particle as the largest dimension of the prolate,

representing its rotational diameter, divided by the smallest side of the channel (25 µm in our

cases). For each value of confinement ratio, we explored three different starting positions and

used them for all cases. We located the center of mass of the particle at (10,10), (15,5), and

(25,10) initially, thus progressively closer to the center of the channel. We refer to them as

starting positions 1,2 and 3. First, we studied the different sizes for the same aspect ratio, and

then we made a cross-comparison among different aspect ratios. The starting orientation for all

the particles is with their rotational diameter aligned with the flow direction.

In general, the trajectories present oscillations of the center of mass of the particle, due to the

rotation of the particles. Even when the particle has reached its final equilibrium position, it

moves back and forth around this position in both the lateral and vertical direction.

The general trend we observed is that the lateral focusing position oscillates around the channel

center-line for all cases, and the vertical focusing position increases with the size of the particles.

For example, for the aspect ratio 3:1:1, the particles focus at 6.8 µm, 7.6 µm, and 8 µm when

increasing the confinement ratio. Similarly, we observed a final vertical position of 6.2 µm, 7.4

µm, and 8 µm for the prolate particles with an aspect ratio of 2:1:1. The migration of the center
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of mass of the latter is reported in Figure 5, where a zoom on the trajectories is included within

the cross-section. For the case of the smallest confinement ratio, the trajectory experiences

an overshoot in the lateral position, going beyond the channel mid-line and then going back

towards the center, due to inertia. This behavior has been already reported in literature [130].

3.3 Effect of the confinement ratio and particle aspect ratio on the rotational dynamics

We investigated prolate particles of aspect ratios 2:1:1 and 3:1:1, meaning that the longest

dimension of the particle, is respectively 2 and 3 times longer than the other dimensions.

The rotational behavior which is mostly observed, throughout all the cases we have investigated,

is a transition from a chaotic behavior, namely a combination of the three main motions shown

in Figure 2, to kayaking and eventually tumbling. This trend is consistently observed

for all starting positions for all cases, except for the starting positions 1 and 2 for the value

of K = 0.768 in the 3:1:1 case. For these two cases, the final rotational behavior is logrolling,

while the particle starting from position 3 ends up kayaking. As a consequence, the vertical

focusing position is 7.2 µm, thus closer to the wall with respect to the same particle starting

in position 3, which focuses at 8 µm, as shown in Figure 6. The reason is that, when it is

kayaking, the particle is subjected to a greater lift that pushes it away from the wall, like what

is reported with the numerical observations by Masaeli et al. [13] for tumbling particles. In the

cases where the particle logrolls, the repulsive lift is much smaller, therefore the particle gets

slightly closer to the nearest wall. Overall, these cases show that the same particle undergoes two
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TABLE I: LIST OF THE 18 CASES TESTED IN THE PRESENT INVESTIGATION, IN-
CLUDING PARTICLE DIMENSIONS, ROTATIONAL MODES, PERIOD OF ROTATION,
ANGULAR VELOCITY, FOCUSING TIME AND LENGTH.

AR a (µm) b (µm) K SP (µm) RM T (µs) ωmin (kHz) ωmax (kHz) tf (ms) Lf (mm)

3:1:1

9.0 3.0 0.36
(10,10)

Tumbling
9 2 42.9 8.5 28.9

(15,5) 10 2.4 44.5 10 33
(25,10) 9.5 2.4 44.5 7 23.1

13.8 4.6 0.55
(10,10)

Tumbling
12 2 34.2 3.8 13.3

(15,5) 12 2.4 35.8 3 10.2
(25,10) 11.5 2.4 35.0 3 10.8

19.2 6.4 0.77
(10,10) Logrolling 4.5 20.4 22.6 3.8 12.1
(15,5) Logrolling 4.5 20.0 23.1 3 9.6
(25,10) Kayaking 13 2.4 26.7 6 19.8

2:1:1

6.88 3.44 0.27
(10,10)

Tumbling
5.3 6 42.9 9 27.9

(15,5) 6.0 6 42.1 9 29.7
(25,10) 5.8 6 41.4 7 23.1

10.52 5.26 0.42
(10,10)

Tumbling
6.4 6 35.0 6.0 20.4

(15,5) 6.4 6 35.0 6.0 19.8
(15,5) 6.3 6 35.8 6.0 19.8

14.6 7.3 0.58
(10,10)

Tumbling
7.3 6 31.8 2.2 7.15

(15,5) 7.4 6 31.8 2 6.6
(25,10) 7.5 6 31.8 2 6.6
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different rotational behaviors, depending on its size and its initial position within the channel

cross-section. In Figure 6 we have also plotted how the lateral and vertical positions of the

center of mass changes over time and also with respect to the downstream length. These figures

provide a sense of the speed of the migration of the particle. First, it rapidly moves towards

the equilibrium manifold, represented in a fast variation of the vertical position, followed by

a slow migration towards the channel center-line, accordingly to the model presented by Zhou

and Papautsky for spherical particles [18]. The equilibrium manifold is an equilibrium region

where the particle is equilibrated in the vertical direction, and it experiences a lateral migration

towards the equilibrium position. It was described also from Lashgari et al. 2017 and other

previous works. [131,132]

The logrolling behavior has not been reported in literature, where the studies converge on

the fact that prolate particles always tumble in a Poiseuille flow at moderate Reynolds numbers,

similar to the behavior in shear flows. We found that the parameter mainly responsible for the

log rolling mode is not the aspect ratio, but the confinement ratio. Indeed, the biggest particles

we simulated for both aspect ratios 2:1:1 and 3:1:1, using the same volume, had a different

rotational diameter: 14.6 µm and 19.2 µm, respectively. We performed additional simulations

where we fixed aspect ratio but inverted values of the confinement ratio. As expected, the 3:1:1

particle that in the original case was logrolling is now tumbling, and the 2:1:1 particle that was

tumbling originally is now logrolling. This behavior is due to increase in the rotational diameter.

We identified the threshold value of confinement ratio for the logrolling to occur, assuming

that the particle is sufficiently distant from the center, so it can develop all the transitional
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behaviors described before. First, since prolate spheroids with drot = 14.6 µm tumble and those

with drot = 19.2 µm logroll, we ran five additional cases with 3:1:1 particles whose rotational

diameter was 15.6, 16.6, 17.6, 18 and 18.6 µm corresponding to confinement ratios of 0.624,

0.664, 0.704, 0.720 and 0.744, respectively. We observed that for the first three cases, the final

tumbling motion was confirmed. Confinement ratio K = 0.720 leads to a final kayaking motion

and represents an approximate threshold value for a change in the final rotational behavior.

Above this value, the particle will logroll. The log-rolling motion of a prolate particle was also

confirmed in our experiments in a straight rectangular channel with a cross-section of 150 µm

x 50 µm. The flow rate was set to 300 µL/min, corresponding to Re = 50, and the particle

was an aggregate of fixed cells, behaving like a rigid body. The aggregate was not perfectly

symmetrical, but very close to an axisymmetric 3:1:1 prolate, with a rotational diameter of 50

µm (K=1). We simulated the same experimental conditions and the predicted logrolling motion

agrees well with the experimental observation. The comparison between the imaging top view

of the channel and the results of our simulation is shown in Figure 7.

3.4 Effect of the initial position and orientation on the rotational behavior

The effect of the particle’s initial location and alignment on its migration and focusing

behaviors is still not clear for both shear flows and Poiseuille flows. It has been shown that

oblate spheroids logroll, regardless of their initial conditions [133], but in the current literature

there is no such information for prolate particles. Considering the group of prolate spheroids

with K = 0.768, the particle starting in position 3 begins with a tumbling mode and stabilizes

in a kayaking motion. On the other hand, we observed that the particles starting in position
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1 and 2 exhibit a chaotic rotational behavior initially, but begin kayaking and rolling at the

same time while migrating laterally. The dominant orbit progressively flattens while the particle

approaches the lateral center-line and the kayaking motion completely transitions into logrolling

configuration.

The change in the rotational behaviors when changing the starting position might be also due

to the initial orientation of the particle and its location within the parabolic velocity profile

in the channel. If the particle is released sufficiently far away from the channel center, it will

experience an increasing velocity of the fluid while migrating laterally towards the center, and its

transitional behavior will follow the one described before. If the particle is released close to the

center, like the starting position 3, its initial configuration will determine the final rotational

behavior. At the center, the particle lateral migration is minimal, and it cannot go through

the different rotational modes leading to the logrolling. To confirm, we set up an additional

simulation in which we released the particle at the starting position 3, but with its rotational

diameter perpendicular to the flow direction, namely already in a log rolling set up. The particle

migrates downward, reaching a vertical focusing position of 7.2 µm, and exhibits the final log-

rolling behavior.

3.5 Effect of particle aspect ratio and confinement ratio on the period of rotation

We also investigated the period of rotation, whose dependency on the size and aspect ratio

was still not fully clarified in the previous studies. Hur et al. [52] concluded that the orbit period

does not depend on the aspect ratio, but on the confinement ratio. On the other hand, Masaeli
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et al. [13] reported that the period of rotation increases along with the aspect ratio, following the

Jeffery’s formula [1]. Computation of this parameter from our simulations reveals that both can

be true depending on the particle’s aspect ratio and confinement ratio. We observed a higher

period of rotation for higher aspect ratios particles and also for increasing values of confinement

ratio, with a fixed aspect ratio. However, the magnitude of this difference is greater for distinct

aspect ratios and the size contributes to minor changes. Moreover, a particle that is logrolling

rotates about 3 times faster than a particle with the same volume that is tumbling.

3.6 Effect of particle aspect ratio and confinement ratio on the angular velocity

Our results show that the angular velocity with respect to the vorticity axis is not constant,

but is periodic, with minimum values when the particle is aligned with the flow direction and

maximum values when the particle is perpendicular to the top and bottom walls. This charac-

teristic was already reported in several studies [1, 48]. In Figure 8 we show the differences in

the angular velocities of particles with a different aspect ratio, but with the same confinement

ratio. The number of peaks gives additional information on the number of rotations in the

same amount of time, illustrating how the orbit period differs. Figure 8(a) shows two particles

undergoing a tumbling motion, while Figure 8(b) shows particles with a higher confinement

ratio that stabilize in a logrolling motion. We found that within the same aspect ratio, smaller

particles show higher peaks for the maximum angular velocity. The minimum values, when the

particle is aligned with the flow direction, change with the aspect ratio. The group of 2:1:1 pro-

late particles, shown in Figure 9, exhibits a minimum angular velocity close to 2 kHz, whereas

it is in the order of 6 kHz for the 3:1:1 group. The minimum and maximum values of the
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angular velocity of a logrolling particle are very close, because the oscillations are small and the

magnitude almost constant, unlike tumbling particles where the periodicity is non-negligible.
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Figure 4: Inertial migration of oblate particles in square and rectangular channels reproduced
from Lashgari et al. 2017 [2] investigation. The circle and triangle indicate the initial and final
position of the center of mass of the oblate spheroid. (b) Oblate in a square channel, with the
same diameter of the oblate ellipsoid in the rectangular channel, but starting in position (20
µm, 17 µm). (c) We tested an oblate particle with a radius of 10.3 µm with the same starting
position as the other case in the square channel.
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downstream length. (c) Variation of the vertical position of the center of mass versus time and
downstream length.
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Figure 7: Top-view of a logrolling prolate particle at three different time intervals. The frames
from the videos of the simulation and experimental observation have been juxtaposed. The cell
aggregate logrolls while moving downstream, and its center of mass is located approximately at
the channel center.
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CHAPTER 4

CONCLUSIONS AND FUTURE DEVELOPMENTS

We applied SPH modeling approach to investigate the effects of particle size and shape on its

inertial behavior in a straight rectangular duct. We explored behavior of prolate spheroids at Re

= 50, testing a range of confinement ratios and 2 values of particle aspect ratios, and examined

the migration dynamics within the channel. We not only studied how the focusing position and

migration dynamics changes for prolate particles of different sizes and aspect ratios, but also

examined the rotational behavior, angular velocity, downstream focusing length, and migration

trajectory, mapping their migration dynamics. The general trend is that prolate ellipsoid mi-

grates towards the channel lateral center-line and they assume a final tumbling rotational mode

while moving downstream. However, when increasing the particle rotational diameter, thus its

blockage ratio, the final rotational behavior can be either kayaking or logrolling, depending on

the particle’s initial position and orientation. This is the first time this logrolling behavior is

reported for prolate spheroids. This new predicted result was confirmed by our microfluidic

experiments on cell aggregates with similar shape aspect ratio and confinement ratio. The same

particle can undergo a set of transitional behaviors and eventually logrolls if it is sufficiently

distant from the center of the channel. If the particle is released near the center, where the fluid

velocity is higher, the initial alignment will determine the final mode of rotation. We identified

K = 0.72 as the threshold value above which the particle will logroll regardless of its aspect

ratio.
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In addition, we reported that the orbit period of tumbling particles depends on both the particle’s

rotational diameter and aspect ratio. Moreover, a prolate spheroid in a tumbling configuration

exhibits a period angular velocity, which shows maximum peaks, when the particle is vertically

aligned. A prolate particle that is logrolling has an angular velocity that is almost constant,

with a value close to the average velocity of a tumbling particle. The result and information

provided will be valuable for all the applications of high-throughput separation, sorting, and

analysis where particle shape and alignment is relevant.

The research areas that can benefit from this study include, but not limited to, the medical

and biological fields, food and environmental technologies. Among the studies that use shape

as a biomarker to perform separation and sorting, Li et al. successfully developed a device for

shape-based separation of a microalga for biomass production, whose shape is a useful indicator

for its cell cycle status, environmental condition, and many more [134] . It demonstrates how

cells with a different aspect ratio focus on different lateral positions and can passively separate

with a throughput of 1,300 cells/sec. Similarly, Liu et al. performed a shape based separation

with Cerevisiae cells, showing that a variation in shape leads to the migration to different lateral

positions and with different velocities [135]. Feng et al. used a spiral microchannel to enrich

and separate chromosomes from cell debris [121]. Their results show the possibility of separat-

ing chromosomes by exploiting their size and aspect ratio: the two factors influencing the final

focusing position, thus elution location, in a spiral microchannel. Yuan et al. demonstrated

for the first time the separation of cyanobacteria using viscoelastic microfluidics, exploiting the

effects of different shapes [135]. The emerging studies using this technique suggest the bene-
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fit of inertial microfluidics to this kind of application, where particle shape and alignment are

relevant. Numerical simulations can provide valuable information on the inertial migration of

particles with various shapes by thoroughly exploring and tuning each parameter. Moreover,

once the numerical method is validated, it can be used to predict and guide the experimental

design. In addition, the simulations provide information that is not accessible experimentally,

such as detailed flow and stress fields.

As reported by Behdani et al., shape-based separation is a powerful tool, but the main lim-

iting factors are the lack of a general framework to study the shape effects and the absence of a

systematic work in the literature to address the multiple variables that can affect the migration

dynamic [136]. By choosing the proper channel cross-section and particle size and aspect ratio,

the final focusing behavior can be controlled to obtain the logrolling behavior we reported in

this study. This might be useful to allow the optical reading since the particle rotational axis is

not changing over time. Also, a prolate ellipsoid could provide more surface area with respect

to a spherical droplet or particle. In future work, higher values of the Reynolds number can be

investigated to shed more light on the rotational behaviors in this condition, which are still not

clear. This approach can be extended to different channel cross-sections and particle shapes to

provide some design basis for shape-based separation and interrogation platforms and help their

integration into Lab-on-Chip devices.
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