University of Illinois at Chicago
Browse
- No file added yet -

An Exploration of Sarcasm Detection Using Deep Learning

Download (404.71 kB)
thesis
posted on 2019-12-01, 00:00 authored by Edoardo Savini
Sarcasm detection plays an important role in Natural Language Processing as it has been considered one of the most challenging task in sentiment analysis and opinion mining appli- cations. Our work aims to recognize sarcasm in social media sites, microblogs and discussion forums, exploiting the potential of Deep Learning tools such as Deep Neural Network and Word Embeddings. In this thesis, we (a) develop multiple types of neural models and analyze their efficiency when combined with word embeddings; (b) create a new multitasking frame- work that exploits the strong correlation between sarcasm and sentiment detection (c) test the performances of our models on two pre-labelled datasets; (d) compare our results with other state-of-the-art models; (e) apply our models on real word data to evaluate the efficiency of their prediction. We then discuss on the benefits of our research in the field of sarcasm detection and sentiment analysis, and put the basis for some future researches.

History

Advisor

Caragea, Cornelia

Chair

Caragea, Cornelia

Department

Computer Science

Degree Grantor

University of Illinois at Chicago

Degree Level

  • Masters

Degree name

MS, Master of Science

Committee Member

Koyuncu, Erdem Baralis, Elena Maria

Submitted date

December 2019

Thesis type

application/pdf

Language

  • en

Issue date

2019-11-22

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC