posted on 2017-07-22, 00:00authored byArash Rahnamaee
The main goal of this dissertation is to increase the performance of the capacitor-less high-frequency pulsating dc-link (HFPDCL) inverters suitable for renewable energy sources. The HFPDCL inverters are compact, small foot-printed, modular, and reliable since they do not employ large dc-link capacitors and line-frequency transformers. However, they require additional power conversion stages which increases the losses of the converter. The dc-link capacitor of the conventional fixed dc-link inverters provides a buffer stages for the inverter and it decouples the power conversion stages of the converter. Therefore, Power conversion stages of the HFPDCL inverters are not decoupled. As a result, they need a modulation scheme to synchronize the operation of the conversion stages and reduce the switching losses of the converter.
Auxiliary circuits conventionally are used to provide a soft-switching condition for power converters to reduce the switching losses. This increases the efficiency and performance of the converter. However, they require additional passive and active components. The modulation-based soft-switching schemes are a better solution since they do not require any additional components. Not only can they provide soft-switching for the converter, but they can also reduce the switching requirement of the converter. They use the pulsating dc-link feature of the HFPDCL inverters to provide soft-switching condition. The modulation scheme also needs to synchronize the operation of the different conversion stages of the HFPDCL inverters.
This dissertation presents modulation-based, soft-switching schemes to increase the performance of the HFPDCL inverters without using any auxiliary circuits. It reduces the switching requirement and provides a soft-switching condition to reduce the switching losses of the HFPDCL inverters to increase the overall efficiency. They also generate high-quality output waveforms with low total harmonic distortion (THD). The presented soft-switching modulation scheme operates based on the pulsating nature of the dc-link of the HFPDCL inverters. The three presented modulation schemes are as follows: 1) a discontinuous modulation scheme that synthesizes the fixed-width pulses on the pulsating-dc link (PDCL) waveform, 2) soft-switched hybrid modulation that reduces the switching requirement of the output inverter of the HFPDCL inverter and provides a soft-switching condition for it, and 3) a pulse-density pulse-width hybrid modulation (discontinuous modulation) to reduce the switching requirement of the conversion stages of the HFPDCL inverter and provide a soft-switching condition for it.
Finally, two experimental setups are implemented to validate the performance of the presented soft-switched modulation schemes: 1) a discrete design that uses discrete silicon switching devices, and 2) a compact and modular design that uses power modules to increase the power density of the implemented HFPDCL inverter. The experimental results validate the performance of the presented soft-switched modulation schemes.
History
Advisor
Mazumder, Sudip K.
Department
Electrical and Computer Engineering
Degree Grantor
University of Illinois at Chicago
Degree Level
Doctoral
Committee Member
Erricolo, Danilo
Caliskan, Vahe
Cetinkut, Sabri
Mitra, Joydeep